
Automatic classification of orders lines
in joint Dealer Management Systems

Master thesis

ICA-5574781

Author

Martijn Lentink

Supervisors

Dr. A.J. Feelders

Prof. Dr. A.P.J.M. Siebes

August 29, 2016

Faculty of Science
Department of Information and Computing Sciences

University Utrecht

RDC inMotiv Nederland B.V.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Definitions . 2
1.3 Methodology . 3

1.3.1 Cross-Industry Standard Process for Data Mining 3
1.4 Research questions . 5
1.5 Overview . 6

2 Previous work 7

3 Data Understanding 10
3.1 Feasibility analysis . 10

3.1.1 General . 11
3.1.2 The different Dealer Management Systems 12
3.1.3 Normalized data . 18
3.1.4 Multilingual . 18
3.1.5 Judgement on feasibility . 19

3.2 Current system . 19

4 Data Preparation 21
4.1 Ground truth . 21

4.1.1 Manual labeling . 21
4.2 Invoice entity . 22

4.2.1 Complete invoices . 23
4.2.2 Invoice lines . 23
4.2.3 ’Hybrid’ invoices . 23
4.2.4 Acquiring uniform data . 24
4.2.5 Invoice details . 25
4.2.6 Part/labour . 25
4.2.7 Unique car identifier . 25
4.2.8 Customer/invoice identifier . 25
4.2.9 Chain store identifiers . 25
4.2.10 Date . 26
4.2.11 Mileage . 26
4.2.12 Costs . 26
4.2.13 Amount . 27
4.2.14 Invoice header . 27
4.2.15 Codes . 27

i

4.2.16 Vehicle brand . 27
4.2.17 Maintenance . 28
4.2.18 Dealer identifier . 28
4.2.19 Internal visit . 28

4.3 Approaching the data . 28
4.3.1 Relational entity integration . 28
4.3.2 Misspellings . 29
4.3.3 Verb conjugation . 29
4.3.4 Compound words . 29

5 Modeling 30
5.1 Models . 30

5.1.1 Decision tree . 30
5.1.2 Bayesian network . 31
5.1.3 Support Vector Machine . 33
5.1.4 Neural Networks . 34

5.2 Feature generation . 35
5.2.1 Stemming . 36
5.2.2 Compound words splitting . 36
5.2.3 Custom helpers . 38
5.2.4 Machine learning with Azure . 38

5.3 Parameter tweaking . 40
5.3.1 Custom C# parameters . 40
5.3.2 Azure ML parameters . 41

6 Evaluation 43
6.1 Experiment setup . 43

6.1.1 Training and evaluation data sets . 43
6.2 Experimental results . 44

6.2.1 Evaluation versus the current system . 45

7 Conclusion 47
7.1 Discussion and future work . 47
7.2 Acknowledgements . 48

8 Appendices 53
XML data from Dealer Management Systems . 54
Samples of Dealer Management System data . 57
Results of C# implementation . 61
Results of Azure Machine Learning . 69
Results of non-binary models . 77

ii

List of Figures

1.1 The hierarchical breakdown of the CRISP-DM model, taken from [1] 3

3.1 Usage of Dealer Management Systems . 11

4.1 The class labels defined that should be used during classification 21
4.2 Average invoice costs in euro based on a WinCar export 26

5.1 A sample of a decision tree showing the survival of the passengers of the Titanic 31
5.2 An example of a simple Bayesian network . 32
5.3 An example of a Naive Bayesian network . 33
5.4 Visual representation of a Support Vector Machine 34
5.5 A sample of Neural Network . 34
5.6 An example of an experiment created in Azure Machine Learning Studio 39

6.1 Results C# - None options . 44
6.2 Results Azure - None options . 45

8.1 Autoline Dealer Management System data sample 54
8.2 WinCar Dealer Management System data sample 55
8.3 EVA DMS Dealer Management System data sample 56

iii

List of Tables

4.1 Manual labeling of Autoline invoice lines . 22

5.1 Example of parameter sweep for Support Vector Machine 41

6.1 Confusion matrices of our system versus the current system. Left our Neural
network, right the current implementation . 45

8.1 Sample of CarIT Dealer Management System . 58
8.2 Sample of Carlo Dealer Management System . 58
8.3 Sample of I’Car Dealer Management System (WPLD section) 59
8.4 Sample of iDAS Dealer Management System . 59
8.5 Sample of normalized data Dealer Management System 59
8.6 Results of custom implementations for class Maintenance 62
8.7 Results of custom implementations for class Serpentine belt 63
8.8 Results of custom implementations for class Tyres 64
8.9 Results of custom implementations for class Battery 65
8.10 Results of custom implementations for class V-belt 66
8.11 Results of custom implementations for class Brakes 67
8.12 Results of custom implementations for class Air conditioning 68
8.13 Results of Azure ML for class Maintenance . 70
8.14 Results of Azure ML for class Serpentine belt . 71
8.15 Results of Azure ML for class Tyres . 72
8.16 Results of Azure ML for class Battery . 73
8.17 Results of Azure ML for class V-belt . 74
8.18 Results of Azure ML for class Brakes . 75
8.19 Results of Azure ML for class Air conditioning 76
8.20 The results of the multi-class models . 77

iv

Abstract

In this thesis we looked at different data originating from several Dealer Management Systems.
By comparing the different data we tried to find a field set that can be used as features for our
classifier models of receipts. We found that this data can be uniformed well by taking the few
fields an intersection of the fields of all Dealer Management Systems yield. When we add some
extra fields with slight manipulations we created a data set that has high potential for machine
learning classifications. Different set ups showed F1 scores for classification well above 90%
through three data sets with four learning models. Further we introduce new options in attempt
to improve the classification rate further. We used our domain knowledge for the construction
of smart token detectors and construct a unique compound word splitting algorithm for splitting
Dutch compound words.

Chapter 1

Introduction

RDC manages nationals largest data set on cars and their owners, their information is gathered
throughout several systems which are maintained within the organization. The numerous systems
they maintain are mainly targeted at dealers and car retailers, covering huge amounts of data
concerning the dealers and their customers. One of these systems, ’CaRe-Mail’, is used by Dealer
Management System’s and car retailers for informing their customers and contacting them at
certain moments. Typical messages sent to the dealers customers are upcoming maintenance
checkups and tire swaps. The data of dealer is processed on a daily basis, and RDC is constantly
looking for ways to improve this process. With the evergrowing data RDC interest rises on smart
data mining solutions to use within their systems. This thesis serves as a first look into this field
for one of their products; CaRe-Mail.

1.1 Motivation

RDC has been through many changes in the last couple of years. Since their portfolio mainly
targeted the automotive branch, the credit crunch was inevitably felt by RDC too. During
this period the organisation decided to part from other products that did not fall within their
automotive activities to be able to fully focus on what they really excel in; everything concerning
vehicles. The CaRe-Mail system originates from the rising question among car dealers on an
efficient system for contacting their clients via different channels. The proliferation of different
contact media like e-mail, text messages, online dashboards et cetera, created the need for new
smart ways to contact their clients. Where contact was earlier on mainly through two channels
(letter correspondence and telephone) the new ways of contacting became complex fast; all clients
have different preference regarding the contact with their dealer and because people tend to visit
them less and less with the rise of the internet, client information gets outdated quickly. CaRe-
Mail enables dealers to automatically contact their clients personally through the channels that
the user prefers, this takes away a lot of manual labour and frees time for the dealer to do
other businesses. The messages that are sent are generated by means of the information that is
collected within the dealers’ Dealer Management System. In the current version of CaRe-Mail
a rule based information extraction is used which checks if certain regular expressions match
the entries in the Dealer Management System and classifies receipt accordingly to predict future
messages. In essence the value of the product lies within the accuracy of the receipt classification.
Incorrect classification results in propagating the wrong evidence through the system which may
lead to messages being sent at the wrong time, or sometimes not at all.

A better classification rate will not only affect RDC by improving their product and their

1

competitive position, it may save the dealers a lot of time by doing bulk operations for example;
if multiple employees of a company need tire swaps one could consider doing bulk tire swaps on
location, easing the experience for the employees. Or a dealer can instruct their workshops to
update their stock for certain parts to match the messages sent.

The CaRe-Mail product has a history of over a decade and through the past years it was
just able to keep up with the rapid changes in the dealer industry. The system now supports all
major Dealer Management System’s but its code base is heavily outdated. As a result changes
and maintenance work are usually labour expensive. For this reason RDC has decided to rebuild
the system from ground up with a complete new architectural design, a different programming
language and data model design. Apart from maintenance reasons (and for providing the user
a more attractive/modern interface) they are also interested in improving the accuracy of their
data classification. RDC is excited in using statistical approaches for this purpose, and requested
my help in finding models that are suited for predicting the data streams. Although CaRe-Mail
already performs as one of the best in the business, RDC aims to stay ahead of the competition
by trying out new models for data classifications. This strive, to stay ahead of the rest, brings
this thesis, to further explore the possibilities in data classification for the improvement of their
CaRe-Mail system.

1.2 Definitions

Dealer Management System A dealer management system, abbreviated as DMS, is a man-
agement system that is used by car dealers to manage all information concerning their
customers. Typical information included in these databases are customer information, ve-
hicle data, workshop plannings and declared receipts. Throughout this document the term
dealer management system and its abbreviation will be used interchangeably.

CaRe-Mail One of the most important systems within RDC that works as a service for numer-
ous vehicle dealers. The system contacts the dealers customers on their behalf by sending
them messages on almost everything; informing them for upcoming mechanical checks, tire
swaps, routine maintenance or may be even birthday congratulations.

CSV A Comma Separated Values file format. Data records are stored in a plain text file and
fields are separated by a set delimiter such as a comma (hence comma separated values).

(Class) label A discrete value known (or derived) for data that represents its true state. Typical
class labels for the current domain is a receipt being that of a routine maintenance, tire
swap or technical examination. The labels are used to guide the models in their training
phase to assign the right features to the right class.

Features Also known as feature vectors and descriptors are selected (and possibly manipulated)
parts of the data which are created to be able to rapidly compare different input for training
and evaluation purposes.

Classifier A classification model constructed to predict class labels of previously unseen and
unlabeled data. For training of a classifier, features are used to generate a predictive model.

Overfitting The event of training a classifier to fit the training data too precisely, resulting
in a model that does not generalize to new data well. Best practice is to avoid this from
happening altogether to get the best predictive results.

2

Figure 1.1: The hierarchical breakdown of the CRISP-DM model, taken from [1]

Ground truth For the training of statistical models using supervised learning, examples will
need to be provided in order for the model to distinguish one class from another. The
labels that are given to these example cases are assumed to be correct, this is called the
ground truth. A classification is said to be correct if it matches the state of the data’s
ground truth value.

Impurity reduction The gain that a certain split has in comparison with the previous state.
The impurity reduction is used in decision tree learning.

n-grams Technique for splitting text corpora in smaller sets of size n, where each word counts
for one. The special case n = 1 (unigrams), where the corpus is a bag of all its words is
called the bag of words approach. n-grams may also be called shingles.

1.3 Methodology

Since this thesis project has practical character and has defined a clear goal we decided to adopt
a proven research methodology that support the projects and gains insight at every point within
the project. In this section, first the CRISP-DM methodology is described that is used for this
project, then the results of the first phase is summarized. Followed by a planning for the final
part of this project. Concluded by techniques that are to be used in the second phase and
decision that has to be taken regarding the data and the models that will be constructed.

1.3.1 Cross-Industry Standard Process for Data Mining

For this thesis project the CRISP-DM process methodology will be used. CRISP-DM which
stands for Cross-Industry Standard Process for Data Mining is, as its name states an industry
standard, proven, process methodology for Data Mining projects. The process was founded
around 1996 by three big players in the data mining community and it quickly became widely
adopted. In [1] step-by-step the methodology is explained in detail. The most recent survey
(2014) on the use of data mining methodologies yielded that CRISP-DM is the most used process

3

in the data mining field [2]. Throughout the project a half a dozen stages are iterated, the
different phases don’t have strict boundaries itself, meaning that phase switches can occur in the
project when needed. The process model itself is built up in an hierarchical order (see Figure
1.1). CRISP-DM distinguishes the following stages;

• Business Understanding

• Data Understanding

• Data Preparation

• Modeling

• Evaluation

• Deployment

Each of these stages will be explained in more detail in the following sections.

Business Understanding

In the first phase the focus in mainly on the understanding of the business. While creating an
understanding of the business objectives, the problem definition can be defined on the basis of
this information.

The following tasks are part of this phase; determining the Business Objectives, an assessment
of the situation, a determination of the data mining goals and the production of a Project Plan.

Data Understanding

This phase starts off with the collection of the required data from all data sources. What follows
is a thorough analysis of the data, to increase familiarity with it and find potential issues on the
data quality.

In this stage the following steps exists; the initial collection of the data, a description of the
data, and the exploration of the data, finally the data quality is verified.

Data Preparation

After the previous step gained insight in the data itself, in this step one looks at the possibilities in
improving the quality of the data for processing purposes. The first arrangements are performed
to transform the data so it can be used for generating models.

First a data selection is done, followed by a cleaning step, constructing data together with
integration and lastly a formatting of the data.

Modeling

In this step different modeling approaches are considered, for each model different parameters are
calibrated to find optimal values. Different mining techniques require the data to be formatted
differently, for this reason it may be that a transition is made to the previous steps to preparing
the data accordingly.

The tasks for this step are the selection of a modeling technique, generation of test design,
the actual creation of the models and the assessment of the models yielded.

4

Evaluation

During the evaluation phase the built models are evaluated given the previously defined business
goals. This phase basically is a decision moment for the project, where the decision is whatever
happens to the resulted model.

The steps involved in this phase are the comparison of the evaluation results, a review process
of the solution, determine the next steps for the final phase.

Deployment

The final phase involves the integration of the product that was generated in the previous stages.
Here the model gets it final shape such that it can be effectively used by the client. This phase
often also includes the sharing of the knowledge about the model and documenting the process.

The defined subtasks are plan deployment, plan monitoring and maintenance, the production
of the final report and a project review.[3]

1.4 Research questions

When new receipts arrive at RDC it is of the utmost importance that they are interpreted in the
correct way and that the most valuable information is extracted. The accuracy of the CaRe-Mail
system relies wholly on how well this system performs. CaRe-Mail is completely rebuilt from
ground up to be able to maintain the system more easily and make it able to integrate other
systems as well. With the CaRe-Mail service a lot of manual labour is taken off the hands of
the car dealers. Saving time in informing their customers for maintenance, the storage of their
customers preferences, keeping track of maintenance plans etc.

To work towards the goals defined in Section 1.1 a couple of research goals are defined which
all contribute to the correctness and accuracy of the classification. Since the data not only
contains categorical and numerical values but also full text description fields, text mining is also
part of the problem we face in this thesis. We pose the following research questions;

• How can the deviations in data fields be uniformed in such a way that a classifier can
be constructed that is able to classify the greatest set of Dealer Management Systems
correctly?

The DMS’ have a great variety in fields and therefore the information one sends is not
comparable with that of other Dealer Management Systems. This also means that cross-
DMS classification is also a challenge. A classifier may be trained on only the intersection
of the fields of every DMS, in Section 3.1 we see that this would leave us with merely a
car identifier and the workshop visit date, which are useless for classification. Different
approaches are thinkable to tackle this problem; one is of course training a classifier per
DMS, an other is taking some sort of data fusion approach and training just one (or a few)
that generalized the classification of multiple Dealer Management Systems. For the latter
case a research has to be done in which fields should be taken using normalisation and how
these would be manipulated/amended in such a way that a classifier can be trained with
ease.

• Which fields of the records are suitable to train and classify the records and which feature
extraction approach can be used?

Since every DMS serves different fields for their receipts a research has to be conducted in
to which fields contribute to the correct classification of the receipt. One might think that a

5

description field is of high importance for the classification, while the license plate number
may gain less insight. While this might be true in a simple case it may also be that the
plate number gives us a service plan, which could be used as reference for classifications.

• How accurate do(es) the selected technique(s)/algorithm(s) perform?

We are then to implement one/some of the methods/techniques that we found in our earlier
research and evaluate it to test its accuracy. A variety of training sessions will be performed
with different data sets. These will vary in contents and size for training and evaluation
sets. The results are then compared to the current system, since this system merely does
a classification on maintenance this has to be taken into account. On the basis of the
evaluation results conclusions are drawn accordingly and an action plan is set up for the
deployment phase.

The evaluation time of the algorithms are considered during this thesis. There isn’t however a
set criterion that the system needs to meet, the current system receives its information at night
and takes the rest of the night for processing this data. The information received on a certain
day is often only relevant for messages that need to be sent in the distant future; a maintenance
today is another maintenance years later. This means that in theory run time may as well be the
time from the moment receiving the information up to some weeks before the next maintenance,
for this reason no priority is given on the performance.

1.5 Overview

The rest of the thesis is structured as follows; in Chapter 2 we discuss the previous work relevant
to the thesis project. In Chapter 3 we tell something about the structure of the data that the
Dealer Management Systems have and perform a feasibility analysis to verify if the data is suited
for classification. In Chapter 4 we prepare the data such that our classification models can be
trained. In Chapter 5 we discuss the models that are trained and how the feature generation
works. The models are then evaluated in Chapter 6 by some experiments we set up. And lastly
in Chapter 7 we conclude this thesis with providing a summary on the work we did and we look
at what future work might be done.

6

Chapter 2

Previous work

No previous work was found on tackling the problem of classifying receipt order lines. This is
not too surprising since it is a quite specific topic. Classification, however, has been discussed
at length in the literature. Throughout the years different models have been constructed for
classifying different types of data into categories, arguably the first paper on this topic was that
of Fix and Hodges Jr in [4] where classification of an unknown value was done on the basis of
statistical comparison of known values. This method is closely related to the method we today
call the k-nearest neighbour method. This term was coined by Cover and Hart in [5] where they
formally defined the k-nearest neighbour approach, and they show that its performance is at
least as good as an squared-errors approach.

An other approach is that of decision trees. These trees, that originate from decision analy-
sis[6], are widely adopted in various areas and a lot of research has been done in efficient construc-
tion algorithms from data[7][8]. After the construction the evaluation is done by traversing it
from root to leaf with binary splits in every node (given it’s a binary decision tree) which makes
it evaluate rapidly. An interesting paper is that of Toole that used decision trees to classify
unknown words to find misspelled words and names/abbreviations [9]. Ho used decision trees
together with random seeds for constructing multiple independent trees which all are evaluated
during the classification process[10]. Candillier, Tellier, and Torre classified XML-structured
documents with a bag of tags-approach using decision trees, although they assumed that the
documents were semantically different for each class, their approach is interesting[11].

A more recent method is that of the Support Vector Machines defined by Boser, Guyon, and
Vapnik in [12][13]. They proposed the idea of kernel functions for mapping data to hyperplanes
to separate the classes linearly given the observations using a maximum margin separator. In
[14] category names are used to classify documents using support vector machines. The method
that Barak, Dagan, and Shnarch use can be helpful, since the description fields in the receipts
that we are considering are somewhat similar to the category names they used.

A Bayesian network is a probabilistic model in contrast to the deterministic models mentioned
earlier. The network is a mathematical model that is built around Bayes’ theorem[15]. The term
Bayesian network, coined by Pearl[16] in [17] for propagating evidence through the network,
for updating beliefs. A computationally more interesting way in expressing a network is one
with a ’naive Bayes assumption’; Friedman, Geiger, and Goldszmidt compare different Bayesian
classifiers. One which simply neglects every mutual dependency relationship between variables.
And also a tree based approach which relaxes the independence assumption by employing a tree
structure [18].

