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Abstract

We have developed a method of charging and trapping single gold spheres
with a radius of 50 nm for the purpose of ablation. To achieve this we use elec-
trospray ionisation to separate and trap these particles. Charged particles are
trapped inside a linear ion trap. As we intend to do laser ablation on single
gold nanospheres we need to determine whether the trapped particles are ag-
gregated. Therefore, we test a method to do in-situ measurements of the size of
the particles in the trap, by comparing the polarisation dependent scattering of
those particles with Mie theory.

We have carried out experiments with a Helium-Neon laser and a 785 nm diode
laser on five different particles for which the results seem to indicate radii of
466± 2 nm, 465± 1 nm, 577± 2 nm, 342± 1 nm and 577± 2 nm. A second ex-
periment was done on different particles with three diode lasers (642 nm, 785 nm,852 nm)
on two different particles. These experiments suggest particle sizes of 179± 1 nm
and 179± 1 nm. As a single gold colloid has a radius of 50 nm, we found that
trapped particles were aggregated.
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Introduction

1 Introduction

The Nanophotonics group investigates a number of different research subjects in-
volving optics, ultra-cold atoms and the interaction of light and matter. One of the
topics that is currently being investigated, is femtosecond laser ablation of different
materials. In particular, surface ablation of dielectrics, semiconductors and metals
have been carried out. See for instance the PhD thesis by H. Zhang [1] and mas-
ter theses by J. Clarijs [2] and M. Scholten [3]. Besides ablation on homogeneous
surfaces, the ablation process of droplets of gold nanoparticles on a semiconductor
substrate has also been studied in the master thesis of G. Zomer [4].

1.1 Motivation

Laser ablation is any process where the irradiation of a surface with laser light re-
sults in removal of material. As the laser pulse duration is short with respect to the
timescales of heat diffusion and structural changes in the lattice, femtosecond pulse
lasers have a well localised energy deposition. Therefore its possible to remove ma-
terial with sub-diffraction limit precision [5,6]. This makes them ideal for the manu-
facturing of nanoscale structures such as electronics or photonic devices [7,8]. High
precision removal of material also has many applications in medicine. For example,
the laser ablation process can be used for dentistry [9], for brain surgery [10] and re-
fractive surgery [11]. During the process an extremely hot plasma is created, which
can be used as energy efficient emitters of extreme ultra violet and x-ray light [12,13].
Femtosecond laser ablation has also been an active field of research [14, 15]. One of
the difficulties encountered in describing femtosecond laser ablation experiments is
that simulations based on the theory take considerable computational time. To ac-
curately describe the energy deposition of a femtosecond laser pulse many different
processes need to be taken into account, some of which are non-linear. These mech-
anisms describe the way the laser modifies the dielectric function of the excited ma-
terial both in time and in space. Reducing the dimensionality of the problem would
greatly simplify the theoretical description and reduce computational difficulties.
Therefore, we intend to ablate trapped single gold colloids1, where their properties
can be considered spatially homogeneous.

1Colloids are composite particles dispersed in a substance that are large enough to be seen by an
optical microscope, but small enough to experience Brownian motion under the influence of random
collisions with the surrounding medium. These random movements were discovered by Robbert
Brown [16] and later explained by Albert Einstein [17].

1



Introduction

1.2 Summary

To achieve the goal of ablating single colloids, we first need to separate and trap
single gold nanospheres. For this purpose we used electrospray ionisation to inject
the particles into a linear ion trap. During this process particles are charged and sep-
arated through a series of Coulomb explosions. Electrospray has been studied for
over a century [18]. Usually electrospray is done in a regime where droplets ejected
out of a capillary deform into a 98.6°cone that is called a Taylor cone [19]. From
this cone fluid is ejected through a jet and is then nebulised as the fluid phase that
carries the charged particles evaporates. Electrospray has been used as a method for
a number of different applications. It is used in mass spectrometry [20], depositing
thin films [21, 22] and even as thrusters for spacecraft propulsion [23].

We trap the particles using an quadrupole ion trap, pioneered by Wolfgang Paul [24]
for which he received a Nobel price in 1989 [25]. Electric quadrupole traps are a
frequently used tool in the field of mass spectrometry [26, 27]. The parameters that
determine the stability of charged particles inside the trap are proportional to the
charge-to-mass ratio. Therefore this ratio can be found by determining the edge of
the stability region.

However because colloidal particles tend aggregate, a way to distinguish between
a single colloid and an aggregate of many colloids is needed. For this purpose we
presented a method to do in-situ measurements of the size of the particles in the
trap. We have measured the polarisation dependence of the scattering intensity of
gold nanoparticles inside the trap and compared these experimental results with
numerical Mie Theory calculations, from which we can retrieve the radius of these
spheres. Mie theory is an exact solution for the Maxwell’s equation, for scattering on
homogeneous spheres. It is named after Gustaph Mie who published the solution in
1908 [28], although it is unlikely that he was the first to find the solution. Mie theory
is used in a number of different fields to determine the size of colloidal particles,
from bloodcells [29] to Aerosols [30].

1.3 Outline

The theory behind the trapping and electrospray setup will be discussed in section
2, In section 3 we will discuss the experimental methods for electrospraying and
trapping the nano particles will be discussed. Then in section 4, the Mie scattering
theory will be explained. In section 5 the setup for the polarimetry experiments will
be covered. In section 6 we will show the results of the experiments. In section 7
these results will be discussed and a conclusion will be drawn and in section 8, we
will give an outlook on our goals and how we can improve our methods.
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Part I

Preparing the Particles in the Trap

2 Theory

2.1 Trapping Ions in a Time-Oscillating Electric Field

To isolate charged gold nanospheres a trapping method is required. We need a
method that works in vacuum therefore, we will use an electric field. Earnshaw’s
theory states that it is impossible to trap point charges in a vacuum with a static
electric field [31]. As the divergence of the electric field is zero in free space, the
potential cannot have local minima. However it is possible to trap particles by using
a combination of electric and magnetic fields. This is done in Penning traps [32]. It is
also possible to use a combination of electric and centrifugal forces. This is applied
in Kingdon traps [33] and Orbi traps [34]. We chose to use a method based on a
time-oscillating quadrupole field, a trap also known as a Paul trap [25]. In Cartesian
coordinates of a perfect quadrupole can be written in the form [25]

φ =
φ0

2r2
0
(αx2 + βy2 + γz2), (2.1)

where φ0 is the potential at the trap axis, r0 is the distance between the rod surface
and the trap axis and α, β and γ are dimensionless coefficients that depend on the
geometry of the trap. Traditionally 3-D Paul traps have been used in mass spec-
trometry, however we will use a 2-D Linear Ion Trap (LIT) [35]. The linear ion trap
offers a number of advantages over a three dimensional design: The absence of a
quadrupole field on one of the axis increases the fraction of charged particles that
will penetrate into the trap [35]. Because the potential is independent on the length
of the rods, it is possible to have much larger trapping volume [36]. By contrast
increasing the volume of the 3D designs also increases the distance of the electrodes
to the center of the trap, increasing the potential needed to trap particles.

