
Tour merging via tree decomposition
A hybrid approach between heuristics and exact solutions for the TSP and VRP

Master Thesis

Mattias Beimers
(ICA-3672565)

Supervisors:
dr. Johan van Rooij
dr. Hans Bodlaender

Department of Information and Computing Sciences
Utrecht University, The Netherlands

August 28, 2015

Abstract

The TSP and VRP are well known optimization problems. In this thesis we
evaluate the use of a dynamic programming algorithm on a tree decomposition
of a graph, with the goal to improve the solutions to these problems given by
several heuristics. The used heuristics are the LKH algorithm, the savings
algorithm and the sweep algorithm.

1 Introduction

For many optimization problems calculating provably optimal solutions is not
feasible in practical applications, because the computation time grows expo-
nentionally with the problem size. Hence, heuristics are used to find solutions
that are good, but not necessarily optimal. To get more certainty that a so-
lution is good, or to improve the solution even more, the heuristics are often
applied multiple times and the best solution is selected. Although this works
well, Cook and Seymour noted in their work on the Traveling Salesman Prob-
lem [1] that by discarding all but the best solution, possibly valuable informa-
tion is lost. Hence the idea emerged to merge all the found solution tours in a
single graph and calculate the optimal solution on the branch-decomposition
of that graph.

At the time of writing, the solutions found by Cook and Seymour improved
on the best known results, sometimes even getting optimal solutions, for in-
stances with 15000 and 18000 vertices [1]. Since then other heuristics have
improved massively and outperform the approach by Cook and Seymour [10].
In this thesis, we will try if the strategy for TSP by Cook and Seymour can
still improve current heuristics even more. Furthermore, we will try to extend
it to work for the Vehicle Routing Problem (VRP).

The Traveling Salesman Problem (TSP) is one of the most well studied
NP-hard problems, where a merchant wants to visit a number of cities and
get back at his starting point in the shortest possible amount of time. We
recognize the TSP problem in many practical applications, from planning a
school bus route to scheduling a machine to drill holes in a circuit board. A
generalized version of this problem, where there are not one but a number of
merchants (or trucks) visiting the cities from the starting point (or depot), is
widely used in the transportation sector. This problem is known as the Vehicle
Routing Problem (VRP).

We define the TSP, given a complete graph G′ = (V,E ′), as finding a tour,
or cycle, that visits all cities exactly once with smallest total cost. For this
thesis we assume the cost ce of an edge e = (v, w) is the euclidean distance
between v and w. Given additionally a demand dv for each vertex v, a max-
imum capacity C of goods per truck, a number M of available trucks and a
special vertex v0 that is the depot, we can define the VRP as finding a set of
at most M tours with the least total cost. Each tour has to start and end at
the depot and can satisfy a total demand of at most C. Each vertex has to
be visited by a tour exactly once. There are many other variants of the VRP
with additional constraints or freedoms, but these are out of the scope of this
thesis.

1

To solve the TSP and VRP we apply the following stragegy: We start by
calculating an initial set of solutions using heuristics. We then merge all the
edges of these solutions into a set of promising edges E ⊂ E ′. After that we
merge the solutions into a subgraph G = (V,E). On this graph we (hopefully)
find a tree decomposition with small width k. With that decomposition we can
calculate the optimal solution in G using a dynamic programming algorithm
that has a running time exponential in k but linear in the number of vertices.
This solution often improves on each of the solutions of the heuristic.

The rest of this thesis is organised as follows: in Section 2 we will discuss
the heuristics used to generate the initial tours and routes. In Section 3 we
will discuss how the solutions are merged and how the tree decomposition is
calculated and in Section 4 we will show the dynamic programming algorithms
on the computed decompositions. In Section 5 we will discuss the result and
finally we conclude in Section 6.

2 Heuristics

Although many different heuristics have been tried to solve the Traveling
Salesman Problem, there are few that can compete with (variants of) the
Lin-Kernighan heuristic [9, 12], most notably the implementation of Hels-
gaun [10]. One relatively new family of algorithms are the Stem-and-cycle
algorithms [3, 4, 2], which perform better than the basic Lin-kernighan im-
plementations [2], but cannot beat the advanced implementations like the one
from Helsgaun. To find initial solutions for the TSP we chose to use the Lin-
Kernighan-Helsgaun heuristic because it is one of the best heuristics available
and its source code is available for academic use [11]. We will discuss the
original Lin-Kernighan heuristic in Section 2.1 and the modifications on the
original algorithm in Helsgaun’s implementation in Section 2.2.

For the Vehicle Routing Problem the currently best heuristics are tabu
search algorithms [12, 13]. Unfortunately they often require to finetune a
lot of parameters and are focussed on specific instances of VRP, rather than
giving consistent solutions for all versions [12]. Other heuristics like the classic
savings heuristic or the sweep heuristic do give good solutions for all variants
of VRP, but they can’t get the results one gets with the tabu heuristics. For
the VRP we chose to use one run of the savings heuristic and multiple runs
of the sweep heuristic, because of their fast running times, reasonable quality
of solutions and ease of implementation. We will discuss these heuristics in
Section 2.3 and Section 2.4.

2

2.1 Lin Kernighan

The Lin-Kernighan heuristic [8] is an improvement heuristic. That means that
the strategy to solve the TSP consists of the following steps:

1. Generate a (random) initial tour.

2. Try to find a modification of the tour that improves it.

3. If an improved solution is found, replace the tour and repeat from step 2.

4. If no improved solutions can be found anymore, we are at a local opti-
mum. We can either start again from step 1 or stop, depending on some
stopping criteria (e.g. the solution is good enough, the pool of initial
tours is deplenished, or a time limit is reached).