A completely different approach is that of neural networks, this technique is based upon

7

the workings of the brain, consisting of several neurons. Although these models been around
for decades[19], due to computational challenges at the time of development, they were not
widely used. Classification using these models became feasible at the end of last century, various
algorithms have been proposed for training the networks[20][21]. One application that comes
near to what is to achieved in this thesis is that of Ghosh and Reilly, in [22] they try to track
down cases of credit card fraud using a neural network by looking at the credit card transactions.
In 2006 Huang, Zhu, and Siew introduced the notion of Extreme Learning Machines (ELM) being
feed forward neural networks with a single hidden layer[23]. Zhao et al. used these ELM’s for
creating a classifier for structured XML documents, in their evaluation section they show good
accuracy classifying the documents [24]. They also state that their training time is manifold
faster than other algorithms like Support Vector Machines.

The classifiers mentioned above need to be trained against certain data. Since the complete
data itself is too rich and in itself has no way to compare the data to one another, a function has
to be chosen to be able to do this comparison. One way of doing this comparison is by the means
of features, a feature selection method extracts certain descriptors within the media and returns
these descriptors in a vector; the feature vector. During evaluation and training a medium
generates one feature vector which makes bilateral comparison possible. Liu and Motoda stress
the importance of meaningful features in their book ’Feature selection for knowledge discovery
and data mining ’, they state that the feature selection is arguably the most important step in
the design of a learning algorithm [25]. For evaluating the quality of a typical feature set often
Shannon’s Entropy measurement is used, this measurement tries to describe the data in terms
of how uncertain we are about the true class of the data, the lower the entropy (chaos) score
the more certain we are. In [26] a lengthy comparison is done on all kinds of feature evaluation
techniques. Liu and Motoda also point out the importance of a quality distance measure to
compare feature vectors. Of course this relies on the type of feature we are considering. In the
book they distinguish between the following types of features; complex, continuous and discrete,
with discrete values having an ordering; ordinal values or without order; nominal features. For
the receipt classification of Dealer Management Systems all of these types of data are considered,
just a few papers could be found that concentrate on how to take on mixed feature-types, the most
research on this topic is done in the context of symbolic clustering using unsupervised learning
methods, the best set of features is sought to maximize the clustering performance[27][28], such
best feature set selection might also be useful when selecting which fields should be used when
normalising the data.

Major parts of the data that will be processed will contain textual descriptions, since these
fields are of the utmost importance for the manual labeling, correct processing of these fields
is crucial to achieve accurate results. Text mining and classification is therefore an important
part of this thesis, thankfully information retrieval and text mining are fields on their own and
a lot of research has been done already. Sebastiani addresses the text classification and mining
tasks development throughout the years in [29]. Often co-occurrence of words, so-called n-grams,
are used to classify text collections. Such algorithm will go through a document and register
the co-occurence of a number of n words, Shannon showed that this (semantically incorrect)
assumption performs statistically well. The bag-of-words approach can be considered a special
case of the n-gram algorithm for n = 1 (unigrams), this way the features are solely based on
single words within the text and word order and surrounding words are neglected [30] altogether.
Other popular techniques are based on the n-grams like the term frequency (tf) or the model
that takes into account the inverse document frequency (tf-idf)[31].

One of the most challenging parts of this thesis is the fact that the messages that are to
be processed are relatively short. Classification of short messages are, on the other hand, not
novel at all. An example is the sentiment analysis on the basis of micro blogging service Twitter;

8

Go, Bhayani, and Huang proposed a sentiment classification technique on the basis of distant
supervision. Their approach is quite unique and mainly focused on sentiment using emoticons,
but they show that small corpora still qualify to be classified statistically [32]. Bobicev and
Sokolova use an approach based on the compression technique PPM; it uses character context
models to build a probability distribution for predicting upcoming characters in the text [33].
Patel and Bhatnagar propose a system for classifying text messages (short messaging service;
SMS), they show a method that involves five steps using term frequencies with preprocessing
using stop-word removal and stemming. The features that they select are on the basis of term
weighing and Principal Component Analysis, a neural network is used as classifier. Unfortunately
they didn’t implement the system themselves and therefore no evaluation results are shown in
the paper [34]. In the paper “Short text classification using very few words” short corpora are
estimated in categories by shortening the brief texts even further, the key is to keep just the
words that represent the content the best. Sun makes use of both tf, tf-idf and suggest a custom
scoring function; clarity. Despite their results, which are just up to par, they advocate that
their method has great potential [35]. Then there is the approach of Duan, Li, and Huang, they
make use of rough set theory. Which is based on a mathematical approach on data vagueness,
described by their boundaries. A nearest neighbour approach is used to predict the true class of
unseen data, their results section show good results with F1 around eighty-six percent [36].

The data that is processed every day is coming from a variety of Dealer Management Systems,
this means that data that comes from different sources contain other types of information and the
ways that it is represented varies per DMS. If a classifier is to be trained to cover multiple DMS’
the selection of the features is a challenge. The main issue is the fact that uniform descriptors
are expected by classifiers. To cope with this, research has to be done in the most effective
way to fuse the data from the different sources into valuable features. This problem is related
to data cleansing[37][38], where a solution is sought for finding near duplicate entries in the
database. Further there is the data fusion problem where data from multiple origins has to be
determined which parts of the data should be used from which source to be able to find the best
combined state [39], an adequate answer for this problem will help in creating a good generalized
data set. An other problem that is more closely related is the schema integration or data
integration problem, Batini, Lenzerini, and Navathe show a spectrum of different approaches and
compare schema integration methods. Thieme and Siebes describe a schema integration method
in relational databases, and this approach is quite interesting and can partially be translated
to the problem we are to tackle; the different DMS’ data entities can be considered as different
objects they describe, the hierarchy can be seen as an inheritance over the DMS entities. They
formally propose a method for factorization and normalisation of subclasses into a single schema
[41]. As for every field; domain knowledge is important for the selection and normalisation of
the data during this thesis.

9

Chapter 3

Data Understanding

3.1 Feasibility analysis

RDC serves numerous dealers with their CaRe-Mail notification system. To provide the cus-
tomers of a dealer with useful notifications and doing this at the right moments, RDC uses the
DMS’ of their clients as main source for input. CaRe-Mail sets up the right information at every
configuration and this is pushed through numerous channels towards RDC, ready to be parsed
and evaluated. Since all the Dealer Management Systems differ in format and fields the parsing
of the data is quite complex and contains a lot of special cases. The acquisition of the data is
just as complex. For example; one dealer might provide direct access to their database, while
an other sends a structured file containing the information. One DMS configuration sends their
information with a history of one month, while an other uses retention of a whole year, this
data is passed in typical formats like XML and CSV. In this section I will attempt to shed some
light into the different information streams that orbit around CaRe-Mail and how this data is
processed. In the end I will try to summarize the data that is received and couple a decision,
whether we deem that the data suits the problem we are trying to solve in this thesis, or not.
Next follows a complete list of the Dealer Management Systems that are used with CaRe-Mail;

• Autoline

• Carfac∗

• CarIT

• CARLO DMS

• CarSys

• Darts∗∗

• D’ieteren∗

• Driver

• EVA DMS

• Gids

• Grand Prix

• I’Car

• iDAS

• Light

• MegaCar∗∗

• SternRent

• WinCar

• XPower∗

10

Figure 3.1: Usage of Dealer Management Systems

∗ - These are the Dealer Management Systems
that are solely used in Belgium.

∗∗ - Dealer Management Systems that are end-
of-life, and are phasing out.

Major, commonly used and remarkable Dealer Management Systems are mentioned here, for
the feasibility analysis data samples are added. Because of privacy concerns all of this data is
anonymized; license plates are randomized, identifiers modified and names are changed, et cetera.
As shown in the list there a lot of Dealer Management Systems that are supported by CaRe-Mail,
but not every DMS is just as popular as an other. In Figure 3.1 we see the distribution over all
the supported Dealer Management Systems.

3.1.1 General

The data RDC receives contains at least three sections Klant (customer), Auto (car) and Werk-
plaatsbezoek (workshop visit, the invoice lines). Some Dealer Management Systems additionally
serve more sections like; Plan (scheduled maintenance), Bedrijf (company), Verkoop (sells) and
Lease contracts. Since all entities in the files are relationally connected to one another each entity
has a unique identifier. As mentioned earlier both XML and CSV formats are used, the actual
format is not determined by the DMS itself, but this is configured during installation. The last
few years a transition is made from CSV to XML and this means that dealers that connected to
CaRe-Mail the last few years will use an XML format.

Klant

Every record contains personal details including name, surname, sex, address, city, zip code, date
of birth, telephone number and their e-mail address. Typical fields that are custom per DMS
are salutations in a letter1, fax number and possibly a chain store identifier that the customer
is associated with. Some Dealer Management System configurations even contain a flag for

1In Dutch we call this Aanhef. The words to be put in front of someones name ex.: Dear mr. Lentink or Dear
mrs. Jansen

11

identifying whether a customer is passed away. A perfectly suitable unique identifier would of
course be the nationally unique burgerservicenummer, the Dutch equivalent of the social security
number, it is however prohibited to store this number in digital systems outside of the medical
domain or government. For this reason identifiers are usually auto-incremented numbers.

Auto

The Auto section lists all the vehicles that are associated with the dealer. While the vehicles
often are passenger cars, they don’t necessary need to be. In some systems the license plate serves
as the identifier, others use an auto-increment, or the Vehicle Identification Number (VIN) which
is a worldwide unique identifier. The brand of the car and the specific type are usually stored,
along with the fuel type (diesel/benzine/electric/hybrid). A few Dealer Management Systems
also store information about deel 1 and deel 2, the so-called first and second part of the license
plate and transfer certification that couples an owner to the car. Some DMS’ have fields for
the next planned maintenance or the next routine checkup date, these can be either planned or
expected.

Werkplaatsbezoek

The Werkplaatsbezoek in the documents, often abbreviated as WPL, contains the receipt of the
finished maintenance done to the cars associated to the dealers. Most systems choose to store
receipts as a single entity, with a single description and price summarizing all labour and parts.
However other DMS’ store the invoice line-based. In the latter case every line describes labour or
parts separately. Together all the lines with the same identifier form a single bill. Generally the
descriptions in this type of storage are more elaborate than the former way of storing receipts.

3.1.2 The different Dealer Management Systems

Although a typical DMS essentially delivers the same fields, also within different configurations
of the same DMS others fields can be used. Fields depending on the configuration, will not
be explained in this section. With the exception of fields that may contain extremely useful
information for the data mining task.

iDAS

The iDAS Dealer Management System serves a file containing three sections; Klant (customer),
Auto (car) and WPL (workshop visit). In Table 8.4 we see a sample of the WPL section of
the file. As can be seen the Omschrijving (description) field is quite elaborate about the type
of service that is performed on the car, some description fields even start with the work code
number, as can be seen in line 5 of Table 8.4. There are also description fields which are left
empty altogether, in the current system these are skipped and never used. Classifying these
fields won’t be an option since no ground truth is known for these.

dmsId The id of the Dealer Management Sys-
tem that generated the output.

auto The license plate of the corresponding ve-
hicle. This field is a foreign key from the
Auto table.

klant Is the foreign key value for the customer
identifier from table Klant.

filiaal The chain store identifier that generated
the receipt for the car.

type A categorical value that should distin-

12

guish labour from parts.

soort The type of invoice.

datum The date that the vehicle was checked
in.

kmstand The mileage of the vehicle.

bedrag The total amount that was charged for
the maintenance.

factuur The unique identifier of the invoice.

factuurdatum The date that the invoice was
generated.

order The id of the associated order.

afdeling The division identifier.

credit Factorial value which flags if it either
contains a credit note or an original in-
voice.

opdracht The short description of the work
that was done.

I’Car

All the samples inspected from I’Car Dealer Management System were in CSV format, a default
configuration contains only the standard sections. For such construction the fields of the WPL
are explained in the description list below.

AUTOID The unique identifier of the car.

FACTUURDATUM The date when the re-
ceipt is generated.

FACTUURNUMMER The unique identi-
fier of the invoice.

WERKPLAATSDATUM The date that
the car entered the workshop.

FILIAAL The workshop establishment that
the car entered.

BEDRAG The total cost for the mainte-
nance.

KMSTAND The mileage of the car upon
leaving the workshop.

INTERNOFEXTERN Factorial whether
the maintenance is internal or external.

ONDERHOUD The maintenance descrip-
tion done to the vehicle.

One of the custom setups exposes an extra section; WPLD. In this section (see Table 8.3)
the invoice is split into a sequence of invoice lines. A line contains a portion of the labour with
costs, description and car parts used for that maintenance. Apart from these receipt lines, there
also are section lines (ISSECTIE = JA) which seem to only be there for markup purposes, a
section has multiple lines that are part of that section. A typical section could be a tire swap,
the lines that fall within this section could be for example; the actual tires with their part code,
the labour hours for the swap and the bolts that were used. Labour is distinguished from parts
by the arbeid (labour) field. It either has the value O for onderdeel, a part, or A for arbeid.
After inspection of the data we see that the A flag is used much more than O and it seems that
A is used for charging both parts as labour descriptions. In fact the total percentage of O lines
within the database is just under one percent.

There exists also are lines that have a negative amount, an example can be seen in Table 8.3,
second row. Negatively signed numbers seem to be used to round off the total price or to meet
an earlier agreed amount in the case the costs exceeds the price that was arranged on forehand.
The third row actually isn’t a replacement description it is an advice for the customer to replace
their timing belt. This means that these invoice lines sometimes are used as notes, which need

13

to be filtered out carefully otherwise it might pollute the data. When the customer decides to
follow the advice separate lines are added for the labour and parts.

Autoline

Autoline serves a XML document as can be seen in Figure 8.1, it distinguishes the sections;
Bedrijf (company), Klant (customer), Auto (car), Plan and WPL (workshop visit). In this
document every dmsdata-element in WPL-section is a single invoice.

dms id The identifier of the database that it
is generated in.

autonr The car identifier which is connected
to the sleutel of the database.

factuur bedrag The total price of the in-
voice.

km stand The mileage that the car has at the
moment of the workshop visit.

bezoek datum The date when the customer
visited the workshop.

vestiging code The identifier of workshop
that was visited.

menu code The code that is associated with
the type of maintenance in the input
menu.

factuur nummer The unique invoice identi-
fier.

details Open details field for the maintenance
description.

tarmagic Identifier for a specific link, in this
case coupled to the customer.

The field menu code quite interesting and serves as a sort of categorization of the work done
to the car, typically this field contains an abbreviations of the type of work. An example is tires,
shown as BAN (abbreviation of Banden) and LIC for lights, classification based on these codes
solely would be wrong since not only replacements but also repairs fall within these categories.
At the end of this section the classes are listed, one of them is tire swaps. It might be that
the menu code equals BAN which indicates tires, but that a rim change has been done, in that
case we do not want it to be flagged as tire swap, in that case we will need the details field for
clarification.

WinCar

WinCar is actually the first Dealer Management System that is being used during the transition
of the CaRe-Mail rebuild. The Windows oriented DMSWinCar has adopted the XML file format.
It has no additional sections apart from the fields that are default.

dms id The identifier of the database that it
is generated in.

faktuurnummer The invoice identifier which
is connected to the sleutel of the database

kenteken The licence plate of the car that vis-
ited the workshop. For this DMS the li-
cense plate is the unique identifier of the
car.

klantnr Klantnr is a abbreviation of Klant-
nummer which stands for customer num-
ber. The unique identifier of the cus-
tomer, coupled with an entity in Klant.

omzetsoort This field indicates the type of
revenue. It is used to distinguish lease
maintenance from private maintenance,
work for car exports and sales for ex-
ample. This is an factorial field having

14

around thirty levels.

p totaal The total price of the invoice. In-
cluding taxes.

p btw The tax costs of the invoice.

kmstand The mileage that the car has at the
moment of the workshop visit.

werkplaatsdatum The date when the cus-
tomer visited the workshop.

door The name of the mechanic that worked
on the vehicle.

vestiging The identifier of workshop that was
visited.

omschrijving A description field. Categorical

pakketten Work packages involved. Typical
packages are maintenance that is done of-
ten like APK, annual checkups and re-
placing breaks.

artikelen The parts that were associated with
the workshop visit.

werk Open details field for the labour done to
the car

codes Identifier for the work done to the car.

The fields pakketten, codes and artikelen contain comma separated lists of categorical fields.
These fields indicate the work done to the car and their parts and since they are categorical they
are quite easier to interpret then full text fields. As can be seen in the Figure 8.2, the sample,
the DMS data can be both original invoice lines but also credit notes, in case of a credit note the
original invoice exists also within the file. Although the codes give an easy way of interpreting
the contents of the workshop visit, these codes are not always set. The last record in the sample
shows the invoice of a Ford Fiesta car manual, this record is a example of a record that does not
contain the codes element. Admitting, the majority of the records do have a non-empty codes
field, but there do exists records with this field left empty.

Carlo

Carlo DMS is the product of ThinkRIT, a Greek company founded in 2009. Their Dealer Man-
agement System serves as one of the largest amongst dealers for Opel cars. For CaRe-Mail they
deliver the standard Klant, Auto and WPL. There exists however configurations that also provide
custom sections like Vest, which includes information about different corporation establishments.
These configuration fields are ignored by CaRe-Mail.

vin The chassis number of the car. This is
the unique identifier for the car in the
database.

bedrag inc The total costs including taxes.

km stand The mileage of the car on entry of
the workshop.

header Short description of the maintenance
that was done.

description Elaborate description of the
maintenance, including the parts used
and labour.

locatiecode The unique identifier of the work-
shop that was visited.

documentsoort The type of document.

ordernummer Unique identifier of the order.

factuurnummer The invoice unique identi-
fier.

factuurdatum Date that the vehicle entered
the workshop.

intern Boolean indicating if the workshop
visit was internal or external.

15

As can be seen in the sample every receipt line is stored in the description field in a XML-like
structure surrounding every line with a Description tag. This field is required and is never left
empty, the header field on the other hand can be empty. In fact just over 40 percent of the values
this section were left empty.

EVA DMS

The EVA DMS has a lot of custom fields in comparison to other Dealer Management Systems, if
we look at the WPL section we see 24 fields. To describe the work on the invoice it both contains
descriptions, multi-line, but also codes both for the type of line on the receipt (soortlijn) but
also for the work that has been done bruto.

dms id The identifier of the database that it
is generated in.

dms db The database used for the storage.

auto nr Unique identifier for the vehicle asso-
ciated with the workshop visit.

factuur bedrag The total price of the in-
voice.

km stand The mileage the vehicle has during
the visit.

bezoek datum The date of the workshop
visit.

nummerplaat The license plate of the vehi-
cle.

qwaarde A field that associates the type of lo-
cation, workshops for certain type of car.

factuurnummer The unique identifier of the
invoice.

intern Value indicating whether the visit was
internal.

factuurdatum The date that the invoice was
generated.

locatie The unique identifier of the workshop
that was visited.

omschrijving A delimited string containing a
description of the work done to the vehi-
cle.

bruto A delimited list of work codes of the de-
scription list.

aantal A comma separated list of numbers
containing the amounts of units of parts
used.

soortlijn Comma separated list of types of de-
scription in omschrijving field.

lijngeencorrectie Comma separated list, in-
dicates when a lijnsoort at that index is
empty or undefined.

interventiecode Comma separated list of
variables used to fill the soortlijn field.
Typically this is an array of alphabetical
values, fields that don’t need filling have
undef.

soortuurcodelijn This field has a comma sep-
arated list that indicates a type of labour
hours.

kch oms Factorial field used for warranties,
work for make a vehicle ready for delivery
etc.

fd oms This is a similar field to kch oms often
containing the same value, sometimes a
different one.

bedrag intern The costs made internal.

merk The brand of the vehicle.

klantnummer The unique identifier of the as-
sociated customer.

