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Abstract

In this thesis we give a detailed proof of the model completeness of two expansions of
the real ordered field, specifically the expansion by Pfaffian chains of functions and the
expansion by the exponential function. The latter result is also known as Wilkie’s Theorem
and both of the proofs are due to Alex Wilkie. As an application of Wilkie’s Theorem, we
provide a modest generalization of the fact that Schanuel’s conjecture over the real numbers
is equivalent to a uniform version of itself, as proven by Jonathan Kirby and Boris Zilber.
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1 Introduction

1.1 History and background

We will approach the set of real numbers, R, from a model theoretic point of view. To be more
precise, we shall be concerned with certain expansions of the structure (R | +,-,—,0,1, <), the
real ordered field. Throughout, we will refer to its language as £. For the sake of clarity, we
make this into a definition.

Definition 1.1.1. We define the language £ as {+,-,—,0,1,<}. We also define T to be the
complete L£-theory Th(R | £).

The set R, considered as an L-structure, was at first mainly studied by algebraists, but has
also received considerable attention from model theorists. Perhaps the most famous result in this
area is proven by Alfred Tarski and it can be seen as the starting point of the model theoretic
study of (R | £). He considered the L-theory Trer of real closed fields, consisting of

e The axioms for ordered fields.
o VzIy(0 <z — z = y?).
o Vag,...,Tons13Y(Tont1 # 0 — xo + 11y + -+ T2 1y?" T = 0) for each n € N.

In the early 1930s he proved that this theory admits quantifier elimination. Recall that this means
that for every L-formula p(F), there exists a quantifier free formula ¥(&) such that Trer E
VZ(p(Z) <> ¥(Z)). The subsets of R™ which can be defined using quantifier free £-formulas
are called semialgebraic sets. These sets are studied in real algebraic geometry and quantifier
elimination implies that the projection of a semialgebraic set is semialgebraic as well. Quantifier
elimination in Trcr has more implications. Since every ordered field contains a copy of the
rational numbers, every real closed field must contain a copy of the algebraic real numbers. As
every L-formula is equivalent to a quantifier free formula, every embedding between models of
Tror is an elementary embedding. So, since the algebraic real numbers embed into every model
of Trer, this implies that Trop is a complete theory. Now take any L-sentence ¢ for which
we want to know if Trer | ¢. Since the axioms of Ty can be effectively described (Tgroy is
recursively enumerable) we can imagine a computer enumerating all statements provable from
the axioms of Trcoy. Since Trer is complete, we must either encounter ¢ or —p after a finite
amount of time. This shows that we can effectively decide whether ¢ is true or not. The theory
Trey is said to be decidable. We see that (R | £) exhibits very good model theoretic behavior
and it should come as no surprise that it has become a beloved object of study. Some time after
the decidability of Trcp was settled, Tarski says

“(...) the decision problem is open (...) for the system

obtained by introducing the operation of exponentiation.”
in a discussion of related decision problems [Has12]. The question he raises is that of the decid-
ability of the theory Texp = Th(R | Lexp), Where Lexp, = £ U {exp} and exp : R — R denotes
the exponential function with base e. This problem is known as Tarski’s exponential function

problem. A big breakthrough in this area was achieved by Alex Wilkie in [Wil96] (a preprint
was already available in 1991), in which he proves that the theory Texp is model complete.

Definition 1.1.2. A theory T in a language L is called model complete if for every L-formula
o(x1,...,op), there is an existential L-formula 9 (x1,...,x,) such that

FEVLy, ... zn (X1, .. zn) < (21, .., 20)]



Furthermore, an L-structure M is called model complete if Th(M) is model complete.

Recall that an existential formula consists of a string of existential quantifiers, followed by a
quantifier free formula. (A universal formula is defined analogously.) There are many different
equivalent ways to define what model completeness is (in fact, we shall give another one in
this thesis), but the form in which it is given in Definition should look very similar to
the definition of quantifier elimination. Propositions containing many quantifiers are usually
regarded by mathematicians as more complex than those that do not. Indeed, the complexity
of a formula might be measured by counting the number of alternations of blocks of existential
and universal quantifiers appearing in the prenex normal form of that formula. So in this sense,
quantifier free formulas are the least complex formulas of all. Quantifier elimination is so useful,
because in order to understand structures that admit elimination of quantifiers, we can restrict
our study to these “easy” quantifier free formulas (and the sets they define). On the other side
of the spectrum, we find structures such as (N | +,-,0,1), which exhibits poor model-theoretic
behavior. Here we encounter a hierarchy of formulas of arbitrarily high complexity (in the sense
we just described), which cannot be reduced to simpler formulas. When a structure does not
admit quantifier elimination, model completeness serves as the next best thing. Nonetheless, the
model completeness of Texp does not solve Tarski’s problem. Five years later, Macintyre and
Wilkie essentially settle it in the following fascinating way [MW96].

Theorem 1.1.3. If Schanuel’s Conjecture is true, then Texp is decidable. Conversely, if Texp 15
decidable, then a weak form of Schanuel’s conjecture holds.

(For a brief introduction of Schanuel’s Conjecture, we refer to Section [8.1])

This thesis can be subdivided into three parts. In the first part we prove the model com-
pleteness of Tpy;, which will be defined in the next section. This part mainly consists of proving
three different Lemmas and the techniques we develop in order to prove these will also be useful
in the subsequent parts. In the second part we will prove the model completeness of Texp (that
is, Wilkie’s Theorem). In both of these parts we follow the proofs given in [Wil96]. In the third
part we offer slight generalization of a result by Kirby and Zilber, which states that Schanuel’s
Conjecture over the real numbers is equivalent to a uniform version of itself. The proof of this
uses Wilkie’s Theorem. This last part is mainly based on [KZ06].

1.2 Definitions and preliminary knowledge

Below we give the definition of a Pfaffian chain, which is needed to understand the First Main
Theorem. The reader may also wish to glance over the appendix, in which some concepts and
results regarding real analytic functions, O-minimal structures and types, which we will need
along the way, are briefly summarized.

We shall be interested in certain classes of real analytic functions (in truth, truncations
thereof), which we define as follows.

Definition 1.2.1. Let m,l € N, with m,l > 1 and let U C R™ be an open set, such that the

closed box [0,1]™ is contained in U. Now, let Gi,...,G; : U — R be analytic functions and
suppose that there exist polynomials p; ; € Rlz1,...,2myi] (for i =1,...,l and j = 1,...,m)
such that
0G; , - - o
(&) = pi;(Z,G1(D),...,Gi(Z)),

6$j

for all £ € U. Then the sequence Gy, ...,G; is called a Pfaffian chain on U.



As we indicated above, we will actually work with truncated functions.

Definition 1.2.2. Let m,l € N, U C R and G1,...,G; : U — R be as in Definition and
let FY, ..., F; be the corresponding truncations. That is,

[ Gi@ ifFelo 1™
Fy(7) = { 0 it € R™\ [0, 1]™

Now, let C' C R by any set such that the coefficients of each p; ; are the value of some term
in the structure (R | £, F,..., F},¢)ccc. We define the language Lpgp as LU {Fy,..., F} UC.
Furthermore, we define the Lp¢j-theory Tps; as Th(R | Lpgy).

Remark 1.2.3. Of course, the theory 7Tp¢; is dependent on the Pfaffian chain G1,...,Gy, even
though this is not reflected in our notation. This should not cause confusion, since throughout
this thesis, we will work with the fixed Pfaffian chain Gi,...,G;. (We will however, at some
point, conveniently forget the exact details of the definitions of G1,..., G, in order to free up
the variables m,{,U,C,...)



2 Approach to the First Main Theorem

2.1 Reducing the problem

We will not keep the reader in suspense any longer and present the First Main Theorem.
Theorem 2.1.1. The theory Tps; is model complete.

The first step in our proof of this Theorem consists of formulating a condition on structures,
which is strongly related to the concept of model completeness. In our proof of the First Main
Theorem, we will not verify the conditions of Definition directly, but instead formulate and
equivalent condition which we will verify.

Definition 2.1.2. Let L be a language and let M and N be L-structures such that M C N.
We say that M is existentially closed in N if

N | ¢ implies M | ¢,
for all existential Lps-sentences .

In order to show how Definition [I.1.2] and Definition relate to one another, we need the
following Lemma (but the curious reader can already take a peek at Corollary [2.1.4)).

Lemma 2.1.3. Let L be a language and let T be a theory in the language L. Suppose that
o(x1,...,2y,) is an L-formula such that for every inclusion M C N of models of T holds that

N E o(my,...,my) implies M = p(mq,...,my,),
for all my,...,m, € M. Then there exists a universal L-formula ¥(x1,...,x,) such that

TEVYZ,...,zn[p(x1,. .. 20) < (21, .., 20)]

Proof. Let c1,...,c, be new constants and write ¢ and Lz for (ci1,...,¢,) and LU {c1,...,cn}
respectively. We define the theory

I'={¥(@) | ¥(Z) a universal L-formula such that T U {p(&)} = (€)}.

Our goal is to prove that T UT |= ¢(¢). So, consider an arbitrary model M = T UT and let
D(M) denote the diagram of M with respect to the language L.

Claim. The theory TU D(M) U {p(¢)} is consistent.

Proof. Suppose to the contrary that it is inconsistent. Then by the Compactness Theorem, it
is finitely inconsistent. This means that there exist finitely many sentences 11(¢), ..., ¥n(¢) €
D(M), such that T U{¢(€)} U{1(C),...,¥m(C)} is inconsistent. We define U(¢) =11 (E) A... A
Ym(€) € D(M) and we note that T'U {(€)} U {¥(c)} is already inconsistent. We can write
U(¢) = ®(¢,ad) for some quantifier free L-formula ®(Z,¥) and constants @ from M. Since the
constants @ do not appear in T'U {¢(¢)}, it follows that T'U {¢(¢)} must be inconsistent with
37 ®(¢, 4). In other words, T'U {p(&)} = V§—®(¢, 7), so Vi—~P(¢,7) € T', by definition of T'. But
then M = Vy—®(¢, ), since M |=T'. In particular M |= —®(¢, @), which is a contradiction with
®(¢,a) € D(M). This proves our claim.

Let N be a model of T U D(M) U {¢(€)}. Then M C N and N = ¢(¢), so we may use the
special property of ¢ to conclude that M = ¢(é). Since M = T UT was arbitrary, we conclude
that T UT |= ¢(é). By the Compactness Theorem, there are in fact finitely many sentences



¥1(€), ..., ¥m(C) € T such that TU{y)1(C), ..., ¥m(C)} E ©(E). Since the set of universal sentences
is closed under conjunction (up to equivalence), we can take a universal sentence 1 (¢) equivalent
to Y1(@) A ... At (). Then surely TU{y(6)} = ¢(€), so T = (€) — ¢(€). On the other hand,

since ¥1(6), ..., ¥m(€) € T, it is also clear that T'U {¢(&)} = ¥(€), so T = ¢(€) — ¢(&). Since
T = ¢(é) <> ¢¥(€) and the constants ¢ appear nowhere in 7', we must have that

TEV,...,xn[e(@1, ..., 20) < Y(x1,. .., 20)],
as required. O]
As promised, we have the following corollary, linking Definition and Definition [2.1.2

Corollary 2.1.4. Let L be a language and let T be a theory in the language L. Then the following
are equivalent.

(i) The theory T is model complete.

ii) For every pair of L-structures C N, which are models of T, holds tha is existentially
ii) Fi ) L-struct M C N, which del T, holds that M 1 istentiall
closed in N.

Proof. Suppose that (i) holds and let M C N be models of T. Let ¢ be an existential Lys-
sentence such that N | ¢. We write ¢ = Jzq,..., 2.0 (mq, ... ,mg, x1,...,2,.), with ¢ a quan-
tifier free L-formula and my,...,ms; € M. Since T is model complete,

TEYY, o ys [T, T DY, ey Ysy Ty e ey Tp) < 31,y Ty XYLy o5 Usy Ty - -5 T1)]
for some quantifier free L-formula y. So in particular
NE-3z1,...,20 p(ma,...,ms, T1, ..., &) <> Jx1, ... 2 X(M1, ..., Mg, T1, ..., Ty),
as N |= T and hence
N3z, 2 x(ma, .o, mg, @1, ..., 2¢).

But if there is no tuple z1,...,2; in N such that N = x(ma,...,ms,z1,...,2), then certainly
there can be no tuple x1,...,2; in M such that M E x(mq,...,ms,21,...,2;), since M C N
and x is quantifier free. It follows that

M -3z, 2 x(ma, ..., ms, 1,00, T4),
and as a consequence
ME 3z, oz p(my, ... ,ms, T1, .0, Ty )y

This time because M |= T. So (ii) holds. To prove the converse, suppose that (ii) holds.
Claim. Every existential L-formula is equivalent to a universal L-formula, with respect to T

Proof. To prove this claim, let ¢(z1,...,2,) be an existential L-formula. We clearly have that
for every inclusion M C N of models of T holds that

N E ¢o(my,...,my,) implies M = p(mq,...,my),

for all my,...,m, € M, since T satisfies (ii). Our claim now follows directly from Lemma [2.1.3



Using the claim, we shall prove that every L-formula is equivalent, with respect to T of course,
to an existential L-formula. To show this, we use induction on the number leading quantifiers
of formulas in prenex normal form. Since every formula can be put in prenex normal form, this
will suffice. A quantifier free formula is in particular an existential formula, so the base case is
covered. Now suppose that every L-formula in prenex normal form with less than r quantifiers is
equivalent to an existential formula, modulo T'. Consider the following formula in prenex normal
form

Q1y1 - Qryr 0(T1, - Ty Y15 -+, Yr),

where @1, ...,Q, are quantifiers and ¢ is a quantifier free L-formula. If (), is an existential
quantifier, then we are done right away, as we can apply our induction hypothesis to the formula
Q2ys2 . .. Qry- p to turn it into an existential one, at which point we can simply return Q1y; to
the beginning of this formula. Now suppose that )7 is universal. In this case we also apply our
induction hypothesis to the formula Qsys ... Q,y, ¢. Our induction hypothesis tells us that this
formula is equivalent, modulo 7', to an existential L-formula. Then by our claim, this formula is
equivalent to a universal formula, say

VYo .. Vys (1, Tny Y1, -+, Ys)-

Hence

TEVry,. . xn [Quyr - Qryr 0 < VY1 .. Vys Y.

We apply our claim yet again, this time to the existential formula Jy; ... Jys—. This gives us
a universal formula, say Vy; ...Vy; X, equivalent to it. But now we are done, as

TEYzy, ...,z [Q1y1 ... Qryr ¢ <> Jy1 ... Fy—x],

since Jy; . .. Jys—p is the negation of Vy; . .. Vys ¥ and Jy; ... Jy,—y is the negation of Vy; ... Yy, x.
This completes the induction, so (i) holds. O

Thus, to prove Theorem it suffices to take two arbitrary models k, K = Tpg), with
k C K, and an arbitrary existential sentence x in the language Lp¢;, = Lps; U k, such that
K | x, and show that k |= x. In fact, this is more or less what we will do, but we can make
our lives a litlle bit easier. It turns out that we only need to concern ourselves with existential
Lps) p-formulas x of a special kind. In the following two Lemmas, we show exactly what we
mean by this. The first of the two is formulated a bit more general than we need at this point,
but we will come back and recycle this Lemma (as we will do with many other results as well).

Lemma 2.1.5. Let L be a language of the form LUF UC, where F is a set of function symbols
and C is a set of constants. Furthermore, let T = Th(R | L). Then any existential sentence x
in the language L is equivalent, in the theory T', to a sentence of the form

n
dxq, ...,z /\TS:O,
s=1

where each T, is a term of Lc = LU C or has the form f(x;,...,x;) — x4, , for some f € F.

Proof. We begin by proving the following claim.



Claim. Each formula of the form ¢ — y = 0, where ¢ is a term of L, and with y not appearing
in o, is equivalent to a formula of the form

Jzq,...,3z, [Tn+1_y:0A /\[TS—%:O]],

s=1

where each 75 is a variable, a constant of L, or the form f(x,,...,xs,), for some function symbol
f of L, and with y not appearing in m,...,7n41.

Proof. We use induction over the structure of L-terms to prove this claim. The base case holds
trivially, so let f be an l-ary function symbol of L and let o1, ...,0; be terms of L, for which
our induction hypothesis holds true. Then the formula f(oq,...,0;) —y = 0 is equivalent to

1
Jz1,..., 37 lf(xh...,xl)—y:O/\ /\[08—:105:0]].

s=1

Using our induction hypothesis to replace each formula o5 — x5 = 0 now yields the result, as we
are allowed to bring any existential quantifiers to the beginning of the formula, if we make sure
that every new variable we introduce does not already appear in other parts of the formula.

So if we write an L-formula of the form ¢ = 0 as Jy[y = 0 Ao — y = 0], with y not appearing
in o, then we can use our claim to see that it is actually equivalent to a formula of the form

n
Jy [y:O/\Elxl,...,Hxn lTn_H—y:O/\ /\[Ts—a:s:()]H,

s=1

where each 7, is a variable, a constant of L, or the form f(zs,,...,xs), for some function
symbol f of L. Moving all quantifiers to the beginning of the formula and replacing the variable
y by 2,41 for convenience of notation, gives us a formula

n+1
/
Hxlv"'amn-‘rl /\Tszov (1)
s=1
where each 7/ is a term of £ or has the form f(z;,,..., 25) — 2,

Now let us make the observation that every (possibly negated) atomic formula (or literal) of
L is equivalent to a formula of the form Jz[o = 0], where o is a term in the language L. Indeed,
if 0 and 7 are terms of L, then we have the following list of equivalences

o < 7] +— Fz[r — 0+ 2° = 0],

with & not appearing in o or 7.
It follows that if we are given a set of literals ¢1, ..., ¢,, we can find terms o4, ...,0,, such
that each ¢ is equivalent to Jxs[os = 0], and where each x5 does not appear in o, for ¢ # s.



This means that we can write the disjunction of these literals in the following manner

\”/ Pg \”/ Jz4[os = 0]
s=1 s=1

n
—— Jzy,..., 3z, \/crs =0
s=1

+— Jxy, ..., Jzyfor -0 = 0]

We are allowed to replace o7 - - - 0, = 0 by a formula of the form , being careful not to use the
same variables twice, to arrive at

n l
v¢(9<—>3x17"-7xr/\7—s:07
s=1

s=1

where each 7; is a term of L¢ or has the form f(xz;,,...,x;)—x4,,. Now if we take a conjunction
of formulas of the kind shown on the right side of this equivalence, again with variables not
appearing twice, we can move all quantifiers to the beginning of this formula, to find a formula
of the exact same form, that is, of the form

!
dzq, ..., 2, /\7520,
s=1

where each 7, is a term of Lo or has the form f(x;,,...,%;) — x;,. But this means that
every formula in conjunctive normal form is equivalent to a formula of this kind. Since every
existential sentence is a string of existential quantifiers followed by a quantifier free formula, and
every quantifier free formula is equivalent to a formula in conjunctive normal form, the lemma
follows. O

Lemma 2.1.6. Let k and K be models of Tps; such that k C K. Then k is existentially closed
in K if and only if

K E3xy,...,x,. x implies k |E Jzq,..., 2, X,
for every Lps; k-sentence x4, ..., 2, x of the form

l

Elxl,...,zr/\xs, (2)

s=1

where each x5 is of the form T =0 for some term T of Ly, or of the form

Fi(yi1v"'ayim)_xim+1 =0A /\ 0<xij <1,
JjES

(see Deﬁnitz’on for some S C {1,...,m} and where

o Ti; ijES
Yi =Y 0or1 ifjé¢s,

for 1 <iy,... 0my1 <.

10



Proof. Surely, if k is existentially closed in K and the structure K satisfies an Lps} ;-sentence

1 of the form , then k satisfies ¢ as well, as v is existential. We direct our attention to the
converse.

Suppose that K = 3z1,..., 2, x implies k = 3z1,..., 2, X, for every Lps; x-sentence x of the
form . Let 3x1,...,2, ¥(21,...,2,) be an existential Lp¢} k-sentence such that K |= 37 ¢(Z).
By lemma we may assume that 37 (&) is of the form

1
dri,..., 2, /\TSZO,
s=1

where each 7, is a term of £, or has the form Fj(z;,...,x;,) — ;,.,. Since K |= 37 ¢(Z),
there exists @ € K" such that K = 9(@). For all 1 < s <n, we construct the Lp¢; p-formulas x;
as follows.

e If 7, is an Lj-term, we let x5 be the formula 7, = 0.

e If 7, is of the form Fj(x;,,...,x;, ) — 2;,,, and it is the case that 0 < a;,,...,a;, <1, we
let x5 be the formula

Fi(yiu'"vyim)_zierl =0A /\ 0<xi]’ < 17
jES

where S = {1 <j<m|0<p;, <1} and

Ti; lfj es
y;, = 0 if pi, =0
1 ifp, =1.
e If 7, is of the form F(x;,,...,x;,, ) — 24, ., and it is not the case that 0 < a;,,...,a;, <1,

we let x5 be the formula

m m
Ti, ., =0A3z1,... 22m H(xij-zf-Jrl) : H((l—xij)~z,2n+j+1) =0
j=1 J=1
(For each 75 of this form, we take new variables z1,...,22,,.) Notice that x; is Tps)-

equivalent to

m m
Ty = 0A \/:Uij<0 v \/1<xi].
j=1 j=1
If we recall that each F; vanishes outside the closed unit box, then we see that
Tet) ': Vag,. .. 7xT[Xs — Ts = 0]7

for every 1 < s <. So if we define the formula x by
1
/\ XS?
s=1

11



then

Teep = xr, .z (@1, 2p) = 32, 2 (21, 2).

Now by construction, K | x(@), so K | 3% x(Z). Furthermore, we may push any existential
quantifiers present in x(Z) to the beginning of this formula, to see that 3% x(Z) is equivalent
to a formula of the form (2). So by our assumption, k = 3% x(Z) and hence k = 3% ¢(Z), as
desired. O

2.2 (n,r)-sequences and 7-definable points

In broad terms, the proof of Theorem will be an induction over the number of x of the
second form (of Lemma [2.1.6)), occurring in x. In order to systematize this induction process,
we need to pad out the set of these xs. This is the purpose of the following definition.

Definition 2.2.1. Let n,r € N.

(i) A sequence (o1,...,0y) of terms of Lp¢; in the variables x4, ..., z, is called an (n, r)-sequence
if the following two conditions are satisfied.

(a) For s =1,...,n, the component o, has the form F;(y1,...,ym) for some i =1,...,1
and some y1,...ym € {0,1,21,..., 2.}

b) Ifs=1,...,n,i=2,...,0l and 05 = F;(y1,...,Ym), then s > 1 and for some t =
1,...,s—1holds oy = F;—1(y1, - - s Ym)-

(ii) Those variables actually occurring in some term of an (n, r)-sequence & are called &-bounded.

Remark 2.2.2. Before we continue, let us take a moment to look at a few basic properties
of these sequences which will be useful to us. Firstly, any (n,r)-sequence & is also an (n,r’)-
sequence for any r’ > r (and its d-bounded variables stay the same). Also notice that any initial
segment of an (n,r)-sequence & is also an (n’,r)-sequence for n’ < n. The last thing we note
is that if we have a sequence satisfying (a) of Definition but not necessarily (b), then we
can rearrange this sequence and pad it out in such a way that the resulting sequence will satisfy
both (a) and (b) and has the same (bounded) variables.

Witnesses to formulas of the form correspond to roots (on some domain) of functions
generated by the components of suitable (n, r)-sequences and terms of L. We will say more on
this in Lemma[2.2.6] But with this in mind, it is reasonable to make the following two definitions.

Definition 2.2.3. Let K be a model of 7ps; and suppose & is an (n,r)-sequence. The natural
domain of & on K, denoted D" (@, K), is defined to be [];_, I; where

[ {re K|0<z<1} ifz; is &-bounded,
K otherwise.

Definition 2.2.4. Let k, K |= Tps;, with & C K and let & be an (n,r)-sequence. We denote
by M"(k, K, &) the ring of all functions f : D"(¢, K) — K for which there exists a polynomial
p(T1, .. Tr Y1, Yn) € k[T1, ..., Tr, Y1, .. Yn) such that f(&) = p(&, &(d)) for all@ € D7(¢, K).

Remark 2.2.5. Let us take a look at the properties of the ring M" (k, K, 8),’as given in Definition
First note that it makes sense to talk about a partial derivative, %, (fori=1,...,7)

ol a function g € M"(k, K, &), since the usual e-J definition of limits can be expressed in our
language Lpsp. The ring M"(k, K, &) is generated, over k, by the projection functions x1,...,z,
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and the functions 01(") on(Z). By Definition 2.2.1] (i) (b) and Definitions [[.2.1] and [1.2.2]
the partial derivative (k, K, d) can be expressed as a polynomial

’ 8w ’
in these generators (with coefficients in k, by Definition j and hence aa 2 e M"(k,K,d). By
a simple application of the sum and product rule for derlvatlves it follows that M" (k,K,d) is
closed under differentiation; it is a differential ring. Note that this implies in particular that the
elements of M"(k, K, d) are C*°-functions.

Furthermore, by Proposition [A.1.5] m M"(R,R,&) is an integral domain. By quantifying out
parameters of elements p(Z,5(%)) € M"(k, K @), this fact clearly transfers to M"(k, K, &) (for
an explanation of what these terms mean, please see Remark .

Lastly, we note that M"(k, K, &) is Noetherian, as it is finitely generated over the field k.

Now let us clarify and prove the assertion we made following Remark

Lemma 2.2.6. Let k, K = Tpy, such that k C K and suppose that for all n,r € N, all (n,r)-
sequences & and all g1,...,91 € M"(k,K,d) holds that if g1,...,g;1 have a common zero in
D"(¢,K), then they have a common zero in D"(&, k). Then k is existentially closed in K.

Proof. Suppose that K = 3z1,..., 2, x , where x is of the form as described in Lemmam
By Remark we can arrange and pad out the set of functions of the form Fj(y;,,...,;,,)
appearing in the definitions of the x; of which x is composed, into an (n,r)-sequence, & say, for
some n,r € N (and in such a way that we do not introduce additional bounded variables). Then
every s simply states that some function g; € M"(k, K, &) has a zero in some subset of K. Using
this, one readily verifies that there exist g1,...,91 € M"(k, K, &) such that K | Jxq,..., 2, x if

and only if g1, ..., g have a common zero in D" (&, K). By the same reasoning k = Jz1,..., 2, X
if and only if ¢1,...,¢ have a common zero in D"(&, k). The Lemma now follows by applying
Lemma [2.1.0] |
For the next definition we make, which will play a central role in our proof, we introduce the
following notation. Given k, K |= Tpgp, with k C K, an (n,r)-sequence &, functions g1,...,q €
M"(k,K,&) and indices 1 < iy,... 4, <, we write
aai e aai
ogrm) _ [
a(mil P ,.’L‘im) a-gz o 5.91
9z, 0y,

Definition 2.2.7. Let k, K |= Tpgp, with & C K. Also, let n,7 € N and let & be an (n,r)-
sequence. Then a point P € K" is called (k, &)-definable if there exist g1,...,g, € M"(k, K, )
such that the following conditions are satisfied.

(i) Pe D5 K).
(i) g1(P)="---=gn(P) =0.
(iif) det (32=23) (P) £ 0.

2.3 Proof of the First Main Theorem

The proof of Theorem [2.1.1] splits into proving the following three Lemmas.

Lemma 2.3.1. Let k,K = Tpsy, with k C K. Furthermore, let n,v € N and let & be an
(n,r)-sequence. Suppose that g € M"(k,K,&) and g(P) = 0 for some P € D"(d,K). Then
for some s € N there exist Q1 € D"(0,K) and Q2 € K* such that g(Q1) = 0 and (Q1,Q2) is
(k,d)-definable.
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Lemma 2.3.2. Let k, K |= Tpgy, with k C K. Furthermore, let n,r € N and let & be an (n,r)-
sequence. Suppose also that for each s > r and each (k,&)-definable point (p1,...,ps) of K*,
there is some B € k such that —B < py,...,ps < B. Then every (k,&)-definable point of K"
lies in k.

Lemma 2.3.3. Let k, K |= Tps;, with k C K. Let n,r € N and suppose that &' = (o1,...,0n41)
is an (n + 1,7)-sequence. Let & denote the (n,r)-sequence (o1,...,0,). Suppose that for each
s >, every (k,d)-definable point of K* lies in k*. Then for each s > r and each (k,d")-definable
point (p1,...,ps) of K*, there is some B € k such that —B < p1,...,ps < B.

We will present the proof of Theorem using these three Lemmas momentarily, but

first we prove two Lemmas, whose Corollary will provide us with the base case of an inductive
argument which will combine Lemmas [2.3.2 and [2.3.3]

Lemma 2.3.4. Suppose that k and K are models of the theory T, with k C K. Let also r € N
and gi,...,9r € k[xlv s 71'7"]' If gl(Q) == gr(Q) = 0 and det (6(((]1’7707) (Q) 7& 0, with

----- r

Q € K", then each coordinate Q; of Q@ = (Q1,...,Q,) is algebraic over k.

Proof. Assume that ¢1,..., g, and Q satisfy the premise of the lemma. We work in A = acl(k),
the algebraic closure of k. The ideal {f € Alz1,...,z,] | f(Q) = 0} is readily seen to be a prime
ideal of A[z1,...,x,], which we shall call p. Now if we let

VI)={Pe€ A" | f(P)=0 forall f €1}
denote the affine variety given by an ideal I C Az, ..., z,] and we let
I(X)={feAx1,....,z;] | f(P)=0 forall P € X}

denote the vanishing ideal of a set X € A, then applying Hilberts Nullstellensatz to p gives
Z(V(p)) = /p. Since p is prime, it is equal to its own radical ideal, so Z(V(p)) = p. Now if

det (H) (P) = 0forall P € V(p), then from this it would follow that det ((917%) €p,

o(x
which is false by definition of p. Thus, we may take a point P € V(p), such that det (H) (P) #

0. We define the maximal ideal m by m = (xy — Py,...,2, — P,). Clearly m C Z({P}), so
m = Z({P}), since m is maximal and Z({P}) is proper. Hence p C m, as Z(V(p)) C Z({ P}).

We wish to prove that p + m?2 = m. The inclusion p + m? C m is clear, so it suffices to show
that ; — P; € p+m?, for each i = 1,...,7. To this end we make a Taylor expansion of the 9js
with base point P, as follows

0
gj(x1,..., 2y +28ij —P)+hj(z1,...,2,).
1

The polynomial h; consists of higher order terms, which therefore all must contain a factor of
the form (x; — P;)(zy — Py). In other words h; = 0 (mod m?). Also note that g;(P) = 0 for
each 1 < j <r, as P € V(p), to arrive at

0
gj(x1,...,x Z aij — P;) (mod m?).

We can combine these r equations into the vector equation

g1 x1— P
0 e

. _— (917 797‘) (P) . .

: o(x1,...,x, :
gr (1 ) xr_Pr

(mod m?).
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Since det (M) (P) # 0, the matrix M(P) has an inverse, say M, with coefficients

o(z1,..., Tr) (1,50 y2r

in A. Applying this inverse gives

g9 T — P
M - : = : (mod m?).
gr Ty *Pr
and hence for i = 1,...,r, we have

Z M, j9; =x; — P, (mod m2).
j=1

We conclude that x; — Py € p+m?, foreachi=1,...,7, as g1,... g € p.

