
Utrecht University

Master Thesis

Efficiently handling data
schema changes in an event

sourced system

Author:
Marten Spoor

First Supervisor:
dr. Slinger Jansen

Second Supervisor:
drs. Hans Philippi

External Supervisor:
Michiel Overeem, MSc.

August 29, 2016

Efficiently handling data schema changes in

an event sourced system

Marten Spoor

Abstract

Data schema changes occur as a result of evolving software systems.
This is a well-known problem and for relational data models there is a large
body of research that addresses this problem. However, this research does not
apply to event sourced systems, because in those systems there is no relational
model and often there is no explicit data schema. A second problem is that in
event sourced system the amount of data is much larger than in conventional
systems, because the system does not only store the current state but every
event that changed the state.
In this research, a framework is created to illustrate which schema changes are
to be expected, reflected by operations, executed with data transformation
techniques and deployed according to a deployment strategies to execute
these operations. When creating the framework, efficiency including zero
downtime was. When completed, the framework was evaluated with three
Dutch experts. The final framework provides a starting point for developers
that are currently building an event sourced system and that are searching
for a solution for the problems of the changing data schema.

Keywords: Software evolution, event sourcing, data schema, implicit
schema, operations, data transformation techniques, deployment strategies,
zero downtime, event store

i

Acknowledgments

This thesis is the final chapter of my master Business Informatics and
my student life. During my student life I learned a lot, met many new cool
people, and made a lot of new friends.

When writing this thesis, various people helped me in some way, which all
deserve a thank you. First of all thanks to Utrecht University supervisors
Slinger Jansen and Hans Philippi from Utrecht University, for the help and
the useful feedback. Next, I would like to thank my daily supervisor at
AFAS, Michiel Overeem for all the pleasant brainstorms, meetings, and fine
collaboration. I also want to thank some others at AFAS: Rolf de Jong and
Machiel de Graaf for giving me the opportunity to do my master thesis at
AFAS Software and the backend team for all the help and funny lunches.
Thanks to the experts in event sourcing, Pieter Joost van de Sande, Allard
Buijze and Dennis Doomen for the interviews and useful feedback.

I would like to thank Sander Klock, Pepijn Gramberg and later on Bart
Smolders for all the pleasant foosball games and helping each other during
our graduation projects. Thanks to my friends, Rick Barneveld and Peter
Boot, for proofreading and providing me with good feedback, even during
their vacation.

And finally, a special thanks to my parents and sister, for all their advice
and support, not only during this project, but during my whole (student)
life.

Marten Spoor

ii

Contents

1 Introduction 2
1.1 Problem statement . 3
1.2 Research questions . 4
1.3 Research relevance . 6
1.4 Thesis overview . 6

2 Research approach 8
2.1 Design science . 8
2.2 Literature study . 9
2.3 Evaluation with experts . 9
2.4 Research context . 10

3 CQRS and event sourcing 12
3.1 Introduction to CQRS and event sourcing 12
3.2 CAP and eventually consistent 14
3.3 Domain-driven design and model-driven development 15
3.4 In-depth architecture . 16

4 Related literature 20
4.1 Implicit schema and schemaless 20
4.2 Databases and data stores . 21
4.3 Event-driven architecture & event processing 23

5 Data transformation operations 25
5.1 The structure and schema in the event store 26
5.2 The operations . 28

6 Techniques for data transformation 43
6.1 Schema evolution versus versioning 43
6.2 Techniques for other kinds of databases 45
6.3 Event store techniques . 48

iii

CONTENTS

6.4 Analysis and comparison of different event store techniques . . 53

7 Deployment strategies 57
7.1 Strategies . 57
7.2 Deployment strategies analysis 63

8 The design of an upgrade strategy 65
8.1 Operations and techniques . 65
8.2 Techniques and strategies . 66
8.3 Final framework . 68

9 Evaluation with experts 72
9.1 Evaluating the operations overview 72
9.2 Expert interviews about the framework 73

10 Discussion 77
10.1 Construct validity . 77
10.2 Internal validity . 77
10.3 External validity . 78
10.4 Reliability . 78

11 Conclusion 79
11.1 Main conclusions . 79
11.2 Future research . 83

Glossary 84

Bibliography 86

A Tables techniques & deployment strategies combined 92

B Explanation tables operations, techniques and strategies 99

C Expert interview: interview protocol 103
C.1 Protocol . 103
C.2 Preliminary figures used during interviews 105

D Expert interview: summaries 107
D.1 Allard Buijze . 107
D.2 Dennis Doomen . 109
D.3 Pieter Joost van de Sande . 110

iv

“A program that is used and that, as an implementation of its specification,
reflects some other reality, undergoes continuing change or becomes progressively
less useful.”

— Meir M. Lehman

Chapter 1

Introduction

Lehman’s law continuing change, as quoted on the first page, states that
applications that do not evolve become less useful (Lehman, 1980). Although
the law is almost forty years old, it still holds for new applications, even if
they use new emerging architectural patterns and technologies. Therefore
the quest for ways to handle evolving application keeps continuing, following
each new pattern and technology on its heels.

One of those new patterns is CQRS. In 2009, Greg Young and Udi
Dahan introduced CQRS, which stands for Command Query Responsibility
Segregation (Dahan, 2009; Young, 2010b). CQRS is an architectural pattern
that separates the commands (changing state) from the queries (views on
the state). Because the commands and queries are handled separately, they
can be executed by different components, using different data sources, which
makes it possible to optimize both sides.

CQRS is seen as a stepping stone for event sourcing (Young, 2016).
In event sourcing, instead of only saving the current application state, the
changes leading up to that state are saved, similar to an audit trail (Fowler,
2005). Because all the steps are saved, you can always completely rebuild
the current state by simply executing the saved steps. Using event sourcing
has technical benefits like improved debugging. Because you can reproduce
the steps that led to the bug. Furthermore, it creates extra business value
because you can rebuild the application state to any point in time and you
know how the application got there. This is ideal for technologies like business
intelligence and pattern recognition, as you can do data analysis on all the
events that happened through time. Within CQRS, event sourcing is often
used as the data source for the command side of the application.

2

1. Introduction

According to Lehman’s law, you need to keep evolving your application
to stay useful and relevant. The data schema describes the structure of the
data inside an application. This can be done in a formal language and ex-
plicit, or it can be implicit, only derivable by analyzing the source code. The
data schema is one of the aspects of an application that undergoes evolution.
In an event sourced application, managing and applying these changes from
the perspective of a developer can be challenging. From the perspective of
the user there is another major challenge challenge: can the evolution be
applied in a manner that will not bother the user. These challenges form
the motive for this research. The next sections will give an overview of the
research questions that will be answered.

1.1 Problem statement

As the application evolves, data schema changes can be triggered, requiring
a transformation of the existing data. This is challenging for applications
using event sourcing because these implementations do not use an explicit
data schema, on which existing techniques and strategies from the research
on relational databases can be applied.

While an event sourced application may not have an explicit data schema,
it does not mean that the data is schemaless. All though there is no formal
way to describe the schema of the events, knowledge about the structure and
types of the events is embedded in the application. This is called an implicit
schema: there is no formal schema that describes the structure of the data,
the application assumes a certain structure (Fowler, 2013b). Although the
implicit schema can be found in the application, the data in the data store
(in the case of event sourcing the event store) should comply to the implicit
schema.

Not only having an implicit schema is challenging, an event sourced
application consist of substantially more data compared to a relational ap-
proach. A relational approach only saves the last state of the data, in an
event sourced approach every change is saved as an event, causing substan-
tially more data.

Current knowledge is lacking about what to expect and how to handle
these expected changes (Fowler, 2016). There are existing techniques for
doing data transformation in an event sourced application, but there are no
sources that give guidance in the design and the rationale of the upgrade

3

1. Introduction

as a result of a schema change. These existing techniques also lack the
characterization regarding quality attributes that are required.

The contribution of this research is a framework that guides the up-
grading of an event sourced application, by making the data transformation
operations explicit and giving a rationale for choosing the appropriate tech-
nique and deployment strategy.

1.2 Research questions

Based on the problem statement and the focus of this research project, we
define the main research question as:

RQ: “How can an event sourced application efficiently be upgraded in the
face of event schema changes?”

An event schema change is triggered by an evolving application. We
define event schema as the implicit data schema of events in an event store.
Several steps are important when executing the upgrade as a result of a
schema change. These steps are depicted in Figure 1.1. The schema changes
are reflected by operations, which need to be performed by techniques and
deployed according to a strategy. When the steps that should be taken are
clear, the evolution of application V1 to application V2 can be executed.

The following subquestions are defined to answer the main research ques-
tion:

SRQ 1: ‘Which operations are needed to transform events so that they comply
to the new event schema?”

The research will start with creating an overview which operations can
be expected during the upgrade of an event sourced application and its im-
plicit data schema. These operations reflect the changes done in the implicit
event schema and should transform the data in such way that the events
reflect the new event schema.

SRQ 2: “Which techniques are available to execute data transformation opera-
tions?”

Different techniques already exist for data transformation on all kinds of

4

1. Introduction

Figure 1.1: Data transformation of an event sourced application and the
position of this research.

databases and data models. Therefore, with the help of existing techniques,
an overview of the event store techniques will be created.

SRQ 3: “What are the existing deployment strategies for upgrading software?”

Besides knowledge of what can be expected and possible execution tech-
niques, an overview of the existing deployment strategies is needed. These
strategies are approaches to get the techniques deployed and/or working.
When looking for deployment strategies the efficiency factor will be kept in
mind, this because the amount of data expected is higher than in traditional
databases.

SRQ 4: “How can the most appropriate technique be selected and deployed effi-
ciently, given a set data transformation operations?”

The results of subquestion 1, 2 and 3, being the operations, techniques
and strategies, need to be designed and combined: what is the most appropri-
ate technique for a set of operations, to be deployed and achieve an efficient

5

1. Introduction

upgrade. Efficient here does not only mean zero downtime but also that it
is efficient in performance. The reason to add the latter is that an applica-
tion upgrade with zero downtime that takes multiple days is not considered
efficient. This not only a matter of combinations but also about designing,
to chose that appropriate technique based on different aspects.

1.3 Research relevance

This research is relevant because of several reasons:

Create a scientific base for CQRS & event sourcing - as CQRS and
event sourcing is relatively new in the scientific world, only a few papers are
published related to these subjects. This research will help in creating a bet-
ter scientific base and hopefully interest from the scientific world, to connect
more with this topic on the current development in software development
world.

Upgradability of event sourcing application - being one of the bigger
challenges in such applications, many software companies struggle with find-
ing the right approach for solving these problems. These software companies
can benefit from the framework which will be created. The framework can
help them making decisions regarding their event sourced application and
how they want to upgrade it.

AMUSE - this research project is a part of a bigger research project, called
AMUSE. This research will bring AMUSE further in their goal to design
Adaptable Model-based and User-specific Software Ecosystems. Read more
in section 2.4.2.

1.4 Thesis overview

The structure of this thesis is as follows. This chapter is followed by the
research approach in Chapter 2. The research approach is followed by an
introduction to CQRS & event sourcing (Chapter 3) and other related lit-
erature (Chapter 4) for this research. This is followed by the overview of
operations (SRQ 1, Chapter 5), existing techniques for both event stores and
other types of databases (SRQ 2, Chapter 6) and strategies to deploy them
(SRQ 3, Chapter 7). This all is combined in Chapter 8 where the relation-
ships between the operations/techniques/strategies are described, and the

6

1. Introduction

final framework is presented. Parts of this research are evaluated with the
help of experts. These evaluations are described in Chapter 9. This thesis
ends with discussing the validity of this research in Chapter 10, and the final
Chapter 11, which summarizes the results and suggests future work.
When you are looking for the definition of a specific term, you can check the
glossary, which is added at the end of the thesis.

7

Chapter 2

Research approach

In this chapter, the research approach is explained, the performed litera-
ture study and expert interviews and the research context, being AFAS and
AMUSE.

2.1 Design science

In this research project, the approach from the Information Systems Research
Framework by Hevner et al. (2004) is used. This research is projected on the
framework in Figure 2.1. This approach combines three different aspects:
environment, knowledge base and Information Systems (IS) research.

The environment defines the place where the problem exists and where
the Business Needs comes from. The knowledge base is based on existing
foundations and methodologies and gives us the Applicable Knowledge in
the context of our IS research. The third aspect is IS research, which is our
research project, that receives input from the business needs and applicable
knowledge and combines that to what we are developing/building and how we
are evaluating it. As a result of our IS research, we are making an addition(s)
to the knowledge base and are creating something that is applicable in the
environment.

8

2. Research approach

Figure 2.1: Our research project mapped on the Information Systems Re-
search Framework (Hevner et al., 2004)

2.2 Literature study

A literature study is conducted in different phases of this research, all us-
ing the snowballing technique. Before working on the research questions, a
literature study is conducted to get familiar with CQRS and event sourcing
and the context. The result of this context literature study can be found in
chapter 3. In chapter 4 the other related literature that was found during
this research is discussed. Here, more general concepts which are related
to this research are described, like different data store types and the event-
driven architecture. Furthermore, specific literature regarding schema evo-
lution, schema versioning, and data transformation techniques are outlined
in Chapter 6. To answer the third subquestion in Chapter 7, some more
literature was researched regarding the topic of deployment strategies.

2.3 Evaluation with experts

Two evaluation steps with experts were held during this research to improve
the validity and generalizability of this research.

The first evaluation step was performed with the internal experts from
AFAS. An evaluation session was held with 3 AFAS experts, which only in-

9

2. Research approach

corporated the operations part (SRQ 1) of this research. This was conducted
because the operations were the base for the rest of the research. The second
evaluation step was performed by conducting external expert interviews, to
see if their experiences match with the research and if they would have any
additions or remarks to the framework. The interviews were semi-structured
and according to the tips of Jacob and Furgerson (2012). The feedback from
the experts was used to improve the different results and the final framework
of this thesis.

The results of the evaluation steps can be found throughout the thesis as
it is used to improve the results. A description on what changes and insights
were identified during the evaluation steps can be found in Chapter 9.

2.4 Research context

This research project was conducted at software company AFAS Software
B.V., as part of AMUSE and their Profit Next project. Therefore I will
briefly describe AFAS Software, Profit Next and AMUSE.

2.4.1 AFAS Software

AFAS Software B.V. is a Dutch organization focused on building enterprise
software. AFAS was founded in 1996 after a management buy-out from
Getronics. The headquarters of AFAS is located in Leusden, the Nether-
lands. The international offices of AFAS Software B.V. are located in Bel-
gium and Curaçao. At the time of writing, AFAS employs over 350 people.
The vision of AFAS is to automate administrative business processes. To
realize this vision, AFAS focuses on building and retailing an integrated en-
terprise software product for both small, and large organizations. In 2015,
AFAS realized a revenue of 92,3 million euros and a profit of over 30 million
euros.

2.4.1.1 Profit Next

AFAS is rebuilding their software product from scratch, calling this project
Profit Next1. It is a long-term project of which the first release is currently

1Dutch introduction and explaining video: http://dev.afas.nl/1337/

ontwikkelvisie

10

http://dev.afas.nl/1337/ontwikkelvisie
http://dev.afas.nl/1337/ontwikkelvisie

2. Research approach

planned for 2019. In this project, they have the vision of bringing their appli-
cation to the cloud, with separation of technique and functionality. Because
of this separation, they can quickly switch between different platforms. Fur-
thermore, they are using techniques like model-driven design and continuous
deployment on both the customer and developer side.
The data transformation researched in this research project has a important
role in Profit Next. Within Profit Next, CQRS & event sourcing are used
in combination with model-driven development. As the implementation of
this combination, they generate the event sourced application. Users do not
want to wait hours until they can continue using Profit Next when the event
schema changes. The same applies on the developer-side. If AFAS updates
parts of the system and this brings changes to their standard application
model, this deployment needs to go as quick and smooth as possible, with
the correct data transformation.