In practice a 2D field is achieved by using four long parallel rods, this geometry can
be seen in Fig 2.1a. Here the long axis component of the field will be zero in the trap
due to the symmetry of the system.

φ =
φ0

2r2
0
(αx2 + βy2). (2.2)

This solution needs to satisfy the Laplace equation ∇2Φ = 0 so α = −β. As φ0
is the potential difference between the x-rods and the y-rods, we get the boundary
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(a)

(b)

3mm

2mm

r
o

(c)

Figure 2.1: Geometry of the trap. a) shows a schematic overview of the rods. b) shows the frontview
of the trap, a ground plate with a small hole in the middle that serves both as a entry point for gold

colloids and to allow optical access for the probe laser. The red circles show where the rods are
attached. c) shows a cross section of the rods and the scale of the rods.
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condition.
αφ0 + αφ0

2
= φ0, (2.3)

from which we get α = 1. This leads us to the following potential,

φ =
φ0

2r2
0
(x2 − y2). (2.4)

A perfect electric quadrupole field is created by using hyperbolic rods. However
cylindrical rods are often preferred over hyperbolic designs, due to the lower cost
and higher speed of fabrication. The field of a long cylinder has higher order terms
in the multipole expansion. Still its possible to suppress the higher order terms in
the expansion, by carefully choosing the right geometry. According to Denison [37]
and Gibson [38] it is possible to approximate the field of the hyperbolic rods with
cylindrical rods by choosing r ≈ 1.13 r0 where r is the radius of the rods. In our
setup r0 = 2.66 mm and r = 3 mm (see Fig. 2.1c). Equation 2.4 corresponds to a
saddle point, which is only stable in one dimension, however by choosing φ0 to be
sinusoidal in time (see Eq. 2.5) a stable solution is possible due to a small residual
force, similar to how a small sphere can be stable on a rotating saddle,

φ0(t) = U + V cos(Ωt), (2.5)

where U is a constant potential, V is the amplitude of a oscillating potential and Ω
is the frequency of V. Considering the equation of motion in the one dimension

Fx(t) = −Q
dφ

dx
+ Ffriction = −Q [U + V cos(Ωt)]

x
r2

0
− b

dx
dt

. (2.6)

Where Ffriction is the frictional force and b is the linear drag constant. We will assume
Stokes drag b = 6πηrparticle for atmospheric conditions. Here η is the dynamic
viscosity and rparticle is the radius of a particle. At lower pressures, the free path
length λfp gets large compared to the size of the particles and the no-slip condition
that is assumed for the derivation of Stokes law is no longer valid. In this case we
use the Cunningham’s correction factor (seen in Eq. 2.7 [39]) to divide the friction
to compensate for slipping,

b =
6πη

rparticle
(1 + 2 Kn[A1 + A2e−

A3
Kn ]), . (2.7)

Where Kn =
λfp

rparticle
is the Knudsen number and A1, A2 and A3 are dimensionless

coefficients dependent on the medium. If the terms in Eq 2.6 are reordered, we get
the following equation

m
d2x
dt2 + Q[U + V cos(Ωt)]

x
r2

0
− b

dx
dt

= 0. (2.8)
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It is possible to rewrite equation 2.8 in terms of dimensionless parameters,

d2x
dτ2 + (a− 2q cos(2τ)x + 2κ

dx
dτ

= 0, (2.9)

where τ = Ω
2 t is a dimensionless time, a = 4QU

mΩ2r2
0

is a dimensionless parameter
that indicates the influence of the time-independent component of the field on the
particle, q = − 2QV

mΩ2r2
o

is a dimensionless parameter that indicates the influence of the

time dependent component of the field field on the particle and κ = − b
2mΩ is the

dimensionless friction parameter. For κ = 0 this has the form of the well studied
Mathieu equation [40]. By trying a solution of the form [41]

x = w(τ)e−κτ, (2.10)

we get the following equation for w(τ),

d2w(τ)

dτ2 + (a− κ2 − 2q cos(2τ))w(τ) = 0, (2.11)

which is in the form of the Mathieu equation in w. This will generate solutions of
the form [41],

w(τ) = φ(τ)Aeiατ+βτ + φ(−τ)Be−iατ−βτ. (2.12)

Where φ(τ) is periodical with the field. For any stable solution, the real part of x(τ)
has to decrease in time which means that κ < β. Figure 2.2 illustrates the stability
region as a function of parameters a and q in atmospheric pressure and vacuum
respectively. The lines indicate the edges of stability on the x-axis and the y-axis
and the yellow area indicates the parameters for which the system is stable on both
axes. We have chosen not to use a constant potential term so that a = 0, because
the region of stability is the largest without a D.C. potential term. In vacuum the
stability condition is then given by:

∣∣q∣∣ = − 2QV
mΩ2r2

o
≤ 0.92 (2.13)

Particles inside the trap will oscillate with a fast micro motion with the frequency of
the trap superimposed on a lower frequency secular motion [41]. Without damping
and assuming

∣∣q∣∣� 1 the equation of motion can be described by [42]

ut = u0(1−
q
2

cos(Ωt))cos(ωsect), (2.14)

where ωsec =

√
q2/2
2 Ω is the secular frequency. Assuming q is sufficiently small large

scale motions are driven by the secular motion. Describing the secular motion as a
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Figure 2.2: stability regions of the trap under different circumstances, the edge of stability on both the
x and y axes is denoted by lines, the coloured area’s signify that a particle is stable on both axes with
these parameters, a) shows the stability zone at atmospheric pressure. b) shows the stability zone at

20 Pa, this is a typical pressure after evacuating the chamber. c) shows a close-up of the relevant region
of b) These graphs are based on numerical calculations.

motion inside a harmonic potential gives a rough estimate of the energy needed to
pull a particle out of the trap.

Vdepth =
1
2

mω2
r r2

0,

Vdepth = Ω2 1
16

mr2
0q2.

(2.15)
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Filling in the expression for q in Eq. 2.15,

Vdepth =
1
4

Q2V2

mΩ2r2
o
=

1
8

qQV. (2.16)

As the trap selects charge to mass ratios this means that it takes more effort to push
large aggregates out of the trap when friction is neglectible then single nanoparti-
cles.

2.2 Electrospray Ionization

We use electrospray ionization as a method to isolate the gold nanoparticles. In this
process a high voltage is applied between the conductive layer of a capillary and
a ground plate. When a liquid medium containing an analyte is ejected from the
capillary, both the medium and the analyte will be ionised by the field. Usually
electrospray ionisation is used near the conditions where a Taylor cone forms at
the capillary. A droplet at the end of the capillary is deformed as the electric field
increases until a equilibrium cone with 49.3°semi-vertical angle forms at the end
of the capillary. Increasing the field strength further will cause a jet to appear at
the end of the cone emitting fluid towards the electrode. As the liquid medium
in this jet evaporates, the charge density increases until the outward pressure of
the electric force will overcome the surface tension in a Coulomb explosion [43].
During a Coulomb explosion ions and smaller charged droplets are ejected untill
the charge density is sufficiently reduced for the droplet to become stable again. As
these smaller droplets travel through air and more of the liquid medium start to
evaporate this process repeats itself repeatedly until a nebula of charged particles
has formed. The maximum charge density a droplet may contain before it becomes
unstable has been derived for spherical droplets by Lord Rayleigh [44], a spherical
droplet can only be stable if Q < Qr, where

Qr = (8πγε0D3)
1
2 . (2.17)

The process is illustrated in Fig. 2.3.