The interesting part of this strategy is step 2: how do we improve on the
current tour. One way of doing this is to use a k-opt algorithm. In a k-opt
algorithm we try to find two disjoint sets of edges X and Y , both containing
k edges, such that when we remove the edges in X from the current tour and
replace them with the edges from Y the tour will have a lower cost. k-opt
algorithms are well known and often used heuristics because they improve a
tour effectively while being easy to implement. 2-opt and 3-opt improvements
were proposed for the first time by Croes [5] and Lin [6], respectively in 1958
and 1965. k-opts with higher values of k have been tried as well, for example
by Christofides and Eilon [7], who tried values for k up to 5. However, using
k-opt for fixed k has its limitations. It is unknown beforehand which value of
k will give a good result for the running time involved, as it costs substantially
more time to find the edge sets and their improvements for increasing values
of k.

The Lin-Kernighan algorithm is a k-opt algorithm, but for a dynamic k.
The edge sets to be replaced are equal to a sequence of 2-opt exchanges,
possibly preceded by a single 3-opt. The difference between this approach and
repeatedly applying 2-opt optimizations is that not every part of the sequence
has to improve on the cost of the tour; it is the cost of the entire sequence
that matters. Another difference with the fixed k-opt algorithms is in how we
choose the sets of edges to be removed or inserted. In the 2-opt algorithm
we first choose the set X of edges in the original tour to be removed (i.e. two
crossing edges with the euclidean metric) and then find the corresponding set
Y of new edges to be inserted in the tour. In the Lin-Kernighan algorithm,
the sets X and Y are built up step by step, as the sequence grows.

3

In the algorithm we start by choosing an initial vertex t1 and choose one
of the two adjacent edges x1 = (t1, t2) in the original tour. After we have
chosen the first edge x1, we repeatedly choose edges yi = (t2i, t2i+1) and xi+1 =
(t2i+1, t2i+2), according to some criteria. Note that X contains one edge more
than Y . Because of that, if we remove the edges in X from the current tour
and add the edges in Y to it, the result will not be a tour but a path. However,
if X and Y are constructed in the right way, we can close the path by adding
the edge yi+1 = (t2i+2, t1) to get a tour. We choose an edge yi from a set
of edges to the 5 nearest neighbours of t2i. This edge yi may not be in the
original tour already and the current sequence must have a positive gain, i.e.∑i

j=0 xj−yj > 0. Furthermore, yi should be chosen such that a next edge xi+1

exists (i.e. xi+1 is not chosen already). The edge xi+1 is uniquely defined for
all i ≥ 1, as there are only two edges adjacent to t2i in a tour, and if the wrong
one is chosen the tour cannot be closed anymore (see Figure 2). An exception
is made for x2, where the wrong edge choice is allowed as it can be fixed by
the choice for y3 and x4. If there are multiple valid choices for yi or xi+1,
we initially choose the one with the highest gain. For yi we look ahead and
choose the edge where xi+1 − yi is largest. For xi+1 we choose the edge with
the largest weight. Other choices are ignored at first, but may be examined
via backtracking. We keep adding edges yi and xi+1 to the sets, until either
the complete sequence (including the last edge yi+1 that will close the tour) is
shorter than the previous tour (in which case we succeeded) or that there is no
edge yi to find that improves the tour even if the closing edge yi+1 would have
weight 0 (in which case we failed). If we fail, we can either stop, start again
from scratch (with a different vertex for t1), or use backtracking. The latter
means that we go back a few steps and try another edge yi (or occasionally
another edge xi+1). As backtracking is quite time consuming, we only allow it
at the first two levels (i ≤ 2). An example of the dynamic k-opt procedure is
shown in Figure 1.

This completes the overview of the Lin-Kernighan heuristic. We will de-
scribe two more optimizations below, one to speed up the algorithm, the other
to improve the solution. There are many more details which are essential for
the efficiency of the algorithm however, as it is not a simple algorithm to im-
plement [9]. We omit them here as they are not essential to this thesis. For
the exact details we refer to the original paper [8].

The first optimization reduces the choices for the edges. In the first few
solutions found by the algorithm there always are a lot of edges that appear
in every solution. These common edges are recorded and then they are no
longer allowed to be broken for the other solutions. This means they cannot
be used as choice for xi+1 any more, which in turn limits the choices for yi and

4

x1

y1

x2

y2

x1

y1

x2

y2

x3

y3

Figure 1: An example of a 3-opt move, as constructed by the Lin-Kernighan
heuristic. Note that vertices are displayed in a circle in the order they appear
in the original tour.

speeds up the overall algorithm significantly. Note that in order to not bias
the solution too much (we do not want to find the exact same solution again
after all), we only use this restriction for i ≥ 4.

In the second optimization of the algorithm we apply the double bridge
move. The dynamic k-opt procedure that we described here only allows us to
find so called sequential moves: a series of connected edges, alternating inside
and outside the original tour. Not all possible k-opts consist of such a sequence
however, and not considering these moves can sometimes be the difference
between a good solution and the optimal solution. The easiest example of
a non sequential move is a 4-opt known as the the double-bridge move (see
Figure 3). It is tried as a post-optimization after we finished with the entire
algorithm and only for edges that are not amoungst the common edges from
the previous optimization. Lin and Kernighan found that in some cases this
improved the result significantly, while in other cases it did nothing. It doesn’t
hurt to try though, as it is a relatively cheap optimization.

2.2 Lin Kernighan Helsgaun

The Lin-Kernighan-Helsgaun algorithm [9, 10] is based on the algorithm of
Lin and Kernighan, but improves it on several points.

We define a 1-tree for a graph G = (V,E) as a spanning tree on the vertex
set V \ {1} combined with two edges from E incident to the 1-vertex. An
example of a 1-tree is shown in Figure 4. Note that a 1-tree is not a tree (as it
contains a cycle) and that the choice of the 1-vertex is arbitrary. A minimum
1-tree is a 1-tree of minimum length. The α-nearness of an edge e is defined
as the difference between the length of the smallest 1-tree containing e and the

5

x1

y1

x2

y2

x3

y3

Figure 2: An example where the wrong choice for x3 is made, resulting in two
disjunct tours.

y1

x2

y2

x1

x4

y3

y4

x3

Figure 3: The double bridge move

6

← the 1-vertex

Figure 4: A 1-tree

length of the minimum 1-tree. Or in other words: α-nearness is the increase
in length of the minimum 1-tree if it is required to contain the edge e. A
straightforward computation of all α-nearness values of the edges takes O(n3)
time, but in his paper Helsgaun shows how to compute it in O(n2) time [?].