If we localize at the maximal ideal m, then we find py, +m?2 = (p+m?)y, = my. It follows that
My (M /Pm) = (Pm+M2) /P = M /Pm. Since My /P is finitely generated as an Alxq, ..., 2y |m-
module and my, is the unique maximal ideal of A[x1, ..., Z;|m, we can apply Nakayama’s Lemma
to conclude that my,/pm = {0} and hence my, = py,.

This implies m = p. For if we take some element m € m, then m € p,, as m C my. So we
may write m = £ for some p € p and u € Afzy,...,2z,] \ m. Then mu = p, so mu € p. But
uép, as p Cm, som € p, since p is prime. Now x; — P; € m, so z; — P; € p, which means that
Q; — P; = 0, by definition of p. Since P; € A = acl(k), we conclude that each @; is algebraic
over k. O

Lemma 2.3.5. Let K be a model of the theory T. Furthermore, let n € N and suppose that the
polynomial f € K[x1,...,x,] vanishes on K™. Then f is the zero polynomial.

Proof. We use induction over n. For n = 0, we have f € K, so the statement clearly holds.
Now suppose that the Lemma holds for n € N. Take f € K[x1,...,2,41] and suppose that
f vanishes on K"*!. Then for any p € K, the polynomial f(z1,...,%,,p) vanishes on K",

so by our induction hypothesis f(x1,...,2,,p) is the zero polynomial. So if we view f as
f(zyn) € K[z1,...,25][Tnt1], then f has infinitely many roots. Since K[z1,...,x,] is a domain,
it follows that f must be the zero polynomial. This concludes our induction. O

Corollary 2.3.6. Let k, K |= Tpgy, with k C K and let r € N. Then every (k,0)-definable point
of K" lies in k".

Proof. Suppose that Q € K" is (k, §)-definable. By Lemma the kernel of the natural ring
homomorphism k[z1,...,z,] = M"(k, K,0) is trivial, so we may identify the ring M"(k, K, ()
with k[xq,...,x,], as the homomorphism is also clearly surjective. So by definition, there exist
G1s---s9r € klx1,...,2,] such that ¢1(Q) = -+ = ¢-(Q) = 0 and det (g((giif::))) (Q) # 0.
Lemma tells us that each coordinate @; of @ = (Q1,...,Q,) is algebraic over k. Fix i and

let f be a nonzero polynomial with coefficients in &k such that K = f(Q;) = 0. Let n € N be the
number of distinct roots of f in K. We define the L-sentence ¢ as

3',1717'--71‘71, /\ .'I}S#Zﬂt AVy(f(y):Oé\/xS:y> )

1<s<t<n s=1

which states that f has exactly n distinct roots. Clearly K = ¢. Since k¥ C K and both k and
K are models of Tp¢p, which is complete, k = ¢ must hold as well. But if P,..., P, € k are the
distinct roots of f in k, then also K = f(P;) = 0 for all j. This means that ¢); must be among
Py, ..., P,. We conclude that Q; € k and hence @ € k", as i was chosen arbitrarily. O
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This Corollary provides us with the means to prove the following.

Lemma 2.3.7. Let k, K |= Tpgy, with k C K. Then for all n,r € N and any (n,r)-sequence &,
every (k, d)-definable point of K" lies in k".

Proof. The proof is by induction over n, for all values of r simultaneously. The base step, n = 0,
is just Corollary [2.3.6]

Now suppose that ¢/ = (o1,...,04,0,41) is an (n 4+ 1,7)-sequence, for some r € N and
suppose that the of the Lemma holds for n € N. Let & be the initial segment (o1, ...,0,) of &
Then it follows from our induction hypothesis that for every s > r, every (k, &)-definable point
of K* lies in k*. Then Lemma tells us that for each s > r and each (k, 5’)-definable point
(p1,...,ps) of K* there is some B € k such that —B < p1,...,ps < B. But then by Lemma
each (k,5")-definable point of K" lies in k", which completes our induction. O

We finish this section by giving the proof of the First Main Theorem. (But keep in mind that
we still have to give the proofs of Lemmas [2.3.1} [2.3.2| and [2.3.3])

Proof. (Of Theorem [2.1.1]) Let k and K be arbitrary models of |= Tps;, such that k C K. We
wish to apply Lemma So, let n,r € N and let & be an (n,r)-sequence and suppose that
g1,---,q1 € M"(k, K, &) have a common zero in D"(&,K). Note that a point P € D"(7, K) is
a common zero of ¢1,..., g if and only if it is a zero of g = 22:1 g2, which is also an element
of M"(k,K,5). We can now apply Lemma which shows that some s € N, there exist
@1 € D"(¢,K) and Q2 € K* such that g(Q1) = 0 and (Q1,Q2) is (k,5)-definable. By Lemma
2.3.7) (Q1,Q2) lies in k". Hence, Q1 is a common zero of g1,...,q in D"(&,k). So, by Lemma
2.2.6] k is existentially closed in K. Since k and K where arbitrary models of |= Tp¢y, it follows
from Corollary that the theory |= Tps; is model complete. O
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3 Towards Lemma [2.3.1]

3.1 Germs and transfer

Before we go on to the main topic of this section, we take a brief moment to discus a technique
from model theory called the transfer principle, as we will need to apply it in the upcoming
proofs. In most of our cases, this is simply a somewhat disguised application of the fact that the
theories we work in are complete. We present this discussion in the form of a Remark.

Remark 3.1.1. The principle of transfer concerns the relation between the truth of a certain
statement in some structure and the truth of this same statement in another structure. It is
perhaps best illustrated by means of an example. We take T, = Th(R | Lgin), where we defined
Lsin = LU{sin}. Now suppose that K is another model of the theory Tg,. We take some a € K
and wonder if sin(a - x) is continuous in K, as a function of x, at a certain point b € K. In other
words, if we define the Lg,-formula ¢(y, z) by

Vel0 < e — 30[0 < 0AVZ[(2—0 < zAz < z+0) — (sin(y-z)—e < sin(y-z)Asin(y-z) < sin(y-z)+€)]]],

then we wonder if K = ¢(a,b). Fortunately for us, we can “quantify out” the parameters a and
b in this case. By this we mean that we can dispose of a and b by introducing two universal
quantifiers, that is, we choose to show that K = VyVz ¢(y, z), as this is certainly sufficient. Since
K = Tein and R | VyVz ©(y, 2), it is clearly the case that K = VyVz ¢(y, ), so we are done. We
have transferred a certain property from the structure R to the structure K. We can apply this
principle in a more general setting, as long the property we wish to transfer can be expressed in
the language we are working in. As we have seen in our example, even a simple property such
as continuity leads to a relatively large formula. In our use of the transfer principle we shall
therefore be a less formal and only give further details if our use is not straightforward.

From now on, we let £ 4 be any extension of the language £, meaning that £, = LU A, for
some arbitrary set of symbols A. We also set T4 = Th(R | £4). The methods we will develop
in this section will first be used to give a proof of Lemma but we shall be reapply them
further on, which is why some of the results will be formulated in the more general setting of the
theory T4.

Definition 3.1.2. Let K = T4 and n € N, with n > 1. A neighborhood system B in K™ is a
nonempty collection of nonempty definable open subsets of K™, such that if Uy, Us € B, then
also Uy NU; € B.

Example 3.1.3. To give an example of a neighborhood system in K™, let P € K™. We let Bp
denote the set of all definable open neighborhoods of P. It is clear that U;,Us € Bp, implies
that Uy NUs € B, so Bp is a neighborhood system in K™.

We shall encounter Bp frequently, but for now let us look at a general neighborhood system
Bin K™.

Definition 3.1.4. Consider pairs (U, f), where U € B and f : U — K is an infinitely differen-
tiable definable function. We denote the set of these pairs by D;. We call two such pairs (f1,U;)
and (fa,Us) equivalent if f; and fo restrict to the same function on some Us C Uy N Uy, with
Us € B. Let [f, U] denote the equivalence class of (f,U). The equivalence classes, called germs,
form a ring Dg, with addition and multiplication given by

[f1. Uil + [f2, U2] = [f1 + f2,Us3] and [f1,U1] - [f2,Us2] = [f1 - f2,Us3],

where Uz = U; N Usy. Here it is implied that f; and f, are restricted to functions on Us.
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Remark 3.1.5. It is easily checked that addition and multiplication are well-defined on equiva-

lence classes. We can add more structure to the ring Dg by defining the derivatives 6%1’ e 82 :
Dr — Dg, as follows
0 of
a 7U = 73U )
5 lF.U = [, U]
for ¢ = 1,...,n. Once again, one readily verifies that this operation is well-defined. This makes

Dy into a differential ring.

We return to Example the neighborhood system Bp, for P € K™. In this case we write
D;f and Dp for DZ;P and Dpg, respectively. Since the point P is contained in every U € Bp,
it is a meaningful question to ask for the value of a germ or its derivative at the point P. In
the subsequent parts, we shall therefore write g(P) when we mean f(P), if ¢ = [f,U] € Bp.
Furthermore, we write either dpg or dpf for the vector (%(P), ce ﬁaz{,, (P)) depending on
convenience.

Lemma 3.1.6. Let K =T andn € N, with n > 1, and suppose B is a neighborhood system in
K™. Suppose also that M is a subring of D which is closed under differentiation and that I is
a finitely generated ideal of M also closed under differentiation. Let {[g1,U1],...,[gs,Us|} be a
finite set of generators for I and take

Z={Pe nUi\gl(P):-n:gs(P):O}.

Then for some U € B, the set U N Z is a definable open subset of K™.

Proof. Since I is closed under differentiation, there exist definable functions af ., with 1 <i,j <'s

ij
and 1 <r <mn, such that
dgi N : r
Bo, = O Wil (3)
T j:l
holds for every ¢ = 1,...,s and 7 = 1,...,n on some definable common domain U € B, which

we obtain by intersecting domains if necessary. This does not pose a problem, as B is closed
under finite intersection. Notice that this means in particular that U C ();_, U;. We claim that
U N Z is open in K™. To show this, we take P € UN Z and Uy C U an open box containing
P. Tt is certainly possible to take such a box, as U is open. We are done if we manage to prove
that Uy C Z. Since Uy C ﬂle U;, this means that we need to show that each g1, ..., gs vanishes
on Up. Suppose that this is not the case. Then there exists Q € Uy such that ¢;(Q) # 0 for at
least one i = 1,...,s. We write P = (p1,...,pn), @ = (¢1,---,¢n) and consider the following
sequence of vectors

P=Qo=({p1,p2---:Pn—1,Pn)
Ql :(CI1’P27 e 7pn717pn)
QQ Z(fhafh» oo apnflvpn)

Qn—l :(Q17 qz ... 7Qn—17pn)
Q = Qn :(q17QQ7 o aQn—laQn)~
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Note that each of these vectors lies inside Uy, as Uy is box shaped. Since g;(P) = 0 for all
i =1,...,s and ¢;(Q) # 0 for some ¢ = 1,...,s, there must be a least index m such that
9i(Qm) # 0 for some ¢ = 1,...,s. Then @,, and @,,—; differ in exactly one coordinate and
9i(Qm—1) =0foralli =1,...,s by minimality of m. This is all we need to go to the next step in
our proof, but to simplify our argument somewhat, from now on we assume that we have points
Q=1(q1,---,q:) and Q" = (¢},92,- .., qn), both lying in Uy, such that g;(Q) # 0 for at least one
i=1,...,sand ¢;(Q)=0foralli=1,...,s.

We take (a,b) to be an open interval in K, containing the points ¢; and ¢f, such that
(a,b) x {(g2,...,qn)} € Up. For any function f : Uy — K, we let f : (a,b) — K be the result
of substituting ¢; for x; in f for i = 2,...,n. Applying this to for r = 1, gives us the vector
equation

dg; 1 1 —
dxy ar; - Q1 91
dg -1 i _
dzi g1 " Qg4 9s

which holds for all z; € (a,b).

Since we are working with definable functions, we can transfer this situation to R, by quanti-
fying out the parameters. By this procedure we obtain an interval (¢, d) in R, points ¢, ¢’ € (¢, d)
and continuously differentiable functions h;, b; ; : (¢,d) = R, with 1 <4, j < s, such that

dh
dfbi bl,l e bl,s hl
dh
dz, bs,l o bs,s hs

for all z € (¢,d). Furthermore, h;(¢') =0 for alli=1,...,s and h;(q) # 0 for some i =1,...,s.
The theory of linear differential equations teaches us that there exists an s X s matrix

Cs,1 T Cs,s

whose entries are functions ¢; j : (¢,d) — R and is invertible for all z € (¢, d), such that

(For a proof of this fact we refer to [Mir55].) Substituting = ¢ in this equation gives the desired
contradiction, since on the one hand the linear map C(q)~! - C(q’) has a trivial kernel and on
the other hand (h1(q),...,hs(q))? is the zero vector, but (h1(q'),...,hs(¢"))? is not. O

3.2 The Implicit Function Theorem and the hat homomorphism

Recall the statement of the Implicit Function Theorem.

Theorem 3.2.1. Let d € NU{oo} and suppose that U is open in R™™ and f1,..., fm : U - R
are C-functions. Assume that (P,Q) € U and f1(P,Q) = ... = fn(P,Q) = 0. Suppose
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furthermore that the determinant of the matriz

0h . 0f1
al‘y-+1 61‘T+7n
A =
Ofm . Ofm
a$r+1 aa?r+m

is nonzero at the point (P,Q). Then there exist open neighborhoods Vi of P and Va of Q with
the following properties.
(i) I x VL CU.

—

(ii) For each & € Vy there exists a unique point § € Va such that f1(Z,9) = ... fm(Z,7) = 0.
This point satisfies det(A(Z, 7)) # 0.

(iii) In this way we obtain C¢ mappings 1, ..., Ym : Vi — R satisfying 1;(5) = 4. Furthermore,

forl=1,...,r and & € V1 we have
01 of
oz Oz
. _ *A71 . .
P Ofm
ox; ox;

when the left hand side is evaluated in the point £ and the right hand side is evaluated in
the pOint (fv T/)1 (f)a ce 7wm(f))
Proof. A proof of this can be found in [DKO04]. O

As is the case with many results from real analysis, Theorem holds in arbitrary K = T4,
as long as we restrict ourselves to definable sets and functions.

Theorem 3.2.2. Suppose that K |= Ta. Let d € NU {oo} and suppose that U is a definable
open in K™ and fy,..., fm : U — K are definable C?-functions. Assume that (P,Q) € U and

f(P,Q)=...= fm(P,Q) =0. Suppose furthermore that the determinant of the matrix
0f1 L. of1
3$r+1 33?r+m
A= : :
Ofm . Ofm
B$T+1 8$T+WL

is nonzero at the point (P, Q). Then there exist definable open neighborhoods Vi of P and Vy of
Q with the following properties.

(ii) For each ¥ € Vi there exists a unique point § € Va such that f1(Z,9) = ... fm(Z, %) = 0.
This point satisfies det(A(Z, 7)) # 0.

(iii) In this way we obtain definable C% mappings 1, ..., ¥y = Vi — K satisfying 7,/7(:5') = 1.

Furthermore for l=1,...,r and £ € V1 we have
Oy Of1
8.7)1 811
: =_—A"! :
8wWL 8f/,n
ox; Ox;

when the left hand side is evaluated in the point £ and the right hand side is evaluated in
the pomt (fa 1pl(f% s awm(f))
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Proof. Suppose that U C R"™™ is a definable open set, (P,Q) € U and fi,...,fm : U = R
are definable functions which satisfy the hypothesis of Theorem Let V1, V5 and @/7 be as
in the conclusion of Theorem Now take some open box V4 inside V5 such that Q € V3.
Furthermore, take some open box V7 in the preimage J‘%Vﬁ) Then the conclusion of Theorem
holds with V4 and V5 replaced by V{ and Vj respectively. So we may assume that Vi and
V5 are of this shape and are therefore definable. But this means that (this stronger version of)
Theorem [3.2.1] can be fully expressed in the language £4. Since R and K are both models of
the complete theory 74, this means that the Theorem must also hold in K. O

Remark 3.2.3. It important to note that the functions ¥1(Z),..., ¥, (&) are definable, since
they can be defined in terms of the functions fi,..., fin.

The reason why we went trough the trouble of deriving Theorem from Theorem [3.2.1
will become clear in the following part. For suppose that K = T4 and we are given a point
(P,Q) € K™ a definable open U C K™™™ containing this point and definable C*°- functions
fis--sfm : U = K, satisfying the hypothesis of Theorem [3:2.2] Let Vi, V2 and 91, ..., %
be as in the conclusion of the Theorem. We write n = r + m and we define the functions
th...,gzﬁn:Vl —)Kby

N Ty ifi=1,...,’l“
@(x)_{w_r(f) ifizr+1,....n
Furthermore, we let ¢ : Vi — K™ be defined by ¢(Z) = (¢1(Z), ..., ¢pn(Z)). Since ¢(P) = (P, Q)

and each ¢1, ..., ¢, is definable and infinitely differentiable, we can use this to define a mapping
~: Dp,g — Dp which maps the germ

g=1[fV] to g=I[foo, W],

where W = V; N ¢~ (V). In this case we shall also denote the function fo¢ : W — K by f
One easily verifies that W € Bp and that the map ~: Dp g — Dp is well-defined on equivalence
classes. Another quick inspection reveals that this map is in fact a ring homomorphism.

Remark 3.2.4. We take a closer look at the kernel of =, since we will be needing this later
on. We claim that ker( ™) consists of precisely those germs g = [f, V] such that f vanishes on
W N Z, for some W € Bp, with W C V and

Z={(&9) eU] fi(Z,y)=0, fori=1,...,m}.
On the one hand, if f vanishes on W N Z, then f o ¢ vanishes on ¢~ (W), whence
g=Ifog, 07 (W) =0,

from which we conclude that g € ker(™). On the other hand, if g € ker(™), then f o ¢ vanishes
on some Wi € Bp, with W7 C Vi. Now if we take W = Wy x V5, then f vanishes on W N Z,
since every element (Z,%) € W N Z must be of the form ¢(&), with £ € W;. Clearly W € Bp g,
so we are done.

Lemma 3.2.5. Suppose that K = Tyx. Let U C K™ be a definable open set, (P,Q) € U
and suppose that f1,..., fm : U — K are definable C*°-functions which satisfy the hypothesis of

Theorem [3.2.4 Then we have that for all g € Dp g, the vectors dp,gfi,--.,dp,ofm,dpr,og (see
Remark are linearly independent over K if and only if dpg # 0.
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Proof. Let us first suppose that dp,gfi,...,dp,gfm,dp,gg are linearly dependent. Since the
functions f1, ..., f,, satisfy the hypothesis of Theorem we have det(A(P,Q)) # 0, so surely
the vectors dpgfi,...,dpqfm must be linearly independent. We write g = [fm41, W] for
notational convenience. Then we must have that

m+1

Z aidpqfi =0,

i=1

(4)

for certain ay,...,a;,+1 € K, with a,,41 # 0. Now, by definition of ¢, the functions f; o

@, ..., fm o ¢ are identically zero on Vi, so giJ(P) =0for:=1,....mand 7 = 1,...,r.
Therefore
6JEm-&-l -1 pasy afi
—(P) = i— (P 5
Fot (P = 3 e (P) )

for j =1,...,r. By the chain rule we have the following equality

o/
al'j

961
8xj

(P)=Y ok

o al‘l
=1

(P, Q) 7—(P), (6)
forj=1,...,rand ¢ = 1,...,m + 1. We substitute this into and change the order of the
summation to find

=1
m—+1

afm+1 o m+1 4 n afz
HP) = 3 0 5 (P Q)

09y
(%cj(P)>

“~ (0 af;
= (52”3) St (P, Q))
i=1

:O’

forj=1,...,7r, by . Hence dpg = 0, which is what we needed to show.

Now let us suppose that the vectors dp g fi,..
be the (m + 1) x n matrix with rows dp g f1,..

.,dp,gfm+1 are linearly independent. Let A
., dp.gfm+1. (We have set n = r 4+ m, as in our

construction of the hat function.) Then A determines a K-linear map from K™ to K™*! with

kernel of dimension n — (m+ 1) =r — 1. For j = 1,...,r we have
o
5o (P) g (P)
A : = :
Opn f
2=(P) 2fmsr (p)

by @ This vector is, by our earlier observation, equal to

0

dfm
25 (P)
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Since gfj (P) = gfz; (P) = 0;,; for 1 <i,j <, the set of vectors

(G P SEPYT |G = 1)

is linearly independent. This means that not all of these vectors can be in the kernel of A.

Therefore %(P) must be nonzero for at least one j = 1,...7 and hence dpg # 0, as desired.
J
O

We shall make use of this Lemma in the proof of the next Theorem. But first, let us introduce
some additional notation.

Definition 3.2.6. Suppose that K = T4. Let n,s € N, with n > 1. Suppose that gi,...,gs are
definable C*°-functions with domains open in K™. Then

Vg1, 9s) = {Q € () dom(g:) | :(Q) =0 fori =1,...,s}

i=1
and
Vi(g1,---59s) ={Q € V(g1,---,95) | dog1, - - - ,dggs are linearly independent over K}

We are now ready to state and prove the following important technical Theorem, which we
will be using repeatedly.

Theorem 3.2.7. Suppose that K |=Ta. Let n € N, with n > 1. Let Py € K™ and suppose that
M is a Noetherian subring of Dp, which is closed under differentiation. Let m € N and suppose
that [f;,U;] € M fori =1,...,m. Then if Py € V;.(f1,..., fm), one of the following options
must hold.

(i) n=m.

(ii) m < n and for any [h, W] € M, with h(Py) =0, h vanishes on U NV, (f1,..., fm) for some
U e Bpo, with U C W.

(iii) m < n and for some [h, W] € M it holds that Py € V-(f1,. .., fm,h).

Proof. Since V,.(f1,...,fm) # 0, there exist m linearly independent vectors in K™, so clearly
m < n. It therefore suffices to assume that m < n and to prove that (ii) or (iii) holds. We write
n =r+m. Since Py € V,.(f1,..., fm), the vectors dp, f1,...,dp, fm are linearly independent

over K. This means that there exists a set S C {1,...,n} of size m such that the matrix
ofi
(52 )
€L 1<i<m,j€S
has a nonzero determinant. For sake of convenience we assume that S = {r +1,...,n}. Then if

we write Py = (P, @), with P € K" and @Q € K™, we are in the situation of Theorem Let
A be as in this Theorem. We take A = det(A). Then [A, Up] € M, for some Uy € Bp,g. This is
because A is a polynomial in the derivatives of f1,..., f,, and M is closed under differentiation.
We write A = [\, Up]. Since A(P, Q) # 0, the function A is certainly nonzero on some Uy € Bpg.
Hence, A is invertible in Dp g, since A=! = [A\71,U;]. Let M* = M[A™!]. The ring M* is
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also closed under differentiation. It is enough to check this for a monomial gA~! € M[A~Y], as

differentiation distributes over addition. For j = 1,...,n we find
0 dyg OA
—(gA™) = AT —lg—AT!
8$j (g ) (9.Tj g é)xj ’

by the product rule. So %(g/\_l) lies in M*, as desired. We consider ]/\4\*, the image of M*

under the map ~: Dpg — Dp. Since ring homomorphisms preserve subrings, M*is a subring

of Dp. We claim that M* is also closed under differentiation. For take some § = [f,U] € M*.
Then by the chain rule

af ¢y af 5$z "TOf oy B f & Of ou
83:] f Z oz 83: Z Oxy 3x 8xr+l 837] 6@ Z 0%yt 81‘]

for j=1,...,r, on some domain V € Bp. The equivalence classes associated with the functions

6% belong to M * as M* is closed under differentiation. Also recall from basic linear algebra
that the entries of the matrix A~! are polynomial expressions in the entries of the matrix A
and the reciprocal of 1ts determlnant A7, So by (111) of Theorem the equivalence class
of each i’j is also in M*. Hence 3 g € M , SO M* is closed under dlﬁerentlatlon We let I be

the ideal {g € M* | g(P) = 0}.

Suppose that I = {0}. We show that (ii) holds in this case. Let [h, W] € M, with h(Pp) = 0.
We write g = [h, W]. Then §(P) = g(Py) =0, so g € I. So, by our assumption § = 0, or in other
words, g € ker( ™~ ). By our discussion of ker(~ ) in Remark there exists U € Bp,, with
U C W, such that h vanishes on UNV(f1,..., fm). So certainly h vanishes on UNV,-(f1,..., fm)-

Now suppose that I # {0}. We show that (iii) holds. Note that M* is Noetherian, as M*
is finitely generated over M, which is Noetherian. This means that its homomorphic image,
M* is also Noetherian. Hence, I is finitely generated. Say I = ([g1,U1],...,[gs,Us]). Now if I
where closed under differentation, we would be in the position to apply Lemma However,
this Lemma tells us that the functions ¢, ..., gs all vanish on a definable open subset of K",
containing P. But this implies that I is the zero ideal, contrary to our assumptions. So it must
be the case that I is not closed under differentiation. Hence, there exists g € M* such that g € I,
but g—i ¢ I, for some 1 < i <r. In other words, g(Py) = 0 and aaTi(P) # 0. Now, for some large
enough ¢t € N, we have A'g € M. Let us write f = A’g. Then also f(P,) = 0 and moreover,

S;Z (P)= (ail/\tﬁ) (P) = <tﬁt1§i§/> (P)+< (,fj)(P)
~ (i) (2o

as A(Pp) # 0. But this shows that dpf # 0, so by Lemma , the vectors dp, f1,...,dp, fm,dp, f
are linearly independent. So if we write [h, W] for f, then Py € V,-(f1,..., fm,h), as needed. O

We will move on to the next section, after proving a small Lemma, again using Lemma |3.2.5)

Lemma 3.2.8. Suppose that K |= T4. Let nym € N, with n > 1 and m < n. Suppose that
fis--oy fm are definable C*°-functions with domains open in K™ and let Py € Vio(f1,.., fm)-
Let [h,U] € Dp, and assume that for some W € Bp,, with W C U N (", dom(f;), holds that
h(Z) > h(Py) for allZ € WV (fi1,..., fm). Then the vectors dp, f1,...,dp, fm,dp,h are linearly
dependent.
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Proof. We write n = r+m. Since Py € V;-(f1,..., fm), the vectors dp, f1,...,dp, fm are linearly

independent over K. This means that there exists a set S C {1,...,n} of size m such that the
matrix
ofi
(52m)
Lj 1<i<m,jes
has a nonzero determinant. Again, we may assume that S = {r+1,...,n} and write Py = (P, @),

with P € K" and @Q € K™. This means that the hypothesis of Theorem [3.2.2] is satisfied. So
by Lemma it suffices to show that dph = 0. Suppose to the contrary that this is not
the case. Then gﬂi (P) # 0 for some 1 < ¢ < r. For convenience we assume that ¢ = 1. Let
us write P = (p1,...,pr). Then by elementary calculus, there exists pj € K such that if we
take P’ = (p|,p2,...,py), then P’ € dom(h) and ¢(P') € W, with h(P') < h(P). But then
(P e WnV.(f1,..., fm) and h(p(P’)) < h(Py), which we assumed to be false. We conclude

that dph = 0, so the vectors dp, f1,...,dp, fm,dp,h are linearly dependent. O

3.3 Proof of Lemma [2.3.1]

In this section we give the proof of Lemma [2:3.1] We will need to prove a few auxiliary results
first.

Lemma 3.3.1. Suppose that K |= T4. Let n € N, with n > 1. Suppose that the polynomial
f € Klxy,...,x,] vanishes on some nonempty open U C K™. Then f vanishes on K™.

Proof. By applying a translation of coordinates if necessary, we may assume that 0 € U. Take
some P € K™ not in U. Then P # 0, so if we write P = (p1,...,p,) we may take p; # 0, without
loss of generality. Write ¢; = % fori=1,...,n. Define g € K[t] by g(t) = f(qit,...,gnt). Then
clearly g vanishes on some open neigbourhood of 0. Since all nonzero polynomials have finitely
many roots, it follows that g = 0. In particular g(p;) = 0, so f(P) = 0. We conclude that f is
identically zero. O

Let n € N, with n > 1 and suppose that U C K™ is a nonempty definable open set, where
K = T4. Then is is easily checked that {U} is a neighborhood system in K™. It is clear that
we may identify ’D?U} and Dyyy with the ring of definable C°°-functions from U to K. So from
now on we shall make no distinction between the three and denote all of them by Dy;. Note that
by Lemma and Lemma, we can embed Z[z1,...,z,] in Dy. We shall simply write
Z[z1,. .., xy] for this subring. Now take P € U and consider the mapping Rp : Dy — Dp, given
by Rp(f) = [f,U]. One easily checks that this is a ring homomorphism and furthermore, the
restriction of this homomorphism to the subring Z[z1, ..., z,] is injective by Lemma We
shall also denote this image in Dp by Z[z1,...,z,].

Lemma 3.3.2. Letn € N, withn > 1. Let A CR"™ be a nonempty closed subset and let d € R™
be a point. Define the function hg : A — R by hg(Z) = >.i_,(vi — a;)®. Then hg attains a
minimum value on A.

Proof. Take some b € A and consider a closed ball B C R™ centered at @ and containing b. Since
hz is continuous and A N B is compact, the function hz, restricted to AN B, attains a minimum
value on some ¢ € AN B. Clearly hz(€) is also the minimum value of hz on A. O

Remark 3.3.3. The analog of this Lemma will hold for definable closed sets A C K™, by
transfer. We shall use this fact in the following Theorem.
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Theorem 3.3.4. Suppose that K = T4. Let n € N, withn > 1 and let U C K™ be a nonempty
definable open set. Suppose that M is a Noetherian subring of Dy which contains Z[x1,. .., Zy]
and is closed under differentiation. Let f € M and suppose that S C V(f) is nonempty and defin-
able and is furthermore open in the space V(f) and closed in K™. Then there exist f1,..., fn € M
such that SOV, (f1,..., fn) £ 0.

Proof. For each point Q € S we define the ideal Ip = {g € M | g(Q) = 0}. Since M is
Noetherian, the set {Ig | @ € S} must have a maximal element with respect to inclusion, Ip, for
some P € S. Now take m € N maximal such that P € V,.(f1,..., fm), for some f1,..., fm € M.
Notice that we are done if m = n, since SNV,.(f1, ..., fm) contains P and is therefore nonempty.
The rest of the proof is therefore dedicated to showing that m < n leads to a contradiction.

Again, using that M is Noetherian, this ideal Ip is finitely generated, so we can write Ip =
(g1,---,9s). We take

.
9= 4
=1

If Q € V(g)NS, then ¢(Q) =0, s0 ¢1(Q) = --- = g5(Q) = 0. This means that Iy contains all
the generators of Ip, so Ip C Ig. By maximality of Ip, we must have Ip = Ig. Having made
this observation, we continue by stating and proving several claims.

Claim 1. V(¢) NS CV.(f1,---, fm)-

Proof. Since P € V,.(f1,..., fm), there is an m x m submatrix A of % such that det(A) ¢
Ip. (There is such a submatrix A if and only if dpf1,...,dpf;, are linearly independent.) For
any Q € V(g)N S holds Ip = I, so we see that det(A) & Ig. However, we do have det(A) € M,
as M is closed under differentiation, so this means that det(A) is nonzero at @, which means that
dgfi,-..,dgfm arelinearly independent.. Since P € V,.(f1,..., fm), we also have f1,..., fm, € Ip
and hence fi,..., fm € Ig, showing that fi(Q) = --- = fn(Q) =0, for all Q@ € V(g) N S. It
follows that @ € V(g) NS implies @ € V,-(f1,..., fm), as needed.

Claim 2. Let Q € V(9) NS and h € M. Then Q &€ V.- (f1,..., fm,h).