Taylor cones were first explained by Sir Geoffrey Taylor in 1963 [19]. He derived
the characteristics of these cones by calculating if a cone could be in equilibrium
with the surface tension under the assumption that the surface of the cone is at
equipotential as the fluid is conducting. He determined that the field for which the
surface tension and electrical potential are in equilibrium in a cone has to be

Vcone = V0 + AR
1
2 P 1

2
(θ), (2.18)

where R is the radial coordinate, P1
2
(θ) is the half-order Legendre function (see equa-

tion A.8). For a cone to be at a constant potential, the Legendre term has to be 0,
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Figure 2.3: Schematic image of the electrospray process.

which is only true for θ0 = 130°, this angle corresponds to a semi-vertical angle of
π − θ0 = 49.3°.
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3 Experimental Setup

3.1 Electrospray Method

Gold nanospheres surface-coated with Polyvinylpyrrolidone (PVP) suspended in
water with a concentration of 0.05 g L−1 were acquired [45]. The PVP surface coat-
ing helps to prevent aggregation of the colloids through steric repulsion. Compared
to other stabilisers PVP has the advantages of binding strongly to metallic surfaces,
and particles with a PVP coating can be stable in a wide variety of solvents. This
suspension is diluted with ethanol in a ratio of 9:1. Ethanol is chosen as a solvent
for its low surface tension, easing the criterion for instability (see equation 2.17) and
because ethanol evaporates rapidly. These properties of ethanol increase the rate of
coulomb explosions, and thus the rate of separation of the charged particles. The
setup used is shown in Fig. 3.1. We used 1cc syringes with an inner diameter (ID)
of 4.8mm, we attached a 0.22 µm filter to remove large aggregates formed in the dis-
persion. The syringes where placed in a syringe pump, which kept the volumetric
flow rate constant at 40 µL h−1.

Syringe pump
and filter

LED

Laser

f

Vacuum chamber
and trap

Figure 3.1: Image setup for electrospray, f2= 50 mm
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The fluid then flows through a 30 cm long fused silica tube with a ID of 100 µm. This
tube is connected to a fused silica emitter tip (15 µm ID). As discussed in Sec. 2.2 we
suspect the Taylor Cone could be a cause of aggregation, to reduce the size of a pos-
sible Taylor cone the ID of the emitter is chosen to be smaller then the size of the jet
coming from the Taylor Cone that was observed in earlier experiments [46] that used
a 200 µm ID tip. The tip is fastened to a brass electrode which is connected to a high
voltage power supply. Which is set to give a potential difference of around 2.5 kV
between the tip and the grounded plate on the side of the trap (over 1.5 cm), after
the dispersion is pumped through the tip, the gold particles are sprayed through the
electrospray process described in section 2.2.

(a)

(b)

Figure 3.2: Images of the electrospray and the emitter all at 2.2kV, a) shows a picture of the LED
light, at 2 kV between the tip and the ground plate, b) shows an picture where the ejection is mostly in

a jet mode, at 1.8 kV between the tip and the ground plate, c) shows a picture where a very
homogeneous spray is emitted from the tip, at 3 kV between the tip and the ground plate.

An imaging setup was used (see 3.1) to get a better understanding of the process
and get a sense of the size of a possible Taylor cone. The spray was illuminated by a

11
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(a)

(b)

Figure 3.3: Images of the electrospray and the emitter at different potentials, a) shows an picture where
the ejection is mostly in a jet mode, at 1.8 kV between the tip and the ground plate, b) shows a picture
where a very homogeneous spray is emitted from the tip, at 3 kV between the tip and the ground plate.

Helium Neon laser (632 nm,2 mW) aligned through the hole in the grounded plate
onto the emitter tip, the light scattered from te spray is collected on the camera. In
addition a light emitting diode was used to create a high resolution shadow graph
of the emitter. Imaging the electrospray with just the LED proved to be difficult
due to the high degree of transparency of the diluted electrospray. Many attempts
at creating electrospray experienced frequent clogging of the silica tubes, causing
inconsistent flow. This is likely due to the properties of the PVP coating as it is
sometimes used to attach gold to silicon surfaces [47]. In Fig. 3.2-3.3 a few pictures of
the spray are shown under different circumstances, the Taylor cone is not observable
in these pictures, so it is either not present or very small and is therefore unlikely to
be a major cause of aggregation.
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3.2 Paul trap and vacuum chamber

The quadruple ion trap (shown in Fig. 2.1a) consists of four 15 cm long stainless
steel cylindrical rods attached to two Polyoxymethylene endcaps, on one of these
endcaps a grounded metal plate was attached as can be seen in Fig. 3.4 Both end-

Figure 3.4: Frontside of the trap as placed in the vacuum chamber

caps have a 1 mm hole on the trap axis for optical access that also serves as a entry
point for the particles as described in 3.1. The trap is placed in the vacuum chamber
as can be seen in Fig.3.4. The two rods on the x-axis were connected with a high
voltage A.C. power source that was controlled by a function generator, while the 2
rods on the y-axis were grounded. As the stability parameter q scales with U/Ω2, a
broad choice in trapping parameters is possible. We found however that more parti-
cles stayed trapped at high values for both U and Ω, possibly because the trap depth
Eq. 2.16) scales with Q U, making it more difficult to perturb the particles out of the
trap. Typically the trapping potential was set at about 600 V. At higher trapping po-
tentials corona discharge would occur when evacuating the vacuum chamber. Up
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Figure 3.5: Overview of the vacuum chamber

to roughly 60 particles could be simultaneously trapped. After trapping a sufficient
amount of particles the chamber was evacuated to a pressure of about 20 Pa. Some
experiments were done at atmospheric pressure but in possible future ablation ex-
periments it is important to be able to reliably predict the trajectory of the particles
and as such would want to remove thermal motion of the particles. If the cham-
ber gets evacuated too quickly, particles are pulled out of the trap by air flow. This
should be avoided as this process is likely to select high mass aggregates. Larger
particles have a larger trap depth Eq. 2.15.

14
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Part II

Measuring the Size of the Gold
Nanoparticles

4 Mie Theory

To calculate the size of the particles based on scattering measurements we need to
know how results from scattering experiments on a particle relate to the size of that
particle. For that reason, we use Mie theory calculations. The Mie solution for the
Maxwells equations describes scattering of light on homogeneous spheres in the
absence of surface charges or currents. Although aggregated particles may well be
non-spherical, Mie theory can still be a reasonable first order approximation. A sum-
mary of the derivation based on Bohren and Huffmann [48] as well as a discussion
of relevant parameters for determining the particle size will follow.

