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Abstract

Evolutionary models are applied in various branches of science. The notions of births,
deaths and mutations in a population of individuals can be interpreted in many different
ways. We discuss some general modelling choices and universal properties of evolution-
ary systems. Most importantly, when certain individuals reproduce faster than others,
evolution gives rise to a dynamical system that optimizes itself.

After introducing evolutionary models in general, we focus on two specific models.
Firstly, we investigate the relation of the population size to convergence properties in a
population of solutions to the optimization problem 1-in-3-SAT. Secondly, we consider
birth-death processes of diffusing particles. We derive an equation for the density of
particles that describes the average behaviour and compare predictions to simulations of
the micro-model. The average description does not account for the observed clustering
of the population, so we consider methods to describe and measure deviations from the
mean behaviour.
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Chapter 1

Evolutionary Models

1.1 Evolutionary models

The ability of life to adapt emerges from a mechanism that is very simple but elegant.
Individuals that flourish in their environment have the opportunity to reproduce, while
individuals that struggle die without progeny. The key element is that children resem-
ble their parents, so that the beneficial characteristics of the flourishing individuals are
preserved for the next generation, while the detrimental characteristics of the struggling
individuals are discarded from the population. Furthermore, parents and their offspring
are not exactly equal. Instead, they differ slightly, which introduces new variability and
allows for the emergence of new traits. These traits may enable some of the offspring to
out-compete the others after which the story starts anew.

As humans are part of life, there has been much interest in gaining more insight into
the ability of life to adapt. However, the ideas of evolution and birth-death processes
have a much broader range of applicability and evolutionary models are used in several
branches of science. Obviously, the models are used in biology and genetics. For ex-
ample, to study the evolution of a species or the adaptation of bacteria [Nowak, 2006].
Somewhat less obvious is the application in fields like epidemics or economics. In these
contexts, a birth may be an infection or a new company, while a death corresponds to a
recovery of an infected person or a closure of some company. [Zhou, Liu, Bai, Chen, and
Wang, 2006] [Boschma and Frenken, 2003].

In physics and chemistry, reaction-diffusion models are used that remind of birth-
death processes [Wang, 2013]. Births and deaths are observed in the reactions where
particles are duplicated or removed, while diffusion can be considered as continuous mu-
tation. These processes can model for example auto-catalysis where the product is needed
as reactant: A+ B � 2B. In this case, the concentration of A particles determines the
“reproduction rate” of B particles. To make the correspondence complete, the reaction
from B to A should be spontaneous, so that this is equivalent to a spontaneous death
of a B particle. Note that B could represent simple molecules, but also viruses or other
complex structures. In more biologically oriented literature, this model is sometimes
called the Brownian bug model [Young, Roberts, and Stuhne, 2001].

In evolutionary models, significant improvement of the population may be only seen
after many generations. However, in the age of computers it is in fact feasible to generate
many generations. Heuristic optimization methods that are based on evolutionary prin-
ciples are known as genetic or evolutionary algorithms [Back, 1996]. Good solutions to
the problem at hand are given a higher probability of reproduction than bad solutions.
The solutions are mutated and recombined in order to search the solution space more
efficiently than a random search. One hopes that the population converges towards some
near-optimal solution of the problem, which is satisfactory in most practical cases.
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Also in the field of data assimilation, methods are used that resemble evolutionary
models. It is common to propagate a population (an ensemble) of solutions, for example
in the Ensemble Kalman Filter [Burgers, van Leeuwen, and Evensen, 1998] and in the
Particle Filter [Van Leeuwen, 2009]. However, for the Particle Filter there is a closer
analogue. The technique of Sequential Importance Resampling [Gordon, Salmond, and
Smith, 1993], which amounts to duplicating some of the solutions and deleting others,
reminds of births and deaths. The “reproduction rate” of a solution is determined by
the distance of the solution to the observed data. Mutations are introduced by model
propagation. For a non-deterministic model, solutions that are equal at one instance of
time are in general different at some other time, so it might be interesting to consider
just these differences as mutations.

In the following, we introduce the general concepts in evolutionary systems with a
finite population.

1.2 Concepts of Evolutionary Modelling

The basic ingredients of evolutionary modelling are birth, death and mutation. We con-
sider a finite population of size M (a finite set G with |G| = M), which consists of
members that are objects xi

1 from some space S, so G = {xi}i≤M with xi ∈ S. This
population changes over time due to reproduction, death or mutation of its members.
These events are random, so the population G(t) is a time-dependent random variable
or a stochastic process. In fact, it is a Markov process [Gardiner et al., 1985], because
the current state of a population completely determines its future probabilities.
When a member reproduces it gets duplicated in the population and when a member
dies it is removed from the population. Mutation means that a population member xi is
changed into some other x′ ∈ S. Usually, mutation probabilities P(xi → x′) are defined
in such a way that a typical mutation changes the member xi only slightly. That is,
typically x′ should be close to xi in some sense. For example, S could be a metric space
in which the only allowed mutations are mutations that are small with respect to this
metric. The concept of mutation is illustrated in Figure 1.1 by three examples.
In the following, we will use the words “population members”, “individuals” and “parti-
cles” interchangeably.

0100011001101 0100010001101

A−F−D−B−C−E A−F−D−C−B−E

Figure 1.1 – Three examples of small mutations. Flipping one bit in a bit-string, swapping
characters in a character string or adding a simple polygon to a polygon shape.

1Here, i is an index that labels the members, 1 ≤ i ≤M where M is the population size.
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1.3 Modelling choices

The population changes by births, deaths and mutations, so it is necessary to specify
when these events happen and which members are changed. What is appropriate de-
pends on the system we want to model. Here we discuss some of the choices that can be
made.

Birth and death events can happen at fixed instances of time, but can also be dis-
tributed in time like a Poisson process with certain average rates [Gardiner et al., 1985].
Births and deaths can be independent events, but can also be coupled such that births
and deaths happen simultaneously in order to ensure a fixed population size through
time. A fixed population size could be due to limited resources, such as nutrients or
space. Consider for example a rainforest, where every free spot in the light is immedi-
ately filled by new plants. If births and deaths are independent and the probability of
death is strictly positive, there is a finite probability that the population becomes extinct.
Determining this extinction probability is a central question in the theory of branching
processes, which are Markov chains that consider the population size of reproducing
particles [Karlin, 2014].

Time

Time

Time

Figure 1.2 – Illustration of the distribution of births (green) and deaths (red) through
time by some examples. From top to bottom: simultaneously at fixed instances of time,
simultaneously at random instances of time or independent at fixed instances of time.

Now we consider two popular examples where births and deaths are coupled. In the
so-called Moran process [Nowak, 2006], at each time step, one of the members xi is chosen
to reproduce and subsequently a random individual is chosen to die. The probability of
death is uniform throughout the lifetime of an individual, so this process is appropriate
for systems in which there is no significant ageing of its individuals. In the Moran process
it is allowed that the reproducing individual is also selected for death.
As a second example, consider a population that reproduces in non-overlapping gener-
ations. The population at the next time step consists completely out of newborns and
all individuals of the previous population are removed. That is, in a single time step, all
individuals are replaced by their offspring. This models for example annual plants which
are replaced by their seeds every year.

Reproduction rates need not be the same for every xi in the population. The fitness
of an individual is defined to be the ability of this individual to reproduce in order to
propagate its genes. In fact, an individual that is good in every possible sense but is
unable to reproduce, does not have a high fitness.
For every x ∈ S, define f(x) as the average reproduction rate of an individual that has
type x2. So the average reproduction rate of a population member xi is equal to f(xi).
The function f is called the fitness function and it defines the fitness landscape3 on S.

2Note that we define f not only for population members xi, but for all potential member types x ∈ S.
3Metaphorically, a population can move through the ”fitness landscape”.
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If the fitness function is different for different xi in the population, this gives rise
to natural selection as described in the introduction. If the fitness function is constant,
so that every type x reproduces equally fast, there might still be an interesting balance
between mutations and so-called genetic drift. Genetic drift concerns the statistical prop-
erties of survival and extinction of types x ∈ S due to random sampling of births and
deaths in a finite population. Evolution in a constant fitness landscape is called neutral
evolution and it is an interesting question whether neutral evolution or natural selection
is more important for the evolution of species.

A similar, but slightly different definition of fitness concerns the reproduction proba-
bility instead of the reproduction rate. This definition is used when the actual reproduc-
tion times are not coupled to the fitness of the population, for example when reproduction
happens at fixed instances of time. In this definition, the fitness of an individual is a
weight wi = f(xi) and the probability of being selected for reproduction is given by wi∑

wi
,

where the sum runs over the whole population. Proper selection with these probabilities
is done by roulette wheel selection, which is illustrated in Figure 1.3.
The new definition of fitness differs from the previous in that the actual reproduction
rate depends on the fitness of the other individuals in the population. If time is not of
interest, in most cases it is possible to rescale time in a way that the two definitions are
practically equivalent.

w1 w2 w3 w4 w5

Figure 1.3 – Roulette wheel selection. The green arrow picks the reproducing individual.
Its position is uniformly random on (0,

∑
i wi), so it has probability wi∑

i wi
to fall in the

i-th interval, which is the correct selection probability.

It is possible and interesting to work with a fitness landscape that depends on the
composition of the population. For example, Nowak investigated how cooperation could
emerge by looking at agents that play the prisoners dilemma against each other [Nowak,
2006]. An individual x is defined by its strategy and the reproduction rate depends on
the pay-off in the games, which depends on the encountered opponents. Although these
landscapes are interesting, we will not consider them here and only use models in which
there is no direct influence of the particles on the environment and on each other. The
fitness landscape is fixed throughout time. Also, note that we only consider asexual
reproduction. Sexual reproduction, in which two individuals, x1 and x2, are needed for
reproduction and where the x1 and x2 are combined in some way, will not be treated.

Up to now, we only discussed births and deaths. For mutations, the following two
choices are the most obvious and the most popular. Either mutations happen directly at
birth or they happen throughout the whole lifetime of an individual. Mutations at birth
correspond to the fact that an individual is slightly different from its parent. Through-
out its lifetime, the individual remains the same. This is probably appropriate for most
lifeforms. For other systems, it might be more appropriate to apply mutations during
the entire lifetime of an individual. For example, a virus mutates between infections and
not just at infections.

Often, mutations are implemented as mutation attempts. That is, in the case of
mutation at birth, a newborn mutates with some probability pm and is exactly equal to
its parent with probability 1− pm.
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1.4 Mutation

The implementation of mutations depends on the space S in which the members live.
We will now briefly discuss some examples of mutation.

As a first example, consider the case where S is the discrete space of bit-strings, so
that x ∈ S looks like x = {a1a2a3...aN} with ai ∈ {0, 1} for 1 ≤ i ≤ N . Note that
practically anything can be represented by bit-strings4 and that this space is in general
high-dimensional. A mutation in this space could be a single bit flip: one bit i is selected
at random and ai is flipped (0 ↔ 1). This is an instance of a discrete space in which
all mutations in the allowed subset are equally likely, which is a typical choice. Another
possibility of mutation in S is to flip every bit with a certain probability pf � 1. Now
every x′ is in principle reachable from every x in a single mutation, but the probability
of such a mutation becomes very small when x and x′ differ in many bits.

As a second example, we look at the case where S is the Euclidean space Rn. In
this space, mutation could be implemented as Brownian motion (or diffusion). This is
an instance of continuous mutation. Instead of Brownian motion, we could also use
more general Lévy processes [Gardiner et al., 1985]. Lévy processes are stochastic pro-
cesses with independent and stationary increments. That is, the displacements in two
non-overlapping time intervals are independent and identically distributed. Brownian
motion, possibly with drift, is the only continuous Lévy process. Other Lévy processes
contain discontinuous jumps, also called Lévy jumps or flights. These Lévy jumps may
account for sudden larger mutations. In fact, it has been investigated if more general Lévy
processes better fit the data on body mass and skull size of primates [Landis, Schraiber,
and Liang, 2013].

A Lévy process is characterized by its characteristic function, which is given by the
Lévy-Khintchine formula [Landis et al., 2013]. From this formula, it can be seen that
a general Lévy process consists of linear displacement, Brownian motion and a jump
process. The jumps arrive independently in time like a Poisson process. A Lévy process
can be described by specifying these three components.

Figure 1.4 – Two-dimensional random walks based on Brownian motion (left) and the
Cauchy process (right). The length scales can be set by the parameters of the distribu-
tions, so they are arbitrary and therefore not shown in the figures. The discontinuous
jumps of the Cauchy process are clearly not present in the continuous Brownian motion.
Note that the random walks consist of the same number of steps.

4Every object stored in a computer is stored in bits, so it is actually a bit-string.
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To implement Lévy processes for mutation, we still need to choose a specific Lévy
process. Probably the easiest choice besides Brownian motion is the Cauchy process,
because it can be given analytically. The Cauchy process is a Lévy process where the
magnitude of the displacement r in a time-interval ∆t is given by the Cauchy distribution
with parameter γ∆t. The probability density function of the Cauchy distribution with
parameter γ∆t is given by

p(r) =
1

γ∆tπ

[
1 +

(
r
γ∆t

)2
] . (1.4.1)

In Figure 1.4, a typical trajectory of Brownian motion is compared to a typical trajec-
tory of the Cauchy process. It is not directly clear how to legitimately compare mutation
based on Brownian motion and on the Cauchy process, because the Cauchy process has
infinite variance. Since we do not have a specific application in mind, we will focus on
Brownian motion in the rest of this thesis. However, it might be interesting, for example,
to investigate if evolution with Lévy processes explores a rugged fitness landscape faster.
Evolution in Rn could model continuous traits, such as propagation speed, energy con-
sumption or the aforementioned body mass and skull size. It could also be a simple
optimization method in a rough and high-dimensional parameter space with many local
minima.