16

Gids

The Gids Dealer Management Systems is the fourth most used DMS that is connected with
CaRe-Mail. Gids have the sections DMS, which stores information about establishments contact
information. Then they have a customer section, KLA, a vehicle section, ATO, a section that
holds the salespeople VKO and a section with cars that are ordered/bought VVO. For the invoices
there is the WOK section that holds complete invoices as single entities. There are, however,
configurations seen where there also was specified a HIST section which contains separate invoice
lines that refer to the WOK via the invoice identifier. After checking the code of the current
system we discovered that this section never was used, missing actually interesting data. The
field definition of the HIST section is shown below.

car id The license plate of the car.

datum The date of the workshop visit.

factuurnummer The unique identifier of the
invoice, refers to the WOK section.

code The code associated with the work.

ks The mileage that the car had driven.

oh Boolean indicator whether this visit was
due to maintenance.

klant soort Categorical field (P = Person, B
= Company or L = Lease company).

type Categorical field containing one of the
following values; (ON,R,O,K,D).

omschrijving Description of the work done
during the visit.

aantal The amount of units, one when not ap-
plicable.

stk prijs Unit price of this line.

CarIT

From CarIT different configurations have been seen, with information both formatted in XML
as CSV. The example provided is one of the CSV format, see Table 8.1. The following field
definitions exists for this Dealer Management System;

car id The unique identifier of the car.

sec inv amnt exc The total costs of the
workshop visit.

woh mileage The cars mileage after the
workshop visit.

woh ord date The date that the car entered
the workshop.

factuurdatum The date that the invoice was
drawn up.

release date The date that the car exited the
workshop.

userid The customer associated with the car.

whs id Chain store identifier.

onderhoud Boolean indicating whether the
visit was for a maintenance checkup.

rob Boolean indicating whether ROB Net
transactional system was used.

As can be seen in the definition and the provided example this DMS does not contain a field for
work description or codes. This simply makes it impossible to determine the type of work that
has been done to the car. The onderhoud field does specify if a maintenance was done, but apart
from maintenance it the WPL section does not provide useful information for predicting other
classes. CarIT does provide an extra Plan section with the planned workshop visits. This section

17

unfortunately does not provide any extra information on the required data. Since the current
system only targets on recognising maintenance, it contains exactly the needed information, for
the classification for this thesis however the data is lacking valuable information.

3.1.3 Normalized data

For the current system all data from the various databases are normalized into a single database.
This database stores the receipt information as separate lines and classifies them on the basis
of every line and not on the basis of the complete receipt. In this database only the fields were
kept which could contribute towards successful classification. The schema has the column Oh
(onderhoud - maintenance), which is the field that indicates if a maintenance is detected in the
line.

Id The unique identifier within the database.

Auto dms id The unique identifier within the
original DMS.

Bezoek datum The date of the workshop
visit.

No The line number of the invoice.

Oh Boolean indicating whether the current
line is classified as maintenance service.

Soort Type of revenue.

Code The code that was associated with the
maintenance.

Tekst The textual description of the mainte-
nance.

Rule The rule that classified whether it is a
maintenance or not.

The first column, id, is the unique identifier of the receipt line in the normalized database not
the database where the record originates from. As mentioned earlier a receipt is split up by its
lines, but the original receipt can be reconstructed by querying the database for Auto dms id
and the corresponding Bezoek datum ordering by the No, the receipt line number.

In Table 8.5 we see a sample of the normalized data, the records shown in this example
have the normalized fields of a WinCar Dealer Management System. That the current system
still isn’t flawless can be seen in Table 8.5. WinCar has both work codes and description fields
(see Section 3.1.2), both could be used for classification and the system shows on which basis it
classified a certain line. The fourth row in the sample clearly states that a maintenance has been
done, but since the code of the receipt line 000001 is associated with Miscellaneous it ended up
as a false negative, because the code was the first criteria of the system. As can be seen in the
column Rule, all the classifications were on the basis of the code-field, if a classification was done
on the basis on the Tekst-field Rule would have referred to Tekst. The normalized data that the
current system emits may also be used to train a classifier, but as can be seen some potential
useful information is filtered out this view. For example workshop visit costs is missing, which
may be useful in determining the class. For this reason one of the research questions focuses on
effectively normalising data from multiple sources.

3.1.4 Multilingual

The CaRe-Mail product widespread under dealers and workshops, the most of their clients are
situated in the Netherlands, but also a few in Belgium. Belgium, that consists out of two parts;
Flanders and Wallonia, is bilingual. This addresses a new challenge in regard to the processing
of the free description fields. The Dealer Management Systems used in Wallonia, the French-
speaking part of Belgium, will certainly be filled with French also used in Flanders and the

18

Netherlands. Since there are proportionally less French clients the data provided will also be
less. In order to let the model also recognize the data from French fields correctly sufficient data
from these dealers need also be labeled and added to the training set. In the end it might also
be very well feasible to train separate models for the different languages.

3.1.5 Judgement on feasibility

The extent of richness of the data seems to be very dependent of the Dealer Management System
we are looking at. CarIT can be considered as a DMS that delivers few data, whereas WinCar
is one of the most rich data. The former does not contain any textual description or indication
what was done to the car, merely a field that indicates if the work that was done to the car was
a routine maintenance. And the latter containing multiple fields including codes, packages codes
and textual descriptions. This directly addresses the problem that some DMS’ or configurations
might not be suitable for recognition of the newly suggested labellings. The lack of descriptive
information makes it simply impossible to recognize some classes, the DMS example of iDAS
(see Table 8.4) is a configuration for which the description field is only used for maintenance
descriptions.

Also of some classes more examples will be available then others simply because they occur
less often; the prior probability of it occurring is much smaller, for training this must be taken
into account such that the truth data provided will not be skewed because this will hurt the
classification accuracy. The major part of the ground truth data was labeled by queries and
checked by hand, this means that there still may be some small amount of noise in the labeling,
but we are quite confident that this is not problematic during this thesis research.

As seen in Figure 3.1 there a total of 18 different Dealer Management Systems that are
supported by the system. But looking at the distribution we see that the first three Dealer
Management Systems together are used more often than the others. To make sure that the new
system will perform at its best for the most customers we need to take the distribution into
account when creating the normalized data and training the models.

Typical language processing models take parts of the corpus and use proportional frequencies
to create classifiers. These models however often omit numerical data and special characters like
hyphens, quotation marks etc. Such characters are however often used within the description
fields for work codes, types and serial numbers of parts. To be able to create the best classifier
possible these descriptions may be very useful, during the creation of textual models this has to
be taken into account.

In conclusion the data seems to be of the right quality to be used for classification purposes.
Some Dealer Management Systems simply don’t provide the right information to detect certain
classes in the data, which is no problem for now, since CaRe-Mail doesn’t detect those classes
at this moment in the first place. Further the data from all the Dealer Management Systems do
not directly fit well in training a model, for this a normalisation step has to be done.

3.2 Current system

Since CaRe-Mail is an existing product within RDC, they already have a current solution for
their product. This solution has been built throughout several years in the language Pearl. Every
Dealer Management System has a custom implementation for the classification of the receipts,
this means that variations in input from the Dealer Management Systems will immediately be
felt in the change of recognition rate. The classification of the data takes place in a few steps.

At the side of the dealer the software first is set up to send data toward RDC every night. A
dealer has the so-called CaRe-Mail ROC hub (read-only connector) in place that is responsible for

19

sending the data. This hub directly connects to the Dealer Management System that they have
installed. It often is a physical single board computer that checks periodically if information was
set staged for it to be sent toward RDC. The connector has a manual implementation by RDC
and has no association with the Dealer Management Systems they support. Most companies
behind the Dealer Management Systems aren’t co-operative in providing the right data, the
information that is sent by the ROC hub is gathered manually and selected earlier by RDC when
they started the CaRe-Mail system.

Now that the data push is set up on the dealers side, we need to interpret that data. Since
data that is pushed towards CaRe-Mail contain no delta information, and in fact could already
be processed already a delta is done upon receiving the files. This difference check happens
file-wise, and only changed and new entities are then read in by the system for processing. All
connected dealer have a custom integration for CaRe-Mail. This means that a lot of maintenance
is done for many implementations. All these customers have their own database with their invoice
lines, cars and other sections of the files that their Dealer Management System delivers. All of
dealers that have the same DMS share the same parser, but within these parsers there are still
deviations. One might use a code for one type of work while an other uses the exact same code
for other labour or parts, others do share codes or descriptions. During a classification pass
different regular expressions are evaluated against the invoice line, if they match the lines are
marked as potentially maintenance. For these potential maintenance lines a second check is done
where the line is ran against a set of exceptions regular expressions (like: ’last’ or ’advice
s?:’). If none of the exceptions’ regular expressions match, an invoice line is finally marked as
maintenance. Regularly dealers contact RDC for refining their recognition system, they request
if certain terms or expressions could be added to the expression list.

The classification in the current system is based on the recognition of maintenance and
whether a maintenance was marked as internal or external, other classes are not recognized. The
recognition of maintenance and internal visits are unrelated, the internal flags simply marks if
the workshop visit was not charged to the customer, this could be maintenance that is done to
make a car ready for delivery. Or may be work that has to be done to the car because of damage
that was caused by the mechanic. Because we typically do not want to bother the customer
with these kind of repairs CaRe-Mail distinguishes internal and external repairs. Various Dealer
Management Systems have a boolean field indicating whether the workshop visit was internal
(see Section 3.1). As for the maintenance recognition, we saw earlier in the Normalized data
section (see Section 3.1.3) a bit is added serving as a boolean indicating maintenance.

20

Chapter 4

Data Preparation

4.1 Ground truth

RDC possesses a few hundred receipt lines for which the true state is known. This information
will be used for the training procedure of the statistical models, but it is not directly useful since
the ground truth is only known for the classes used in the current system; maintenance or not.
Further there exist deviations in the number of available labeled data per DMS. For some of
the Dealer Management Systems more truth data is available than others and few don’t have
examples available at all.

The product owner of CaRe-Mail put out a list of the most valuable classes that are to
be recognized in the invoices. The list exists of vital parts for the car’s functioning, parts that
people are anxious about when they malfunction and services and checkups that are of a periodic
nature. These criteria resulted in the following list;

1. Routine maintenance

2. V-belt

3. Car battery

4. Timing belt

5. Tire swaps

6. Air conditioning

7. Brakes

Figure 4.1: The class labels defined that should be used during classification

As mentioned earlier the current system just divides the data into two classes; maintenance and
non maintenance. For the new system the list in Figure 4.1 is used, of course this is an incomplete
list of all classes that could be distinguished in the data, for this reason an additional class is
introduced; other which is collective class for everything that does not fall within the classes in
Figure 4.1.

4.1.1 Manual labeling

For the all Dealer Management Systems we have labeled all the data manually. An example for
DMS I’Car, a file received in December 2015, containing almost 330,000 receipt lines. When we
filtered out all the section lines (see Section 3.1.2) we were left with just under 250,000 lines.
First we ran the expression list that is used in the current system (see Section 3.2) leaving out

21

the lines containing words from the exceptions list for the routine maintenance classes. For the
other classes we composed our own lists of words that identified these classes, typical words
would be the translations of the class names, abbreviations and synonyms. But since context
for the receipts often is extremely important for the class label, everything has to be checked
manually afterwards.

Then the automatic labeling a manual pass was done over the labeled data to verify the
labeling and correcting them when errors were found. Over one third of all records were given a
class label using the automatic labeling pass. Around 10,000 of these needed manual adjustment
in the next pass. For a small amount of the data the ground truth could not be determined,
these records were discarded, together with multilabel receipts. Because labeling by hand is quite
labour intensive we used grouping queries for our database to label more efficiently. Grouping
works pretty well because of the large number of the total order lines share the same description
and price. In the end all data was labeled using the expression lists and by hand with the help
of grouping queries.

Class # Class #
Maintenance 1522 V-belt 3
Timing belt 11 Brakes 6
Tires 1770 Airconditioning 19
Battery 13 Other 6493
Mixed 55 Total 10020

Table 4.1: Manual labeling of Autoline invoice lines

In Table 4.1 we see an example of the distribution of classes among a manually labeled data
set. As can be seen some types of labour happens more often than others. Which makes sense
since some parts of course have a shorter life span than others and maintenance and tire swaps
are of a periodic nature and therefore appear more often. An other reason might also be that
dealers often charge more for workshop visits, and that customers prefer cheaper garages that
are less expensive.

An other challenge arose while labeling; the ambiguity of some words. While labeling the
samples from an I’Car DMS I came across some invoice lines (in a WPLD section) with the
OMSCHRIJVING having; RIEM which is the Dutch translation for belt which is ambiguous.
It could be the V-belt just as well as the timing belt. In fact there are more parts within the
car that can be indicated with belt. In this DMS the CODE field gave the definite answer on
what kind of belt we were looking at; it contained a code number of the car part. When I did an
online search on the car part type number, in combination with the car brand I quickly found
that some of these lines were in fact V-belt replacements and some timing belts. But I also
discovered that some of these lines referred to the replacement of a fuel tank strap, which is a
type of replacement we don’t want to classify at all.

4.2 Invoice entity

In the previous sections we have seen that data is stored quite differently in the Dealer Manage-
ment Systems. To cope with these dissimilar information streams a step is proposed for making
the data uniform, this covers a great portion of this thesis. But a decision that is just as im-
portant choice as the normalisation of the data is what we want to assign as main entity for
classification. In this section the options are listed and for each of these their advantages and

22

disadvantages are mentioned. An assessment at the end concludes this chapter and is considered
fixed throughout the rest of this project.

While looking at the data feasibility study that was done earlier (see Section 3.1) we see that
there are essentially three different types of invoices; complete invoices, invoice lines, combination
of complete invoices with invoice lines. The difference in these types of invoices are in the way
they are built up; a complete invoice contains everything that was done during the workshop
visit in a single entity, there is no separation between different tasks and parts recognizable
on the receipts. Then there are the invoice lines, these consist of merely a single line of work.
When all the lines are put together that share the same invoice number a complete invoice can
be recreated, often this type of invoice storage has some degree of data redundancy often in
the form of storing the date, invoice number and customer identifier. And lastly there is the
hybrid solution between these two former invoice storage mechanisms. These Dealer Management
Systems store the actual invoice in a separate table of the lines that it is built up of. The actual
invoice will, for example, contain all the global information like the customer, date, car identifier
and mileage, whereas the lines will contain the detailed information with work descriptions and
car parts.

4.2.1 Complete invoices

The complete invoices have as advantage that they store all the available information for a single
receipt at one place, this makes sure that the training procedure has sufficient data to work with.
The main disadvantage is that within a single invoice multiple types of repair may be done. It
is not unusual that the timing belt replacement is done along with the V-belt, when this occurs
these receipts can not be used for training. When normalising invoices that are stored in other
formats, this type of storage has as advantage that it does not need any heuristic to build up
the invoices, the other approaches will need some sort of splitting method for separating a single
invoice to multiple lines. While some Dealer Management Systems do have line endings, comma’s
or periods that may be used for this but if a wrong splitting method is chosen it will affect the
performance.

4.2.2 Invoice lines

The other option are invoices that are separated, these have the advantage that they less often
describe multiple classes. Distinct invoice lines, however will make a proliferation on the amount
of entities that has to be processed; an invoice has an average of 13 lines. Because multiple
entities per invoice will be classified the results of these classifications may contradict each other.
Some fields indicate routine maintenance, while others might indicate that it was actually a
winter checkup (a optional inspection that can be done before a winter sports trip).

4.2.3 ’Hybrid’ invoices

The hybrid solution has as biggest advantage that it no redundant information and per line
stores the price of certain part of the invoice, but also has the complete invoice entity which then
stores the complete costs. This approach has however two disadvantages; this first being that it
is extremely hard to convert other DMS to this format and the latter that the data is essentially
stored in two different entities which is not supported for generating models.

Now we have seen the different (dis)advantages of the different invoice entities we will start
off by referring back to the statement made in the beginning of this section; we are looking for a
single entity to be used for classification. And because the third way of storing essentially deals

23

with two entities (that are strictly coupled) we do not consider this type of invoice storage as
desired. This leaves us with two possible candidates; the complete invoice entity or the line based
entity. The CaRe-Mail team has the ambition to recognize every work that is done to the car and
make it possible for the customer to select customers that had recent maintenance concerning
some parts. Entities on the basis of complete invoices seems for this reason less attractive
since during a repair often multiple parts are replaced at once to save labour costs, in practice
workshop visits are generally multiclass. Different binary classifiers for each class might be able
to recognize these multiclass invoices, but these classifiers might be hard to generate when we
are using the same entities to train them; it might find characteristics of an other, unassociated,
class. Although multilabel classification is not considered in this thesis, possibilities to extend
the support will be kept in mind for possible future research. A big disadvantage of the line
based entities are the conversion from complete invoices to the separate lines. During the data
understanding and preparation phase it became clear that the most invoices had some sort of
punctuation that could be splitted on to divide the invoice in to small portions that semantically
still made sense. For these reason the invoice line based entities will be used; this means that
the normalized data structure that is researched will be one on the invoice line level and Dealer
Management Systems that serve invoices that are laid out differently will be mapped to lines.

4.2.4 Acquiring uniform data

The first research question mentioned was concerning variety in data fields and how this data
could be made uniform to tackle the incompatibility between different Dealer Management Sys-
tems. As posed in Section 1.4 we want a uniform schema that covers the largest subset of DMS’
and their respective fields which maximizes the evaluation performance of the algorithm. This
brings us a maximisation function in which we want to maximize the sum of these two vari-
ables. The difficult part of formulating this function is the fact that the weights that should be
attached to these variables are unknown and are hard to get by at all. The problem is due to
two problems. The first being that there is no clear scoring function for largest set coverage of
the DMS’ in the uniform schema’s and secondly how important is this coverage considering the
evaluation performance. To illustrate these questions I will provide two extremes as examples,
these were briefly mentioned in the Research Questions explanation.

The first extreme is that of maximising the largest subset; we essentially want two complete
set to me formulated in a single uniform schema. For this simple example we exclude all possible
transformation. In this case we will take the intersection of all the Dealer Management Systems;
and there are just two fields that exist in every DMS the invoice identifier and the date are kept.
Intuitively one could already guess that these fields will not help towards correct classifications.
Now of course with some transformations (merging/cleaning/splitting fields) other fields could
be added/created to keep interesting fields.

The second extreme is towards the maximisation of the classification accuracy. For this we
want to make sure that every field is used, obviously in this case we want to chose to use a
different model for every DMS. But custom implementations of a DMS might have deviations
in fields and sections and we could chose to narrow the classification scope even further and
generate a model for every implementation.

Now we will try to find the best accuracy/DMS coverage ratio. The fields of the different
Dealer Management Systems will be mentioned and then explained how they could contribute
towards towards better classification results. When a field is not present in a certain subset
of DMS’ or might have an other format an explanation will be added how the information is
transformed and used ultimately.

24

4.2.5 Invoice details

We start with arguably the most obvious field, the invoice description field. This field is one of
the most important one for the recognition of the data; as mentioned in the Judgement section,
at the end of the Feasibility Analysis (see Section 3.1.5), it is extremely hard to determine the
true class of an invoice without this field. Hence, this field has to be included in the normalized
schema. The only DMS which misses such a field is CarIT, for this DMS the field will be left
empty.

If we take a look at the WinCar we see that this Dealer Management System also exposes
separate fields for packages (pakketten and parts artikelen). While these fields contain interesting
information, no other DMS has such fields, so we chose to map these fields to the invoice details
and create separate invoice lines from the other fields.

Further; the usage in the training model will not be the entire field but will be of the n-gram
approach. Every n words will be converted to a field which will contain a boolean or the number
of occurrences in the description.