Assuming no free charges Maxwell’s equations of time-harmonic electro-magnetic
field in a homogeneous linear medium can be expressed as [48],

∇ · E = 0, ∇ ·H = 0, (4.1)

∇× E = iµΩH, ∇×H = −iΩεE. (4.2)

Where Ω is the frequency of that field. From which we can derive the vector wave
equation.

∇2E + k2E = 0, ∇2H + k2H = 0, (4.3)

where k = ω2εµ is the wave vector. We can try the following set of solutions to
Maxwell’s equation

M = ∇× (cψ), N = ∇× M
k

, (4.4)

where c is a constant vector and ψ is a scalar function. The divergence of a curl is
zero by definition, which means that Eq. (4.1) is satisfied by construction. We can
use the vector identity

∇×∇2A = −∇×∇×∇×A = ∇2∇×A, (4.5)

to show that
∇2M + k2M = ∇× c(∇2ψ + k2ψ),

∇2N + k2N = ∇×∇× c/k(∇2ψ + k2ψ).
(4.6)

This means that both M and N satisfy the vector wave equation,

∇2M + k2M = 0, ∇2N + k2N = 0, (4.7)
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if ψ satisfies the scalar wave equation,

∇2ψ + k2ψ = 0. (4.8)

Combining (4.5) and(4.7)∇×N = kM so that N and M fulfil all requirements for the
electromagnetic field. This reduces the problem to finding solutions to solving the
scalar wave equation. To match the symmetry of the problem we can take M = ∇×
(rψ) where ψ(θ, φ, r) are solutions to the scalar wave equation. By using seperation
of variable its possible to find solutions of the form ψ = R(r)Θ(θ)Φ(φ). It can
be shown (Bohren and Huffman, pp.85 [48]) that a complete set of solutions to the
scalar wave equation can be generated with

ψemn = cos(mφ)Pm
n (cos θ)zn(kr), (4.9)

ψomn = sin(mφ)Pm
n (cos θ)zn(kr), (4.10)

where Pm
n are Legendre polynomials and zn(kr) can be spherical Bessel functions of

the first 3 kinds(Appendix A.1). The o/e subscript denotes an odd or even function
and m and n are separation constants. The spherical vector harmonics generated by
these functions are given by

Momn/emn = ∇× (rψomn/emn), (4.11)

Nomn/emn = ∇× (
Momn/emn

k
). (4.12)

Which are complete set of solutions to the vector wave equation. In our experiment
we have an incident plane wave that is scattered on a spherical particle,

Ei = E0eikr cos(θ)êx. (4.13)

Incoming plane waves can be expanded in vector spherical harmonics, which results
in

Ei =
∞

∑
m=0

∞

∑
n=m

(BemnMemn + BomnMomn + AemnNemn + AomnNomn). (4.14)

It is possible to calculate the expansion coefficients using that all solutions generated
by Eq. 4.11 and Eq. 4.12 are mutually orthogonal [48],∫ 2π

0

∫ π
0 Ei ·Memn sin(θ)dθdφ∫ 2π

0

∫ π
0 |M|

2
emn sin(θ)dθdφ

=

∫ 2π
0

∫ π
0 BemnMemn ·Memn sin(θ)dθdφ∫ 2π

0

∫ π
0 |M|

2
emn sin(θ)dθdφ

= Bemn.

(4.15)
By filling in an incoming plane wave for the incident beam∫ 2π

0

∫ π
0 E0eikr cos(θ)êx ·Memn sin(θ)dθdφ∫ 2π

0

∫ π
0 |M|

2
emn sin(θ)dθdφ

= Bemn. (4.16)
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As a plane wave is finite in the origin and Bessel functions of the second kind are
infinite in the origin, Bessel functions of the first kind are used for zn in Eq. 4.9. After
some calculations of the coefficients(all terms with m 6= 1 are zero) we end up with

Ei = E0

∞

∑
n=1

in(2n + 1)
n(n + 1)

(ianM(1)
o1n − bnN(1)

e1n), (4.17)

Hi =
−k
Ωµ

E0

∞

∑
n=1

in(2n + 1)
n(n + 1)

(ibnM(1)
e1n − anN(1)

o1n), (4.18)

where the superscripts denote the kind of spherical Bessel associated with znin
Eq. 4.9. The next step is to also expand the scattered and internal fields in vector
spherical harmonics. We have the following boundary conditions at the surface of
the particle

(Ei + Es − El)× êr = (Hi + Hs −Hl)× êr = 0. (4.19)

Based on the orthogonality of the vector harmonics and the boundary conditions
it is possible to show that the expansion of the scattered field in spherical vector
harmonics is given by

Es =
∞

∑
n=1

E0
in(2n + 1)
n(n + 1)

(ianN(3)
eln − bnM(3)

oln), (4.20)

Hs =
−k
Ωµ

E0

∞

∑
n=1

in(2n + 1)
n(n + 1)

(ibnM(1)
e1n + anN(1)

o1n). (4.21)

The expansion of the field inside the particle is given by

El = E0

∞

∑
n=1

in(2n + 1)
n(n + 1)

(cnM(1)
o1n − idnN(1)

e1n), (4.22)

Hi =
−k
Ωµ

∞

∑
n=1

E0
in(2n + 1)
n(n + 1)

(dnM(1)
e1n + icnN(1)

o1n). (4.23)

After expanding all the fields in spherical vector harmonics we can use boundary
conditions to calculate scattering coefficients an and bn

Ei + Es = El, Hi + Hs = Hl. (4.24)

which results in

an =
µ1m2 jn(mx) δ(xjn(x))

δx − µ1 jn(x) δ(mxjn(mx))
δx

µm2 jn(mx) δ(xh(1)n (x))
δx − µh(1)n (mx) δ(mxjn(mx))

δx

, (4.25)

bn =
µ1 jn(mx) δ(xjn(x))

δx − µ1 jn(x) δ(mxjn(mx))
δx

µjn(mx) δ(xh(1)n )(x)
δx − µh(1)n (x) δ(mxjn(mx))

δx

. (4.26)
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Where h(i)n are spherical Bessel functions of the third kind also known as Hankel
functions of the first or second kind (see Eq. A.5), x =

2πrparticle
λ nmedium is the size pa-

rameter, rparticle is the radius of the particle and m =
nparticle
nmedium

is the relative refractive
index.