The first major difference with the Lin-Kernighan algorithm is the candi-
date set for the edges in Y . In the original algorithm the choices for an edge
yi are limited to the edges to the first 5 nearest neighbours. The choice for
this candidate set assumes that the shorter an edge is, the higher the chance
is that it occurs in a tour. This is reasonable, but it is not always a good
estimation. Helsgaun notices that the α-nearness, is a better estimation and
uses it instead of the nearest neighbours as the candidate set. The candidate
set then is further modified to always include edges that are in both of the two
previous best solutions. These edges are tried first. The candidate set for the
first edge to be chosen, x1, is also changed so that no edges from the previous
best tour are removed in the first level of the improvement step.

The second major change is the choice of the basic move. In the original
Lin-Kernighan algorithm every move was composed as a sequence of 2-opt
moves (and possibly a 3-opt). Helsgaun [9] modified it to use moves that con-
sist of 5-opt moves (unless a k-opt move for smaller k results in an improvement
already). Later [10] he modified it again to use general k-opt moves up to a
certain k that we can choose ourselves as the basic step. The steps to do this
are rather involved and contain a large case-analysis and won’t be described
here in detail. For the details we refer to the paper of Helsgaun [10]. The main
idea of his approach however is that we allow edges xi that initially break up
the tour (like in Figure 2). We then look ahead to the following edges yi+1

and xi+1 to make sure that acceptable edges exist that can fix the tour. These
edges in their turn do not have to be chosen; we can choose edges with higher

7

gain that break up the tour again, providing we look ahead and find acceptable
edges that can fix the tour. This allows, amoung others, the double bridge
move from Figure 3 to be included natively in the search.

The third change is not aimed at improving the quality of the solutions,
but aims to speed up the algorithm. As in most improvement heuristics, the
Lin-Kernighan algorithm is tried several times on different initial tours. These
tours where constructed randomly because Lin and Kernighan considered con-
struction heuristics to be unnecessary. Helsgaun notes that even though a good
construction heuristic does not significantly improve the quality of the final
tour, it does improve the running time of the algorithm. The heuristic used
by Helsgaun tries to construct a tour greedily by choosing edges that are in
the minimum 1-tree and that are in the previous best tour. If no such edge is
found either a random other candidate edge is chosen or, if they are not valid
either, an edge to any free vertex.

Amoungst some more additions added by Helsgaun is the option of merging
tours. Similar to what we do in this thesis he merges the edges of a few
solutions in a single graph and on this merged graph he solves the TSP again.
Unlike what we do in this thesis he doesn’t solve the merged problem to
optimality, but applies the general k-opt submoves again. This time he uses
larger value of k, which he can do because the graph is sparse. We disable this
option in our experiments, as we perform this calculation ourselves. There are
some more additions, not specifically related to the Lin-Kernighan algorithm,
but more general applicable to the TSP, for which we refer to Helsgaun’s
paper [10].

2.3 Savings

The savings heuristic [14] is a simple but relatively effective construction
heuristic for the VRP. A construction heuristic is a heuristic that it creates a
set of tours without relying on anything except the data on the vertices and
truck capacity. There are two versions of the savings algorithm, the parallel
version and the sequential version. We implement the parallel version here, as
the resulting tours are usually better than the tours generated by the sequen-
tial savings algorithm [12, 13]. Our savings algorithm consists of the following
steps:

1. Initially we create n− 1 tours, one for each non-depot vertex. Each tour
starts at the depot, goes to the associated vertex and then goes back to
the depot.

2. For every pair of vertices i, j we then calculate the saving Si,j = c(0,i) +

8

c(0,j)− c(i,j). This represents the gain in cost we get by removing the two
edges (0, i) and (0, j), and adding the edge (i, j).

3. We now take the saving Si,j with the highest gain and check if we can
apply it. With applying Si,j we mean that we try to find two tours, one
of which ends with the edge (0, i) and one of which begins with the edge
(0, j) (or the other way around). We then connect the two tours together
by removing these edges and adding the edge (i, j). This is of course only
possible if there are two tours that begin or end with these edges and
if the demand of both tours together does not exceed the capacity of a
truck.

4. We continue to repeat step 3 until no more savings can be applied. If
the total amount of tours is less or equal than the allowed amount of
trucks, we are done. If it exceeds the limit, we failed.

5. If the heuristic has successfully found a set of tours, we optimize each
tour separately using the Lin-Kernighan-Helsgaun heuristic as described
in Section 2.2.

We decided not to make an exception for the savings that have a negative
gain (i.e. savings that make the total cost worse). This means that we apply
them just like we apply the positive savings. The reasoning behind this is that
it’s better to have a slightly worse solution than an invalid solution. Applying
the negative savings means we use one less truck, which is a hard constraint
on the problem and thus more important. Note that this situation occurs very
little (if ever) because the negative savings are tried last, so this is not likely
to have a big impact on the solution of the tours.

The characteristic behaviour for the savings algorithm is to put a lot of
effort into getting a set of tours with low cost. This produces good tours, which
is nice, but it also has a negative side effect. This disadvantage is that it does
not pay much effort into making sure the capacity of a truck is used optimally.
This means that sometimes it generates solutions that need more trucks than
it is allowed to use, which makes the given set of tours an invalid solution.
A possible workaround would be to allow solutions that use more tours than
strictly allowed in the hope that the edges would be of use in creating the final
tour after the merging step from Section 3. We decided against this because
that would be cheating - after all, the goal is not to finetune heuristics for
the merging process but the other way around. Another disadvantage of this
heuristic is that it is deterministic, and can therefore only produce a single
solution. To get more solutions we use the sweep heuristic in Section 2.4.