4.2.6 Part/labour

Some Dealer Management Systems have been seen that distinguish invoice lines that contains
parts from ones that represent labour. During data labeling in the data preparation phase I
came across some invoices lines for which I could not directly determine the class label. An
example is a line which had in its details field merely ’distributie’, which translates to timing
(as in timing belt). Now these types of lines are hard since these parts do not only get replaced
but also tightened and may be other maintenance. But since this line was marked as ’part’ it is
obvious that this is a replacement, since otherwise no new timing belt was needed.

As mentioned in the previous Invoice details section we mentioned the WinCar fields pakketten
field and the artikelen. To keep this information we will make the part/labour field categorical
with the values labour, part or package. In our normalized model pakketten will be mapped to
package and artikelen to part.

4.2.7 Unique car identifier

Every invoice is coupled to a car using a unique key in the DMS. Particular Dealer Management
Systems use either the license plate of the car as identifier or the vehicle identification number
(VIN). Although these identifiers are of a random, generated nature, they are important for the
CaRe-Mail system after the classification was done by the model. For this reason this field will
be added to the normalized model and will be omitted during training and classification.

4.2.8 Customer/invoice identifier

Self-evidently an invoice is coupled to a customer, this is done with a customer identifier that
refers to a person entity in the customer section (see Section 3.1). Just as the car identifiers
these are often incrementally generated and do not add useful information, the same holds for
the invoice identifier. For the same reason as the previous case these fields will be added to the
schema but will not be used during training.

4.2.9 Chain store identifiers

This field is quite interesting. We’ll start off mentioning that not all Dealer Management Systems
have fields on chain stores, some for the simple reason that no chain stores are connected and

25

Figure 4.2: Average invoice costs in euro based on a WinCar export

others just do not store the information. Now at first sight this information might not seem to
useful, because one might think it should not make a difference if a car was checked in at one
workshop or an other. But during the data understanding phase I became familiarized with the
data of most DMS’ and correlations could be seen between car brands and workshops. The data
tells that it is likely that some chain stores are specialized in certain brands. Although this is
interesting information, during labeling no correlation was to be found in the class label and the
chain store association.

4.2.10 Date

Every invoice has a date on which the invoice was drawn up. Since some of the classes we
distinguish are planned for certain seasons, think of snow tire swaps which happen around Oc-
tober/November, we could use this field during class prediction. Since dates are hard to work
with for classifiers we might want to convert this date field to a categorical field contains the
month of the year. The year itself is not really interesting in this case since we do not provide
any information on the maintenance plan.

4.2.11 Mileage

Most of the Dealer Management Systems also register the car mileage when they enter the
workshop. Dutch garages are obligated to register and report the mileage of the cars during
annual MOT test and repairs for which the cost are above a certain amount. The mileage gives a
good indicator for types of maintenance, periodic ones always happen on the basis of the driven
car distance. Invoices on which no mileage are provided we might want to fill with NULL.

4.2.12 Costs

As mentioned earlier in this thesis the potential significance of the workshop costs were explained.
For completeness I gathered some statistical information to back this claim, now that we have

26

labeled the data this is easily possible. As can be seen in Figure 4.2 the average costs of the classes
we want to identify are multiples of the average workshop visit invoice charges. This proves that
the maintenance we want to identify are indeed costly and that classification algorithms may
benefit from having this field. For this reason the price will be added when available.

Now the statistics shown were that of complete invoices, meaning that the prices were the
total of the workshop visits, but for the line based storage we often also have the price of a
certain part (or labour) available. With these unit prices no other parts/labour cause the price
to go up. Unit prices will be added to the schema and nullified when not available, further when
total prices are not available but unit prices are we will use the sum of the unit prices as the
total costs.

4.2.13 Amount

The amount field often refers to the amount of materials used during the repair. This field is
interesting for invoices that, for example, mention the refill of brake fluid where often the amount
in millilitres. This field will be useful for telling the difference between the replenishment of fluid
or the replacement of the actual brakes; an amount of 200 millilitres brake fluid makes sense
whereas replacement of 200 brakes does not. The model may get to the same conclusion using
this field. Empty NULL values will be used when this field is unavailable.

4.2.14 Invoice header

A few of the invoices also mention some sort of header information. Sometimes these headers
are coupled to a few invoice lines and others have a single header assigned to complete invoices.
These fields can be either categorical fields (usually containing text like onderhoud or diversen)
or free text fields that leave room for the mechanic to fill. The I’Car DMS has header information
stored in so-called section lines, these are the lines that have the value JA for the field ISSECTIE.
For I’Car it is however not directly recognizable which invoice lines are associated with which
section.

4.2.15 Codes

The usage of codes are extremely helpful in the recognition of the invoices. Autoline provides
menu code information which are predefined codes which can be used to create receipts for all
types of workshop visits. These codes are a three character identifier, usually an abbreviation
of the work, although most configurations of the Dealer Management System share the same
meaning for the codes in the current system there are quite a few custom implementations for
CaRe-Mail customers. Apart from the menu codes in the Autoline DMS there are also code
numbers in the invoice lines descriptions. The WinCar Dealer Management System has codes
associated with work and EVA DMS has the field bruto which is an optional field containing the
type of work similar to menu codes in Autoline.

4.2.16 Vehicle brand

Although few Dealer Management Systems really provide a field that contains the brand name of
the car for every vehicle in the database it is possible to trace back the brand using their license
plate number or the Auto entity that it contains. Apart from the fact that some car brands
need replacement of certain parts earlier than others the data in our database does not show real
differences across the various brands. For this reason we will not include the car brand to the
normalized schema.

27

4.2.17 Maintenance

CarIT, as shown in Section 3.1, is the only DMS that contains no free text field containing
information about the work done to the car during the workshop visit. This Dealer Management
System has a boolean to indicate whether the visit was a maintenance. This field is of course
very interesting for the recognition of routine maintenance (class label 1) and should not be
omitted since this is the only way for CarIT to recognize this class in their data files. In our
normalized schema this field will be represented by a nullable bit which will only be filled if the
source contains a value (1 or 0). Otherwise it will be set to NULL.

4.2.18 Dealer identifier

Although the dealer identifier itself is nothing more than a auto-incremented number that as-
sociates the dealer with the rest of its data, it might come in helpful when it is used together
with other fields. Imagine that there are two different dealers which both use the code OND.
The first one dealer will use the code to identify onderhoud (maintenance) and the latter will
use it for onderzoek (investigation). Now for the generation of for example a statistical decision
tree splitting on the code OND will not result in a high impurity reduction so we may want to
add this field to make it possible for the model to split on that field after a split on the dealer.
While, traditional classification trees will not decide to split on the dealer id because of the ini-
tial impurity reduction, more advanced algorithms are available which look ahead. Also, random
forests generate a whole set of random classification trees on random decisions (see Section 2).

4.2.19 Internal visit

A few Dealer Management Systems have a field that indicates whether the car was brought in, or
that a repair was done internally (more on this see Section 3.2). Because the field is available in
just a few of the systems including this field will result in an enormous amount of empty values,
which is not what we are looking for in a data set. Further the field does not appear to have any
correlation with one of the class labels we distinguish. For these reasons the internal visit field
will not be included in the normalized model.

4.3 Approaching the data

Now that we defined the data entities there are still some considerations to make to approaching
the data.

4.3.1 Relational entity integration

In many DMS data a relation is defined between, for example, the workshop visit and the car
associated. Or a relation between the workshop visit and the customer. These relation may
have interesting data e.g. some Dealer Management Systems have been seen where information
about planned routine maintenance are included which can be used as an indicator whether a
receipt that is considered actually is a routine maintenance. This information, however, will
not be included in the current model. The reason for this is that millions of data needs to be
processed on a daily basis and these operations result in data joins which press heavily on the
evaluation time. Further, the current system also does not join this information to determine
whether maintenance took place.

28

4.3.2 Misspellings

As mentioned earlier one of the challenges is that of the identification of receipt lines even when
misspellings occur in its body. This is problem closely related to the approximate (or fuzzy) string
matching problem. Often a distance measure is used to distinguish faulty spelled words from
correct ones [42], a typical algorithm looks at a corpus of text and checks the word frequencies.
Since misspelled words occur less often than correct ones, the frequencies are used to retrieve the
words. Next, they are compared to other words using the edit distance. Meaning; what is the
minimum of operations that has to happen to transform string a into string b, the operations
include the deletion, insertion and substitution of a character.

4.3.3 Verb conjugation

Apart from misspellings verbs can be conjugated in many different ways depending on the tense
and context, these conjugations are solely meant for human interpretation but do not contribute
to the meaning of the word itself. To make sure that the different forms of the verbs are
interpreted as the same word by the algorithm a stemming algorithm can be used. We will look
for suitable algorithms to do this efficiently during feature generation. In the end we will evaluate
whether the use of this type of algorithm will contribute to the classification score.

4.3.4 Compound words

The Dutch language knows the notion of samenstellingen, compound words, this enables an
author to write different words that form a unity as one[43]. An example would be the word;
voertuigregistratiesysteem which means vehicle registration system. In the end there can be in-
finitely many compounds built up from all words, in informal written Dutch compound words are
sometimes written as their separate elements. When these types of writing styles are both used
they may affect the accuracy of the classification. In [44] some compound splitting algorithms
are considered. In this thesis we will be looking at the possibility in integrating such algorithm in
our experiment and take a look how the method changes the models classification performance.

29

Chapter 5

Modeling

5.1 Models

For the classification of the invoice lines different models will be trained and compared against
each other. In this section the main models are briefly introduced and discussed. For in depth
overview of the models we refer to the citations of this section.

5.1.1 Decision tree

A decision tree is a hierarchical model that has a finite number of recursive splits on provided
features. The trees we will be using are binary and thus has exactly two child nodes or 0 for
the special case that it is a leaf. A more formal definition is the following; a decision tree T is a
set of n ≥ 1 nodes; T = {1, . . . , n}. Every node contains a decision function which has a binary
outcome; either 0 or 1. The possible values of the function are that of its branches. Given an
input the tree is traversed through the different nodes evaluating each decision function, when a
leaf is reached the output of the local decision function is used as output of the model given the
input.

A typical tree is constructed using a data set and an impurity function. Such impurity
function is a function that calculates the distance to a ’pure’ state, where all data is successfully
split into its appropriate labels. A split is generated based upon the impurity reduction, which
calculates the gain in purity for a chosen split. At each node the best possible split can be
calculated and this way a decision tree can be constructed.

In Figure 5.1 we see an example a decision tree model for the classification of Titanic survivors.
In each node we see a query that answers either true or false. Following the left child would be
if it is true and right when false. Traversing the tree leads to leafs where we predict if a certain
passenger either survives or dies. In these leaf nodes the probability of the survival can be seen,
together with the percentage of the observations in that leaf.

30

Figure 5.1: A sample of a decision tree showing the survival of the passengers of the Titanic

Decision forest

Decision forests are basically an extension of the decision tree model. There are a lot of variants
of decision forests, though the basis of their training and evaluation are largely the same. As
the name forest indicates it works with a set of b decision trees where the output of the different
trees are averaged (or a voting scheme). A typical forest has a large set of trees 100 < b < 104,
dependent on the data set. The trees 1 . . . b are constructed by sampling a subset of the data
to train on. The random forests have a slight variation on this: at each decision node a subset
of the available features are randomly selected which can be chosen. Note that the maximized
impurity reduction still is used to select the optimal split from the feature subset.

5.1.2 Bayesian network

A Bayesian network is an acyclic directed graphical model that represents events as nodes and
edges between the events are conditional dependencies between them. The name Bayesian net-
work comes from Bayes theorem which is where the network is based on. Bayes theorem is on

that of conditional probabilities; P (A|B) = P (B|A)P (A)
P (B) . Here we have P (A) and P (B) as prob-

abilities for event A and B without regard to each other. P (A|B) is the probability of event A
given that event B is true. And P (B|A) is the probability of event B given event A is true, these
are conditional probabilities. The Bayesian network has a great advantage; its design makes it
easy to interpret and to understand domains by studying the network. One could learn a lot
by just observing the events and dependencies within the network about the domain. Also, the
algorithm for generating probabilities from the Bayesian network take into account unobserved
information very well. A disadvantage is however the computational complexity of calculating a
probability of a event happening. An example of a Bayesian network can be seen in Figure 5.2.

31

Figure 5.2: An example of a simple Bayesian network

As can be seen it maps the events and causalities concerning a traffic jam. The relation

A → B can be read as event A causes event B, this can be observed with a given probability.
Further all the probabilities in the graph are dependent upon the evidence. One might imagine
that the probability that there was an accident is greater if we have observed that we are in a
traffic jam. And we might be more sure if we also observe that it’s pouring rain.

Naive Bayes assumption

As explained the traditional Bayesian networks are quite computationally expensive. Since this
is not practical in situations where speed is preferred over accuracy there also exist the Bayesian
networks that have a Naive Bayes assumption. For this network we only model the variable
we are interested in for prediction and then drop all the edges between other mutual relations
with the other variables. This means that every variable has just one parent relation, and this
way it is computationally very fast. If we take the previous example we simply specify the class
we are interested in as parent, in this case we want to predict if there is a traffic jam, and all
other variables we set as its children. Now this graph can be seen in Figure 5.3 and can be
read as traffic jam causes rush hour, bad weather, accident and sirens. While this is strictly
incorrect the model will performs quite well in most of the cases [18], with the advantage that it
is computationally multifold faster.

32

Figure 5.3: An example of a Naive Bayesian network

5.1.3 Support Vector Machine

A Support Vector Machine classifier is a non-probabilistic binary linear classifier. A Support
Vector Machine is constructed by sampling all the data in a space, associated with its class label
and will look for the maximal margin hyperplane that separates the two classes the best. The
margin is the distance between the decision boundary and the closest point. The classifier works
using the function f(x⃗) = Sgn(w⃗⊤x⃗ + b) where f(x⃗) ∈ {−1, 1}. The separator hyperplane is
defined by w⃗⊤x⃗ − b = 0. When looking closely we can see that the position of the hyperplane
is determined only by the samples closest to the edge of the cluster of both classes. Taking
only these vectors is computationally more attractive, when determined these vectors will be the
support vectors of the hyperplane. When evaluating the data is sampled in the vector space and
based on its position relative to the boundary. The predicted class is the sign of the relative
distance to the separation hyperplane.

Now since not all the data is linearly separable the algorithm would not create a suitable decision
boundary to separate the data in these cases. To cope with non-linear data Support Vector Ma-
chines may use kernel functions where it will try to map the samples to a higher dimension where
the sets of samples of the two labels are separable. In Figure 5.4 we see a visual representation
of a Support Vector Machine. We have crosses and circles, the crosses represent one class and
the circles the other. Now these two classes are separated by a margin. In the figure the lines
are the decision boundaries. As you can see both lines separate the two classes perfectly, but the
red one does so while maintaining the largest distance between the two classes. So this means
that the red line is preferred for our example.

33

Figure 5.4: Visual representation of a Support Vector Machine

5.1.4 Neural Networks

An artificial Neural Network is a model that is inspired by the workings of the brain, where sets of
neurons react to impulses. A network consists of neurons, that are either input, output or hidden.
The first nodes are input nodes where data is provided to the network, the input is processed
through the hidden neurons, which are divided into a number of layers. A traditional neural
network passes the information from input towards the output layers passing connected neurons
in each subsequent layer. In each neuron there is a transformation function that transforms its
input and propagates it further through the network. When training the network with backward
propagation we consider the output of the network and compute the error in comparison with
the desired output. We do this for every neuron from the output backward to the input to find
the local error in every neuron. After the training, the network is ready to evaluate against new
input, all the output neurons will receive a value. For classification we need to examine all these
outputs of a neural network and return the class that corresponds to the output with the largest
value.

Figure 5.5: A sample of Neural Network

34

5.2 Feature generation

As earlier mentioned in this thesis we opted to use the edit distance for the comparison of the
different description fields of the invoices, mainly to be able to find misspelled words. As basis
for our algorithm we used distance measure proposed by Levenshtein [45] and conclusions made
by Damerau in his paper “A technique for computer detection and correction of spelling errors”
[46]. This algorithm is often referred to as the Damerau-Levenhstein distance, the algorithm gives
the distance between strings based on edit operations. Levenshtein proposed insertion, deletion
and substitution operations to transform one string to the other. Each of these operations has
a cost assigned to performing the operation. Usually insertion and deletion have a cost of 1 and
depending on the implementation substitution has 1 or 2. Damerau also introduced the transpo-
sition operation; where two adjacent characters may be swapped as a single operation whereas
in the original algorithm two operations were needed; a deletion and an insertion. Further he
states that approximately 80 percent of all misspellings can be corrected by using these simple
operations[46].

For this project I developed a custom implementation of this distance measure and introduced
a weighting schema that is based on the key distances of the QWERTY -keyboard. The greater
the distance is between an expected character (that of the original string) the greater the error
and the penalty for that character. Now apart from misspellings due to hitting the wrong key
on the keyboard it may also happen that keys are pressed that look similar. Examples are the
lowercase version l and the uppercase I or the letter o and the number 0. People that aren’t
able to type blindly may confuse these characters with each other when typing, but we will not
take this into account since, luckily, QWERTY has these characters mapped quite close to each
other on the keyboard and thus our distance algorithm will be able to cope with these faults. We
chose for using the keyboard as distance weighing since this is the most common mistake to be
made for known words, other techniques for weighing may include phonetics but errors because
of phonetics usually happen for unknown words or names, which is not really the case in our
situation. We started off mapping the keyboard keys to a two dimensional matrix where every
cell contains a character with an X and Y value. The scoring function for the distance between
two keys is described in the following equation:

Scoring = 1− 1

2δ − ϵ

Here δ is the Euclidean distance between two keys on the keyboard, using the indices of the
keys mapped in the matrix as dimensions. ϵ is the weighing of the distance between the keys.
The higher the value the less strict the scoring will be on the distance between two characters.
Obviously not all characters are mapped in the keyboard mapping, so in this case we return
∞ which will result in an equal scoring to every other operation of the Damerau-Levenshtein
distance. Because we are only interested in strings with relatively small amount of misspellings
we introduce also a stopping criteria that stops the calculation of the edit distance after the
distance is already greater than a certain provided threshold.

Now when generating features for the different models we use our implementation of the Damerau-
Levenshtein distance to weigh in misspelled words from in the unseen corpus; we do this using
an optimized version of the algorithm below.

35

input : N-grams W extracted from corpus. And input word I that is to be evaluated.
output: A feature vector for the corresponding input.
Variables

ϵ: The maximum distance

Function GenerateFeatureVector(I, W)

features := array[|W |]
if W ∩ {I} ≠ ∅ then

idx :=IndexLookup(W, I)
features[idx] = 1

else
for i := 1 to |W | do

w := W [i]
d :=DamLev(I, w)
if d ≤ ϵ then

features[i] = d/ϵ
end

end

end
return features

Algorithm 1: Damerau-Levenshtein misspelling correction for feature extraction.

The algorithm first checks if the new word is known by the trained features, if so it sets the
feature at its corresponding index to 1 (the index is retrieved in the IndexLookup function). If
the input n-gram is unknown to the bag of words it will use the DamLev (Damerau-Levenshtein)
to check if the input n-gram qualifies as a misspelling with ϵ as maximum distance to consider.
For the matches a value is set to the feature vector and in the end the entire vector is returned,
ready to be compared with the other feature vectors.

5.2.1 Stemming

Stemming algorithms are developed for the purpose of stripping verb conjugations. These algo-
rithms are used for natural language processing and will most likely not generate grammatically
correct stems of the verbs, but will uniform the same verb that is conjugated differently to the
same stem. Typical algorithm will strip these suffices from verbs without prior knowledge of the
original verb. We will be using Porter algorithm to test if stemming the description texts will
increase accuracy with classification [47]. More specifically the Dutch implementation of Kraaij
and Pohlmann will be used [48], although the more sophisticated of Gaustad and Bouma[49]
performed a more accurate stemming, the requirement of an dictionary for mapping makes it
unattractive to consider for this thesis.