The third example shows that evolutionary algorithms can be very general. Consider
the case where S is the space of all routes through N cities c with the restriction that we
can only visit every city once. Two routes are shown in Figure 1.5. For x ∈ S, we write
x = {c1, c2, . . . cN}, ci 6= cj when i 6= j, which represents the order in which we visit the
cities. The goal of the Travelling Salesman Problem is to find the shortest route in S. If
we try to solve this problem using genetic algorithms, we could assign fitnesses based on
the length of the route and implement mutation by for example cutting and reconnecting
a route.

Figure 1.5 – Two possible Travelling Salesman routes through all the green cities.
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1.5 Dynamics

Now that we have defined our evolutionary framework and have given some examples,
we will look at some general results.

To start with, we need some way to initialize our system. For example, the ini-
tial population can be distributed randomly, according to some probability distribution.
Depending on our modelling goals, we are interested in equilibrium or non-equilibrium
results. If we are interested in equilibrium results, we could initialize our system ran-
domly and wait for some time until the system has reached an equilibrium. To ensure
that we are in equilibrium, we can check that certain population statistics have reached
a steady value apart from some fluctuations. Also, it is interesting to look at the auto-
correlation of the system, which is some measure of correlation between the system and
itself at some other time. For some statistic X, the autocorrelation is defined by

C(t, t′) = E

[(
X(t)–E(X)

)(
X(t′)–E(X)

)]
, (1.5.1)

where E(X) denotes the expectation of X. In equilibrium, the autocorrelation is a func-
tion of the difference in time C(t, t′) = C(∆t).

If we are interested in non-equilibrium behaviour, such as fitness increase, results
depend more heavily on the initial condition of the population. Often, we are interested
in some average behaviour and to study this, we need to average over an ensemble of
systems that are initialized the same. In the case of equilibrium results, we can just study
a single system for a very long time. This holds provided that the correlation time5 is
relatively short, which is not always the case in evolutionary systems. Sometimes it is
not even clear what equilibrium means in the context of evolutionary systems.

Figure 1.6 – A population {xi}i≤100 with xi ∈ S = R2, represented by red dots, is
clustering in R2. The surface represents some fitness landscape.

5The time after which the system is approximately uncorrelated to its previous state.
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1.5.1 Clustering

A consequence of using small mutations in a bounded population is that the population
clusters in the space S, which is illustrated in Figure 1.6. Consider two individuals x1 and
x2 that are descendants from some common ancestor xc. If the space is large compared
to mutations and the time to the last common ancestor xc is short, the descendants x1

and x2 did not have the opportunity to differentiate much from xc. After a while the
entire population can be traced back as descendants of some common ancestor xc. As a
result, the whole population consists of somewhat similar members.
This argument holds if the most recent common ancestor xc lived not too far in the past.
To become a common ancestor of the population, all lineages of the contemporaries of xc
need to become extinct. The larger the population size M , the longer it takes before the
other M − 1 lineages become extinct. Therefore, in a larger population, there is more
time to differentiate by mutation and to spread out in the space S. On the contrary, in
a smaller population, we should expect less variety in the population, because there is
less time to differentiate.
We see that clustering is a finite size effect, which is related to extinction. The previous
arguments also hold for sub-populations and this shows that tracing back lineages gives
significant information about the population.

Another way to explain clustering is that births only occur in populated subsets of
S, while death happens everywhere in S. That is, death can cause extinction in a subset
Ss ∈ S, after which there are no more births in Ss

6. This asymmetry between birth and
deaths causes clustering of the population [Meyer, Havlin, and Bunde, 1996]. The shape
of the population is dictated by a balance between clustering and spread due to mutations.

Figure 1.7 – A population of red and blue balls. In the second figure, the red ball has
reproduced and its offspring has taken the place of a blue ball.

1.5.2 Fixation

To gain some understanding of natural selection and genetic drift in a population of fixed
size, we perform a thought experiment in a population of M balls that can be either red
or blue [Nowak, 2006]. The situation is illustrated by Figure 1.7. We use the Moran
process described earlier and use fitness in the sense of selection weights. At first, there
is only 1 red ball which has fitness fR and M − 1 blue balls that have fitness fB . Denote
by i the number of red balls. The probability that a red ball is selected for reproduction
is

P(selection) =
ifR

ifR + (M − i)fB
, (1.5.2)

while the probability that a red ball is selected for death is i
M . The absorbing states are

given by i = 0 or i = M . We are now interested in the probability that the red balls
eventually take over the entire population, so that i = M after some time. In population
genetics, this would be called fixation of the red balls.

6Until new particles are introduced in Ss by mutations from outside Ss
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In Appendix A.1 it is shown that the probability of fixation of i red balls is given by

P(fixation) =
1− ri

1− rM
, (1.5.3)

with r the relative fitness, r = fB
fR

. This formula is valid for both 0 ≤ r < 1 and r > 1.

If r = 1, the probability of fixation is just limr→1
1–ri

1−rM = i
M , because in that case, the

lineages of all M balls are equally probable to survive. The behaviour of this formula is
shown in Figure 1.8 and Figure 1.9.
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Figure 1.8 – The fixation probability in a population of size M = 100 as a function of
initial red balls for different values of r.
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Figure 1.9 – The fixation probability of a single red ball as a function of the population
size M for different values of r. The fixation probability does not decrease to zero for
r < 1, while it does for r ≥ 1.
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As expected, the probability of fixation of the red balls is a decreasing function of
the relative fitness r of the blue balls. Also, given that there is at least one red ball,
i > 0, increasing fR or decreasing fB indefinitely so that r → 0, results in fixation with

probability limr→0
1–ri

1−rM = 1. The other way around results in fixation with probability

limr→∞
1–ri

1−rM = 0, provided that i < M .

Other expected properties are that the fixation probability is an increasing function
of i and a decreasing function of M , when keeping the other parameters constant. All
these properties can be seen directly from Figure 1.8 and Figure 1.9. Figure 1.9 shows
that, whenever r < 1, the fixation probability of a single red ball does not approach
zero when the population size goes to infinity. In very large population, only beneficial
mutations have a significant fixation probability. Taking the limit of infinite population
size shows that fixation of lesser mutants is a finite size effect7.

We now take a closer look at the behaviour of the fixation probability when we in-
crease the system size by a factor α > 1, such that i→ αi and M → αM . The fixation

probability in the scaled system is given by 1−rαi
1−rαM = 1−r̃i

1−r̃M , with r̃ = rα. If r < 1, r̃ < r
and if r > 1, r̃ > r, which shows that the scaled fixation probability is an increasing
function of α for r < 1 and a decreasing function of α for r > 18. This implies that
scaling the system favours the fitter individuals. The reason for this is that it is less
probable that a fluctuation accidentally makes the fitter individuals become extinct.
Clearly, scaling the system changes its dynamics. This insight shows that it is difficult to
take a limit to infinite population size for analytical purposes. Many interesting effects
in evolutionary systems are finite size effects.

1.6 Outline

In the next chapter, we look at a specific evolutionary system and look at its convergence
properties. Also, we describe that it is possible to make a link with statistical physics.
In Chapter 3, we look at a continuous evolutionary system which we try to describe by a
stochastic partial differential equation. In Chapter 4, we compare the analytical results
from Chapter 3 to simulations of the micro-model.

7We will later see that finite population size corresponds to non-zero temperature when comparing
evolutionary systems with physical systems.

8Because the normal fixation probability is a decreasing function of r
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Chapter 2

Bit-strings in 1-in-3-SAT

2.1 Moran process for bit-strings

In order to make our discussion more concrete, we will focus on a specific model in this
section. Our population consists of M bit-strings and we use the Moran process. For
clarity, we will repeat their definitions. Every member xi from the population

G = {xi}1≤i≤M (2.1.1)

is a bit-string of the form
xi = {a1, a2, a3, ..., aN} (2.1.2)

with aj ∈ {0, 1} for 1 ≤ j ≤ N . We use bit-strings of length N = 200 and our population
sizes range from M = 100 to M = 5000. The initial population is chosen completely ran-
dom, so every bit of every bit-string is either 0 or 1 with equal probability. In the Moran
process, at every time step a bit-string is selected for reproduction and simultaneously a
bit-string is selected for death. The bit-strings are selected for reproduction according to
their fitness, which we will define below, and are selected for death with uniform proba-
bility 1

M . Mutation occurs only at birth: every bit of the newborn bit-string is flipped1

with probability

µm =
1

10N
, (2.1.3)

so the number of bit flips is a binomial random variable with expected value of only

E(number of bit flips) = Nµm =
1

10
. (2.1.4)

Most newborns are therefore exactly equal to their parent. In fact, a newborn equals its
parent with probability

P(zero bit flips) = (1− µm)N =

(
1− 1

10N

)N
≈ 9

10
. (2.1.5)

Mutation probabilities should be small enough so that good individuals are preserved in
the population instead of mutated randomly. In genetic algorithms, good individuals can
be preserved by simply excluding them from deaths, but we will not consider that case
here.

1That is, 0→ 1 or 1→ 0.
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2.2 1-in-3-SAT

We continue by defining the fitness landscape2. Every population member xi is assigned
a fitness value f(xi) > 0 by a fitness function f . The probability that xi is selected for

reproduction is given by f(xi)∑
j f(xj)

, where the sum runs over the population members.

The fitness function f is based on the boolean satisfiability problem 1-in-3-SAT, which
is similar to the more familiar 3-SAT [Motoki and Uehara, 2000]. The problem 3-SAT is
well-studied and was shown to be NP-complete. This means that any other problem in
NP3 can be reduced to it in polynomial time. 1-in-3-SAT is also NP-complete [Schaefer,
1978], so if the well-known conjecture P 6= NP holds, there is no efficient algorithm to
find a solution to 1-in-3-SAT, because this would imply P = NP.

We will now proceed by explaining 1-in-3-SAT. We are given so-called clauses AJ ,
with 1 ≤ J ≤ Nclauses, that make up a formula or proposition

A1 ∧A2 ∧ ... ∧ANclauses
, (2.2.1)

which is satisfied if all clauses are satisfied4. The clauses consist of three so-called literals.
That is, the clauses are of the form5

AJ = (ai ∨ āj ∨ ak), (2.2.2)

where the indices 1 < i, j, k < N specify the bits. In 3-SAT, a clause is satisfied if one out
of the three literals is satisfied by the bit-string. In 1-in-3-SAT, the clause is only satisfied
if exactly one out of the three literals is satisfied. The goal of 3-SAT and 1-in-3-SAT is
to determine if there exists a bit-string that satisfies all clauses and therefore satisfies
the given formula.
If there is no efficient algorithm to solve 1-in-3-SAT, there is also no efficient algorithm
to find the optimal bit-string that satisfies as many clauses as possible. For if such an
algorithm would exist, we could simply check if the optimal bit-string satisfies all clauses
or not, which would give an efficient algorithm for 1-in-3-SAT. The fitness of a bit-string
will be based on the number of satisfied clauses. We could therefore view our evolution-
ary system as a genetic algorithm that tries to find bit-strings that satisfy many clauses.

We use Nclauses = 6N and choose the clauses randomly. That is, the indices i, j
and k are chosen uniformly random from {1, 2, ..., N} and the literals are negated with
probability 1

2 . The clauses are chosen once and are reused for every simulation, so that
the fitness landscape based on 1-in-3-SAT will be the same for every simulation. Because
there are 6N = 1200 clauses, it is very improbable that there exists a bit-string that sat-
isfies all clauses. By using many clauses, we create an interesting and complex landscape
with many local optima.

The actual fitness function f(x) is given by exp
(
−Nunsatisfied(x)

N

)
, where Nunsatisfied(x) =

Nclauses−Nsatisfied(x) is the number of unsatisfied clauses. Every satisfied clause increases
the fitness by a factor exp

(
1
N

)
= exp

(
1

200

)
≈ 1.005 and makes it more probable that

the particular bit-string is selected for reproduction. This is only a slight advantage, but
note that we are interested in the behaviour of the model instead of the actual optimal
bit-string.

2This fitness landscape was taken from [Brotto, Bunin, and Kurchan, 2015].
3NP is the class of decision problems for which a solution can be checked in polynomial time, while P

is the class of problems that can be solved in polynomial time [Korte and Vygen, 2012]. By polynomial
time, we mean that the computational time or the number of operations needed to solve a problem is
bounded by a polynomial in the problem size n. For purposes of illustration, it may well be that a
polynomial algorithm solves an instance of n = 106 in the same computational time as an exponential
algorithm solves an instance of n = 50.

4Here,∧ means “AND”.
5Here, ∨ means “OR” and āj means negation of aj .
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Figure 2.1 – The number of satisfied clauses of (a random subset of) the population
members as a function of the number of births in the system. On the left, the population
size is M = 500, while on the right M = 5000.

2.3 Results

Now that the model has been completely defined, we can look at some results. We use
population sizes M ∈ {10, 100, 500, 1000, 2000, 5000} and propagate the populations for
107 time steps of the Moran process, so there are 107 births and deaths in every system.
This way, the computational effort needed for a simulation is fairly comparable for differ-
ent population sizes, although selection takes longer in a larger population. Pseudo-code
can be found in Appendix B.1. We average results over an ensemble of 100 populations
for every population size.