9

2.4 Sweep

The sweep heuristic is another heuristic for the VRP. It is most commonly
attributed to Gillett and Miller in 1974 [17], but can be found earlier in a
book from Wren [15] or a paper from Wren and Holliday [16] in 1971 and 1972
respectively. It depends on the geometry of the vertices and is only applicable
for the euclidean VRP, not in general. This is not a problem for us because
we aim to solve the euclidean VRP anyway. Unlike the savings heuristic, the
sweep heuristic is an non-deterministic algorithm in the sense that it depends
on the starting vertex (or starting angle) and can produce different sets of
tours for the same instance. Note that a starting angle and a starting vertex
correspond one on one with each other. If you begin with a starting angle the
starting vertex is the first vertex that it will hit when rotating clockwise. If
a starting vertex is given, all angles between the angle through the starting
vertex and the angle through the first vertex counter clockwise of the starting
vertex create the same set of tours.

The sweep heuristic is a two-phase algorithm. That means that it splits up
the task of creating a set of tours by first clustering the vertices into groups
that can be served by a single truck, and then deciding for each cluster of
vertices separately in which order the truck should visit the vertices. The
first stage of clustering the vertices is what the sweep algorithm is designed
to solve. The second stage is essentially a set of TSP problems, which can
be solved using a dedicated algorithm. We solve this second step using the
Lin-Kernighan-Helsgaun heuristic from Section 2.2.

Because of its geometric nature, the sweep heuristic can be best explained
by picturing a drawing of the vertices on a plane. The algorithm then consists
of the following steps:

1. We start by drawing a ray from the depot through the starting vertex.
We add these two vertices to the first tour; the tour we are currently
building.

2. We then rotate the line clockwise until it hits a vertex. If the vertex can
still be added to the previous tour (i.e. the total demand of the vertices
in the tour does not exceed the capacity of a truck), we add it to the
tour.

3. We repeat step 2 until adding the next vertex will exceed the capacity
limit (or until there are no vertices left, in which case we are finished
and go to step 5).

4. Once the capacity limit is reached, we add the next vertex and the depot
to a new tour, and we repeat from step 2 until there are no vertices left.

10

5. Once we are finished with the sweep part, we solve each tour separately
using LKH.

The tours created by this heuristic are not necessarily bad, but they are
very clustered. This means that it will never explore a large part of the solution
space. To make for a bit more of a variety of edges, we use the savings heuristic
as described in Section 2.3.

One thing left to discuss is the choice of the vertex to start with. For
the choice of the starting vertex, given the start vertex for the previous set
of tours, there are basically two options. One option is to start with the first
vertex that comes next with respect to clockwise rotation, this would create a
sequence of tours that look a lot like each other. The other choice would be to
spread out the start vertices evenly, causing the set of tours to be move diverse
but less related. We chose the second option to choose the starting vertices
uniformly. One reason is that the first option is basically a disguised version
of the String Relocation heuristic, which is an improvement heuristic that
removes a sequence of vertices from one tour and places it in the neighbouring
tour. The second option however should add a diverse set of edges to the final
tour, which should allow for broader viewpoint.

3 Tree decomposition

Once we have generated a set of good tours for our original graph G′ = (V,E ′),
we merge these tours in one graph. All tours E ′j ⊂ E ′, for 0 ≤ j < #tours
as found by the heuristics are merged together into a new graph G = (V,E),
where E =

⋃
E ′j. For this graph G we will compute a tree decomposition

so that we can compute the optimal tour in this reduced problem. Before
we show how we compute this decomposition in Section 3.2, we first give the
definition of a tree decomposition in Section!3.1.

3.1 Tree decomposition and width

A tree decomposition of a graph G = (V,E) is a pair (T = (W,H), X), where
T is a tree with an arbitrary root vertex and X = {Xi ⊂ V : i ∈ W} a set of
bags, satisfying:

1.
⋃

i∈W Xi = V,

2. for all (u, v) ∈ E there is an i ∈ W with u, v ∈ Xi and

11

0

1

2 3

4

5
6

0: 0,
1, 3, 4

1: 1,
2, 3, 4

2: 0,
3, 4, 5

3: 0,
5, 6

Figure 5: An example of a graph and its tree decomposition.

3. for all v ∈ V , the set Wv = {i ∈ W : v ∈ Xi} forms a connected subtree
of T .

The width k of the tree decomposition is maxi∈W |Xi| − 1. The treewidth of
a graph G, is the minimum width among all tree decompositions of G. An
example of a tree decomposition is shown in Figure 5.

Throughout this thesis we often work with the edge set corresponding to
the vertex i ∈ W , rather than the vertex set Xi itself. To that end we define
Yi = {(u, v) ∈ E : u, v ∈ Xi}. We say that a bag contains a vertex v if v ∈ Xi

and that it contains an edge e if e ∈ Yi.

3.2 Minimum Degree Heuristic

Calculating the optimal treewidth or the optimal tree decomposition for un-
known treewidth is an NP-Hard problem [20], so finding an optimal decom-
position in reasonable time is infeasable unless P=NP. We do not necessarily
need a tree decomposition of optimal width, we just need the width to be suf-
ficiently small so that our dynamic programming algorithm runs fast enough.
Therefore, we compute our tree decomposition with a heuristic.

Bodlaender and Koster [18] evaluated a number of construction heuris-
tics. We chose to use the Minimum Degree Heuristic, originally designed by
Markowitz [19], because it is a simple but effective heuristic. It is fast, obtains
results close to the optimum and is easy to implement. A non-recursive version
of the algorithm consists of the following steps:

1. Initially let (T = (W,H), X) with W , H and X set to ∅.

12

2. Take the vertex v ∈ V with minimum degree and add it to W ; i.e. add
a new vertex to W with the same name as v. The reason to give it the
same name is that it allows us to add edges ahead of time in step 4.

3. Create a bag Xv with v and all its neighbours in G.

4. Add an edge (v, w) to H, where w is the neighbour of v in G with the
smallest degree (so the first neighbour to be processed). Note that w is
not yet added to W , but will be added in the future.