5.2.2 Compound words splitting

Earlier we mentioned about the already existing algorithms for breaking down compound words
into their separate words. We want to use one of these methods to test if it may improve the
accuracy for our models. After some search we did not find an algorithm which could easily be
integrated in to the .NET application we are looking for. For this reason I have formulated my
own compound word splitting algorithm (Algorithm 2), that returns possible split words based
on an earlier generated dictionary (unigrams).

36

input : A suspected compound word x and a list of all words W (candidates).
output: The words that x was built up off, otherwise an empty set.

struct {
Set result := ∅
Float score := −∞
Integer numLeftChars := ∞
Integer numCharPos := ∞

} CompoundCoverageResult ;

Function SplitCompound(x, W)
y := ∅
if |x| ≥ α then

foreach w in W do
if x ∩ w ≥ β then

y = y ∪ {w}
end

end
if |y| ≥ 2 then

largestCoverage := LargestWordCoverage(x, y, ∅, x)
if largestCoverage.numLeftChars ≤ ⌈(|x| · γ)⌉ then

return largestCoverage.result
end

end

end
return ∅

Function LargestWordCoverage(compound, candidates, result, original)
best := CompoundCoverageResult()
foreach w in candidates do

current := result ∪ {w}
remains := Split(compound, w)
nextCandidates := {c ∈ candidates|∃r ∈ remains ∋ c ∩ r ̸= ∅}
if |remains| ≥ 1 and nextCandidates ̸= ∅ then

foreach wremaining in remains do
result := LargestWordCoverage(wremaining, nextCandidates,
current, compound)
if result.score > best.score then

best = result
end

end

else
return struct {

result := current
score := −numCharsleft− numCharPos− |current|
numLeftChars := |original| −

∑
e∈remains |e|

numCharPos := |remains|
} CompoundCoverageResult;

end
return best

end
return x

Algorithm 2: Compound word splitting algorithm

37

In the algorithm a string is represented as a bag of characters. The union ∪ of two strings
can be seen as a concatenation of the two. The intersection ∩ of two strings can be translated
to a strings Contains function. The pipes |s| represents the length of string s, meaning the
amount of characters that it contains. There is also a reference to a method named Split, this
is a simple string split algorithm that given the first argument splits the second arguments in
to zero or multiple strings. The algorithms makes use of the idea that the a compound word is
built up out of two or more separate words. Through the candidate dictionary all words that
are contained within the compound word are used. Then it does a recursive search for a set of
words that;

1. Minimize the amount of separate words, while;

2. Minimize the amount of letters that are left after the compound construction, and;

3. Minimize the amount of places where the letters are left.

The first rule ensure that the word onderhoudservice prefers the combination of words {onderhoud, service}
over {onder, houd, service}. The second rule makes sure that {rest, je} is an invalid construction
of the word restaurantje. The third rule is an extension of the second which further penalises the
construction of the set {class, ion, cat} for the word classifications; it leaves two parts ifi and s
which is ’worse’.

5.2.3 Custom helpers

All texts that is processed first is normalized by converting all characters to lowercase and
stripping the diacritics from the characters.

When looking closely at the data there seem to be some noticeable patterns in some classes.
As an example there are the tyre swaps which we want to identify in the invoices. Often the
labour descriptions indicate assemblage or aligning of the wheels, but the parts itself are often
also added to the invoice. Now tyres have a typical type number; 255/45-R18, Michelin Premacy
4, Conti. 17560R12, since a lot of permutations are possible in these type numbers it is hard
to register all possibilities in a simple n-gram model. Because of this we introduced so-called
token detectors which look through the invoice descriptions before they are sliced and work on
the basis of regular expressions if it matches 1 is counted toward the feature and 0 otherwise.

A similar technique is used for matching dates. As explained earlier invoice lines may refer to
future maintenance visits (e.g. 20/5/2016, 7-2, febr. 2017, next dec.). It looks for all the months
names in the given language (including abbreviations) or tries to create a .NETDateTime object
using the DateTime.Parse function which effectively can translate strings to valid dates. When
matched it is counted towards the date feature if the valid date is not too far in the past or future.

5.2.4 Machine learning with Azure

Recently Microsoft introduced the Azure Machine Learning platform for easily creating machine
learning projects with a user friendly graphical interface. Azure Machine learning Studio offers
a great set of data manipulation modules as well as models and parameter sweeps. In Figure
5.6 we see an example of a model that we designed using the graphical interface. With different
building blocks you can build a flow from importing the data, to the manipulation of data and
generation of models.

The algorithms described in the previous sections, we first implemented in C#. Unfortunately
Azure does not support running .NET modules in their Azure Machine Learning portal, for this
reason all the custom implementations given are ported to R-script (see Section 8). If Azure

38

Figure 5.6: An example of an experiment created in Azure Machine Learning Studio

39

provided a module for a certain script these were preferred over a custom R implementation. In
Figure 5.6 an Azure experiment is shown that was used during this thesis.

For the generation of features from the description fields we used the Feature hashing-module
on Azure. This module has implemented the Vowpal-Wabbit hashing algorithm[50]. Vowpal-
Wabbit starts off with generating n-grams for all 1 . . . n, to speed up comparison of these they
apply an hash on the shingles. Azure Machine Learning offers a variety of models, multiclass
as well as two-class classifiers. The ones that we will be using for this thesis are the Decision
Forest, Bayes point machine[51], Support Vector Machine, Neural Network. For each of these
modules both a binary as multiclass (if available) will be trained.

On Azure we decided to use the feature filtering module which only keeps the top 500 features
based on its χ2 score. Not only does this speed up the model creation significantly, it also does
not seem to generate worse models. Further Azure uses a model where one gets charged for the
evaluation time and the amount of computation power used, cutting down the evaluation time
can save lots of money in the end for RDC.

5.3 Parameter tweaking

Earlier in this chapter we discussed the different models that we use for our classification problem.
In this section we elaborate on how the parameters, that are used during the evaluation phase,
are generated. This section is divided into two; the parameter tweaking for the Azure Machine
Learning experiments and the tweaking of the custom C# models.

5.3.1 Custom C# parameters

We began with our tree based decision models; the decision forests. We trained these using
the C4.5 algorithm. During evaluation against large data sets we came across some memory
issues for the generation of the random forest model. The Accord.NET machine learning library
does not provide a memory efficient algorithm for the construction of decision trees. At each
candidate split it stores a copy of the subset of all available splits, which results in huge arrays
with largely duplicate data. I did try to amend the original algorithm that it would work with
sparse matrices (matrices where only the non-zero values are stored), while it did save a lot of
memory it was still not sufficient to train multiple trees storing a lot of redundant data across
them. Because of this we were limited to just 2 decision trees for the smaller data sets and just a
single for larger sets. Limiting tree depth didn’t make a lot of difference, setting it to 12 seemed
to make decent trees that classified pretty well. No pruning algorithms were concerned.

As for our Neural Network, we used a network with just a single hidden layer, containing 10
neurons. Changing the number of neurons didn’t provide any real difference in accuracy to our
model. Introducing an extra layer did gave us some improvements for small sets, but this caused
the evaluation time to go up rapidly for small data sets and made it infeasible to generate a
model for larger sets. We trained it with 500 iterations using backward propagation with a fixed
learning rate of 0.1. We tried different number of iterations, both more and less. But the result
was with less iterations that the F1 score would drop and with more iterations we saw that the
error rate declined quickly which was an indicating that the model was probably overfitting. We
tried different momenta to speed up the search procedure, resulting in a momentum of 1

2 . We
were careful in setting the momentum not too high and risk overshooting the minimum.

The Support Vector Machine models are trained using a Sequential Minimal Optimisation algo-
rithm. We started off with a tolerance of 0.1, but this gave room for too much error, especially

40

for the serpentine belt class. With a tolerance of 0.01 the algorithm performed well and going
lower would raise exceptions because of the algorithm could not converge. For the complexity
parameter C we made use of the built-in complexity heuristic that exists in the Accord.NET
framework. For the Support Vector Machine only a linear kernel was used.

Because the feature vectors exceeded the memory bounds for the larger data sets, we tried to
implement a Discriminative Analysis with a χ2 kernel for feature filtering. But unfortunately
the algorithm took too long to incorporate in our evaluation. As fallback we used the Pearson
correlation coefficient to find the best features. With this we managed to reduced the number of
features from over 10,000 to just 500 features per sample. The features that were used were the
ones that had the greatest absolute Pearson correlation value.

5.3.2 Azure ML parameters

Azure Machine Learning has a module called ’Tune Model Hyperparameters’ this module per-
forms a parameter sweep on a model to determine the optimum parameter settings. For the
Azure Machine Learning models this module is used to find the best performing parameters. We
chose a Random grid sweep to find the best parameters. While an entire grid sweep is more thor-
ough it requires much more time. Also, Bergstra and Bengio claim in their paper that random
search of parameter space is by far more effective than grid search [52]. We started off using 10
random sweeps, but this took quite a lot time. After trying a bit around we discovered that 5
sweeps resulted in the same score for the best scoring models. As performance measurement we
chose that the F1 score should be optimized for this model.

For the Support Vector Machines we used the Support Vector Machine module. Microsoft
nowhere specifically specifies what kernel is used in this model. But since they also offer a
non-linear Locally Deep Support Vector Machine we are convinced that this module uses a linear
kernel. For the regularisation parameter λ we had the value range [10−1, 10−5]. And we set
the amount of iterations between [10, 150]. We used no normalisations. In Table 5.1 we see the
resulting scores of such parameter sweep, Azure returns the best performing parameters which
can be stored for later use.

Iterations Lambda Accuracy Precision Recall F-Score AUC
98 0.003046 0.996625 0.995837 0.997134 0.996485 0.999332
68 0.031466 0.989125 0.995247 0.982022 0.98859 0.999458
29 0.046737 0.988375 0.995239 0.980459 0.987794 0.999554
63 0.046956 0.988375 0.995239 0.980459 0.987794 0.999549
86 0.099535 0.988125 0.994452 0.980719 0.987538 0.999395

Table 5.1: Example of parameter sweep for Support Vector Machine

Our Neural Network was a fully connected Neural Network where every node has an edge to the
other nodes in other layers. The amount of layers was not adjustable by settings, but only by
providing a custom Net#[53] neural network specification. Since we were not familiar with this
type of neural network definition we chose to stick with the default number of hidden layers,
which was just a single layer. For the tuning of the neural network we set the number of hidden
nodes to range [50, 300]. We made use of a momentum which could speed up our search process
for a minimum, we set this value to 10−1. Further we set the learning rate of the model to the
range of [10−3, 10−1]. Again we set the number of iterations between [10, 150].

41

The decision forest parameters were set to; number of trees between [8, 150]. With maximum
depth of the tree set between [10, 64]. The number of random splits was between [64, 512].
Further we fixed the number of minimal number of samples per leaf node to 15, this means that
there can be a leaf if there are at least 15 samples reaching that leaf node to avoid overfitting.

Now for every experiment we do we use the Tune Model Hyperparameters module to find the
best parameters for every case and data set. The parameter ranges, however, are kept the same
across all the experiments.

42

Chapter 6

Evaluation

6.1 Experiment setup

The experiments will be run as on the models and configurations described in the previous
section. The custom C# implementation experiments were run on a HP ProDesk 600 G1 SFF
with a Intel Core i5 running at 3.2 GHz with 16 gigabytes of DDR3 memory. The system runs
on a 64-bits version of Windows 7 and has a 500GBs - 7200 RPM disk drive.

For the custom implementation we used a timer to record the training and evaluation time. Our
experiment will begin by reading setting up an connection from the database. First the training
data is read in to generate our feature vectors. Mind that the timer starts after the connection
is set up and the n-grams are constructed. The data is than streamed from our Microsoft SQL
database to our training algorithm. After a model has been trained the timer is reset and our
system will feed the evaluation set to the model. The outcomes are tallied and registered in
a confusion matrix, from which scores are calculated (e.g. accuracy, precision, recall, F1) and
exported to disk.

The Azure Machine Learning experiments will be run on the online Azure platform. Microsoft
does not specify the hardware that is used but they built it such that is automatically scales
to the needs of the experiment. In Figure 5.6 we see the complete set up of our experiments.
We start with the import of the data from a Azure database, the evaluation and training data
is split. After which feature generating is done using R-script and feature hashing. The start
and end dates of training and evaluation are recorded by Python scripts. Then training with
parameter tuning using a random grid sweep, and evaluation with the best trained model. The
results of evaluation are then automatically exported to an Azure database.

6.1.1 Training and evaluation data sets

Now that we have set a baseline for data normalisation we will define the different data sets
that are used during training and evaluation. We choose different sizes of sets to compare the
performance on the various sizes. A total of three differently sized sets will be used, their sizes;

Small Total set size of just 5 · 103 records.

Medium Total set size of 104 records.

Large Set size of 105 records.

The total size is around 2.5 · 105 lines.

43

With every test we will use a split percentage of 80/20 meaning that 80% of the data will be used
for training and 20% for evaluation. Examples are carefully taken and made sure that they are
sufficient examples of every class such that the trained model will perform at its best. Further the
data split between training and evaluation will be stratified such that the distributions between
the training and the evaluation are roughly the same.

6.2 Experimental results

The complete results are added as tables to the appendix. These are the tables Table 8.6 through
Table 8.20. If we look at the evaluation results we can see that the scores are quite similar across
the different models. The training times are however quite divers. The neural networks are by
far the most complex classifiers to train, the small data sets take around 2 minutes to train,
whereas the large may take up to four hours. The results are quite remarkable with F-scores
around 0.99 through the different data sets. Unfortunately our Support Vector Machine caused
memory issues which could not be resolved by our dimensionality reduction. For this reason the
results of the large data sets are missing from the results table in the appendix.

Figure 6.1: Results C# - None options

We see that the classifiers overall performed very well, further can be seen that for every evalua-
tion results improve with the size of the data set. Of course this is expected since more training
data means more data to generate a classifier with. By looking closely at the evaluation and
training time some strange deviations can be seen for the custom implemented models. We think
this might be the case because of background processes running on our Windows machine that
might consume memory and cause our program to switch to (magnitudes slower) swap memory
on our disk. Overall the serpentine and V-belts were the classes that were the hardest to classify
for our models. But in the end even these classes had good scores. In Figure 6.1 and Figure 6.2
we see the F1 scores of the different implementations. We observe that the scores go up with
the size of the data sets increasing, which is exactly what we would expect. Only the Neural
Network for the Azure model show a small drop when comparing the small and the medium set.
But also a steep increase for the large set.

Since the results of the Neural Network and Support Vector Machine showed the best perfor-
mance, and other models showed similar results we decided to evaluate only these model for the
multi-class results, just to get an idea how a multi-class classifier would perform. Also, we used

44

Figure 6.2: Results Azure - None options

none of the evaluation options because these do not show significant improvement in classifica-
tion accuracy. For the training and evaluation set of this classifier we used completely random
sampling so that distributions will be kept untouched.

Also the results of these algorithms show high classification accuracy, this single classifier unfor-
tunately is not as good as the sum of the separate classifiers. But we still see overall agreements
of well above 95 percent. In Table 8.20 the results can be seen in detail. We were quite surprised
by the accuracy these models showed we more misclassifications, for some classes a very low
amount ended up in the training set but still the models were able to distinguish these classes
pretty well. What was quite interesting was the fact that overall, the Naive Bayes performed as
one of the worst models in comparison with the rest. But for the multi-class example, we save
the opposite. Here the Naive Bayes models comes out on top with an overall agreement of 0.977.

6.2.1 Evaluation versus the current system

It was quite a challenge to find the output of the current system with the corresponding input.
In the end we manage to find a small data set of thousand receipts with the result that the
Perl implementation gave. After a manual classification of the data into maintenance and no
maintenance we calculated the errors of the current system. Then we ran our earlier generated
1 vs all model (without options) with the this data. In the tables below the confusion matrices
are shown of the classification of maintenance;

T F T F
T 156 10 T 127 33
F 4 830 F 11 829

Table 6.1: Confusion matrices of our system versus the current system. Left our Neural network,
right the current implementation

We see that our system made 14 errors whereas the current system made 44 total errors. If we
look at the errors which our neural network made the most errors were made for the description:
Ford Motorcraft Service. This is a new type of maintenance, which slipped through our manual
labeling during the data preparation phase. Other errors were made on tussen beurt, which is
intermediate maintenance (which strictly does not classify as maintenance).

45

All in all we see an improvement of the F1 more than ten percent from 0.852 to 0.957. With new
accuracy of 0.986, precision 0.975 and recall of 0.939, which are clear improvements over the old
system. Further we still see room for improvement. We have identified missing samples which
can be added to the training set for next cycle for possibly even better results.

46

Chapter 7

Conclusion

The trained classifiers showed great results for the classification of almost all examples, while the
performance varies per classifier and class label the overall score was better than hoped. In this
end this shows that the data is very well suited to be trained as a classification problem. With
the promising results RDC decided to immediately integrate the classifiers in their CaRe-Mail
product. We generated a lot of different models for classification with very different options (e.g.
typo correction, expression detectors) although some difference is seen when using these detectors
no huge gain can be seen in evaluation results. In the end the custom C# implementation
performed a bit better than the solution that was created with the Azure Machine Learning
platform this is mainly due to the fact that the custom implementation made it possible to
change the algorithms to work perfectly with each other, whereas the Azure solution only has
black-boxed models where just a few parameters could be set. With regard to the training and
evaluation time it seems heavily in favour of Azure Machine Learning, where almost every custom
implementation took longer. Unfortunately we can’t measure the real difference since we can’t
control the hardware setup for the Azure Machine Learning solution; it automatically scales to
its needs. And we ran our custom implementation to the same fixed setup with limited memory
and processing power.

Our algorithms show that for the correct classification of the receipts, the description fields,
together with the codes, costs and (sometimes) dealer id are the most important for classification.
No intensive tweaking was needed to find the best set of features to train on. Further we show
that a set of binary classifiers perform better than one multiclass classifier. Another argument
for using multiple binary classifiers is that adding new class labels does not affect the existing
classifiers. Instead only new classifiers have to be generated and can be used alongside the others.

In the end RDC decided to go for the Azure Machine Learning platform because of multiple
advantages that the platform offers over the custom C# application. The most obvious reason
is that is requires less knowledge of machine learning techniques to work with it. Furthermore it
also is hosted within Azure, where the rest of the solutions also live.

7.1 Discussion and future work

RDC is very satisfied with what the results show, and is incorporating the solutions into their
product. Further, this project peeked the interest of RDC in machine learning solutions and they
are actively in search of opportunities where similar techniques can be used for their products.

47

They are currently looking into pattern set mining techniques to be used on their car owner and
purchases data set.

While the Dealer Management Systems give the mechanics the complete freedom when cre-
ating invoices, the data in these fields were quite singular (Dealer Management Systems carry
a lot of receipt lines with the same data). Though they did differ with DMS and dealer a lot
of the same descriptions and codes were used in these invoices. This may be the reason for the
high classification accuracy we saw in the evaluation section.

As we have seen we can conclude that the Dealer Management System data can be classified
with great results. Still there is some work to be done. For example; RDC is really interested
in creating models which are able to learn from misclassifications while running in production.
This would enable the model to adapt to faults and improve using feedback from their customers
without manually retraining the model.

During labeling it became quickly clear that the classes V-belt and serpentine belt are almost
the same. In fact the data we received from some dealers used the terms interchangeably. In
future research we might want to merge these labels for better results and, may be, also less
confusion when labeling the data.

An other research area is that of multi-label receipts. For the thesis project we decided to
only work with single class receipts for training and evaluation such that in production the 1
vs all classifiers would be able to classify multi-label this way. There exist however multi-label
classifiers that might be interesting to look at for future research.