The evolution of two populations of sizes 500 and 5000 is shown in Figure 2.1, where
the number of satisfied clauses of a random subset of the population is shown as a func-
tion of time. We see that the fitness of the population members indeed increases over
time. The system with population size 500 has reached an equilibrium around which it
fluctuates, while the system with population size 5000 is still slowly improving.
Note that the best bit-string found by random sampling in the same computational time
as all the simulations, typically does not exceed 540 satisfied clauses. This shows that
most of the 2200 bit-strings satisfy less than 540 clauses. From the figures, we see that
natural selection is able to find better bit-strings, which validates using genetic algo-
rithms for optimization purposes. Evolution searches locally without getting stuck in
local minima. It exploits the fact that similar bit-strings often have similar fitness, so
that good bit-strings are close to other good bit-strings.

From Figure 2.1, we see that a large population converges slowly compared to a
smaller population when measuring time in births6. To investigate the rate of change
in the population, we now inspect the autocorrelation of the system in equilibrium for
different population sizes. We define the autocorrelation in the following way.7

C(∆t) =
4

NM
E

[ M∑
i=1

N∑
j=1

(
aij(t)−

1

2

)(
aij(t+ ∆t)− 1

2

)]
, (2.3.1)

where the double sum is over all bits j of all bit-strings i. We measure time in genera-
tions instead of births8, so ∆t = A means that every population member has reproduced
A times on average. Formulated differently, ∆t = A means that there have been AM
births. Therefore, the total number of births per unit of time is different for different
population sizes.

6In genetic algorithms, births are a good measure of computational time.
7Note that with this definition a population is an ordered list and that we compare bit-strings that

have the same index.
8When we are not considering computational effort, measuring time in generations is more natural,

because the unit of time is equal to the average time that a single particle needs to reproduce.
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The autocorrelation C has the property that a population has autocorrelation C(0) =
1 with itself. Also, if the population is completely uncorrelated to itself after some time,
C(∞) = 0. To measure the autocorrelation, we take the average over the ensemble and
over time, after an initialization period of 5000 generations:

Cmeasured(∆t) = K

100∑
l=1

tfinal∑
t=5000

M∑
i=1

N∑
j=1

(aij(t)−
1

2
)(aij(t+ ∆t)− 1

2
), (2.3.2)

where K is a constant which ensures that Cmeasured(0) = 1. We take a measurement
every 100 generations9, so t increases in steps of 100.

The measured autocorrelation is shown in Figure 2.2 for different population sizes.
Even though there are more births per generation10, a larger population is more corre-
lated to its previous state than a smaller population in the same number of generations.
That is, the change per generation is smaller.
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Figure 2.2 – The autocorrelation C as a function of generations for different population
sizes. Large populations remain correlated to their previous state for a very long time.

9These measurements are correlated, but this does not pose a problem for computing the mean.
We just do not have the same accuracy of the mean compared to averaging over the same number of
independent measurements.

10The number of births per generation is M , so it already takes more computational effort to generate
a single generation step.
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2.4 Thermodynamics

There have been several attempts to explain evolutionary systems using ideas from sta-
tistical physics, for example by Brotto et al. [2015], Peliti [1997] and Sella and Hirsh
[2005].

Fitness is similar to energy in the sense that a physical system tries to minimize its
energy, while an evolutionary system tries to maximize its fitness. However, both systems
are restricted from attaining the absolute minimum or maximum by probabilistic con-
siderations. Because random mutations in a finite population can drive the population
to a great many other states, the probability of finding the population in the state of
absolutely maximum fitness is small. This resembles the notion of entropy in a physical
system at finite temperature11.

It can be shown that 1
M plays the role of temperature in an evolutionary system.

Brotto et al. [2015] show that the framework of statistical physics applies to evolutionary
systems under certain conditions. They show that transition rates between coarse-grained
states of the evolutionary system are equivalent to the transition rates of a physical sys-
tem at temperature proportional to 1

M . Analogous to energy-increasing transitions in
the physical system, fitness-decreasing transitions are more probable in small populations
(high temperature) than in large populations (low temperature). This comes with the
side effect that a large population can get stuck in a local optimum more easily than a
small population.

The correspondence can be exploited by studying the behaviour of evolutionary sys-
tems using theory or techniques from statistical physics, for example by using parallel
tempering to study evolutionary systems by simulations [Brotto et al., 2015]. We will
now compare the method of simulated annealing to genetic algorithms using the connec-
tion of the population size to temperature.
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Figure 2.3 – The average highest number of satisfied clauses as a function of the number
of births in the system for different population sizes. ”Incr” stands for increasing
population size as described in Section 2.5. In Figure 2.4, the same data is shown with
a log-scale for the x-axis.

11Note that this discussion refers to systems that are in equilibrium. In evolutionary systems, however,
we are often interested in evolving non-equilibrium systems. This would lead to a comparison with non-
equilibrium physics.
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Figure 2.4 – Equivalent to Figure 2.3, but with a log-scale for the x-axis. The approxi-
mately straight lines in this figure show that the time to improve by ∆Nsatisfied clauses
increases approximately exponentially until evolution slows down near equilibrium.

2.5 Simulated annealing

In Figure 2.1, we have seen that a small population adapts quickly, while a large pop-
ulation eventually obtains a higher equilibrium fitness. To get more solid results, we
now look at average results over an ensemble of 100 systems. In Figure 2.3, the average
highest number of satisfied clauses12 given by

1

100

100∑
j=1

max
i
Nsatisfied(xji ) (2.5.1)

is shown as a function of time. Here, the sum runs over the populations j in the ensemble
and i labels the population members of population j.
We see that smaller populations indeed converge faster in the beginning, while larger
populations attain a higher equilibrium fitness. Note that all simulations are done in
the same fitness landscape. The only differences are the random components in initial-
izations, births, deaths and mutations. Results for the minimum or maximum of the
ensemble are similar to that of the average.

Now we implement a procedure similar to simulated annealing. In simulated anneal-
ing, the temperature of the system is decreased gradually, so that the system can find a
global rather than a local optimum. At the beginning, the system explores the landscape
very roughly but quick, because the high temperature means that many states of the
system are acceptable. By decreasing the temperature, the system becomes less likely
to accept higher energy states and the system hopefully converges towards the global
minimum.
By recognizing that 1

M plays the role of temperature, the corresponding procedure for
our evolutionary system would be to increase the population size gradually. We start
at 500 particles and increase it in steps of 250 until 2750. We would not expect better
equilibrium results than by using 2750 particles from the start, but the equilibrium might
be reached faster. From Figure 2.3, we see that this is indeed the case.
Instead of increasing the population size in steps of 250, we could have also created the
possibility of births without deaths, so that the population size increases gradually.

12The best population member represents the fitness of the population.
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Chapter 3

Continuum modelling of
birth-death processes

The rest of this thesis focuses on birth-death processes in a continuous space with diffusion
as mutation. We will try to describe the population by a continuous density and its
evolution by a partial differential equation.

3.1 Micro-model description

We start with a complete description of the micro-model. Consider a population of M
particles defined by their position x in the d-dimensional Euclidean space, xi ∈ Rd for
1 ≤ i ≤ M . These particles reproduce and die according to a Moran process. That
is, at a single reproduction event there is one birth and one death. This ensures con-
stant population size. In between reproduction events, all particles diffuse independently.

The reproduction events are randomly distributed in time like a Poisson process with
rate1 λ(t)M , where the rate per particle λ(t) will be specified later. The Poisson process
is appropriate for discrete events that happen completely independently, but with a
well-defined average rate. In Appendix A.2, we elaborate on our choice for the Poisson
process. For now, the important result is that the time intervals between reproduction
events, denoted by ∆t and illustrated in Figure 3.1, are exponentially distributed with
parameter λ(t)M . That is, the probability density function of the time increments ∆t
between reproduction events is given by

p(∆t) = λ(t)M exp

(
− λ(t)M∆t

)
, (3.1.1)

which results in the expected value of ∆t given by

E(∆t) =

∫ ∞
0

∆tp(∆t)d(∆t) =
1

λ(t)M
. (3.1.2)

The rate λ(t)M is the expected number of reproduction events per unit of time, so the
expected value of the time increments is the inverse of the rate, as it should be.

It is necessary to keep track of time explicitly, because mutation of the particles is
implemented by diffusion, which happens continuously in time. The strength of the dif-
fusion is represented by the diffusion constant D. Each particle x performs a continuous
random walk. More specifically, the displacement ∆x = x(t+∆t)−x(t) follows a normal
distribution with expectation E(∆x) = 0 and covariance Cov(∆x) = 2D∆tId. Here Id
is the d-dimensional identity matrix reflecting d independent and identically distributed
components with variance 2D∆t.

1The rate is the average number of events per unit of time.
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Dt

Figure 3.1 – Illustration of diffusion between two consecutive reproduction events. The
green particles reproduce while the red particles die. The arrows represent diffusion.
The time increment ∆t follows an exponential distribution.

Recall that ∆t between reproduction events is exponentially distributed. We can gen-
erate an exponentially distributed variable by the method of inverse transform sampling

[Devroye, 1986]. Given a uniform random variable Y on [0, 1)2, the variable log(1−Y )
λ(t)M is

distributed exponentially with parameter λ(t)M .3 After we generated ∆t, we can update
the locations of the particles to account for the displacement due to diffusion. Because
x(t+ ∆t) = x(t) + ∆x and ∆x is normally distributed, we obtain x(t+ ∆t) by adding a
normal variable with standard deviation equal to

√
2D∆t to every component of x. For

clarity, pseudo-code of the core of the micro-process is given in Appendix B.2.

In our model, the particles need not reproduce equally fast. We define a fitness land-
scape, f(x) > 0 for every x ∈ Rd, which is the reproduction rate of a particle at x.
Without loss of generality we can write f(x) = exp(−kU(x)), where U is similar to a
potential and k can be used to set the selection strength. Specific fitness landscapes are
defined later on.

The fitness of a particle f(xi) represents its reproduction rate in the sense of the
Poisson process. Because f(xi) is the average number of reproductions per unit of time
of particle i, the sum

∑
i f(xi) is the average number of reproductions per unit of time of

the entire population. So the rate at which reproduction events occur in the population
is given by λ(t)M =

∑
i f(xi)

4. We sample reproduction events at the rate
∑
i f(xi) and

at every reproduction event, particle xi is selected for reproduction with probability

P(particle i is selected) =
f(xi)∑
i f(xi)

. (3.1.3)

This way, every particle xi reproduces with the correct rate f(xi), because out of the∑
i f(xi) reproductions in a unit of time, on average there are(

f(xi)∑
i f(xi)

)∑
i

f(xi) = f(xi) (3.1.4)

reproductions of particle xi per unit of time.

2To generate a uniform random variable, we used a pseudo-random number generator by Matsumoto
and Nishimura [2002] also known as the Mersenne Twister.

3Note that we calculate the parameter of the exponential distribution, λ(t)M , at t and implicitly
assume that it is constant during (t, t + ∆t). This introduces a slight bias, because λ(t) is actually
continuously changing due to continuously diffusing particles. However, the variation of λ(t) is only
small during a short time interval ∆t, so it is a minor flaw. Moreover, it is impossible to update λ(t)
continuously in a computer simulation, although it is possible to split ∆t into smaller time steps.

4Recall that we defined λ(t) such that λ(t)M was the reproduction rate of the population.
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When a particle at x reproduces, a new particle is created at the same location x.
The new particle diffuses independently of its parent afterwards. At every reproduction
there is also a particle that dies. A randomly chosen individual is removed from the
population. This means that all particles die equally likely with a rate given by

λ(t) =
1

M

∑
i

f(xi), (3.1.5)

so λ(t) is the death rate of particles. Because the number of deaths is determined by the
number of births, the death rate depends on the fitness of the population. Indeed, λ(t)
is equal to the average fitness of the population. The fitness of one particle influences
the death rate of another particle, which is the only interaction between particles in this
system.

Our current model contains the dimensions of time and space. By making our model
dimensionless, we could scale the diffusion constant D to D = 1. However, it is more
convenient to define some fitness landscape and keep D as a parameter to scale diffusion
compared to the length scale of the fitness landscape. We should just acknowledge that
scaling the fitness landscape f(x)→ αf(βx) with α > 0 and β > 0 gives essentially the
same model5.
The point here is that we can choose different units of time and length6 such that αf(βx)
and f(x) have exactly the same numerical dynamics. Measuring time in hours instead
of seconds or measuring the positions in inches instead of meters changes the numerical
values we work with, but does not actually change the system. Because we just need to
choose specific units of time and length to find the same numerical dynamics, the systems
are equivalent for analytical purposes.

3.2 Fitness landscapes

We now introduce some fitness landscapes. Fitness is defined to be the reproduction
rate, which is a positive quantity. We only consider reproducing particles, so the fitness
is assumed to be strictly positive. This is the only restriction on our fitness function f ,
but we will focus on continuous fitness landscapes.

3.2.1 Peaks

As a first example to illustrate the behaviour of our model, we use a population of
M = 100 particles in a two-dimension space, d = 2, with a fitness landscape that
possesses several local minima. It is defined by f(x) = exp(− 1

10U(x)) where7

U(x) = 3(1−x1)2e(−x2
1−(x2+1)2)−1

3
e(−(x1+1)2−x2

2)−10(−x3
1+x1/5−x5

2)e(−x2
1−x

2
2). (3.2.1)

The fitness potential U is shown in Figure 3.2. Depending on the diffusion constant
D, we find different behaviour. If the diffusion constant D is too large, the population
will spread beyond the length-scales of the interesting part of this landscape. Eventually,
the population will escape the interesting region entirely and will evolve to parts where
U is nearly flat. If D is too small, the population will get stuck in the local minimum
where it started. In between these extremes, the population will be stuck in a local
minimum for most of the time, while it is still able to switch to another local minimum
by stochastic escape. Such a transition is shown in Figure 3.2. The transition time is
small compared to the time spent in the minima.