5. Modify G by turning all the neighbours of v into a clique and removing
v from V (and its incident edges from E).

6. Repeat step 2 to 5 until all vertices are processed (i.e. V = ∅).

To complete the tree decomposition we choose the first vertex of W to be the
root of the tree, and, when we are solving the VRP, we also add the depot
vertex to every bag.

As a small optimization step we remove any bag that is fully contained
in it’s parent. This happends quite often in this algorithm, because in step 3
we add all the neighbours of a vertex v to a bag, and then connect all these
neighbours to each other in step 5. Once one of these next vertices gets
processed while it doesn’t have any neighbours that v did not have, it will
add all the neighbours of v again, but this time without v itself. Hence the
duplication.

4 Dynamic programming

Provided the width is small enough, the optimal solution for the TSP or VRP
on the merged graph can be computed using a dynamic programming algo-
rithm on the tree decomposition of the graph. In the following sections we
explain the details of the algorithms.

4.1 Traveling Salesman

Let G = (V,E) be a simple graph with edge-weights ce and (T = (W,H), X)
be the tree decomposition with width k − 1 and Xi and Yi be the bags with
respecitvely vertices or edges as defined in Section 3.1. We say that a bag Xj

is below a bag Xi (in the tree) if i is on the path from j to the root of T . Note
that because G is the result of a number of merged tours, it is 2-connected and
all vertices have a degree of at least two. The main idea of the algorithm is to
find a series of disjoint paths and connect them together into a Hamiltonian

13

tour of minimum weight. A series of these paths start and end in a bag, and
visit all vertices in bags below that bag in the tree. Such a series of paths is
encoded using vertex degrees and a matching. Every vertex can have degree 0,
1 or 2. Vertices with degree 2 are already used in a path, vertices with degree
1 are endpoints of a path and vertices with degree 0 are free, so not yet used in
any of the paths. For every pair of endpoints we have an edge {u, v} : u, v ∈ V
in the matching to mark which vertices are the endpoints of a path.

We now want to use the function F (Xi, Di,Mi) as the minimum total cost
of the edges in a series of paths starting and ending in bag Xi, where Di is
a set of degrees for the vertices in Xi and Mi a matching on the vertices of
degree 1. If there is an edge {u, v} ∈ Mi then there should be a path that
starts in u and ends in v. All vertices in Xi itself should have degrees as given
in the degrees parameter, and the vertices that occur only in the bags below
Xi in the tree should all be used (have a degree of 2) in one of the paths.

One way of looking at this is to see the set of degrees Di as an instruction
to a specific part of the tree (the bag Xi and all bags below in the tree) to
deliver a set of edges, together forming a series of disjoint paths, such that
all the degrees of vertices in this bag match with the degrees in D and that
all vertices that occur only in bags below Xi in the tree are used. Of course,
we do not just want any set of edges, we want the edges that can do it with
the minimum cost. To get the cost of a tour through the entire graph, we
can now call F (X0, D0 = {(v, 2), for v ∈ X0}, ∅). The root of the tree is the
special case where we allow the paths to form a (single) cycle. Therefore if
we give the instruction to the root bag X0 to give us a set of edges such that
all the vertices inside X0 itself have degree 2 (as required by the set D0) and
all vertices in bags below the root have degree 2 as well (by specification of
the function F), we actually give the instruction to find the weight of a set
of edges that visits all the vertices of G in a single cycle. And because this
set of edges should have minimum cost, this gives us the cost of the TSP tour
through G.

Of course, for a good tree decomposition not all the edges are contained
in a single bag. The main problem for a non-leaf bag Xi now is not how to
find a subset of edges in Yi that satisfy all the requirements for the degrees
(and the matching), but how to divide the degrees over it’s children so that
they (recursively) can find the right edge sets that satisfy their part of the re-
quirements. Selecting some edges from Yi is mostly used to stitch the different
paths from the child bags together so that the complete series of paths meets
the requirements of D and M . An example of a path through a part of a tree
decomposition is depicted in Figure 6.

To find the different ways of dividing the requirements for a bag over it’s

14

0 1

2
3

0

3

6

7 2

1

10

7

F (Xtop, {(v0, 1), (v1, 1), (v2, 2), (v3, 2), (v7, 0)}, {{v0, v1}}),
F (Xleft, {(v0, 1), (v3, 1), (v6, 2), (v7, 0)}, {{v0, v3}}),
F (Xright, {(v2, 1), (v1, 1), (v10, 2)}, {{v2, v1}})

Figure 6: An example of a path through a part of the tree decomposition,
together with the instructions per bag.

15

children, we have to go through these three steps:

1. Find the degrees

2. Find the matchings

3. Find the edge sets

Step 1 and 2 are done simultaniously. We first focus on the degrees and at
the same time have to decide on the edges in the matching of the children.
We will find them while we set the requirements on the degrees. We try all
possible combinations of dividing the degrees per vertex. For a given vertex v,
assuming we are required to give it a degree of 2, we first try to give it to each
of the children. So for possibility p and child bag j we try to set the degree of
v in Dp,j to 2. Afterwards, assuming we have to give v a degree of at least 1,
we try to use it as an endpoint coupled with each of the vertices in all of the
child bags. So the degrees of two vertices, v and some other vertex u in Dp,j

are set to 1. We try this for all (valid) combinations of u and j. At this step
we also add the edge {u, v} to Mp,j. Finally we try not to assign v to any of
the child bags, so that we can give its degree with one of Yi’s edges. Of course,
vertices are only given to a child bag if it contains the vertex.

For the remaining degrees that are not handled by any of the child bags
we calculate a subset Ep of Yi. This is the third step. For non-leaf bags these
edges mainly glue paths from the children together in the paths as required by
the Di and Mi parameters. For the leaf bags there are of course no child bags
to delegate the degrees to so it all has to be solved using the bags own edges.
Note that the edge set is not allowed to introduce cycles, so in particular two
endpoints in an edge of a matching are not allowed to be connected. This is
the reason why we need to give the matching as parameter to F , without it we
do not have sufficient information to determine which vertices can and which
vertices cannot be connected. The root bag is of course an exception, because
there all paths are merged in a single cycle.