7.2 Acknowledgements

In this section I would like to thank a few people for their support and help during my master
thesis. First off I would like to personally thank my primary supervisor dr. A.J. Feelders for
his swift and thorough feedback throughout this thesis. Second, my second examiner prof. dr.
A.P.J.M Siebes. And RDC, which gave me the opportunity for doing my thesis project on-site
and providing me with the necessities for completing this thesis. Further I would like to thank
my principal supervisor Joris Luder who gave me the opportunity to help his team in creating
a better experience for the CaRe-Mail customers. And lastly the whole CaRe-Mail team that
helped me have a great time at RDC; thank you all.

48

Bibliography

[1] Pete Chapman et al. “CRISP-DM 1.0 Step-by-step data mining guide”. In: (2000).

[2] Gregory Piatetsky. “What main methodology are you using for your analytics, data mining,
or data science projects? Poll”. In: (2014). url: http://www.kdnuggets.com/polls/2014/
analytics-data-mining-data-science-methodology.html.

[3] Colin Shearer. “The CRISP-DM model: the new blueprint for data mining”. In: Journal
of data warehousing 5.4 (2000), pp. 13–22.

[4] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimina-
tion: consistency properties. Tech. rep. DTIC Document, 1951.

[5] Thomas M Cover and Peter E Hart. “Nearest neighbor pattern classification”. In: Infor-
mation Theory, IEEE Transactions on 13.1 (1967), pp. 21–27.

[6] John F Magee. Decision trees for decision making. Harvard Business Review, 1964.

[7] Sreerama KMurthy. “Automatic construction of decision trees from data: A multi-disciplinary
survey”. In: Data mining and knowledge discovery 2.4 (1998), pp. 345–389.

[8] David Bryant and Vincent Berry. “A structured family of clustering and tree construction
methods”. In: Advances in Applied Mathematics 27.4 (2001), pp. 705–732.

[9] Janine Toole. “Categorizing unknown words: Using decision trees to identify names and
misspellings”. In: Proceedings of the sixth conference on Applied natural language process-
ing. Association for Computational Linguistics. 2000, pp. 173–179.

[10] Tin Kam Ho. “Random decision forests”. In: Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on. Vol. 1. IEEE. 1995, pp. 278–282.

[11] Laurent Candillier, Isabelle Tellier, and Fabien Torre. Transforming XML trees for efficient
classification and clustering. Springer, 2006.

[12] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training algorithm for
optimal margin classifiers”. In: Proceedings of the fifth annual workshop on Computational
learning theory. ACM. 1992, pp. 144–152.

[13] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995), pp. 273–297.

[14] Libby Barak, Ido Dagan, and Eyal Shnarch. “Text categorization from category name
via lexical reference”. In: Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Linguis-
tics, Companion Volume: Short Papers. Association for Computational Linguistics. 2009,
pp. 33–36.

49

http://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
http://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html

[15] Mr. Bayes and Mr Price. “An Essay towards solving a Problem in the Doctrine of Chances.
By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton,
AMFRS”. In: Philosophical Transactions (1683-1775) (1763), pp. 370–418.

[16] Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning.
University of California (Los Angeles). Computer Science Department, 1985.

[17] Judea Pearl. “Fusion, propagation, and structuring in belief networks”. In: Artificial intel-
ligence 29.3 (1986), pp. 241–288.

[18] Nir Friedman, Dan Geiger, and Moises Goldszmidt. “Bayesian network classifiers”. In:
Machine learning 29.2-3 (1997), pp. 131–163.

[19] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[20] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251–257.

[21] Stephen Grossberg. “Nonlinear neural networks: Principles, mechanisms, and architec-
tures”. In: Neural networks 1.1 (1988), pp. 17–61.

[22] Sushmito Ghosh and Douglas L Reilly. “Credit card fraud detection with a neural-network”.
In: System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International Con-
ference on. Vol. 3. IEEE. 1994, pp. 621–630.

[23] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning machine: the-
ory and applications”. In: Neurocomputing 70.1 (2006), pp. 489–501.

[24] Xiang-guo Zhao et al. “XML document classification based on ELM”. In: Neurocomputing
74.16 (2011), pp. 2444–2451.

[25] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and data mining.
Vol. 454. Springer Science & Business Media, 2012.

[26] Moshe Ben-Bassat. “35 Use of distance measures, information measures and error bounds
in feature evaluation”. In: Handbook of statistics 2 (1982), pp. 773–791.

[27] Zhexue Huang. “Extensions to the k-means algorithm for clustering large data sets with
categorical values”. In: Data mining and knowledge discovery 2.3 (1998), pp. 283–304.

[28] Francisco de AT de Carvalho and Renata MCR de Souza. “Unsupervised pattern recog-
nition models for mixed feature-type symbolic data”. In: Pattern Recognition Letters 31.5
(2010), pp. 430–443.

[29] Fabrizio Sebastiani. “Machine learning in automated text categorization”. In: ACM com-
puting surveys (CSUR) 34.1 (2002), pp. 1–47.

[30] C.E. Shannon. “A mathematical theory of communication”. In: Bell System Technical
Journal 27.4 (1948), pp. 623–656.

[31] Kenneth Church and William Gale. “Inverse document frequency (idf): A measure of de-
viations from poisson”. In: Natural language processing using very large corpora. Springer,
1999, pp. 283–295.

[32] Alec Go, Richa Bhayani, and Lei Huang. “Twitter sentiment classification using distant
supervision”. In: CS224N Project Report, Stanford 1 (2009), p. 12.

[33] Victoria Bobicev and Marina Sokolova. “An Effective and Robust Method for Short Text
Classification.” In: AAAI. 2008, pp. 1444–1445.

50

[34] Deepshikha Patel and Monika Bhatnagar. “Mobile SMS Classification”. In: International
Journal of Soft Computing and Engineering (IJSCE) ISSN (2011), pp. 2231–2307.

[35] Aixin Sun. “Short text classification using very few words”. In: Proceedings of the 35th in-
ternational ACM SIGIR conference on Research and development in information retrieval.
ACM. 2012, pp. 1145–1146.

[36] Longzhen Duan, Nan Li, and Longjun Huang. “A new spam short message classification”.
In: 2009 First International Workshop on Education Technology and Computer Science.
IEEE. 2009, pp. 168–171.

[37] Mauricio A Hernndez and Salvatore J Stolfo. “Real-world data is dirty: Data cleansing and
the merge/purge problem”. In: Data mining and knowledge discovery 2.1 (1998), pp. 9–37.

[38] Heiko Mller and Johann-Christph Freytag. Problems, methods, and challenges in compre-
hensive data cleansing. Professoren des Inst. Fr Informatik, 2005.

[39] Jeffrey G Brown. “Using a multiple imputation technique to merge data sets”. In: Applied
Economics Letters 9.5 (2002), pp. 311–314.

[40] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. “A comparative analysis of
methodologies for database schema integration”. In: ACM computing surveys (CSUR) 18.4
(1986), pp. 323–364.

[41] Christiaan Thieme and Arno Siebes. “Schema integration in object-oriented databases”.
In: Advanced Information Systems Engineering. Springer. 1993, pp. 54–70.

[42] Esko Ukkonen. “Algorithms for approximate string matching”. In: Information and control
64.1 (1985), pp. 100–118.

[43] Genootschap Onze Taal. Samenstellingen. Oct. 2015. url: https : / / onzetaal . nl /

taaladvies/advies/samenstelling (visited on 03/15/2016).

[44] Carla Parra Escartn. “Chasing the Perfect Splitter: A Comparison of Different Compound
Splitting Tools”. In: Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14). Ed. by Nicoletta Calzolari (Conference Chair) et al.
Reykjavik, Iceland: European Language Resources Association (ELRA), May 2014. isbn:
978-2-9517408-8-4.

[45] V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions and reversals”.
In: Soviet Physics Doklady 10 (1966), pp. 707–710. url: http://ci.nii.ac.jp/naid/
10020212767/en/.

[46] Fred J Damerau. “A technique for computer detection and correction of spelling errors”.
In: Communications of the ACM 7.3 (1964), pp. 171–176.

[47] Martin F Porter. “An algorithm for suffix stripping”. In: Program 14.3 (1980), pp. 130–137.

[48] Wessel Kraaij and Rene Pohlmann. “Porters stemming algorithm for Dutch”. In: Infor-
matiewetenschap (1994), pp. 167–180.

[49] Tanja Gaustad and Gosse Bouma. “Accurate stemming of Dutch for text classification”.
In: Language and Computers 45.1 (2002), pp. 104–117.

[50] Lihong Li and Alex Strehl. Vowpal Wabbit. Dec. 2007. url: http://hunch.net/?p=309
(visited on 05/04/2016).

[51] Ralf Herbrich, Thore Graepel, and Colin Campbell. “Bayes point machines”. In: Journal
of Machine Learning Research 1.Aug (2001), pp. 245–279.

[52] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimization”.
In: Journal of Machine Learning Research 13.Feb (2012), pp. 281–305.

51

https://onzetaal.nl/taaladvies/advies/samenstelling
https://onzetaal.nl/taaladvies/advies/samenstelling
http://ci.nii.ac.jp/naid/10020212767/en/
http://ci.nii.ac.jp/naid/10020212767/en/
http://hunch.net/?p=309

[53] Jeannine Takaki. Guide to Net# neural network specification language for Azure Machine
Learning. May 2016. url: https://azure.microsoft.com/en- us/documentation/
articles/machine- learning- azure- ml- netsharp- reference- guide/ (visited on
08/11/2016).

52

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-azure-ml-netsharp-reference-guide/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-azure-ml-netsharp-reference-guide/

53

Chapter 8

Appendices

XML data from Dealer Management Systems

<?xml version ="1.0" ?>

<section >

<dmsdata dms_id="0" sleutel="1345">

<auto_nr >1345</auto_nr >

<factuur_bedrag >214.29 </factuur_bedrag >

<km_stand >151976 </km_stand >

<bezoek_datum >2015 -12 -01</bezoek_datum >

<vestiging_code >12</vestiging_code >

<menu_code >S00</menu_code >

<factuur_nummer >17212289 </factuur_nummer >

<details >Service -beurt </details >

<tarmagic >75169 </tarmagic >

</dmsdata >

<dmsdata dms_id="0" sleutel="10878">

<auto_nr >10878 </auto_nr >

<factuur_bedrag >108.44 </factuur_bedrag >

<km_stand >103502 </km_stand >

<bezoek_datum >2015 -12 -11</bezoek_datum >

<vestiging_code >11</vestiging_code >

<menu_code >BAN</menu_code >

<factuur_nummer >1679407 </factuur_nummer >

<details >Bandenmontage </details >

<tarmagic >20661 </tarmagic >

</dmsdata >

<dmsdata dms_id="0" sleutel="125064">

<auto_nr >125064 </auto_nr >

<factuur_bedrag >26.92 </factuur_bedrag >

<km_stand >72760 </km_stand >

<bezoek_datum >2015 -12 -02</bezoek_datum >

<vestiging_code >12</vestiging_code >

<menu_code >LIC</menu_code >

<factuur_nummer >21940542 </factuur_nummer >

<details >Verlichting </details >

<tarmagic >0</tarmagic >

</dmsdata >

</section >

Figure 8.1: Autoline Dealer Management System data sample

54

<?xml version ="1.0" ?>

<section name="WPL">

<dmsdata dms_id="0" sleutel="8192">

<faktuurnummer >8192</faktuurnummer >

<kenteken >16-LSE -2</kenteken >

<klantnr >8427</klantnr >

<omzetsoort >1 WEX Wpl Ext</omzetsoort >

<p_totaal >39.95 </p_totaal >

<p_btw >6.93</p_btw >

<kmstand >187644 </kmstand >

<werkplaatsdatum >2015 -01 -19 00:00:00.0 </werkplaatsdatum >

<door>Dirk Jansen </door>

<vestiging >V007</vestiging >

<omschrijving >Diversen </omschrijving >

<pakketten >APK ,Vervangen gloeilamp koplamp H7 ,</pakketten >

<artikelen >APK Afmelding ,GLOEILAMP ,</artikelen >

<werk>APK keuring ,Vervangen gloeilamp koplamp H7 ,</werk>

<codes >APK001 ,000065 ,</codes >

</dmsdata >

<dmsdata dms_id="0" sleutel="8492">

<faktuurnummer >8492</faktuurnummer >

<kenteken >17-NPR -5</kenteken >

<klantnr >9383</klantnr >

<omzetsoort >1 WEX Wpl Ext</omzetsoort >

<p_totaal > -229.0</p_totaal >

<p_btw > -39.74</p_btw >

<kmstand >51200 </kmstand >

<werkplaatsdatum >2015 -12 -01 00:00:00.0 </werkplaatsdatum >

<door>Dirk Jansen </door>

<vestiging >V007</vestiging >

<omschrijving >CREDITNOTA van 32001312 </omschrijving >

<pakketten >05 Jaar /100.000 Km Ford Onderhoud ,</pakketten >

<artikelen >GEURFILTER ,OLIEFILTER ,Motorolie 5W-30,</artikelen >

<werk>Beurt na 5 jaar /100.000 km ,</werk>

<codes >4500,</codes >

</dmsdata >

<dmsdata dms_id="0" sleutel="65981">

<faktuurnummer >65981 </faktuurnummer >

<kenteken >84-POV -3</kenteken >

<klantnr >2276</klantnr >

<omzetsoort >1 WEX Wpl Ext</omzetsoort >

<p_totaal >39.0</p_totaal >

<p_btw >6.77</p_btw >

<kmstand >20000 </kmstand >

<werkplaatsdatum >2015 -12 -28 00:00:00.0 </werkplaatsdatum >

<door>Justin Myjer </door>

<vestiging >V001</vestiging >

<omschrijving >Diversen </omschrijving >

<artikelen >Instructie boek Fiesta ,</artikelen >

</dmsdata >

</section >

Figure 8.2: WinCar Dealer Management System data sample

55

<?xml version ="1.0" ?>

<dmsdata dms_id="0" sleutel="322841">

<dms_id >0</dms_id >

<dms_db >N_R</dms_db >

<auto_nr >322841 </auto_nr >

<factuur_bedrag >33.02 </factuur_bedrag >

<km_stand >48825 </km_stand >

<bezoek_datum >2015 -02 -04</bezoek_datum >

<nummerplaat >PS -SV -06</nummerplaat >

<qwaarde >RO</qwaarde >

<factuurnummer >1175334187 </factuurnummer >

<factuurdatum >2015 -02 -09</factuurdatum >

<locatie >17</locatie >

<omschrijving >'OCT 1) WINTERBANDENWISSEL',

'CREDITNOTA OP FACTUURNUMMER 1175303817& apos;,

'WINTERWISSEL ','KLANT HEEFT ZELF DE

BANDEN','WINTER -/ ZOMERBANDENSET WISSELEN '</omschrijving >

<bruto >'@PLANNING','undef','undef'

,'undef','WBV '</bruto >

<aantal >0,0,0,0,-1</aantal >

<soortlijn >Y16 ,AUT , ,Y16 ,Y14</soortlijn >

<lijngeencorrectie >undef ,undef ,1,undef ,undef </lijngeencorrectie >

<interventiecode >undef ,undef ,B,undef ,undef </interventiecode >

<soortuurcodelijn >undef ,undef ,undef ,undef ,undef </soortuurcodelijn >

<bedrag_intern >0</bedrag_intern >

<merk>RENAULT </merk>

<klantnummer >194831 </klantnummer >

</dmsdata >

<dmsdata dms_id="0" sleutel="156517">

<dms_id >0</dms_id >

<dms_db >N_R</dms_db >

<auto_nr >156517 </auto_nr >

<factuur_bedrag >23.75 </factuur_bedrag >

<km_stand >77131 </km_stand >

<bezoek_datum >2015 -12 -17</bezoek_datum >

<nummerplaat >03-PW -LE</nummerplaat >

<qwaarde >YA</qwaarde >

<factuurnummer >5132306700 </factuurnummer >

<intern >4</intern >

<factuurdatum >2015 -12 -17</factuurdatum >

<locatie >3</locatie >

<omschrijving >&apos ;1. V-SNAREN NAZIEN IVM REGELMATIG PIEPEN .',

'V-SNAREN',&apos ;9999 V-SNAREN GESPANNEN'</omschrijving >

<bruto >'@PLANNING','undef','undef'</bruto >

<aantal >0,0,.25</aantal >

<soortlijn >Y16 , ,Y20</soortlijn >

<lijngeencorrectie >undef ,1,undef </lijngeencorrectie >

<interventiecode >undef ,A,undef </interventiecode >

<soortuurcodelijn >undef ,undef ,1</soortuurcodelijn >

<bedrag_intern >0</bedrag_intern >

<merk>HYUNDAI </merk>

<klantnummer >71751 </klantnummer >

</dmsdata >

Figure 8.3: EVA DMS Dealer Management System data sample

56

Samples of Dealer Management System data

57

c
a
r
id

se
c
in
v

a
m
n
t
e
x
c

w
o
h

m
il
e
a
g
e

w
o
h

o
rd

d
a
te

fa
c
tu

u
rd

a
tu

m
re

le
a
se

d
a
te

u
se
ri
d

w
h
s
id

o
n
d
e
rh

o
u
d

ro
b

47
09

4
10

9,
02

18
32

13
24

57
46

5
24

57
46

5
24

57
46

5
30

5
11

0.
0

0.
0

47
12

1
10

5,
88

68
11

8
24

57
32

8
24

57
32

8
24

57
32

8
31

0
2

1.
0

0.
0

47
25

1
37

0,
78

13
65

27
22

57
36

6
22

57
86

6
22

57
86

6
49

0
9

0.
0

0.
0

47
39

9
71

,7
9

12
07

30
24

55
24

2
24

65
24

2
24

65
24

2
38

9
0.
0

0.
0

46
44

1
84

,5
4

77
36

0
20

32
78

0
20

33
78

0
20

33
78

0
95

5
0.
0

1.
0

T
ab

le
8.
1:

S
am

p
le

of
C
ar
IT

D
ea
le
r
M
an

ag
em

en
t
S
y
st
em

v
in

b
e
d
ra

g
in
c

k
m

st
a
n
d

h
e
a
d
e
r

d
e
sc
ri
p
ti
o
n

lo
c
a
ti
e

so
o
rt

o
rd

e
r

fa
c
tu

u
r

d
a
tu

m
in
te
rn

W
0L

0S
D
L
68

74
30

74
56

16
,1
6

16
10

17
ap

k
<
D
es
cr
ip
ti
on

>
A
P
K

al
l-
in

m
y
O
p
el

le
d
en

<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
P
h
il
ip
s
au

to
la
m
p
5w

st
ee
k
<
/D

es
cr
ip
ti
on

>
1

1
01

-1
30

52
9

01
-1
30

52
9

20
16

01
05

0

D
A
2G

B
C
33

S
02

34
24

08
0

60
84

6
<
D
es
cr
ip
ti
on

>
U
il
aa

t
n
ak

ij
k
en
<
/D

es
cr
ip
ti
on

>
11

1
11

-0
45

61
11

-0
45

61
20

16
01

07
0

W
0L

04
H
D
33

25
33

46
42

37
7,
02

28
51

32
D
is
tr
ib
u
ti
er
ie
m

<
D
es
cr
ip
ti
on

>
D
is
tr
ib
u
ti
er
ie
m

se
t<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
D
is
tr
ib
u
ti
er
ie
m

v
er
va
n
ge
n
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
K
o
el
v
lo
ei
st
of
,
D
ex
-C

o
ol

lo
n
g
li
fe

co
ol
an

t<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
P
ak

k
in
g<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
P
lu
g
je
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
W
at
er
p
om

p
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
W
at
er
p
om

p
u
it
-
en

in
b
ou

w
en
<
/D

es
cr
ip
ti
on

>

1
1

01
-1
29

77
5

01
-1
29

77
5

20
16

02
06

0

W
0P

0X
D
F
62

60
53

42
32

66
5,
88

17
35

12
on

d
eh

ou
d
/a

p
k
/d

iv
er
se
n

<
D
es
cr
ip
ti
on

>
A
an

d
ri
jf
as

v
o
or
,
af
d
ic
h
ti
n
g
h
o
es

re
p
ar
er
en

/r
ei
n
ig
e<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
A
fv
o
er

K
le
in

C
h
em

is
ch

A
fv
al
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
A
P
K

i.
c.
m
.
b
eu

rt
+

af
m
el
d
-e
n
ad

m
in
is
tr
at
ie
k
os
te
n
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
B
at
te
ri
j
C
R
20