Proof. Suppose to the contrary that @ € V,.(f1,..., fm,h). Using Ip = I, we can argue in the
same way as in the proof of the previous claim to conclude that P € V,.(f1,..., fm,h). This
contradicts the maximality of m, so Q@ € V,.(f1,..., fm, h).

Claim 3. Let Q € V(¢g)NS. Then there exists W € Bg, with W C U, such that WNV(g)NS =
anr(fla---yfm)-

Proof. Let Mg be the image of M under the map Rg : Dy — Dg. We wish to apply Theorem
to the ring Mg, as a subring of Dg and with respect to the germs [f1,U],...,[fm,U].
It is clear that Mg is Noetherian and closed under differentiation, as M is. Furthermore, @ €
Vi(f1,- .-, fm) by our first claim, so we are indeed in the right setting to use this Theorem. By our
assumption, m < n, so option (i) of the Theorem cannot hold and by our second claim, option
(iii) cannot hold either. We have [g,U] € Mg and since Ip = Ig we have ¢g(0) = 0, so option
(ii) of Theorem tells us that g vanishes on W1 N V,.(f1,..., fm) for some W7 € Bg, with
W1 C U. Because of the way g is defined, this means that every element of Ip, and in particular
f, vanishes on W1 NV,.(f1,..., fm). Hence W1 NV, (f1,..., fm) € W1 N V(g) NV(f). Since S is
open in V(f), there exists Wy € Bg such that WoN.S = WonNV(f). So if we take W = W1 NWs,
then WNV,.(f1,-.-, fm) € WNV(g)NS. The opposite inclusion follows immediately from Claim
1, so we have proven Claim 3.
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Claim 4. SNV(g) is closed in K™.

Proof. Since g is continuous on U, the set V(g) is closed in U. Note that S is a subset of U, as
S CV(f) CU. It follows that SN V(g) is closed in K™, as S is closed in K™.

Let us finish the proof using these claims. Let @ € Z™. Define the function hz : SNV(g) —» K
by ha(Z) = i (@i — a;)>. The set SN V(g) is nonempty, as it contains P and it is closed
by our fourth claim. By Remark it follows that the function hz attains a minimum
value on S N V(g). Using our third claim, there exists W € Bg, with W C U, such that
WnV(g)NS = WNV.(f1,. .-, fm)- This means that hz(Q) < hz(Z) forall € WV (f1, ..., fm)-
The conditions of Lemma are satisfied, so by this Lemma the vectors dq f1, . ..,dg fm,dgha
are linearly dependent. This means that he vectors dpfi,...,dp fm,d,hsz must also be linearly
dependent. For suppose that they are linearly independent. Then there is an m X m submatrix A
of W such that det(A) ¢ Ip. Hence det(A) & I, as Ip = Ig. Now note that hg € M,
as Z[x1,...,2,] € M. So, since M is closed under differentiation, we do have det(A) € M. Tt
follows that det(A) is nonzero at @, which is false.

Recall that the vectors dp f1, ..., dp f, are linearly independent, as P € V,.(f1,..., fm). Since
the vectors dp f1,...,dp fm,dphg are linearly dependent, this means that the vector dphgz must
be a K-linear combination of the vectors dpfi,...,dpfm. Since this holds for any @ € Z",
the vector i(dphg — dphg) is in the span of dpfi,...,dpfm. One easily verifies by direct
calculation that %(dph(‘)‘ — dphg) = @, so that Z™ C span(dpfi,...,dpfm). It follows that
span(dp fi,...,dpfm) = K™, contradicting m < n. O

We are now ready to prove Lemma [2.3.1] For convenience, we restate the Lemma here.

Lemma [2.3.1 Let k, K = Tpry, with k C K. Furthermore, let n,r € N and let & be an
(n,r)-sequence. Suppose that g € M"(k,K,&) and g(P) = 0 for some P € D"(¢,K). Then
for some s € N there exist Q1 € D"(0,K) and Q2 € K* such that g(Q1) = 0 and (Q1,Q2) is
(k, &)-definable.

Proof. We shall first prove the Lemma under the assumption that V(g) is closed. After this we
show that the general case essentially reduces to this special case, save for some minor details.
Define Uy = D"(d, K). Clearly U; is an open definable subset of K”. We wish to apply Theorem
3.3.4| with respect to the ring M"(k, K, &) as a subring of Dy, . Indeed, M"(k, K, &) is a subring
of Dy, which is Noetherian and closed under differentiation (see Remark and contains
Z[z1,...,x.]. If we take S = V(g), then by our assumption, the hypothesis of Theorem
is satisfied. By this Theorem, there exist f1,..., f, € M"(k, K,d) such that SN V.(f1,..., fn)
is nonempty. Take some Q1 € SNV, (f1,...,fn). Then g(Q1) = 0 as @1 € S and @, is
(k, &)-definable as Q1 € V..(f1,..., fn), proving the Theorem, with s = 0.

Now, in general the set V(g) might not be closed. We resolve this issue by pushing possible
limit points of V(g) that lie on the boundary of D"(&, K) out to infinity. Regard & as an
(n,r + s)-sequence, with s = 2r. For i = 1,...,r define the functions

i+ Tryqs — 1 if x; is G-bounded
Tj— Tpgi otherwise

gi(xla v axr+s) = {

and

(x Trps) = (x; — 1) - x9p4; — 1 if x; is F-bounded
Ittt oo g = Ti — Tor4i otherwise.

We define f € M"+(k,K,3) by f = ¢*> + 22221 g?. Here we restrict the functions gy, ..., ga,
to the set D™"%(¢, K), which we will denote by U,. Notice that (qi,...,q,) € V(g) if and
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only if (q1,...,qr1s) € V(f), where ¢,4+; = qoryi = ¢; if z; is G-bounded and ¢,4; = g; ',
q2r+i = (gi — 1)t if x; is G-bounded. Note that there is no danger of dividing by zero, as
0 < ¢g; < 1if z; is F-bounded. Since P € V(g), the set V(f) is also nonempty. We show that
V(f) has no limit points on the boundary of Us. If none of the variables x1, .. ., z, are &~-bounded,
then there is nothing to prove, since Uy = K"*¢ in this case, so its boundary will be empty. So,
for the sake of argument, suppose that z; is d~bounded. We only prove that V(f) has no limit
points on the set of points in K"* satisfying the equation x; = 0, as any boundary points of
U; not in this set can be dealt with in a similar fashion. Regard the function g; as defined on
the entire space K™+. Then V(g1) is closed in K™% as g; is continuous. Clearly none of the
points in {# € K" | zy = 0} lie in V(g1), so V(g1) has no limit points satisfying z; = 0. Now
note that V(f) C V(g1), because of the way f is defined. Hence, f has no limit points satisfying
21 = 0. Since V(f) has no limit points on the boundary of Us, we find

Clgr+s(Uz2) N Clgr+(V(f)) = U2 N Clgr+= (V(f)) = Cl, (V(f))-

Since V(f) is closed in Us by continuity of f, the set Cly,(V(f)) is just V(f). It follows that
V(f) is closed in K"*%, as it can be written as the intersection of two closed sets. But now we
can argue just as in the special case at the beginning of this proof, only now with M"+5(k, K, &)
as a subring of Dy,, taking S = V(f) and s = 2r. O
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4 Towards Lemma 2.3.2

4.1 Results by Khovanskii and Van den Dries

We use this section to present some miscellaneous results from Askold Khovanskii and Lou
van den Dries and we will derive several consequences that will be needed in the proofs in the
upcoming sections.

The following Proposition is by Khovanskii.

Proposition 4.1.1. Suppose that hy, ..., h; is any Pfaffian chain of functions on R"™™ and let
91y 9m € Rlz1,. .., Tmgn, h1,...,h]. Then there is a natural number N such that for any
Q € R"™, the set

(PER™ [01(PQ) =+ gn(P.Q) =0 and dot ( 22020 (1) 20)

(1, Tm)
contains at most N elements.
Proof. A proof of this can be found in [Kho80]. O
For our purposes we need the following more general form of this result.

Lemma 4.1.2. For each i = 1,...,m + n, let J; be either R or the interval (0,1). Sup-
pose that hy, ..., h; is any Pfaffian chain of functions on H:’j{" J;. Suppose that g1,...,9m €
R[21, ..., Tman, P1,- .-, Ay, as a ring of functions defined on Hgﬁn Ji. Then there is a natural

number N such that for any Q € R", the set

{PEﬁJi | g1(P,Q) ="+ gm(P,Q) =0 and det

i=1

(8(91,...,gm)

a(%._”xm)) (P.Q) +0)

contains at most N elements.

Proof. For i =1,...,m + n, we define the functions oy, 3; : R — R by

(@) { 1 if J; =R
ai €Tr) = 1 . .
and
Bil#) = { 1+ Larctan(z;) if J; = (0,1).
Then the map B’ =B, Bmin) : RMTT HZ":{” J; is an analytic bijection and the functions

h; o B: R™*+" — R are analytic, for i = 1,...,l. Using that

Ox;j — Ox; oy
fori =1,...,land j = 1,...,m+n, it is easily checked that the sequence ay, 81, .. ., ®min, Bmtn, P10
B,...,h; o is a Pfaffian chain on R™*". Furthermore

91067"'ugm05ER[xlw"7$m+n7a17ﬁla"'7am+n76m+n7h1057"'7hl06]'
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FixQ € Hl iy and suppose that P € [/, J; is a point such that g1 (P, Q) = - - - gm(P, Q) =
0 and det (3@7)) (P,Q) # 0. If we define (P', Q') = F~1(P,Q), then surely g, o 3(P', Q') =
e =gmo B(P’ ,@Q") = 0. Furthermore, one readily verifies that

a(glogw“vgmog) AN (g1, -5 9m) OBy Bm) 1y
M nam) ) T B e D B, a9
using that
dg; o g OBy 09 5z
83:] g 87 e (B(%)),
a(ﬂlw")ﬁﬂl)

by the chain rule. The matrix 7> (P', Q') is diagonal, so it is easy to see that

6(61,...,,8771) / /
det | —/—= (P,
¢ (8(x1,...,xm) HO‘
from which it follows that

det <8(91 Oﬂy-..,gnz)o )) (P/,Q/) 75 0.

17~~11m)

3(1’1, .
We now use that the inverse of E is calculated pointwise, that is, 3—1 = (ﬂfl,...,ﬁ;lfrn).
Combined with our calculations above, this implies that (5; Lo ,B-1) is a injection from
m
{(Pe]]7ila(P,Q) =" gm(P,Q) =0and J(g1,...,9m)(P,Q) # 0} (7)
i=1
to

{P'eR™ | g10B(P,Q) =" gmoB(P,Q)=0and J(g1085,...,9m0B)(P,Q) #0}. (8)

By Proposition the set contains at most N elements, for some N € N, independent of
@', hence the set (7)) also contains at most N elements, independent of @), as needed. O

The fact that the bound N is uniform in ) allows us to transfer this result to a situation we
are interested in.

Corollary 4.1.3. Suppose that n,r1,r9 € N and that & is an (n,r1 + r2)-sequence. Suppose
further that k, K = Tps, k € K, and that g1,...,9-, € M 1"2(k,K,5). Then there exists
N € N such that for each @Q € K™ the set

{Pe K" |(P,Q)e D" (3, K),q1(P,Q)="-=g,(P,Q)=0
a(gla R 7gT1)
and det <M> (P,Q) # 0}

contains at most N elements.
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Proof. Let aq,...,an € k be the parameters from k appearing in ¢1,...,g,,. Now take
hiyeoiy by EZ[T1, oy @y, YLy e vy Yrgy ZLs e e vy Zny Wy -« -y Wi

such that g;(Z,7) = hi(%,7,3(%,¥),a) for all i = 1,...,r and (F,¢) € D"12(&, K). We write
fi(@,4,2) = hi(Z,9,0(Z,7),Z), for i = 1,...,7. Now note that the functions fi,..., f,, are
definable without parameters. This means that we can transfer Lemma (applied to the
Pfaffian chain o4,...,0,) to K and find that there exists N € N, such that for each (Q1,Q2) €

K"2T™ the set
{P S K™ | (P7Q15Q2) S DT1+T2(6:7K) X Kmafl(PanaQQ) == le(PanaQQ) =0

M) (P,Q1,Q2) # 0}

and det
<8(sc1, . 7.27“)

contains at most N elements. But if we take Q1 = @ and Q5 = @, then this is exactly the set

{Pe K" |(P,Q) e D"t (3 K),g1(P,Q) == g, (P,Q) =0
6(917 e 797‘1)
and det (M) (P,Q) # 0},
so we are done. O

The following result is also due to Khovanskii. Using Theorem and some model theoretic
arguments, we can deduce it from Proposition [4.1.1

Theorem 4.1.4. Suppose that hi,...,h; is a Pfaffian chain of functions on R™T" and let
g €ER[z1,...,Tmin,P1,...,hi]. Then there is a natural number N such that for any Q € R™ the
set

{PeR™|g(P,Q) =0}

has at most N components. By a component of a set S C R™ we mean a set X C S, such that
X is both open and closed in the subspace S.

Proof. We argue by contradiction, so assume that the theorem is false. Then for each i € N
we can find a point Q' € R™ such that the set {P € R™ | g(P,Q%) = 0} has pairwise disjoint
and nonempty components C{,...,C!. (We can take these components disjoint, as the set of
components forms a Boolean algebra.)

Now expand the language £ to the language £’, by adding symbols for:

e The functions hq,...,h;.

e A unary relation for the set of natural numbers.

e A map i — @, for natural numbers i.

e An (m + 2)-ary relation expressing that (z1,...,2;,) € le

We will leave these symbols unspecified.

We let the £'-structure K be a (2%0)*-saturated elementary extension of (R | £’). Let us
prove a few facts about the natural numbers in K. First of all, K contains nonstandard natural
numbers, as K is (2%0)*-saturated and the finitely satisfiable partial type

p(x) ={z e N}U{y <z |y €N}
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has only ¥y many parameters. Denote the set of all natural numbers in K, both standard and
nonstandard, by A/. The set A is a definable subset of K, because of the relation symbol we
have added.

We claim that if ¢ € K is a nonstandard natural number in K, then the set {x € N'| z < a}
has at least size (2%°)T. For suppose that this in not the case. Then it is clear that the set

Neo={zeN|VyeZz<y+al}
has cardinality less than (2%°)*. But now the type
gz)={y<z|lyeNgJU{z<y+al|lyecZ}

has less than (2%°)* parameters and is finitely satisfiable in K, yet there is no element in K
satisfying the type. This contradicts the fact that K is (2%¢)*-saturated, proving the claim.
We take a € K to be some fixed nonstandard natural number. Now define

M =R[z1, ..., Zm, Q% hi(x1,. .., Tm, QY), ..., hi(x1,. .., Tm, Q)]

Then M is a Noetherian ring, as it is finitely generated over R. The ring M consists of functions
definable in K and it is closed under differentiation, as hq, ..., h; is a Pfafian chain. Furthermore,
M contains Z[z1,...,Ty]. Note that g(z1,...,Zm, Q%) € M and that

V(g(@1,- . om, QY)) = {P € K™ | g(P,Q") = 0}

is closed in K™. The sets C¢, with ¢ < a and ¢ € NV, are both open and closed in V(g(z1, .. ., Zm, Q"))
by definition, hence also closed in K™, as V(g(x1,...,2Tm, Q")) is closed in K™. This means
that we can apply Theorem [3.3:4] for each i < a with i € N. So for each such i, there exist
fi,... ft, € M, such that C¢ NV, (fi, ..., fi,) # 0. This implies that there exists a map

F:{ieN|i<a}— UVr(ff,---,fiq,)»
i<a
such that each F(i) lies in Cf NV, (ff, ..., f},). Such a function F is an injection, as C{ NC§ = )

for i # j, so the codomain of F' must be of at least size (2%0)*.
On the other hand, by Proposition there is a natural number N such that for any
Q@ € R"™ the set

{PeR™| fi(P,Q) == f;,(P,Q) = 0 and det (M) £ 0}
3(1’1,...,5Em)

contains at most N elements. Since K is an elementary extension of R, as an £’-structure, the
same must hold when we replace R by K, so in particular the set

m 1 ay __ _ri ay __ a(flzvvfrzn)
{Pe K™| fi(P,Q*) =---= [,(P,Q") =0 and det | ———"< | #0}
(1, s Tm)
contains no more than N elements. So each V,.(f},..., f.) is finite, which implies that the

cardinality of the set

UV o)

i<a

is limited by the number of distinct functions in M. But |M| = 2% as M is finitely generated
over R. We have arrived at a contradiction, so we conclude that the theorem holds. O]
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Definition 4.1.5. For each m and each analytic function f : U — R, where U is some open
neighborhood of the closed box [0,1]™ in R™, let f : R™ — R be defined by

— [ @ iFefom
f@”)—{o it # € R™\ [0, 1]

Let F be a collection of function symbols for each such function f We let L, = LUF and
Tan = Th(R | Lan))-
The result below is due to Van den Dries.
Proposition 4.1.6. The following two statements hold for (R | Lan})-
(i) The structure (R | Lanp) is O-minimal.

(ii) Ifee R and f : (e,00) = R is a function, definable in (R | Lan;) with parameters in R, then
there exists d > e such that on (d,0), the function f can be represented by a convergent
Puiseuz series

Fa) =S ag-a,

with ¢ € Z>1, p € Z, a; € R, for i € Z>p,. Furthermore a, # 0, if f is not eventually
identically zero.

Proof. A proof of this can be found in [vdD&6]. O
We have two corollaries to this Proposition.
Corollary 4.1.7. Every model K of the theory Tps; is O-minimal.

Proof. Since Lprp C Lan, every set definable (with parameters from R) in the structure (R | Lpy))
is also definable (with parameters from R) in the structure (R | Lan}). So from Proposition [4.1.6]
(i) we may conclude that (R | Lps;) is O-minimal.

The Corollary now follows directly from Proposition O

Corollary 4.1.8. Suppose that K |= Tps, e € K and g : (e,00) = K is a K-definable function,
which is not identically zero. Then there exists s € Q and a nonzero a € K, such that K |
limg 00 g(x)2® = a.

Proof. Let ¢(Z,x,y) be an Lpg-formula, such that (b(g,x,y) defines the graph of g in K, for
some set of parameters b from K. We define the Lpg-formula ¢(2) by

Fu[(Vz > udly p(Z, z,y)) A (Ve > udw >z -p(Z, z,0))].

Then K = 9(b).

Now suppose that & is a set of parameters from R such that R }= (&) and let f5 : (e,00) — R,
for some e € R, be the the function whose graph is defined by ¢(@,z,y) in R. Note that every
function definable in (R | Lpg;) is in particular definable in (R | La,;). This means that we may
apply that Proposition (ii). Hence, there is some d > e, such that if > d, then we have

fa(@) = a;i-a7"1,
i=p
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with ¢ € Z>1, p € Z, a; € R, for i € Z>, and ap, # 0. Then clearly

i o . rpla —
ml;ngofa(x) x ap.

Furthermore, we may differentiate this series termwise to arrive at

fh(x) = _tas L G/a-1
1=p q
We see that
i (). p@/0+1 — P
wlin;o fzlz) -z .

Combining the two limits gives

i L) z/ fx(z) = L.
lim —fa(@) -/ falw) =

Tr—r00
Let x(Z,y) be an Lp¢j-formula formalizing the statement
lim —f5(x) -2/ fa(x) =y
Tr—r00
Then, as we have shown, the Lps-formula 32[¢(2) A x(Z, y)] defines a set of rational numbers S C

Q. Since (R | Lps}) is O-minimal by Corollary [4.1.7} this set must be finite, say S = {s1,...,5n}.
From what we have seen so far follows that

R |= V2

¥(Z) = Jy (y #0A\/ Jim fo(x) -2 = y)] :
=1

Since this statement can be formalized in the language Lp¢;, it must also be true in K. Since

-,

K = (b) and fz(x) = g(x) for sufficiently large x, the result follows. O

4.2 Pfaffian chains of unrestricted functions

The reader may have noticed already that in not many of our proofs we have used the fact that
the functions in our Pfaffian chain are truncated. We will not let this greater generality go to
waste. First we make a few definitions which will look familiar.

Definition 4.2.1. Let m,l € N, and let Hy,...,H; : R™ — R be a Pfaffian chain. Recall that

this means that there exist polynomials p; ; € R[z1,...,2m4q] (fori=1,...,land j=1,...,m)
such that
0H; , _, - - -
(;C) = pi,j(«T, H1($)7 s 7Hi(x))7
3xj

for all ¥ € R™. Now, let C' C R by any set such that the coefficients of each p;; are the
value of some term in the structure (R | £, Hy,..., H;, ¢)cec. We define the language Lps as
LU{Hqy,...,H}UC. Furthermore, we define the Lp¢-theory Tpe as Th(R | Lpg).

Definition 4.2.2. Let n,r € N.
(i) A sequence (071, ...,0y,) of terms of Lp¢ in the variables z1,. .., z, is called an (n, r)-sequence

if the following two conditions are satisfied.
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(a) For s =1,...,n, the component o, has the form H;(y1,...,ym) for some i =1,...,1
and some y1,...Ym € {z1,..., 2}

) Ifs=1,....,n, 4 = 2,...,0 and 65 = H;(y1,...,Ym), then s > 1 and for some
t=1,...,s—1holds oy = H;—1(Y1,---,Ym)-

(ii) Those variables actually occurring in some term of an (n, r)-sequence & are called &-bounded.

Of course, we have now provided two conflicting definitions of what an (n,r)-sequence is: one
for the language Lp¢; and one for the language Lp¢. This should now lead to confusion however,
as it will always be clear from the context which of the two is meant in a given situation. We
give two more “shadow definitions”.

Definition 4.2.3. Let K be a model of Tp¢ and suppose & is an (n,r)-sequence. We put
D"(¢,K)=K".

Definition 4.2.4. Let k, K = Tps, with £ C K and let & be an (n,r)-sequence. We denote
by M7 (k,K,&) the ring of all functions f : K" — K for which there exists a polynomial
p(T1, .. Ty Y1, - - Yn) € K[T1, ..., Tr, Y1, - - - Yn] such that f(&@) = p(&,F(Q)) for all & € K.

The reason behind introducing these definitions now is that in the upcoming sections we will
develop techniques for the theories 7p¢; and Tps simultaneously. We will use these techniques in
the 7p¢; case in our proof of the First Main Theorem. The techniques in the Tp¢ case will be
used in the proof of the Second Main Theorem.

Remark 4.2.5. Since we will be needing this later on, we ask the reader to verify that Corollary
also holds with 7Tp¢; replaced by Tp¢, using the same proof. (In fact, we do not even need
Lemma in this proof, since we can invoke Proposition directly.)

Lemma 4.2.6. Fvery Lp¢-term is part of a Pfaffian chain of Lps-terms.

Proof. We use induction on terms. Clearly every constant and every variable of Lp¢ is part of
a Pfaffian chain, namely the chain consisting of just that constant or variable. Now suppose
that for each i = 1,...,m we are given a Pfaffian chain g, ... ,gfw of terms of Lp¢. Take some
1 <t < 1. We show that the term Hy(g; ,... ygn. ) is part of a Pfaffian chain. We claim that
the following chain of functions is a Pfaffian chain

g%a"'7grlllag%7-~-agzwa-~-agina-~-ag;nm7H1(g'r1117'-~7977;,1)’-~'7Ht(g7111a'~-agzlm)'

For j = 1,...,t, we check that the derivatives of the function Hj(g; ,...,gn" ) satisfy the
conditions of Deﬁmtlon This is trivial for the other functions in the chain. Recall that by
the chain rule

0 dg’ aH
—H;(g. .- . ce g, 9
8585 ](g’f'Ll’ ’gn,” Zaxs 8%1 n17 ’gnm) ()

Since Hy, ..., H; is a Pfaffian chain, there exist polynomials py,...p,, such that

0H, R
833 (gnla"'7g7Tm) :pi(‘raHl(g}LIv"'vg:znm)ﬂ"'7Hj(g7];17"'7g::lm))
)

and by our induction hypothesis, there exist polynomials, q1, ..., ¢mn, such that

agn i
3xg - q’L("E 917 e agni)7
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foreach¢ =1...,m. If we substitute these expressions into (|9)), then we see that %Hj (g}ll, e gnt)

indeed is of the right form. A similar argument can be made regarding the function symbols
-,+, —. This shows that our chain of functions is indeed a Pfaffian chain, so this concludes our
induction. O

As we already divulged, we shall be developing Theorems for Tps; and Tp¢ simultaneously.
In the Tps; situation, we can use the quite powerful result of Corollary which we do not
have in the Tps case. Using Lemma[£.2.6] we can prove the following Corollary to Theorem
which will serve as a substitute for this.

Corollary 4.2.7. Suppose that ¢(z1,. .., x,) is an existential formula in the language Lps. Then
there exists N € N such that for all ro,...,7, € R, the set

{rieR|RE®r,...,mp)}
is a union of at most N open intervals and N points.

Proof. By Lemma [2.1.5] we may suppose that ¢ has the form
Elyla"'ayn/\Ti:()a
i=1

where each 7;(Z, %) is an Lps-term. Then clearly ¢(Z) is equivalent to 3g(f(Z, %) = 0), where
f=72+---+72. Since f is a term of Lpt, Lemmatells us that f is part of some Pfaffian
chain of functions, hy,...,h : RPT™ — R, say. So surely, f € R[Z, ¢, h1,...,h]. Then by
Theorem [£.1.4} there exists No € N such that for all ro,...,7, € R, the set

{(p7q17"'aqn) €R1+n | f(pvrl7"'7rp7q17"'7QTL):O}

has at most Ny components. Let us call this set Z(rs,...,r,) for convenience. Now note that

{rieR|@(r1,....mp)}
:{Tl eR | qua"'7qn(f(rl7"'7rpaq17"'7qn) = 0)}
=n[Z(ra,...,1p)],

where 7 : R'*™ — R is the projection onto the first coordinate. Since 7 is continuous,
w[Z(rq,...,rp)] can have at most the same number of components as Z(ra,...,rp) has.

Hence, the Boolean algebra B, formed by the components of {r; € R | R = ¢(r1,...,7p)},
has size at most Ny. Since B is finite, it must be atomic and its set of atoms is certainly not
larger than Ny as well. Now note that every atom a € B is a connected subset of R, for otherwise
it would split up into two components. Hence, every atom a € B is either a point or an interval.
This shows that {r; € R|R = ¢(r1,...,7,)} can we written as a union of Ny intervals and 2Ny
points. So setting N = 2N, suffices. O

4.3 Parametrization Theorems

From this point on, we let Tp¢(}) be either Tp¢; or Tpy and similarly, we let Lpg(;) be either Lpg) or
Lps. In this section we show that under certain conditions, curves that are implicitly defined in
models of Tpy(}), can be explicitly parametrized by finitely many definable C°°-functions, defined
on open intervals. First, we need two Lemmas, one analytic and one combinatorial in nature.

(In [Wil96] the author remarks in passing that the following result requires f to be continuous.
Perhaps he had a proof in mind that is only valid for continuous functions.)
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Lemma 4.3.1. Leta €e RU{—o00} and b € R. Let f : (a,b) = R"™, for some n € N. Then either
limgqy || f(2)]] = 00 or (b,E) is a limit point of graph(f) for some ¢ € R™.

Proof. Suppose that limgp || f(z)|| # co. Then

IRV > 03z € (b—6,b) (|f(2)] < R).

Fix such an R and take for every 4, = %, with m € N and m > 1, an element x,,, € (b — d,,,b)
such that || f(z)|| < R. Then (f(z)),, is a bounded sequence in R™. By the Bolzano-Weierstrass
Theorem, this sequence has a convergent subsequence. Let ¢ be the limit of this subsequence.
Then clearly (b,¢) is a limit point of graph(f). O

Lemma 4.3.2. Let n,N € N, with n,N > 1. Then there exist Q1,...,Qs € Z", where s =
n-N2+1, with the property that for any field K of characteristic 0 and any distinct Py, ..., P, €
K™, withm < N, there exists 1 < i < s, such that the dot products Q;- Py, ...,Q; P, are distinct
elements of K.

Proof. Let us prove two claims.

Claim 1. A vector space V over an infinite field F' can never be written as a finite union of
proper subspaces.

Proof. Suppose to the contrary that

l
v=V,
=1

where the V; C V are proper subspaces of V. Without loss of generality we may assume that

l
i gV,
=2

for otherwise we might as well remove V; from this union. Pick v € V; and let w € V'\ V. Then
u is nonzero, so the set A ={v+z-u|a € F\ {0}} is infinite, as F is infinite. Also note that
ANV =, since otherwise u would be in V;. This means that one of the sets V5,...,V], let
us say Vo, must contain at least two (in fact infinitely many) elements from A. But this implies
that u € V5 and hence also v € V5. Since v was arbitrary, we find

l
viclJw,

i=2
which is false, proving the claim.

Claim 2. For any ¢t € N there exists a t-element set, {Q1,...,Q:} C Z", such that any subset
of size less than or equal to n is linearly independent over Q.

Proof. We construct such a set recursively. Certainly () satisfies these conditions for ¢ = 0. Now
suppose that the set A = {Q1,...,Q:} meets our criteria. Set A = {X C A | |X| < n} and
consider

B = U span(X),
XeA
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where span(X) denotes the linear span of X in the vector space Q™. Then B is a proper subset
of Q™ by our first claim, so there exists a point Q € Q™ \ B. We take some nonzero g € Q such
that ¢ - Q € Z". Now if we let Q1 = ¢ - @, then any subset of {Q1,...,Q:, Qi41}, of size less
than or equal to n, is linearly independent over Q by choice of @), so we are done.

Take Q1,...,Qs € Z"™ such that any n of them are linearly independent over Q. This is

equivalent to the statement that all nxn submatrices of (Q7, ..., Q7)) have nonzero determinant.
If K is a field of characteristic 0, then these determinants are also nonzero in K, so any n vectors
among (1, ...,Q, are also linearly independent over K.

Suppose that the lemma is false. Then there exists a field K of characteristic 0 and distinct
Pi,..., Py € K", with m < N, such that for each 1 < ¢ < s we have Q; - P, = Q; - Pg,, for
some 1 < a; < fB; <m. Let f:{1,...,s} = {1,...,m} x {1,...,m} be the function defined
by f(i) = (a;, 3;). Since the domain of f has size n - N? + 1 and the codomain of f has size
m? < N2, there must exist 1 < a < B <mand 1<i; <...<i, < s such that f(i;) = (o, B)
for all i;, by the pigeonhole principle. By definition of f, this means that Q;; - (P, — Pg) = 0, for
all ij, hence (Po — Pg)- (QF,...,QT ) =(0,...,0). Since Py — P3 # (0,...,0), this contradicts
the fact that the matrix (Qz;, ceey QZT) is invertible. O
Theorem 4.3.3. Let k and K be models of Tpe(yy, with k C K. Furthermore, let n,r € N,
with r > 2, and let & be an (n,r)-sequence. Take g1,...,9-—1 € M"(k,K,&) and suppose that
V(g1,---,9r—1) is closed in K" and moreover, for all P € V(g1,...,9r-1),

o (Gt ) e o

Then there exists a finite set, S, of pairs (I, ), satisfying the following conditions.

(i) For each (I,¢) € S, I is a nonempty open interval in K and ¢ : I — K"' is a definable
C*>-function.

(ii) For each (I,¢) € S holds that if sup(I) € K (that is, sup(I) # 00), then

li -
s lp(2)]| = oo,

and similarly, if inf(I) € K (meaning inf(I) # —o0), then

lim x)|| = cc.
Jim ()]

(iii) The set V(g1,...,gr—1) is equal to the union

U {eraph(¢) | (1, ¢) € S}

and this union is disjoint.