2.4.2 AMUSE

This research is part of the AMUSE project. AMUSE stands for Adaptable
Model-based and User-specific Software Ecosystems and is an academic col-
laboration in the Netherlands between Vrije Universiteit Amsterdam, Utrecht
University, and AFAS Software. AMUSE is addressing software composition,
configuration, deployment and monitoring of heterogeneous cloud ecosystems
through ontological enterprise modeling. The AMUSE project is funded by
the NWO. More information can be found on http://www.amuse-project.

org/.

11

http://www.amuse-project.org/
http://www.amuse-project.org/

Chapter 3

CQRS and event sourcing

This chapter is an introduction to CQRS and event sourcing, to get familiar
with the context of this research and the concepts and theory of CQRS &
event sourcing. Readers who are already familiar with these concepts can
safely skip this chapter.

3.1 Introduction to CQRS and event sourcing

Command Query Responsibility Segregation (CQRS) is based on the Command-
Query Separation (CQS) principle, introduced by Meyer (1988). Meyer de-
fined a command as serving to modify objects and a query as to return infor-
mation about objects. Anything else done by a command or query he defined
as (abstract) side effects, which according to him should not be produced.
Alternatively informally stated in his words “asking a question should not
change the answer”.

CQS was later picked up by Greg Young and Udi Dahan, which com-
bined the CQS principle with Domain-Driven Design and created the CQRS
pattern (Dahan, 2009; Young, 2010b). Domain-Driven Design (abbreviated
to DDD) is introduced by Evans (2004). DDD is explained in section 3.3.
Within the CQRS pattern, the changing state (command) and the views on
state (query) are separated in two different subsystems, which both have their
data source. The two different subsystems are updated using a message bus
for events between them. This bus is often an asynchronous one. Through
this bus, events are sent from the command to the query side. The query
side can update the queries according to the events that represent changes

12

3. CQRS and event sourcing

to the state. The huge benefit of this approach is that both subsystems, the
command side and the query side, can be optimized individually.

Figure 3.1: Simple CQRS representation

The CQRS pattern is often combined with event sourcing, or as Young
(2016) calls it in a recent talk: “CQRS is a stepping stone to event sourcing”.
For event sourcing, you do not save or update something to the current state
like in a normal relational database, but you save all the steps that will lead
to the current state, like an audit trail (Fowler, 2005). When all the steps
are stored, you can always calculate the current state by simply executing all
the steps you stored. When CQRS and event sourcing are combined, event
sourcing is used as the schema of the data source on the command side.

Benefits of the combined CQRS & event sourcing approach are that
the system becomes better scalable, because of the two systems with an
asynchronous link in between. Extra business value is added since you now
know everything that happened in your system at any point in time. This
provides many business intelligence and pattern recognition options. Fur-
thermore, you can easier debug your system because you can reproduce bugs
by replaying the events to the point in time where the bug happened.

Unfortunately, there is little scientific research available on CQRS and
event sourcing patterns. Kabbedijk et al. (2012) did a case study on the
variability of the CQRS pattern and patterns he refers to as CQRS sub pat-
terns, like event sourcing and command handlers. Korkmaz (2014) described
the practitioners view on CQRS and Guelen (2015) wrote about performance
testing in the CQRS environment.

13

3. CQRS and event sourcing

3.1.1 Event sourcing example

To illustrate the difference between the relational model approach and the
event sourcing approach, a small illustrative example can be found in Figure
3.2. In the example at the left side, the relational approach is depicted and
at the right side the event sourcing approach is shown. In the example, a
bank account is opened, and some actions are performed on this account. As
shown in the relational approach, the entry is just updated at each action.
Whereas in the event sourcing approach, not the current state is saved but
each time a new event is created, with the delta. With the event sourcing
approach, you can replay the events to get the left situation, but you now
also know how it got there.

Figure 3.2: Relational vs. event sourcing

3.2 CAP and eventually consistent

The CQRS pattern is interesting to use because it provides a way to get
around problems which you will encounter according to the CAP Theorem

14

3. CQRS and event sourcing

(Young, 2010a). CAP stands for Consistency, Availability and Partition tol-
erance, introduced by Brewer (2000) and later proven by Gilbert and Lynch
(2002). The theorem states that in a distributed system you can have at
most two out of the three properties Consistency, Availability, and Partition
tolerance. More recent publications made that theorem less strict, stating
that two out of three is misleading, and a decision between the properties
is more continuous than binary (Brewer, 2012). If the consistency property
is seen more continuous you (can) end up with forms like eventually con-
sistent. This eventually consistent property is a weaker form of consistency
and means that when no updates are made to the object, the object will
eventually have the last updated value (Vogels, 2009). Depending on the
implementation of the messaging bus between the command side and query
side, CQRS can achieve being eventually consistent, although this is not ob-
ligated by the CQRS definition. The bus is there to send the new events
from the command to the query side of the system so that the query side can
update his views on the state. When the bus is an asynchronous implemen-
tation, the user does not have to wait until the views are up to date. This
improves the scalability and the possibilities to optimize both subsystems.
As a downside, it can happen that the views on data return an outdated
state of the application, as the event is not yet processed.

3.3 Domain-driven design and model-driven

development

As stated, the CQRS pattern includes principles of Domain-Driven Design
(Evans, 2004) for modeling an application. With Domain-Driven Design
(DDD) you describe a system for both IT and business by mapping busi-
ness domain concepts into software artifacts. Typical concepts which can
be found in CQRS and DDD are bounded context and aggregates principles
(see section 3.4.1.1).

One of the weaker sides is that DDD has the need for much upfront
thought. You first need to think about the model of your domain, before
building your application. When the application is running, changes to your
domain model can be costly to integrate with the application. Therefore,
DDD can clash with development principles like agile development, where
you have smaller iterations to show the development progress quickly.

To reduce those problems, Brandolini (2013) introduced an approach to

15

3. CQRS and event sourcing

help modeling an event sourced system called event storming. Event storming
is an approach to brainstorm quickly about the expected aggregates, bounded
context and other relevant objects in your application upfront, in a workshop
format.

DDD is compatible with Model-driven development (abbreviated MDD).
Model-driven development is simply the notation that a model of a system
can be transformed into the real thing according to Mellor et al. (2003).
MDD is a subset of model-driven engineering and can be described as a
development method that uses a model as a principal artifact, to be used
in generating an application (Ameller, 2009). When modeling your domain
with the help of DDD, the domain model can be used as input for MDD,
which together can become a strong combination and is a good fit.

3.4 In-depth architecture

Until now, CQRS and event sourcing architecture were only discussed on a
high level. Now components of CQRS will be discussed a bit more in-depth.
The in-depth CQRS architecture can be found in Figure 3.3.

Figure 3.3: CQRS more in depth

16

3. CQRS and event sourcing

3.4.1 Command side

The command side is responsible for validation and processing changes to
the application state. It consists of a few key components: being the aggre-
gates, command handlers, and the event store. All will be described in this
section.

3.4.1.1 Aggregate

Aggregates are combinations of entities, which combined have their bounded
context. This means that the entities are related/dependent on each other.
The main entity of a bounded context is referred to as aggregate root. The
aggregate root is responsible for distributing and coordinating the bounded
context. The concepts aggregates and bounded context come from Domain-
Driven Design (Evans, 2004). These aggregates not only add complexity but
provide huge benefits related to scalability. Instead of one big block, the
command side can be made of several smaller blocks with their responsibil-
ity. These aggregates are responsible for validating commands and when a
command is correct, raising a new event to put in the event store and on the
event bus.

3.4.1.2 Command handler

The command side consists of several command handlers. Each command
is being handled by one command handler. The command is then sent to
corresponding aggregate or, when the command invokes multiple aggregates,
to the process manager.

3.4.1.3 Event store

When you use event sourcing, the data store that is used, is called event
store. In an event sourced application, the event store is immutable. This
means events that are stored are never deleted or updated but only inserted
or read from the event store. An event store is often implemented with a
NoSQL data store, although implementations based on an RDBMS are also
possible (Traub and Simmons, 2011). In this case, the event is saved as plain
text or JSON/XML. As long as the application can use the data store with
an (partial) implicit schema it will work.

17

3. CQRS and event sourcing

As building the state can become quite expensive when there are many
events, one of the concepts used to improve the performance is snapshotting.
When using snapshotting, the application sometimes take a so-called snap-
shot from the current application state or the state of a specific aggregate,
which is saved somewhere in the event store. When rebuilding the appli-
cation state from the event store with snapshotting, the application do not
have to replay all the events from the start. The application can just go a
little bit back in time to the latest snapshot and replay the events since that
snapshot (see Figure 3.4). More explanation about the inside of the event
store can be found in section 5.1.

Figure 3.4: Simple view of snapshotting, adapter from Young (2010b)

3.4.2 Query side

As explained earlier, the query side is responsible for views on the state of
the application. Just as with the command side, the query side consists of
are several concepts. The most important ones being the projector, query
handler, and the query store.

3.4.2.1 Projector

The most important concept is projection. Projections are views on state or
the state history, created and updated by the projector. These are denor-
malized views, based on which views are required by the application. These
projections do not have to be simple data objects, but can also be a PDF
or a graph. Not only can it be in any format; the idea behind projections is
that they are already prepared for the need of the application. Each time an
event is created in the event store, it is sent to the query side of the event

18

3. CQRS and event sourcing

bus. The projector receives the event from the bus and directly builds up
the updated projections, so next time it is queried by the query handler it
does not have to be calculated. Though, because the event is asynchronous,
it can occur that the projection is a little behind because of the eventual
consistency of the application. Each projector has a queue mechanism in
place. When receiving events, they are put in that queue until the projector
has time to process the event.

3.4.2.2 Query handler

The query handler receives query requests from the application. The query
handler retrieves the correct query result from the query store, which is then
sent to the application.

3.4.2.3 Query store

The query store is the data store for all the queries, created by the projectors.
In the query store, the denormalized query result data can be found, which
are updated through the projectors and retrieved by the query handlers.

19

Chapter 4

Related literature

This chapter describes related literature to this research. The related subjects
are first described and then their relevance regarding this research subject is
explained.

4.1 Implicit schema and schemaless

A schemaless database allows any data, structured with individual fields and
structures, to be stored in the database (Fowler, 2013b). This term is used
for data stores which do not have a globally defined schema (Scherzinger
et al., 2013). Using a schemaless database gives extra flexibility as you do
not need to define those schemas. Although your data is stored schemaless,
the application still needs to interpret and manipulate the data. Therefore,
assumptions about the data are made by the application. The data is said
to have an implicit schema (Fowler, 2013b). This schema is not explicitly
described/formalized, but the application assumes a certain schema.

The database used in event sourcing, the event store, does not have an
explicit schema of what events can occur including which attributes. Event
sourcing implementations use an implicit schema, which is based on the types
from Section 5.1. An event store is only used to store and replay events, and
never to query data. The event store is only for persistence, and therefore
does not need to know the event schema. This makes it more flexible be-
cause the store and application are loosely coupled. The logic about the
schema is completely found in the application where the implicit schema is
assumed.

20

4. Related literature

4.2 Databases and data stores

Several databases are considered related to this research, being relational
databases, NoSQL stores, and temporal databases.

4.2.1 Relational database

Relational databases are already around some while. Codd (1970) proposed
in 1970 a relational model for data, to protect users from creating disrup-
tive changes. The approach, used for data transformation on a relational
database application, is in the scientific literature often related to the ter-
minology of schema versioning or schema evolution. Schema versioning is
accommodated when a database system allows the accessing of all data, both
retrospectively and prospectively, through user definable version interfaces.
Schema evolution is accommodated when a database system facilitates the
modification of the database schema without loss of existing data. More re-
garding schema versioning and evolution and existing data transformation
techniques, can be found in Chapter 6.

There are two major differences between the upgrade of a relational
database, and that of an event sourced application: state versus event up-
grading and implicit versus explicit schema. Relational databases, usually
only save the current state, whether the event sourcing approach is saving
all the steps, which gives much more data compared to the event sourcing
approach. That is why the efficiency of the upgrade of an event sourced ap-
plication is considered a important factor in this research. Furthermore, in a
relational database the schema is set in the definition of tables and columns,
which is not the case in event sourcing.

4.2.2 NoSQL

NoSQL is a data store which is ideal for using a schemaless approach. NoSQL
stands for Not Only SQL or often referred to as not relational. As there
is no simple definition for what NoSQL is, most scientific literature gives
characterizations to NoSQL. The most important ones are (Cattell, 2011;
Fowler, 2013a):

• Can scale horizontally

• Is schemaless

21

4. Related literature

• Works well in partitioned/distributed systems

• Is not using the relational database model

These characterizations of the NoSQL data stores are related to the CAP
theorem (Section 3.2). They often have or can work with a weaker form of
consistency like eventual consistency (Elbushra and Lindström, 2014). This
especially has its effect on the scalability. As NoSQL is a set of characteriza-
tions, multiple types of data stores are considered being a NoSQL data store.
The most important NoSQL data store types are (Cattell, 2011; Sadalage and
Fowler, 2012):

Key-Value stores - these systems store values and include a key to find
them. Examples of this type of store are Riak and Redis.

Document stores - These store documents. The documents stored are
often semi-structured like JSON, XML and so on. Examples of this
type of store are CouchDB, MongoDB and RavenDB.

Column-oriented stores - Instead of the standard row-based system, these
stores are column based. Examples are Cassandra and Hypertable.

Graph database - The data is stored as a graph, with nodes and the rela-
tions between them. Examples of this type of database are Neo4J and
OrientDB.

4.2.3 Temporal databases

Because of the similarities between temporal databases and event sourced
databases this type of database was also researched. The concept that event
sourcing is doing something related to time and order, is not new. Us-
ing the time dimension with storage was already done in so-called temporal
databases. Clifford (1982) was one of the first who described this type of
historical database. Currently, within temporal databases, Three types are
defined (Jensen and Snodgrass, 2009). The first one is using time references
to save current or past states of the database, which is referred to as trans-
action time. Within the selected certain time period, the data record was
accepted as correct. The second type is referred to as valid time. The main
difference between the two is that valid time records what is valid and true
in the real world, whether transaction time refers to when we believe or be-
lieved the fact in the row. The third type is bitemporal, in which the data
has aspects of both transaction time and valid time.

22

4. Related literature

Compared with event sourcing, temporal databases have a little differ-
ent approach. Temporal databases only save the state, at some point in
time, whereas event sourcing is saving the events and not the state. The
state at some point in time can be derived. Temporal databases have many
similarities with snapshotting.

4.3 Event-driven architecture & event pro-

cessing

Event-driven architectures are a type of software architecture for applications
that detect and respond to events (Chandy, 2009). Key characteristics of
such an architecture are: using the publisher/subscriber pattern for events,
being asynchronous and being a distributed system (Hohpe, 2006). Event
sourcing is a pattern which is considered to be an event-driven architecture
with an alternative style for persisting the application state (Erb and Kargl,
2015).

Within the event-driven architectures, there are three general styles how
to process the events, focused on analyzing purposes (Michelson, 2006). Of-
ten multiple of these styles is used in the same architecture. They are:

Simple event processing - A notable event happens, which initiates an
action.
Stream event processing - Both ordinary and notable events happen. Or-
dinary events are filtered on notability and streamed to information sub-
scribers.
Complex event processing (CEP) - With using complex event process-
ing, you are looking for event patterns, cross event types and (longer periods
of) time, which can help in all kind of solutions (Etzion, 2009).

All these event processing types are related to how extensive the analysis of
your events is, and what you can do with it. All these processing techniques
can be used in combination with event sourcing. Young (2013) presented
his approach in which he explained how he made complex event processing
possible within his event store framework.