32
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
C
er
ti
fi
ca
at
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
D
ia
gn

os
ea
p
p
ar
at
u
u
r<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
D
ra
ag

ar
m
ru
b
b
er

a.
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
D
ra
ag

ar
m
ru
b
b
er

v
er
va
n
ge
n
-
R
ec
h
te
rk
an

t<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
K
ee
rr
in
g,

af
ta
p
p
lu
g<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
M
ot
or
ol
ie
10

w
-4
0
sj
/c
f<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
M
ot
or
st
eu

n
v
er
va
n
ge
n
-
b
ov
en

zi
jd
e<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
M
ot
or
st
eu

n
d
em

p
er
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
O
li
efi

lt
er
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
O
n
d
er
h
ou

d
sb
eu

rt
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
O
p
el

A
ss
is
ta
n
ce

P
lu
s<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
O
p
m
er
k
in
g
m
on

te
u
r
b
ij
ge
lu
id

h
o
or
b
aa

r
in

b
o
ch
te
n
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
P
ec
h
h
u
lp
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
P
ol
le
n
fi
lt
er
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
R
ei
n
ig
er
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
R
u
it
en

sp
ro
ei
er
v
lo
ei
st
of

50
0
m
l<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
R
u
it
en
w
is
se
rs

v
o
or
aa

n
v
er
va
n
ge
n
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
R
u
it
ew

is
se
rs

se
t<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
W

ie
ll
ag

er
ac
h
te
ra
an

v
er
va
n
ge
n
-
li
n
k
s<

/D
es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
W

ie
ll
ag

er
ac
h
te
ra
an

v
er
va
n
ge
n
-
re
ch
ts
<
/D

es
cr
ip
ti
on

>
<
D
es
cr
ip
ti
on

>
W

ie
lr
ol
la
ge
r,

ac
h
te
ra
an

<
/D

es
cr
ip
ti
on

>

2
1

02
-4
02

52
02

-4
02

52
20

16
01

15
0

W
0L

D
D
9E

91
41

03
45

27
3

70
19

W
IB

A
<
D
es
cr
ip
ti
on

>
W

is
se
l
+

op
sl
ag

b
an

d
en

se
iz
o
en

Z
O
M
R
&
gt
;
W

IN
T
R
<
/D

es
cr
ip
ti
on

>
11

1
11

-0
19

54
11

-0
19

54
20

16
01

22
1

T
ab

le
8.
2:

S
am

p
le

of
C
ar
lo

D
ea
le
r
M
an

ag
em

en
t
S
y
st
em

58

A
U
T
O

F
A
C
T
U
U
R

A
R
B
E
ID

C
O
D
E

O
M

S
C
H
R
IJ

V
IN

G
A
A
N
T
A
L

B
E
D
R
A
G

F
A
C
T
U
U
R

IS
S
E
C
T
IE

10
6

21
31

65
4

A
A
P
K

A
P
K

K
E
U
R
IN

G
U
IT

G
E
V
O
E
R
D

1.
0
0

79
.7
5

24
40

11
N
E
E

10
6

21
31

65
4

A
S
U
B
T
O
T
A
A
L

S
U
B
T
O
T
A
A
L
IN

C
L
.
B
T
W

:
19

.9
5
E
U
R

1.
0
0

-6
7.
06

24
40

11
N
E
E

29
1

15
01

68
3

A
A
D
V
IE

S
G
E
G
E
V
E
N

O
M

D
IS
T
.
R
IE

M
T
E

V
E
R
V
A
N
G
E
N

0.
0
0

0.
00

35
03

15
N
E
E

32
0

94
14

86
4

O
16

09
5
25

28
0

D
IS
T
R
IB

U
T
IE

S
E
T

+
K
.V

.P
O
M
P

1.
0
0

21
2.
90

32
49

97
9

N
E
E

90
51

33
4
01

21
A

R
U
IT

R
U
B
B
E
R
S
V
V

88
15

19
J
A

T
ab

le
8.
3:

S
am

p
le

of
I’
C
ar

D
ea
le
r
M
an

ag
em

en
t
S
y
st
em

(W
P
L
D

se
ct
io
n
)

d
m
s

a
u
to

Id
k
la
n
t

fi
li
a
a
l

ty
p
e

so
o
rt

d
a
tu

m
k
m
st
a
n
d

b
e
d
ra

g
fa
c
tu

u
r

fa
c
tu

u
rd

a
tu

m
o
rd

e
r

a
fd
e
li
n
g

c
re

d
it

k
la
n
t

o
p
d
ra

ch
t

0
B
F
40

3
X

30
58

70
5

H
W

09
-1
2-
15

4
0.
00

74
61

26
04

-0
5-
11

74
69

11
0

F
1

/
A
fl
ev
er
in
gs
b
eu

rt
0

18
X
T
D

0
31

89
54

5
H

W
09

-1
2-
15

11
74

58
0.
00

74
61

22
02

-0
8-
12

74
74

99
0

F
1

/
T
ot
al
e
on

d
er
h
ou

d
sb
eu

rt
b
ij
15

0.
00

0
k
m

0
91

P
V
V
8

31
36

22
10

H
W

09
-1
2-
15

17
09

01
74

0.
02

10
13

70
7

29
-1
2-
09

10
14

17
6

0
F

1
/
A
P
K

k
eu

ri
n
g
(g
ra
ti
s
ti
jd
en

s
b
eu

rt
)

0
0P

D
D
91

46
39

14
10

H
W

09
-1
2-
15

56
38

5
42

3.
98

10
13

68
0

09
-1
2-
12

10
14

05
0

0
F

1
0

25
M
R

D
P

13
30

58
2

H
W

10
-1
2-
15

18
79

34
47

4.
16

30
02

74
10

-0
3-
13

31
20

31
0

F
1

17
00

1
/
V
ol
vo

ja
ar
b
eu

rt
5

A
F
29

0
S

13
83

24
1

H
W

18
-0
6-
15

5
0.
00

73
99

97
12

-0
6-
13

74
09

67
0

F
51

/
0-

b
eu

rt
5

X
N

08
6
E

92
38

17
1

H
W

03
-0
8-
15

5
0.
00

74
02

26
01

-0
8-
14

74
09

32
0

F
51

/
0-
b
eu

rt
u
it
ge
v
o
er
d

5
M
L
82

3
V

16
38

29
1

H
W

31
-0
8-
15

5
0.
00

74
03

46
03

-1
1-
10

74
09

28
0

F
51

/
0
k
m

O
n
d
er
h
ou

d
sb
eu

rt
u
it
ge
v
o
er

5
P
K

T
Y

16
39

57
39

1
H

W
20

-0
1-
15

48
82

94
44

5.
79

73
91

36
20

-0
4-
14

73
99

89
0

F
1

/
W

in
te
r
co
n
tr
ol
e-
b
eu

rt

T
ab

le
8.
4:

S
am

p
le

of
iD

A
S
D
ea
le
r
M
an

ag
em

en
t
S
y
st
em

Id
A
u
to

d
m
s
id

B
e
z
o
e
k
d
a
tu

m
N
o

O
h

S
o
o
rt

C
o
d
e

T
e
k
st

R
u
le

18
84

7
0
1-
E
G
F
-2

30
-0
4
-2
01

5
1

0
P
K

14
9
0

G
lo
ei
la
m
p
k
op

la
m
p
v
er
va
n
ge
n
(1
)

co
d
e

15
9
21

45
-O

D
S
-G

22
-1
1-
20

15
1

0
P
K

A
P
K
00

1
A
P
K

k
eu

ri
n
g

co
d
e

18
2
10

38
-P

O
P
-9

11
-0
3-
20

15
10

0
P
K

21
1
0

B
an

d
(1
x
)
m
on

te
re
n
en

b
al
an

ce
re
n

co
d
e

10
02

75
18

-L
O
-I
E

17
-0
1-
20

15
4

0
P
K

00
00

0
1

on
d
er
h
ou

d
sb
eu

rt
u
it
ge
v
o
er
d

co
d
e

23
61

9
3

82
-S
F
-P

D
01

-0
2-
20

15
1

1
P
K

45
00

B
eu

rt
n
a
5
ja
ar
/1

00
.0
00

k
m

co
d
e

1
29

11
0

13
-L
IX

-1
16

-1
1
-2
01

5
3

1
P
K

99
54

C
om

fo
rt
p
ak

k
et

tu
ss
en
ti
jd
s
on

d
er
h
ou

d
co
d
e

T
ab

le
8.
5:

S
am

p
le

of
n
or
m
al
iz
ed

d
at
a
D
ea
le
r
M
an

ag
em

en
t
S
y
st
em

59

In this sections some names are abbreviated. Here you can find the different abbreviations;

Columns descriptions

Model The name of the model.

Size The data set used for generation.

Train The time to train the model.

Eval The time the model took to classify the
evaluation set.

Acc The accuracy of the model.

Prec The precision of the model.

Rec The recall of the model.

F1 The F1 score of the model.

Option Types

None No additional options.

Detectors The token detectors which we in-
troduced as option.

Stemming A stemming operation is used as
pre-processing step.

Typo The typographical error correction op-
tion.

Compound The compound word splitting op-
tion.

Data set sizes

Small The small data set having 5 · 103 rows.

Med The small data set having 104 rows.

Large The small data set having 105 rows.

Model types

NN Neural Network.

SVM Support Vector Machine.

Forest Random Forest.

Bayes Naive Bayes.

60

Results of C# implementation

61

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.60 00:00:00.11

None

0,886 0,817 0,994 0,897
Forest 00:00:01.58 00:00:00.05 0,978 0,998 0,959 0,978
NN 00:01:53.26 00:00:00.06 0,995 0,994 0,996 0,995
SVM 00:00:17.04 00:00:01.85 0,992 0,992 0,992 0,992
Bayes 00:00:00.31 00:00:00.17

Detectors

0,886 0,817 0,994 0,897
Forest 00:00:02.46 00:00:00.14 0,978 0,998 0,959 0,978
NN 00:01:54.88 00:00:00.16 0,994 0,992 0,996 0,994
SVM 00:00:15.37 00:00:01.77 0,992 0,992 0,992 0,992
Bayes 00:00:00.35 00:00:00.37

Stemming

0,891 0,824 0,994 0,901
Forest 00:00:01.51 00:00:00.15 0,980 0,998 0,962 0,980
NN 00:01:49.90 00:00:00.14 0,994 0,992 0,996 0,994
SVM 00:00:14.97 00:00:01.75 0,992 0,992 0,992 0,992
Bayes 00:00:00.40 00:00:00.59

Typo

0,891 0,824 0,994 0,901
Forest 00:00:01.76 00:00:00.72 0,913 0,998 0,831 0,907
NN 00:01:51.80 00:00:00.56 0,993 0,990 0,996 0,993
SVM 00:00:16.48 00:00:02.21 0,988 0,992 0,984 0,988
Bayes 00:00:00.61 00:00:01.36

Compound

0,891 0,824 0,994 0,901
Forest 00:00:01.33 00:00:00.69 0,913 0,998 0,831 0,907
NN 00:01:52.27 00:00:00.56 0,994 0,994 0,994 0,994
SVM 00:00:15.87 00:00:02.24 0,988 0,992 0,984 0,988
Bayes

Med

00:00:00.88 00:00:00.29

None

0,892 0,826 0,989 0,900
Forest 00:00:02.80 00:00:00.14 0,979 0,995 0,962 0,978
NN 00:05:26.78 00:00:00.17 0,995 0,993 0,996 0,994
SVM 00:01:05.94 00:00:44.14 0,995 0,994 0,996 0,995
Bayes 00:00:00.90 00:00:00.46

Detectors

0,892 0,827 0,989 0,901
Forest 00:00:02.56 00:00:00.32 0,979 0,995 0,962 0,978
NN 00:05:28.61 00:00:00.34 0,995 0,993 0,996 0,994
SVM 00:01:02.15 00:00:07.54 0,995 0,994 0,996 0,995
Bayes 00:00:00.89 00:00:00.46

Stemming

0,893 0,828 0,989 0,902
Forest 00:00:03.29 00:00:00.36 0,979 0,995 0,963 0,979
NN 00:05:18.84 00:00:00.34 0,996 0,995 0,996 0,995
SVM 00:01:09.26 00:00:07.96 0,995 0,994 0,996 0,995
Bayes 00:00:01.01 00:00:01.65

Typo

0,897 0,834 0,988 0,904
Forest 00:00:03.01 00:00:01.93 0,883 0,986 0,779 0,870
NN 00:05:25.03 00:00:01.48 0,996 0,994 0,998 0,996
SVM 00:01:05.22 00:00:08.63 0,995 0,992 0,998 0,995
Bayes 00:00:02.06 00:00:04.32

Compound

0,897 0,834 0,988 0,904
Forest 00:00:02.60 00:00:01.86 0,883 0,986 0,779 0,870
NN 00:05:25.05 00:00:01.49 0,996 0,993 0,998 0,995
SVM 00:01:04.32 00:00:08.53 0,995 0,992 0,998 0,995
Bayes

Large

00:01:13.07 00:00:13.61
None

0,928 0,874 0,999 0,932
Forest 00:00:23.54 00:00:05.17 0,993 0,998 0,989 0,993
NN 03:35:33.24 00:00:07.43 0,999 0,999 1,000 0,999

Bayes 00:01:08.04 00:00:21.28
Detectors

0,928 0,874 0,999 0,932
Forest 00:00:23.59 00:00:07.95 0,993 0,998 0,988 0,993
NN 03:34:12.11 00:00:09.07 0,999 0,999 1,000 0,999

Bayes 00:01:07.50 00:00:24.14
Stemming

0,928 0,874 0,999 0,932
Forest 00:00:22.50 00:00:07.04 0,993 0,998 0,988 0,993
NN 03:24:33.87 00:00:08.59 0,999 0,998 1,000 0,999

Bayes 00:01:11.62 00:00:50.16
Typo

0,928 0,875 0,999 0,933
Forest 00:00:40.49 00:00:25.75 0,928 0,977 0,884 0,928
NN 03:29:23.20 00:00:21.73 0,999 0,998 1,000 0,999

Bayes 00:01:19.52 00:00:42.94
Compound

0,928 0,875 0,999 0,933
Forest 00:00:42.14 00:00:25.91 0,928 0,977 0,884 0,928
NN 03:29:55.13 00:00:21.82 0,999 0,998 1,000 0,999

Table 8.6: Results of custom implementations for class Maintenance

62

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.40 00:00:00.11

None

0,889 0,818 1,000 0,900
Forest 00:00:01.37 00:00:00.05 0,975 0,996 0,955 0,975
NN 00:01:58.34 00:00:00.11 0,996 0,992 1,000 0,996
SVM 00:00:17.82 00:00:02.33 0,994 0,994 0,994 0,994
Bayes 00:00:00.46 00:00:00.20

Detectors

0,889 0,818 1,000 0,900
Forest 00:00:01.83 00:00:00.15 0,976 0,996 0,957 0,976
NN 00:01:58.63 00:00:00.17 0,997 0,994 1,000 0,997
SVM 00:00:20.21 00:00:02.70 0,994 0,994 0,994 0,994
Bayes 00:00:00.47 00:00:00.19

Stemming

0,894 0,825 1,000 0,904
Forest 00:00:01.27 00:00:00.14 0,970 0,982 0,959 0,970
NN 00:01:56.24 00:00:00.15 0,997 0,994 1,000 0,997
SVM 00:00:19.78 00:00:02.50 0,994 0,994 0,994 0,994
Bayes 00:00:00.63 00:00:01.39

Typo

0,898 0,831 1,000 0,907
Forest 00:00:01.40 00:00:00.62 0,788 0,990 0,588 0,738
NN 00:01:58.78 00:00:00.63 0,996 0,992 1,000 0,996
SVM 00:00:14.92 00:00:02.28 0,997 0,996 0,998 0,997
Bayes 00:00:00.66 00:00:01.33

Compound

0,898 0,831 1,000 0,907
Forest 00:00:01.47 00:00:00.63 0,788 0,990 0,588 0,738
NN 00:01:58.52 00:00:00.63 0,996 0,992 1,000 0,996
SVM 00:00:16.46 00:00:02.35 0,997 0,996 0,998 0,997
Bayes

Med

00:00:01.22 00:00:00.37

None

0,987 0,974 1,000 0,987
Forest 00:00:01.68 00:00:00.19 0,985 0,992 0,977 0,985
NN 00:06:40.39 00:00:00.20 0,996 0,992 1,000 0,996
SVM 00:01:34.67 00:00:11.16 0,993 0,989 0,997 0,993
Bayes 00:00:01.14 00:00:00.54

Detectors

0,987 0,974 1,000 0,987
Forest 00:00:01.91 00:00:00.35 0,984 0,992 0,976 0,984
NN 00:06:42.40 00:00:00.38 0,997 0,993 1,000 0,997
SVM 00:01:38.07 00:00:12.88 0,993 0,989 0,997 0,993
Bayes 00:00:01.19 00:00:00.52

Stemming

0,988 0,976 1,000 0,988
Forest 00:00:01.65 00:00:00.41 0,983 0,992 0,974 0,983
NN 00:06:30.73 00:00:00.38 0,996 0,992 0,999 0,996
SVM 00:01:34.00 00:00:10.98 0,993 0,989 0,997 0,993
Bayes 00:00:02.12 00:00:03.27

Typo

0,988 0,976 1,000 0,988
Forest 00:00:01.78 00:00:01.32 0,881 0,957 0,818 0,882
NN 00:06:40.27 00:00:01.37 0,996 0,992 1,000 0,996
SVM 00:01:24.35 00:00:09.30 0,994 0,989 0,998 0,994
Bayes 00:00:02.30 00:00:03.26

Compound

0,988 0,976 1,000 0,988
Forest 00:00:01.98 00:00:01.34 0,881 0,957 0,818 0,882
NN 00:06:39.89 00:00:01.38 0,996 0,992 1,000 0,996
SVM 00:01:23.50 00:00:09.14 0,994 0,989 0,998 0,994
Bayes

Large

00:10:12.90 00:10:17.90
None

0,997 0,985 0,998 0,992
Forest 00:05:28.40 00:02:13.67 0,998 0,998 0,990 0,994
NN 03:44:35.64 00:00:15.46 0,998 0,998 0,992 0,995

Bayes 00:11:42.72 00:09:32.74
Detectors

0,997 0,984 0,998 0,991
Forest 00:00:46.93 00:00:09.87 0,998 0,998 0,989 0,994
NN 03:45:11.23 00:00:23.18 0,999 0,998 0,995 0,997

Bayes 00:01:09.57 00:00:28.40
Stemming

0,997 0,984 0,998 0,991
Forest 00:00:31.40 00:00:07.59 0,998 0,998 0,990 0,994
NN 03:34:47.68 00:00:09.03 0,999 0,998 0,994 0,996

Bayes 00:01:10.35 00:00:44.72
Typo

0,997 0,984 0,998 0,991
Forest 00:05:30.99 00:03:04.21 0,888 0,960 0,543 0,693
NN 03:39:38.67 00:00:21.58 0,998 0,998 0,992 0,995