In summary, a vertex’ degree can be satisfied by passing it on to one (or
two) of the child bags or in the bag itself by choosing an edge from Yi. Formally
this becomes

F (Xi, Di,Mi) = min
1≤p≤Pi

(
∑

j∈W : Parent(j)=i

F (Xj, Dp,j,Mp,j) +
∑
e∈Ep

ce)

for all Pi ways of dividing Di and Mi into the Dp,j and Mp,j sets and the
corresponding Ep ⊂ Yi. The edges are not allowed to form a cycle. If no valid
edge set is found, F (Xi, Di,Mi) =∞.

16

The overall algorithm then consists of a top down approach where we tab-
ulate all entries for the function F , starting at the root and then recursively
work downwards in the tree. Then the value of each table entry is finished
bottem up as the recursion returns the values for the child entries.

4.2 Vehicle Routing

Let G = (V,E) again be a simple graph with edge-weights ce and (T =
(W,H), X) be the tree decomposition with width k − 1 and Xi and Yi be
the bags with respectively vertices or edges as defined in Section 3.1. The def-
inition of the instruction-function F (Xi, Di,Mi,Wi) remains the same except
that the edges e ∈Mi now have an edge weight we ∈ Wi as well. Furthermore
let M be the number of trucks that we have to use (and therefore te number
of tours that we should find) and let C be the capacity of each truck. We
denote the demand of all vertices vi ∈ V by di, where the demand d0 of the
depot vertex v0 is equal to 0. Note that G, the resulting graph after merging
the solutions of the heuristics, is not 2-connected as was the case for the TSP.
This is because removing the depot vertex causes it to be disconnected. In our
algorithm we still assume that all vertices have a degree of two or more. This
is not always true, as there can be a tour from the depot to a single vertex
v and then back, but this case is trivial, as the cost of that tour is 2 · c(0,v),
and it can be excluded from the input to the function F . With the demand
of a path, we mean the total demand of all the vertices on this path. When
the matching edge of a path is in the instruction function F for the current
bag Xi, we call this path a main path. Whenever two vertices in a main path
are connected with a matching edge, rather than a normal edge from Yi, this
edge of the matching encodes the start and end vertices of a subpath through
a child bag of Xi. For example, the bag Xtop in Figure 6 has one main path
and two subpaths.

The main idea of the algorithm is similar to that of the algorithm for the
TSP. We try to find a series of paths that together form not one, but a set of M
tours. The instruction of how these paths should be delivered by a bag is again
done by specifying the degrees of the vertices and a matching. The degrees of
all non-depot vertices can be between 0 and 2 like before, but the degree of
the depot vertex can be any value between 0 and 2M . Furthermore we add
the restriction that the depot can only appear as an endpoint of a path. This
restriction makes the final merging of the paths easier and effectively ensures
that the depot is part of every tour. The greatest difference however lies in
the fact that we need to restrict the total demand of the vertices in each of the
tours to be at most C, the capacity of a truck. To do this we need to be able to

17

enforce this restriction on each of the paths separately in the parameters of the
function F . As an edge in the matching relates one on one to a path, it comes
natural to extended the edge with an edge-weight w{u,v}, which denotes that
the demand of path from u to v can be at most w{u,v}. To get the solution for
a VRP instance we call F (X0, D0,M0,W0), where D0 contains the maximum
degree for all vertices, and M0 contains M times the edge {0, 0} with weight
w{0,0} is equal to the capacity C of a truck.

The difficulty lies in how to divide the demand from the main paths in the
current bag Xi, over the demands for the subpaths through the child bags.
Note here that the focus has shifted from the bags to the individual paths
through the bags. For the VRP we have the three steps from the TSP, but
with an additional fourth step.

1. Find the degrees

2. Find the matchings

3. Find the edge sets

4. Find the demands per path

In the dynamic programming algorithm for the TSP the main difficulty lay
at dividing the degrees over the bags, but we didn’t care which vertex was
included in which path. We only had to ensure that there was some path
satisfying the degree of a vertex as was instructed; for as long as its endpoints
coincided with the matching of course. Likewise, for the VRP algorithm,
we first try to divide the degrees over the bags while initially ignoring the
individual paths. As before we find the edges in the matchings as a side effect
of finding the degrees, but at this point we don’t know the weight of the edges
yet. Once we divided both the degrees and found the matchings, we try, like
before, to find an edge selection to support these choices of Di and Mi. Only
after we are done with the first three steps we try to find the weight of the
matching. If a main path only has one subpath, this is quite simple. The
demand of the subpath is the demand of the main path minus the demand of
the vertices already visited inside the current bag. Each main path can have
multiple subpaths however, and these subpaths are independend of the bags.
Multiple subpaths from the same main path can be spread over multiple bags
(but don’t have to), and there can be subpaths from different main paths in
the same bag. Because we don’t know how much capacity is needed for the
subpaths yet, we simply have to try all possibilities. In the example of Figure 6
the bag Xtop might be allowed to have a demand of at most 6 (if all vertices
have a demand of 1 and the child bag of Xright has no additional vertices not

18

in Xright itself this is just enough). We now need to try to give one bag a
demand of 6 and the other 0 (and the other way around), then try to give one
5 and the other 1, then 4 and 2 and finally we need to try giving both bags a
demand of 3.

Another effect of the capacity constraint is the choice of the edge sets
Ep ⊂ Yi, which are constructed after the degrees and matching are chosen.
For the TSP algorithm we just have to find a path that uses all vertices that
we instructed it to use, but it doesn’t matter whether a vertex is used in one
path or another. For the VRP placing a vertex in one path rather than in
another might mean that the demand of that path is more than the capacity
of a truck, leaving the solution invalid. As a consequence we do not have to
evaluate just the cheepest edge selection, but all of them.