Proof. For an element p; € K, we write

Vpl = {(p27-~',pr) S Kril | (pla"'apr) S V(gla'"agf’—l)}-

By Corollary (also see Remark [4.2.5)), there is some N € N such that for each p;, € K, the
set V,, contains at most N elements. Let s = (r — 1) - N? 4+ 1 and take Q1,...,Qs € Z" as in
Lemma[I:3:2] Fori=1,...,s, we write

Qi 'Vpl = {Ql : (pQ""va) | (p2"-~7p7‘) € Vpl} CK.
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Now for each m =1,...,N and i = 1,...,s we define the set
Am,i :{pl €K|m: |V;D1| = |QZVP1|}

Note that the sets A, ; are definable in K using parameters, so if Tpg(;) = Tp¢}, then each Ay, ; is
a finite union of intervals and points by Corollary To get this same result for Tpg(py = Tpy,
we need to argue a little bit further.

Claim 1. Each A,,; can be defined by a Boolean combination of existential Lp(-formulas
with parameters from K.

Proof. Since |V,,| > |Qi-V,, | always holds, it suffices to find formulas x1(z) and x2(z) expressing
m > |V,| and |Q; - V5| > m respectively, as their conjunction will then define 4,, ;. We define

x1(z) by

m+1r—1
e s (/\ qu@,gp):o% Va1

p=1 q=1 1<p<g<m+1

and we define x2(x) by

m r—1 m
Elxlw-'vxmzlgla"'agm /\ pr#xq A(/\ qu(x,ﬁp)=O>A /\x‘/:QlyZ
1<p<g<m p=1q=1 j=1

Then x1(z) and x2(z) express the desired properties. Furthermore, x1(z) is a negated existential
formula and y2(x) is an existential formula, so this proves the claim.

Now note that the collection of subsets of K which can be written as a finite union of points
and intervals forms a Boolean algebra. In the case Tp¢(}) = Tpr, Corollary also holds in K,
by transfer. So, using our claim, each A,,; is a finite union of intervals and points, just like we
saw earlier in the case Tp¢(j) = Tps)-

It follows that there exists t € N and aq,...,a; € K, such that

ag < ayp < - < ap < apygq,

where ayp = —oo and a;y1 = 0o, with the property that for each j =0,...,t,each m=1,..., N
each i = 1,...,s and each pair of points p,q € (aj;,a;11) holds that p € A,,; if and only if
q € Ap,. Forp € K, we let m(p) = |V,|. Furthermore, we let i(p) be the least i such that
|Qi - Vy| = m(p). Since [V,] < N, such an i exists by virtue of Lemma [4.3.2] By definition

of the ao,...,a;+1, the values of m(p) and i(p) do not depend on the choice of p € (a;,a;+1),
within each interval. We may therefore denote these numbers by m; and i; respectively. For
each j = 0,...,¢ such that m; > 1, we can define functions ¢;; : (a;,a;4+1) — K1, for every
l=1,...,m;, such that for z € (a;,a;+1),

Pja(x) =4

if and only if

m; mj—1
Hgla"'7gmj [(/\(%@) Gv(gl7"'3gT’1)> A ( /\ Qi]‘ Zj’b < Qij 371+1> /\?j:Zjl‘| .

i=1 i=1

Clearly

(aj,a541) X K""" 0 V(g1 gr1) = [ J{eraph(e;) | 1 <1< my},
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where the union is disjoint. We shall now argue that each ¢;; is infinitely differentiable. Take a
point = € (a;, aj4+1). Since each point (z, ¢;,;(x)) lies in V(g1, ..., gr—1), by Theorem there
exist C>°-functions 61, ..., 0y, defined on a neighborhood of x such that 0;(x) = ¢;,(x), for each
l=1,...,m;. Note that this implies

Qi; - 01(x) < -+ < Qi - O, ().
Since the functions Q;; - 1,...,Q;, - 0., are continuous, the inequalities
Qij Gl(z) <o < sz -ij(z)

hold for all z in some small neighborhood of . Furthermore, the points (z,0;(z)) liein V(g1, ..., gr—1),

for each I = 1,...,m;. This means that the functions ¢; and ¢;; must coincide in some neigh-
borhood of z, for each | = 1,...,m;. This clearly implies that the functions ¢; 1,...,¢;m, are
of class C*°.

Now take j < t and also fix 1 < I < m;. Then sup((a;,aj+1) € K. By transferring
Lemma to K, we have that either limg1q,,, [[¢;,:(z)|| = o0 or (aji1,p2,...,pr) is a limit
point of graph(¢;,;) for some (pa,...,p,) € K""!. Suppose that the latter is true. Since
graph(¢;;) € V(g1,...,9r—1) it is also a limit point of V(g1,...,gr—1), and since this set is
closed by hypothesis, we have (a;+1,p2,...,pr) € V(91,.-.,9r—1). By Theorem there
exists an open neighborhood U C K™t of (ps,...,p,) and positive € € K, with

a; < ajp1 —€<ajr1 <ajr1t+&<ajp2

and a definable C*°-function 6 : (aj41 — €, aj41 +¢€) — U, such that 6(aj41) = (p2,...,pr) and
(aj+1 — & aj41+¢€) x UNV(g1,..., gr—1) = graph(0).

Claim 2. The functions § and ¢;,; coincide on the interval (aj4+1 — €, aj41)-

Proof. Since intervals in R are connected, intervals in K are definably connected, meaning that
they can not be written as the disjoint union of two definable open sets in a nontrivial way. So
to prove our claim, it suffices to prove that the definable set

A={pe(aj41—¢,a;11) | 0(p) = ¢5.(0)}

is open, closed and nonempty. Clearly the set A is closed, as # and ¢ are both continuous.
Furthermore, since (aj4+1,p2,...,pr) is a limit point of graph(¢;;), the set (aj41 — €, a;41) x U
must contain points of graph(¢;;), which are then automatically also points of graph(6), so A is
nonempty. Lastly, to show that A is open, pick a point p € A. Then 6(p) = ¢;:(p), so

Qijer 0j1(P) <o < Qijyy9ju-1(p) < Qiyyy -0(p) < Qiyyy ~Bja1(p) < oo o < Qijyy iy (D)

Again, by continuity, these inequalities hold for all points in some neighborhood of p, and hence
0(q) = ¢;,(q) for all points ¢ in this neigbourhood. It follows that A is open, proving the claim.

By a similar argument, there exists 1 < I’ < m;4; such that 6 coincides with the function
¢j+1,0 on the interval (aji1,a;41 + €). This shows that ¢;;, ¢;41,0 and {(aj11,p2,...,0r)}
can be glued together to form a definable C*°-function from (a;,aj+2) to K"~'. The Theorem
follows by performing these gluings exhaustively. As a final detail, we should point out that
every point P on the line {a;11} x K"~! lying in V(g1,...,g,—1) will be part of some gluing in
the end. By Theorem [3:2.2] such a point is part of the graph of some definable C°°-function
0: (aj41 —¢e,a;41 +¢) = K"~!. Subsequently, one can show that § must coincide with some
¢, on the interval (aj+1 — €,a;41), using the ideas above, showing that P is part of the same
gluing as ¢; ;. O
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We will refer to the set S, as given in Theorem as a parametrization of V(g1,...,9r-1)-
Such a parametrization gives us a firm grasp on the set V(¢1,...,9--1), and in fact, it lies at
the heart of the proof of Lemma [2.3.2] The idea is that if V(g1,...,g,—1) N k" is closed in the
model (k | Lpg(})), then we can apply Theorem with K = k, to obtain a parametrization
S of V(g1,...,9,—1) VK" in (k| Lpg(py). Our goal then is to derive some connection between S
and &’. The following Lemma serves as a first step in that direction.

Lemma 4.3.4. Let k and K be models of Tpg(py, with k C K. Let n,r € N, with r > 2, and
let & be an (n,r)-sequence. Take g1,...,g9r—1 € M"(k,K,J) and suppose that V(g1,...,gr—1) 18
closed in K™ and furthermore, for all P € V(g1,...,9-—1),

T

w2, ..., xr) >(P)7EO.

Suppose also that every (k,&)-definable point of V(g1, ..., gr—1) lies in k™. We write
K- ={a€eK|—-p<a<p for some € k}.

Now take « € K~ and P € K™™' such that |P|| € K~ and (o, P) € V(91,--.,9r—1). Then there
exist 1,72, B1, B2, B1, B2 € k, with 72 < 71 < a < 1 < B2 and |P|| < By < Bz, m € N, with
m > 1, and K -definable C*°-functions ¢; : (72, 82) — K", such that

() lIéi(p)ll < By, fori=1,...,m and p € (72,52).
(ii) The set

V(glv R 797“*1) N ((727ﬁ2) X {Q S KT_I | ||Q|| < B2})

is equal to

| graph(s:)

i=1
and this union is disjoint.
(iii) If p € (72, B2), with p € k, then ¢;(p) € k"L, fori=1,...,m.

Furthermore, if V(g1,...,9r—1) N k" is closed in k", there exist k-definable C™°-functions 1; :
(y2, B2) — K™Y, fori=1,...,m, such that (i) and (ii) hold with v; in place of ¢;, where all
notions are interpreted in k.

Proof. As in the proof of Theorem we write

Voc = {(an"'7p7‘> S Kr_l ‘ (aap27"'7p7‘) S V(glw"?g’rfl)}-

Let m € N be the number of points @Q satisfying Q € V,, and ||Q|| € K~. Recall that the number
of these points is indeed finite by Corollary (and Remark and note that m > 1, as
P is such a point. We denote these points by Py, ..., P,. Take B € k such that ||P;|| < B for
each i = 1,...,m and choose B’ € k with B < B’. Let § be as in Theorem and for each
1=1,...,m, let (I;, ¢;) be the element of S such that « € I; and ¢;(a)) = P;. We write
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Consider the set AT C K, consisting of those elements p € I, with o < p, such that for all
q € [a,p] and i = 1,...,m holds that ||¢;(¢)|| < B and ¢1(q),...,dm(¢) are the only points
Q €V, satisfying ||Q|| < B’. Keep in mind that the set A* depends on B and B’, even though
our notation does not reflect this. We shall write AE g Whenever we need to emphasize this
fact. Note that for : =1,...,m, the set 7

{ae ;| lloi(g)ll < B}

is open in K by continuity of ¢;. Furthermore, if (J,¢) € S\ {({1,¢1),-.., Im, Pm)}, then the
set

{ae Tl =B}

is not only closed in J, by continuity of ¢, but also closed in K, as it has no limit points on
the boundary of J, by part (ii) of Theorem Combing these two facts with part (iii) of
Theorem m shows that AT is an interval in K of the form [a, 3), with 8 € K N {cc}. Note
that certainly o € AT, by choice of B and B’, so o < 3. If 8 = oo, we simply take 31,82 € k
such that a < 81 < 2. This is possible, as o € K.

Suppose on the other hand that 8 € K. Then we claim that 8 € k. First we need that
B € I. If I is unbounded on the right, then this is certainly true. If I is bounded on the right,
then by part (ii) of Theorem there is 1 < ¢ < m and ¢ € I such that |¢:(¢)|| > B.
Since 8 < g by definition of A™, it follows that in this case we also have 3 € I. This implies
that there is some @ € Vs such that either ||Q]] = B or |Q| = B’. This follows from the
fact that 3 is the least element (greater that «) such that 3 &€ AT and the fact that the set
V(g1,...,9r—1) is parameterized by the finitely many continuous functions from §. We define
the function h : D"(¢, K) — K by

h(z1,...,z.) = (fo) - B?,
i=2

in the case ||Q| = B or

Wy, ... 20) = (Z ﬁ) —(B")?,

in the case ||Q|| = B’. Then h € M"(k, K) and h vanishes at the point (8, Q). However, for no
point ¢ € [a, 3) does there exist P € V, such that B < ||P|| < B’, by definition of A™. Hence, h
does not vanish on V(gy, ..., g,) NW for any open neighborhood W of (3, Q). Define the subring

M ={[f.D"7.K)] | f € M" (k. K.5)}

of D(g,q)- Note that M Noetherian and closed under differentiation, as M"(k, K, &) is. We wish
to apply Theorem with respect to the point (8, Q) € K" and the functions [g;, D" (7, K)] €
M, fori=1,...,r—1. Since (8,Q) € V(g1,...,9-—1) and

a(gla e agr—l)
det ((M) (8,Q) £0,

by assumption, we have (8, Q) € V-(g1,--.,9r—1), 50 we may indeed apply the Theorem. Because
r —1 < r, either (ii) or (iii) of Theorem must hold. Option (ii), however, is not possible
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by what we have just proven. This means that (iii) must hold, so (8, Q) is (k, &)-definable as a
direct consequence. By our hypothesis, this implies that (3, Q) € k", proving our claim.

We take 81 = 8 and choose By, By € k such that B < By < By < B’. Then AB B = [, B)
for some 3’ € kU {oo}. Using the continuity of the functions ¢, for (J,¢) € S, it is not difficult
to verify that 81 < 8. If 8’ € k, we take B2 = . In case 8’ = oo, we take B = 31 + 1.

Analogously, by defining the set A~ in the obvious way, using the same B, B’, By and Bs as
before, we find v and 2 as asserted in the statement of the Lemma.

We move on to proving the last statement of the Lemma, so suppose that V(g1, ..., gr—1)Nk" is
closed in k". As a preliminary result, we will show that for a point 72 < p < feandi=1,...,m,
holds that ¢;(p) € k"~!. Take such a point p € k and suppose that (p,Q) € V(g1,...,9-_1). We
define the function h: D" (¢, K) — K by

h(x1,...,2;) =21 —p.

Then h € M"(k, K) and h vanishes at the point (p, @). Also, h does not vanish on V(g1,...,g,)N
W for any open neighborhood W of (p,Q). We can therefore apply Theorem and our
assumption on (k,&)-definable points in the same way as before to conclude that Q € k" 1.
Since each ¢;(p) is such a point, we find that ¢;(p) € k"' fori = 1,...,m. Since V(g1,...,Gr_1)
has a quantifier free definition, we find, using (ii), that for every point v2 < p < (3, there are
exactly m points @ € k"1 satisfying

k ': (pa Q) S V(glv' .. 797“—1) A ||QH < B?-

Furthermore, by (i), these points satisfy ||@Q| < Bi. Let Q1,...,Qm be these points for p =
%. Let S’ be a parametrization of V(g1,...,9,—1) in k, using Theorem |4.3.3] This means
that we apply the Theorem, setting K = k. It is not difficult to verify that the hypotheses of
Theorem are satisfied. In particular £ models that

for each P € V(g1,...,9-—1) N k", since this can be expressed without using quantifiers, as
M"(k,K,&) is closed under differentiation. For each ¢ = 1,...,m, let (I],4¢;) be the element of
&’ such that p € I and ¢;(p) = Q;. We are done if we manage to show that (v, 82) C I/ for each
i=1,...,m. Suppose that this is not the case. Then sup(I}) € (2, 82) or inf(I}) € (y2,B2), for
some i = 1,...,m. In either case, there is a point ¢ € (72, 82) N I] such that ||¢;(p)|| > B, by
(i) of Theorem Now by transfer from R, Intermediate Value Theorem holds in k. The
Intermediate Value Theorem, when applied to the points p,q € (2, 82) N I}, tells us that there
exists a point x € (2, 82) NI} such that ||1;(z)| = B1. But this is clearly in violation of (i) and
(ii) of this Lemma. O

Remark 4.3.5. At first sight, it might seem “obvious” that given 72 < a < (3 as in Lemma
there exist 1,81 € k such that v < v1 < a < 51 < f2. In general however, there is no
reason to assume that this is true.

4.4 Proof of Lemma 2.3.2].

We are almost ready to present the proof of Lemma[2.3.2] We shall in fact be proving the Lemma
not only for 7p¢p, but also for Tp¢, right after we prove the following simple result.

Lemma 4.4.1. Suppose that (a,b) is an interval in R and let f : (a,b) — R be a differentiable
function. Suppose that for each x € (a,b) such that f(x) =0, we have f'(z) > 0. Then f has at
most one zero on (a,b).
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Proof. Suppose to the contrary that f has at least two distinct zeros z1,z2 € (a,b). We may
assume that 1 < z3. Since f(z1) = 0, we have by hypothesis that f’(x1) > 0, so there exists
e > 0 such that f(x) > 0 for all € (z1,21 + ¢). Consider the set A = {x € (a,b) | 1 +¢ <
z and f(x) = 0}. The set A is closed in (a, b) by continuity of f, and it is nonempty, as it contains
29. Furthermore, A is bounded from below by 1. This means that the infimum of A, let us call
it x3, is an element of A. Note that x3 is the smallest point strictly greater than x1, such that
f(z3) = 0. Now, f(z3) = 0, so there exists n > 0 such that f(x) < 0 for all z € (x3 — n,z3).
Since f(z1 +§) >0 and f(x3 — 3) < 0, there must exists some x1 + § < 24 < x3 — 3 such that
f(xz4) =0, by the Intermediate Value Theorem. This contradicts the minimality of x3. O

Lemma 4.4.2. Let k, K |= Tpe(y), with k C K. Furthermore, let n,r € N and let & be an (n,r)-
sequence. Suppose also that for each s > r and each (k,&)-definable point (p1,...,ps) of K*
holds that py,...,ps € K~ (using the notation from Lemma . Then every (k,d)-definable
point of K" lies in k".

Proof. Before we get to the main part of this proof, we handle the cases r = 0,1 separately. If
& is an (n, 1)-sequence, then a point @ € K is (k,&)-definable if there exists g € M*(k, K, &)
with Q € D*(d,K), g(Q) = 0 and ¢'(Q) # 0. Tt is clear that the points @ € K satisfying
these equations for a fixed g are isolated. This means that in the case Tp¢(;) = Tpgy, the set of
these points is finite by Corollary @ In the case Tpg(;) = Tpt, we note that the properties
9(Q) = 0 and ¢'(Q) # 0 can be expressed without using quantifiers, as M*(k, K, ) is closed
under differentiation. In this case, Corollary (after transfer to K) tells us that the set of
these points is finite. So, in both cases we can reason as in Corollary to conclude that &
and K must have exactly the same (k, &)-definable points. The case r = 0 is trivial.

From now on we assume that r > 2. We use induction on n. The case n = 0 is proven
in Corollary (this result also holds for 7p¢, with the same proof). Let (&, 0,.1) be an
(n + 1,r)-sequence such that for all s > r, every (k, (&, 0n+1))-definable point of K* lies in
(K7)®. Let s > r and suppose that the point P € D*((&,0p41), K) is (k, &)-definable. We need
to make an observation about such a point P. Since every g-bounded variable is in particular
(&, 0p+1)-bounded, we have D*((&,0,41),K) C D?*(d, K). Furthermore, if g € M*(k, K, J),
then its restriction to D*((&,0p41), K) lies in M*(k, K, (&,0p41)). This shows that P is also
(k, (&, 0nt1))-definable and hence P € (K~)°. By induction hypothesis on &, it follows that
Pecks.

Now let Q € K" be (k, (&, 0p+1))-definable. We need to show that Q € k. By definition

Q € DT((Ea 0'n+1),K) (10)
and there exist g1,...,9. € M"(k, K, (5, 0n+1)), such that
91(@Q)=-=g.(Q)=0 (11)
8(913 e 7gr)
det <8(a:1,...,xT)> (@) #0 (12)

We shall prove that @@ € k" under some extra assumptions, which we will justify later. These
extra assumptions are

g1y, 9r—1 € M"(k, K, 5) (13)

V(g1,.--,9r—1) is closed in K" and V(g1,...,9,—1) Nk" is closed in k" (14)
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V(gl,“'?.gr—l) gDT((670n+1)aK) (15)

Mgy, 9r-1)

det< Do) (P)#O0forall PeV(g1,... 9r—1) (16)

For all P € V(g1,...,gr—1), if g-(P) = 0, then det 9(g1,- -, 9r) (P) <0. (17)
8(‘r17 v 7xr)

By our observation and (15)), every (k, &)-definable point of V(g1,...,g,—1) lies in k”. Using our
extra assumptions, one easily verifies that the other hypotheses of Lemma[£.34] are also satisfied.
Recall that @ € (K~)" by our assumptions on (&, 0,41), so we may apply Lemma with
(a, P) = Q. Let v1,72, 51,082, B1, B2 and ¢;,%; (with ¢ = 1,...,m) be as in the Lemma. Now
let the function ¢ be one of the ¢;. For t € (vq, 52), we have (¢,¢(t)) € V(g1,...,9-—1). So by
(15), (t,6(t)) € D"((F,0n+1), K). We may therefore define, for any g € M*(k, K, (G, 0p41)), the
function g : (v2,82) — K by g(t) = g(t,¢(t)). Note that g a is definable C*°-function. The
derivative of g is given by

H0= 50+ 50 0 (18)

where ¢ = (¢?,...,¢"). Now write

B 8(gly~-~ag7"—1’g)
o) = dot (Bt

and

o 3(91a s 797’—1)
Jl(xl,...,x,,)fdet <8(.’1}2,...’$T) .

Claim 1. %2(t) = (=1)" 1T () Ty (t) L.

Proof. Note that J;(t) # 0, by . Define

991 991 . 991
oz, Oxa oz,
A= B = :
Ogr—1 Ogr—1 . Ogr—1
oz Oxa oz,
=( %9 —( 29 ... 9g
C ( Oz ) D ( Oxa oz,

Then
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This is equal to

wl(& 5wl 3]

(3 8) (0]

caf( b 2]

“aal(5 ) (% o B )]
Cae (a5 BA )]
—det[B]- (C—D-B~' A)-det [B]
=C-D-B'.A

Now, if we take g = g;, with j = 1,...,7 — 1, in (18), then the left hand side is equal to zero, as
(t,9(t)) € V(g1,.--,gr—1). This shows that A+ B - ¢T = 0. We find
C-D-B7t.4
=C+D-B'.B.-¢T
dg
=—Z(¢
),
proving our claim.

From now on we assume that r is even. The argument is easily modified in the case that r is
odd.

Claim 2. If p € (72, 82) and g,.(p) = 0, then ddgt’" (p) has the same sign as J1(p).

Proof. Take g = g, in Claim 1. By , we have J(p) < 0. Claim 2 now follows immediately
from Claim 1, as r is even.

Claim 3. The function g, has at most one zero.

Proof. Notice that by , J1 is nonzero on its entire domain. Since J; is continuous and
definable, it has constant sign on (72, 32), by transfer of the Intermediate Value Theorem to K.
Without loss of generality we take J; positive. Then for each p € (2, 32) such that g,.(p) = 0,
we have x (p) > 0 by Claim 3. The claim follows from transferring Lemma to K.

dt
Now notice that - all hold with k in place of K and V(g1,...,9,_1) Nk" in place of
V(g1,--.,9r—1). This is because each statement implies the corresponding statement for & and

V(g1y.-.,9r—1) Nk". This means that our three claims also hold if we take ¢ to be one of the
;. For any g € M"(k, K, (3, 0n+1)), let G(¢;;-) be the function from {t € K | v2 < t < 2} to
K obtained as above, with ¢ = ¢; and let g(t;; ) be the function from {t € k | y2 < t < 52} to
k obtained by taking ¢ = ;.

We write @ = (q1,...,¢-). Let ip be the number such that ¢;,(q1) = (¢2,...,¢r). Let us
assume that J1(¢i,;q1) > 0, as the case J(¢;,;q1) < 0 is similar. We define

S={1<i<m|Ti(¢i;q) > 0}.
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By and the Intermediate Value Theorem in K, we have for each ¢ € S and each ¢ € (7o, 32)
that Jq(¢s;t) > 0. Similarly, for each i € {1,...,m} \ S and for each t € (v2,32), we have
J1(¢i;t) < 0. This holds in particular for ¢ = v;. By part (iii) of Lemma di(n) € k"1
for i =1,...,m. This means that there is a subset S’ of {1,...,m} such that

{¢itn) [ i €Sy ={gi(n) i€ S}

Then J1(vi;71) > 0 for i € 8" and Jq(¥i;71) < 0fori € {1,...,m}\S’. So by the Intermediate
Value Theorem in k we have for each i € &’ and each t € (vyq,32) Nk that Jq(¥;;t) > 0 and
for each i € {1,...,m} \ & and each t € (y2,82) Nk, we have Jy(¢;;t) < 0. Using part (iii) of
Lemma, again, it follows that for each t € (y2, 82) Nk,

{i(t) |1 € 8"} ={ai(t) | i € S}.

Now take 3,83 € k, with 79 < v3 < 1 and 7 < (3 < (2, such that for all ¢ = 1,...,m, the
functions g,.(¢;;-) and g,(¢;; ) are nonzero at 3 and (3. It is possible to do this, as there are
only finitely many points that need to be avoided, by claim 3. Take i € S. If §,.(¢;v3) < 0 and
G, (¢:; 83) > 0, then g, (¢i;) clearly has a zero between 3 and S, by the Intermediate Value
Theorem in K. Conversely, if g, (¢;;-) has a zero at some point p € (s, 83), then it must be the
case that §,.(é:;v3) < 0 and g,.(¢i;83) > 0, as ddgtr (p) > 0, by claim 2, and p is the only zero of
G, (¢:;+) in this interval, by claim 3. Also note that if §,.(¢;;-) does not have a zero in (73, f3),
then g, (¢:;v3) and g,(¢;; B3) have the same sign. The same argument can be made regarding
7, (15 -), with respect to (v, 83) Nk, for i € §'. Tt follows that

i€ S |3te(ys,B3)g,.(di;t) =0}
={i € S[79,(di;v3) <0} - {i € S|7,(¢:; 83) < 0}

and

[{ie S |3te (3 B8)Nkg.(¢ist) =0}
={ie 8" |g,(i;v3) <0} — i € §"| g,(¢s; Bs) < 0}].

But by part (ii) and (iii) of Lemma the two “right” hand sides are equal. It follows
that every point P = (p1,...,p,) of K" satisfying P € V(g1,.-.,9r-1), g-(P) = 0, J1(P) > 0,
v3 < p1 < B3 and |[(p2,...,pr)|| < By lies in k”. But this means that @ € k", as @ is such a
point. We have therefore proven the Lemma, once we can show that we may assume - .
We shall do so now.

Our aim is to modify (&, oy41) to (67, 07,,1), construct hy, ..., hy € M*(k,K,(6',0,,,,)), for
some s > r, and find a point Q' € K*® such that - are satisfied for (6',07,,1), h1,..., hs
and @’ in place of (&,0,41), g1,---,9- and Q. Furthermore, the coordinates of @ will occur
among the coordinates of @)'. This will clearly be sufficient. We will develop our modifications
in four stages. Each of these stages will preserve - , as well as all the previous stages.
To avoid bulky notation, we revert to the original notation at the end of each stage.

Stage 1. We may assume that for each (&, 0,41)-bounded variable x, there are variables y, z
such that both 23?2 — 1 and (1 — )22 — 1 occur among g1, ..., g,

Proof. Suppose that x; is (&,0,41)-bounded. Define g, 1,g,40 € M"™2(k, K, (&,0,41)) by

gr1(21, . Teg2) = 2wl —1and grqo(xy, ..., 2pg2) = (1 —xi)fci— 1. By 7 0<q <1,
(1

so we can can take ¢.4; = ﬁ and gy40 = \/llfq Then and (11f) are clearly satisfied for
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91y gr2 and (Q, ¢r11, gri2). Furthermore,

) fS)
g1, Grt2) _ 3.97, L 35.% 0 0
8(%1, T ,1'7«+2) agf}rl 5?7?:1 9grt1 0
Oxq T oz, 0Ty
9gr+2 . Ogri2 0 Ogr2
8:61 8:6.,- 8LET-+2
S0
det (8(91,-~-,gr+2)> _ det (8(91,---,gr)) 0gr41 Ogry2
O(w1, ..., Tryo owy,...,x)) Oxry1 OTyyo
and hence
(g1, -+ gr+2) (g1, -- -5 9r)
det | =22~ FTT2/ —det [ 212 IT -4 /1 — q;
(S0 Qg sa) = et ( G220 ) (@) avarvT= a0,

which is nonzero by (12)). It follows that also holds for the new system. We can now apply
this process until we have treated each (&, 0,41)-bounded variable x;.

Stage 2. We may assume that g1,...,9,-1 € M"(k, K, &) and that g, has the form 0,11 (21, ..., 2,)—
Ze, where x, is not (&, op41)-bounded.

Proof. By definition of M"(k, K, (&,0+1)), there exist hq,..., h, € M"(k, K,J)[x,+1] such that
gl(:rl’ M ’x"’) = h’L(Ilﬂ M 3IT’70-7L+1(:E17 M 7IT))7

fori=1,...,r. Take Q' = (Q,0n+1(Q)) and h,y1 = opt1(21,...,2r) — r41. Certainly
and hold for hy,...,h,.4+1 and @'. Note that Stage 1 and Stage 2 are also satisfied. We only
need to check that holds for our new system. Consider

Ohy - Ohy Ohy
Oy Oy OTry1

Ohay s hrin) : : :
O(z1,...,x B Ohy . Ohy  Bhpn
( 1, ) r+1) oz o T

9onyr . 9omi1 g

0z oz,
Now for each ¢ = 1,...,r, multiply row r + 1 by Bihil and add the result to row ¢ (recall

that the resulting matrix will have the same determinant as the original one). Since gii

Oh; 80'n+1 Oh;

for i,j = 1,...r, by the chain rule, the resulting matrix is equal to

81_7’ 31_7' 3&?T+1
991 . 991 0
Oz o,
9gr - 9gr 0
ox1 ox..
Oont1 . 001 1
oz o,

It follows that

det (M) (Q") = —det ((M) (Q),

8($1,...,.Tr+1) xlv'“vxr)
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which is nonzero by the original .

Stage 3. We may assume that for all P € D"((¢,0p41),K), if g;(P) =0fori=1,...,r — 1,
then det (%) (P) #0.

Proof. Since

8(917"'79’!’) _ . r+i 6(91)"'797’71)
det (8(331’"'73:7") _Z( 1) det a(xla'"a‘ri—hxi-‘rlw";mr) ’

i=1

there must be some 1 <4 < r such that

8(917 cee vg'r'fl)
det (8(1‘1,...,.131‘_171‘1‘_,_1,...,xT) (Q)#O,

by . We now relabel the variables in such a way that we may assume ¢ = 1. It is important
to note that an (n,r)-sequence for which the variables are permuted is still an (n,r)-sequence.
Furthermore, the definable points of the permuted sequence are simply coordinate transforma-
tions of the original sequence. It is also clear that - still hold, as well as Stages 1 and
2. We define h € M"™(k, K, (&, 0,41)) by

8(917"'797‘71) 1
s mr) ) "

h(x1,. .. @ry1) = Tpyq - det (

Furthermore, we take ¢,+1 = det (M) (Q)~! and define Q' = (Q, g-+1). Then g1,...,g,.—1,h, gr

To,eTp_1)

and Q' satisfy Stages 1 and 2, along with and . For , note that

a(glv"ng*l?h’gr) _ 8gr_1 8gr_1 0
6(331, . ,1‘7-+1) ox1 e 883:}{ on
(9721'1 T (9%7- 8$r+1
ogr ... Ogr. 0
oz, o,
so that
0 ceisGr_1,h, g, o(g1,...,0r oh
det((gh  Gr—1 g)>:_det((gl 9))_
(w1, Try) o(xy,...,z,) O0Tr41
and hence
8(91a-~-agr—1ahagr)> / (8(917"'797”)> -1
det = —det | 222 I/ . ,
( X1y ..y Tpg1) (@) o(x1y...,x,) (@) r+1

which is nonzero by the original . Lastly, we check that Stage 3 is satisfied. Suppose that
P € D™Y(,0011), K) and gu(P) = -+ = go1(P) = h(P) = 0, with P = (p1,....,py11). Since
h(P) = 0, it follows that

- 9(g1,---,9r-1)
1
pr+1 _det< a(fEQ,...,xr) (pla"'7p7‘)7
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which is nonzero. Since

991 dg1
822 azT 0
6(917"'797‘717h) _ N
Oz, ..., Try1) d9r—1 . 9gr 0
81?2 817.
Oh . Oh oh
Oxo oz, 0Ty
we have
0 eesGr_1,h (g1, gr_ oh
det( (9155 9r—1 )>:det( (91 g 1))_ ’
O(za,. .., Try1) O(za,...,x,) 0xry1
so that
8(91""ag7‘—1ah’) -2
det P) =
¢ ( A(r2y -y Try1) (P) = prias

which is nonzero, as desired.