5In general with a different value of D
6Different in the sense that the first system is measured in other units than the second system. For

example, in one system length is measured in micrometres and in the other in kilometres.
7U is the peaks function from MATLAB
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In any case, the population behaves as a cluster that moves as a whole. The clustering
behaviour in a flat landscape is analysed in an article by Meyer et al. [1996]8. The
main results are stated in Appendix A.3. Instead of describing statistics, we would like
to represent the population by a population density u(x) at every x and describe its
evolution. This way, we do not need to describe every single particle, which might be
useful in very large populations where keeping track of all particles is impossible. This
could be viewed as an instance of multi-scale modelling.

Figure 3.2 – A birth-death process with diffusion in the peaked landscape defined in
Equation (3.2.1).

8For other articles on similar models, see [Kessler, Levine, Ridgway, and Tsimring, 1997] and [Zhang,
Serva, and Polikarpov, 1990]
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3.2.2 Double well

In the previous landscape, we have seen that the population can get stuck in local optima.
To study this in a simple setting, we use the one-dimensional double well. The fitness
function is given by f(x) = exp(−kU(x)), where

U(x) = x4 − 2x2. (3.2.2)

This potential exhibits minima at x = ±19. To determine the selection probabilities
f(xi)∑
i f(xi)

, we only need to know the relative fitness of the particles. Therefore, we can

scale the fitness function without changing the selection probabilities, f → αf with
α > 0. The potential U and the scaled fitness functions f are shown in Figure 3.3 for
several values of k. The selection parameter k determines the depth of the fitness barrier.

To illustrate behaviour that is possible in the double well, Figure 3.4 and Figure 3.5
show the population as a function of time for different values of k and D. We used a
population of M = 100 particles. From the figures, we see that the population can get
stuck in one of the two wells if the diffusion constant D is small enough or if the selection
strength k is strong enough.

The average shape of the population density is shown in Figure 3.6. We see that on
average most of the population is near the centre of the population, while there are some
particles that are further away. Note that the actual shape of the population at some
instance of time does not need to be equal or even similar to the average shape.
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Figure 3.3 – The double well potential U(x) (left) and fitness f(x) (right) for several
values of k.

9Note that for any c > 0, there exist a > 0 and b > 0 such that a((bx)4 − c(bx)2) = x4 − 2x2.
Therefore, by scaling the length scale by b and the selection strength by a, we can turn any potential of
the form U(x) = x4 − cx2 with c > 0 into U(x) = x4 − 2x2, which makes our discussion more generally
applicable.
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Figure 3.4 – Typical evolution of particles in the double well potential. The positions of
the particles are shown as a function of time for different values of D and k = 2.5. With
a larger value of D, the population becomes more spread. The values of D are chosen
such that

√
2D is simple.
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Figure 3.5 – Similar to Figure 3.4, but with several values of k and D = 0.045. With a
larger value of k, it is harder to cross the fitness barrier of the double well potential.
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Figure 3.6 – Average shape of the population for k = 12.5 and D = 0.045. The positions
are shifted such that 0 corresponds to the centre of mass of the population.

3.2.3 Hydrogen potential

Our final example of a fitness landscape is based on the three-dimensional hydrogen
potential. In spherical coordinates, the fitness function f is given by10

f(r, θ, φ) =
c

r
, (3.2.3)

for some c > 0, where r =
√
x2

1 + x2
2 + x2

3 ≥ 0. We are interested in this landscape,
because it turns out that we can use theory from the hydrogen atom.

10Note that we drop the U notation.
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3.3 Continuous description

3.3.1 Derivation of the partial differential equation

We now stop looking at individual particles. Instead, we take a coarser approach by
looking at the density of particles as a function of x, which we denote by u(x). We will
now derive a partial differential equation for this density in one dimension. The equation
we will derive is given by

ut = (f(x)− λ(t))u+Duxx, (3.3.1)

where ut = ∂u
∂t and uxx = ∂2u

∂x2 . We see that there is a term for births and death,
(f(x)− λ(t))u, and another term for diffusion.

To arrive at this equation, we write down equations in discretized time and space after
which we take a limit to make the equations continuous. This is a common procedure to
arrive at partial differential equations [Holmes, 2009].
Let w(m,n) be the number of particles in the interval Im =

(
xm − 1

2∆x, xm + 1
2∆x

)
averaged over the time interval

(
tn − 1

2∆t, tn + 1
2∆t

)
. We consider diffusion first. As-

sume that in a single time step, the number of particles that leave the region is equal to
αw(m,n) with 0 < α� 1. Assume that particles do not have a preference for a direction
and that particles can only reach adjacent regions in a single time step. This results in
the equation

w(m,n) =
α

2
w(m− 1, n− 1) + (1− α)w(m,n− 1) +

α

2
w(m+ 1, n− 1). (3.3.2)

The number of particles w(m,n) is equal to the sum of the remaining number of particles,
(1− α)w(m,n− 1), and the number of particles that enter from adjacent regions, which
is given by α

2w(m− 1, n− 1) + α
2w(m+ 1, n− 1).

Now we consider reproduction and death, with rates given by f and λ. Assume there
are f(x) reproductions and λ(t) deaths per unit of time per particle for a particle at
position x at time t. Define f̄(m) and λ̄(n) on the grid by averaging f and λ over the
grid cells. Now we assume that the time-steps are small enough so that ∆tf̄(m) � 1
and ∆tλ̄(n)� 1. In this regime, we can interpret ∆tf̄(m) and ∆tλ̄(n) as the probability
that a particle reproduces or dies. In that case, ∆tf̄(m)w(m,n) and ∆tλ̄(n)w(m,n)
approximates the number of particles that reproduce or die. Adding ∆tf̄(m)w(m,n) −
∆tλ̄(n)w(m,n) to Equation (3.3.2) and rewriting, we find11

w(m,n) =

(
1+∆t(f̄(m)−λ̄(n))

)[
α

2
w(m−1, n−1)+(1−α)w(m,n−1)+

α

2
w(m+1, n−1)

]
.

(3.3.3)

In order to derive a continuous equation, we scale w(m,n) to a density u(x, t) and
explicitly write down the equation in terms of ∆t and ∆x, which gives

u(x, t) =

(
1+∆t(f̄(x)−λ̄(t))

)[
α

2
u(x−∆x, t−∆t)+(1−α)u(x, t−∆t)+

α

2
u(x+∆x, t−∆t)

]
.

(3.3.4)

11This can be interpreted as applying a birth-death operator after a diffusion operator.
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Now we perform a Taylor expansion of u(x − ∆x, t − ∆t), u(x, t − ∆t) and u(x +
∆x, t−∆t) for small ∆x and ∆t. This results in

u =

(
1+∆t(f̄(x)− λ̄(t))

)
∗ ..[

α

2

(
u−∆xux −∆tut +

1

2
(∆x2uxx + 2∆x∆tuxt + ∆t2utt) +O(∆t3 + ∆x3)

)
+ ..

(1− α)

(
u−∆tut +

1

2
∆t2utt +O(∆t3)

)
+ ..

α

2

(
u+ ∆xux −∆tut +

1

2
(∆x2uxx − 2∆x∆tuxt + ∆t2utt) +O(∆t3 + ∆x3)

)]
.

(3.3.5)

Here, O(∆t2 + ∆x3) represents higher order terms in ∆t or ∆x that go to zero at least
as fast as (∆t2 + ∆x3).12 This simplifies to

0 = ∆t(f̄(x)− λ̄(t))u−∆tut +
α

2
∆x2uxx +O(∆t2 + ∆x3) (3.3.6)

or

ut = (f̄(x)− λ̄(t))u+
α∆x2

2∆t
uxx +O

(
∆t+

∆x3

∆t

)
(3.3.7)

We now take the limit ∆t → 0 and ∆x → 0. The most interesting limit is obtained by

keeping ∆x2

∆t fixed. However, the fraction of leaving particles α is actually a function of
∆t and ∆x. Therefore, we want to take ∆t → 0 and ∆x → 0 in such a way that α

is constant. Fortunately, for a standard random walk this should be such that ∆x2

∆t is

fixed.13 Defining D = α∆x2

2∆t and taking the limit, we find

ut = (f(x)− λ(t))u+Duxx, (3.3.8)

which we set out to derive. We will from now on call this equation the birth-death-
diffusion equation.

The death rate λ should be such that the population size is conserved. Setting

∂

∂t

∫
u(x, t)dx =

∫ (
f(x)− λ(t) +D

∂2

∂x2

)
u(x, t)dx = 0, (3.3.9)

we find that the death rate should be equal to the average fitness,

λ(t) =

∫
f(x)u(x, t)dx∫
u(x, t)dx

. (3.3.10)

To derive this, note that
∫

∂2

∂x2u(x, t)dx = ∂
∂xu(x → ∞, t) − ∂

∂xu(x → −∞, t) = 0, be-
cause the population is localized and vanishes at infinity.

The first term of the birth-death-diffusion equation is similar to the so-called replicator
equation [Ohtsuki and Nowak, 2006], which is given by ∂tui = (fi −

∑
i uifi)ui with∑

i ui = 1, but in a continuum setting.

12By definition, f(x) = O(g(x)) as x → 0 if there exist M > 0 and δ > 0 such that |f(x)| < M |g(x)|
for every x ∈ (−δ,+δ).

13The displacement of a random walker in time ∆t follows a normal distribution with variance equal to

2D∆t. This probability distribution is proportional to exp( x2

2D∆t
), which is a function of x2

∆t
. Therefore,

to obtain a constant α, ∆x should go to zero in such a way that ∆x2

∆t
is constant.



26 CHAPTER 3. CONTINUUM MODELLING OF BIRTH-DEATH PROCESSES

3.4 Solutions to the equation

In this section, we look at solutions of the just derived birth-death-diffusion equation

∂tu = (f(x)− λ(t) +D∂xx)u. (3.4.1)

This equation resembles the time-dependent Schrödinger equation for a single non-
relativistic particle,

i~∂tΨ(x, t) =
−~2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t), (3.4.2)

and we can solve the equation using techniques from physics14. First we look at solutions
to the related equation15

∂tũ = (f(x) +D∂xx)ũ. (3.4.3)

Using separation of variables, writing ũn(x, t) = vn(t)wn(x) and plugging this in Equation
(3.4.3), we find a simple equation for vn, namely ∂tvn = −Envn for some constant En,
which is solved by

vn(t) = C exp(−Ent). (3.4.4)

The spatial part wn(x) should then satisfy the eigenvalue equation

(−f(x)−D∂xx)wn(x) = Enwn(x). (3.4.5)

These wn are stationary states of the original system if we set λ(t) = −En. Now assume
that the wn form a basis of the function space, so that for any initial condition ũ(x, 0) =
u0(x) we can write u0(x) =

∑
cnwn(x) for some constants cn

16. By linearity of the
differential equation, Equation (3.4.3), and applying the defining equation for the wn,
Equation (3.4.5), it follows that

ũ(x, t) =
∑

cnwn(x) exp(−Ent). (3.4.6)

solves Equation (3.4.3) with initial condition ũ(x, 0) = u0(x).

For the solution of the original equation, Equation (3.4.1), we write

u(x, t) =
∑

cn(t)wn(x) exp(−Ent), (3.4.7)

with time-dependent coefficients cn(t). Since the wn are a basis of the function space,
this expression is completely general. By inserting it in Equation (3.4.1),

∂t

[∑
cn(t)wn(x) exp(−Ent)

]
= (f(x)− λ(t) +D∂xx)

[∑
cn(t)wn(x) exp(−Ent)

]
,

(3.4.8)
we hope to get simpler relations for the cn(t). Indeed, working out the derivative17 and
using the relation in Equation (3.4.5), terms cancel and rewriting results in∑[

∂tcn(t) + λ(t)cn(t)

]
wn(x) exp(−Ent) = 0. (3.4.9)

14We will see that the absence of the imaginary i results in convergence towards the lowest-energy
state. This can be used to compute the ground state for quantum systems. These methods are called
imaginary time propagation methods. By the results of this thesis, one could try to calculate the ground
state by the micro-model.

15Note that this equation is linear in u, while the original equation is non-linear in u, because λ(t)
depends on u.

16For notational convenience, we assume that the spectrum of the operator (−f(x)−D∂xx) is discrete,
so that we can use a sum to represent u0(x). This will be the case for f(x) used in Section 3.5. The
arguments in this section also hold if the operator has a continuous spectrum, but with an integral.

17We assume that we can interchange the order of the derivative and the infinite sum. This is not
always true, but it is true when the convergence of the sum meets some conditions. For example,
uniform convergence of the sum of derivatives is sufficient, because we already assume that the sum for
u converges.
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This would be true, and it would therefore solve the equation, if

∂tcn(t) = −λ(t)cn(t). (3.4.10)

for all n. Note that if the wn are orthogonal, it is also a necessary condition. The
equation for cn(t) is the same for every n, which implies that cn(t) = cnc(t) for some
function c(t). Plugging this in, we find the most important equation of this section,

u(x, t) = c(t)
∑

cnwn(x) exp(−Ent). (3.4.11)

The function c(t) can be found by the condition that c(t) ensures normalization. We see
that the solution tends to converge towards the wn with smallest En, the ground state.