According to Bohren and Huffmann pp.111 [48] the series in Eq. 4.20 is conver-
gent and the size parameter x = 2πa/λ is a rough estimate of the amount of terms
needed in the expansion to get an accurate approximation of the scattered field. The
code used in this thesis cuts off the expansion after nc = 2 + x + x1/3 terms. If
kr >> nc , which is true at the location of the detector, the Hankel functions can be
approximated by

h(1)n = −ineikr, h(2)n = ine−ikr, (4.27)

Esθ = E0
eikr

−ikr
cos φS2(cosθ), (4.28)

Esφ = −E0
eikr

−ikr
cos φS1(cosθ). (4.29)

Where S1 and S2 are elements of the scattering amplitude matrix and are given by,

S1 =
nc

∑
n=1

2n + 1
n(n + 1)

(an
P1

n
sin(θ)

+ bn
dP1

n
dθ

),

S2 =
nc

∑
n=1

2n + 1
n(n + 1)

(an
dP1

n
dθ

+ bn
P1

n
sin(θ)

),
(4.30)

(
E‖s
E⊥s

)
=

eikr

−ikr

(
S2 0
0 S1

)(
E‖i
E⊥i

)
. (4.31)

Here the subscripts of E indicate the components of the scattered and incident field
that are parallel and perpendicular with respect to the scattering plane. We can now
calculate the scattered field as a function of the size of particle and wavelength, we
now only need a suitable quantity that we can measure that depends strongly on
the size parameter.

Consider the light scattered at a 90° angle to the incoming beam. If the particle is
very small, it is close to the dipole regime. The dipole moment will align with the
polarisation of the probe beam. Because a dipole does not radiate in the direction of
its dipole moment, the intensity of the light scattered towards the camera when the
polarisation of the incident beam is parallel to the scattering plane will be zero while
it will be maximal when the polarisation of the incident beam is perpendicular to
the scattering plane. Now for very large particles the dipole moment will be very
small, and as the particle is likely roughly spherically symmetric the scattering will
be independent of the polarisation of the probe beam. Looking at Equation (4.31)
|S2|2 and |S1|2 are proportional to the intensity of the light scattered with a parallel

18



Mie Theory

or perpendicular polarised probe beam respectively. This suggests that the visibility
could be a reasonable parameter to characterise the size of the particle, the visibility
in interference patterns is usually defined as

Vfringe =
Imax − Imin

Imax + Imin
(4.32)

which is positive by definition, however a slightly different definition will be used
here,
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Figure 4.1: Theory curves based on Mie theory, numerical calculted visibility(defined in Eq. 4.33) as a
function of particle radius, for 2 different wavelengths.

V =
|S2|2 −|S1|2

|S1|2 +|S2|2
. (4.33)

This expression is similar to how the visibility is normally defined, however as it
is signed it carries information about whether a parallely polarised incident beam
corresponds with a maximum or a minimum of the intensity scattered at a 90°angle
with respect to the incident beam. In this research we use the pymiecoated code [49]
which is based on the procedure described in Bohren and Huffmann (Appendix A
and B [48]). The particle size for two different wavelengths have been calculated and
plotted in Fig. 4.1. Because a single value for the visibility corresponds to various
size values, it will be impossible to unambiguously assign a single radius for a given
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wavelength and visibility. However by probing with a number of different wave-
lengths, it should be possible to uniquely determine the particle size by comparison
of the locations of the intersections.
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Polarimetry Setup

5 Polarimetry Setup

To measure the visibility required for determining the size of the particles a po-
larimetry setup is needed. The setup can be seen in Fig. 5.1.

2
p

laser source vacuum chamber
with paul trap

i

power meter

Figure 5.1: Setup for the polarimetry measurements. A probe laser goes through a linear polariser p
and a half waveplate. The probe beam scatters on particles in the trap and the scattered light is

collected by the imaging system(f1= 180 mm and f2= 50 mm). An iris is used between f1 and f2 to
reduce the numerical aperture. Transmitted light is collected by a power meter that is used to

compensate if the power output is not constant throughout the experiment

As discussed in Sec. 4, polarimetry with a single probe laser will give an ambiguous
result. Therefore lasers with different wavelengths are needed to determine the size.
We used a number of different laser source setups, two of which will be discussed in
this thesis. In a first experiment we used a Helium-Neon laser (633 nm) and a diode
laser (785 nm). In a second experiment a setup three diode lasers(642 nm, 785 nm
and 852 nm) was used, in this setup, the lasers are connected to single mode fibers.
A three wavelength division multiplexer combines these three fibers into a fiber
that is single mode for all three wavelengths. A linear polariser ensures the incident
beam is linearly polarised. In the second measurement a polarisation controller that
squeezes the fiber is used to maximise the linearity of the polarisation of the light
that is leaving the multiplexer. This is done to increase the transmission through the
polariser. The polarisation of the outgoing beam is changed as the stress caused by
this squeezer changes the birefringence of the fiber. Then we use a superachromatic
half-wave plate (SAHWP05M-700) to rotate the direction of the polarisation of the
incident probe beam. This beam is aligned through the holes in the endcaps onto
a power meter which we use to calibrate fluctuations in laser power. After scatter-
ing on the particles they are imaged with a 4-f system(f1 = 180 mm, f2 = 50 mm)
onto a Point Grey Grasshopper 3 camera (GS3-U3-51S5M-C) with a resolution of
2440x2048 and a pixel size of 3.4 µm. Because the numerical Mie theory calculations
that we have done are only exactly correct for a 90◦ scattering angle, an iris is placed
in between the two lenses to reduce the numerical aperture. The particles scatter
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over the full solid angle and for light that scatters at non-90°angles with respect to
the incident beam, the polarisation dependency that we base our measurement on
decreases. As such we want to reduce the numerical aperture of our detection sys-
tem, so a larger fraction of the light we collect at the camera was scattered near a
90°angle.

6 Results

6.1 Results for the Helium Neon Laser and the 785nm Diode Laser in a
Vacuum

Using the setup described in Sec. 5 . A measurement cycle of a 100 pictures was
done at each of those polarisation angles. The shutter time during these measure-
ments was 100 ms. A typical picture taken by the camera is shown in Fig. 6.1, where
five particles and two of rods can be seen and particles are enumerated for future
reference. To reduce the signal to noise ratio regions of interests were chosen around
a single particle. See for example Fig. 6.2, here we define φpolarisation as the angle of
the polarisation of incident beam with the scattering plane. The z-axis of this region
of interest is chosen to be an order of magnitude larger then the y-axis. This was
done because large scale oscillations were common on that axis. In x and y axes the
particles are tightly trapped and any motions in those directions were too small to
resolve.

1 2 3 4 5

Figure 6.1: A false-colour image of the light scattered on five gold nanospheres. The particles were
probed with a Helium-Neon laser with a polarisation that is at an 8 ° angle with respect to the

scattering plane. On the top and the bottom of the image the electrode rods of the trap are visible.
The particles are enumerated for future reference.

We sum the image in the y-direction to obtain a 1D array and use Gaussian functions
to fit this array, as shown in Fig. 6.3. Using the parameters from the fit, the Gaussian
function are analytically integrated to obtain the total signal from each particle in
the image.

In about 10% of the images there are multiple maxima, as can be seen in Fig. 6.2b.
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(a)

(b)

Figure 6.2: Examples of regions of interest pictures, using a Helium-Neon laser. The incident beam had
a polarisation angle φpolarisation of 8 °with respect to the scattering plane. a) shows a zoomed in image
of particle 5 in Fig. 6.1). b) shows an image of the same particle depicted at a later time. The particle

has two maxima, likely due to the fact that the particles are oscillating.