5 Results

We implemented the algorithms described in this thesis in C++ using the GNU
GCC compiler on both Linux and Windows (using Cygwin in the latter case).
We used both the source code and the binary for the Lin-Kernighan-Helsgaun
algorithm, which is available for academic use on the website of Helsgaun [11].
All experiments ran on a laptop with an Intel i5-4210U CPU, with a clock rate
of 1.70GHz.

5.1 Traveling Salesman Problem

In our test we considered some of the TSPLIB instances provided by the 8th
DIMACS Implementation challange [21]. Specifically we tested the ones that
have between 1000 and 2500 vertices. The LKH algorithm was limited to
100 trials and 10 runs each. This means that every tour was generated by
evaluating 100 different starting vertices t0 (see also Section 2.1), and that we
ran the algorithm 10 times.

The results of our experiments with the LKH heuristic are displayed in
Table 1. The name of the tour represents, apart from the TSPLIB name, also
the number of vertices in the input graph. In the width column we give the
width of the decomposition on the merged graph. The #tours column lists
the number of LKH runs that added edges that where not used in any of the
previous runs. The best and average columns represent the best and average
values found by the LKH tours. The time displays the time it took for the
heuristic to run. Note that the minimum degree heuristic is always completed
in a few milliseconds, and does not influence the results. Note that in two

19

name width #tours best avg. time
d1291 7 7 50801 50884 45s
d1655 5 8 62128 62130 48s
d2103 8 10 80460 80493 1m 58s
dsj1000 4 3 18660188 18667688 1m 31s
fl1400 14 10 20164 20167 50m 19s
fl1577 6 10 22263 22266 20m 24s
nrw1379 - - - - -
pcb1173 5 4 56892 56898 10s
pr1002 7 5 259045 259152 10s
pr2392 3 8 378032 378032 20s
rl1304 7 5 252948 253227 29s
rl1323 10 5 270199 270552 26s
rl1889 10 8 316549 316747 1m 20s
si1032 - - - - -
u1060 8 10 224094 224136 1m 33s
u1432 16 10 152970 152970 47s
u1817 12 10 57259 57277 59s
u2152 11 10 64253 64308 1m
u2318 66 10 234256 234256 3m 21s
vm1084 8 5 239303 239407 36s
vm1748 12 8 336739 336758 35s

Table 1: The results of the LKH algorithm

cases our program had a problem reading the input graph and aborted with
an exception.

The results of the experiments with the dynamic program algorithm are
displayed in Table 2. The name, width and #tours column are the same as
before. The cost column displays the cost of the optimal tour through the
merged graph. The time displays the time it took for the dynamic program-
ming algorithm to complete. Note that in the cases where the width of the
decomposition was larger than 10, we did not continue with the dynamic pro-
gramming algorithm, as it would exceed the available running time. Another
thing to note is that even though our program has double precision for the
coordinates of the vertices, it truncates the cost of an edge to an integer value.
There are different conventions about what type should be used for the com-
putations [12]. In this case the LKH algorithm uses double precision for the
edge costs. This causes the differences between the cost found by LKH and the

20

name width #tours cost time
d1291 7 7 50658 6s
d1655 5 8 61748 0s
d2103 8 10 79310 2m 39s
dsj1000 4 3 18659188 0s
fl1400 14 10 - -
fl1577 6 10 21298 0s
nrw1379 - - - -
pcb1173 5 4 56699 0s
pr1002 7 5 258829 0s
pr2392 3 8 377553 0s
rl1304 7 5 252774 1s
rl1323 10 5 270012 30m 18s
rl1889 10 8 316240 1m 25s
si1032 - - - -
u1060 8 10 223581 26s
u1432 16 10 - -
u1817 12 10 - -
u2152 11 10 - -
u2318 66 10 - -
vm1084 8 5 239019 27s
vm1748 12 8 - -

Table 2: The results of the dynaming algorithm

cost as calculated by the dynamic programming to be larger than it actually
is. The new tours found by the dynamic programming do improve the LKH
tours in most cases, but the difference is somewhat less as that it seems.

Interesting to see is that there is no correlation between the running times
of the heuristic and the running times of the dynamic programming algorithm.
The exponential behaviour of the decomposition width is clearly visible how-
ever. Usually the time to run LKH dominates the time to run the dynamic
programming algorithm, until the width of the decomposition reaches 10.

5.2 Vehicle Routing Problem

To test how the tour merging approach works for the VRP, we downloaded
several instances for the Capacitated VRP from the website of the NEO re-
search group [22]. The instances vary from having 32 vertices to 80 vertices
in total. The number of trucks vary from 5 to 10 trucks. The capacity of a

21

name n width #savings #sweep best avg.
A-n32-k5 32 6 1 9 832 973
A-n32-k5 19 6 0 6 535 656
A-n32-k5 12 4 0 8 460 478
A-n33-k5 33 5 0 9 715 757
A-n33-k5 13 4 0 6 413 435
A-n33-k6 14 5 1 4 330 450
A-n32-k5(c) 13 4 0 8 444 474
A-n32-k5(c) 14 5 0 8 448 485
A-n32-k5(c) 15 5 0 7 448 500

Table 3: The results of the savings and sweep algorithms

truck is equal for all the instances and is set to 100. Even though these where
amoung the smallest instances available, even the smallest ones were aborted
due to too long running times.

Because of the limited timeframe and computing power we decided to mod-
ify the instances, in search of what our algorithm can handle. First we chose
to limit the number of vertices (and accordingly the number of trucks neces-
sary for the demand of the cities). We did this by simply removing the vertices
after the n-th vertex. This showed us that our algorithm was able to handle in-
stances with a limit of approximately 13 vertices. Apart from that we decided
to change the capacity parameter from 100 to 10 for some of the instances,
and round down the demands of the vertices accordingly. This allowed our
program to handle a few more vertices, but not very much. The cases where
we changed the capacity are labelled with a (c) behind the name.