23

4. Related literature

4.3.1 Event transformation

As part of event processing, there exists event transformation. Event trans-
formation refers to any operation that takes a single event message or stream
of event messages as input and produces a single event message or stream
of event messages as the output (Niblett, 2009). The authors identified four
classes of transformation types:

Translation - get one event, apply transformation operation and output the
translated event.

Split - get one event, return multiple events, all containing a subset of the
attributes of the original event.

Aggregation - take one stream of events and use a window (time or size
based) to create aggregated event(s) from the events within that window.

Composition - take multiple streams of events, using a window and com-
position operation to create zero, one or multiple out events.

These transformation types are typical for analyzing purposes, as they
make it easier to interpret the events (translation and split) or something
summarizes the events so when analyzing you do not have to read all the
events (aggregation and composition). Within event sourcing, the events in
the event store are the source of truth, the audit trail. You can not simply
decide to remove information or to make a summary. These transformation
types can happen in some way at the query side in the projections for example
in business intelligence or pattern recognition approaches.

24

Chapter 5

Data transformation
operations

Before optimization of the data transformation operations can start, research
is needed to know what those operations can be. Therefore the first subques-
tion of this research is: Which operations are needed to transform events so
that they comply to the new event schema? This chapter starts with a de-
scription of the relevant concepts including their type definitions. After this,
all the expected operations are described, including an illustrative example,
the type definition, and a visualization.

All the type definitions are done with the Haskell notation1. Haskell
was chosen because of the strong type system of the language, which helps
to identify and illustrate the relation between different operations. For those
who are not familiar with Haskell, → is the symbol which divides the ar-
guments of the function. The last argument of the type is the type of the
result. A function can also be the argument or the result of another func-
tion (resulting in higher order functions). To illustrate this, a few examples
functions are given:

exampleFunction :: TypeA→ TypeB → TypeC

The exampleFunction is getting two input arguments, which result in
TypeC.

exampleFunction2 :: (TypeA→ TypeB → TypeC)→ TypeD

exampleFunction2 is getting a function (the type argument between

1Want to read more about Haskell? You can go to https://www.haskell.org/

25

https://www.haskell.org/

5. Data transformation operations

the parentheses) as input and will result in TypeD.

These type definitions are defined as contracts. This means all the
(business) logic is left out: only the expected in- and output of the operation
are defined. The complete type definition and a simple implementation in
the functional language of Haskell can be found on Github2.

5.1 The structure and schema in the event

store

Before the operations are described, a explanation of the structure and the
schema of events is given. Next to the textual illustration, the concepts are
defined in a more formal way, by a type definition in this section.

5.1.1 Attribute

Attributes are name and value combinations. These can be found in events.
typeAttribute = (Name, V alue)

5.1.2 Event

Events represent changes to the application state and are raised at the
command side of the application. An event consists of a type (or also re-
ferred to as the name), timestamp of the approval of the event and the
set of attributes which represent what happened and/or changed by the
event. The event type is used to find events of interests in the streams.
When the events are replayed, the state of the application can be rebuild.
typeEvent = (EventType, T imestamp, [Attribute])

5.1.3 Event stream

In an event stream, all the events related to the same aggregate can be found.
Within the stream, the ordering of events over time should be guaranteed.
This ordering is not guaranteed when combining events from multiple event

2 https://github.com/AFASResearch/EventSourcing-DataMigration-Types

26

https://github.com/AFASResearch/EventSourcing-DataMigration-Types

5. Data transformation operations

streams, because of the possibly distributed character of streams. The dis-
tributed character gives extra options to scale the application, as each event
stream can be stored in a different event store on different machines.
The type (StreamType) represents the kind of stream (or also referred to as
the name), and the Source is the identifier of the source. Within CQRS, this
identifier of the source represents the aggregate root from the aggregate that
is responsible for the validation and coordination of the complete aggregate.
The StreamType can be seen as the kind of instance, and Source can be
seen as a link to the instance. They both exists because there can be mul-
tiple instances (aggregates) but Source is unique within the StreamType.
typeStream = (StreamType, Source, [Event])

A variation can be made in the given types. A command can result
in multiple events, but those events represent a single action. That is why
some CQRS and event sourcing implementations want to store these events
as the same atomic operation, in one transaction. Therefore these events
are sometimes bundled in a single commit, which is stored as a single trans-
action with a set of events combined with one and the same timestamp.
typeCommit = ([Event], T imestamp)

typeStream = (StreamType, Source, [Commit])

5.1.4 Event store

The event store is the complete set of streams that are used in the application.
typeStore = [Stream]

5.1.5 Event schema

Although there might be no explicit schema, the application still needs to
know about the structure and type of events: the event schema. Part of the
schema is:

• supported stream types,

• supported event types,

• which event types occur in which stream types,

• which attribute exists in the event types, and

• what are the types of the attributes.

27

5. Data transformation operations

5.2 The operations

Now all the concepts used including their schema in the event sourced ap-
plication are defined, identification of the operations which can be expected
during the upgrade of an application was started. This was done in brain-
storm sessions and later validated in a session with experts from AFAS. The
final result can be found in this section. The description of the evaluation
session, including the applied changes, can be found in Chapter 9.1.

Operations were identified on multiple levels:

The level of event store - operations related to one or multiple streams.

The level of event stream - operations within one stream, related to one
or more events.

The level of events - operations related to one event or event type.

Not only different levels but also different complexity levels were identified.
Therefore another categorization was made, now on the basic or complex
level:

Basic operations - operations which cannot be expressed by other opera-
tions and are not dependent on keeping state during performing the opera-
tions.

Complex operations - operations which consist of one or multiple basic
operations, which possibly use state in performing the operation. This re-
search describes only the most used ones, which are described to illustrate
the options.

From the complex operations, only the most used operations are de-
scribed, as many different options and unusual configurations depending on
your implementation, are possible. The categorization and the complete
overview of all the expected operations is visualized in Figure 5.1.

Running example

To illustrate the operations on the different levels, throughout the different
descriptions, we will use a running example. Suppose we have an appli-
cation, in which things are sold to all kinds of organizations and persons.
These customers each have a specific aggregate and event stream, where
their events are raised. One of the important event types that is raised is

28

5. Data transformation operations

Figure 5.1: Operations overview

CustomerInformation, an event type that includes all kinds of information
related to them, like name, address and other information which is relevant
for them being a customer. In the application, there are also streams found,
related to other parts of the business, like persons, employees, and the or-
dering process.

The most important part of this running example is the current implicit
schema. To illustrate how this would look like for this example, the implicit
schema is partially defined.

StreamSchema = [(Customer, [CustomerInformation, UpdateAddress...], P erson, [..]]

EventSchema = [(CustomerInformation, (Name,Address, Birthday), ...]

As the application is upgraded, this implicit data schema is changing.
This changing schema is reflected by the operations, which will be described
now.

29

5. Data transformation operations

5.2.1 Event level operations

At the lowest level, the operations on the event and the attributes it consists
of are expected.

5.2.1.1 Add attribute

This operation adds an attribute within an existing event. The added at-
tribute can either be based on some standard value, or on a condition. For
our example, newsletter functionality is added to our application. Therefore
the application needs to know if each customer is receiving the newsletter or
not. For this reason, an attribute needs to be added during the introduction
of the new functionality to the CustomerInformation events, because at
that point the knowledge whether a customer needs to receive the newsletter
is needed. The functionality is introduced opt-out, so the new attribute is
initiated as true. Each customer can now profit from the new functionality.
The visualization of this operations can be found in Figure 5.2.

Figure 5.2: Event operation - add attribute

The type of the operation can be seen as a set operation. The operation
adds an attribute to the existing set of attributes of the event.

addAttribute :: [Attribute]→ [Attribute]

5.2.1.2 Delete attribute

With the delete attribute operations, the attribute needs to be deleted. This
can be useful in the case when the attribute is not needed anymore or needs
to be deleted because of new privacy, security, or political regulations. In
the given domain example, the BSN (the Dutch social security number), of a
customer is stored in an CustomerInformation event. Due to new privacy

30

5. Data transformation operations

regulations it needs to be removed from the events, but the rest of the event
needs to stay intact (Fig. 5.3).

Figure 5.3: Event operation - delete attribute

As a type definition, it has the same type as the “create attribute”-
operation. However, in this operation, the attribute is removed from the set
of attributes from an event.

deleteAttribute :: [Attribute]→ [Attribute]

5.2.1.3 Update attribute

The update attribute operation can be two different operations because both
the name and the value can be changed. The name of an attribute from an
event is updated. In the example, within the CustomerInformation event,
the name of the attribute BankAccount is changed to BankNumber (Fig.
5.4). This operation functions as a rename.

Figure 5.4: Event operation - update name of attribute

The other type of update operation is the update of the value of an at-
tribute. Examples of possible updates are length or type changes, but it can
also be functions. Within the context of the example with CustomerInformation,

31

5. Data transformation operations

a function was needed when there was an update of the traditional Dutch
bank account number to IBAN. The Dutch bank account changed to an in-
ternational standard in 2014. Therefore the bank account numbers needed
an update to this new standard (5.5).

Figure 5.5: Event operation - update value of attribute

The update of an attribute has the same type for both updating the
name as the value, from an attribute to an attribute.

updateAttributeV alue, updateAttributeName :: Attribute→ Attribute

5.2.1.4 Merge attributes

Multiple attributes are merged into one attribute within one event. A good
example for this operations is that within our CustomerInformation event.
The street and street number are two separate attributes but are only needed
in the combination together. Therefore, they can be better be merged to one
address attribute (Fig. 5.6).

Figure 5.6: Event operation - merge attributes

The merge attributes operation is considered a complex operation. When
looking to this operation from a set perspective, again the type would be

32

5. Data transformation operations

from set of attributes to a set of attributes. Therefore, the type is defined as
multiple attributes to one attribute.

mergeAttributes :: [Attribute]→ Attribute

5.2.1.5 Split attribute

One attribute is split into multiple attributes, all in the same event. Within
our example, CustomerInformation consisted only of the name attribute.
As there is the wish to use the first name and surname of the customers
separately, the attribute needs to be split into two attributes: the first name
and surname (Fig. 5.7).

Figure 5.7: Event operation - split attribute

The split attribute operation is considered a complex operation. The
type of this operation, being the opposite of merge, is from one attribute to
multiple attributes.

splitAttribute :: Attribute→ [Attribute]

5.2.2 Event stream level operations

The operations on the level of event stream are operations which have to do
with one or more events in the same stream.

5.2.2.1 Add event

Adding an event is another operation that is expected. A good example of
this operation is when a specific event is required for functionality after the
application upgrade. In the example, a customer is getting an mandatory

33

5. Data transformation operations

API key, that can be used by new features. Therefore, a new event is raised
AddAPIKey (Fig. 5.8).

Figure 5.8: Stream operation - add event

The type of this operation is like a set operation, on which there is
a set of events and another event is added which results again in a set of
events.

addEvent :: [Event]→ [Event]

5.2.2.2 Delete event

The delete event operation is the operations which deletes an event from
the event stream, for example when there are privacy issues or changing
regulations involved. Within the example, credit-card information of the
customer was stored in a separate event. This needs to be deleted because of
new regulations. Therefore, the entire event needs to be deleted (Fig. 5.9).

The type of this operation can be seen as a set operation on which there
is a set of events, and an event is deleted from the set of events.

deleteEvent :: [Event]→ [Event]

34

5. Data transformation operations

Figure 5.9: Stream operation - delete event

5.2.2.3 Rename event

Renaming the event can be needed, because the original type no longer fits
the purpose, or is not correct anymore. In the example, the CustomerInformation
event was first called ClientInformation, but because of changing require-
ments terminology was changed, resulting in a rename operation for this
event type. Updating the name of an event is referred to as an update to the
event type.

Figure 5.10: Event operation - rename event

The typing of this function is from an EventType to an EventType,
applied on an event.

updateEventType :: (EventType→ EventType)→ Event→ Event

5.2.2.4 Update event

Update events is an operation that takes place on the event stream level but
consists of operations on the lower level, described in section 5.2.1. Update
event consists of one of the operations on the level of events. All the type
definitions from the operations on event level fit in UpdateEvent, although
sometimes a wrapper function is needed.

35

5. Data transformation operations

In the type you find UpdateEventPredicate, which defines on what
event(type) the operation is performed. Furthermore, the [Attribute] →
[Attribute] is the operation function, followed by Event which is the event
on what the function is applied to.

updateEvent :: UpdateEventPredicate→ ([Attribute]→ [Attribute])→
Event→ Event

5.2.2.5 Merge events

The merge events operation combines multiple events to one, all within the
same stream. Within the example, UpdateAddress and UpdateBankAccount
were separate events. According to the business, both are never used sep-
arately and could be combined in one event, which is UpdateInformation
(Fig. 5.11).

Figure 5.11: Stream operation - merge events

Merge events is a complex operation. As a type definition, this operation
is defined from a set of events, to a single event.

mergeEvent :: [Event]→ Event

36

5. Data transformation operations

5.2.2.6 Split event

The split event operation splits one event to multiple events, all within
the same stream. It functions the other way around as the merge, as can
also be seen in the example. Suppose they decided UpdateAddress and
UpdateBankAccount could better be separate events instead of combined in
the UpdateInformation events (Fig. 5.12).

Figure 5.12: Stream operation - split event

The split event is a complex operation. The type of the operation can
be defined as from a single event to a set of events.

splitEvent :: Event→ [Event]

5.2.2.7 Move attribute

The move attribute operation moves an attribute from one event to another
event. Maybe this seems like a strange operation on this level but to move
an attribute, two different events are needed. As multiple events are not
existing on the level of events, but on the level of the event stream.

Move attribute is a complex operation. The type of the operation can
be defined as from a single event, to a single event.

moveAttribute :: Event→ Event→ Event

37

5. Data transformation operations

Figure 5.13: Stream operation - move attribute

5.2.3 Event store level operations

We identified operations on the level of the event store. The operations on
this level are relevant for one or multiple streams.

5.2.3.1 Add stream

When new functionality is introduced that expects some stream with initi-
ated values to be there, this stream needs to be added during the upgrading
process. A good example for this operations is the introduction of (a set
of) data tables. In the example from Figure 5.14, the data table from the
Netherlands was introduced, which introduces general and necessary infor-
mation about the Netherlands. This information was not hardcoded into the
application to make it easier adjustable and expendable in the future.

Figure 5.14: Store operation - add stream

The type for add stream is from a set streams to a set of streams.

addStream = [Stream]→ [Stream]

38

5. Data transformation operations

5.2.3.2 Delete stream

When some stream becomes redundant, for instance when functionality is
removed, privacy or security issues arise, or simply when cleaning up after
another operation, the possibility to be able to delete the stream is needed.

Figure 5.15: Store operation - delete stream

The type for delete is that of a set streams to a set of streams.

deleteStream :: [Stream]→ [Stream]

5.2.3.3 Update stream

Update streams is an operation that happens on the event store level, but
exists of an operation from the lower level. Update stream consists of an
operation on the level of event stream, described in section 5.2.2. All the
type definitions from the operations on an event stream fit in updateStream,
sometimes with the help of a wrapper function.

In the type definition, UpdateStreamPredicate is a selector, for select-
ing the correct streams on which the operation needs to be applied. This is
followed by the function which fits in ([Event] → [Event]) for the stream
update and the stream which the update stream operation is applied to.

updateStream :: UpdateStreamPredicate→ ([Event]→ [Event])→
Stream→ Stream

39

5. Data transformation operations

5.2.3.4 Merge streams

With the merge streams operation, multiple streams are combined to one
stream. A good motivation for this can be better performance or changes in
the functionality of the application. Merge stream usually means that in the
application and data scheme, two aggregates are merged and get one and the
same stream and aggregate root. Within the example, the streams person
and employees are combined (see Fig. 5.16). In the person stream there
was only information used in employee records, so combining them gave a
performance benefit, since now the connection between the both streams and
aggregate roots is not needed anymore.