Figure 6.3: Power scattered(in analog digital units) by particle 1 at a single time for φpolarisation = 8°,
This graph were made by summing all pixel values from the region of interest Fig. 6.2 in the y direction.

a Gaussian function is fitted through the resulting graph

Presumably this is due to oscillations of the particles as the velocity should be the
lowest near the turning points. It is unlikely to be a dumbbell shaped aggregate
as they are to small to resolve with our optical system . We used the sum of two
Gaussian functions to fit these double peaks, as shown in Fig. 6.4 . The scattering
amplitude should be independent of time. The standard deviations for these two
methods are shown in Tab. 6.1. Considering that all the standard deviations are
lower while using a summed Gaussian function, that method seems to improve the
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fits. From these graphs we can retrieve the visibility as described in section 5.

A weighted average for each angle was taken over the scattered power that was
obtained by integrating the Gaussian functions,

µx =
∑
i
(xiwi)

∑
i

wi
, σ2

µ =
1

∑
i

wi
, (6.1)

where the sum is over all measurements at a single angle, where µx is the mean
power scattered by a particle at a single angle, xi is the value of measurement i, σi
is the fit uncertainty of a measurement i, wi = 1/σ2

i is the weight of a measurement
i, and σµ is the standard deviation of the mean. In Fig. 6.5 and the figures in ap-
pendix B the average scattered power as a function of incident polarisation angle as
can be seen. A sinusoidal function is used to fit the data. The error bars are based
on the standard deviation σµ of the mean.

The measured visibilities are listed in Tab. 6.2. These visibilities and their uncertain-
ties are compared to Mie theory in Figs. 6.6-6.8 (this Mie theory curve was calculated
in Fig. 4.1). We can make a maximum likelihood estimate for the particle size. Ev-
ery possible particle size has a theory prediction of the visibility for all wavelengths.
We can use a probability density as a function of visibility based on the gaussian
distributions defined by the measured visibilities and their standard deviations to
assign a probability density for each size. By multiplying these probability densi-
ties for each wavelength we get a maximum likelihood estimate for the particle size.
The distributions are shown in Fig. 6.10, and the most likely values are shown in
6.3. Note that the values for these distributions are very low, especially for particles
2 and 4, which indicates that this data does not seem to fit the theory well .

particle 1 particle 2 particle 3 particle 4 particle 5
Diode, Gaussian function 9.4% 9.8% 6.2% 8.6% 7.5%
Diode, two Gaussian functions 8.2% 9.2% 5.5% 8.2% 6.8%
Helium-Neon, Gaussian function 8.0% 7.4% 6.0% 6.6% 7.1%
Helium-Neon, two Gaussian functions 7.1% 6.5% 5.2% 5.4% 6.1%

Table 6.1: Average standard deviation of a 100 picture measurement cycle as a percentage of the
average scattered power for both lasers. The standard deviation while only using a single Gaussian
function to fit the data is compared with using the sum of two Gaussian functions to fit the data
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particle 1 particle 2 particle 3 particle 4 particle 5
785 nm diode laser visibility 0.099 0.031 0.117 -0.107 0.114
785 nm diode laser standard error 0.009 0.006 0.006 0.004 0.004
Helium-Neon laser visibility 0.058 0.021 0.218 -0.119 0.259
Helium-Neon laser standard error 0.006 0.007 0.006 0.007 0.006

Table 6.2: Visibilities and corresponding standard error of the particles. These are calculated using the
amplitude and offset extracted from sinusoidal fits like the ones shown in Fig. 6.5. The visibility is

defined in Equation 4.33. Note that this is different from the definition that is more commonly used as
it has a sign.

particle 1 particle 2 particle 3 particle 4 particle 5
Most likely radius 466 nm 465 nm 577 nm 342 nm 577 nm
σ 2 nm 1 nm 2 nm 1 nm 2 nm

Table 6.3: Most likely radius for each particle Fig. 6.10, uncertainties only include the statistical error.
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(a)

(b)

Figure 6.4: Power scattered by particle 5, a single Gaussian function has been fitted through a) and the
sum of two Gaussian functions have been fitted through b), both images are from the same picture as

Fig. 6.2b
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Figure 6.5: Average power scattered by the particle 5 as a function of the angle of the polarisation of
the incident beam. a) shows a measurement with the Helium-Neon laser(632.8 nm) and b) shows a

measurement with a diode laser (785 nm). The other particles are shown in the appendix B.1.
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Figure 6.6: Comparison of the measured visibilities with Mie theory. The horizontal lines represent the
measured visibilities (Tab. 6.2) and their standard error. The theoretical curves are based on Mie theory
and the circles denote intersection between the data and the theory for a single wavelength, this graph

shows particle 1. The vertical lines indicate the most likely radius.
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Figure 6.7: Comparison of the measured visibilities with Mie theory. The horizontal lines represent the
measured visibilities (Tab. 6.2) and their standard error. The theoretical curves are based on Mie theory

and the circles denote intersection between the data and the theory for a single wavelength. a)shows
particle 2 and b)shows particle 3. The vertical lines indicate the most likely radius.
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Figure 6.8: Comparison of the measured visibilities with Mie theory. The horizontal lines represent the
measured visibilities(Tab. 6.2) and their standard error. The theoretical curves are based on Mie theory

and the circles denote intersection between the data and the theory for a single wavelength. a)shows
particle 4 and b)shows particle 5. The vertical lines indicate the most likely radius.
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(c) particle 5

Figure 6.10: Likelihood distribution as a function of particle size. This gives a measure of the best
estimate of the radius. The differences in scales on the y-axis are many order of magnitude.
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6.2 Results for Measurements with Three Diode Lasers at Atmospheric
Pressure

In the second experiment measurements were preformed with three diode lasers
with wavelengths of 642 nm, 785 nm and 852 nm. Unlike the measurements de-
scribed in the previous section, this experiment was done at atmospheric pressure
due to technical reasons. This had a few consequences on the measurement. Fast os-
cillations on the z-axis were damped to a point that the double maxima as described
in Fig. 6.2b were no longer observable. However, thermal motion on the y-axis was
observed. Compared to the setup in the previous system the alignment was im-
proved, the mirrors were adjusted to make sure that the imaged particles scatter
their lights closer to a 90°angle then those in an earlier experiment. The shutter time
was set to 250 ms which allowed for further reducing the numerical aperture using
the iris while maintaining the signal to noise ratio. As discussed in Sec. 5 reducing
the aperture increases the visibility, as a larger fraction of the scattered light collected
on the camera is scattered near a 90°angle.

The first measurements were done with the 785 nm laser. An image taken of the
light scattered by the particles is shown in Fig. 6.12, particles from this experiment
are not the same as the first experiment, however they are from the same batch of
trapped particles, the process in obtaining the data is described in more detail in
Sec. 6.1.

z

y

1mm

1 2 3 4

Figure 6.11: An image of the light scattered on four gold nanospheres. Here the particles were probed
with a 785 nm laser with a polarisation that is perpendicular to the scattering plane. On the top and
the bottom of the image the electrode rods of the trap are visible. The particles are enumerated for

future reference.