The function c(t) is such that
∫
u(x, t)dx = 1, so18

c(t)
∑(

cn exp(−Ent)
∫
wn(x)dx

)
= 1, (3.4.12)

from which we see that

c(t) =
1∑(

cn exp(−Ent)
∫
wn(x)dx

) . (3.4.13)

Taking the derivative, using ∂t

(
1
g(t)

)
= −

(
1
g(t)

)2

∂tg(t), we find

∂tc(t) = −c(t)2
∑(

−cnEn exp(−Ent)
∫
wn(x)dx

)
. (3.4.14)

Comparing to the Equation (3.4.10), we see that

λ(t) = c(t)
∑(

−cnEn exp(−Ent)
∫
wn(x)dx

)
(3.4.15)

=
∑(

−cn(t) exp(−Ent)
∫
Enwn(x)dx

)
(3.4.16)

=
∑(

cn(t) exp(−Ent)
∫

(f(x) +D∂xx)wn(x)dx

)
, (3.4.17)

where we used the defining equation for Enwn, Equation (3.4.5). Assuming that the wn
are smooth and vanish at infinity, it follows that

∫
∂xxwn(x)dx = 0 and we find

λ(t) =
∑(

cn(t) exp(−Ent)
∫
f(x)wn(x)dx

)
(3.4.18)

=

∫
f(x)

(∑
cn(t) exp(−Ent)wn(x)

)
dx (3.4.19)

=

∫
f(x)u(x)dx, (3.4.20)

which is the average fitness, as we have derived before.

To summarize, we need to solve the time-independent Schrödinger equation

−D∂xxwn(x) + V (x)wn(x) = Enwn(x) (3.4.21)

with potential V (x) = −f(x). If we can expand the initial condition u(x, 0) = u0(x)
into the eigenfunctions wn, u0(x) =

∑
n cnwn(x), we can solve the equation by inserting

the coefficients cn in Equation (3.4.11). The time-independent Schrödinger equation is
well-studied and we can use results from physics. However, the reproduction rate is
positive, so we need to ensure that f(x) > 0, which means that V (x) < 0 for all x. Also,
for a sensible interpretation, we should make sure that the density u is non-negative
everywhere.

18To be able to interchange the order of an infinite sum and an integral, again we need some conditions
on the convergence of the sum. The following derivation is just to show consistency, so we do not worry
about this too much.
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3.5 Solution for the hydrogen potential

We just found that if we can solve

(−f(x)−D∂xx)wn(x) = Enwn(x). (3.5.1)

and get a basis of solutions wn, we can write down the solution of the original birth-
death-diffusion equation, Equation (3.4.1). Note that the derivation also holds in several
dimensions without changing the arguments.

With physical constants, the time-independent Schrödinger equation is given by

−~2

2m
∇2ψn(x, t) + V (x, t)ψn(x, t) = Enψn(x, t). (3.5.2)

We can identify D = ~2

2m and f(x) = −V (x, t), so we see that Equation (3.5.1) and

Equation (3.5.2) are the same equation. The hydrogen potential, V (r, t) = − e2

4πε0
1
r with

r =
√
x2

1 + x2
2 + x2

3, satisfies the condition f(r) = e2

4πε0
1
r > 0 and with this potential, the

time-independent Schrödinger equation has been solved exactly in terms of generalized
Laguerre polynomials and spherical harmonics [Griffiths, 2005]. We can use these exact
solutions to find an exact solution for our birth-death equation, Equation (3.4.1).

The exact solutions of the hydrogen atom are given by

ψnlm(r, θ, φ) =

√(
2

na

)3
(n− l − 1)!

2n((n+ l)!)3
exp

(
−r
na

)(
2r

na

)l
L2l+1
n−l−1

(
2r

na

)
Y ml (θ, φ),

(3.5.3)
where

a =
4πε0~2

me2
=

2D

f(1)
, (3.5.4)

Lpq−p(x) = (−1)p
(
∂d

∂x

)p [
ex
(
∂d

∂x

)q (
e−xxq

) ]
(3.5.5)

are the generalized Laguerre polynomials and Y ml are the spherical harmonics. For con-
venience, to be able to effectively reduce the problem to a one dimensional problem,
we only use spherically symmetric solutions, for which l = 0 and m = 0. In that case,
the spherical harmonic Y ml = Y 0

0 is just a constant. The integer n ≥ 1 determines the

eigenvalue of the solution in Equation 3.5.2, En = −1
n2

m
2~2

(
e2

4πε0

)2

= −1
n2

f(1)2

4D .

We choose D = 1
2 and f(r) = 1

r so that a = 119. The eigenvalues are then given by

En = −1
2n2 . For simplicity, we build an initial density from ψ100 ∝ e−r/a = e−r and ψ200 ∝(

1− r
2a

)
e−r/2a =

(
1− r

2

)
e−r/2. Note that ψ100 is the ground state, which is the only sta-

ble equilibrium state. Any randomly perturbed solution will tend to this ground state af-
ter some time. Specifically, we use the initial condition u0(r) = C

(
e−r −

(
1− r

2

)
e−r/2

)
,

where C is a normalization constant. The system is entirely spherically symmetric, so
we can just look at the r component. Note that the density of particles that have radius

r is equal to the prad(r, t) =
∫ 2π

0

∫ π
0
u(r, t)r2 sin(θ)dθdφ = 4πr2u(r, t), which we will call

the radial density. The radial density prad is most easily compared to a micro model
population, because we can just look at the distribution of r values in the population.

19The resulting discussion is still completely general, because for any f(r) = c
r

, we can choose a unit

of time such that f(r)→ 1
r

. Also, we can choose a unit of length such that D = 1
2

. Note that there are
two parameters and two dimensions, so that by the Buckingham π theorem, we can get rid of all the
parameters through non-dimensionalization. Also for the micro-model it can be checked that choosing
different parameters merely scales the variables and does not change the dynamics.
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From Section 3.4, we know that the solution of the equation

∂tu(r, θ, φ, t) =

[
1

r
−
∫
u(r, θ, φ, t)

r
+

1

2
∇2(r, θ, φ)

]
u(r, θ, φ, t). (3.5.6)

with initial condition u(r, θ, φ, 0) = u0(r) is given by

u(r, θ, φ, t) = c(t)

(
e−re−E1t−

(
1− r

2

)
e−r/2e−E2t

)
= c(t)

(
e−ret/2−

(
1− r

2

)
e−r/2et/8

)
,

(3.5.7)
where c(t) is the time-dependent normalization constant that ensures∫ ∞

0

∫ 2π

0

∫ π

0

u(r, θ, φ, t)r2 sin(θ)dθdφdr = 1. (3.5.8)

Explicit integration shows that c(t) = 1
8π(et/2+16et/8)

, so that the solution is

u(r, θ, φ, t) =
1

8π(et/2 + 16et/8)

[
e−ret/2 −

(
1− r

2

)
e−r/2et/8

]
. (3.5.9)

Plugging this expression in Equation (3.5.6) shows that it is indeed the normalized exact
solution with initial condition u0(r).

Multiplying by 4πr2 to get the radial density, we find

prad(r, t) =
r2

2(et/2 + 16et/8)

[
e−ret/2 −

(
1− r

2

)
e−r/2et/8

]
. (3.5.10)

and its evolution20 is shown in Figure 3.7. The solution is attracted to the equilibrium
state. In Section 4.2.2, we compare the solution in Equation (3.5.10) to the evolution of
the micro-model with the same initial density.
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Figure 3.7 – Evolution of the exact solution of the radial density from the initial condition
(red) to the equilibrium state (blue).

20Note that there is a radius r for which the density does not change in time. By inspecting the
solution in Equation (3.5.9), we see that this happens when −(1 − r

2
)e−r/2 = 16e−r, because in that

case the time dependence cancels out. The corresponding value for r is approximately r ≈ 4.84, which
is in agreement with Figure 3.7.
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3.6 Noise on the PDE

We derived a partial differential equation for the average behaviour. Unfortunately, this
description does not contain the clustering effect yet. The movement of the population
as a cluster is not deterministic but random. Therefore, we need to add a stochastic part
to the partial differential equation. In this section, we derive the form of this stochastic
part by looking at the micro model more closely. The derivations in this section will
not be very rigorous, but they serve to support the chosen form of the noise, which is a
modelling choice.

Consider some region V in Rd and denote by NV (t) the number of particles in V
at time t. Births and deaths happen according to a Poisson process with rates f̄(V )21

and λ(t) per particle, so the total rates of births and deaths are given by NV (t)f̄(V ) and
NV (t)λ(t). If these rates are constant through time, the number of births B and deaths D
in time ∆t follows a Poisson distribution with parameter NV (t)f̄(V )∆t and NV (t)λ(t)∆t.
For a Poisson distribution with parameter γ, we have that both the expected value and
the variance are equal to γ. Therefore, the expectations and variances are

E(B) = Var(B) = NV (t)f̄(V )∆t, (3.6.1)

and
E(D) = Var(D) = NV (t)λ(t)∆t. (3.6.2)

For a moment, we neglect diffusion22 so that the change in NV (t) is only due to birth
and deaths:

NV (t+ ∆t) = NV (t) +B −D; (3.6.3)

Unfortunately, although the sum of two Poisson variables is Poisson, the difference of
two Poisson variables is not Poisson23. However, we can still compute the expectation of
∆NV = NV (t+ ∆t)−NV (t), which is given by

E(∆NV ) = E(B)− E(D) = NV (t)(f̄(V )− λ(t))∆t, (3.6.4)

and if we assume that B and D are independent24, the variance is given by

Var(∆NV ) = Var(B) + Var(D) = NV (t)(f̄(V ) + λ(t))∆t. (3.6.5)

A Poisson variable with a large rate is approximately normal. The difference of two
normal variables is again normal. Therefore, ∆NV , which is the difference of two Pois-
son variables, is approximately normal when NV (t)f̄(V )∆t and NV (t)λ(t)∆t are large.
That is, when NV (t)f̄(V )∆t� 1 and NV (t)λ(t)∆t� 1. The assumptions we have made
up to now are that the rates are large and nearly constant over the time interval (t, t+∆t).

The Wiener process W (t) satisfies that ∆W = W (t + ∆t) −W (t) is normally dis-
tributed with variance σ∆t. Similarly, we just showed that the process for NV (t) satisfies
that ∆NV is approximately normally distributed with variance proportional to ∆t. So
we see that the fluctuations for NV (t) are approximately described by a Wiener process
when the assumptions hold.

21We assume that the fitness does not vary much over the region V and take the average f̄(V ) of f
over the region V .

22We could also take the view that a particle that enters the region by diffusion is a birth and a particle
that leaves the region is a death. This way, we could include diffusion into this discussion, but we would
need rates at which particles enter and leave the region V .

23For example, the difference can be negative, while a Poisson variable can not.
24Which is true by approximation if the number of particles in V is small compared to the population

size



3.6. NOISE ON THE PDE 31

Splitting off the expectation and taking the limit, combining Equation (3.6.4) and
Equation (3.6.5), we find as an approximation that

dNV = NV (t)(f − λ)dt+
√

(f + λ)NV (t)dW. (3.6.6)

The first term is equal to the first term of the birth-death-diffusion equation. The second
term is an approximation of the fluctuations from the average behaviour. Note that the
standard deviation of the fluctuations is proportional to

√
NV (t).

The previous discussion motivates the following form of the stochastic birth-death-
diffusion equation

∂tu(x, t) =

(
f(x)− λ(t) +D∇2

)
u(x, t) + c

√
u(x, t)η(x, t), (3.6.7)

where η(x, t) is uncorrelated Gaussian noise25 and c is a constant that determines the
strength of the noise. Note that c should actually depend on f , λ and D, which makes
it a function of x and t. As a simplification, we take it to be constant and hope that the
important features are still present.

Now we consider the justification of the assumptions that were made. The first
assumption was that the rates NV (t)f̄(V ) and NV (t)λ(t) are constant during the time
interval (t, t + ∆t). The fitness f̄(V ) does not change in time and the death rate λ(t)
is nearly constant if ∆t is small. The number of particles NV (t) changes due to births
and deaths, but the assumption is approximately correct when ∆NV � NV (t). If NV (t)
is small, the discrete nature of NV (t) could result in violation of this condition. For
example, when NV (t) = 1, a single birth or death causes a large relative change in
NV (t). Even worse, when NV (t) → 0 at some instance of time, it stays zero, because
births are no longer possible. These arguments show that we need to be careful when
NV (t) is small. We need to take into account the discrete nature of NV (t) and the
possibility of extinction. If NV (t) is large, we can safely assume that ∆NV � NV (t)
holds when both

E(∆NV ) = NV (t)(f̄(V )− λ(t))∆t� NV (t), (3.6.8)

which is equivalent to (f̄(V )− λ(t))∆t� 1, and26

√
Var(∆NV ) =

√
NV (t)(f̄(V ) + λ(t))∆t� NV (t). (3.6.9)

We could take ∆t small enough such that both conditions hold, so it is valid in the limit
of ∆t→ 0.

To show that ∆NV is normally distributed, we made the second assumption that
NV (t)f̄(V )∆t and NV (t)λ(t)∆t are large. This conflicts with taking the limit of ∆t→ 0.
The change ∆NV in a very small time ∆t is not normally distributed, as is already clear
by considering the discrete nature of ∆NV . However, we already assumed that NV (t) is
large, so NV (t)f̄(V )∆t and NV (t)λ(t)∆t are in fact large when f̄(V ), λ(t) and ∆t are
not too small. The rates per particle f̄(V ) and λ(t) are not necessarily small, so in most
cases, when ∆t is not too small, ∆NV is approximately normally distributed.
This shows that although taking normal increments at very short times ∆t is incorrect,
it results in the correct behaviour at somewhat larger time-scales, where the discrete
nature of ∆NV is less important.

25The noise η(x, t) is a normal random variable with variance equal to 1 for every x and t such that
E(η(x, t)η(x̃, t̃)) = 0 if x 6= x̃ or t 6= t̃. This is chosen for simplicity. Note that this form of the noise
can destroy continuity of the solution, although diffusion smooths the solution again. Also note that
the noise does not conserve the population size, so λ(t) should be adapted so that the population size is
constant again.