Figure 5.16: Store operation - merge streams

Merge streams is a complex operation. As a type, the operation starts
with a set of streams, which are merged to one single stream.

mergeStreams :: [Stream]→ Stream

5.2.3.5 Split stream

The split stream is the opposite of merge streams: starting with one stream
and create multiple streams from this. Again a possible motivation can be
found in performance or changes in the application. Now instead of com-
bining two aggregates, one aggregate is separated in two aggregates and
aggregate roots. As an example, the order stream is split. In the current
order stream, both the orders and the so-called order lines, lines with order
information, could be found. Unfortunately, the order lines became so big,
that from the performance point of view the decision was made to separate

40

5. Data transformation operations

them.

Figure 5.17: Store operation - split stream

The split stream is a complex operation. As a type, the operation starts
with a stream, which is split into multiple streams.

splitStream :: Stream→ [Stream]

Figure 5.18: Store operation - move event

5.2.3.6 Move event

The move event operation moves an event from one stream to another stream.
As this operation needs two streams, which are not there on the level of
stream, but on the level of the store, it is considered a store level opera-
tion.

41

5. Data transformation operations

Move event is a complex operation. The type of the operation can be
defined as from a stream to a stream.

moveEvent :: Stream→ Stream→ Stream

5.2.4 Summary

To give a summary of all the operations, in addition to Figure 5.1, Table 5.1
presents the levels, the operations on these levels, their complexity category
and a short description of the operation.

Level Complexity Operation Description

Event
Basic

Add attribute Attribute is added to an event
Delete attribute Attribute is deleted from an event

Update attribute
Attribute is updated,
can be both the name or value(type)

Complex
Merge attributes Two attributes are combined to one attribute
Split attribute One attribute is split into two attributes

Stream

Basic

Add event A new event type is added to the stream
Delete event An event(type) is deleted from the stream
Rename event An event(type) is renamed

Update event
An event is updated by
one or multiple event operation(s)

Complex
Merge events Multiple events are combined to one
Split event One event is split into multiple

Move attribute
One attribute is moved from
one event type to another

Store

Basic
Add stream A new stream is added to the store
Delete stream A stream is deleted from the stream
Rename stream A stream is renamed

Complex
Merge streams Multiple streams are combined to one stream
Split stream One stream is split into multiple streams

Move event
An event is moved from
one stream to another stream

Table 5.1: All the operations including a description

42

Chapter 6

Techniques for data
transformation

Now that the operations are identified, techniques are needed to execute those
operations on the data in the event store. This chapter presents an overview
of techniques that can be used to apply data transformation operations.

As part of the scope, the output of the data transformation needs to be
complete. All the information including the history needs to be there after
deploying/applying the technique. The techniques like converting snapshots
or other techniques that are losing history information, are not discussed in
this chapter.

In the first section (6.1) of this chapter, schema evolution and versioning
is described. Schema evolution and versioning are the angles used to cate-
gorize and compare different techniques. After this, in section 6.2, different
techniques from both relational databases and then schemaless data(base)
structures are discussed. Then, techniques for data transformation in an
event sourced application are described, including their advantages and dis-
advantages (section 6.3). In the final section, a comparison between the
different event store techniques is made.

6.1 Schema evolution versus versioning

The terms schema evolution and schema versioning play a crucial role in
data transformation. Roddick (1995, 2009) defined these terms as:

43

6. Techniques for data transformation

Schema versioning is accommodated when a database system allows the
accessing of all data, both retrospectively and prospectively, through user de-
finable version interfaces.

Schema evolution is accommodated when a database system facilitates the
modification of the database schema without loss of existing data.

Figure 6.1: Schema versioning vs. evolution

From the definitions and illustration in Figure 6.1, you see that in
schema versioning data is accessible through multiple schema versions at the
same time, compared with schema evolution where the data is only accessi-
ble through one schema version. These characterizations of being a schema
evolution or schema versioning technique, are found on data transformation
techniques throughout the different data stores.

Figure 6.2 shows how schema versioning and evolution relate to the ar-
chitecture and data transformation. It illustrates that schema versioning
techniques are (mostly) related to elements outside the database, like the
application, or some layer in between. The database needs to be able to han-
dle multiple schemas at the same time, while the data itself is not changing.
Examples for a layer between the application and the database is the seri-
alization or deserialization of data. This is rather logical because although
the data is not changed within the database. Since multiple schemas exist
next to each other, the data from multiple schema versions logically needs
to be combined. As the figure illustrates, schema evolution techniques are
related to the database. This follows from the fact that the database system

44

6. Techniques for data transformation

only has the most recent schema and when a newer version of the schema is
introduced, the old data needs to be updated accordingly.

There is one important sidenote to the definition of schema versioning.
Two types of schema versioning exist: partial schema versioning and full
schema versioning. Partial schema versioning is being allowed to view data
from all the different schema’s, but only data updates through one schema.
Full schema versioning allows both views and data updates from all the
different schema versions. Within the context of event sourcing, the schema
versioning is considered to be partial schema versioning, with the one data
update schema being the current one.

Figure 6.2: Illustration to show where schema versioning and schema evolu-
tion techniques live in the system

6.2 Techniques for other kinds of databases

In this section interesting techniques, approaches, and tools. These are cat-
egorized in a relational database or schemaless approach. Furthermore, they
are categorized as being schema versioning or evolution.

6.2.1 Relational database

Relational databases have been around for some time. Therefore many differ-
ent techniques and supporting tools exist. The most important ones that were
found during our literature research are described in this subsection.

45

6. Techniques for data transformation

6.2.1.1 Schema versioning

The first solutions of schema versioning on a relational database are already
some years old. According to Roddick (2009), amongst the first solutions
were GEMSTONE (Penney and Stein, 1987) and ENCORE (Zdonik, 1986).
However within the field of schema modifications, the most attention goes to
schema evolution, and what to do with the data.

Recently schema versioning is discussed in tools that describe how to ver-
sion your database, for example like the description by Humble and Farley
(2010). The approaches you see are creating backward and forward compat-
ibility migration scripts. This approach is used by tools like SchemaSync or
DbDeploy(.NET).

6.2.1.2 Schema evolution

As the starting points when searching for interesting techniques, Hartung
et al. (2011) and de Jong (2015) were used. Most of the schema evolu-
tion approaches are reflected by tools and experiments. Apparently, these
approaches usually are a combination of a technique and applying a deploy-
ment strategy. Therefore you will find a description of the most interesting
approaches and tools:

Facebook - Online Schema Change - Facebook released a tool they cre-
ated (Callaghan, 2010). It exists of 4 phases: copy the original database,
change the copy to the new schema, replay the changes on the original
database that happened during copy/build phase and the switch phase.

IMAGO - IMAGO upgrades the system using what they call a parallel
universe, to reduce upgrade failures. This approach was a result of research
by Dumitras and Narasimhan (2009a,b). The parallel universe is a system
that runs parallel to the system that is upgraded. Due this approach IMAGO
can isolate the production system from the upgrade operations and completes
the upgrade as an atomic operation.

MeDEA - MeDEA is a generic architecture evolution tool, that focuses on
traceability of artifacts, which is based on the research by Hick and Hainaut
(2006) and Domı́nguez et al. (2008). MeDEA makes it possible to translate
changes to the conceptual model of a relational database, to schema changes
in the actual database.

OpenArk Kit/ Percona Toolkit - OpenArk kit (Noach, 2014) and Per-

46

6. Techniques for data transformation

cona Toolkit (Nichter and Baron, 2016) are two very similar tools, both using
an expand and contract approach (see chapter 7.1). The main difference is
that Percona has (some) support for foreign keys, which is not available in
OpenArk Kit.

PRISM - PRISM is a (GUI) tool, which can be used by a Database Ad-
ministrator to perform schema evolution. It is based on research by Curino
et al. (2008) and later evolved in PRISM++ (Curino et al., 2013). PRISM
can be used to calculate which SQL operations need to be performed for
the new schema. It helps to rewrite queries and can check the information
preservation, backward capabilities, and the redundancy.

QuantumDB - QuantumDB is a tool created as the result of the research
by de Jong (2015) & de Jong and van Deursen (2015). It integrates the
deployment strategy expand contract/blue-green (see chapter 7.1), with a
schema evolution tool.

When researching these schema evolution approaches, there is much
overlap. Most of them use some parallel approach as a deployment strategy.
By creating a duplicate database or ghost tables, the technique that is applied
is often not blocking the running application, meaning it can be performed
with zero downtime. As a technique, they either transform the duplicated
database in place, with some catching up phase when making the switch to
the upgraded application, or they replay the records from the original tables
to the created ghost tables and transform them during the replay. None of
these approaches can be considered runtime techniques.

6.2.2 Schemaless data(base)

Like relational data transformation techniques, there are also techniques for
“schemaless” approaches. According to Sadalage and Fowler (2012), schema-
less databases can use the same migration techniques as databases with
strong schemas because they have an implicit schema.

6.2.2.1 NoSQL

Scherzinger et al. (2013) describe how to manage schema evolution in NoSQL
data stores. They defined evolution operations and a schema evolution lan-
guage. They use the eager approach (just run it in a batch), but also describe
the option of a lazy approach. According to authors, ideally, the eager ap-
proach is better for bigger changesets and the lazy approaches for minor

47

6. Techniques for data transformation

changes. Sadalage and Fowler (2012) describe a form of a lazy approach for
NoSQL, which they refer to as, incremental migration. They describe the
lazy approach as an approach that migrates the data to the new schema
when it is accessed.

6.3 Event store techniques

There are several techniques for schema upgrading in an event sourcing ap-
plication. The techniques will be described in this section. The query side is
kept out of scope are for these techniques as the focus of this research is on
the event store.

6.3.1 Support multiple versions

The support multiple versions approach is to support multiple versions of
events supported in whole the application. This means that all components
that need events, like the aggregates and projections, need knowledge of the
different event versions and how to handle them. This approach keeps the
event store immutable. When adding new events, they will be according to
the newest event schema. This approach is for example suggested by Betts
et al. (2013).

Figure 6.3: Support multiple versions

A big advantage of this approach is that the technique keeps the event
store untouched, which stays immutable. One of the main downsides with

48

6. Techniques for data transformation

this approach is that you create much extra maintenance, with all the extra
code to handle the different event versions on multiple places.

One other important issue is that operations that are related to mul-
tiple streams, are needed for some of the event store operations. These
operations will probably take too much time to be realistically performed in
a runtime solution. The big advantage is that support multiple versions is a
runtime technique that only needs to be deployed, after which it will work
directly.

Advantages and disadvantages

+ Application can start using the new schema directly after deployment
(runtime technique)

+ The event store is immutable

− Maintenance of this solution is high because each element which uses
events (aggregate, projector) gets x times the different event versions

− Not all the operations are supported at runtime

6.3.2 Upcasting

With upcasting, the idea is to support multiple versions of a specific event.
However now there is only one point in the application that handles events
of multiple schema versions and combines them. When comparing upcasting
with support multiple versions, the difference is that that instead of doing
upcasting around the complete application, it only needs to be applied in
one place in your application. The upcasters between event versions can also
be chained, which makes it easier to add new upcasters and to do upcasting
across more than one event version. Again, this approach leaves the event
store untouched. This solution is for example suggested by Axon Framework
(2016); Betts et al. (2013).

Upcasting is a useful technique when the changes are small, so this can
be integrated with reading the events from the event store. When storing
your events in a serialized matter (like JSON/XML), this can be done during
the deserialization step, although this is not true for all operations. When
many upcasters are chained, the performance of the application is lowered,
as it needs to do many transformations of the events.

49

6. Techniques for data transformation

Figure 6.4: Upcasting

Advantages and disadvantages

+ Application can start using the new schema directly after deployment
(runtime technique)

+ Only one place with multiple event versions support (compared to sup-
port multiple versions)

+ The event store is immutable

− Many (chained) upcasters has a negative effect on the performance of
the system

− Not all the operations are supported at runtime

6.3.3 Lazy transformation

Lazy transformation is similar to upcasting, with one big difference: after the
events are upcasted to the latest version, the upcasted events are used to
update those specific events in the event store. This means the event store
does not stay untouched but updates the events in the event store. This “lazy
technique” is similar to techniques which were found in other transformation
techniques, like the incremental approach (Sadalage and Fowler, 2012) or in
relational approaches (Roddick, 1995; Tan and Katayama, 1989).

The major difference between lazy transformation and the previously
suggested techniques is that the event store is not immutable anymore. An
advantage of this technique is that it means that all the events are only
upcasted once because after the upcasting the newest version is updated in
the event store and upcasting is not needed anymore. One of the bigger
downsides of this technique is that you do not know when the lazy part is
done, as you do not keep track of the upgrading process.

50

6. Techniques for data transformation

Figure 6.5: Lazy transformation

Advantages and disadvantages

+ Application can start using the new schema directly after deployment
(runtime technique)

+ Only one place with multiple event versions support (compared to sup-
port multiple versions)

+ Old events are requested and upcasted only once

− Many (chained) upcasters has a negative effect on the performance of
the system

− Not all the operations are supported at runtime

− This technique is unpredictable because it is unknown when it is done

− The event store is not immutable anymore

6.3.4 In place event store transformation

In place event store transformation is in essence a simple technique. The
main idea behind the technique is to run a script that transforms the current
event store to the updated schema. The major advantage of this approach

Figure 6.6: In place event store transformation

51

6. Techniques for data transformation

is that all the operations are supported because it is not called when ac-
cessing your data for usage in your application, but outside by this script.
Furthermore, within the architecture, only the event store is affected, while
the other components are not. A downside is that it will possibly lock up
(parts) of your event store when it is transforming it. Another downside is
that as it needs to transform all the changed events, it will take some time
to be completed.

Advantages and disadvantages

+ All the operations are supported

+ The transformation does not have any impact on the rest of the system

− This approach will take much time

− Can put a lock on (parts) of the event store when it is running

− The event store is not immutable anymore

6.3.5 Replay the event store

With the replay event store technique, you are going rebuild the event store
from scratch. This is done by replaying all the events from the current event
store to an empty event store. When replaying the events to the empty event
store, the events that need transformation, are transformed to the updated
schema.

Figure 6.7: Replaying

Replay the event store is a technique that can be used to execute any
operation as it is not done runtime. Another big advantage is that it gives the
option for a rollback strategy because the current event store stays intact.
The big downside is that this is the slowest approach of all the suggested

52

6. Techniques for data transformation

techniques because all the events need to be transported to the clean event
store.

Advantages and disadvantages

+ All the operations are supported

+ The transformation does not have any impact on the rest of the system

− This approach will take much time

− The event store is not immutable anymore

6.4 Analysis and comparison of different event

store techniques

To be able to analyze and compare the different techniques, the techniques
are mapped to figure 6.1. This to see the relation between schema evolution
and versioning, whether they are runtime or not, and where the technique is
placed in the spectrum of application, layer or event store. Furthermore, all
the techniques are compared according to a set of quality attributes.

Multiple versions and upcasting are mapped to schema versioning be-
cause these techniques keep multiple schema versions active in the event store.
In place event store transformation and replay the event store are mapped
to event schema evolution, as they both are about keeping one schema ac-
tive and updating the data accordingly. Lazy transformation is the one that
stands out since it is a solution which is runtime, but at the same time evolv-
ing the schema. Overall it is considered a schema evolution technique as the
end result of the technique is an event store according to only one schema.
This mapping can be found in Figure 6.8.

To compare the different techniques, relevant quality attributes of the
ISO/IEC 25010:2011 are used (ISO/IEC, 2011). As they are general quality
attributes, for each of the quality attributes both the definition and the
instantiation, which describes how they are relevant to the techniques, are
described. These relevant quality attributes are functional completeness,
maintainability, performance efficiency, and recoverability.