The average scattered power as a function of incident polarisation angle is retrieved
as described in the previous Sec. 6.1 and can be seen in Fig. 6.12, the corresponding
visibilities can be seen in Tab. 6.4.

Comparing these visibility values to the results of the first measurement 6.2, the vis-
ibilities measured in the second measurement are on average a factor three higher
then those of the first measurement with the same laser. It is worth mentioning here
that another measurement with these three diode lasers has been done before im-
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Figure 6.12: Scattered power as a function of the polarisation angle of the incident beam, each point
in the graph is the weighted average (Eq 6.1) of a 100 images the wavelength of the laser used in these

measurements was 785 nm and a sinusoidal function is fitted through these points.

plementing the improvements discussed earlier in this section. This measurement
yielded very low visibilities for all wavelengths and a point of overlap could not
be found for all three until very large particle sizes. Therefor we suspect we have
been underestimating the visibility in all earlier measurements. As the slope of the
theory curves is much steeper at low visibilities then at high visibilities, its unlikely
for measurements with many different wavelengths to all show low visibilities for
the same particles.

After that, measurements were done with with the 642 nm diode laser. Unfortu-
nately when the particles were probed with this laser and 1.6 mW transmission
through the chamber, particles started moving on the long axis of the trap. There-
fore the particles measured with the 642 nm and 852 nm diode lasers are likely not
the same particles as those measured with the 785 nm diode laser. However as the
results of these measurements indicate that the particles in this region seem to be-
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particle 1 particle 2 particle 3 particle 4
785 nm Diode laser visibility 0.271 0.289 0.232 0.276
785 nm Diode laser visibility standard error 0.004 0.004 0.006 0.004

Table 6.4: visibilities extracted from Fig6.12 and corresponding standard error.

have very similar to each other, we will assume for now that the particles are similar
enough that the results obtained for the four particles of the first measurement can
be used in conjunction with the results for the other two lasers. As can be seen in
Fig. 6.13, the particles have travelled large distances during both these experiments.
In the measurement with the with the 852 nm diode laser, the particles appear to be
drifting back to their old equilibrium positions .

In Fig. 6.14 the power scattered by the particles as a function of polarisation an-
gle for 640 nm and 852 nm lasers is plotted. The scattered power measured on the
camera appears to decrease linearly for 642 nm. To compensate for this downward
slope, f (t) = (1− bφ)(amplitude sin(2 φ− ∆φ) + c) has been used as function to
fit the data instead of a normal sinusoidal function. The visibility is retrieved by
V = ±amplitude/c, where the sign is positive if the maximum is at polarisation
parallel to the scattering plane, and negative if the maximum is perpendicular to
the scattering plane.

In Fig. 6.15 the data of the three measurements is compared to the theory. As it
is unlikely that one of the particles of the measurement with the 785 nm diode laser
correspond to one of the two particles of the two other measurements, the visibilities
found for that experiment are averaged and the estimated uncertainty is increased
by the standard deviation of that average, to account for the spread in particle sizes.

particle 1 particle 2
642 nm Diode laser visibility 0.27 0.29
642 nm Diode laser standard error 0.01 0.01
784 nm Diode laser visibility 0.37 0.44
784 nm Diode laser standard error 0.01 0.01

Table 6.5: visibilities extracted from Fig. 6.14 using Eq 4.33 and corresponding standard error.

As we have done for the first experiment we can do a maximum likelihood esti-
mation to get a best guess for the size of the particles. In Fig. 6.16 the probability
distribution as a function of particle radius is shown, giving us a most likely particle
size for both particles in Tab. 6.6.
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Figure 6.13: An image of the scattered light of two gold nanospheres. On the top and the bottom of
the image the electrode rods of the trap are visible. An image is shown from both the start and the end

of both measurements. The particles are enumerated for future reference, the particle denoted with a
star is not tracked as it is not present in all frames, a) shows an image made at the start of the 642 nm

measurement, b) shows an image made at the end of the 642 nm measurement, c) shows an image
made at the start of the 852 nm measurement, d) shows an image made at the end of the 852 nm

measurement.
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particle 1 particle 2
Most likely particle size 177 nm 174 nm
σ 1 nm 1 nm

Table 6.6: Maximum likely radius for both particles, based on Fig.6.16.
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Figure 6.14: Scattered power as a function of the polarisation angle of the incident beam. a) shows
particle 1 from Fig. 6.13 with the 642 nm diode laser, b) shows particle 1 with the 852 nm diode laser,

c) shows particle 2 with the 642 nm diode laser,d) shows particle 2 with a 642 nm diode laser.
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Figure 6.15: comparison of the Mie theory with the data for the three diode laser measurement. The
horizontal lines denote the measured visibility and its uncertainty, while the dots indicate intersections

between the theory and the data. The vertical line indicates the most likely radius.
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Figure 6.16: Likelihood distribution as a function of particle size, this gives a measure of the best
estimate of the radius.
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7 Conclusion and Discussion

We have used electrospray ionisation to charge and separate gold nanospheres. We
have successfully trapped these nanoparticles in a Linear Ion Trap for extended
periods of time. We have investigated polarimetry measurements as a method to
do in-situ measurements of the size of these particles. For this purpose we have
done two experiments. For the first setup we have used a Helium-Neon laser and
a 785 nm laser diode to probe the particles in the trap. For the second experiment
we used three diode lasers (642 nm , 785 nm and 852 nm). The size of the particles is
extracted by measuring the polarisation dependence of light scattering at a 90°angle
with the incident beam. This dependence was compared to numerical calculations
based on Mie theory for scattering on homogeneous spheres.

The results of the measurement of the Helium Neon laser seem to indicate radii be-
tween 342 nm and 577 nm as shown in Tab. 7.1. Fig. 6.6, Fig. 6.7a and Fig. 6.8a as
well as Fig. 6.10 show that these data are in poor agreement with the theory for at
least three out of five particles, as the intersections between the theory and the data
overlap poorly for all possible radii. For particle 3 and especially particle 5 the inter-
sections between the theory and the data have better overlap at a radius of 577 nm,
note that the uncertainties given here only consist of the statistical error. However
there is a reasonable chance this is just coincidence. There are many crossings be-
tween the theory curves and the visibilities that were measured. Therefore there is
a reasonable chance that the intersections with the theoretical curves will overlap
somewhere, even if the theory does not properly describe the data.

particle 1 particle 2 particle 3 particle 4 particle 5
Maximum likelihood 466 nm 465 nm 577 nm 342 nm 577 nm
σ 2 nm 1 nm 2 nm 1 nm 2 nm

Table 7.1: Most likely radius for each particle, for the experiment with the Helium-Neon laser and a
785 nm diode laser

To get more conclusive results we switched to a setup that uses three different diode
probe lasers.The third laser reduces the chance that the shared intersection is a co-
incidence. With this setup we found that based on our data and the theory the most
likely particle size for the particles is shown in Tab. 7.2. The overlap in Fig. 6.15 is
fairly reasonable for particle 2 and fairly bad for particle 1. As the particles were
moving rapidly during this experiment and as we had to adjust for a linear decrease
of the scattered intensity over time, it is likely that some systematic error is obtained.