Stage 4. We may assume that for all P € D"((&,0p41), K), if g;(P) =0 for i = 1,...,r, then

0(g1,---,9r)
det (78(;’17“_,50) (P) < 0.

Proof. As in the proof of Stage 2, there exists h € M"(k, K, &)[z] such that

det (a(gh e 797‘)

8(171,-.-,$r)> = h(xla'~-7-’17r;0—n+1(.’151,...,$r>),

We define H € M"+1(k, K, &) by
H(x1, .o &pg1) = Tpg1 - h(21, .0 2y @e) — 1

where x. is the same variable as given in Stage 2. Now ¢,.(Q) = 0, so 0,+1(Q) = g., by Stage

2. This shows that h(Q, ¢.) = det (gégiiir))) (®), which is nonzero by 1)

take ¢, 11 = h(Q,q.)~* and define Q" = (Q, gr11). One easily verifies that (10 and , as well
as Stages 1 and 2 are satisfied for g1, ...,9.-1,H, g, and Q'. We check that Stage 4 is satisfied.
Note that will then also immediately hold. Take P € D"™"1((&, 0,,41), K) and suppose that

We can therefore

g1(P)=---=g,1(P) = H(P) = g.(P) = 0.

First of all, we have

991 991
oz oz, 0
6(gla'~'7gr—laHagT) _ 8gr_1 8gr_1 0
a(mlw'wxr+l) aﬁ %ﬁ oH
oz ox,. 0Ty
9gr . 9gr
Oxq oz,

SO

a(xlw"vx’r-‘rl) axr-ﬁ—l.

det (a(gla"wgrlaHagT)) — _det <g(91779r)> 0H



Since g,(P) = 0, we have 0,41 (P) = pe, by Stage 2, so h(P,p.) = det (%) (P). It follows
that

a(917 cee ag'r‘flaHa gr)

(P) = _h(Pvpe)za

@1, Trt1)
as needed. This final thing we need to verify is that Stage 3 is still satisfied by our new system. So
suppose that P € D™1((&,0,41), K) is a point such that g,(P) = --- = g,_1(P) = H(P) = 0.
Now
oo a0
8(917"'797‘717-[—[) _ : .
O(xy .. s Try1) —ag’”‘l e —agr‘l 0
o . o _om
Oxa oz, OTrq1
SO
det (a(gla e 7gT17H)> — det (a(gla e agrl)> . aH
O(za,. .., Try1) O(xa,y ..., x.) 0%yt
and hence
a(gla"'agth)) (a(gl7"'7g7‘l)>
det P)=det | =——"——= ooy Dr) - h(Ppe).
( O(xa, ..., Try1) (P) Oz, ..., x,) (p1 pr) - h(P:pe)

But this last expression is nonzero, by Stage 3 and the fact that H(P) = 0.

Now that we have applied our four stages, let us check that they indeed give us - .
Property is satisfied by Stage 2. Furthermore, follows from Stage 1, as possible limit
points of V(¢g1,...,9r—1) that lie on the boundary of D"((&,0,+1), K) are pushed out towards
infinity, in a similar way as in the proof of Lemma We shall therefore not go through
the details again. Additionally, Stage 1 forces that each coordinate of P € K", associated to a
(&, 0p+1)-bounded variable, lies between 0 and 1, if g1(P) = -+ = g.(P) = 0. Now note that
the value of g,.(P) is irrelevant for this argument, by Stage 2. So it is already the case that each
(&, 0pn+1)-bounded coordinate of P lies between 0 and 1, if g1(P) = -+ = ¢,—1(P) = 0, which
implies . Lastly, (16]) and satisfied because of Stages 3 and 4 respectively. O
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5 Proof of Lemma 2.3.3

In this section, we give a proof of Lemma [2.3.3] which will finish the proof of the First Main
Theorem. We need one small other Lemma first.

Lemma 5.0.3. Let m € N and suppose that U C R™ is an open set containing [0,1]™. Then
there exists a positive rational number € such that B.(P) C U for all P € [0,1]™. Here B.(P)
denotes the open ball in R™ with center P and radius €.

Proof. Consider the set V = [-1,2]™ N (R™\ U). If V is empty, then we can take ¢ = 3.
Otherwise, we define the function f : [0,1]™ x V — R by h(z,y) = ||z —y||. Since h is continuous
and [0,1]™ x V is compact, h takes on a minimum value, ¢ say, by the Extreme Value Theorem.
Note that § > 0 as U NV = (. Now any rational number 0 < ¢ < § suffices. O

Recall the statement of Lemma 2.3.3]

Lemma [2.3.3\ Let k, K |= Tpgp, with k C K. Let n,r € N and suppose that &' = (o1,...,0041)
is an (n + 1,7)-sequence. Let & denote the (n,r)-sequence (o1,...,0,). Suppose that for each
s >r, every (k,d)-definable point of K*® lies in k*. Then for each s > r and each (k,d")-definable
point (p1,...,ps) of K*, there is some B € k such that —B < p1,...,ps < B.

Our proof strategy will be to find two conflicting estimates for the quantity o,+1(Py, - .-, D) —
D., for certain py,...,p,, € k (which we will properly introduce), assuming that the Lemma is
false. One of the estimates we obtain by polynomial approximations using Taylor’s Theorem.
The other estimate relies on Corollary which is the reason that this proof only works for
Tpr, but not for 7ps. (Indeed, one easily checks that the result of Corollary is in general
not true for Tp¢, by considering the Pfaffian chain “exp”.)

Proof. (Of Lemma Take & and ¢’ as in the hypothesis of the Lemma. Let Q = (q1, ..., ¢)
be a (k,d )-definable point of K". With the same reasoning as in the proof of Lemma [2.3.2]
we may assume that » > 2. We may also apply Stages 1 up to 4, as in the proof of Lemma
[2:32] as one easily verifies that we are justified in doing so in this situation. This gives us
91y, 9r € M7 (k, K, (5,0p,+1)) with the following properties.

g1,y 9r—1 EMG(k‘l7K7E) (19)

gr has the form o,11(21,...,2,) — ., where z. is not (&, oy,41)-bounded. (20)

9:(Q)=0,fori=1,...,r and det <(M> (@) # 0. (21)

V(gl7~'~7gr—1) gDT((E,Un+1),K) (22)

V(g1,---,9r—1) is closed in K" and V(g1,...,g-—1) Nk" is closed in k". (23)
g1, .., Gr_

det (W) (P)#O0forall PeV(g1,... Gr—1.) (24)
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For all P € V(¢1,...,9r—1), if g-(P) =0, then det Xgu--9r) (P)#0. (25)
8(371, ces ,.Z'T)

This allows us to prove the following Claim.

Claim 1. Suppose that x(zi,...,2,) is an L-formula, with parameters from k. Suppose
furthermore that there exists P € V(g1,...,9r—1) such that K |= x(P). Then there exists
P eV(g,...,9r—1) Nk" such that k = x(P').

Proof. Since K and k are models of Tp¢p, they are in particular models of 7, which admits
elimination of quantifiers. Since x is a formula in the language £, we may therefore assume that
X is quantifier free. Then by Lemma [2.1.5] we may take x to be of the form

l
E|l‘7.+1, ey Tyt /\ T = 0,
=1

where each 7; is a term of L. Let p be the sum 7¢ + --- + 7. Then we may assume that
x is of the form 3z, y1,..., 24t p(z1,...,2r4¢) = 0. We define g = p + Z:;ll g?. Note that
g€ M™(k, K, &), by . Furthermore, using ,

V(gi,- -y gr—1) X K' € D"((,0n41),K) x K' = D" ((&,0,41), K) C D""(&, K),
so by our assumption regarding ¥, there exists a point P € D""(&, K), such that g(P) = 0.
Lemma now gives us a point (Q1,Q2) € DUtD)+s(3 K), for some s € N, which is (k, &)-
definable, such that ¢(Q;) = 0. By hypothesis on &, this means that (Qy, Q) € kU"+)+s. Take
P’ € k" to be the the first r coordinates of Q. Since p is always non-negative, g1 (P’') = --- =
gr—1(P") =0 and

k ': 3xr+1a ceey Lt p(P/ax'r+17 ceey $T+t) = 07
as p(Q1) = 0. But this is exactly what we needed to show.

From this point on, we suppose that Q ¢ (K )" and work towards a contradiction.

Claim 2. ¢; € k.

Proof. Suppose to the contrary that ¢; € k. We define h € M"(k, K, &) by h(z1,...,2,) = 21—q1.
Then h(Q) = 1(Q) =--- = gr-1(Q) =0 and

1 0o - 0
991 991 991
a(h, g1, --- ,grfl) . 0z Ox2 oz,
O(x1,...,x,) :
Ogr—1 Ogr—1 .. Ogr—1
oz Oxo o,

So

(T ) @ = (G ) @ 2

by . Hence, @ is a (k,d)-definable point, so @@ € k", by assumption on &. In particular
Q € (K7)", which is false.
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Now, by , and 7 the conditions of Theoremm are satisfied, if we set K = k in
the Theorem. This means that there exists a parametrization of V(g1,...,g,—1) Nk" in k. We
write {(I;,%¢;) | 1 < j < N} for this parametrization, for some N € N. Furthermore, let I; =
(aj,bj), with a; € kU{—oo} and b; € kU{oc}, for j = 1,..., N. Note that V(g1, ..., gr—1)Nk" # 0
by Claim 1.

Claim 3. If ¢g; € K, then there is some j = 1,..., N, such that either 0 < ¢; — a; < «a for all
positive a € k or 0 < b; — g1 < « for all positive a € k.

Proof. Suppose that ¢ € K~. There must be at least one j = 1,..., N, such that a; <
q1 < bj, for otherwise there exist a,b € k, with @ < ¢1 < b, such that there is no point of
V(g1y.-.,9r—1) N k" which satisfies the formula ¢ < z; < b. Since @ € V(¢1,...,9r—1) does
satisfy this formula, this contradicts Claim 1. This guarantees the existence of

a=max{a; |1 <j <N and q; < q1 <b;}
and
b=min{b; | 1 <j <N and a; < ¢1 < b;}.

To find a contradiction, we suppose that there is some « € k, with a > 0, such that ¢ —a > «
and b — ¢q; > «. Clearly, if a # —oco and b # oo, then a < a4+ a < ¢ < b—a < b. We can
now define v = a4+ o and § = b — «, which have the property that [y, 5] C I; for each j such

that a; < ¢1 < bj, by maximality of a and minimality of b. If either a = —oo or b = oo, then we
can certainly also find ~, 8 € k with this property and such that v < ¢1 < 3, as ¢ € K~. By
transfer of the Extreme Value Theorem to k and continuity of 1,...,1y, there exists B € k

such that [|1);(t)|| < B for all j such that a; < ¢1 < b; and all t € [y, 5]. Now take
c=max({y}U{b; |1 <j<Nandb; <q})

and
d=min({f} U{a; |1 <j< N anda; > q}).

Consider a point P € V(¢g1,...,9-—1) Nk" such that ¢ < p; < d. By construction of ¢ and d, the
point P must be equal to (p1,%;(p1)), for some j such that a; < ¢ < ¢1 < d < by, since the q;
and b; are all unequal to ¢; by Claim 2. This means that ||(p2,...,pr)|| < B. What we gather
from this is that there is no point in V(g1,...,g,—1) N k" satisfying the formulas ¢ < z7 < d
and ||(z2,...,z,)| > B. However, since ¢ € K~ and Q ¢ (K~)", it must be the case that
(g2, .--q-)|| > B, so Q@ € V(g1,...,9r—1) does satisfy these formulas. But this contradicts
Claim 1.

Claim 4. We may assume that q; > « for all a € k.

Proof. Suppose that this is not already the case. Then the following three possibilities are left.
(a) 1 < aforall a €k, or
(b) 0 < g1 —a < « for all positive « € k, or

() 0<b—q1 <« for all positive a € k,
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for some a,b € k. If g1 ¢ K, then (a) holds and if ¢; € K, then (b) or (c) holds by Claim 3.
We define h € M"T1(k, K, &) by

1+ Tpg1 in case (a)
h(z1,...,@r41) = @ry1(x1 —a)—1 in case (b)
Zrr1(b—21) —1 in case (c)

Furthermore, we define

—q;  in case (a)
L in case (b)
in case (c)

gr+1 = qll—a

b—q1

It is clear that ¢.41 > «a for all @ € k, if we define ¢; in this way. In each case, if we let
Q/ = (Q7 Q’l‘+1)7 then

M) =g(Q) =" =g:(Q)=0.

It is easy to check that and hold for the new system h,¢g1,...,g., Q". To see that
also holds for this system is not too difficult as well, as

on . 8k oh
gail gfrr 0Ty
g1 V. g1
a(hagla"'agr) _ Oy oz, 0
w1, .. Trg1) : : :
99r ... Ogr
8%1 er 0

SO

oh, g1, 9r) (@) = (—1)7*1 . oh . g, 9r) @
8(131,...,56,»_;,_1)

8137«_;,_1 8(1‘1,...,56,«)
which is nonzero by the old and by the fact that
oh 1 in case (a)

Q)=< ¢ —a incase (b)
b—q in case (c)

8xr+1

is nonzero. The fact that hold for this new system follows directly from the old , as
V(h, g1,y 9r—1) SV(g1,. .., gr—1) X K C D"((F,0n41), K) x K = D" ((&,0n41), K).
For 7 regard h as being defined on the entire space K"*! and note that
V(h,g1,- . gr—1) = V(h,g1,...,9r—1) x K) N h~'({0})
is closed in K"*!, by continuity of h and by the old . In the same way
V(h,gi,. . gr—1) NET = (V(g1,...,90—1) NE") x k) N A~ ({0})
is closed in k"t In fact, holds as well, but we will not be needing this. However,

Oh
? 80 o BO
991 991 . g1
8(h, gty -- ,gr—l) oz Ooxa ox,
det = . . .
O(xy,...,x,) : : :
Ogr—1 Ogr—1 . Ogr—1
Oxq Oxo oz,
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So if we take P € K"! such that h(P) = g1(P) = --- = g,—1(P) = 0, then

g1 9r-)\ (py _ Oy op (D1 29r-1)
det< Oz, ... ar) >(P)_8$1(P) dt(3($27...,1‘7.) >(P)#07

by the old 1) and since %(P) # 0 whenever h(P) = 0. We now relabel the variables, as in
Stage 2 of Lemma [2.3.2] such that @, 1 becomes z1. This does not alter the status of [L9)-(23)
or , so our new system satisfies —, as well as the statement in our Claim.

Claim 5. There exists a finite set S C k, an element B € k and a positive rational number 6
such that

(i) 0<a<lforalacsS.

(ii) For any P € K", with p; > B and P € V(g1,...,9r—1) and any ¢ such that the variable x;
is (&, op41)-bounded, there exists a € S such that |p; — a| < pfe.

Proof. Note that xy is not (&, 0p41)-bounded, as Q € D"((¢,0n41), K) by 22/ and ¢; > 1 by
Claim 4. By Claim 1, it suffices to prove Claim 5 with K replaced by k& and V(g1,...,9r—1)
replaced by V(¢1,...,9-—1) Nk". We shall therefore work in k. Let S be a parametrization of
V(g1y.--ygr—1)Nk" in k, as in Theorem Suppose that (I,1) € S, such that I is unbounded
to the right. We write ¢ = (¢, ...,%,). Let z; be a (&, 0,,4+1)-bounded variable and recall that
we must therefore have 2 < i < r. By (22)), we have 0 < ¢;(t) < 1 for all t € I. By Corollary
there is a rational number s and a nonzero element a; € k, such that lim; . 9;(t)t* = a;.
Since 0 < ;(t) < 1 for all ¢ € I, this can only happen if s > 0. If s = 0, we put b; = a; and
if s > 0, we put b; = 0. Then in either case, lim;_, o 9;(t) = b; and 0 < b; < 1. Now consider
the function v¢; — b; and assume that it is not eventually identically zero. Then we can apply
Corollary once more to find limy_, oo (¢;(t) — b;)t% = ¢ for some rational number s; and a
nonzero element ¢ € k. Since lim;_, o, 1¥;(t) — b; = 0 and ¢ # 0, it must be the case that s; > 0.
Let 0; = . Then

; 0 — [ 1; S5 ; —0;) _
Jim (018 =0t = (Jlim v0) = b0 ) - (Jim 1) =0,

50 [1h;(t) —b;| < t~% for all t € k, larger than some B; € k. If 1; —b; is eventually identically zero,
then there is clearly also a positive rational number 6; and some B; € k such that |1, (t)—b;| < t=%
for all t € k, larger than B;. We take S to be the set of the b;, over all (¢,I) € S, with
I unbounded on the right. We let 6 be the minimum of the ; over all (¢,I) € S, with I
unbounded on the right. Furthermore, we take C to be the maximum of the B;, taken over all
(¢, I) € S, with I unbounded on the right. Then we let B be the maximum of C' and the right
endpoints of the intervals I, with (¢, I) € S, which are bounded on the right. Then S, B and 6
satisfy the statement of the Claim.

Claim 6. There exists a positive integer p and an element B’ € k such that for any P €
V(g1,--.,9-) Nk" with p; > B’ holds that |g.(P)| > pf.

Proof. By and Corollary (with r1 = r and r9 = 0) the function g, has only finitely
many zeros on V(g1,...,9-) Nk". Let S be a parametrization of V(g1,...,g,—1) N k" in k and
suppose that (I,) € S, such that I is unbounded to the right. The function g, (¢, (t)) has
only finitely many zeros, so we we can apply Corollary [L.1.8] According to Corollary
limy 00 g (¢, 9(t))t* = a, for some rational number s and some nonzero element a € k. Now let
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7 be a positive integer, strictly larger than s. Then
i 1 = i 45 . i n—s
Jim Jg,(t,0(t)] - #7 = ( Jim |g (¢, 0(6)] ) - (lim #77)

=la| - lim ¢""° = o0,
t—o0

0 |gr(t,9(t))| > ¢t~ for all t € k, larger than some B € k. Now, like in the proof of Claim 5, we
take p to be the maximum of all the 7, over all (¢, I) € S, with I unbounded on the right. We
let C' to be the maximum of all the B, taken over all (¢, ) € S, with I unbounded on the right.
Then we let B’ be the maximum of C' and the right endpoints of the intervals I, with (¢, 1) € S,
which are bounded on the right. Then p and B’ satisfy the claim.

We shall now find another estimate for g, using polynomials in order to find a contradic-
tion with Claim 6. By , gr(21,...,z;) has the form 0,41 (z1,...,2,) — 2., and by Defini-
tion 2.2.1] 0,41 (21, ..., 2,) has the form Fi(y,...,ym) for some i = 1,....0 and y1,...,ym €
{0,1,21,...,2m, . Working in R, consider the function G; : U — R, with U and G; as given in
Definition[I.2.1] We shall write F and G for F; and G, respectively. Since U is open and contains
[0,1]™, we can apply Lemma [5.0.3] “ to find a positive rational number €, such that B.,(P) C U
for each P € [0,1]™. We set e = . Since G is a C*°-function, we may apply Taylor’s Theorem
to G, which states that

A m
8
i=0 ! j=1

for P = (p1,...,pm) € [0,1]™, (t1,...,tm) € B<(0) and A € N, where

A+1

R = | 5 Zjax] Gl @), (27)

for some P’ € B.(P). Since G is a C*°-function, G and all of its derivatives are bounded (not
necessarily uniformly) on the set

al | B |c | B,(P)CT,

Pelo,1] Pel0,1]
as it is compact, so in particular G and all of its derivatives are bounded on | J PEf01] B.(P). This
means that for each A € N, there exists C € N such that for all (t1,...,t,) € B:(0) we can
make the estimate
|R\| < Cy - (max{|t;| | 1 <i <m}) M (28)

Since G is part of a Pfaffian chain, the polynomials given in Definition allow us to write

a /\' N \
215 Z ion; | G| )= S NP) wtey e t),

=0 Jj= deg(m)<X
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where each 72 (1, . .., ¥,,) is some term of Lp¢; and we sum over all monomials 7 with deg(w) < A.
Since F' is the restriction of G to [0, 1]™, we have for P € [0,1]™ and (t1,...,tn) € B:(0), with
(p1 +t1,...,Pm +tm) € B:(P)N0,1]™, that

|)‘!'F(p1+tla~'~vpm+tm)_ Z T?(P)'W(tla'“vtm)‘
deg(m) <X (29)

<AL Cy - (max{|t;| | 1 <i <m}) M,
using and . We wish to apply in K. As we have stated before, o,41(21,...,2,)

has the form F(yi,...,ym) for some y1,...,ym € {0,1,21,...,2,}. We define for each point
(p1,-..,pr) EK"andi=1,...,m,

0 zfy1:0
=< 1 ifyi=1
pj  ifyi =y

As a result of the above definition, we have 0 < p; <1, for i = 1,..., m, whenever (p1,...,p,) €
D"((¢,0n+1),K). By this in particular the case for (p1,...,p,) € V(g1,...,9r). We also
note the fact that o,,41(p1,...,pr) = F(p},...,p.) for these points.

Now take S,0 and B as in Claim 5 and take pu and B’ as in Claim 6. Furthermore, let
Ao be an integer greater than "TH. Recall that the point @ € K" we have in consideration
lies in V(¢1,...,9,) and that ¢; > B, by Claim 4. By Claim 5, we can therefore take, for each
i=1,...,m, anelement a; € SU{0, 1} such that |¢g;—a;| < ql_e. Notice that (¢} —az1,...,q.—a,) €
B.(0),as0 < q1_9 < g, using Claim 4 and the fact that 6 and € are both positive rational numbers.
It follows that (¢i,...,q.) € Be(a1,...,a,)N[0,1]™. Since g.(Q) = 0, we have F(q},...,q.) = qe
by , so by applying in K, we find

Mol-ge = Y m0(ar, am) () —ar,... g~ a)]
deg(m)<Xo (30)

—0(XNo+1
<ol - Oy, gy "o,

Here we used that max{|¢} — a;| | 1 <i < m} < ¢;%. Furthermore we have

g 1

=)y, (31)

q > max{B’,2C,,, (

by Claim 4. As already stated above, we also have
¢} —as] < g% fori=1,...,m. (32)

Now, each 72°(ay,...,a,,) is simply an element of k. It is not difficult to see that we can

express the conjunction of , and as x(q1,...,4qr), where x(z1,...,x,) is a formula
in the language £ with parameters from k. By Claim 1, this means that there exists (py,...,p,) €

V(g1,-.-.,9-)NE" such that (30)), and hold in k, with (py,...,p,) in place of (q1,...,qr).
We claim that we may apply (29) in k, with p; = a; and t; = p; — a; to give us

|>‘0'F(ﬁ1aapm)7 Z T;'\O(al?""am)'ﬂ_(pl7a1>-~~7ﬁm7am)|
deg(m)<Ao
<Al Chy - (max{|p; —a;| |1 <i < m})’\‘)*l.
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Indeed, by the new and 1' P —ai| <77° < £ fori=1,...,m,sothat (p} —ai,...,p), —

am) € Be(0). Secondly, since (py,---,P,,) € V(g1,--.,9-) NE", we have (p},...,D.,) € [0,1]™

(®Y,---Dly) € Be(a,...,am)N[0,1]™.
This shows that our use of is justified. We apply the new to get

Aol F(Dyy .-y Do) — Z 720(a1, ... am) 7By — a1,. .., By — Am)|
deg(m)<Ao

<ol Cyy - PrOOTY.

Using the triangle inequality, we can now combine this with the new , which says that

|>‘0!'ﬁe7 Z Tﬁo(alw"aam)'Tr(p/lfalw"ap;*ar)‘
deg(m)<Ao

<ol - Cy, - Py "R,

0
to arrive at
. _, —0(X

Mol F(B,, ... Bl) — Aol - pe| < 20!+ Cg - g7 "0,

This shows that

|g7"(§17"'7ﬁm)| = |F(ﬁ/1aaﬁ;n) _p€|
_—0(Xo+1 - _—
<20,\0-p1 (0+)<20>\0'p1# 1<p1“,

, SO

using the fact that p+ 1 < (Ao + 1) by choice of Ay and using that p; > 2C), by the new .

But this contradicts Claim 6.
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6 Approach to the Second Main Theorem

6.1 Reducing the problem
Recall that the Second Main Theorem concerns the following language and theory.

Definition 6.1.1. Define Loy, = £ U {exp} and Texp = Th(R | Lexp), where exp is the unre-
stricted exponential function z +— e : R — R.

Our goal in this section is to give a proof of the following Theorem.
Theorem 6.1.2. The theory Texp s model complete.

A large part of what is needed for this proof has already been set up in the previous sections.
We will modify and combine some of the results used in the proof of the First Main Theorem
below in such a way that they are suitable for our current application.

Lemma 6.1.3. Let k, K = Tpr, with k C K. Furthermore, let n,r € N and let & be an (n,r)-
sequence. Suppose that g € M"(k,K,d) and g(P) = 0 for some P € K". Then there exist
Q € K" such that g(Q) =0 and Q is (k,5)-definable.

Note that this Lemma is just a slightly stronger version of Lemma but for 7p¢ instead
of Tp¢p. The proof is not very exciting; it is just a trimmed version of the proof of Lemma [2.3.1
as we can drop some of the extra steps we needed when dealing with truncated functions.

Proof. (Of Lemma[6.1.3) Let U = K". Since Remark also applies to Definition

M"(k, K, &) is a subring of Dy which is Noetherian and closed under differentiation. Note also
that M"(k, K, &) contains Z[z1,...,z,.]. If we take S = V(g), then the hypothesis of Theorem
is satisfied, with respect to the ring M"(k, K,&) as a subring of Dy. By this Theorem,
there exist fi,..., fn € M"(k,K,d) such that SNV,.(f1,..., fn) is nonempty. Take some @ €
SNVe(f1y..-, fn). Then g(Q) =0 as Q € S and Q is (k,&)-definable as Q € V.. (f1,..., fa),
proving the Theorem. O

Lemma 6.1.4. Let k, K |= Tps, such that k C K and suppose that for all n,r € N, all (n,r)-
sequences & and all g1,...,91 € M"(k, K, &) holds that if g1,...,q have a common zero in K",
then they have a common zero in k™. Then k is existentially closed in K.

Proof. Suppose that K = x, where x is an existential Lp p-formula. By Lemma we may
suppose that y is of the form

l
Hxl,...,xs/\rizo,
i=1

where each 7; is a term of Lpg, or has the form H(x;,,...,x;,, ) — 2;,,, (see Definition .
By Remark (which also applies to Definition , we can arrange and pad out the set of
functions of the form H;(z;,,...,;, ) appearing among the 7; into an (n,r)-sequence, & say, for
some n,r € N (and in such a way that we do not introduce additional bounded variables). Then
K | x simply means that some functions ¢1,...,91 € M"(k, K, &) have a common zero in K.
By the same reasoning, k |= x if and only if g1,..., g have a common zero in k". So, by the
hypothesis of the Lemma,

K | x implies k | ¥,

which is what we needed to show. O
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Theorem 6.1.5. Suppose that for each pair of models k, K |= Tp¢, with k C K holds that for
all n,r € N and all (n,r)-sequences &, every (k,d)-definable point P € K" lies in (K—)". Then
Tes is model complete.

Proof. Let k and K be arbitrary models of = Tp¢, such that & C K. We will apply Lemma
Let n,r € N and let & be an (n,r)-sequence and suppose that gq,...,q € M"(k, K, &)
have a common zero P in K". Note that P is a common zero of g1, ..., ¢ if and only if it is a
zero of g = 22:1 g?, which is also an element of M"(k, K,&). Lemma then tells us that
there exist @ € K" such that ¢(Q) =0 and Q is (k, &)-definable. Now, by the hypothesis of the
current Lemma, the hypothesis of Lemma is satisfied (for Tpe() = Tpe). Hence, Q € k7,
as @ is (k, d)-definable, so k is existentially closed in K by Lemma Since k and K where
arbitrary, it follows that 7p¢ is model complete by Corollary O

6.2 Proof of the Second Main Theorem
Let us fix two models K,k |= Texp, with k C K, for the remainder of this section.

Remark 6.2.1. In order to prove Theorem m it suffices to show that for all (n,r)-sequences
g, every (k, d)-definable point @ € K" lies in (K )" (by Theorem with Tpr = Texp). In our
specific case, & is of the form (exp(y1),...,exp(y,)), with each y; € {z1,...,2,}. So certainly
a is (k,d")-definable, where &’ is the (r,r)-sequence (exp(z1),...,exp(x,)). Hence, simply by
writing out what it means to be (k, ¢”)-definable, it is enough to prove that each r € N and each
a € K" for which there are f,..., fr € k[z1,...,z,,exp(z1),...,exp(zy)], such that

ful@) =+ = fo(d@) =0

and

(G ) 90

holds that & € (K~)". Our method of proof is to use induction on the number of distinct exp(x;)
actually occurring in fi, ..., f.. The idea behind the proof is that we can eliminate exponentials
by introducing new variables and their exponentials, but in such a way that only values of the new
variables lying between 0 and 1 will be relevant. At the base case we can then apply the model
completeness of the structure (R | exp | [0,1]), which follows from the First Main Theorem.

It turns out to be more convenient to work with functions that are not truncated, so to work
around this, we introduce the following function.

Definition 6.2.2. In any model Ky = Texp, we define the function e : Ky — Ky by e(z) =
exp((1+ x?)71). Furthermore, we let £, = LU {e} and T, = Th(R | L.).

Notice that, since the function z +— (1 + 2?)~! is a definable bijection between [0, 00) and
(0,1], the functions e and exp [[,1] contain essentially the same information. In fact, we have
the following Lemma.

Lemma 6.2.3. Let Ko = T. and define the language Loy, = LU{exp [[o,1)}. Then the structures
(Ko | Le) and (Ko | Lexpr), where the function (symbol) exp [(o,1) 48 interpreted in the obvious
way, have the same definable sets. Moreover, they have the same existentially definable sets.

Proof. We prove that for every formula of the form ¢ = x, where t is an L.-term, there is
an existential Lexpp-formula ¢y (z), such that t = = and ¢(x) define the same sets. It is worth
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pointing out that ¢;(x) may implicitly depend on variables other than z. Our proof uses induction
over the term ¢. The base case is satisfied, because if ¢ is a variable or a constant, then we can
just take ¢¢(x) =t = x. Now suppose that f is a function symbol other than e. (So f is +,- or
—.) Suppose furthermore that we have Lexp-formulas ¢;(z) and ¢4(x) corresponding to the £,
formulas t = x and s = x respectively. Then

() = Iy1yalf (Y1, y2) = x A de(y1) A @i (y2)]

corresponds to the formula f(t,s) = x and is (equivalent to) an existential formula. Lastly,
suppose that the Leoxp-formula ¢.(z) corresponds to the £, formula ¢t = 2. Then

¢(x) = Fyryalexp Njo,1) (1) =x A1 = (14 43) - y1 A de(y2)]

corresponds to the formula e(t) = z and is existential, up to equivalence. This completes our
induction.