53

6. Techniques for data transformation

Figure 6.8: Techniques initiated

Functional completeness - is defined as the degree of which the set of
functions covers all the specified tasks and user objectives. Within our com-
parison, it instantiates as: Can the technique perform all the operations?

Maintainability - is defined as the degree of effectiveness and efficiency
with which a product or system can be modified by the intended maintainers.
Within our data transformation technique, it instantiates to how easy it is to
apply the technique and how big of a factor is it on the existing architecture.

Performance efficiency - is defined as performance relative to the amount
of resources used under stated conditions. Instantiated for this problem as the
duration for the technique to perform the operations. How is the performance
runtime? How is the performance deployment time?

Recoverability - is defined as the degree to which, in the event of an in-
terruption or a failure, the product or system can recover the data directly
affected and re-establish the desired state of the system. Instantiated to this
problem, this quality attribute is related to what is the effect when something
in/during the technique goes wrong?

6.4.1 Applying the quality attributes

Now that the quality attributes are selected, the techniques can be compared
using these quality attributes. The comparison is depicted in Table 6.1. The
results will be discussed per quality attribute.

Functional completeness - For this quality attribute the techniques ended
up in two groups: the group which is doing the operation at runtime (multiple

54

6. Techniques for data transformation

versions, upcasting and lazy transformation) and the group of techniques
which are transforming the event store (in place event store transformation
and replay event store). As it is expected that the operations across multiple
aggregates are too complex and therefore too slow for a runtime solution, the
runtime techniques are characterized as less functional complete.

Maintainability - In place event store transformation and replay event
store both scored + for maintainability, because after these techniques are fin-
ished, you have no maintenance anymore regarding the update of the schema.
Support multiple versions scores the lowest because you have the upcasting
mechanism on multiple places for each version.

Performance efficiency - Multiple versions and upcasting are considered
performance efficient, because when these techniques are deployed in the
new application, it works directly. Of course, this is also the case for lazy
transformation, but as lazy transformation writes back to the event store,
this can decrease the performance of the system. As In place event store
transformation and replay the event store are not runtime solutions, these
will be judged mostly on deployment time. During deployment In place
event store transformation touches only the events that are needed for the
transformation which is the reason why it scores ±. Replay the event store
is touching all the events because they all needed to be transported to the
empty event store. As this costs much time, it is seen as the most performance
inefficient.

Recoverability - As both multiple versions and upcasting do not touch the
original event store, recoverability is high. Lazy transformation is dependent
on when the recoverability needs to be done. It can be the case that some
events are already upcasted and the old events are overwritten. In place event
store transformation scores bad in recoverability, as it is makes its changes
in the original and only existing event store. Replaying is scoring good at
recoverability because it only replays the original event and does not make
changes to the original event store. To recover the event store in case of
trouble you can just return to this original event store.

55

6. Techniques for data transformation

Quality attribute S
u
p
p

or
t

m
u
lt

ip
le

ve
rs

io
n
s

U
p

ca
st

in
g

L
az

y
tr

an
sf

or
m

at
io

n

In
p
la

ce
ev

en
t

st
or

e
tr

an
sf

or
m

at
io

n

R
ep

la
y

ev
en

t
st

or
e

Functional completeness ± ± ± + +
Maintainability - ± ± + +
Performance efficiency + + ± ± -
Recoverability + + ± - +

Table 6.1: Comparison of event store techniques according to four different
quality attributes. The + means this technique is scoring good on the quality
attribute, ± means could be better, but not bad. − means it scores bad on
the quality attribute.

56

Chapter 7

Deployment strategies

Now the techniques are identified, knowledge is needed on how these tech-
niques can be executed. Therefore a literature study was performed to finding
the deployment strategies. After the strategies are found, they are analyzed
in the final section.

7.1 Strategies

According to Humble and Farley (2010) deploying software involves three
phases:

Prepare and manage the environment in which your application will run
and be deployed. This has to do with infrastructure-related aspects, like the
hardware, but also the software that is running on it.

Installing the correct version of what you wish to deploy on it.

Configuring your application, including the data/state that is needed.

The interest of this research lies in the second and third point. How
to get your application deployed and your data/state in line with the newly
deployed application? The installing phase is called application upgrade in
this research. Configuring is called data upgrade in this research.

For these deployment strategies, the focus was on strategies purely re-
lated to the deployment of an application. This excludes strategies like fea-
ture flagging, dark launching, and canary release. These deployment strate-
gies are variants of other strategies, used to gain more knowledge about the

57

7. Deployment strategies

users and/or (system) performance.

Five different strategies were identified, which were relevant within our
scope. For all the five strategies a description is made, including an illus-
trative figure and a small description of the advantages and disadvantages.
This chapter ends with analyzing the deployment strategies in the light of
being a data upgrade and/or an application upgrade strategy.

7.1.1 Deploying on running system

First the simplest deployment strategy. Just put the new application in
place, on your server. Brewer (2001) refers to this approach as fast reboot.
The only downtime you have with this strategy is the deployment time. Just
reboot the system with the new application deployed. The main advantage
is that this strategy is not very complex.

Figure 7.1: Deploying on running system

7.1.2 Big flip

Big flip is a strategy in which the load balancer plays an important role. The
server park is divided into two groups. The load balancer routes everyone
to one group, but at that time, the system is upgrading/deploying the new
application to the other group. When the deployment is finished at that set,
the load balancer routes all the users to the upgraded group. When this is
done, the other group can be upgraded. After this is done, all the servers
are upgraded, and the load balancer can send the users to all the servers
again (Brewer, 2001). The biggest downside of this approach is that the
amount of active servers that is running the application is reduced by half.
The advantage is that the users should not have any downtime.

Step 1: The current situation. A load balancer is in place, and there is a
cluster of servers.

58

7. Deployment strategies

Step 2: The servers are divided into two groups. One is upgraded to the
new version, and the load balancer redirects everyone to the group that is
not upgrading.

Step 3: After the upgrading group is finished, the load balancer redirects all
users to the already upgraded group and the other group is turned inactive
so that group can now be upgraded.

Step 4: As the second group is also done upgrading, the whole cluster is
upgraded and big flip is completed.

Figure 7.2: Big flip

7.1.3 Rolling upgrade

Rolling upgrade is very similar to big flip. The only difference is that the
cluster is not divided into two sets, but rather they are upgraded in waves.
This means more than two sets. The big difference between rolling upgrade
and big flip is that big flip switches the complete system between version and
version + 1. With rolling upgrade you can have both versions active at the
same time, which adds extra complexity. The upside compared to big flip is
that there are fewer servers that are not running. In Figure 7.3, the rolling
upgrade is illustrated. Step by step it works as follows:

Step 1: The current situation. A load balancer is in place, and there is a
cluster of servers.

Step 2: The servers are divided into more than two sets. One set is upgraded

59

7. Deployment strategies

to the new version, and the load balancer redirects everyone to the sets that
are not being upgraded.

Step 3: Upgrading of the first set is finished, and these servers can be used
again. Another set is starting to upgrade. The load balancer can redirect
users to the already upgraded group or to the group that is still at the current
version and is not being upgraded yet. The load balancer can currently
redirect the users to two different active versions.

Step 4 - Final step-1: Step 3 is repeated until the last set of servers is
being upgraded.

Final step: As the final group is also done upgrading, the whole cluster is
upgraded and the rolling upgrade is completed.

Figure 7.3: Rolling upgrade

7.1.4 Expand-Contract DB deployment

This deployment strategy is an implementation of the “parallel change”-
pattern. This “parallel change”-pattern, or “expand and contract” (Sato,
2014), is happening in three phases:

60

7. Deployment strategies

• Expand phase - An interface is created to support both the old and the
new version

• Migrate phase - the old version(s) are (incrementally) updated to the
new version

• Contract phase - the interface is changed, so it only supports the new
phase

This strategy is used in QuantumDB, Percona/OAK, and Facebook’s online
schema change. In the database, ghost tables are created for the new version
of the schema, kind of like a second database.

Figure 7.4: Expand-Contract

This is shown in figure 7.4. To explain the strategy a bit better, an
example:

Expand: Persons is the original table. Persons v2 is created as a ghost
table, according to the new schema.

Migrate: The original records from persons are migrated to the new per-
sons v2, in a non-locking way. Currently, changes happening to persons are
directly triggered and synchronized in persons v2. When this is not possible
because of lock issues, these are logged and migrated to persons v2 when the

61

7. Deployment strategies

application is not active, or during the application upgrade in the contract
phase.

Contract: When the migrate phase is done, the application needs to be up-
graded from persons to persons v2. During that upgrade persons is removed
and persons v2 is renamed to persons. After this the deployment is finished.

One of the advantages is that the original data is updated to the final
schema, without locking the event store, because it is done in parallel. As a
downside, this solution has high complexity because operations do not need
to lock for the rest of your system. Furthermore, you want to trigger ongoing
changes to the application or store them somewhere.

7.1.5 Blue-green deployment

The blue-green deployment strategy is one of the most powerful techniques
for managing releases according to Humble and Farley (2010). This approach
also uses the “parallel change”-pattern, but on the level of servers instead of
creating two slots in the data store.

Figure 7.5: Blue-green deployment

The green environment are the instances that are currently in use. The
new application is deployed to the newly created blue environment. This
deployment includes a data transformation when needed. When the complete
deployment including data transformation is done, you let the router switch
from green to blue and it is finished (Fowler, 2010).

This strategy has the major benefit that it is a good rollback strategy
since the original environment is always alive. Furthermore, the strategy is
not locking on the active event store. One of the downsides is that it is
a time-consuming solution, which also requires extra resources, because of
complete duplication.

62

7. Deployment strategies

7.2 Deployment strategies analysis

As the relevant deployment strategies are identified, we need to know from
each strategy whether it would fit as an application upgrade strategy, a data
upgrade strategy, or both.

Strategy A
p
p
li
ca

ti
on

u
p
gr

ad
e

D
at

a
u
p
gr

ad
e

Deploy on running system 3 3

Big flip 3 3

Rolling upgrade 3 3

Expand-contract 3

Blue-green 3 3

Table 7.1: Strategies application/data deployment

Deploy on running system - can be done both for the application up-
grade and for the data upgrade. The only problem is that it will always be
without zero downtime.

Big flip is a strategy that is mainly focused on the application upgrade but
is also applicable as a data upgrade strategy. For using it as a data upgrade
strategy, the database servers need to be aligned with the application servers,
to create two pools. When using this on the database, this will lead to
downtime because of the data upgrade aspect. This because you do not have
any parallel or duplicate version running. A side effect of using big flip is
that on whatever it is applied, you will have less active servers to handle the
requests.

Rolling upgrade is a strategy that is similar to big flip, again for the ap-
plication and data upgrade part. It has one slight difference since the load
balancer needs to know which customers started working on the newest ver-
sion. When customers started working on the new version, the load balancer
cannot send them back to the old version. A side effect of using a rolling
upgrade is that you will have less active servers to handle the requests.

Expand-contract DB is only a data upgrade strategy since it involves mi-
grating data, which is not needed for the application upgrade part.

Blue-green deployment can be both an application upgrade strategy as
well as a data upgrade strategy. As an application upgrade strategy it quite

63

7. Deployment strategies

similar to big flip, only having a rollback strategy, as the other side is not
cleared. Because you do not half the active servers when upgrading, as the
application always have one active group and one not active with blue green.
This also works as a data upgrade strategy.

This resulted in the following overview, which can be found in Table 7.1.

64

Chapter 8

The design of an upgrade
strategy

To execute the operations efficiently, the operations, techniques, and strate-
gies need to be related to each other. First, the operations and techniques
will be related. Then the techniques need to be deployed with a deployment
strategy. In describing the relations, the focus will be the efficiency aspect,
which means both zero downtime, and not taking too much time. When all
the relations are described, the framework is completed.

8.1 Operations and techniques

Operation level S
u
p
p

or
t

m
u
lt

ip
le

ve
rs

io
n
s

U
p

ca
st

in
g

L
az

y
tr

an
sf

or
m

at
io

n

In
p
la

ce
ev

en
t

st
or

e
tr

an
sf

or
m

at
io

n

R
ep

la
y

ev
en

t
st

or
e

Event - basic & complex 3 3 3 3 3

Stream - basic & complex 3 3 3 3 3

Event store - basic 3 3 3 3 3

Event store - complex 3 3

Table 8.1: Relations between operations and techniques

65

8. The design of an upgrade strategy

The operations need to be related to the techniques that were identified.
As already discussed in the techniques chapter (Chapter 6), some of the
operations are not wanted by some of the techniques, because they would
take too long to performed at runtime. As our focus lies with zero downtime,
this will be perceived by the user. Therefore, these operations, which are
related to multiple aggregates, are considered operations that you do not
want to run in a technique which transforms runtime. As can be seen in
Table 8.1, the only operations this will affect are the complex operations
on the event store level. These operations are the only operations that are
related to multiple aggregates, which can give performance problems.

8.2 Techniques and strategies

The relations between techniques and operations are identified, the tech-
niques and strategies need to be linked to each other. As can be seen in Fig-
ure 8.1, for the all the techniques, an application upgrade strategy is needed.
The schema evolution techniques also need a data upgrade strategy.

Figure 8.1: Techniques & strategy

This means that, support multiple versions, upcasting and lazy trans-
formation are techniques that only need an application upgrade strategy, to
get the technique in place. In place event store transformation and replay
event store are techniques that both need an application and a data upgrade
strategy. As a result, many possible combinations exist.

66

8. The design of an upgrade strategy

As all the techniques and strategies are described and analyzed, the
relationship between them can be described. Appendix A includes two tables
that describe them. Table A.1 shows the runtime techniques, combined with
the possible application upgrade strategies. Table A.2 shows the non-runtime
techniques combined with the application and data upgrade strategies.

In both tables, it is shown whether the combination would result in zero
downtime, application upgrade or major downtime. Application upgrade is
downtime that is caused by the new application upgrade being deployed in-
cluding the technique. Major downtime means that at least the data upgrade
or both the application and data upgrade are causing downtime.

8.2.1 Zero downtime combinations

Several combinations score well since they can be realized with zero down-
time. For each of the technique these are:

Multiple versions - is possible with zero downtime when applying rolling,
big flip or blue-green as the application upgrade strategy.

Upcasting - is possible with zero downtime when applying rolling, big flip
or blue-green as the application upgrade strategy.

Lazy transformation - is possible with zero downtime when applying rolling,
big flip or blue-green as the application upgrade strategy.

In place event store transformation - is possible with zero downtime
when applying rolling, big flip or blue-green as the application upgrade strat-
egy and expand and contract as a data upgrade strategy. Combining in place
event store transformation with blue-green would not make any sense.

Replay event store - is possible with zero downtime when applying rolling,
big flip or blue-green as the application upgrade strategy and expand and
contract or blue-green as a data upgrade strategy.

As the above illustrates, there are multiple different solutions. Worth
noticing is that in an application upgrade rolling upgrade, big flip, and blue-
green are all strategies result in zero downtime. As a data upgrade strategy,
expand contract will always result in a zero downtime. This in contrast to
blue green, which not automatically result in a logical combination.

67

8. The design of an upgrade strategy

8.3 Final framework

The previous sections combined, result in a final framework, which is vi-
sualized in figure 8.2. This framework is the combination of operations,
techniques, and strategies and the relationships between them. All the op-
erations, techniques, and strategies are shortly described and explained in
tables, which can be found in Appendix B.1, B.2, B.3. In the figure, the
turquoise techniques are considered schema versioning, whereas the blue ones
are schema evolution.

Figure 8.2: Final framework regarding upgrading an event sourced applica-
tion efficiently

68

8. The design of an upgrade strategy

8.3.1 Deciding on technique and strategy

The presented framework shows which technique and strategies you can use.
When building your application, several factors influence the scope on which
operations to expect, how to handle them and which techniques and strategies
you will implement.