The results of the computations concerning the heuristics are displayed in
Table 3. In the name column we display the name of the instance, which in-
cludes the original number of vertices and the number of trucks used. In the
next column we display the number of vertices that we limited the computation
to. The width column shows the width of the decomposition again. The #sav-
ings and #sweep columns show the number of runs in which the algorithms
added new edges to the set of tours. The best and average columns show the
best and average costs of set of tours found by the heuristics. Noteworthy is
that in all the cases where the savings algorithm found an acceptable tour it
had the best result. Running times are not displayed as all heuristics, includ-
ing the minimum degree heuristic used to compute the tree decomposition,
ran in less than a second.

The results of the computations by the dynamic programming algorithm

22

name n width #tours best avg. cost time
A-n32-k5 32 6 10 832 973 - 8h (aborted)
A-n32-k5 19 6 6 535 757 - 4h (aborted)
A-n32-k5 12 4 8 460 478 406 2m 26s
A-n33-k5 33 5 9 715 656 - 8h (aborted)
A-n33-k5 13 4 6 413 435 406 19m 4s
A-n33-k6 14 5 5 330 450 - 8h (aborted)
A-n32-k5(c) 13 4 8 444 474 436 2s
A-n32-k5(c) 14 5 8 448 485 441 6s
A-n32-k5(c) 15 5 7 448 500 441 19m 56s

Table 4: The results of the dynamic programming algorithm

for the VRP are displayed in Table 4. The name, amount of vertices, width,
best and average columns are the same as before. The #tours column contains
the combined number of merged sets of tours by the savings algorithm and the
sweep algorithm. The cost column contains the cost of the tour as calculated by
the dynamic programming algorithm. The time column contains the running
time of the dynamic programming algorithm. Overall the cost of the tours
given by heuristics is improved, but at a huge cost in complexity of the code
and running time. Note that all of the larger instances where aborted after a
given number of hours.

6 Conclusion

In this thesis we have looked at the tour merging technique introduced by Cook
and Seymour [1], for the Traveling Salesman and Vehicle Routing problems.
We have seen that merging a set tours created by heuristics improves the
overall solutions. In the case of the TSP this is already known, as it was shown
by Cook and Seymour before. In the case of the VRP this is new, but it is
not very helpful. There are better heuristics available than the ones we used,
but these are often rejected because of the complexity of the code and running
times (and also because they are not generally applicable). Our algorithm
is both very complex in code as slow in running time and not applicable for
large instances, and thus is not an effective alternative for more complicated
heuristics.

23

References

[1] Cook, W., & Seymour, P. (2003). Tour merging via branch-decomposition.
INFORMS Journal on Computing, 15(3), 233-248.

[2] Rego, C., Gamboa, D., Glover, F., & Osterman, C. (2011). Traveling sales-
man problem heuristics: leading methods, implementations and latest ad-
vances. European Journal of Operational Research, 211(3), 427-441.

[3] Pesch E., Glover, F. (1997). TSP ejection chains. Discrete Applied Math-
ematics, 76(1), 165-181.

[4] Rego, C. (1998). Relaxed tours and path ejections for the traveling salesman
problem. European Journal of Operational Research, 106(2), 522-538.

[5] Croes, G. A. (1958). A method for solving traveling-salesman problems.
Operations research, 6(6), 791-812.

[6] Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell
System Technical Journal, The, 44(10), 2245-2269.

[7] Christofides, N., & Eilon, S. (1972). Algorithms for large-scale travelling
salesman problems. Operational Research Quarterly, 511-518.

[8] Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for
the traveling-salesman problem. Operations research, 21(2), 498-516.

[9] Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan
traveling salesman heuristic. European Journal of Operational Research,
126(1), 106-130.

[10] Helsgaun, K. (2009). General k-opt submoves for the Lin-Kernighan TSP
heuristic. Mathematical Programming Computation, 1(2-3), 119-163.

[11] Helsgaun, K. LKH http://www.akira.ruc.dk/~keld/research/LKH/

[12] Laporte, G., Gendreau, M., Potvin, J. Y., & Semet, F. (2000). Classi-
cal and modern heuristics for the vehicle routing problem. International
transactions in operational research, 7(4-5), 285-300.

[13] Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., & Semet, F.
(2002). A guide to vehicle routing heuristics. Journal of the Operational
Research society, 512-522.

24

http://www.akira.ruc.dk/~keld/research/LKH/

[14] Clarke, G. U., & Wright, J. W. (1964). Scheduling of vehicles from a
central depot to a number of delivery points. Operations research, 12(4),
568-581.

[15] Wren, A., (1971). Computers in Transport Planning and Operation. Ian
Allan, London.

[16] Wren, A., Holliday, A., (1972). Computer scheduling of vehicles form one
or more depots to a number of delivery points. Operational Research Quar-
terly 23, 333-344.

[17] Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-
dispatch problem. Operations research, 22(2), 340-349.

[18] Bodlaender, H. L., & Koster, A. M. (2010). Treewidth computations I.
Upper bounds. Information and Computation, 208(3), 259-275.

[19] Markowitz, H. M. (1957). The elimination form of the inverse and its
application to linear programming. Management Science, 3(3), 255-269.

[20] Arnborg, S., Corneil, D. G., & Proskurowski, A. (1987). Complexity of
finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Meth-
ods, 8(2), 277-284.

[21] Johnson, D., McGeoch, L., Glover, F. & Rego, C. 8th DIMACS Imple-
mentation Challenge: The Traveling Salesman Problem http://dimacs.

rutgers.edu/Challenges/TSP/download.html

[22] NEO research group Vehicle Routing Problem http://neo.lcc.uma.es/

vrp/solution-methods/

25

http://dimacs.rutgers.edu/Challenges/TSP/download.html
http://dimacs.rutgers.edu/Challenges/TSP/download.html
http://neo.lcc.uma.es/vrp/solution-methods/
http://neo.lcc.uma.es/vrp/solution-methods/

	Introduction
	Heuristics
	Lin Kernighan
	Lin Kernighan Helsgaun
	Savings
	Sweep

	Tree decomposition
	Tree decomposition and width
	Minimum Degree Heuristic

	Dynamic programming
	Traveling Salesman
	Vehicle Routing

	Results
	Traveling Salesman Problem
	Vehicle Routing Problem

	Conclusion