The values found for the radius in the second experiment are significantly differ-
ent from the most likely particle sizes we found in the first experiment. While both
experiments used a 785 nm laser measurement, the visibilities found for that wave-
length during the second experiment are much larger then those in the first experi-
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particle 1 particle 2
Most likely particle size 177 nm 174 nm
σ 1 nm 1 nm

Table 7.2: Maximum likely radius for both particles, based on Fig.6.16

ment. This means that either the particles we have imaged in the two experiments
have a radically different sizes or the visibility found in at least one of the measure-
ments is incorrect.

By eye and in figures 6.1 and 6.11 the inter-particle spacing seems almost constant
throughout the trap. This makes large variations in charge very unlikely. Consid-
ering the trap is charge to mass ratio selective, this also makes large size variations
quite unlikely. Which suggests that at least one of these measurements is likely ei-
ther overestimating or underestimating the visibility. It seems unlikely that an effect
would cause overestimate the polarisation dependence of the scattering compared
to another experiment on similar particles. On the other hand, there are arguments
that might explain the low visibilities found in the first experiment. In the dipole
picture it is clear that the visibility is reduced if the particles do not scatter at a
90°angle with respect to the incoming beam. The particles imaged in the first exper-
iment where more to the sides of the trap and where not scattering at a 90°angle,
which reduces their visibility. Optimisation with the squeezer and a higher output
power of the laser allowed us to close the iris from 8 mm to 2 mm. This reduced
the numerical aperture of the imaging system which increased the visibility of parti-
cles in focus. Therefore we suspect that we have underestimated the visibility in the
first measurement. In conclusion we deem the values from the second experiment
considerably more likely then those of the first measurement, especially because
the measurements of the first experiment were made with only two lasers. More
measurements will have to be done to conclusively say if this is a feasible method.
However as the results of the second experiment are reasonably close to the theory
considering the large-scale movements on the z-axis and the downward slope of the
intensity in the measurement with the 642 nm diode laser, this could be a feasible
method to do in-situ measurements on the radius of the particles.
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8 Outlook

The eventual goal of the research is ablation of single gold particles. To achieve this
goal, more experiments must be done to verify whether the size analysis method is
accurate.

A new vacuum chamber will be implemented. The current chamber had relatively
limited optical access. The new chamber will be fully transparent in the yz-plane
and the xz-plane. This might allow the investigation of the scattered intensity as a
function of scattering angle.

The uniform ground rods in our current linear ion trap will be replaced by seg-
mented rods. By attaching these segments to D.C. power source it is possible to
tune the potential on the rods, which allows us to seperatly move particles around
in the trap. This solves a number of different problems.

• When we ablate these particles we can use the segments to move particles into
the path of the ablation beam.

• We can prevent large scale movements on the long axis, which will restrain
the particles from moving out of the trap.

• The lattice spacing between charged particles is determined by the equilib-
rium of the constraining segmented rod field and the repulsive force particles
exert on each other,. This allows us to calculate the charges of the particles
by measuring the lattice spacing. As the trapping conditions are dependent
on the charge to mass ratio, it is possible to measure the particle size in an
independent way.

All particles currently trapped seem to be aggregates. Therefore improvements to
the electrospray and trapping methods have to be made to minimise the number of
aggregates that will be trapped.

• Particles tend to stick to the walls, as PVP is sometimes used as an adhesive
for gold to fused silica [47]. This could be a source of aggregation. New par-
ticles are blocked which will create aggregates that grow until the surface of
the aggregate is large enough the pressure of the flow overtake the adhesive
forces. This can likely be solved by coating the glass with a layer of PVP or by
using gold particles that are coated with a different stabiliser.

• The electrospray method is charge to mass selective. the path of small parti-
cles with a high charge to mass ratio will be deflected more. By spraying at
an angle, only particles with a sufficiently high charge to mass ratio’s will be
deflected enough to reach the entrance of the trap.
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• Another way to selectively remove larger particles would be by using the right
trap parameters. The dimensionless friction coefficient κ in Eq. 2.9 scales in-
versely with the mass and that scales with r3. The potential terms in this equa-
tion scale with the charge to mass ratio. If we assume the amount of charge
scales with the surface of the colloid, the charge to mass ratio scales inversely
with r. By finding the regime were the Cunningham correction factor is rela-
tively small but the friction is still important, one can achieve a situation where
the stability region of small particles is relatively large due to damping while
the stability region of large particles is relatively small. This is illustrated in
the stability zones of Fig. 8.1.

Figure 8.1: A comparison of the stability of two particles with a different radii as a function of the trap
parameters. The pressure in these calculations is 3000 Pa and the trap frequency is 300 Hz. The yellow
area’s indicate stability, the top graph shows a stability zone for a particle with a radius of 50 nm and

the bottom graph shows a stability zone for a particle with a radius of 150 nm .
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Appendix A Functions

Spherical Bessel functions of the first kind are defined as,

jn(z) =
√

π/(2z)Jn+1/2(z), (A.1)

where,

Jn(z) =
Σ∞
`=0(−1)`

22`+m`!(m + 1)!
z2`+n, (A.2)

are Bessel functions of the first kind. Spherical Bessel functions of the second kind
are defined as,.

yn(z) =
√

π/2zYn+1/2(z), (A.3)

where,

Yn(z) =
Jn(z) cos (nπ)− J−n(z)

sin (nπ)
, (A.4)

are Bessel functions of the second kind. Spherical Bessel functions of the third kind
also called Hankel functions of the first and second kind are given by,

h(1)n = jn + iyn, (A.5)

h(2)n = jn − iyn. (A.6)

The associated Legendre Polynomials are given by,

Pm
` (x) = (−1)m(1− x2)m/2 dmP`(x)

dxm . (A.7)

where

P`(.x) =
1

2``!
d`(x2 − 1)`

dxm (A.8)

are ` order Legendre polynomials.
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Figure B.1: Average scattered power as a function of the polarisation angle for particle 1 in the first
measurement, see Fig. 6.5. a) shows a measurement with a Helium-Neon laser and b) shows a

measurement with a 785 nm diode laser.
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Figure B.2: Average scattered power as a function of polarisation angle for particle 2 in the first
measurement, see Fig. 6.5, a) shows a measurement with a Helium-Neon laser and b) shows a

measurement with a 785 nm diode laser.
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Figure B.3: Average scattered power as a function of polarisation angle for particle 3 in the first
measurement, see Fig. 6.5, a) shows a measurement with a Helium-Neon laser and b) shows a

measurement with a 785 nm diode laser.47
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Figure B.4: Average scattered power as a function of polarisation angle for particle 5 in the first
measurement, see Fig. 6.5, a) shows a measurement with a Helium-Neon laser and b) shows a

measurement with a 785 nm diode laser.
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