It is easily verified that for an atomic or negated atomic L.-formula, x say, there is an
existential Lexp-formula, ¢,, defining the same set. For if ¢t and s are L.-terms, then

x=t=s corresponds to ¢>X = lou(y) A 65 (v))
X=-(t=s) corresponds to Ox = Fyry2[~(y1 = y2) A du(y1) A ds(y2)],
X=t<s corresponds to Oy = Fnyeyn < y2 A du(y1) A és(y2)] and
X = —(t < s) corresponds to Oy = Fye[—(y1 < y2) A de(yr) A ds(y2)].

Recall that every formula can be written as a string of quantifiers followed by a formula in
conjunctive normal form. So every L.-formula is equivalent to a formula of the form

m

i=1j=1

where the @ ...Q, are quantifiers and each Xf is an atomic L.-formula or a negated atomic
L.-formula. But then the Loy -formula

m

i=1j=1

defines the same set. Furthermore, since each formula q’) i is existential, l.i is equivalent to an

existential formula if (33) is existential. We have now Shown that every (existentially) definable
set of (Ko | L) is also an (existentially) definable set of (Ko | Lexp;). We omit the proof of the
converse, as it is similar. O]

Corollary 6.2.4. The theory T is model complete.

Proof. This is an immediate consequence of Lemma and the fact that the theory Th(R |
Lexpy) is model complete by Theorem m O

It is also convenient to introduce the following family of rings.

Definition 6.2.5. Let n € N and s C {1,...,n}. By M we denote the ring of functions
K™ — K generated (as a ring) over k (considered as a field of constant functions) by

o z;, fori=1,...,n.
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o (L+a?)7t fori=1,...,n.
o ¢(x;), fori=1,... n.
e exp(x;) fori € s.

Remark 6.2.6. Since the derivatives of each of the generators of M lie in M, the ring M is
closed under differentiation, by the sum and product rule. In particular we have det (%) €

M3, for fi,..., fn € M. Furthermore, the functions in M, are K-definable and C*°. Note also
Z[x1,...,x,] is a subring of M$ and that M? is Noetherian, as it is finitely generated over k.

The properties of the rings M; mentioned in Remark allow us to use many of the results
we have already proven. In the following Proposition, we give these results in a form that is suited
to our needs.

Proposition 6.2.7. Let n € N and let s C {1,...,n}.

(i) Suppose that f € M2, @ € K™ and f(d) = 0. Then there exist f1,..., fn € M5 and B e K"
such that f(B) = f1(F) =+ fu(B) = 0 and det (52123 (3) # 0.

(ii) If, in (i), @ is an isolated zero of f, then we may take f = @.

(iii) Let fi1,...,fn € MS. Then there are only finitely many ¥ € K™ such that f1(7) = -+ =
fa(7) and det (§r=120) (3) £ 0.

Proof. For (i), we apply Theorem with T4 = Texp, M = M, U = K and S = V(f). The

conditions of Theorem [3.3.4] are satisfied by Remark and by the fact that S # (), as @ € S.
This gives us the desired result immediately.

For (ii), we apply Theorem To be precise, we set T4 = Texp, Fo = & and
M={[glv,U]| g€ M;and U C K" open, with& e U }

and we apply Theorem [3.2.7] repeatedly for m = 0,...,n — 1. At each stage m, we acquire a
function f,+1 € M? by using (iii) of Theorem satisfying & € V,.(f1,..., fm+1). Once
we reach & € V,.(f1,..., fn) we have our desired result. In order for this to work, we need to
show that option (ii) of Theorem cannot hold at any stage. (It is clear that option (i)
never holds.) Suppose to the contrary that this is the case for some m < n and set r = n — m.
Then by taking [h, W] = [f, K"], we find that f vanishes on U N V.(f1,..., fm), for some
open neighborhood U of &. Since & € V,.(f1,..., fm), the vectors dgzf1,...,dsfm are linearly
independent over K. This means that there exists a set S C {1,...,n} of size m such that the
matrix

()
Ox; 1<i<m,j€S

has a nonzero determinant. By relabeling our variables we assume that S = {r+1,...,n}, which
means that we can apply Theorem at the point &@. But then by (ii) of Theorem ais
clearly not an isolated point of U N V,.(f1,..., fm), contrary to our assumption. So indeed (ii)
of Theorem does not hold.

For (iii), we write s = {41,...,%mn} and note that the sequence

Hi(2) = (1+2%)", Ha(x) = elx), Ha(w) = exp(a)
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is a Pfaffian chain on R. Now take Lps and Tps as in Definition for Hy, Hy, H3. Then the
sequence

c=((1+ x?)_l, (1 F xi)_l,e(x1)7 coe(Tn),explay, ), ... exp(ay,,))

is a (2n + m,n)-sequence with respect to Lp¢. Note that M™(k, K, &) (as in Definition [4.2.4) is

the same as M; (as in Definition [6.2.5). By Remark we can apply Corollary with
r1 =n and rg = 0 to conclude that (iii) holds. O

We will now give a proof of the Second Main Theorem, assuming that for certain elements of
K, we can find a linear combination which is “small” in some sense. (This condition is formulated

in (36)).)

Proof. (Of Theorem[6.1.9) Let us assume that the Theorem is false. Then by Remark it
follows that there exists m € N such that the following statement is true.

For some n € N, with n > m, there exists @ € K", 1l € {1,...,n} and s C {1,...,n},
with |s| = m, such that for some f1,..., f, € M, holds that fi(d@) =--- f,(&) =0
coistn 35
and det <(M) (&) # 0. Furthermore, |oy| > b for all b € k, and if m > 0, (35)
x1,- .., Tn)

then [ € s.

At first sight, this statement might look a bit more complicated than necessary, as we could take
n=m and s = {1,...,m}. However, we should keep in mind that our strategy is to reduce m
at the cost of increasing n. So, let us choose m minimal such that holds. We claim that
m > 0.

To prove this claim, suppose that m = 0. Since K |= Texp, it has an obvious interpretation
as an L-structure. Similarly, we can consider k as an L.-structure. Clearly K,k = 7. and
k is an L.-substructure of K. By , there exists @ € K™ and fi,..., fn € MY, such that

n?

f1i(@) = - fu(@) = 0 and det (H) () # 0. By Proposition [6.2.7, there exist only

finitely many such & € K", say N. But we can express the fact that there are at least N
solutions to these equations using an existential L.-sentence with parameters from k. Since 7,
is model complete by Corollary this means that these solutions must all lie in £™. But this
contradicts that |cy| > b for all b € k, by (3F]), proving the claim.

Now, for our minimal m, which is nonzero as we have just seen, take n,@,l,s and fi1,..., fn
as in . Eventually, we we will be able to show the following fact.

There exist n; € Z, for i € s, not all zero, and ¢ € k such that 0 < ¢+ Zniai <1. (36)
i€Es
Let us assume this for now and continue with the rest of the proof. Note that since || > b for
all b € k, it cannot be the case that n; = 0 for all ¢ € s\ {l}. So, for convenience we suppose
that 1 € s, ny # 0, and [ # 1. We may furthermore assume that n; > 0, for if this is not the
case, we simply replace each n; by —n; and ¢ by 1 — ¢ in . We now set «,+1 = exp(ay) and
we take a2 € K such that o, 49 > 0 and

(1+ afH_Q)*l =c+ Zniai.
1€Ss
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this is possible, as K is a real closed field. For each i = 1,...,n, we let g;(21,...,2p4+1) be the
s\{1}

result of replacing exp(z1) by Zn41 in fi(21,...,2,). Then each g; is an element of M, }'/” and
it is not difficult to verify that (i, ..., a,y2) is a solution to the following system of equations.

gl(xl, ‘e 7-Tn+1) =0
(37)

gn(T1,. . Tpy1) =0
(L4 a22,,5)" —C—anxl—() (38)

i€s
x' ) -exp(e H exp(z;)™ | — |e(zp +2) H exp(z;)~™ | =0, (39)
jest jEs—

where s* = {j € s | j > 1,£n; > 0}. The last equation is obtained by rewriting as

niry +c+ Z njz;=(1+a2,,) "+ Z —N;T4,

j€Est jEs~

exponentiating both sides and subsequently replacing exp(z1) by @,41. After this, it is simply
rearranged and we have written e(z,12) for exp((1+22,,)7").

Recall that f1(&) = -+ = f,(@) = 0 and det (M) (@) # 0 and that f1,..., f, are

C*-functions. If it where the case that K = R, then the Inverse Function Theorem would
tell us that the function (fq,..., fn) : R" — R™ is invertible on some open neighborhood U of

@ € R™. Then in particular, & is the unique solution to fi(&) = --- = f,(&) = 0 on some open
neighborhood U C R™ of &, which we may take to be definable. Fortunately, K }= Toxp, 50 even
if K # R, we may suppose that @ is the only solution of fi(&) = --- = f,(&) = 0 on some

definable open neighborhood U C K™ of &, by transfer.

We claim that (aq,...,an42) is the only solution of the system - contained in the
open subset U x K+¢ X K>0 C K™*2. For suppose that (81, ..., Bn42) is such a solution. Then
in particular, (81,..., Bn+2) must satisfy (38§ . and if we just remember how we obtained
from , we see that (51, .., Bn,exp(B1), Bnie) satisfies . Since (1, .. ., Bn+2) also satisfies
, we get

Bri1-exp(c H exp(B;)™ = e(fn+2)- H exp(B;)™"™ = exp(B1)™ -exp(c H exp(B;)™

jest jEs— jest

It follows that 5%, = exp(f1)™, so since n; is nonzero and since (3,11 and exp(31) are both
positive, we may conclude that 8,11 = exp(31). This means that g;(51,- .., Bn,exp(B1)) = 0 for
i=1,...,n,s0each f;(B1,...,58,) =0, by definition of the g;. By uniqueness of the solution for

f1(@) == fu(¥) = 0in U, this shows that 8; = a; for i = 1,...,n. This automatically gives
us Bn41 = exp(B1) = exp(a1) = an41. And lastly, by (38),
(1+Bn+2 _C"_anﬂz—c"‘znzaz— 1+C¥i+2)_1,
i€5 i€ES

which tells us that £,42 = any2, as Bn42 and ay,12 are both positive, proving our claim.
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Now let f be the sum of the squares of the n + 2 functions appearing in - . By our
(

claim, (a1, ..., @,12) is an isolated zero of f. Note furthermore that f € MTSL}_{QI using that ¢ and
exp(c) lie in k). By parts (i) and (ii) of Proposition there exist hy,..., hpi2 € MZ}‘_{;} such
that hi(aq,...,an42) =+ = hpyo(ay,...,apte) = 0 and det (%) (A1, Qpya) #

0. But this shows that holds for m — 1, contradicting the minimality of m.

We have now proven the Second Main Theorem. However, we still have a debt to pay. This
debt is the proof of . In the upcoming sections, we show that we were justified in assuming

(36)-
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7 Towards condition [36

7.1 Dimensions for O-minimal expansions

In the subsequent parts, we let Lo be any extension of the language £, such that (R | Lp) is an
O-minimal structure. Furthermore, we set To = Th(R | Lo). Recall that this means that every
model K = Tp is also O-minimal. In this section, we give two notions of dimension for such a
structure K and we discuss some of their properties.

Definition 7.1.1. Given a language L and an L-structure M, we say that M has definable
Skolem functions, if for every L-formula ¢(Z,y), there exists a function f(Z), definable in the
language L, such that whenever @ € M, with M = Jy¢p(d,y), then M | ¢(a, f(@)).

Furthermore, we say a theory T in a language L has definable Skolem functions, if for every
L-formula ¢(Z,y), there exists a function f(Z), definable in the language L, such that whenever
M =T and @ € M, with M = Jy¢(a, y), then M = ¢(d, f(a)).

Remark 7.1.2. It is known that for O-minimal structures endowed with an additive group
structure, definable Skolem functions exist. (This is a direct consequence of Proposition [A.2.6])
Since Tp is the complete Lo-theory of the additive group R, it follows that 7o admits definable
Skolem functions. We are indifferent to the exact inner workings of these functions, so let us just
agree upon some unspecified, but fixed set of definable Skolem functions.

Definition 7.1.3. Let K | To. For any subset A C K, we denote by Dcl(A) the closure of A
under the definable functions of 7o in K. That is

Dcl(A) ={f(a1,...,an) | mn € Nya,...,a, € A and f a definable (partial) function }.

Remark 7.1.4. Using the fact that 7o has definable Skolem functions, it is not difficult to verify
that Dcl(A) is (the domain of) a substructure of K. In fact Dcl(A) < K, by the Tarski-Vaught
Test.

Remark 7.1.5. By convention, a O-place definable function is a definable element of K, so
Dcl(@) is the same as Dcl({0}) for example, as 0 is part of our language. Note that if we take
k = Dcl({0}), then there exists an embedding of Lo-structures k¥ — R, which sends an element
fE(0) € k to f®(0) € R. Recall that an ordered field F is called Arichimedean if for every
positive z,y € F, there exists n € N such that y < nz. Since R is Archimedean, so is k by this
embedding.

Lemma 7.1.6. A structure K |= To together with this closure operation satisfy the requirements
for being a so-called pregeometry, which means that

(i) Dcl is monotone increasing and dominates id, so A C Dcl(A) C Dcl(B) whenever A C B.
(ii) Dcl is idempotent, meaning that Dcl(A) = Dcl(Dcl(A)).

(iii) Dcl is of finite character, which means that for every a € Dcl(A), there is some finite subset
B C A such that a € Dcl(B).

(iv) Dcl has the exchange property, so if a € Dcl(A U {b}) \ Dcl(A), then b € Dcl(A U {a}).

Proof. Let A C B C K. To prove (i), take a € A. Then the O-place definable function
o(x) = x = a shows that a € Dcl(A). Hence A C Dcl(A). The fact that Dcl(A) C Dcl(B) is
clear.
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For (ii), note that Dcl(A) C Del(Del(A)) by (i). Now let ¢ € Dcl(Del(A)). Then by definition,
¢ = f(bi,...,by), with by,...,b, € Dcl(A) and f a definable function. For each b;, we have
a definable function g;, such that g;(ai,...,a,) = b;, for some ai,...,a, € A. But then
flg1(Z),...,gn(Z)) is a definable function and ¢ = f(g1(a@),...,gn(@)), so ¢ € Dcl(A). Hence
Dcl(A) 2 Dcl(Dcl(A)).

Property (iii) is clear.

For (iv), let a € Dcl(A U {b}). We show that either b € Dcl(A U {a}) or a € Dcl(A4). By
definition, there exists a definable function f, with parameters from A, such that f(b) = a. We
define the set B = {z € K | f(x) = a}. By O-minimality of K, B is a finite union of points and
intervals. Now, if b is a boundary point of B, then there exists a formula ¢(x), with parameters
from AU {a}, such that only b satisfies p(z). (We can express that b is the left or right endpoint
of the i-th interval of B, and we can express that b is the j-th isolated point of B.) Hence, ¢(x)
is a O-place definable function witnessing that b € Dcl(A U {a}).

On the other hand, suppose that b is not a boundary point of B. Then there exist an interval
(c1,¢2) C B such that b € (¢1,c2). Note that we can define the set C; of left endpoints (lying in
K) of the intervals on which f is constant by

Cr={ze K|y >z
Var,z2((z <21 < yAx <z <y) = f(z1) = f(22))
A-Jw < z(Vzy, z2o((w < z1 <yAw < z2 <y) = f(z1) = f(22))]}

In the same way we can define C)., the set of right endpoints of the intervals on which f is
constant. Take d; € C; U {—oo} and dy € C, U {oo} such that f(xz) = a for all x € (dy,d2).
Since both C; and C,. clearly do not contain any intervals, they must be finite. This means that
each of the points of C; and C. are definable using parameters from A. But then there exists
an Lo-formula ¢(x), with parameters from A, asserting “x is the value f takes on the interval
(d1,dg)”. This shows that a € Dcl(A). O

Definition 7.1.7. Let K |= To. We call a set A C K independent if a & Dcl(A \ {a}) for all
a € A. Aset AC K is said to be a basis for K if A is independent and generates K, meaning
that K = Dcl(A).

Lemma 7.1.8. Let K = To. Then any basis for K has the same cardinality.

Proof. Let B be a basis for K with minimal cardinality. Suppose first that |B| is finite, say
|B| = n. Now let m € N be the largest number such that for some basis B’ of K, |B’| # n and
|B’ N B| = m. Suppose that m = n. Then B C B’ and there exists at least one a € B’ \ B. But
then a € Dcl(B’\ {a}), as B C B’\ {a}, contradicting the fact that B’ is independent. So, since
|B'’ N B] = m < n and |B’| # m, by minimality of n, there exists ¥’ € B’ \ B. By independence
of B', B'\ {V/} does not generate K. This means that there must be some b € B such that
b ¢ Dcl(B’'\ {v'}), for otherwise

K = Del(B) € Del(Del(B'\ {¥'})) = Del(B’\ {'}).

Consider B” = (B"\ {V/}) U{b}. We note that |B” N B| =m + 1 and |B"| = |B’| # n. We show
that B” is a basis for K, contradicting the maximality of m. First of all, b € Dcl((B’\ {b'}) U
{'})\ Dcl(B’\ {V'}), so by the exchange property, b’ € Dcl((B”). It follows that B’ C Dcl((B”)
and hence Dcl((B”) = K, so B” generates K. To prove that B” is independent, let a € B”
and suppose to the contrary that a € Dcl(B” \ {a}). If a = b, then we immediately find that
b € Dcl(B’\ {V'}), which is false, so we may suppose that a # b. Since B’ is independent,
a & Dcl(B’\ {a}), so certainly a &€ Dcl(B’\ {b',a}) and hence a € Del((B'\ {t',a}) U {b}) \
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Del(B'\ {¥/,a}), as (B"\ {¥/,a}) U {b} = B” \ {a}. Then by the exchange property, b €
Del((B'\ {¥,a}) U{a}) = Decl((B’\ {b'}), which is false.

Now suppose that B is infinite. Let B’ be any other basis for K. Then |B| < |B’|, by
choice of B. We show that |B’| < |B|. For every b € B, there is a finite set B, C B’ such that
b € Dcl(By), since Dcl is of finite character. Hence K = Dcl(B) = Dcl({J,c Bp), so the subset
Upe s By € B’ must be equal to B, by independence of B’. But since B’ is infinite and each By,
is finite, U, 3 By = B’ can only hold if |B’| < |B|. O

By Lemma we can now unambiguously define the dimension of K.

Definition 7.1.9. Given K | 7o, we define the dimension of K, denoted dim(K), to be the
cardinality of any basis for K.

Lemma 7.1.10. Let K = To. Then any independent subset A C K can be extended to a basis
for K.

Proof. Let S = {B C K | AC B and B independent }. Then S is a poset, ordered by C. We
apply Zorn’s Lemma to S. Note that A € S, s0 S # 0. Now let {B; | i € I} be a nonempty
chain in S and take B = |J;c; Bi;. Then B is independent, for if @ € B and a € Dcl(B\ {a}),
but then also a € Dcl(B'\ {a}), for some finite subset B’ C B. For some sufficiently large index
i € I, we have a € B; and B’ C B;, so a € Dcl(B; \ {a}), contradicting that B; is independent.
We conclude that B is an upper bound for {B; | i € I}. By Zorn’s Lemma, S has a maximal
element. But such a maximal independent set is clearly a basis for K, containing A, so we have
proven the Lemma. O

We will also work with closures relative to substructures.

Definition 7.1.11. If k&, K = To and k C K, then we can define the closure of A under the
k-definable functions of 7o in K by

Dcly(A) = {f(a1,...,an) |n € N,ai,...,a, € A and f a k-definable (partial) function }.

Remark 7.1.12. We call Dcli(A) the definable closure of A over k. Lemma Remark
as well as Lemma [7.1.10|still hold true in this new situation (but now over k) and we denote the
cardinality of a basis of K over k by dimy (K).

Lemma 7.1.13. Let ko, k1, K = To, with kg C ki C K. Then dimy,(K) = dimg, (k1) +
dimkl (K)

Proof. Let A be a basis for ki over kg. Then A is and independent set (with respect to Dclg, )
so by Lemma [7.1.10] and Remark [7.1.12] A can be extended to a basis B (over kg) for K. We
write B as a disjoint union B = AU C. Then C generates K over ki, since

K = Dclg, (AU C) = Dclg, (k1 U C) = Dclg, (C).

Furthermore, C is independent (with respect to Dcly, ), for if a € C and a € Dclg, (C'\ {a}), then
also a € Dcly, (AU C'\ {a}), as

Declg, (AU C\ {a}) = Dclg, (k1 UC \ {a}) = Dclg, (C'\ {a}).

But this is false, as AU C' is an independent set, with respect to Dcly,. We conclude that C' is a
basis for K over kq. Hence, dimy, (K) = |B| = |A| + |C| = dimy, (k1) + dimg, (K). O
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We introduce another notion of dimension for models K |= To. An element a € K is called
finite if |a| < n for some n € N and infinitesimal if |a| < L for all n € N\ {0}. The set of finite
elements of K is denoted by Fin(K) and forms a convex subring of K, with as unique maximal
ideal p(K), the set of infinitesimals in K. Note that the set Fin(K) \ u(K) forms a subgroup of
K \ {0} under multiplication.

Definition 7.1.14. Given K [ To, we define the quotient group

V(K) = (K\{0})/(Fin(K) \ p(K)),
which we shall call the value group of K.

The value group of K basically allows us to ignore the “standard part” of K and studying this
group gives us information about the nature of the infinite elements contained in K. Although it
might seems natural to write “” for the group operation of V' (K) at this point, we shall actually
use “4” for reasons that will become clear momentarily. Since n-th roots exist for all positive
elements of K and all n € N, this makes V(K) into a divisible group. This allows us view V(K)
as a vector space over Q, explaining our preference for using “+”.

Definition 7.1.15. Given K = To, we denote the dimension of V(K) as a Q-vector space by
valdim(K).

We can generate an order on the group V(K) by setting a/(Fin(K) \ u(X)) > 0, if and only
if a € p(K). (This order is well-defined on equivalence classes.)

Definition 7.1.16. Let K = Tp. The map vk : K — V(K) U {o0}, extending the quotient
map K \ {0} = V(K) by setting vi(0) = oo, is called the valuation map of K. We extend the
order of V(K) to V(K) U {co} by setting co > « for all & € V(K). Furthermore, we extend the
addition operation on V(K) to V(K) U {co} by setting a + 0o = 0o + a = oo for all a € V(K).

Remark 7.1.17. The map vk : K — V(K)U{oco} map satisfies the following properties, which
are not difficult to verify.

(1) vk(z-y) =vk(z)+vk(y) for all z,y € K.
(ii) vk (z +y) > min(vk (x), vk (y)) for all 2,y € K, with equality when vi (z) # vk (y).
As in Remark we have a notion of dimension relative to a substructure.

Definition 7.1.18. Let k and K be models of 7o, with ¥ C K. Then vi[k\ {0}] is a Q-vector
subspace of V(K), as k is a real closed subfield of K. We denote the dimension of V(K) over
vi [k \ {0}] by valdimy (K).

Lemma 7.1.19. Let ko, k1, K = To, with ko C k1 C K. Then valdimy, (K) = valdimy, (k1) +
valdimy, (K).

Proof. Recall that given three (Q-)vector spaces Vo C Vi C V5, we have dg = d; + da, where
dy is the dimension of V5 over V, di is the dimension of V; over Vj and ds is the dimension
of Vo over Vj. This means that valdimg,(K) = d + valdimy, (K), where d is the dimension
of the Q-vector space vilki \ {0}] over its subspace vkl[ko \ {0}]. It is not difficult to verify
that the map vi[ki \ {0} — V (k1) given by z/(Fin(K) \ u(K)) — x/(Fin(k1) \ p(k1)) is an
isomorphism of Q-vecor spaces and that the subspace vi[ko \ {0}] C vi[k1 \ {0}] corresponds
to the subspace v, [ko \ {0}] € V(k1) under this isomorphism. It follows that the dimension of
vi[k1 \ {0}] over viklko \ {0}] is the same as the dimension of V (k) over vy, [ko \ {0}]. Hence
valdimy, (K) = valdimg, (k1) 4 valdimy, (K). O
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Now that we have defined these two different notions of dimensions, we can explain how these
relate to one another and how we intend to use them. We will show that if k, K = To, with
dimy,(K) finite and To is smooth (see Definition [7.1.20)), then valdimy(K) < dimy(K). We will
also prove that the theory 7. is smooth. The proof of condition relies heavily on these two
facts.

Definition 7.1.20.

(i) We say that the theory To is satisfies condition S if for any K |= To and any K-definable
function f : K — K, there exists N € N such that |f(z)| < 2% for all sufficiently large
re K.

(ii) The theory 7o satisfies condition Sy if for any Lo-formula ¢(z1,...,x,) there are m,p € N
and C°°-functions F; : R**™™ — R, fori = 1,...,p, which are definable without parameters
and are such that

R | 7 (W) - 337(37“ < 1A\ (V@) A Fi(&.3) = 0))) ,

i=1

where, if ¥ =y1,...,ym, ||[¥]]| = max{|y;| | i = 1,...,m} and N;(%) is a formula of the form
Njes, ¥i # 0 for some s; C {1,...,m}.

(iii) If the theory To satisfies both S7 and Ss, then 7o is said to be smooth.

Theorem 7.1.21. Suppose To satisfies S1. Let K |= To and suppose that R is a convex subring
of K. Let I be the ideal of R consisting of those elements of R which are not invertible in R. (I
is the unique maximal ideal of R.) Then there exists kg < K such that ko C R and such that for
each a € R, ko N (a+ I) contains exactly one element. We say that ko splits R.

Proof. Let S = {k = K | Kk C R}. Then § is a poset, ordered by <. We wish to apply Zorn’s
Lemma to S. To prove that S # ), we show that S contains Dcl({0}). As we have seen in Remark
Dcl({0}) = K. Now take some positive 2 € Dcl({0}). By the Archimedean property (see
Remark , x < n, for some n € N. Since R is a subring of K, it contains Z. By convexity
of R, x must be an element of R, as needed. Now let C = {k; | j € J} be a nonempty chain in
S. By Tarski’s Elementary Chain Theorem, we have k; < UjEJ k; for all j € J. (A proof of this
Theorem can be found in [Ges] for example.) It is clear that this is an upper bound for C, so the
requirements of Zorn’s Lemma are met. We let kg be a maximal element of S. Then kg <X K
and kg C R. Moreover, for each a € R, the set ko N (a + I) contains at most one element, for if
b,c € ko N (a+ I) are unequal, then b — ¢ € I so that (b—¢)~! € R, contradicting kg C R.

We claim that for all a € R, there exists a € kg such that @ > a. Suppose to the contrary
that this claim is false for some a. Consider Dcl(ko U {a}). We have kg < Dcl(ko U {a}) X K.
Since a € Del(kgU{a}), but a & ko, there must be some element of Dcl(kg U {a}) which is not in
R, by maximality of ky. We can write this element as f(a), where f is a kg-definable function.
Since kg |= To, there exists b € kg and N € N such that kg = Vo > b (|f(z)] < 2V), as To
satisfies S1. Since kg < K and a > b, we have K = |f(a)| < a’¥. But this contradicts the fact
that R is a convex subring of K.

Now suppose that a € R and that kg N (a + I) = 0. Then certainly a ¢ kg, so once more
Dcl(kg U {a}) contains an element which is not in R. So if we can to show that f(a) € R, for
any ko-definable function K — K, then we will have found a contradiction, as every element of
Dcl(ko U {a}) is of this form. So let f be such a function. By O-minimality of kg, there exist
elements a; < -+ < ay, such that if we set ay = —oo and a,,+1 = 00, then f is monotone, in ky,
on the interval (a;,a;4+1) for each ¢ = 0,...,n. By our claim, a must lie in such an interval in K,
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say (b, c), with b, ¢ € kq. Since ko is an elementary substructure of K, f must also be monotone
in K on the interval (b,c). Since ko N (a+ I) = (), we must have ¢ —a,a — b > 3 for all § € I,
which implies that (¢ —a)™1, (a — b)~! € R. Using our claim a second time gives us an element
d € ko such that d > (c—a)™,(a—b)"!. Sinced™t €kpandb<b+d ' <a<c—d!<e,
it follows that either f(b+d= 1) < f(a) < f(c—d ') or f(b+d~ ') > f(a) > f(c—d™ 1), by
monotonicity of f. But this means that f(a) € R, as R is convex. O

Theorem 7.1.22. Suppose that To is smooth and K |= To. If dim(K) is finite, then valdim(K) <
dim(K).

Proof. We use induction over dim(K). If K is Archimedean, which is equivalent to u(K) = {0}
and to K = Fin(K), then clearly valdim(K) = 0, so we are done in this case. By this same
observation, we are also done if dim(K) = 0, for then K = Dcl()), which is Archimedean, as we
have seen. So suppose that dim(K) =n > 0 and p(K) # {0}.

Claim 1. There exists a € K with a > 0 such that for all b € K with b > 0 we have a™ < b for
some m € N.

Proof. Since dim(K) = n, we may write K = Dcl({c1,...,c,}), where ¢1,--- ,¢, € K forms a
basis for K. Let K; = Dcl({¢1,...,¢;}) for i = 0,...,n. We use induction over ¢, up to and
including n, to show that our claim holds for each K. It is an easy consequence of the fact that
Ky = Dcl(() is Archimedean that there exists an element ag € Ky with ap > 0 such that for
all b € Koy with b > 0 we have af* < b for some m € N. (Just take ag = % for example.) Now
suppose that the claim holds for some i = 0,...,n — 1, that is, there exists a; € K; with a; > 0
such that for all b € K; with b > 0 we have a}* < b for some m € N. Then if for all b € K4
with b > 0 we have a]® < b for some m € N, then we are done, as we can take a;41 = a;. If
this is not the case, then there exists some positive 5 € K;; such that § < a]" for all m € N.
Clearly 3 is not an element of K;, so {c1,...,c;, 371} is an independent subset of K;,; and

Ki+1 = DCI({Cl, N ,Ci+1}) = DCI({Cl, vy Gy 5_1}) = DCIKI({ﬁ_l})

This means that every element of K, ; is equal to f(37!) for some K;-definable function f.
Since K; = To, there exists ¢ € K; and m € N such that K; = Vz > ¢ (|f(z)] < 2™), by
property S;. Since K; < K;1 and certainly 37! > ¢, we have K;11 = |f(871)] < f~™. This
shows that a;+1 = 8 behaves as needed, which concludes the induction.

Take a € K as in Claim 1. We define R = {b € K | |[b| < a~# for all m € N}. Then R
is a convex subring of K and its unique maximal ideal is Archimedean in the sense that for all
z,y € I\ {0}, there exists m € N such that |[z|™ < |y|. By Theorem [7.1.21] there is k < K
such that k splits R. Note that k # K, as a=! € k, so dim(k) < n. Say dim(k) = n — r, with
r € N\ {0}. Take ¢1,...,¢. € K such that {c1,...,c.} forms a basis for K over k. We may
suppose that ¢i1,...,¢. € I, for if ¢; € R, then we can replace ¢; by 0;1 € I and if ¢; € R, then
we can replace ¢; by the unique element n € I such that ¢; + n € k, using the fact that k splits
R. We take k* to be the algebraic closure of the field k(cq,...,¢,.) in K. It is easy to check that
vi[k* \ {0}] and vk [k \ {0}] form linear subspaces of V(K).