First, you have the business need. One of the important discussion
points which came up during most expert evaluation interviews and sessions
are decisions based on the business aspect. Is it allowed to delete events or
even streams from your event store, or does your event store needs to stay
immutable? An interesting view on this is to make a difference between func-
tional immutable and technical immutable. We consider technical immutable
as being completely immutable, no changes allowed. When your event store
is functional immutable, you are allowed to make certain changes, which are
not directly influencing the event, which is the representation of the saved
changing state. You do not change the events themselves, but you can change
for example the database platform or the persistency of the event. Another
business discussion is the lossless or lossy transformation discussion. Are we
allowed to lose information during a data transformation, even when it is
(possibly) not relevant anymore? This can be that we do not want them in
our active system, but can also be related to have it stored somewhere in the
backup of the system.

Secondly, you have environmental factors when deciding on technique
and strategy. Maybe some of the data transformation techniques are already
implemented in your infrastructure and implementing a new one would be
not cost effective. It could also be that your application is not so complex,
and only consists of a limited number of streams/bounded contexts. Then
you can exclude the multiple stream operations from the framework, which
makes the decision process simpler.

In creating this framework, one decision was already made. We wanted
to be performance efficient, including zero downtime. Therefore, the rela-
tion between multiple streams and runtime techniques was removed in the
framework, because we believed this would be too big of an impact on the
efficiency of the system.

Figure 8.3 illustrates the several places that can be influenced by the
decision-making process. First, you have the translation of your evolution
trigger to the new implicit schema, which results in the schema changes. In
the figure this is marked with the 1. For example, as a trigger you have the

69

8. The design of an upgrade strategy

introduction of the new IBAN bank account number, which needed to be
integrated into your application. Several approaches exist to solve this in
your schema. This can be done either, by transforming all the current bank
account numbers to IBAN in the existing events. Another option is to add
a new attribute that consists of the IBAN in all the existing events. A third
option is to add a new event including the new IBAN number of the relevant
bank account number. This decision needs to be made, based on the existing
requirements.

Figure 8.3: Illustrating decision-making based on the framework

After you know how it is affected, it is time to decide on how to upgrade
(number 2 in Figure 8.3). As the operations are reflected by the schema
change, they will be based on the new schema. However, deciding on which
technique and deployment strategy is another important design decision, with
different results, as can be seen in Figure 8.3. Certain techniques will result
in the left V2 application, having multiple schemas active in your application.
The left V2 application is using a schema versioning technique, and using
only an application upgrade strategy. The schema evolution technique will
result in the right V2 application, using both an application upgrade and

70

8. The design of an upgrade strategy

data upgrade strategy. One important side note, the lazy transformation is
a schema evolution technique, which at the start will looking like the left
application, but eventually will become the right application.

You can also decide to implement multiple approaches, also referred as
a hybrid approach. When you have a runtime solution, combined with a
non-runtime solution including a data upgrade strategy, you will probably
reduce the time when the non-runtime approach is needed. For example,
when the first operations are just simple add attribute and merge attribute
operations, which are both operations that can be performed by runtime
techniques, you do not need the non-runtime technique. However, when
the next schema change needs a split stream operation, those operations
will probably be included in performing your data upgrade. When the data
upgrade is syncing in the background, you reduce the time needed to finalize
the data upgrade, as some operations are already (partially) executed.

71

Chapter 9

Evaluation with experts

Two evaluation phases took place during this research. This chapter de-
scribes the evaluations since we thought it would provide valuable insights
on what was changed.

9.1 Evaluating the operations overview

The concept overview in Chapter 5 was evaluated in a session with three
experts from AFAS Software. The AFAS experts were two lead software
architects and the software project manager. These experts have all been
working with CQRS and event sourcing for a few years now. During the
session two important discussion points came up:

Missing operations - One of the questions that came up during the ses-
sions, was whether certain operations were missing or not. For example, the
move attribute/event operation. When creating the overview, the decision
was made to leave them out, based on the argument they could be expressed
by the other operations.

Lossless vs. lossy - The second important discussion point was, how to
handle the fact that when doing some of the operations, you are (possibly)
“changing the past”. This is especially the case for operations that are not
lossless. These questions on how to handle such cases, typically need to be
answered by the stakeholders of the applications.

The first discussion point was used when refactoring the operations overview.
The second point can be found in Section 8.3.1.

72

9. Evaluation with experts

9.1.1 Changes to operation overview the evaluation

After the evaluation, AFAS started to make a framework for the data trans-
formation in their current development of Profit Next. These operations and
the cases (or equivalents) were the starting points for their implementation.
Based on the new insights, changes were made to the operations overview.
The changes were:

The separation between basic and complex operations - One of the
discussion points was that not all operations were explicitly present. To
improve the overview we decided to make a difference between basic and
complex operations (see section 5.2) and to add some operations as described
in the next points.

Added move operations - The move operation was explicitly added both
to the level of the stream (move attribute) and store level (move event).

Renaming present on all levels - The rename operation is now present
on all the levels. Update (event)type on attribute level was renamed re-
name event and moved to the stream level. Rename stream was included at
event store level, and rename attribute is represented by the update attribute
operation on the event level.

Rename create to add - The name of the create operations is changed to
add because that is better describing the operations.

9.2 Expert interviews about the framework

To improve end evaluate the final framework, interviews were held with ex-
ternal experts in the field of CQRS & event sourcing. The focus in inter-
views was to see if this research matches the experience and the knowledge
of experts in the field of CQRS & event sourcing. Furthermore, discussing
the framework with external experts, involved in one or more other CQRS
& event sourcing implementations, would help this research to improve the
generalizability.

9.2.1 Interview protocol

For conducting the expert interviews, multiple goals were set:

73

9. Evaluation with experts

Figure 9.1: Concept operations overview - before the validation session

CQRS & event sourcing upgrade experience - This is the starting point
of the interview. This to see what their experiences of upgrading CQRS ap-
plications are, and what problems and situations they ran into. This without
them already having seen the framework. Furthermore, we want to be able
at the end, to place their experiences into the framework. This to see what
kind of operations, techniques, and strategies they used when looking at the
framework.

Operations overview - We want to know what they did they encounter.
Related to the framework, we wanted to know if all the operations were clear,
if the operations overview was complete and correct, and if they were missing
any operations.

Event store techniques - Do the experts agree on the found existing tech-
niques or are there any techniques missing?

Deployment strategies & final framework - Do they agree on the de-
ployment strategies? Do they see value in the final framework?

74

9. Evaluation with experts

An interview protocol was set up to fulfill these goals. This interview protocol
can be found in Appendix C.

9.2.2 Execution of the interviews

For conducting the interviews, Dutch experts in the field of CQRS & event
sourcing were approached.

Name Function Experience
Allard Buijze CTO, Creator of AXON framework 6,5 years
Dennis Doomen Consultant in CQRS & event sourcing 6 years
Pieter Joost van der Sande Engineering Architect 6,5 years

Table 9.1: The interviewed experts

All the interviews were when possible recorded and later summarized
where the relevant quotes were picked out. The summaries of the expert
interviews can be found in Appendix D.

9.2.2.1 Conclusions based on the interviews

Based on the expert interviews, small changes to the framework were made,
and interesting conclusions were drawn.

Naming issues - In all the interviewees, there were small misunderstand-
ings or extra explanation needed because of naming issues. We think this is
related to the relatively new concept of event sourcing, where people from
different fields (domain-driven design, distributed systems, event-driven ar-
chitecture) are coming together.

The relation between the level of operation and encounters - All the
interviewees said that operations on the level of the store are not common,
especially the complex operations.

The specific version of multiple versions is having ‘multiple versions”
Two interviewees came up with some technique which was related to having
multiple versions of an aggregate around, in which aggregate v1, could be
input for aggregate v2. This makes it possible to keep some support for the
previous versions.

75

9. Evaluation with experts

Solving problems in projections - Another thing two interviewees had
in common, is that sometimes problems were not solved on the command
side of the application, but on the query side. Although not in the scope of
the research, it is worth mentioning.

Complete and useful - All the interviewees found the suggested frame-
work useful and complete. All interviewees were interested in the end result.
One interviewee mentioned: “we are probably the only one having such a
complete picture of this, especially since we also include a lot of scenarios
and edge cases”.

9.2.2.2 Changes based on the conclusions

Based on the conclusions from the expert interviews, the framework that was
presented to the experts was changed. The changes that were made will be
explained and motivated.

Lazy upcasting to lazy transformation - One of the interviewees thought
lazy upcasting was the process of upcasting on a lazy manner, but this was
not the correct explanation. That is why one of the experts suggested to
rename it to lazy transformation, on which we agreed.

Transformation scripts to Transform event store in place - the orig-
inal name of transform event store in place was transformation script(s) on
event store. The focus in this name should not be on the what, but on the
where. As the big difference between this technique and the other techniques
is that this is happening on the current event store, the name was changed.

Categorization of deployment strategies was added - As the catego-
rization was not completed before the expert interviews, it was left out. As
this proved to be inconvenient during the interviews, it was decided to add
it to the final framework. The framework ended up with two interpretations
of the strategy (application upgrade or data upgrade), resulting in a lot of
extra combinations.

Operations were categorized together - Previously within the frame-
work, four categories for operations were used, to illustrate the specific cate-
gories to the experts. As they agreed to the relations between the operations
and techniques, the decision was made to put the ones that are linked to the
same category techniques, together.

76

Chapter 10

Discussion

Validity is an important issue regarding doing research. As this research is
considered to be empirical research, we need to discuss the several threats to
the validity and how we tested or handled them in the best way (Easterbrook
et al., 2008).

10.1 Construct validity

Construct validity is about theoretical constructs and their interpretation.
For this reason, definitions from literature were used whenever possible.
When a definition could not be found, we explicitly stated what our defi-
nition or explanation was. Most of the used definitions can be found in the
glossary.

10.2 Internal validity

Internal validity is to ensure that results follow from the data. In this re-
search, this is not applicable, as there was no data involved in this research.
The only data this research worked with was the operations prototype and
the expert interviews. The operations prototype is published on GitHub, so
that it can be checked publicly. Summaries of the expert interviews were
made, which were checked by the interviewees themselves, to make sure that
they agreed with the interpretation.

77

10. Discussion

10.3 External validity

External validity focuses on the justification of the generalization of the re-
sults. To do this, expert interviews were conducted the discuss their CQRS &
event sourcing experiences and show and discuss the created framework with
the experts. This step was explicitly performed to find out if the framework
would be as useful and generalizable as we thought.

10.4 Reliability

Reliability has to do with how reliable the results are and their reproducibil-
ity. This research was on purpose not set up as a case study but used a
broader perspective. Parts of the research can be reproduced, for example
the Haskell operations prototype.

78

Chapter 11

Conclusion

In this chapter, a summary is given of the answers on the research questions.
At the end of this chapter, possible future work is presented.

11.1 Main conclusions

Event sourcing and CQRS are relatively new patterns, which cope with chal-
lenges from software evolution, as illustrated by Lehman’s law.

SRQ 1: ‘Which operations are needed to transform events so that they comply
to the new event schema?”

All the operations were described for this subquestion, with the help
of brainstorms sessions and a simple Haskell prototype. The overview of
operations was later evaluated together with experts, which resulted in a
small refactoring. The final overview consisted of three levels (event, stream,
store) and two categories, basic or complex operations. These operations
are:

Store - basic Add stream, delete stream, rename stream, update stream

Stream - basic Add event, delete event, rename event, update event

Event - basic Add attribute, delete attribute, update attribute

Store - complex Merge streams, split stream, move event

Stream - complex Merge events, split event, move attribute

Event - complex Merge attributes, split attribute

79

11. Conclusion

An explanation on what each consists of can be found in Table B.1, in
Appendix B.

SRQ 2: “Which techniques are available to execute data transformation opera-
tions?”

For this subquestion several techniques from non-event store databases
(relational, NoSQL) were examined and described, using schema versioning
and schema evolution as categorization. With schema versioning, multiple
versions of the schema are active in the application. Schema evolution means
only one schema active in the application and the data is adjusted to this
schema. Applying existing techniques to the event store, combining it with
the known event store techniques, it resulted in 5 event store data transfor-
mation techniques:

Multiple versions - a runtime schema versioning technique. Multiple ver-
sions of events are supported everywhere in the application where they are
needed.

Upcasting - a runtime schema versioning technique. When retrieving events
from the event store, they are upcasted to the latest version of the event.

Lazy transformation - a runtime schema evolution technique. When re-
trieving events from the event store, they are upcasted to the latest version
and these latest versions are send back to the event store, overwriting the
old versions.

In place event store transformation a non-runtime schema evolution tech-
nique. The existing event store is in place transformed, by for example a
transformation script

Replay event store a non-runtime schema evolution technique. The events
are replayed to an empty event store, which is set up according to the latest
schema. When an event needs transformation, it is done before arriving at
the new event store.

These techniques were described including their advantages and dis-
advantages. Later they were compared and analyzed based on quality at-
tributes. These quality attributes were functional completeness (do they
support all the operations), performance efficiency (is the performance of
the technique good), recoverability (what happens when the technique fails)
and maintainability (how is the maintenance of the technique).

SRQ 3: “What are the existing deployment strategies for upgrading software?”

80

11. Conclusion

For this subquestion an overview was created of the existing deployment
strategies. These strategies were visualized and described. It resulted in five
deployment strategies:

Deploy on running system - Deploy or run the technique on the running
system, which is also known as fast reboot. Will never be a zero downtime
solution.

Big flip - Separating your cluster into two groups, which is upgraded one
by one. When upgrading, the load balancer redirects everyone to the cluster
which is not upgrading. It reduces active servers running your application
during deployment.

Rolling upgrade - Similar to big flip, only in this case not two, but multiple
groups are used. As a side effect, there are two versions running at the same
time.

Expand-contract db deployment - Use ghost tables in the running data
store that in the background migrates the current data. Can be referred to
as creating a second slot in your data store.

Blue-green deployment - You have two slots, blue and green, which are
there for both the application and the database. You deploy the new appli-
cation or upgrade the data to the not active slot and when finished you make
the switch.

All these deployment strategies function as data upgrade strategy. Further-
more, all except expand-contract db deployment, function as an application
upgrade strategy.

SRQ 4: “How can the most appropriate technique be selected and deployed effi-
ciently, given a set data transformation operations?”

To answer this question, several things needed to be done. The opera-
tions (SRQ 1), need to be executed by a technique (SRQ 2), which is then
deployed according to an application upgrade and possibly a data upgrade
strategy (SRQ 3). The relations between these needed to be identified. First
the relation between the operations and technique needed to be identified.
The only operations that did not have a good relation with all the tech-
niques, were the complex operations on the level of event store. These did
not work well in the runtime techniques (multiple versions, upcasting and
lazy transformation).

This was followed by the combinations of techniques and strategy. The
runtime techniques only needed an application upgrade strategy and the

81

11. Conclusion

other two techniques need both an application and data upgrade strategy.
All the combinations were examined, to see what the consequences were
and if they would be zero downtime. All these combinations can be found
in Appendix A, Table A.2. As an end result for this question, the final
framework was created, and several factors influencing the design process
were described, to give some guidance in choosing the right approach for
your application.

RQ: “How can an event sourced application efficiently be upgraded in
the face of event schema changes?”

With the help of the framework, you can quickly identify which ap-
proaches are there and which would be helpful for your situation. Further-
more, it provides starting points for people that are currently building such
an application and that are thinking about a solution for this challenges of
the changing event schema.