26The standard deviation
√

Var(∆NV ) represents the spread of ∆NV . This should be small compared
to NV (t), because we want that all likely realisations of ∆NV are small compared to NV (t).
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As we already discussed in Section 1.5.1, extinction is the main reason for clustering
of the population. If NV (t)→ 0 at some instance of time, the process NV (t) is absorbed
into the state NV (t) = 0 until new particles are introduced into V by diffusion. The ap-
proximation by a Wiener process does not hold for small NV (t) and this approximation
does not grasp the effects of extinction.

Lawson and Jensen [2008] use field theoretic techniques based on [Täuber, Howard,
and Vollmayr-Lee, 2005] to derive a stochastic partial differential equation for a flat
fitness landscape in order to explain clustering. For a system that is very similar to ours,
they report27

∂tu(x, t) = D∇2u(x, t) + c
√
u(x, t)η(x, t), (3.6.10)

which is the same stochastic partial differential equation as Equation (3.6.7), but in a
flat fitness landscape. Correctly simulating such a stochastic partial differential equation
numerically is not trivial. They refer to an approach by Moro [2004], which incorporates
the Poissonian nature of the fluctuations at small densities in the numerical scheme
to solve the stochastic partial differential equation. In their simulations, Lawson and
Jensen [2008] found clustering qualitatively, but the width of the clusters are not correctly
represented.
In Appendix A.4, we propose a deterministic term to account for extinction, which might
improve the agreement between the micro-model simulations and the stochastic partial
differential equation.

27Here, η(x, t) is also defined as uncorrelated Gaussian noise. It is mentioned that this is done for
simplicity.
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Chapter 4

Comparison to the
micro-model

In the following, we compare simulations of the micro-model to predictions of the density
description.

4.1 Translation between discrete populations and con-
tinuous densities

In the micro-model, the population is given by a set of positions {xi}. In the continuous
description, the population is given by a density function u(x) defined for every x ∈ Rd.
In order to compare results, we need to make a translation between these two descrip-
tions of a population.

The most obvious way to make a translation from a density to a population is to
sample from the density. That is, given a scaled density u such that1∫

Rd
u = 1, (4.1.1)

we can view u as a probability density on Rd and take a sample of M particles from this
probability density2.
Note that there is not a single discrete population {xi} that exactly corresponds to the
density u. Sampling from u gives a random population and in principle the sampled pop-
ulation can be any set of points from regions where u > 0. However, it is more probable
to find populations that resemble the density u, in a sense we will explain later. Larger
samples approximate u better, but the sample size M is dictated by the micro-model.
Instead, we can use an ensemble of Ne populations of size M . The larger the ensemble,
the better the average population will approximate u.

1In the normal definition of a density,
∫
Rd u = M , so to scale it in this way, we divide by M .

2We can use the rejection method to sample from any distribution.
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4.1.1 Bin counting

To translate a discrete population to a density, there are several possibilities. The first
well-known method we discuss is based on the histogram3. In order to make a histogram,
we divide the space into bins b of volume Vb and count the number of particles Nb in
every bin. The density is equal to the number of particles per volume, so Nb

Vb
gives the

average density in the bin. To scale it in the same way as u, we should divide by M so
that the value is given by u∗ = Nb

VbM
.

If these translations are proper, we should be able to turn a density u into a popu-
lation {xi} and turn this population into a density u∗ similar to u again. The density
obtained by bin counting, u∗, is a discontinuous step function and it is based on a pop-
ulation that is random, so u∗ is random. Now what are the statistics of u∗(b) and how
are these related to u?

The value of u∗(b) is determined by the number of particles Nb in the region Vb.
The number of particles Nb in Vb is determined by the sampling procedure from the
distribution u. Specifically, the probability that a particle is sampled in the region Vb is
given by p =

∫
Vb
u. The number of sampled particles is equal to M so there are n = M

independent trials to sample the particle in the region Vb. This implies that Nb is a
binomial variable with n = M trials and p =

∫
Vb
u probability of success, which has

expectation value and variance equal to4

E(Nb) = np = M

∫
Vb

u, (4.1.2)

Var(Nb) = np(1− p) = M

(∫
Vb

u

)(
1−

∫
Vb

u

)
. (4.1.3)

The expected value of the translated density u∗ in bin b is then given by

E(u∗(b)) = E

(
Nb
VbM

)
=

E(Nb)

VbM
=

∫
Vb
u

Vb
= ū, (4.1.4)

where ū is the average value of u in the region Vb. This means that u∗ is an unbiased
approximation of u within the constraint of the discontinuous histogram.

More interesting is the variance, given by

Var(u∗(b)) = Var

(
Nb
VbM

)
=

Var(Nb)

V 2
b M

2
=

(
∫
Vb
u)(1− (

∫
Vb
u))

V 2
b M

=
ū

M

(
1

Vb
− ū
)
≈ ū

MVb
,

(4.1.5)
where the last approximation holds when the probability p =

∫
Vb
u is small, which can

be accomplished by using a small bin-size Vb. We see that the approximation indeed
becomes better with increasing M . The variance increases with increasing ū, but the

relative standard deviation 1
ū

√
ū

MVb
decreases with increasing ū. When Vb is too large,

the discrete nature of the histogram results in a bad approximation that gives little in-
formation5. When Vb is too small, the variance will increase and the resulting histogram
will be very erratic.

There are two messages here. Firstly, it is important to choose proper bin-sizes.
Secondly, we should keep in mind that there is variance associated with the translation of
discrete populations and densities, because the discrete population is sampled randomly.

3Usually, a ”histogram” refers to the graphical representation of data by bin counting. For notational
convenience, we will use the word histogram for the function obtained by bin counting.

4See, for example, [Pitman, 1993].
5Note that in general, the approximation in Equation (4.1.5) does not hold in this regime.
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4.1.2 Kernel density estimation

Another approach to make a density out of a discrete population {xi} is by using kernel
density estimation. We take some non-negative function h(x), symmetric around the
origin, that integrates to

∫
h(x)dx = 1, for example the probability density of the normal

distribution. We then use as a density approximation

u∗(x) =
1

M

∑
i

h(x− xi). (4.1.6)

In order for u∗ to approximate u, the function h should be chosen properly6. This
approach results in the same picture as with the histogram. The width of h should be
chosen properly and we should expect variance associated to the sampling procedure.
Density estimation is a topic from statistics and there are other methods to estimate
a density, for example by estimating the characteristic function. In all these methods,
there is some way of smoothing the data.

4.1.3 Empirical distribution function

The purest approach to process data into a density is by using h(x) = δ(x), a delta
distribution that satisfies δ(x) = 0 for x 6= 0 and

∫
Vε
δ(x)dx = 1 for any Vε containing

the origin. This results in an estimated density given by

u∗(x) =
1

M

∑
i

δ(x− xi). (4.1.7)

This is the purest approach because we do not need artificial smoothing and we use the
complete information in the population. However, this density estimation is not always
useful, because it is still hard to compare to a normal continuous density u.

If we look at data points from a one-dimensional space, we can compare densities
properly by looking at the cumulative distribution function F instead of the probability
density function p. The cumulative distribution function F (x) =

∫ x
−∞ p(x̃)dx̃ gives the

probability to sample a particle with a value smaller than x. Given a discrete data set
{xi}, the empirical distribution function Fe is defined to be

Fe(x) =
1

M

M∑
i=1

I(xi ≤ x) (4.1.8)

where I(xi ≤ x) is the indicator function returning 1 if xi ≤ x and 0 if xi > x7. When
sampling from a probability distribution with cumulative distribution function F , the
empirical distribution Fe of the sample tends to F 8. Therefore, we can compare Fe from
the population to F from the density. It is possible to devise statistical tests based on
the empirical distribution function. The tests determine whether the hypothesis that the
population {xi} was taken from the density u is accepted or rejected. The main virtue
of the empirical distribution function is that it takes all information from the population
into account. Note that its probability distribution function is given by the δ distributions
of Equation (4.1.7), so that the empirical distribution function unfortunately does not
give a method to compute appropriate continuous densities.

6We could take the view that a histogram fits in this description, with h a non-central block function.
7Also known as the Heaviside step function.
8Specifically, the Glivenko-Cantelli theorem says that Fe converges uniformly to F when M → ∞.

That is, supx(F (x)− Fe(x))→ 0.
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4.2 Comparison of the micro-model and the PDE

We now compare the predictions in Section 3.5 to the actual results from the micro-model.
We initialize the population by sampling from the initial density

u0(r, θ, φ) =
1

136π

(
e−r −

(
1− r

2

)
e−r/2

)
, (4.2.1)

following the procedure from the previous section. We use the same values D = 1
2 and

f(r, θ, φ) = 1
r , so that we use the same units of time and space. The system is then

evolved according to the micro-process defined in Section 3.1.

4.2.1 Equilibrium

Before we use our specific initial condition, let us first look at equilibrium results. We
simulate a system of M = 1000 particles for T = 500, 000 and measure the state of the
population every 10 units of time. We discard the first 1000 population measurements9

so that the remaining 49000 measurements are done in equilibrium and do not depend
on the initial condition. To measure the population state, we record the radius r of
every population member, so a measurement looks like {ri}1≤i≤M . Although we lose in-
formation on angular fluctuations, this is convenient because the problem is spherically
symmetric and by looking at the r values we reduce the problem to one dimension.

To translate discrete populations to densities, we use bin counting to obtain a his-
togram as described in Section 4.1.1. Our measurements consist of r values, so it is most
easily compared to the predicted distribution of r values, which is the radial density
prad(r) = 4πr2u(r). In Figure 4.1, we see that the predicted prad ∝ r2e−r is in perfect
agreement with the measured distribution of r values. For completeness, we have also
transformed the measured radial densities p∗rad into a measured densities u∗ by multiply-
ing by 4πr2.
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Figure 4.1 – The average measured equilibrium radial density (left) and density (right)
as a function of radius r given by the red dots compared to the exact equilibrium
distribution of the birth-death-diffusion equation given by the blue line.

4.2.2 Non-equilibrium

We have just seen that the equilibrium state is predicted correctly. However, the birth-
death-diffusion equation from Equation (3.4.1) actually describes time-dependent dynam-
ics. We now investigate if the equation predicts the non-equilibrium dynamics properly.
Specifically, we compare the evolution from the initial condition in Equation (4.2.1) by
the micro-model and the birth-death-diffusion equation. For the birth-death-diffusion
equation, we have derived the exact solution u(r, t), which is given by Equation (3.5.9).

9It turns out that the system is close to equilibrium after 30 units of time, so we are very safe here.
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For the micro-model, we take an ensemble of Ne = 5000 populations of M = 1000 par-
ticles. These populations are propagated by the micro-model as described above. We
compare the ensemble average of these simulations to the exact solution of the birth-
death-diffusion equation in Figure 4.2. We see that also for time-dependent dynamics,
the birth-death-diffusion equation describes the average behaviour very well.

Only at t = 10 and t = 15, we see that the micro-model lags behind a bit on the
birth-death-diffusion equation. This discrepancy is eliminated when the system moves
closer to equilibrium. The difference appears where the change is most rapid. An expla-
nation for this is that in the birth-death-diffusion equation, births and deaths happen
continuously in time, while in the micro-model, births and deaths happen at discrete in-
stances of time. This difference is most apparent when the change in time is most rapid10.

We also applied the other methods of Section 4.1. Kernel density estimation with
normal distributions gives approximately the same results. The exact solution for the
radial distribution function prad of the birth-death-diffusion equation can be integrated
to find F (r) =

∫ r
0
prad(r̃)dr̃, which can be compared to the the average empirical distri-

bution Fe from the ensemble. Again, the results indicate that the birth-death-diffusion
equation describes the micro-model very well.

By simulating the same set-up with a different population size M , we found that the
birth-death-diffusion equation approximates the evolution of the system best when we
use many particles. For example, with a smaller population of M = 100, the discrepancy
found around t = 10 in Figure 4.2 gets larger. This is to be expected, because the more
particles, the better the continuous approximation of the births and deaths. When the
population size M is taken smaller and smaller, the approximation by the birth-death-
diffusion equation should evidently break down at some point.
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Figure 4.2 – Results from the micro-model added to Figure 3.7. The average measured
radial density as a function of radius r for different times t (given by black dots) com-
pared to the exact solution of the birth-death-diffusion equation given by the solid lines.
It is clear what measurements belong to what time, because the descriptions agree very
well. The measurements in equilibrium are not shown here, but in Figure 4.1.

10For comparison. When discretizing a differential equation to solve it numerically, errors are intro-
duced most where the system changes fastest.
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4.3 Fluctuations

We have seen that the average behaviour is described very well by the birth-death-
diffusion equation. However, the actual populations are different from the average pop-
ulation. We could take the view that this is due to fluctuations from the mean. In order
to make further progress, we need to quantify in what way the populations differ from
the average population.

By a histogram, a discrete population G = {xi}1≤i≤M is turned into ”measurements”
of the radial density prad(r) and the density u(r), which we will denote by pGrad(r) and
uG(r)11. The procedure is illustrated in Figure 4.3. The measured pGrad(r) and uG(r) are
discontinuous step-functions of r, because the histogram is a discontinuous step-function.
The bins of the histogram are denoted by bj = (rj , rj + |b|) where the bin-size |b| is some
constant. The measured radial density pGrad(r) is given by

pGrad(r) =
NG
b(r)

M |b|
, (4.3.1)

where NG
b(r) is the number of particles from G in the bin b(r) corresponding to r, that is

r ∈ b(r)12. The measured density uG(r) is given by

uG(r) = 4πr2pGrad(r). (4.3.2)

Figure 4.1 and Figure 4.2 were made by averaging pGrad and uG over many populations.
To quantify the strength of the fluctuations from the mean, we can look at the variance
of pGrad(r) and uG(r) in the ensemble of measurements.

prad
G (r)

b2 b5b4b3b1

r

Figure 4.3 – Illustration of the measurement of pGrad(r) by means of a histogram. The
black dots represent the population G. The measured radial density pGrad(r) is created
by simply counting the number of members from G in the bin that belongs to r.