Claim 2. We have dimg(vx[k*\{0}]) < dimg(vk [k\{0}])+r, where dimg means the dimension
as a Q-vector space.

Proof. Suppose to the contrary that dimg(vi[k* \ {0}]) > dimg(vk[k \ {0}]) + r. Since vk [k \
{0}] C vk [k*\ {0}] as a Q-vector subspace, this means that we can find elements a1, ...,a,41 €
k* \ {0}, such that the vectors vi(ai1),...,vk(ar+1) € vg[k*\ {0}] are Q-linearly independent
over vi[k\ {0}]. We claim that elements a1, ...,a,11 are algebraically independent over k.
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For suppose that they are algebraically dependent over k. Then p(ay,...,a,4+1) = 0, where p
is some nontrivial polynomial with coefficients in k. We write

plat,...,ar41) = Z bpa =0,
nes

with each b, € k nonzero and where 7 is a multi-index ranging over some finite subset S C N"*1.
We wish to show that v (b,a”) = v (bya” ), for two distinct 7,7/ € S. Take 7 € S such that
vk (bra™) is minimal. Suppose to the contrary that vk (bra”) # vi(b,a”) for all other n € S.
Let 8" C S be a subset containing 7, such that

VK Zba77 =vi(bra”)

nes’

and let ' € S\ S’. Then

Vi ba”Jrgba” =min | vg(bya” ), vi Eba77
nes’ nes’

= min(l/K(bn/a”'), vk (bra™)) = vk (bra”).

by (ii) of Remark [7.1.17} Starting at S’ = {7}, we can keep adding terms inductively until
S’ =S, to arrive at

VK anan =vi(bra’).
nes

But this is false, as

We conclude that there do exist distinct 7,7 € S, such that v (bya") = vk (bnra"/). Explicitly
writing out components and rearranging gives

r+1

Z —nvi(a;) = 0.
But this shows that the vectors v (a1),..., vk (ar+1) are Q-linearly dependent over vi [k \ {0},
which is false. We conclude that the elements aq, ..., a,1 are algebraically independent over k.

Recall that the map vi[k\{0}] — V (k) given by x/(Fin(K)\ u(K)) — z/(Fin(k)\ u(k)) is an
isomorphism of Q-vector spaces. Combined with our second claim, this gives dimg(vx [k*\{0}]) <
valdim(k) + r, from which it follows that dimg(vx[k* \ {0}]) < dim(k) +r = n, by our induction
hypothesis. This means that it would suffice to show that the map vk : k* — V(K) is surjective,
as this implies dimg(vx[k* \ {0}]) = valdim(K). So let d € K \ {0}. We must find some a € k*
such that v (o) = v (d). Note that vx (—x) = vi(z) and vi (z7!) = —vk () for all z € K\ {0}
and also note that v (x) € vi[k\ {0}] for all 2 € R\ I, as a consequence of the fact that k splits
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R. We may therefore assume that d € I and d > 0. Let f : K" — K be a k-definable function
such that f(c1,...,¢,) = d. Let the graph of f be defined by the formula ¢(¥,z1,..., 2., ),
where 4 are parameters from k and ¢(2, 1, ..., 2, ) is a formula in the language L». We can
now apply property Se, by transferring it to K, to find

p
K |: (b(’?,Cl,...,Cr,d) A 3@(”5” < IA \/(Nl(?j) AFi(’V,Cl,...,CT,d,g) :O)> ;

i=1

with N; and F; as in (ii) of Definition and ¥ = y1,...,Ym for some m € N. Now take F'
to be one of the F; such that the conjunction holds and take s = s; (the same index as F;), with
s; also as in (ii) of Definition This means that for all z € K, f(c1,...,¢) = z if and
only if there exist b1,...,b,, € K, with b; # 0 for i € s and |b;| < 1 for i = 1,...,m, such that
F(¥,c1y...y¢r,2,b1,...,byn) = 0. From now on, we suppress the parameters 4 and write just
F(x1,. o @y T Y1y« o s Ym)-

Now take B1,...,08m € K such that 8; # 0 for i € s, || < 1 for i = 1,...,m and
F(e1,...,¢pd,B1...,Bm) = 0. Since Bi,...,Bn € R, there exist 87,...,8% € k such that
Bi— B2 €1 foreachi=1,...,m, as k splits R. Since ¢; € I is nonzero, as it is part of a basis for
K over k, we can take N € N large enough that |3;| > |c1|", using the Archimedean property of
1.

Define the set

A={(x1,...,2p) € K™| |e1|N < |ay| fori € s and |z;] < 1fori=1,...,m}
and consider the function h : K™ — K, which we define by
hz,z1, ... xm) = |F(c1y ooy Cry @@y, ooy T

Since F' is a C'*°-function, h is certainly continuous. By transfer of the Extreme Value Theorem
to K, h must attain a minimum on the set ([0, 1]\ (%, 2¢)) x A, as this set is closed, bounded and
definable. Let v be this minimum and note that v > 0, as v = 0 would imply that f(ci,...,¢.) =
d', for some d' # d, by choice of F. So again, by the Archimedean property of I, we may take
N’ € N large enough that v > |¢;|¥'. Since 7 is the minimum of & on the set ([0,1]\ (4, 23—‘1)) x A,
and vy > |01\N/, it follows that if we where to find a point (o, 87,...,5.,) € [0,1] x A such that
|F(c1y.eyera, By B0)] < |(31|N,, then % <a< %d. But then vk (a) = vk (d), so to finish
our proof, it would certainly be sufficient to find such points a, §1, ..., ), in k*.

Let A € N and consider the Taylor expansion of degree X of the function F : K"™+1+m — K|
at the point & = (0,...,0,87,...,8%) € k"1+m_ The justification, of course, is that we can
transfer Taylors Theorem from R to K. We write px(y1, ..., Yr, &, 21, ..., Zm) for this expansion,
which is a polynomial with coefficients in k, as F is k-definable and & € k"™, Recall that for

Z € By(&) we have

= _— s — F v
R)\ ()\+1)| ; Z]axj (U),

for some ¢ € B.(dJ). Since all he derivatives of F' are continuous, they are bounded on the set
B (&) (as they are certainly bounded on its closure). We can calculate these bounds in k, and
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these are certain to also hold in K, as k < K. Hence, there exists a positive element B) of k

such that
for all t € K, with 1 > ¢ > 0 and all (40)
7€ K™+ with |2 — &|| < t holds |F(2) — pA(Z)| < By - M.

Let
to = 2(T+ 1 +Tn) ~max{|cl|,...,|cr|,d, |B1 *6?|7'--’|Bm - ?n|}

Then ty € I and ty > 0, so by the Archimedean property of I, we may take A\g € N large enough
that

0T < (2By,) - e (41)
We set A= Ao, t =1p and Z= (¢1,...,¢0,d,P1,...,Bm) in , which gives us
1
2
using and the fact that F(cy,..., ¢, d, b1, ..., Bm) = 0. Because of the way A is defined, we
also clearly have

|P)\0(C1,--.7Cr,d,ﬁ1,-.-,,8m)| < ‘Cl‘Nl7 (42)

(dvﬁl,"'aﬁm) € [07 ” x A. (43)
Furthermore,

(Cts -y Corddy Bry s Brm) — @ < ((2Bxg) ™" - Jea |V )P0t D (44)
by and choice of 3. Now, we can express the conjunction of 7 and as
¥(d, B1,...,Bm), where ¥(x,x1,...,2,) is an L-formula with parameters in k*. Since both

K and k* are real closed fields, k* is an elementary substructure of K, when regarded as L-
structures, since the theory of real closed fields admits quantifier elimination. This means that
there must be elements «, 81, ..., 8., € k* such that ¥(«, 81, ..., 5,) holds, or in other words

1 ’
|p,\0(cl,...,cr,a,ﬁ{,...,ﬁ;nﬂ<§-\01|N, (45)
(a,B),...,8.)€[0,1] x A (46)
and
l(c1 .- sema, Bl Bh) — @] < ((2Brg) " - [eq|N) QoD (47)

By , we are allowed to apply , with A = Ao, t = ((2Bx,)~" - |er|V)PotD ™" and 7 =
(c1y..yerya, Bh, ..., BL,), which gives us

1 /
|F(Clv"'7C’r‘7avﬂ17"'7ﬁ7{n) —pAO(Cl,...,CT,a,Bi,...,,B,In)l < 5 : |Cl|N .
We combine this with 7 using the triangle inequality to arrive at

’
[F(etyevera, Bl Br)| < eV

But this is exactly what we needed to achieve. O
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Theorem 7.1.23. Suppose that To is smooth, k, K = To, with k C K and that dimy(K) is
finite. Then valdimy (K) < dimy(K).

Proof. Since dimy(K) is finite, there exist k = kg < k1 < --- < k,, = K, such that dimy, (k; 1) =
1 for each i = 0,...,n — 1. So since

n—1 n—1
dimg (K) =) dimy, (k1) and valdimg(K) = > valdimy, (ki41),
=0 =0

by Lemma and Lemma/(7.1.19] it is enough to prove the inequality asserted in the Theorem
just for the case dimy(K) = 1. So from now on we assume that we are in this situation. Since
dimg(K) = 1, K is generated (over k) by a single element, say a € K. Now suppose to the
contrary that valdimy(K) > 2. Then there exist k-definable functions f,g : K — K such that
vi(f(a)) and vi(g(a)) are Q-linearly independent over vi [k \ {0}].

Consider K as an Lo U{P}-structure, where P is a unary relation symbol, which we interpret
as the domain of k. Now let K* be an Ng-saturated elementary extension of K, as an Lo U{P}-
structure. Then K* has an elementary Lp-substructure, &', consisting of those elements of K*
satisfying P. It follows directly from the fact that K* is Rg-saturated as an Lo U {P}-structure,
that k" is Np-saturated as an Lo-structure. Now let K’ = Dcly/ (a).

Claim. vk (f(a)) and vi/(g(a)) are Q-linearly independent over vg[k"\ {0}].

Proof. Suppose that this is not the case. Then there exist b € k¥’ \ {0} and p,q € Q, not both
zero, such that pvg/ (f(a)) + qvk/(g9(a)) + vi: (b) = 0. In other words,

n~t < |f(@)" - lg(@)|? - [o] <n,

for some n € N. Since in particular b € K* and K < K* as Lo U {P}-structures, there must
exist some by € k, such that

n~t < |f(@)” - lg(a)|? - |bo| < n.

But this contradicts the fact that vk (f(a)) and vk (g(a)) are linearly independent over v [k\{0}].

Note that a ¢ k', as P(a) is false in K, so dimy (K’) = 1. Furthermore, by our claim,
valdimy, (K') > 2, which means that we are back where we started, but now with &’ as an Rg-
saturated structure. We may therefore continue our proof with the strengthened hypothesis that
k is Ng-saturated.

Let ko be some elementary substructure of k, with dim(kg) finite and such that f and g are
ko-definable. (We could take Dcl(A), where A is the set of parameters occurring in f and g for
example.) Consider the partial type

O(z) = {|f(@)" - lg(@)|" - [b| < n™" v [f(@)" - |g(2)|* - [b] = n |
n € N\ {0}, b € ko, p,q € Q not both zero}.

Clearly a realizes O(z) in K, which means that O(z) is finitely satisfiable in k. We may write ©(x)
in such a way that the only parameters occurring in it are from the basis of kg, which is finite. So,
since k is Ro-saturated, ©(z) is realized in k by some element, ay, say. Now take k1 = Dclg, (a1).
Note that a; cannot possibly be an element of kg, for then we could take b = f(a;), so that
L < |f(a)]* - |g(a1)|® - || < 2, contradicting the fact that a; realizes ©(z). This shows that
dim(kq) = dim(ko) + 1. Furthermore, v, (f(a1)) and vk, (g(a1)) are Q-linearly independent over
Vi, [ko \ {0}], by definition of ©(z), which shows that valdim(k;) > valdim(ko) + 2. But now
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we can repeat this argument, with k; in place of ko to find k1 < ko = k such that dim(ks) =
dim(ko) + 2 and valdim(ke) > valdim(kg) + 4. In fact, we can continue this process to find,
for every I € N, an elementary substructure of k; of k such that dim(k;) = dim(kg) + { and
valdim(k;) > valdim(ko) + 2. Setting [ = dim(ko) + 1 gives us the inequality

valdim(k;) > valdim(ko) + dim(k;) + 1,

contradicting Theorem [7.1.22 O

7.2 Proof of condition [36]

In this section we show that we where allowed to use condition in our proof of the Second
Main Theorem. First we prove that the results from the previous section are applicable to the
theory 7Te.

Theorem 7.2.1. The theory T, is smooth.

Proof. The theory Texp is O-minimal by Corollary Now, by Lemma the models of
Te and Texp) have the same definable sets. Hence 7. is O-minimal as an immediate consequence.

To show that T, satisfies S1, let K = 7. and let f : K — K be a definable function. By
Lemma the function f: K — K is also definable in (K | Lexp;). Now if lim,_,o f(z) =0,
then S is certainly satisfied. If not, then by Corollary [£.1.8] there is s € Q and a nonzero a € K
such that lim, . f(z)z° = a. So clearly if we take N € N larger than —s, then |f(z)| < 2/ for
all sufficiently large = € K, as needed.

We show that T, satisfies So. Consider the function e* : R — R defined by e*(z) = exp(a? -
(1 +22)~1). Note that e*(z) = e(z~?) for all z € R\ {0}. Since e*(0) = 1, it follows that e*
is definable in (R | £.) without parameters. Notice furthermore that both e and e* are C*°-

functions. Now, let ¢(z1,...,x,) be any L.-formula. Since 7. is model complete by Corollary
¢(z1,...,x,) is equivalent to some existential formula ¢ (z1,...,2,). By Lemma [2.1.5
¥(x1,...,2,) is equivalent to a formula of the form

l
3ylu"wy'm/\Ti207
=1

where each 7; is a term of £ or of the form e(z1) — 20 = 0, with 21,22 € {y1,- - Ym, T1,- -, Tn }-
It is clear that this formula is in turn equivalent to the formula Jyi, ...y, (71 7 = 0). This
shows that there is a polynomial p € Z[z1, ..., 22m+2n], such that

R EVzy, ..., xn[p(z1, ... 20)

(48)
© I, Ym PWLs e Yms €)oo e(Ym), T1, -y T, e(21), . e(xy)) = 0]

For a subset s C {1,...,m}, let Gs(x1,...,%n,Y1,-..,Ym) be the result of replacing y; by y;l
and e(y;) by e*(y;) in
YL, Ymse(yr), - e(Ym), T1y e oy Ty (1), -y e(xTy)).

For a sufficiently large r» € N, the function

T

Hyj Gs(T1, . Ty Y1y - -+, Ym)

JEs
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is a C°°-function on R, which we shall denote by F;. We now callp = 2™ and let {s; | i = 1,...,p}
be an enumeration of the subsets of {1,...,m}. For i = 1,...,p, we write N;(§) to denote
Njes, i # 0. Lastly, we write F; for Fi,. We claim that

R b V7 <¢(f) 37 (ngn <1\ (Ni() A Fi(E.5) = o>>) ,
1=1

where ||7]| = max{|y;| | ¢ = 1,...,m}. Once we manage to prove this claim, then we are done,
as this is precisely the definition of S5. To show that our claim is true, we use and suppose
that

RE3y, s Ym oW1y s Ym,eWi1), ..., e(Ym), a1, ..., an,e(ar),...,e(ay)) =0,

for certain aq,...,a, € R. This means that
RE pby,....bm,e(br),....e(bm),a1,...,an,e(ar),...,e(ay)) =0,

for some by,...,by, € R. Let s;, be the subset of {1,...,m} such that j € s;, exactly when
|bj| > 1. Now let 5, = bj_1 for j € s;, and B; = b; for j € {1,...,m} \ s;,. Then max{|5;||j =

1L,...,m} <1 and N;,(B) are satisfied. Moreover, G, (ai,...,an,B1,...,Bm) =0 by definition
of Gy, , so certainly Fy (a1,...,an,p1,...,Bm) = 0. It follows that

R ag(nm < 1A\ (i) A Fi@,9) = o>> .

=1

That the converse implication also holds, should be clear from the definitions of the IV; and Fj,
so we have proven our claim. O

Before we can apply Theorem [7.1.23| (to the theory 7.), we require the following result on
ordered vector spaces.

Lemma 7.2.2. Let V be an ordered Q-vector space and let U be a subspace of V' with dimension
n € N over U. Then there exists a basis 0 < vy < --- < v, for V over U, with the following
property. If v is an element of V', which we write as

n
v =up+ E qiVi,
i=1

with wg € U and q1, . ..,¢, € Q, which has the property that v > u for all uw € U, then |v| > qu;
for some positive q € Q, where j = max{i | ¢; # 0}.

Proof. The first thing we will show is that the convex subspaces of V' are linearly ordered by
inclusion. To demonstrate this, let W7, W5 be distinct convex subspaces of V. Then without loss
of generality we may suppose that Wy \ Wy # (). We can therefore take some wy € Wy \ Wa,
which we may assume is positive. Now let ws € W5 be arbitrary. Then by convexity of W5, the
inequality |wa| < w; must hold, as wy; € Wa. But this means that wy € W7, by convexity of Wy,
and hence Wy C Wi, as needed.

We can therefore create a chain

U=W 1 CWeC---CW =V,
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where each W, is the smallest convex subspace of V, strictly containing W;. Note that this
chain must be finite, as the dimension of V' over U is finite. For each i = 1,...,l — 1, we let
0 <wj <+ <wy,, bea basis for W1 over W;. Then

1
my

-1

0<w <--<w <<kt

is a basis for V over U and we shall write this as 0 < v; < --- < v,. Suppose that we are given
v € V, written as

n
v =up+ E qiVi,
i=1

with ug € U and q1,...,¢, € Q, which has the property that v > wu for all u € U. Then
{i | @i # 0} # 0, so we have some j = max{i | ¢; # 0}. By definition, v; = w}? for some io, jo.
Verify that we can therefore write v = x +y, with x € W;, and y € W, 41 \ W;,, with y nonzero.
Recall that our goal is to find some positive ¢ € Q such that |v| > qv;. Suppose to the contrary
that |x + y| < qu; for all positive ¢ € Q. We note that the inequality |z| < %|y| must hold, for
otherwise y € W;,, by convexity of W;,. But then

1
§|y| <yl —lz] < |z +yl < qu;

for all positive ¢ € Q and hence |y| < quv; for all positive ¢ € Q. It follows that the convex closure
of the subspace of V' generated by y lies strictly between W;, and W;, 1. Since the existence of
such a subspace is impossible by definition of W;, and W; 11, this proves the Lemma. O

Suppose that k and K are models of Texp, with & C K. Then these two structures also
determine models of 7¢ (see Definitiorf6.2.2). We shall denote these models of 7. by &’ and K’
respectively. (So K and K’ have the same underlying ordered field, but K = Texp and K’ = T
and the same holds for k and &'. )

Since 7T, is model complete by Corollary every L.-formula ¢ is equivalent to an ex-
istential L.-formula 1. Similarly, —¢ is equivalent to some existential L.-formula x, so ¢ is
equivalent to —y, which is universal. Since universal formulas are preserved downward and
existential formulas are preserved upward, ¥’ C K’ implies k' < K'.

Now let k* be a model of the theory 7., such that ¥’ C k* C K’. Then for each a € k*,
exp(a) is an element of K, but it need not be an element of k*, so it is worthwhile to define
E(k*) = {a € k* | exp(a) € k*}. Because k* is a model of T, it is in particular a real closed
field, so it is closed under taking rational powers of positive elements. Using this, it is not hard
to verify that E(k*) is a Q-vector subspace of k*, as an additive group. In turn, E(k*) contains
Fin(k*) as a Q-vector subspace. To see this, consider an element a € Fin(k*). Since a € Fin(k*),
we can take an element m € Z of the same sign as a and such that |a| < |m|. Then the equation
143z = a holds for some b € £, as k™ is a real closed field. But then exp(a) = e(b)™, which lies
in k*, as needed. For the sake of completeness, we also point out that k is a Q-vector subspace
of E(k*).

Lemma 7.2.3. Let k, K |= Texp and k* |= Te, such that k' C k* C K', as introduced above.
Suppose that dimy (k*) = n, with n € N, as models of T.. Suppose also that E(k*) is at least
n-dimensional over its Q-vector subspace k + Fin(k*) = {zx +y |z € k, y € Fin(k*)}. Then for
each a € E(k*), there exists b € k such that |a| < b.

Proof. Suppose that the Lemma is false. We write U for the subspace k + Fin(k*). Let « be an
element of E(k*) such that such that o > b for all b € k and choose a subspace V of E(k*), with
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U C V and containing «, such that V is exactly n-dimensional over U. Let 0 < v1 < -+ < v,
be a basis for V over U as given in Lemma Since a > b, for every b € k, we must surely
also have that a > b for every b € U. It follows that there is some v; such that v; > b for every
b € U and we take j minimal such that this is the case.

Claim. The elements vi (exp(v1)), ..., Vi (exp(vy,)) of the value group V(K) are linearly inde-
pendent over vi [k \ {0}].

Proof. Suppose not. Then there exist q1,...,q, € Q, not all zero, and ¢ € k such that

vi(e) + ZqiuK(exp(vi)) =0.

i=1

We may certainly suppose that ¢ > 0, so that ¢ = exp(d) for some d € k. The above equation is
then equivalent to

exp(d+ Y qiv;) € Fin(K) \ u(K),
i=1

using the basic properties om the maps vi and exp. Since 1 + & < exp(z) (and hence z — 1 >
—exp(—x)) for all x € K, one readily verifies that this implies d + > ., ¢;v; € Fin(K) and
consequently d + > ; ¢;v; € Fin(k*). But this contradicts the fact that vy,..., v, are linearly
independent over U.

Now, by Theorems [7.1.23] and [7.2.1] and our assumption that dimy (k*) = n, we have
valdimy/ (k*) < n, meaning that the dimension of V (k*) over its subspace vy« (k') = v« (k) is less
than or equal to n. Recall that we have an isomorphism of Q-vector spaces vi [k*\{0}] — V(k*),
given by z/(Fin(K) \ p(K)) — z/(Fin(k*) \ p(k*)) and that the subspace vilk \ {0}] C
vi[k* \ {0}] corresponds to the subspace vg«[k \ {0}] C V(k*) under this isomorphism. This
means that the dimension of vg[k* \ {0}] over vk[k \ {0}] is less than or equal to n. But
vi(exp(v1)), ..., vk (exp(v,) € vi[k* \ {0}], as v1,...,v, € E(k*), so by our Claim, they must
span the space vi[k* \ {0}] over vk [k \ {0}]. In particular

vi (v;) = vi(c) + Zpiz/K(exp(vi)),
i=1

for a certain ¢ € k\ {0} and p1,...,p, € Q. Again, we may write ¢ = exp(d) for some d € k to
get

n

vi (vj) = v (exp(d + pri)),

i=1
which is the same as saying that

Yi

N < exp(d + Zpivi) < Nuvj, (49)

i=1

for some N € N\ {0}. Now since 1 < %, the left inequality of tells us that 0 < d+ > | p;v;.
Furthermore, we cannot have p; = pj41 = --- = p, = 0, as this implies 0 < d + Z?:l piv; < b,
for some b € k, by choice of v;. This leads to %J < exp(b), which contradicts our choice of v}, as
N -exp(b) € k. Thus p; > p;/, where j' = max{i | p; # 0}, from which it follows that there exists
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q € Q, positive, such that d+ Y., p;v; > qpj, by choice of vq,...,v,, using Lemma By
the right inequality of , we must therefore have exp(qu;) < Nv;. But by simply reasoning
in R, there exists 7 € N such that exp(qz) > Nz, for all > r, because lim, exgﬁ =0. We
have derived a contradiction, since surely v; > r for all » € N. O

We return to the context in which we formulated (36).

Lemma 7.2.4. Let nym € N, withn >m >0 and let d € K", 1l € {1,...,n}, s C{L,...,n},
with |s| = m and | € s. Let also fi,..., fn € MS be such that fi(&) = ... = fo(d) = 0 and

det (M) (@) # 0. Lastly, suppose that |oy| > b for all b € k. Then the set {a; | i € s} is

O(z1,--1Zn)

Q-linearly dependent over k 4+ Fin(K).
Proof. Define the submodel k* C K’ by

E* =Delp ({a; | 1 <i<n}U{exp(a;) | i € s}),
where the closure is taken with respect to the definable functions of 7T.. Then k* | 7. and
K Ck* CK'.
Claim. dimy (k*) < m.

Proof. Suppose for convenience that s = {1,...,m} and set ay,; = exp(ey) fori =1,...,m. We
will show that {c; | 1 <7 < n+m} contains an m-element subset which generates k* over k. To
this end, we take g; € Mg [Tnt1s- -+ Tnem] such that g;(x1, ..., zn,exp(a1),...,exp(Tnim)) =
filxy,...,x,) for each i = 1,...,n, and we let gni(21,...,Zntm) = Tnii — exp(x;) for each
i =1,...,m. Clearly then, g1(a1,...,0ntm) = " = gntm (@1, ..., Qnim) = 0. We shall now

demonstrate that det (M) (a1, ..y Qpym) # 0. We split up the matrix O(g1,:Intm)

X1, Tpgfm) NT1, s Tgm)
into four blocks

9g1 - 91 991 L 9g1
Oz Oy, OTn i1 OTntm
A= : : B=

9gn ... O4n 9gn S 9gn

Oy Oxn O0Tp 41 OTntm

Ognt1 L. Ogn+1 Ogn+1 .. Ogn+1
oz Oy, OLp 41 O tm

agn«#m, . agvl+m agn«l»m . agn+7n
Oz Oy, OLp 41 OTptm

and we note that D is simply I,,,, the m x m identity matrix. Now obtain the matrix B’ from B
by adding n —m columns of zeros on the right. Similarly, obtain C’ from C by adding n —m rows
of zeros on the bottom. Lastly, we let D’ = I,,. This gives us four n x n matrices A, B’,C’, D’
and it is not difficult to verify that

(2 8)]-w[( 4 5)

Furthermore,
A B A B D 0
(& )] =l 5o 5]
~ det A B . D 0 — det AD' — B'C'" B
—tl o b o 1, )| T\ op-pc D

AN ~Y¥a, /
:detKAD B'C’ B

0 D’ ﬂ =det[AD' — B'C'] = det[A — B'C’].
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..,m, we have

Now, fori=1,...,nand j =1,.
af; dg; dg;
ax;(ala'”van): ax;( 1,...,ozn+m)—exp(aj)' 8.77”:]( 17"'aan+m)a

,nand j=m-+1,...,n we have

by the chain rule and for ¢ = 1,.

afi (ala B an) - agi (0617 e 7an+m)-
al'j aﬁj
Since C' is a diagonal matrix with entries exp(x1),...,exp(zm),0,...,0 on its diagonal, this
shows that
det[A — B'C') (a1, ..., Qpym) = det (M) (a1,...,ap) #0,
as desired. It follows that the row vectors (283’ o a(if’ii) ) (ggg;‘g e, Bg:(fzv)n)) evaluated
at (a1,...,Qn+m) are linearly independent over K. Hence, there exists a subset u C {1,...,n+

m} of size n such that the matrix

( 9(g:) >
9(x;) 1<i<n,jeu
.y Qnim) is invertible. We relabel (z1,...,Zp4m) in such a way that u

evaluated at (o, ..
.y Qptm) accordingly. Then

{1,...,n} and we relabel (aq,..

(g1, - - - gn)>
det | =222 ) (aq,...,« #0
(8(:51, ) ( netm)
and clearly still g1(a1,...,0n4m) = -+ = gnlaa,...,an+m) = 0. Furthermore, g1,...,9, €
M2+m. Now consider the functions h;(z1,...,2n) = ¢i(T1,-. -, Tn, Cntty- -y Qi) for & =
1,...,n. Then

a(hla"'uhn)
det | 0——1—= cey O
¢ (8(x1,...,xn) (0, 00) 0
,ap) = 0. So, by Proposition (iii) (using k = K in

and hi(ag,...,an) = = hp(ag,...
the definition of M27 to ensure that hy,..., h, € Mg)7 there are only finitely many such points.
Since the h; are k’-definable over au, 11, - .., Gy rm, this implies that

a1,...,0n €Dclp({a; | n+1<i<n+m})
and hence
E*=Dclp({a; |1 <i<n+m})=Dclp({a; [ n+1<i<n+m}),

proving our claim.
can have at most dimension m — 1 over k + Fin(K). But {«; | i € s} C E(k*), so since [s| = m,

the set {a; | i € s} must be Q-linearly dependent over k + Fin(K).
n;o; = 0.

We are now ready to justify (36). Since {a; | i € s} is Q-linearly dependent over k + Fin(K),
there exist a € k, b € Fin(K') and n; € Z, for i € s, not all zero, such that a +b+3 .,
Since b € Fin(K), there exists ¢ € Q such that 0 < ¢ —b < 1. We can then take ¢ = g+ a € k to
get 0 <c+ ), nia; <1, as needed. This finishes the proof of the Second Main Theorem.

By our claim and by the fact that a; € E(k*) (since [ € s), Lemma tells us that E(k*)
O

82



8 An application of Wilkie’s Theorem

8.1 Schanuel’s Conjecture

Schanuel’s Conjecture is a conjecture made by Stephen Schanuel in the 1960s about the tran-
scendence degree of certain field extensions of Q. The conjecture can be formulated as follows.

Conjecture 8.1.1. Suppose that aq,...,a, € C, such that

trdego(Q(a, . .., an,exp(ai), ..., exp(a,))) < n,

where trdegg(Q(a1, ..., o)) stands for the transcendence degree of Q(au, ..., an) over Q. Then
there are my,...,my € Z, not all zero, such that E?:l mia; = 0.

The conjecture neatly summarizes many known results from transcendental number theory.
The special case where ay,...,q, are all algebraic is the Lindemann-Weierstrass Theorem for
example. But the truth of Conjecture would also settle a large number currently unanswered
questions. For instance, setting ar; = 1 and as = wi would prove that m and e are algebraically
independent. Unfortunately, a proof of Schanuel’s Conjecture is generally considered to be out
of reach at the present day.

In the upcoming part, we will prove a modest generalization of the result found in [KZ06].
This paper is centered around the real form of Schanuel’s Conjecture, which is the following
statement.

Conjecture 8.1.2. Suppose that a1, ...,a, € R, such that

trdegg(Q(a1, . .., an,exp(a1),...,exp(a,))) < n.
Then there are my,...,my € Z, not all zero, such that Z?:l msa; = 0.

In [KZ06], the authors manage to put a uniform bound on the coefficients mq,..., m, by
proving that Conjecture [8.1.2]is equivalent to the statement below, which is suitably called the
uniform real version of Schanuel’s conjecture.

Conjecture 8.1.3. Let V. C R?" be an algebraic variety, with dim(V) < n. Then there exists
N €N, such that if

(at,...,an,exp(ay),...,exp(ar)) €V,

there are my,...,m, € Z, not all zero, with |m;| < N for each i = 1,...,n, such that
S mia; = 0.

We shall formulate yet another form of Schanuel’s conjecture, as well as an accompanying
uniform version and we shall prove that these two are equivalent. The result of [KZ06] will easily
follow as a special case of this equivalence.