Figure 11.1: Final framework

82

11. Conclusion

11.2 Future research

During this research, several possibilities for future work came up, which were
out of scope, or would be a follow up for this research. The field of CQRS
and event sourcing can use a lot more scientific contributions, to create a sci-
entific base and more interest in these patterns. First, this framework is now
evaluated with experts, but there are still options to validate certain parts of
this research or create a bigger. For example benchmarking the operations
upcasting decision or multiple data transformation stacked onto each other,
like upcasting chained over multiple schemas.
Not only benchmarking would be a good addition, but there are also other
aspects that might be of interest. For instance, finding out motivations of
certain schema changes and ways to prevent them, or let them be simplified.
Another point for future work is that currently only the command side of
the CQRS application is discussed for the upgrade. However, updating the
event schema can (and often will) also have an effect on the query side of the
application, with the projections which use those changed events. This was
not included in this research, but it could prove to be an interesting angle.
Another interesting aspect regarding event sourcing, is the option to apply
complex event processing on the event store (see related literature, Section
4.3). This many possibilities in the fields of business intelligence and pattern
recognition.
Related to the field of model-driven design and code generation, an interest-
ing research topic is to find out whether it is possible to derive and generate
the solution for the data transformation, based on the model transforma-
tion.

83

Glossary

Aggregate is combinations of entities, which combined have their own bounded
context.

CQRS stands for Command Query Responsibility Segregation, first de-
scribed by Dahan (2009); Young (2010b). CQRS is an architectural
pattern that separates the commands (changing state) from the queries
(retrieving data).

Data transformation Update the data from an old (v1) to a new data
scheme (v2).

Deployment strategy is an approach to get techniques deployed and/or
working.

Domain Driven-Design is often abbreviated to DDD. In DDD you de-
scribe your system for both IT and business by mapping business do-
main concepts into software artifacts.

Event schema defines the implicit data schema of the events in an event
store.

Event sourcing is the concept that instead of saving your application state
like a normal relational database, saves all the changes to your appli-
cation state as separate steps, similar to an audit trail (Fowler, 2005).

Event store is a data store for events. An event store consisting of multiple
streams. Abbreviated to ES.

Eventually consistent is a weaker form of consistency and means that
when no updates are made to the object, the object will eventually
have the last updated value (Vogels, 2009).

84

Glossary

Implicit schema is the schema that is present in the data in a schemaless
data store so the application can interpret the data (Fowler, 2013b).

Operation is a change made to the event schema, resulting in some action.

Projection is the view on state or the state history, created and updated
by the projector.

Technique is an approach to execute the operations, with or without touch-
ing the data store.

Zero downtime means that no downtime is perceived by the user.

85

Bibliography

Ameller, D. (2009). Considering Non-Functional Requirements in Model-
Driven Engineering. Master, Universitat Politècnica de Catalunya.

Axon Framework (2016). Reference Guide Axon Framework reference
guide - Event Upcasting. http://www.axonframework.org/docs/2.4/

repositories-and-event-stores.html.

Betts, D., Dominguez, J., Melnik, G., Simonazzi, F., and Subramanian, M.
(2013). Exploring CQRS and Event Sourcing: A journey into high scal-
ability, availability, and maintainability with Windows Azure. Microsoft
patterns & practices.

Brandolini, A. (2013). Introducing Event Storming. http://ziobrando.

blogspot.com/2013/11/introducing-event-storming.html.

Brewer, E. (2000). Towards robust distributed systems. In PODC.

Brewer, E. (2012). CAP twelve years later: How the “rules” have changed.
Computer.

Brewer, E. A. (2001). Lessons from Giant-Scale Services. IEEE Internet
Computing, 5(4):46–55.

Callaghan, M. (2010). Facebook - Online Schema Change for
MySQL. https://www.facebook.com/notes/mysql-at-facebook/

online-schema-change-for-mysql/430801045932/.

Cattell, R. (2011). Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12–27.

Chandy, K. M. (2009). Event Driven Architecture. In Liu, L. and Özsu,
M. T., editors, Encyclopedia of Database Systems, pages 1040–1044.
Springer US.

86

http://www.axonframework.org/docs/2.4/repositories-and-event-stores.html
http://www.axonframework.org/docs/2.4/repositories-and-event-stores.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/

BIBLIOGRAPHY

Clifford, J. (1982). A model for historical databases. Information Systems
Working Papers Series, Vol.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387.

Curino, C., Moon, H. J., Deutsch, A., and Zaniolo, C. (2013). Automating
the database schema evolution process. VLDB J., 22(1):73–98.

Curino, C., Moon, H. J., and Zaniolo, C. (2008). Graceful database schema
evolution: the PRISM workbench. PVLDB, 1(1):761–772.

Dahan, U. (2009). Clarified CQRS. Dec. 2009. http://www.udidahan.com/
2009/12/0.

de Jong, M. (2015). Zero-Downtime SQL Database Schema Evolution for
Continuous Deployment. Master, TU Delft.

de Jong, M. and van Deursen, A. (2015). Continuous deployment and schema
evolution in SQL databases. In Proceedings of the Third International
Workshop on Release Engineering, Firenze.

Domı́nguez, E., Lloret, J., Rubio, A. L., and Zapata, M. A. (2008). MeDEA:
A database evolution architecture with traceability. Data Knowl. Eng.,
65(3):419–441.

Dumitras, T. and Narasimhan, P. (2009a). No downtime for data conversions:
Rethinking hot upgrades. Technical report, Carnegie Mellon University,
Pittsburgh.

Dumitras, T. and Narasimhan, P. (2009b). Why Do Upgrades Fail and What
Can We Do about It? In Bacon, J. and Cooper, B. F., editors, Middle-
ware 2009, ACM/IFIP/USENIX, 10th International Middleware Confer-
ence, Urbana, IL, USA, November 30 - December 4, 2009., volume 5896
of Lecture Notes in Computer Science, pages 349–372, Urbana, IL, USA.
Springer.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). Guide to
Advanced Empirical Software Engineering. Guide to Advanced Empirical
Software Engineering, pages 285–311.

Elbushra, M. and Lindström, J. (2014). Eventual consistent databases: State
of the art. Open Journal of Databases (OJDB).

87

http://www.udidahan.com/2009/12/0
http://www.udidahan.com/2009/12/0

BIBLIOGRAPHY

Erb, B. and Kargl, F. (2015). A conceptual model for event-sourced graph
computing. In Eliassen, F. and Vitenberg, R., editors, Proceedings of the
9th ACM International Conference on Distributed Event-Based Systems,
DEBS ’15, Oslo, Norway, June 29 - July 3, 2015, pages 352–355. ACM.

Etzion, O. (2009). Complex Event & Complex Event Processing (CEP). In
Liu, L. and Özsu, M. T., editors, Encyclopedia of Database Systems, pages
411–413. Springer US, Boston, MA.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional.

Fowler, M. (2005). Event sourcing. http://martinfowler.com/eaaDev/

EventSourcing.html.

Fowler, M. (2010). BlueGreenDeployment. http://martinfowler.com/

bliki/BlueGreenDeployment.html.

Fowler, M. (2013a). Introduction to NoSQL.

Fowler, M. (2013b). Schemaless Data Structures. http://martinfowler.

com/articles/schemaless/.

Fowler, M. (2016). YOW! Nights - Event Sourcing. https://www.youtube.
com/watch?v=aweV9FLTZkU.

Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News,
33(2):51–59.

Guelen, J. (2015). Informed CQRS design with continuous performance test-
ing. Master thesis, Utrecht University.

Hartung, M., Terwilliger, J. F., and Rahm, E. (2011). Recent Advances
in Schema and Ontology Evolution. In Bellahsene, Z., Bonifati, A., and
Rahm, E., editors, Schema Matching and Mapping, Data-Centric Systems
and Applications, pages 149–190. Springer.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105.

Hick, J.-M. and Hainaut, J.-L. (2006). Database application evolution: A
transformational approach. Data Knowl. Eng., 59(3):534–558.

88

http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/articles/schemaless/
http://martinfowler.com/articles/schemaless/
https://www.youtube.com/watch?v=aweV9FLTZkU
https://www.youtube.com/watch?v=aweV9FLTZkU

BIBLIOGRAPHY

Hohpe, G. (2006). Programming without a call stack-event-driven architec-
tures. Objekt Spektrum.

Humble, J. and Farley, D. (2010). Continuous delivery: reliable software
releases through build, test, and deployment automation. Addison-Wesley
Professional.

ISO/IEC (2011). ISO/IEC 25010:2011 - Systems and software engineering
— Systems and software Quality Requirements and Evaluation (SQuaRE)
— System and software quality models.

Jacob, S. A. and Furgerson, S. P. (2012). Writing interview protocols and
conducting interviews: Tips for students new to the field of qualitative
research. The Qualitative Report, 17(42):1–10.

Jensen, C. S. and Snodgrass, R. T. (2009). Temporal Database. In Liu, L. and
Özsu, M. T., editors, Encyclopedia of Database Systems, pages 2957–2960.
Springer US.

Kabbedijk, J., Jansen, S., and Brinkkemper, S. (2012). A Case Study of the
Variability Consequences of the CQRS Pattern in Online Business Soft-
ware. In Proceedings of the 17th European Conference on Pattern Lan-
guages of Programs, Irsee.

Korkmaz, N. (2014). Practitioners’ view on command query responsibility
segregation. Master thesis, Lund University.

Lehman, M. (1980). Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076.

Mellor, S. J., Clark, A. N., and Futagami, T. (2003). Guest Editors’ Intro-
duction: Model-Driven Development. IEEE Software, 20(5):14–18.

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall.

Michelson, B. M. (2006). Event-driven architecture overview. Patricia Sey-
bold Group, 2.

Niblett, P. (2009). Event Transformation. In Liu, L. and Özsu, M. T., editors,
Encyclopedia of Database Systems, pages 1064–1068. Springer US.

Nichter, D. and Baron, S. (2016). Percona Toolkit documenta-
tion of pt-online-schema-change. https://www.percona.com/doc/

percona-toolkit/2.2/pt-online-schema-change.html.

89

https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html

BIBLIOGRAPHY

Noach, S. (2014). Openark Kit. https://code.google.com/archive/p/

openarkkit/.

Penney, D. J. and Stein, J. (1987). Class modification in the GemStone
object-oriented DBMS. In Meyrowitz, N. K., editor, ACM SIGPLAN No-
tices, volume 22, pages 111–117, Orlando, Florida, USA. ACM.

Roddick, J. F. (1995). A survey of schema versioning issues for database
systems. Information and Software Technology, 37(7):383–393.

Roddick, J. F. (2009). Schema Evolution & Schema Versioning. In Liu, L.
and Özsu, M. T., editors, Encyclopedia of Database Systems, pages 2479–
2481, 2499–2502. Springer US, Boston, MA.

Sadalage, P. and Fowler, M. (2012). NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Addison-Wesley.

Sato, D. (2014). ParallelChange. http://martinfowler.com/bliki/

ParallelChange.html.

Scherzinger, S., Klettke, M., and Störl, U. (2013). Managing Schema Evo-
lution in NoSQL Data Stores. In Green, T. J. and Schmitt, A., editors,
Proceedings of the 14th International Symposium on Database Program-
ming Languages (DBPL 2013), August 30, 2013, Riva del Garda, Trento,
Italy.

Tan, L. and Katayama, T. (1989). Meta Operations for Type Management
in Object-Oriented Databases. In DOOD, pages 241–258.

Traub, D. and Simmons, C. (2011). Using an RDBMS as event sourcing
storage. http://stackoverflow.com/a/7065225.

Vogels, W. (2009). Eventually consistent. Communications of the ACM,
52(1):40–44.

Young, G. (2010a). CQRS and CAP Theorem. http://codebetter.com/

gregyoung/2010/02/20/cqrs-and-cap-theorem/.

Young, G. (2010b). CQRS and Event Sourcing. Feb. 2010. http://

codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing.

Young, G. (2013). Querying Events at Code Mesh London 2013. https:

//www.youtube.com/watch?v=BWOaUT9T-jA.

90

https://code.google.com/archive/p/openarkkit/
https://code.google.com/archive/p/openarkkit/
http://martinfowler.com/bliki/ParallelChange.html
http://martinfowler.com/bliki/ParallelChange.html
http://stackoverflow.com/a/7065225
http://codebetter.com/gregyoung/2010/02/20/cqrs-and-cap-theorem/
http://codebetter.com/gregyoung/2010/02/20/cqrs-and-cap-theorem/
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
https://www.youtube.com/watch?v=BWOaUT9T-jA
https://www.youtube.com/watch?v=BWOaUT9T-jA

BIBLIOGRAPHY

Young, G. (2016). A Decade of DDD, CQRS, Event Sourcing - Domain-
Driven Design Europe 2016. https://www.youtube.com/watch?v=

LDW0QWie21s.

Zdonik, S. B. (1986). Version Management in an Object-Oriented Database.
In Conradi, R., Didriksen, T., and Wanvik, D. H., editors, Advanced
Programming Environments, Proceedings of an International Workshop,
Trondheim, Norway, June 16-18, 1986, volume 244 of Lecture Notes in
Computer Science, pages 405–422, Trondheim, Norway. Springer.

91

https://www.youtube.com/watch?v=LDW0QWie21s
https://www.youtube.com/watch?v=LDW0QWie21s

Appendix A

Tables techniques &
deployment strategies
combined

92

A
.

T
ab

les
tech

n
iq

u
es

&
d
ep

loy
m

en
t

strategies
com

b
in

ed
Techniques Application Zero downtime Description

Running
system

Application
upgrade

Short downtime during installation

Big flip Zero downtime reduced hardware pool, possibly catch up phase
between data stores when done.

Rolling Zero downtime Users can not turn back to old version, possibly
catch up phase when new server(s) are added to
finished pool.

Multiple versions

Blue-green Zero downtime Kind of big flip, with rollback and no experi-
enced reduced hardware pool.

Running
system

Application
upgrade

Short downtime during installation

Big flip Zero downtime reduced hardware pool, possibly catch up phase
between data stores when done.

Rolling Zero downtime Users can not turn back to old version, possibly
catch up phase when new server(s) are added to
finished pool.

Upcasting

Blue-green Zero downtime Kind of big flip, with rollback and no experi-
enced reduced hardware pool.

Running
system

Application
upgrade

Short downtime during installation

Big flip Zero downtime reduced hardware pool, possibly catch up phase
between data stores when done.

Rolling Zero downtime Users can not turn back to old version, possibly
catch up phase when new server(s) are added to
finished pool.

Lazy transformation

Blue-green Zero downtime Kind of big flip, with rollback and no experi-
enced reduced hardware pool.

Table A.1: Runtime techniques combined with application deployment strategies

93

A
.

T
ab

les
tech

n
iq

u
es

&
d
ep

loy
m

en
t

strategies
com

b
in

ed
Table A.2: In place event store transformation and re-
play event store combined with application deployment
strategy and data upgrade strategy.

Techniques
Application
upgrade

Data
upgrade

Zero
downtime

Description

In place ES
Running
system

Running
system

Major
downtime

Major downtime, because both application and
data(schema) update is done on running system

In place ES
Running
system

Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES
Running
system

Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES
Running
system

Expand
contract

Application
upgrade

If application deployed in same time as contract
phase, only downtime during the initiation of the
expand phase and the catch up phase during the
contract phase

In place ES
Running
system

Blue-green
Application
upgrade

When application is deployed after blue-green the
data upgraded finished, pure downtime for deploy-
ing application and possibly small catch-up phase

In place ES Big flip
Running
system

Major
downtime

Major downtime, because both application and
data(schema) update is done on running system

94

A
.

T
ab

les
tech

n
iq

u
es

&
d
ep

loy
m

en
t

strategies
com

b
in

ed

In place ES Big flip Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES Big flip Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES Big flip
Expand
contract

Zero
downtime

In place ES Big flip Blue-green Not applicable Not applicable, data upgrade to parallel version
(b/g), and then do the in place upgrade

In place ES Rolling
Running
system

Major
downtime

Major downtime, because both application and
data(schema) update is done on running system

In place ES Rolling Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES Rolling Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES Rolling
Expand
contract

Zero
downtime

In place ES Rolling Blue-green Not applicable Not applicable, data upgrade to parallel version,
and then do the in place upgrade

95

A
.