11Note that pGrad(r) and uG(r) are functions of the random population G, as indicated by the super-
script.

12Note that we consider pGrad(r) as a function of r, even though we can represent it by a discrete set
of values at the bins.
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A major complication with this idea is that we already expect to find non-zero vari-
ance because of the sampling procedure, as described in Section 4.1.1. Even if the birth-
death-diffusion equation would exactly determine the evolution of the micro-model, so
that there is only one appropriate density u(r), we should still expect to see variance in
the measured pGrad(r) and uG(r). The derived variance based on the binomial distribution
gives a lower bound against which the measured variance can be compared.

Ideally, we should choose our system parameters13 such that this lower bound is neg-
ligible compared to the measured variance, but we found that this is not possible. Recall
that the variance in the histogram could be reduced by increasing the number of parti-
cles. However, the more particles we use, the more the system behaves like the average
system. As we found in Section 1.5, most interesting behaviour is due to the finite size
of the population. By increasing the population size to decrease the lower bound of the
variance, the finite size effects we are looking for also decrease in size.
This leaves only the bin-size to play with, but the range of decent bin-sizes is only small
and there is not much to gain. Therefore, we should try other approaches.

Another complication that arises when measuring fluctuations is that these fluctu-
ations spread over space due to diffusion. If there are more than an average number
of particles around x at t, these extra particles diffuse towards regions nearby x. This
results in highly correlated bins. Also, it is not directly clear where the extra particles
came from. Imagine the case where there is one main source of fluctuations in the sys-
tem, say at position xf , at which there are large fluctuations of artificial births. The
measured variance at positions x close to xf will be large because of fluctuations in xf .
These extra fluctuations have nothing to do with the dynamics at x itself.

13The free system parameters are the population size M , the ensemble size Ne and the bin-size |b|.
The ensemble size Ne just leads to more accurate results, so cannot be used.
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4.3.1 Covariance

We will now look at another approach to determine the fluctuations in the density based
on studying the covariance of pGrad(r1) and pGrad(r2). The covariance is defined by

Cov

(
pGrad(r1), pGrad(r2)

)
= E

[(
pGrad(r1)− E(pGrad(r1))

)(
pGrad(r2)− E(pGrad(r2))

)]
.

(4.3.3)

Note that Cov(pGrad(r), pGrad(r)) = Var(pGrad(r)). If Cov

(
pGrad(r1), pGrad(r2)

)
would be a

continuous function, taking the limit of r2 → r1 would result in Var(pGrad(r1)).
The covariance is defined in terms of expected values. A finite average of continuous
functions gi(x), 1

N

∑N
i=1 gi(x) is continuous. The expected value is approximated by a

finite average, so intuitively, we would expect that the expected value of a continuous ran-
dom function is continuous14. If pGrad would be a continuous function15, by the previous

arguments, we would expect that the covariance Cov

(
pGrad(r1), pGrad(r2)

)
is a continuous

function of r1 and r2.

The measured covariance between pGrad(r1) and pGrad(r2) is defined to be

Covm

(
pGrad(r1), pGrad(r2)

)
=

1

Nm − 1

Nm∑
i=1

(
pirad(r1)−Em(prad(r1))

)(
pirad(r2)−Em(prad(r2))

)
(4.3.4)

where Nm is the number of measured populations and Em(prad(r1)) = 1
Nm

∑Nm
i=1 p

i
rad(r1)

is the measured mean of prad(r1). The measured mean Em(prad(r2)) is defined equiva-
lently. The values of pirad(r) are obtained as defined in Equation (4.3.1).

The measured covariance in equilibrium16 is shown in Figure 4.4. Here, we use the
population measurements in equilibrium from Section 4.2.1. Recall that the diagonal,
where r1 = r2, shows the measured variance Var(pGrad(r)). We see that the measured
covariance is indeed continuous, except at the diagonal, where the covariance becomes
the variance. Also, we see that the variance at the diagonal depends on the bin-size17,
which is artificially chosen, while the covariance elsewhere does not. This shows that we
cannot trust direct measurements of the variance.

Now we come back to the complication that we discussed before, the lower bound of
the variance. Figure 4.5 shows that the measured variance is only slightly higher than
the lower bound for the variance18. Most of the measured variance is simply due to the
sampling procedure. This explains why the measured variance depends on the bin-size.
Before we continue, let us take a look again at the lower bound of the variance. As
described before, we consider sampling from a deterministic density u0 and translating
the sampled population {xi} back to a density u∗ again. The measured density is given
by

u∗(r) = ū0(r) + η, (4.3.5)

14Counter-examples exist. However, the necessity of producing a complicated counter-example shows
that usually it does hold that the expectation is continuous. If pGrad(r) admits a probability density for
prad at every r, f(r, prad), the expectation is given by

∫
pradf(r, prad)dprad. To be continuous, we should

have that limr→r0

∫
pradf(r, prad)dprad =

∫
pradf(r0, prad)dprad, which is true when f is continuous in

r and when the integral converges uniformly.
15Note that this discussion is not at all precise, because there is no such thing as an exact function

pGrad for which G is the representation. However, we do try to describe the micro-model in such a way,
which is intrinsically not an exact description.

16In equilibrium, the extra variance is due to a balance between fluctuations away from the equilibrium
and the average drive towards the equilibrium. The system can be viewed as a dissipative system and it
might be possible to apply fluctuation-dissipation theorems.

17The variance decreases for a larger bin-size, as expected from Equation (4.1.5).
18If we found exactly the lower bound, this would imply that there is a single appropriate density. This

is not the case because the micro-model does not behave deterministically, but random and introduces
some more variability which is reflected in the higher variance.



4.3. FLUCTUATIONS 41

where ū0 is the average of u0 over the bin b with r ∈ b and η is random noise constructed
from a binomial distribution. The average is split off, so that E(η) = 0. The variance of
the measured density is given by

Var(u∗(r)) = Var(ū0(r) + η) = Var(η). (4.3.6)

Now consider the case that u0 is not a deterministic density, but a random density U0
19.

According to Equation (4.1.5), the size of the variance η depends on Ū0. However, the
actual realisation does not. Therefore, the realisation of U0 and the realisation of the
noise η are approximately independent. Because Var(X + Y ) = Var(X) + Var(Y ) if X
and Y are independent, we have that

Var(u∗(r)) = Var(Ū0(r) + η) ≈ Var(Ū0(r)) + Var(η). (4.3.7)

This shows that we can obtain an approximation for Var(Ū0(r)) by subtracting Var(η)20

from the measured variance, which we will call the modified variance. Translated to the
radial density, the modified variance is given by

Varmod

(
pGrad(r)

)
= Var

(
pGrad(r)

)
−Varbin

(
pGrad(r)

)
(4.3.8)

where Var
(
pGrad(r)

)
is the measured variance and Varbin

(
pGrad(r)

)
is the lower bound

of the variance as determined by the binomial variance of the histogram counts from a
deterministic density, as discussed in Section 4.1.1.

In Figure 4.4, the modified variance is shown in black. We see that the modified
variance fits in the covariance landscape and seems to make the covariance continuous
everywhere. In Figure 4.5, the modified variance and the neighbour covariance are shown,

where the neighbour covariance is defined to be Covm

(
pGrad(r), pGrad(r + |b|)

)
. That is,

the neighbour covariance is calculated using neighbouring bins and it represents the best
approximation of the covariance to the variance21. Note that it is the off-diagonal in
Figure 4.4.
We see that the modified variance and the neighbour covariance are approximately the
same and that they do not depend on the bin-size used. As expected, the modified
variance is larger than the neighbour covariance, because the neighbour covariance un-
derestimates the variance, while the modified variance overestimates the variance22.

The previous discussion makes it plausible that the modified variance and the neigh-
bour covariance approximate the actual variance in the density distribution of pGrad(r),
while direct measurements of the variance cannot be trusted because the results depend
on the bin-size used. Because the procedure for the modified variance is not very well
substantiated, we will focus on obtaining an approximation of the variance in pGrad(r)
directly from the covariance by measuring the neighbour covariance.
Up to now we have only considered the variance and the mean. The actual distribution
of pGrad(r) for some specific r is illustrated in Figure 4.6. We see that the distribution is
approximately Gaussian, which corresponds to the fact that the main contribution to the
variance is due to the sampling procedure, which follows a binomial distribution, which
is approximately Gaussian.

19The following derivation assumes that there exists an underlying distribution of densities U0 that
describes the ensemble of populations of the micro-model. The ensemble of populations could be realized
from the density distribution by sampling. This is not exact mathematics but rather modelling, which
is about how to interpret a distribution of densities.

20The variance of the noise Var(η) depends on the realisation of U0, but as an approximation, we can
subtract Var(η), with η corresponding to the average value of U0.

21The neighbour covariance is expected to be almost zero in the case of sampling from a deterministic
density, because the binomial variables of the bin counts are almost independent if the bins are small.
This means that the neighbour covariance is not polluted by a lower bound.

22Because the assumption that U0 and η are independent underestimates the variance of u∗.
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Figure 4.4 – The measured covariance of pGrad(r1) and pGrad(r2) as defined in Equation
(4.3.4) with bin-size |b| = 1

8
(top) and |b| = 1

4
(bottom). The colours indicate the

height. Only positive covariance is shown. In the blank regions pGrad(r1) and pGrad(r2)
are negatively correlated. From the correlation, we see that if pGrad(r) is larger than
average for some small r, it tends to be larger for all small r and smaller for all large r.
This results in a covariance function that is like a saddle.
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Figure 4.5 – The measured variance, the lower bound of the variance, the modified
variance and the neighbour covariance as a function of r for bin-size |b| = 1
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(left) and

|b| = 1
4

(right). Note that the covariance has a local minimum close to r = 2.7, which
is at the saddle point in Figure 4.4.
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Figure 4.6 – The measured distribution of pUrad at a single r and t (blue) compared to the
expected binomial distribution from sampling alone (red). In equilibrium at r = 1 with
bin-size 1
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(left) and at t = 10, r = 2 with bin-size 1

4
(right).

4.3.2 Equilibrium fluctuations

We can do the same for the variance of uG as we did for the variance of pGrad. The neigh-
bour covariance of uG is shown in Figure 4.7. Because the neighbour covariance appears
to decrease exponentially, we plot the natural logarithm of the neighbour covariance.
This shows two distinct regions. For small r, the variance goes like c1 exp(−4r) ∝ u4

eq,
while for larger r it goes like c2 exp(−r) ∝ ueq, where ueq = exp(−r) is the exact equi-
librium density.

If we ignore the fact that fluctuations spread through the system due to diffusion23,
in Section 3.6 we predicted that the variance should go like u. We see that this is approx-
imately the case for larger r. For smaller r, the neighbour covariance follows a different
functional form of u.

It is interesting to see why there are two different regions. To investigate this, we
look for some qualitative change close to the transition spot around r = 2.65± 0.1. The
transition happens at the saddle point in Figure 4.4, so we cross the boundary of the two
correlated regions in the covariance landscape. The behaviour of the neighbour covari-
ance of uG is different in the two different regions. Note that such a saddle point should
be there if there are two correlated regions that are negatively correlated with each other.
However, it still raises the question why the saddle point is at that particular value of r.

23To avoid complications as mentioned in Section 4.3.
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Figure 4.7 – The neighbour covariance of u and the natural logarithm of the neighbour
covariance of u as a function of r. Two different regions can be distinguished. The slope
of the cyan line is −4, so the covariance goes approximately like c1 exp(−4r) for small
r. The slope of the green line is −1, so the covariance for large r goes approximately
like c2 exp(−r). The vertical line is drawn at r = 1 +

√
3, at which the diffusion term

has a maximum. Compare to Figure 4.8.

In Figure 4.8, we see that the diffusion term has a maximum24 at rb = 1+
√

3 ≈ 2.73,
which is very close to the transition value of r. Note that there is a balance between
reproductions, deaths and diffusion in the system. Close to zero, there are much more
reproductions than deaths and particles leave the region by diffusion. Up to rb, the net
incoming flux of particles increases. Above rb, it decreases again. We do not have an
adequate explanation of the different behaviour for small r, but it might have to do with
fluctuations due to transportation and short distances. Also the fitness function f = 1

r
varies very fast near the origin, so there is much extra noise from neighbours. On top
of that, we derived that the fluctuations should also depend on the average number of
births and deaths, which is a lot higher at small r.
At large r, the fitness 1

r changes much slower than the density exp(−r). Also, for large
r, uG is averaged over a larger region in space, because the bin b corresponds to a larger
spherical region. This might explain why the variance does go like ueq for large r.
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Figure 4.8 – The terms (f − λ)u and ∇2u cancel in equilibrium, but their values might
give insight into the measured variance of u.