8.2 Schanuel’s Conjecture for matrices

Let d € N, with d > 1. We let G C Myxq be a definable collection of real d x d matrices, with
real entries and real eigenvalues. We will identify Mgy 4 with RY and when we say definable, we
will from now on always mean definable in (R | Lexp). For G we could for instance simply take
the set of all those matrices in My«4 with real eigenvalues. Other interesting examples include
the (noncommutative) ring of all upper (or lower) triangular matrices in Myx4 and the ring of
all diagonal matrices in Mgy 4.
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Our goal is to formulate forms of (the uniform) Schanuel’s Conjecture for G in such a way that
they reduce to Conjectures and for G = R. Since we are working with G, which might
not be commutative, it is dangerous to assume that theorems and definitions from commutative
algebra still hold in this situation. It is for example no longer obvious what we mean “algebraic
variety” or “dimension”. In order to make this clear, we will have to make a few definitions.

Definition 8.2.1. By Q(z1,...,2,), we denote the monoid ring of M over Q, where M is
the free monoid generated by x1,...,2,. (This is essentially the same as the polynomial ring
Q[z1, ..., xy,)], only the variables x4, ..., z, do not commute among each other.)

Definition 8.2.2. We call a subset V' C G™ an algebraic set if
V={(41,...,4,) € G"| f(A1,...,4,)=0forall fe S},

for some finite S C Q(x1,...,z,). An algebraic variety is a nonempty algebraic set which cannot
be written as a union of two proper algebraic subsets.

Definition 8.2.3. Let V' C G™ be an algebraic variety. A chain in V of length m € N is a
sequence of proper inclusions Vo C --- C V,,,, where each V; C V is an algebraic variety. We
define the dimension of V' by

dim (V') = sup{length(C) | C is a chain in V} € NU {o0}.

Remark 8.2.4. Note that for G = R, our definition of an algebraic variety V' C R"™ coincides
with the conventional definition of an algebraic variety. The same is true for the dimension of V.

We will also have to define an analogue of the exponential function on matrices.

Definition 8.2.5. We define exp : Myxq — Mgxq by
o0
exp(X) = Z X"
n=1

(It is known that this sum converges for all X € Myxq.)
We are now ready to define our version of Schanuel’s Conjecture.
Conjecture 8.2.6. Let V C G?" be an algebraic variety with dim(V') < n. Then if
(A1,...,An,exp(Aq),...,exp(41)) €V,
there are mq, ..., my, € Z, not all zero, such that ., m;A; = 0.
We define the uniform version as follows.

Conjecture 8.2.7. Let V. C G*" be an algebraic variety, with dim(V) < n. Then there exists
N €N, such that if

(Ala s 7Ananp(A1)a tee 7eXp(A1)) € ‘/a

there are my,...,m, € Z, not all zero, with |m;| < N for each i = 1,...,n, such that
Z?:l miAi =0.

Remark 8.2.8. Recall that if V' C R”" is an algebraic variety, then dim (V') = trdeggy(Q(az, . . ., a,)),
for (a1,...,an) € V. Combining this fact with Remark shows that for G = R, Conjectures

and reduce to Conjectures and respectively.
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8.3 Buchheim’s formula and Analytic cell decomposition

Our strategy is to show that the function exp : G — M x4 is definable in the structure (R | Lexp),
by which we mean that every component of exp is definable, when G and Myxg4 are viewed as
subsets of RY. If we prove this, then we can use the argument from [KZ06], with some minor
alterations. In our proof we will make use of Buchheim’s formula .

Remark 8.3.1. Recall that the minimal polynomial of a matrix A € My«q4 is the monic poly-
nomial with coefficients in R, of minimal degree that annihilates A.

Proposition 8.3.2. Let A € M,xn(R) be a matriz with minimal polynomial q(t) = (t —
m)" - (E—m,)", where ny,...,n, are distinct and allr; > 1. Let D CR and let f : D — R be
an analytic function. Suppose that each m; is in its domain D and each n; with r; > 1 is in the
interior of D. Suppose furthermore that g(t) = (t — A)°* --- (t — A,)®* is a monic polynomial

that annihilates A, where \1,..., A, are distinct and all s; > 1. Then
S/L'fl 1 12
l o
=3 (£ fet0oa-xn) 11 @ )
i=1 1=0 j=1,5#i

where p;(t) = f(t) (t;?ti))Si and goz(-l) is the l-th derivative of p;.

Proof. A proof of this can be found in [HJ91]. O

Remark 8.3.3. We will sometimes write R = A = B for A = (a; j)1<i,j<d and B = (b; j)1<i j<d
elements of Myy4. This is of course shorthand for

R ': /\ am- = b@j.

1<i,j<d
Lemma 8.3.4. The function exp : G — Mgxq(R) is definable in the structure (R | Lexp).

Proof. We may safely assume that d > 1, as the Lemma is certainly true for d = 1. Let
X = (zi;)1<ij<a and ¥ = (y1,...,yq). We define the Lexp-formula

VX, )=y < <yg A Vi(det(tI — X)=({t—y1) - (t —ya)).

Then given a matrix A € G, R E ¥ (A4, A1,...,Aq) if and only if Aq,..., Ay are the eigenvalues of
A, in ascending order, counting their multiplicities. (Recall that all the eigenvalues of A are real.)
To define exp : G — Mgx4(R), we want to make use of Buchheim’s formula. In order to do this,
we will need to make 27! case distinctions, accounting for the all possible different multiplicities
of the zero’s of the characteristic polynomials. To this end we let S = {0,1}{%4=1} be the
set of binary strings of length d — 1. We let ¢(0) and (1) stand for the symbols “=" and “<”
respectively and for each 7 € S, we define the Lqx,-formula

Or(y1,- - ya) = y10(m1)y20(72) - - 0 (Ta-1)Ya-

Also for 7 € S, set p =1+ Ef:_ll 7, and for i =1,..., ur — 1, let p-(i) denote the position of the
i-th 1 in the sequence 7. Furthermore, we define p,(0) = 0 and p,(u,) =dand fori =1,..., u,
we set s,(i1) = pr (i) — pr(i — 1). Verify that if R = 1(A, A1,..., Aq), then there exists a unique
T € S such that R |=60-(A1,...,Aq) and that for this 7 holds that

det(tI — A) = (t — )\pT(l))ST(l) (- )\pr(uf))sr(m)7
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with X, (1), ..., Ay, () distinct and s,(1),...,s-(p,) positive. For 7 € Sandi=1,..., u, let

exp(?)
t— 7)o o (f— 15_1)5 D (£ — tyq)or OFD - (E— )57 (e

@T,i(taulv ce. 7uur) = (
and note that it is a definable function. Now, let Z = (z; j)1<i j<q and define the Ley,-formula

XT<X7y1a"'7yd7Z) =

wr sr(i)—1 ! Hr
10 Pr,i l s+ (g
2= 2 5797 Wer Vo Ypeu) X —wp D' | ][ (X =9, p D)7
i=1 1=0 j=1,j#i

(Compare this with (50).) Then if R |= ¢(A, A1,...,Aq) and 7 € S is the unique element such that
R E 0-(\,..., ), it follows that exp(A) is the unique Z such that R = x,(4,A1,...,Aq, Z).
This is because, by the Cayley-Hamilton Theorem, every d x d matrix satisfies its own character-
istic equation, which means that the conditions of Proposition [8.3.2] are satisfied. The function
exp : G — Myxq(R) can therefore be defined by the Ley,-formula

(X9 A\ (0-() Ax-(X, 7. 2)))-
Tes

O

The heart of the proof used in [KZ06] is based on the analytic analog of Proposition
which we shall eventually formulate and prove. For this proof we will be needing Corollary [8.3.5]

(to Theorem , Lemma and Theorem as ingredients.

Corollary 8.3.5. The structure (R | Lexp) is O-minimal.

Proof. Let ¢(z,y1,...,Yn) be an Lexp-formula and let ai,...,a, be parameters from R. By
Theorem we may suppose that ¢(z,y1,...,yn) is an existential formula. By Corollary

the set
{‘T €ER | R ': d)(x’al?"';an)}
is a finite union of points and open intervals. It follows that (R | Lexp) is O-minimal. O

Lemma 8.3.6. Let hq(Z,9),. .., n(Z,§) be a Pfaffian chain of Lexp-terms, with & = (x1,...,Ty)
and § = (y1,.--,Yym), and let g(Z,9) € R[Z, 7, h1,...,]. Then there are finitely many m-tuples
fl = (fl,la teey flym)v L) fm = (.fs,la sy fs,m)f with fi,j € R[fa ga hla ceey hl} such that

%xp,R 'ZVf[Hg(g(fa g) = 0) A
(fi,la ey fz,m)

0
35(g(Z,7) =0 A fi(@, g —0Ad€t<
y(9(7, ) 1§\/i§s( (7, 9) oY1, Ym)

)@ 2o

Proof. Let K = Texpr andlet aq,...,a, € K. Forevery f € R[Z,¢, h1,..., ], welet hz : K™ —
K be given by hz(%) = h(d,y). Now define Mz be the ring of all these functions fz. We note that
Mg is closed under differentiation, as hq,...,h; is a Pfaffian chain, Mz contains Z[yi, .. ., Ym]
and Mgz is Noetherian, as it is finitely generated over R. This means that we are in a position to
apply Theorem with T4 = Texpr, M = Mgz, U = K™ and S = V(gz). This Theorem tells
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us that if we assume K = 35(g(d, y) = 0), then there exist f1,..., fmn € R[Z, 7, h1,..., ] such
that

- J JE— J— 8 sy Jm g
K E3y(g(d, ) =0A f1(d,9) == fm(a@, ) =0 Adet ((flf)> (@, y) #0).
A5+ Ym)
For every K |= Texpr and every ay,...,a, € K, we define the Lex, r-formula
— — JER— g J— a s Jm Jr—
brea(d) = 30100, 3) = OA AT =+ = f(@) =08t GL20) 35y 20),

where the f1,..., f;, implicitly depend on K and ay,...,a, of course. Consider the theory
T = 7:3Xp,R U {ﬁ(bK,c_i(E’) | K ': 7-exp,]R and A1,...,0n € K}7

where ¢ are new constants. For every K = T and ay, ..., a,, the statement K = ¢k z(d@) is a
consequence of K = 3y(g(a@,y) = 0), as K = Texpr. S0, since K = =gk #(¢), we must have
K = —-34(g(¢,9) = 0) for every K =T and hence T = —35(¢(¢, %) = 0). By the Compactness
Theorem, there are finitely many

jQﬁl(é‘)a---aﬁ(bs(é’) S {ﬁ(bK,('i(E’) | K ': 7:exp,]R and Ai,...,0n € K}
such that

Texpr U{=01(0), ..., ~¢s(0)} FE —3(9(c, %) = 0),
SO
7:exp,lR |: Hg(g(a 27) = 0) — \/ Qﬁl(é)
1<i<s
and therefore
Towr = VEEH(9(F §) =0) = \/ ¢:i(@),
1<i<s

as the constants ¢ do not appear in 7exp . But this is easily rearranged to a statement of the
form

Tesp e EVZ[FY(9(7, 9) = 0) =

- - - afi,a"'vfi,m JER
Sil0(5.0) =0n \/ (@) =0 nder (St find) gy 2 o)
1<i<s 8(y17aym)
proving the Lemma, as the implication the other way around is trivial. O

The Theorem below is known as the Analytic Implicit Function Theorem.

Theorem 8.3.7. Suppose that U is open in R™ ™ and f1,..., fm : U = R are analytic functions.

Assume that (P,Q) € U and f1(P,Q) = ... = fm(P,Q) = 0. Suppose furthermore that the
determinant of the matriz
BH . _Of
6117\4,1 aa?r+m
A = . .
O fm Ofm
8137\4,1 T 6$7~+77L

is nonzero at the point (P,Q). Then there exist open neighborhoods Vi of P and Va of Q with
the following properties.
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() Vi xVa CU.

(ii) For each ¥ € Vi there exists a unique point § € Va such that f1(Z,9) = ... fm(Z,7) = 0.
This point satisfies det(A(Z, 7)) # 0.

(iii) In this way we obtain analytic mappings ¥1,...,¥m : Vi — R satisfying 1;(3?) = . Fur-

thermore, forl=1,...,r and & € V; we have
Oy of1
oz Oz
. — _A—l . .
611}7,]' a.f"fl
ox; ox;

when the left hand side is evaluated in the point £ and the right hand side is evaluated in
the point (%, (), .., Y (7)).

Proof. A proof of this can be found in [FGO02]. O

The following definitions are basically the same as Definitions [A-2.2] and [A-2.3] only with
“continuous” replaced by “analytic”.

Definition 8.3.8. Let (i1, ...,4,) be a sequence of zeros and ones. An analytic (i1, ...,,)-cell
is a definable subset of R, defined by induction as follows. (When we say definable, we mean
definable in the language Lexp, with constants from R.)

(i) An analytic (0)-cell is a one-element set {r} C R and an analytic (1)-cell is an interval
(a,b) CR, with a € RU{—o0} and b € RU {oo}.

(ii) If Cis an analytic (i1,...,i,)-cell and f : C — R is a definable continuous analytic function,
then its graph {(Z,y) € C x R | f(Z) = y} is an analytic (i1, ..., in, 0)-cell.

(iii) If A is an analytic (i1,...,in)-cell and f,g : C — R are definable continuous analytic
functions or the constant functions +oo and f(#) < g(¥) for all £ € C, then {(Z,y) €
C xR f(Z) <y < g(@)} is an analytic (i1, ..., i, 1)-cell.

Definition 8.3.9. Let n € N, with n > 1. An analytic decomposition of R™ is a special kind of
of partition of R™ into finitely many analytic cells. The definition is by induction on n.

(i) An analytic decomposition of R is a finite collection of intervals and points of the form

{(_Oova1)7 (ala a2)a ceey (aWh OO), {a1}7 ey {am}}7
with a1 < --- < a,, real numbers.

(ii) An analytic decomposition of R"*! is a finite partition of R"*! into analytic cells C, such
that the set of projections 7[C] is an analytic decomposition of R. (Here, 7 : R**1 — R™
is the projection on the first n coordinates.)

As promised, we give a proof of the Analytic Cell Decomposition Theorem for (R | Lexp)-
The proof is based on that given in [vdDM94].

Theorem 8.3.10. For every n € N with n > 1, the following holds.
(I,) Given any definable sets Ay, ..., A; CR™, there is an analytic decomposition of R™, parti-

tioning each of A1, ..., A;.
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(I1,) For each definable function f: A — R, with A C R™, there is an analytic decomposition
of R™, partitioning A, such that each restriction f [ C': C — R is analytic, for each cell
C C A in the decomposition.

Proof. We use induction on n, in the following manner. First we show that (I;) holds. Then we
prove (I,) = (I1,) and (I,,) + (II,) = (I,41) for all positive n € N.

Verify that (Iy) is simply given by (Iy) of Proposition Now suppose that (I,,) holds
and let f: A — R be a definable function with A C R”™. Then by Theorem [6.1.2] there exists an
existential Lexp-formula ¢, such that R = VZ,y[(Z,y) € graph(f) < ¢(z,y)]. By Lemma m
we may assume that ¢ is of the form

T
Elzl,...,zm/\rizo,
i=1

where each 7; is an Lexp-term. This gives us an Lexp-term, F = 72 + -+ 72, such that
R = VZ,y((Z, y) € graph(f) < FZ(F(Z,y, 2) = 0)].

Lemma [£.2.6] tells us that F' is part of a Pfaffian chain of Ley,-terms, say hy,...,h. Since
F(#,y,2) € R[Z,y,Z, h1,..., ], we can use Lemma to find finitely many (1 4+ m)-tuples
= fiaem)s oo fiem = (fsas -5 fsem), with fi j € R[Z,y, 2, ha, ..., hy] such that

R =Va[3y, 2(F(7,y,2) = 0) &

S A @) =08\ (29 =0 det (2

1<i<s

(fixs-os fi14m)
Y, 215y 2Zm)

) @ 200

This means that A = J, ., Ai, where

6(fi,1a ey fi,l-i-m)
8(y7 Zlyevey Zm)

Ay = {7 € AR | 328, 12, 2) = 0 A dt ) @.s@. 20,
fori=1,...,s.

Next, we fix some A; and use ordinary cell decomposition ((II,,) of Proposition to find
a decomposition D; of R™, partitioning A;, such that the restriction f | C is continuous for each
cell C C A; in D;.

(In JvdDMB9J) it is claimed that at this point it follows from Theorem that f is analytic
when restricted to C'. I was unable to verify this claim, however. I shall therefore use an

alternative approach.)
For a cell C C A; in D;, consider the set

O(fi1,--os fiiem)
8(ya Zlyenny zm)

B={(#72) ¢ CxR™|R [ fi(Z f(Z),Z) = 0Adet < ) (Z, f(Z),Z) #0}.

Then 7[B] = C, as C C A;, where m : R"™™ — R™ is the projection on the first n coordinates.
Then by Proposition there exists a definable function g : C' — R™ such that graph(g) C B.
In other words, for all @ € C,

O firs--s fii4m)
a(y7zl7 oo azm)

R#fﬂ&f@%ﬂ@):0A¢%< )(ﬁ@i@%ﬂ@)#&
Write g = (g1, .-, gm)-
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We now apply (II,) of Proposition in m stages. Starting out with P? = {C € D; |
C C A;}, we obtain ’Pij from Pijfl, for j = 1,...,m, in the following manner. If ’Pf contains a
cell C such that g; [ C is not continuous, we use (II,,) of Proposition to obtain a partition
P of C, such that the restriction of g; is continuous when restricted to each individual cell in
this partition. We now replace C' in ’Pl-j -t by the cells in P. Applying this process exhaustively
gives us 735 . Verify that Pg is finite partition of A;, such that for each cell C' € PZJ , the functions
fi91,...,g; are continuous when restricted to C.

We claim that for each cell C' € P™, the restriction f [ C is analytic. For take some

70

@ € C. Then f;(@, f(@),g(@) = 0 and det (M) @, £(@),9(a@) # 0. Since (the

interpretations of) the function symbols present in Ly, are analytic and analyticity is preserved
under composition, the functions f;1,..., fii4m € R[Z,y, 2, h1,..., ] are analytic. We can
therefore apply Theorem to obtain open neighborhoods V; of @ and V5 of (f(a), g(@)) and
analytic functions 91, ...,%14m : V1 = R as described in the Theorem. By reducing the size of
V7 if necessary, we may assume that (f(Z), g(Z)) € Vs for each Z € CN V4, by continuity of f and
gon C. Since f;(f(Z),g(Z)) = 0 for & € C N Vq, the functions (f,g) and (¢1,...,%14m) must
coincide on C'N Vi, by uniqueness of (¢1,...,%14m). In particular, f(Z) = ¢1(Z) for Z € CNV;.
Hence, f | C is analytic at the point @ and since @ was arbitrary, f [ C is analytic. Finally,
using our induction hypothesis, we apply (I,) to the collection |J;.;~,P;/". This gives us an
analytic decomposition of R™, partitioning A, such that f | C is analytic for each cell in the
decomposition.

To derive (I,,41) from (I,) + (IL,,), let Ay,..., A; € R Then by (I,51) of Proposition
there exists a decomposition D of R"*!, partitioning each of Ai,...,A4;. Let C be a
(i1,...,14n,0)-cell in this decomposition. Then by definition there is a definable continuous func-
tion f : w[C] — R, such that C = graph(f). By (II,), there is an analytic decomposition D¢
of R™, partitioning m[C, such that each restriction f [ C' is analytic, for each cell C’ C 7[C] in
the decomposition. Now if on the other hand C = {(Z,y) € #[C] x R | f(¥) <y < g(Z)} is a
(i1,...,in, 1)-cell, in the decomposition D, then we can proceed similarly, only now we get two
analytic decompositions Dy, D, of R"™, such that each restriction f | C’ is analytic for C' € Dy
and each restriction g [ C” is analytic for C” € D,. We write Do = Dy U D, in this case. Next,
we apply (I,,) on the finite collection | Js.p Dc of subsets of R™, to find an analytic decompo-
sition D’ of R™, partitioning each cell C’ € D¢, for each cell C' € D. Now suppose that C' € D
is an (i1,...,in,0)-cell, say C = graph(f). Then by construction of D’, the projection 7[C] is
partitioned by analytic cells Cy,...,Cy,, € D', such that the restrictions f [ C; are analytic.
Thus, C = U, <,<,, graph(f | C;) can be partitioned into finitely many analytic cells. A similar
treatment can be given to the (iy,...,%,, 1)-cells in D. Applying this to each individual cell in the
decomposition D, gives us an analytic decomposition of R”*!, partitioning each of A;,...,4;,
as desired. O

8.4 Uniformity comes for free

In this section we finish the proof of the fact that Conjecture [8.2.6]implies Conjecture [8.2.7} For
this, we need one last Lemma.

Lemma 8.4.1. Let C C R™ be an analytic (i1,...,i,)-cell and write m =iy + -+ +4,. Then
there exists a definable analytic diffeomorphism 6 : B — C, where B C R™ is an open box. (For
m =0, B is a point.)

Proof. We use induction on n. For n = 1, we can take 6 to be the identity, as C is a point or an
open interval in this case.
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Suppose that C is an analytic (iy,...,i,,0)-cell. Then C' = graph(f), where f : 7[C] — R is
an analytic function. By the induction hypothesis, there exists a definable analytic diffeomorpism
¢ : B — 7[C], where B is the product of i; +- - - 4, open intervals. Then if we define § : B — C
by 0(Z) = (¢(¥), f(¢©(Z))), the map 0 is a definable analytic diffeomorphism between B and C,
as needed.

Next, suppose that C' is an analytic (i1, . .., in, 1)-cell, say C = {(Z,y) € n[C]|xR | f(¥) <y <
g(Z)}. Again, by our induction hypothesis, there exists an analytic diffeomorpism ¢ : B — 7[C],
where B is the product of iy + - -- 4+ 7, open intervals.

o If f £ —o0 and g # oo, we define § : B x (0,1) — C by

0(Z,y) = (p(Z), (1 —y) - f(Z) +y-g(Z)).

If f # —o0 and g = oo, we define 6§ : B x (0,00) — C by
0(7,y) = (¢(Z), f(T) +y)-
o If f=—00 and g # oo, we define 6 : B X (—00,0) — C by

0(z,y) = (p(2), 9(%) + y)-

If f=—o0and g =00, we define 6§ : B xR — C by
0(Z,y) = (o(Z),y).

In each case, 6 is a definable analytic diffeomorphism between an open box in R™ and C, with
m =11+ -+ i, + 1, as required. O

Theorem 8.4.2. Conjecture implies Conjecture|8.2.7.
Proof. Assume Conjecture Let V C G?" be an algebraic variety, with dim(V) < n and let

W ={(X1,...,Xn) €G" | (X1,..., Xn,exp(X1),...,exp(X,)) € V}

Then by Lemma the set W is definable in the structure (R | Lexp). Theorem then
allows us to partition W into finitely many analytic cells. Let C be an (i1,...,7,)-cell in this
partition and let 8 : B — C' be a definable analytic diffeomorphism from an open box B C R™
to C, with m = 43 + - --i,, as given in Lemma Let X,Y € C and let o : [0,1] — B be
the path of uniform speed along the line segment from 6~1(X) to §~1(Y). Then v =f oo is a

definable analytic path from X toY in C.
By Conjecture every point in Z € W satisfies an equation of the form Y " , m;Z; =0,

(3

with mq,...,m, € Z, not all zero. This is in particular true for the points in the image of . Since
only countably many such equations exist, at least one of these, say h(Z )= Z?zl m;Z; = 0, must
be satisfied by infinitely points in the image of v. Then {t € [0,1] | h(v(¢)) = 0} is an infinite
definable subset of [0, 1], so by O-minimality of (R | Lexp) it must contain an open interval. Since
ho~y:[0,1] = Mpx»(R) is an analytic function which is zero on a subinterval of [0, 1], it must be
identically zero on [0, 1]. Hence, X and Y satisfy the same equation h. Since these point where
arbitrary points of C', each point of C satisfies this equation h. Because we partitioned W into
finitely many cells, it is clear that there exists a uniform bound N on the coefficients of these

equations, as described in Conjecture [8.2. O
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9 Concluding remarks

9.1 Possible generalization

Let us address a question that one might have about Theorem [8.4.2] Is it necessary for the
eigenvalues of the matrices in G to be real? Or can we also find a proof for Theorem [8.4.2] with
G = Myxq for example? The answer appears to be no, at least not with the methods we have
at our disposal. This is because we cannot hope to improve on the result of Lemma to
show that the function exp : My, xn(R) = My xn(R) is definable in the structure (R | Leyp). For
suppose that it where definable. Then setting n = 2 shows that the function

reel(5 7))

is definable. Since

0 =z _ cos(z)  sin(z)

5P -z 0 ~\ —sin(x) cos(z)
this means that in particular the function z — sin(z) is definable in (R | Lexp). But then
{z € R | sin(x) = 0} would be a definable set, which is clearly false by O-minimality of (R | Lexp)-
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A  Appendix

A.1 Real analytic functions of several variables

Let us fix n € N, with n > 1. For elements p = (1, ..., 4n) € N and variables x = (z1,...,2,),
we will sometimes use the notation xz# = 2/ ---x#». In this context, the element y is called a

multi-index. A formal expression of the form

Z a,(x —a)r,

peN”

with @ € R" and a, € R, for each p, is called a power series in n variables. Recall that if
such a series converges absolutely at a point x € R™, then the series converges to a value in R,
independent of the order of summation.

Definition A.1.1. Let A be a subset of R®. A function f : A — R is called real analytic if
for each o € A, there exists a neighborhood of « such that the function f may be represented
by an absolutely convergent power series on the intersection of this neighborhood with A. A
vector valued function f = (f1,..., fm): A = R™ is called real analytic if all of its components
fi + A = R are real analytic.

As the reader is surely aware, analytic functions enjoy many useful properties. We will make
ample use of some of their basic properties and for the sake of completeness, we shall list these
(without proof) after the following definition.

Definition A.1.2. Let U C R" be an open set. A function f : U — R is of class C!, or a

lp
C'-function, if the partial derivatives gTﬁ : U — R exist and are continuous for all 4 € N™ such

that 1 + -+ + pn, = . The class C™ is defined as the intersection of the classes C!, over all
leN.

Proposition A.1.3. Let U C R” be an open set and suppose that f : U — R is a real analytic
function. Then for each i = 1,...,n, the derivative 6%); : U — R exists and is analytic. Hence
all higher order derivatives of f are analytic and in particular f is a C*-function.

Proposition A.1.4. Let U C R" and V C R™ be open sets and suppose that f : U — V and
g : U = R are real analytic functions. Then their composition go f : U — R is analytic.

Proposition A.1.5. Let U C R"™ be an open set. Then the set of real analytic functions U — R
forms a ring. Moreover, if U is connected, then this ring is an integral domain.

A.2 O-minimal structures

Given a language L, an L-structure M is called minimal if every subset of M which is definable
with parameters from M is is quantifier-free definable just using equality. This means that these
definable sets are either finite or cofinite. By analogy, if every definable subset of M is quantifier-
free definable using equality and inequality, then we say that this structure is order minimal or
O-minimal.

Definition A.2.1. Let L be a language containing “<” and let M be an infinite L-structure
which is linearly ordered (by “<”). Then M is called an O-minimal structure if every subset of
M, definable in L with parameters from M, is a finite union of intervals and points.
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Many nice properties of definable subsets of M™ for all n € N follow from this condition on
just the definable subsets of M. One of these properties (and perhaps the most significant one)
is the Cell Decomposition Theorem. This Theorem characterizes the definable sets and shows
that all definable functions are piecewise continuous. The Cell Decomposition Theorem is stated
below the following two definitions which we shall need first. For this, we temporarily fix the
O-minimal structure M, in the language L.

Definition A.2.2. Let (i1,...,4,) be a sequence of zeros and ones. An (i1,...,4,)-cell is a
definable subset of M, defined by induction as follows. (When we say definable, we mean
definable in the language L, with constants from M)

(i) A (0)-cell is a one-element set {m} C M and a (1)-cell is an interval (a,b) C M, with
a€ MU{—oo}and be MU {co}.

(ii) If Cis an (i1,...,i,)-cell and f: C — M is a definable continuous function, then its graph
{(Z,y) e C x M | f(Z) =y} is an (i1,...,in, 0)-cell.

(iii) If A is an (i1,...,4,)-cell and f,g : C — M are definable continuous functions or the
constant functions oo and f(¥) < g(¥) for all ¥ € C, then {(#,y) € C x M | f(¥) <y <
g(Z)} is an (i1,...,1pn, 1)-cell.

Definition A.2.3. Let n € N, with n > 1. A decomposition of M™ is a special kind of of
partition of M™ into finitely many cells. The definition is by induction on n.

(i) A decomposition of M is a finite collection of intervals and points of the form

{(=00,a1), (a1,a2),...,(am,0),{a1},...,{am}},

with a1 < --- < a,, elements of M.

(ii) A decomposition of M"*! is a finite partition of M"*! into cells C, such that the set of
projections 7[C] is a decomposition of M. (Here, 7 : M"+t! — M™ is the projection on
the first n coordinates.)

Proposition A.2.4. For every n € N with n > 1, the following holds.

(I,) Given any definable sets Ay,...,A; C M", there is a decomposition of M™, partitioning
each of Aq,...,A;.

(I1,) For each definable function f : A — M, with A C M™, there is a decomposition of M™,
partitioning A, such that each restriction f | C : C' — M is continuous, for each cell C C A
in the decomposition.

Proof. A proof of this can be found in [vdD98]. O

It turns out that models of the complete theory of an O-minimal structure are themselves
again O-minimal. This result is not trivial and the analogous statement for minimal structures
does not hold.

Proposition A.2.5. If M is an O-minimal L-structure and N |= Th(M | L), then N is O-
minimal as well.

Proof. A proof of this can be found in [KPS86]. O
If additionally M is an ordered Abelian group, then there is even more we can say. The

following Proposition is known as definable choice for O-minimal structures.
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Proposition A.2.6. Suppose that {0,—,+} C L and M is an ordered group with respect to
addition. If A C M™% s a definable set and 7 : M™T"™ — M™ is the projection on the first m
coordinates, then there exists a definable map f : w[A] — R™, such that graph(f) C A.

Proof. A proof of this can be found in [vdD98]. O

A.3 Types and saturated models

One of the most important notions in model theory is that of a type. Loosely speaking, a type
is a (possibly infinite) list of properties describing how an element might behave.

Definition A.3.1. A partial n-type in L is a set of L-formulas of (the same) n variables.

It is also possible to define complete n-types, but we will not be needing this concept. Since
we shall only be concerned with partial types, there will be no harm in sometimes just referring to
them as “types”. A partial n-type in the variables x1, ..., z, is usually written as p(z1,...,2,).
If M is an L-structure with a,...,a, € M and M = ¢(aq,...,a,) for every o(z1,...,2,) €
p(x1,...,xy,), then it is said that (ai,...,ay,) realizes p in M. If M is an L-structure which
contains some n-tuple that realizes p, then we say that p is realized in M.

Definition A.3.2. If M is an L-structure and p(z1,...,2,) is a partial n-type in L, then p is
finitely satisfiable in M if all finite subsets of p are realized in M.

Next, we introduce the concept of a saturated model. Such a structure realizes as many types
as can be reasonable expected. Such a model is “rich” in some sense. Saturation is defined
relative to some cardinal number, as we will allow the use of parameters from some fixed set
smaller than this cardinal number.

Definition A.3.3. Let M be an L-structure and let x be cardinal number. We say that M is
k-saturated if for any subset A C M, with |A| < k, and any partial 1-type p(x) in L4 which is
finitely satisfiable in M, the type p(z) is in fact realized in M.

The following Proposition shows that we can always extend a given model in such a way that
the resulting structure is saturated. This will be our main tool when working with types.

Proposition A.3.4. Let M be an L-structure and let k be a cardinal number. Then there exists
an elementary extension M =< N which is k saturated.

Proof. A proof of this can be found in [Poi00)]. O
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