T
ab

les
tech

n
iq

u
es

&
d
ep

loy
m

en
t

strategies
com

b
in

ed

In place ES Blue-green
Running
system

Major
downtime

Major downtime, because both application and
data(schema) update is done on running system

In place ES Blue-green Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES Blue-green Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

In place ES Blue-green
Expand
contract

Zero
downtime

In place ES Blue-green Blue-green Not applicable Not applicable, data upgrade to parallel version,
and then do the in place upgrade

Replay ES
Running
system

Running
system

Major
downtime

Major downtime, because both application and
data(schema) update is done on running system

Replay ES
Running
system

Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES
Running
system

Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES
Running
system

Expand
contract

Application
upgrade

Instead of only building ghost tables for changed
stuff, do it for the complete event store and replay

96

A
.

T
ab

les
tech

n
iq

u
es

&
d
ep

loy
m

en
t

strategies
com

b
in

ed

Replay ES
Running
system

Blue-green
Application
upgrade

Replay ES Big flip
Running
system

Major
downtime

Because data upgrade is done fast, major down-
time

Replay ES Big flip Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES Big flip Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES Big flip
Expand
contract

Zero
downtime

Reduced hardware, replay to the same DB

Replay ES Big flip Blue-green
Zero
downtime

Reduced hardware, replay to parallel blue/green
version

Replay ES Rolling
Running
system

Major
downtime

Because data upgrade is done fast, major down-
time

Replay ES Rolling Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES Rolling Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

97

A
.

T
ab

les
tech

n
iq

u
es

&
d
ep

loy
m

en
t

strategies
com

b
in

ed

Replay ES Rolling
Expand
contract

Zero
downtime

Reduced hardware

Replay ES Rolling Blue-green
Zero
downtime

Reduced hardware, replay to parallel blue/green
version

Replay ES Blue-green
Running
system

Major
downtime

Because data upgrade is done fast, major down-
time

Replay ES Blue-green Big flip
Major
downtime

Data upgrade is done big flip, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES Blue-green Rolling
Major
downtime

Data upgrade is done rolling, which means the
users which data is on the servers that are up-
graded, can’t use the application

Replay ES Blue-green
Expand
contract

Zero
downtime

Replay to same event store

Replay ES Blue-green Blue-green
Zero
downtime

Replay to parallel blue/green version

98

Appendix B

Explanation tables operations,
techniques and strategies

99

B. Explanation tables operations, techniques and strategies

Level Complexity Operation Description

Event
Basic

Add attribute Attribute is added to an event
Delete attribute Attribute is deleted from an event

Update attribute
Attribute is updated,
can be both the name or value(type)

Complex
Merge attributes Two attributes are combined to one attribute
Split attribute One attribute is split into two attributes

Stream

Basic

Add event A new event type is added to the stream
Delete event An event(type) is deleted from the stream
Rename event An event(type) is renamed

Update event
An event is updated by
one or multiple event operation(s)

Complex
Merge events Multiple events are combined to one
Split event One event is split into multiple

Move attribute
One attribute is moved from
one event type to another

Store

Basic
Add stream A new stream is added to the store
Delete stream A stream is deleted from the stream
Rename stream A stream is renamed

Complex
Merge streams Multiple streams are combined to one stream
Split stream One stream is split into multiple streams

Move event
An event is moved from
one stream to another stream

Table B.1: All the operations

100

B. Explanation tables operations, techniques and strategies

Schema
versioning/evolution

Technique Description

Schema versioning
Multiple
versions

Multiple versions of events are
supported everywhere they are
needed

Upcasting When retrieving events from
the event store, they are “up-
casted” to the latest version

Schema evolution

Lazy
transformation

When retrieving events from
the event store, they are “up-
casted” to the latest version
and these latest versions are
send back to the event store,
overwriting the old versions

Inplace ES
transformation

The current event store is in
place transformed, by for ex-
ample a transformation script

Replaying ES The events are replayed to an
empty event store, which is
set up according to the latest
schema. When an event needs
transformation it is done be-
fore arriving at the new event
store

Table B.2: All the event store techniques

101

B. Explanation tables operations, techniques and strategies

Table B.3: All the deployment strategies
Strategy Fit Description
Deploying on
running system

Application &
Data upgrade

Just deploy/run the technique on the
running system, also known as fast re-
boot. Will never be a zero downtime
solution.

Big flip
Application &
Data upgrade

Separating your cluster iton two
groups, which is upgraded one by one.
When upgrading, the load balancer
redirects everyone to the cluster which
is not upgrading. It reduces active
servers running your application dur-
ing deployment.

Rolling upgrade
Application &
Data upgrade

Similar to big flip, only in this case,
not two but multiple groups are used.
As a side effect, there are two versions
running at the same time.

Expand-contract Data upgrade Use ghost tables in the running data
store that in the background migrates
the current data. Can be referred to
as creating a second slot in your data
store.

Blue-green
Application &
Data upgrade

You have two slots, blue and green,
which are there for both the applica-
tion and the database. You deploy the
new application or upgrade the data to
the not active slot and when finished
you make the switch.

102

Appendix C

Expert interview: interview
protocol

This is the interview protocol, for the interviews with experts in the field
of CQRS & event sourcing. When possible we will also record the inter-
view.

C.1 Protocol

Introduction

• Introduction to AMUSE & this research project

• Explain the reason for the interview

• Ask to let him introduce itself a bit more (background, current role)

Experience

• Years of experience with CQRS/event sourcing

• Ask to number of projects were you experienced upgrading

• What were the solutions (techniques, strategy) you used when upgrad-
ing the event store

103

C. Expert interview: interview protocol

Operations

• Show the expert the operations overview

• Are the operations clear to you?

• Do you agree all the suggested operations exists?

• Do you miss an operation or do you see any improvements?

Event store techniques

• Show the expert the techniques images

• Explain schema versioning/evolution

• Are all the event store techniques clear/correct?

• Do you miss a technique?

• Do you see any improvements?

Deployment strategies

• Show the expert the framework image, explain the deployment strate-
gies

• Are all the deployment strategies clear/correct?

• Do you miss a strategy?

Framework

• Is the mapping between operations and techniques correct? Did you
experienced the same?

• Is the mapping between techniques and deployment strategies correct?

• What do you think of such an image?

• What could be improved?

104

C. Expert interview: interview protocol

End discussion

• Do you have any suggestions/open remarks?

C.2 Preliminary figures used during interviews

Figure C.1: Expert interviews: discussed operations overview

Figure C.2: Expert interviews: discussed techniques overview

105

C. Expert interview: interview protocol

Figure C.3: Expert interviews: discussed solution

106

Appendix D

Expert interview: summaries

D.1 Allard Buijze

Allard Buijze has 6,5 years experience with CQRS and event sourcing. He
started a small project for himself that grew into the Axon framework, which
is an open source framework. The company he currently works, Trifork, is
helping customers with solutions, like Axon. Through Trifork he is/was
involved with several implementations regarding CQRS and event sourc-
ing.

When introducing my topic, Allard states that an event sourced appli-
cation is something that needs upfront thought, with the help of approaches
like event storming. This does not necessary makes agile development and
event sourcing not a good match, however event sourcing does require more
upfront thinking then many are used to when doing an agile project.

D.1.1 Operations

Regarding the completeness of the overview, the only thing he saw as missing
is duplicate event, being the operation that will probably be used by some
other complex operation. He does say that some operations are highly un-
likely. The complex operations on the level of event store he just experienced
only once. That situation was related to wrong bounded context design, be-
cause of which change was needed. He was shortly consulted by this client
and advised to do something about it. They did nothing to the schema and
later the project was killed. One of his other remarks regarding operations

107

D. Expert interview: summaries

is that delete stream is something that is not a regular operation. A stream
will be practically always turned off, archived or deprecated, but never really
thrown away. When doing this, special caution is needed, as the removed
data may remove context from the other streams.

Furthermore, he says there is a relation between the level of operations
and numbers of times he ran into them. He called it exponential, with level
of attributes being the most and streams the least number of times.

D.1.2 Techniques

Regarding the techniques, upcasting is the technique which is supported in
Axon. Sometimes developers prefer to solve it in the model and do not want
to use upcasting. Allard also has experience with transformation scripts.
They do not use it for changing events themselves, but for things like the
changing the AggregateId and other aspects not directly related to the event
content.

Talking about the techniques, he thinks the name of lazy upcasting is
not correct. He says this refers to upcasting being done lazy, not doing the
transformation lazy, with combining upcasting with writing it to the event
store afterwards. He wishes nobody uses or is planning to use the “support
multiple versions” technique, as it becomes unneeded complex.

One of the techniques he recently came across was to put the old classes,
like old versions of classes in packages. The new classes have a reference to
this old class. Kind of transformation from old to the new class. Which
such an approach you can also keep (some) support for the old version of the
application.

D.1.3 Framework

When showing the complete framework including deployment strategies, Al-
lard sees a big challenge in the rolling update, having two event types up and
running at the same time. He sees the need of short to zero downtime, as
in his experience, when doing a new release/upgrade the time window they
get is becoming smaller and smaller. Though often companies can do a little
time without them outside the office hours.

As a conclusion he thinks the overall framework is quite complete. He
got some new ideas because of the discussion we had regarding several points,

108

D. Expert interview: summaries

so it ended up being useful for the both of us.

D.2 Dennis Doomen

Dennis has more than six years experience with CQRS and four years with
event sourcing. He worked for the same customer since 2010, but is an active
speaker, and within his company he also hears stuff about other implementa-
tions. Within the Netherlands Dennis only encountered a handful of CQRS
& event sourcing implementations.

D.2.1 Operations

Dennis says technical you should never delete something. When you are
doing something like that, it is always just deprecating the stream or archiv-
ing/backup the stream/store. This is because when deleting it, it can have
legal implication. Update attribute for Dennis would almost always mean
adding this updated attribute as a new attribute to the event.

For his current project, they only have experienced all operations on
event level and the basic operations on stream level. They can not do complex
operations on the stream level as they do not (always) have the entire stream
because of the distributed character of the system.

D.2.2 Techniques

When explaining the techniques and the original names, they were not very
clear to Dennis. This because some of the names have a different meaning
for him or he uses a different name for the same technique. He states that
what in the presented research is called upcasting, is called conversion by
him and most of the DDD world. Furthermore, replay event store is for him
more related to building up the aggregates or projections, not to the ex-
plained technique. He finds lazy upcasting as a theoretical technique, which
he hopes nobody is going to use, because of the high complexity regarding
transactions/rewriting on the event store. Something else he mentioned is
that sometimes they solve operations not by applying a technique, but solve
it in the projectors.

109

D. Expert interview: summaries

Dennis prefers to keep the event store immutable with all the benefits
that it gives you. All though he never encountered it, Dennis can imagine that
after a few years, when you have a few upcasting steps into your application,
you will do a one-time transition with a schema evolution technique like
transformation scripts or replay event store, for performance reasons.

One interesting technique Dennis heard of, is a sort of upcasting be-
tween aggregates. Aggregate v1 reads the v1 events and is used as input for
aggregate v2. With this approach, you can keep multiple domain versions
alive.

D.2.3 Framework

For his current project, they are doing deployment on running system and
blue-green deployment. They use blue-green to have two applications next
to each other, not to run any data transformation technique. For him this
seemed like a validation of the fact that you can do the operations with run-
time solutions and not using the techniques related to schema evolution.

He literally said that we are probably the only one having such a com-
plete picture of this, with also including a lot of scenarios/edge cases he never
experienced and not hoped to see. The biggest thing he though missing was
the query side/projections related to upgrading such a projection, but this
was left out of the scope of this research.

D.3 Pieter Joost van de Sande

Pieter Joost started with CQRS around 6,5 years ago. For him, it started
with building a framework, called NCQRS1. Since then he worked on several
projects building CQRS and event sourcing applications. In his job, working
at Double Dutch, they are stepping away from event sourcing, going to an
event-driven architecture. In this current project, they are using Apache
Samza2, which was originally developed at LinkedIn.

He thinks event sourcing is not suitable for everybody. You first need to
be able to change your mindset to event sourcing. Furthermore, only a few

1NCQRS can be found on https://github.com/pjvds/ncqrs
2Apache Samza can be found at https://samza.apache.org/

110

https://github.com/pjvds/ncqrs
https://samza.apache.org/

D. Expert interview: summaries

application have the need for scalability or all the events from analyzing pur-
poses. As when you start using it, you get extra problems with upgrading.
As event sourcing needs event migration, opposed to the state migration in
normal systems. Furthermore, as an audit log, he experienced many compa-
nies do not need event sourcing for auditing purposes. A simple log that is
created somewhere else, is often also sufficient.

D.3.1 Operations

He agrees with all the operations, which are comparable with the operations
which exist in Kafka, the streaming layer of Samza. Pieter Joost states that
the number of encounters with operations is also dependent on the granularity
of events and streams used in your application.

One of the cases he encountered, was in a hospital. In the hospital, they
needed to anonymize and threw away privacy records after a few months,
because of regulations. This way it could still be used for research, but not
being linked to a person anymore.

D.3.2 Techniques

When discussing the techniques, he prefers techniques which also update the
event store, so you do not have to do it each time. Regarding upcasting, he
said “why shouldn’t you write it back to the event store, so you do not need
to do it the next time”, which we named lazy transformation. A downside
to lazy transformation he mentioned, is that you do not know when lazy
transformation transformed the complete event store, so that you can clean
up the transformation code.

Regarding upcasting, he also named some other downsides. When up-
casters have external dependencies, you need to guarantee that external ser-
vice during the complete duration of the system. Furthermore, upcasting
can be different across multi technologies, when multiple services running on
different technologies need to read the event store. He prefers doing in place
event store transformation, as that is the shortest solution to an upgraded
event store.

Another thing which came up in discussion that there is a difference
in perspective of being immutable, between the different experts. Pieter
Joost suggested making a difference between being technical immutable and

111

D. Expert interview: summaries

functional immutable. Technical immutable means staying completely im-
mutable. Functional immutable is a form in which the events themselves,
which represented what happened, stay immutable. But for example the
store is moved to another database, or the events represent the same thing,
only in a different way. Then you do not (have to) change what happened,
but though an operation is performed. Another reason for this is the ag-
ile way of work. When developing, a consequence is that your schema will
change, which are reflected by the operations. When allowing being func-
tional immutable, you do not have to perform any dirty hacks to your current
events.

D.3.3 Framework

The discussion ended with a short explanation about the complete frame-
work. He found the overall framework and different aspects very interesting,
including the interesting discussions. He said we should look into the pos-
sibility of presenting some of this work on an upcoming developers confer-
ence.

112

	Introduction
	Problem statement
	Research questions
	Research relevance
	Thesis overview

	Research approach
	Design science
	Literature study
	Evaluation with experts
	Research context

	CQRS and event sourcing
	Introduction to CQRS and event sourcing
	CAP and eventually consistent
	Domain-driven design and model-driven development
	In-depth architecture

	Related literature
	Implicit schema and schemaless
	Databases and data stores
	Event-driven architecture & event processing

	Data transformation operations
	The structure and schema in the event store
	The operations

	Techniques for data transformation
	Schema evolution versus versioning
	Techniques for other kinds of databases
	Event store techniques
	Analysis and comparison of different event store techniques

	Deployment strategies
	Strategies
	Deployment strategies analysis

	The design of an upgrade strategy
	Operations and techniques
	Techniques and strategies
	Final framework

	Evaluation with experts
	Evaluating the operations overview
	Expert interviews about the framework

	Discussion
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Main conclusions
	Future research

	Glossary
	Bibliography
	Tables techniques & deployment strategies combined
	Explanation tables operations, techniques and strategies
	Expert interview: interview protocol
	Protocol
	Preliminary figures used during interviews

	Expert interview: summaries
	Allard Buijze
	Dennis Doomen
	Pieter Joost van de Sande