24the birth-death term has a minimum as they should add to 0, because it is in equilibrium
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4.3.3 Non-equilibrium fluctuations

We can do the same with the non-equilibrium measurements from Section 4.2.2. In Figure
4.9, the average and the variance is shown compared to the prediction of the birth-death-
diffusion equation and the lower bound of the variance. As we already found, the average
is very well described by the birth-death-diffusion equation. The difference between the
lower bound is shown in Figure 4.10 and is compared to ∂tu. We see that the extra
variance increases fastest when ∂tu is large. Some systems are ahead of the average
and some systems are behind and if ∂tu is large, a small lag in time results in a large
difference.
After the system has come to equilibrium, there is still extra variance, which we discussed
in the previous section. Note that at t = 0 there is no extra variance, because the
populations are in fact sampled from a single deterministic density.
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Figure 4.9 – On the left, the measured average (blue) is compared to the exact solution
(red). On the right, the measured variance (blue) is compared to the lower bound for
the variance (red). The difference is the modified variance and is shown in Figure 4.10.
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4.4 Conclusion and discussion

We described evolutionary models in general and discussed some modelling choices that
can be made. For example about the distribution of births, deaths and mutations through
time. We defined the notion of a fitness landscape, explained how clustering can appear
and discussed the competition between natural selection and genetic drift by conducting
a thought experiment. In finite populations, evolving according to a Moran process, a
lesser mutant is able to fixate in the population with a non-zero probability. This is a
finite size effect and disappears in the limit of infinite population size. Natural selection
persists for all population sizes and in large populations, only superior mutants have a
significant probability of fixation.

Our first specific model, with a fitness landscape based on 1-in-3-SAT, demonstrated
that evolution finds much better individuals than a random search. Also, it showed that
larger populations achieve a higher equilibrium fitness than smaller populations. View-
ing the population size as the inverse of a temperature clarifies why small populations
explore the fitness landscape faster, while large populations obtain a higher fitness. The
autocorrelation of a large population remains large for a long period of time compared
to small populations. We implemented a procedure similar to simulated annealing and
found that it indeed speeds up evolution towards the equilibrium state.

The second model considered a population of diffusing particles in a continuous space.
Three fitness landscapes were defined that illustrate different aspects of the general dy-
namics. We derived the birth-death-diffusion equation to describe the average evolution
of the micro-model. We studied how the birth-death-diffusion equation can be solved and
derived the exact solution for the hydrogen fitness landscape. We found that the exact
solution describes the average behaviour of the micro-model very well by comparing with
simulations of the micro-model.

Unfortunately, the birth-death-diffusion equation does not account for clustering of
the population. Since clustering is due to fluctuations that cause extinction, we explored
how to add these fluctuations to the birth-death-diffusion equation. By analysing the
Poissonian nature of births and deaths, we motivated the definition of the stochastic
birth-death-diffusion equation. The assumptions made are only justified when the den-
sity is high, so to model extinction correctly, a different approach is necessary.

In order to measure fluctuations in the micro-model, we consider deviations from the
exact average solution in the hydrogen fitness landscape. For this fitness landscape, the
population is confined in a small region of space. As a result, we can accurately measure
deviations from the average.
To compare a density to a micro-model population, we need some way of translating
these descriptions. However, there is no one-to-one correspondence of a continuous den-
sity to a micro-model population. Therefore, taking an ensemble of populations from a
single deterministic continuous density u already shows variety. If we want to measure
deviations from some average density u by looking at an ensemble of micro-model popu-
lations, the task is to determine how much the measured ensemble statistics deviate from
the expected ensemble statistics.
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We proceeded by defining the modified variance and the neighbour covariance. These
independent approaches to approximate the variance of the density distribution produce
similar results, which validates the methods to some extent.
Applying these methods, we found that the variance scales differently in different regimes
of the hydrogen fitness landscape. Also, we found evidence that the density distribution
spreads fastest when the average density changes fastest, that is when ∂tu is largest.

The next step would be to properly adapt and simulate the stochastic birth-death-
diffusion equation, after which statistics can be compared to the micro-model simulations.
For example, it would be interesting to search for a density description that correctly
represents the spread and average movement of a population cluster in a flat landscape.
If this is achieved, it would be interesting to compare transition rates in the double well
potential for the stochastic birth-death-diffusion equation and the micro-model.
We proposed a method to account for extinction at small densities, which might be tuned
in such a way that the density acquires the correct spread and movement.
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Appendix A

Derivations

A.1 Derivation of fixation probability

Here, we calculate the probability of fixation of i red balls with fitness fR in a population
that further consists of M − i blue balls with fitness fB using the Moran process, as
discussed in Section 1.5.2. This derivation is based on [Nowak, 2006]. We give some
more details on some steps, while referring to their derivation on other steps. The
relevant probabilities are given by

P(Red ball is selected for reproduction) =
ifR

ifR + (M − i)fB
(A.1.1)

P(Blue ball is selected for reproduction) =
(M − i)fB

ifR + (M − i)fB
(A.1.2)

P(Red ball is selected for death) =
i

M
(A.1.3)

P(Blue ball is selected for death) =
M − i
M

(A.1.4)

The probability that the number of red balls decreases by one is given by

Pi→i−1 = P(blue birth)P(red death) =
(M − i)fB

ifR + (M − i)fB
i

M
, (A.1.5)

while the probability that the number of red balls is increased by one is given by

Pi→i+1 = P(red birth)P(blue death) =
ifR

ifR + (M − i)fB
M − i
M

. (A.1.6)

The probability that the number of red balls does not change is given by

Pi→i = 1–Pi→i−1–Pi→i+1. (A.1.7)

Now we denote the probability of fixation of i red balls by xi, which is the probability
we set out to derive. Obviously, x0 = 0 and xM = 1. Now note that the following relation
holds between the xi

xi = Pi→i−1xi−1 + Pi→ixi + Pi→i+1xi+1, (A.1.8)

because we express the probability of fixation using fixation probabilities conditional on
what happens in the first step.
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Now we define the relative fitness

r =
fB
fR

(A.1.9)

of blue balls compared to red balls. Note that

Pi→i−1

Pi→i+1
=

(M−i)fB
ifR+(M−i)fB

i
M

ifR
ifR+(M−i)fB

M−i
M

=
fB
fA

= r. (A.1.10)

Equation (A.1.8) can be written like ~x = P~x for all i simultaneously, so we see that ~x
is an eigenvector of the stochastic matrix P with eigenvalue 1. On page 99 in [Nowak,
2006] it is shown that the solution xi is given by1

xi =
1 +

∑i−1
j=1

∏j
k=1

Pk→k−1

Pk→k+1

1 +
∑M−1
j=1

∏j
k=1

Pk→k−1

Pk→k+1

=
1 +

∑i−1
j=1 r

j

1 +
∑M−1
j=1 rj

=
1 + ri−r

r−1

1 + rM−r
r−1

=
1− ri

1− rM
(A.1.11)

It can be worked out that

P(fixation of blue balls) = 1− P(fixation of red balls) = 1− 1− ri

1− rM
=

1− 1
r

M−i

1− 1
r

M
,

(A.1.12)
from which we see that the formula is valid for both r > 1 and 0 < r < 1, because the
equation is the same when we interchange the role of red and blue balls2.

A.2 Poisson process

In this section, we elaborate on the use of the Poisson process for the model in Section
3.1. In a Poisson process with rate λ(t) the number of events in a time interval dt follows
a Poisson distribution with parameter λ(t)dt,

P(Nevents = k) =
(λ(t)dt)k

k!
exp(−λ(t).dt), (A.2.1)

The number of events in non-overlapping time intervals are independent. The Poisson
distribution is obtained by taking a limit of the binomial distribution, namely by increas-
ing the number of trials n → ∞ while decreasing the probability of success p → 0 such
that the average number of successes np is constant. This limit corresponds to indef-
initely splitting a time interval ∆t in independent smaller intervals, while maintaining
the same average number of events in ∆t.
It can be shown that the time between events follows an exponential distribution with
parameter λ(t). The exponential distribution is memoryless, which corresponds to the
independence of the events in different time intervals.

1Here, we used that
∑i−1

j=1 r
j = ri−r

r−1
, because (r − 1)

∑i−1
j=1 r

j = ri–r.
2Either r > 1 or 1

r
> 1.
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A.3 Clustering

The critical case in [Meyer et al., 1996] is equivalent to our model in Section 3.1 with a
flat fitness landscape, f(x) = f0. By considering times since the last common ancestor
of particles, it is shown that in equilibrium the mean squared pair distance is equal to

E(r2
2) =

∫
ddrr2P2(r) =

2dD(M − 1)

f0
. (A.3.1)

Here, P2(r) is the pair correlation function, which is the probability that the distance
between two randomly chosen individuals is r. The constants are defined in Section 3.1.
If the mean squared pair distance E(r2

2) is larger, this implies that the population is
more spread out. The length scale of the region covered by the population is typically of

the order
√

E(r2
2) =

√
2dD(M−1)

f0
. From this, we see that the population is more spread

when 2dD
f0

is larger, which is the averaged squared distance covered by diffusion between

births, because 1
f0

is the average time between births. Also, if the population size M is
larger, the population is more spread. We already mentioned this in Section 1.5.1.

They also show that, in equilibrium, the centre of mass of the population performs a
random walk with E((xcm(t+ ∆t)− xcm(t))2) = 2dD∆t. We checked that the centre of
mass of the population indeed performs a random walk by simulation of the micro-model.
We found that the measured average displacement Mean((x(t+∆t)−x(t))2) ∝ ∆t exactly.

If we want to describe the micro-model on a different scale, we should at least make
sure that the spread and average movement of the population are in agreement with the
results in this section.

A.4 Deterministic extinction

In this section we propose a way to model extinction effects that are not taken into
account by the stochastic birth-death-diffusion equation as described in Section 3.6.
Note that extinction of a group of N particles occurs when all N lineages of these particles
become extinct. Extinction of different lineages is approximately independent when N
is much smaller than the population size M . The probability of extinction within time
∆t of a single lineage could be written as π0. The probability that all N lineages become
extinct in ∆t is therefore equal to

P(extinction of all N lineages) = πN0 . (A.4.1)

Now imagine an ensemble of Ne identical systems. We expect that in about πN0 Ne
systems the group of N particles becomes extinct. This motivates to define the extinction
process given by

∂N

∂t
= −cπN0 N (A.4.2)

As N gets larger, the probability of extinction decreases. This is represented in the
extinction process because the relative change

1

N

∂N

∂t
= −cπN0 (A.4.3)

decreases as N gets larger, because π0 < 1 is a probability. Compared to the birth-death-
diffusion equation, the extinction term of Equation (A.4.2) is negligible when N is large,
while it has a noticeable effect when N is small.
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Extinction in some place leads to extra births somewhere else, because the population
size is constant. The extinction process can be seen as a refinement to the normal death
process. A better interpretation might be to consider it as a compensation for expected
births that are not possible due to extinction. To illustrate this, for the sequence of
births and deaths B −D−D−D−B −D−B −B, with B a birth and D a death, we
would expect that the N does not change, because there are as many births and deaths.
However, such a sequence is only possible when there are more than 2 particles. For
1 or 2 particles, this sequence would result in 0 particles, because the particles become
extinct. The extinction process is a model to account for sequences that are expected
but not possible due to extinction.

We now add the extinction process to the stochastic birth-death-diffusion equation.
By adding terms to ensure constant population size, we find

∂tu =

(
f(x)− 〈f〉(t)− c(πu0 − 〈πu0 〉(t)) +D∂xx

)
u+ k

√
uη − 〈k

√
uη〉, (A.4.4)

where 〈f〉 =
∫
fudx and 〈πu0 〉 =

∫
πu0udx denote the population averages. We can put

every mechanism that ensures constant population together and write

∂tu =

(
f(x)− cπu0 −+D∂xx

)
u+ k

√
uη − λ(t)u (A.4.5)

where λ(t) forces the constraint of constant population size.
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Appendix B

Code

In this appendix we show the core of the programs used to simulate the models1. We
call it pseudo-code, because the variables and routines are not defined, while their names
are suggestive.

B.1 Bit-strings code

1 for (t=0; t<NBIRTHS; t++) {

/* Death */

replaced = (int) M*genrand (); // Randomly choose some individual to be replaced (death)

6 /* Reproduction */

parent = select_individual(fitness); // Select parent: selection probabilities according to fitness

for (j=0; j<N; j++) { //The parent state is copied into the spot of the replaced individual

population[replaced ][j] = population[parent ][j];

}

11

/* Mutation */

for (j=0; j<N; j++) {

if (genrand ()<MUTPROB) { //Flip every bit with probability MUTPROB

population[replaced ][j] ^= 1; //1->0 and 0->1 (using bitwise XOR)

16 }

}

compute_fitness(population[replaced ]); // Compute the fitness of the new particle (possibly mutated)

}

Listing B.1 – The core of the C program used for the model in Section 2.1.

1Mutation for the first model could be implemented more efficiently by generating a binomial variable
to determine how many bit flips there are, after which these are randomly distributed over the bits.
However, this is just a minor improvement in performance, because the routine to select an individual
dominates the computational costs.
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B.2 Diffusion code

while (t<tmax) {

deltat = exprand(sumfitness); //The time increment is an exponential random variable

t += deltat;

5

/* Diffusion process */

sigma = sqrt2D*sqrt(deltat); //Pre -calculate for efficiency

for (i=0; i<M; i++) { //Every particle diffuses

for (j=0; j<DIMENSION; j++) { // DIMENSION components j for every particle i

10 population[i][j] += sigma*normalrand (); // Random walk (diffusion)

}

fitness[i] = compute_fitness(population[i],K); // Calculate new fitness

}

15 /* Reproduction process */

replaced = (int) M*genrand (); // Randomly choose some individual to be replaced

parent = select_individual(M,fitness ,& sumfitness); // Select parent: selection probabilities according to fitness

for (j=0; j<DIMENSION; j++) {

population[replaced ][j] = population[parent ][j]; //The state of the parent is copied into the spot of the

replaced individual

20 }

sumfitness = sumfitness - fitness[replaced] + fitness[parent ]; // Update the sum of the fitnesses necessary to compute

selection

fitness[replaced] = fitness[parent ]; // Update the fitness of the new particle

}

Listing B.2 – The core of the C program used for the model in Section 3.1.
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