Bayes 00:01:09.87 00:00:47.78
Compound

0,997 0,984 0,998 0,991
Forest 00:07:40.48 00:01:18.47 0,888 0,960 0,543 0,693
NN 03:39:41.89 00:00:21.57 0,998 0,999 0,991 0,995

Table 8.7: Results of custom implementations for class Serpentine belt

63

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.75 00:00:00.28

None

0,985 0,986 0,984 0,985
Forest 00:00:00.00 00:00:00.04 0,500 0,500 1,000 0,667
NN 00:02:12.09 00:00:00.06 0,983 0,988 0,978 0,983
SVM 00:00:27.12 00:00:02.47 0,981 0,984 0,978 0,981
Bayes 00:00:00.42 00:00:00.19

Detectors

0,985 0,984 0,986 0,985
Forest 00:00:01.38 00:00:00.13 0,972 0,992 0,953 0,972
NN 00:02:12.35 00:00:00.40 0,991 0,988 0,994 0,991
SVM 00:00:21.57 00:00:02.19 0,987 0,982 0,992 0,987
Bayes 00:00:00.45 00:00:00.20

Stemming

0,985 0,984 0,986 0,985
Forest 00:00:01.05 00:00:00.14 0,977 0,994 0,961 0,977
NN 00:02:09.86 00:00:00.16 0,992 0,990 0,994 0,992
SVM 00:00:22.37 00:00:02.33 0,988 0,984 0,992 0,988
Bayes 00:00:00.39 00:00:01.65

Typo

0,983 0,982 0,984 0,983
Forest 00:00:01.13 00:00:01.00 0,834 0,992 0,685 0,811
NN 00:02:12.48 00:00:00.98 0,991 0,988 0,994 0,991
SVM 00:00:23.96 00:00:02.57 0,982 0,976 0,988 0,982
Bayes 00:00:01.13 00:00:00.92

Compound

0,983 0,982 0,984 0,983
Forest 00:00:01.14 00:00:00.91 0,834 0,992 0,685 0,811
NN 00:02:12.23 00:00:00.83 0,989 0,984 0,994 0,989
SVM 00:00:21.80 00:00:02.52 0,982 0,976 0,988 0,982
Bayes

Med

00:00:02.01 00:00:00.96

None

0,985 0,979 0,990 0,985
Forest 00:00:00.00 00:00:00.13 0,500 0,500 1,000 0,667
NN 00:06:30.04 00:00:00.20 0,993 0,995 0,990 0,992
SVM 00:01:47.98 00:00:11.49 0,990 0,991 0,989 0,990
Bayes 00:00:01.15 00:00:00.50

Detectors

0,985 0,980 0,989 0,985
Forest 00:00:02.61 00:00:00.34 0,985 0,991 0,978 0,985
NN 00:06:31.57 00:00:00.37 0,993 0,991 0,995 0,993
SVM 00:01:28.23 00:00:11.11 0,993 0,991 0,994 0,993
Bayes 00:00:01.01 00:00:00.50

Stemming

0,985 0,982 0,988 0,985
Forest 00:00:02.09 00:00:00.33 0,988 0,992 0,983 0,987
NN 00:06:21.90 00:00:00.38 0,994 0,992 0,996 0,994
SVM 00:01:27.38 00:00:11.67 0,993 0,990 0,995 0,993
Bayes 00:00:01.07 00:00:01.88

Typo

0,985 0,982 0,988 0,985
Forest 00:00:02.49 00:00:01.75 0,715 0,996 0,446 0,616
NN 00:06:32.62 00:00:01.78 0,996 0,994 0,997 0,996
SVM 00:01:26.24 00:00:10.80 0,993 0,989 0,996 0,993
Bayes 00:00:01.04 00:00:01.90

Compound

0,985 0,982 0,988 0,985
Forest 00:00:02.21 00:00:01.71 0,715 0,996 0,446 0,616
NN 00:06:32.62 00:00:01.78 0,994 0,992 0,996 0,994
SVM 00:01:24.41 00:00:11.24 0,993 0,989 0,996 0,993
Bayes

Large

00:17:51.42 00:04:48.54
None

0,994 0,990 0,998 0,994
Forest 00:00:41.72 00:00:08.26 0,986 0,994 0,978 0,986
NN 03:56:12.73 00:00:08.38 0,998 0,996 1,000 0,998

Bayes 00:13:21.20 00:13:07.85
Detectors

0,994 0,991 0,998 0,994
Forest 00:00:42.08 00:00:09.43 0,990 0,994 0,987 0,990
NN 03:58:16.63 00:01:38.56 0,998 0,995 1,000 0,998

Bayes 00:07:00.89 00:09:25.84
Stemming

0,994 0,991 0,998 0,994
Forest 00:00:30.86 00:00:09.05 0,990 0,992 0,987 0,990
NN 03:49:00.52 00:01:33.58 0,998 0,995 1,000 0,998

Bayes 00:29:02.56 00:15:44.47
Typo

0,994 0,991 0,998 0,994
Forest 00:01:12.50 00:00:22.72 0,767 0,989 0,559 0,714
NN 03:53:13.81 00:00:23.22 0,997 0,995 0,999 0,997

Bayes 00:04:35.91 00:05:21.24
Compound

0,994 0,991 0,998 0,994
Forest 00:01:17.42 00:00:22.87 0,767 0,989 0,559 0,714
NN 03:53:07.26 00:00:23.72 0,997 0,994 1,000 0,997

Table 8.8: Results of custom implementations for class Tyres

64

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.70 00:00:00.25

None

0,990 0,990 0,990 0,990
Forest 00:00:00.00 00:00:00.05 0,989 0,996 0,982 0,989
NN 00:01:45.66 00:00:00.05 0,996 0,996 0,996 0,996
SVM 00:00:10.63 00:00:01.34 0,996 0,996 0,996 0,996
Bayes 00:00:00.32 00:00:00.16

Detectors

0,990 0,990 0,990 0,990
Forest 00:00:01.17 00:00:00.12 0,963 0,986 0,943 0,964
NN 00:01:45.79 00:00:00.26 0,997 0,996 0,998 0,997
SVM 00:00:09.56 00:00:01.40 0,996 0,996 0,996 0,996
Bayes 00:00:00.42 00:00:00.55

Stemming

0,990 0,990 0,990 0,990
Forest 00:00:01.09 00:00:00.12 0,959 0,986 0,936 0,960
NN 00:01:43.23 00:00:00.28 0,997 0,998 0,996 0,997
SVM 00:00:09.01 00:00:01.36 0,996 0,996 0,996 0,996
Bayes 00:00:00.44 00:00:00.59

Typo

0,989 0,990 0,988 0,989
Forest 00:00:00.80 00:00:00.64 0,974 0,996 0,954 0,974
NN 00:01:45.19 00:00:01.13 0,999 0,998 1,000 0,999
SVM 00:00:08.05 00:00:01.57 0,997 0,996 0,998 0,997
Bayes 00:00:00.34 00:00:00.58

Compound

0,989 0,990 0,988 0,989
Forest 00:00:01.25 00:00:00.53 0,974 0,996 0,954 0,974
NN 00:01:45.26 00:00:00.55 0,999 0,998 1,000 0,999
SVM 00:00:07.87 00:00:01.58 0,997 0,996 0,998 0,997
Bayes

Med

00:00:01.35 00:00:00.32

None

0,998 0,996 1,000 0,998
Forest 00:00:00.00 00:00:00.12 0,991 0,999 0,983 0,991
NN 00:06:14.19 00:00:00.18 1,000 0,999 1,000 1,000
SVM 00:00:57.76 00:00:05.63 0,999 0,999 0,999 0,999
Bayes 00:00:01.13 00:00:00.46

Detectors

0,998 0,996 1,000 0,998
Forest 00:00:01.69 00:00:00.31 0,995 0,997 0,992 0,995
NN 00:06:14.67 00:00:00.34 1,000 0,999 1,000 1,000
SVM 00:00:53.52 00:00:05.66 0,999 0,999 0,999 0,999
Bayes 00:00:01.01 00:00:00.45

Stemming

0,999 0,997 1,000 0,999
Forest 00:00:01.40 00:00:00.60 0,994 0,997 0,990 0,994
NN 00:06:05.79 00:00:00.33 1,000 0,999 1,000 1,000
SVM 00:00:53.57 00:00:05.32 0,999 0,999 0,999 0,999
Bayes 00:00:01.24 00:00:01.60

Typo

0,999 0,997 1,000 0,999
Forest 00:00:01.71 00:00:01.44 0,906 1,000 0,821 0,902
NN 00:06:14.37 00:00:01.48 0,999 0,999 0,999 0,999
SVM 00:00:39.83 00:00:04.47 0,998 0,999 0,997 0,998
Bayes 00:00:01.06 00:00:01.60

Compound

0,999 0,997 1,000 0,999
Forest 00:00:01.67 00:00:01.50 0,906 1,000 0,821 0,902
NN 00:06:16.17 00:00:17.98 1,000 0,999 1,000 1,000
SVM 00:00:40.29 00:00:04.49 0,998 0,999 0,997 0,998
Bayes

Large

00:03:46.35 00:02:58.21
None

0,999 0,993 0,999 0,996
Forest 00:01:01.33 00:00:07.48 0,998 0,991 0,997 0,994
NN 03:45:55.88 00:00:07.48 0,999 0,997 0,999 0,998

Bayes 00:02:54.49 00:02:53.62
Detectors

0,999 0,993 0,999 0,996
Forest 00:00:14.28 00:00:08.91 0,998 0,991 0,997 0,994
NN 03:46:07.57 00:00:09.25 0,999 0,997 0,996 0,996

Bayes 00:14:47.87 00:04:30.65
Stemming

0,999 0,993 0,999 0,996
Forest 00:00:11.68 00:00:08.00 0,998 0,991 0,997 0,994
NN 03:36:54.91 00:00:09.19 0,999 0,998 0,995 0,996

Bayes 00:13:11.52 00:08:16.38
Typo

0,999 0,993 0,999 0,996
Forest 00:00:28.98 00:00:21.51 0,885 0,993 0,487 0,653
NN 03:42:27.21 00:00:24.04 0,999 0,998 0,997 0,998

Bayes 00:18:03.48 00:08:16.49
Compound

0,999 0,993 0,999 0,996
Forest 00:00:19.80 00:00:21.26 0,885 0,993 0,487 0,653
NN 03:42:19.58 00:00:22.28 0,999 0,998 0,997 0,998

Table 8.9: Results of custom implementations for class Battery

65

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.50 00:00:00.12

None

0,995 0,990 1,000 0,995
Forest 00:00:00.00 00:00:00.04 0,761 0,996 0,524 0,687
NN 00:02:20.06 00:00:00.07 0,999 0,998 1,000 0,999
SVM 00:00:23.44 00:00:02.32 0,991 0,998 0,984 0,991
Bayes 00:00:00.43 00:00:00.20

Detectors

0,995 0,990 1,000 0,995
Forest 00:00:00.89 00:00:00.22 0,969 0,994 0,946 0,970
NN 00:02:20.42 00:00:00.14 0,999 0,998 1,000 0,999
SVM 00:00:22.04 00:00:02.43 0,991 0,998 0,984 0,991
Bayes 00:00:00.42 00:00:00.20

Stemming

0,995 0,990 1,000 0,995
Forest 00:00:00.82 00:00:00.13 0,968 0,996 0,943 0,969
NN 00:02:17.10 00:00:00.16 0,998 0,998 0,998 0,998
SVM 00:00:21.74 00:00:02.25 0,993 0,998 0,988 0,993
Bayes 00:00:00.78 00:00:01.89

Typo

0,995 0,990 1,000 0,995
Forest 00:00:00.96 00:00:00.73 0,933 0,988 0,887 0,935
NN 00:02:20.40 00:00:00.63 0,999 0,998 1,000 0,999
SVM 00:00:18.76 00:00:02.66 0,992 0,998 0,986 0,992
Bayes 00:00:00.82 00:00:01.45

Compound

0,995 0,990 1,000 0,995
Forest 00:00:03.11 00:00:00.61 0,933 0,988 0,887 0,935
NN 00:02:19.82 00:00:00.64 0,998 0,996 1,000 0,998
SVM 00:00:18.77 00:00:02.67 0,992 0,998 0,986 0,992
Bayes

Med

00:00:01.29 00:00:00.35

None

0,999 0,998 0,999 0,999
Forest 00:00:00.00 00:00:00.13 0,771 1,000 0,542 0,703
NN 00:06:51.02 00:00:00.20 1,000 1,000 1,000 1,000
SVM 00:01:29.78 00:00:09.23 0,992 1,000 0,983 0,991
Bayes 00:00:01.21 00:00:00.50

Detectors

0,999 0,998 0,999 0,999
Forest 00:00:03.11 00:00:00.32 0,988 0,998 0,978 0,988
NN 00:06:50.60 00:00:00.35 1,000 1,000 0,999 1,000
SVM 00:01:29.63 00:00:09.34 0,992 1,000 0,983 0,991
Bayes 00:00:01.32 00:00:00.50

Stemming

0,998 0,997 0,999 0,998
Forest 00:00:01.76 00:00:00.31 0,987 0,999 0,975 0,987
NN 00:06:41.90 00:00:00.36 1,000 1,000 1,000 1,000
SVM 00:01:29.08 00:00:08.85 0,993 1,000 0,985 0,992
Bayes 00:00:02.28 00:00:03.50

Typo

0,998 0,996 0,999 0,998
Forest 00:00:03.10 00:00:01.50 0,941 0,995 0,893 0,941
NN 00:06:51.30 00:00:01.50 0,996 0,999 0,993 0,996
SVM 00:01:24.49 00:00:09.43 0,991 1,000 0,982 0,991
Bayes 00:00:03.38 00:00:01.66

Compound

0,998 0,996 0,999 0,998
Forest 00:00:02.01 00:00:01.44 0,941 0,995 0,893 0,941
NN 00:06:50.77 00:00:01.51 0,996 0,999 0,993 0,996
SVM 00:01:23.31 00:00:09.32 0,991 1,000 0,982 0,991
Bayes

Large

00:10:54.18 00:07:37.58
None

0,995 0,947 0,987 0,966
Forest 00:03:14.60 00:06:22.18 0,998 0,995 0,971 0,982
NN 03:43:51.82 00:00:07.55 0,999 0,996 0,986 0,991

Bayes 00:03:08.55 00:03:25.78
Detectors

0,995 0,946 0,987 0,966
Forest 00:02:15.91 00:03:14.60 0,998 0,995 0,971 0,982
NN 03:44:08.58 00:00:09.49 0,999 0,997 0,987 0,992

Bayes 00:01:07.10 00:00:23.34
Stemming

0,996 0,947 0,994 0,970
Forest 00:01:37.47 00:03:34.70 0,998 0,995 0,970 0,982
NN 03:38:20.70 00:00:09.13 0,999 0,998 0,981 0,989

Bayes 00:01:08.87 00:00:47.49
Typo

0,996 0,947 0,994 0,970
Forest 00:02:08.76 00:00:27.91 0,964 0,853 0,688 0,762
NN 03:40:49.18 00:00:21.64 0,995 0,995 0,938 0,965

Bayes 00:01:06.38 00:00:44.43
Compound

0,996 0,947 0,994 0,970
Forest 00:05:29.32 00:02:32.02 0,964 0,853 0,688 0,762
NN 03:40:29.18 00:00:21.79 0,995 0,997 0,929 0,962

Table 8.10: Results of custom implementations for class V-belt

66

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.36 00:00:00.10

None

0,972 0,957 0,988 0,972
Forest 00:00:00.00 00:00:00.04 0,500 0,500 1,000 0,667
NN 00:02:01.85 00:00:00.06 0,991 0,992 0,990 0,991
SVM 00:00:22.92 00:00:01.84 0,988 0,996 0,980 0,988
Bayes 00:00:00.47 00:00:00.18

Detectors

0,972 0,957 0,988 0,972
Forest 00:00:01.56 00:00:00.27 0,962 0,990 0,935 0,962
NN 00:02:02.07 00:00:00.15 0,991 0,992 0,990 0,991
SVM 00:00:23.36 00:00:01.99 0,988 0,996 0,980 0,988
Bayes 00:00:01.17 00:00:00.23

Stemming

0,973 0,959 0,988 0,973
Forest 00:00:01.63 00:00:00.14 0,964 0,994 0,935 0,964
NN 00:01:59.26 00:00:00.36 0,989 0,990 0,988 0,989
SVM 00:00:21.16 00:00:01.98 0,988 0,996 0,980 0,988
Bayes 00:00:00.51 00:00:00.66

Typo

0,975 0,963 0,988 0,975
Forest 00:00:01.80 00:00:00.73 0,775 0,990 0,571 0,724
NN 00:02:00.99 00:00:00.60 0,990 0,990 0,990 0,990
SVM 00:00:17.95 00:00:01.81 0,986 0,996 0,976 0,986
Bayes 00:00:00.83 00:00:00.65

Compound

0,975 0,963 0,988 0,975
Forest 00:00:02.36 00:00:00.59 0,775 0,990 0,571 0,724
NN 00:02:00.94 00:00:00.61 0,992 0,992 0,992 0,992
SVM 00:00:17.73 00:00:01.85 0,986 0,996 0,976 0,986
Bayes

Med

00:00:00.92 00:00:00.31

None

0,984 0,975 0,993 0,984
Forest 00:00:00.00 00:00:00.11 0,500 0,500 1,000 0,667
NN 00:05:37.87 00:00:00.17 0,994 0,990 0,998 0,994
SVM 00:01:16.86 00:00:09.13 0,997 0,996 0,998 0,997
Bayes 00:00:01.95 00:00:00.46

Detectors

0,985 0,976 0,993 0,985
Forest 00:00:02.52 00:00:00.41 0,975 0,984 0,965 0,974
NN 00:05:38.39 00:00:00.35 0,993 0,988 0,997 0,993
SVM 00:01:13.62 00:00:09.29 0,997 0,996 0,998 0,997
Bayes 00:00:00.93 00:00:00.46

Stemming

0,984 0,975 0,993 0,984
Forest 00:00:02.51 00:00:00.42 0,977 0,987 0,966 0,976
NN 00:05:29.42 00:00:00.35 0,995 0,991 0,998 0,995
SVM 00:01:06.49 00:00:08.93 0,997 0,995 0,999 0,997
Bayes 00:00:00.92 00:00:01.49

Typo

0,987 0,980 0,993 0,987
Forest 00:00:02.41 00:00:01.61 0,766 0,989 0,544 0,702
NN 00:05:35.56 00:00:01.34 0,996 0,992 0,999 0,996
SVM 00:00:52.39 00:00:06.91 0,996 0,993 0,998 0,996
Bayes 00:00:00.92 00:00:01.41

Compound

0,987 0,980 0,993 0,987
Forest 00:00:04.38 00:00:01.40 0,766 0,989 0,544 0,702
NN 00:05:35.56 00:00:01.34 0,996 0,993 0,998 0,996
SVM 00:00:54.06 00:00:07.09 0,996 0,993 0,998 0,996
Bayes

Large

00:14:08.41 00:10:17.26
None

0,998 0,998 0,998 0,998
Forest 00:01:33.33 00:00:07.97 0,991 0,998 0,982 0,990
NN 03:45:04.40 00:00:07.57 0,999 0,998 0,999 0,999

Bayes 00:07:26.38 00:05:34.05
Detectors

0,998 0,998 0,998 0,998
Forest 00:01:01.63 00:00:15.70 0,991 0,998 0,982 0,990
NN 03:45:13.02 00:00:09.44 0,999 0,998 0,999 0,998

Bayes 00:11:49.88 00:02:07.25
Stemming

0,998 0,998 0,998 0,998
Forest 00:01:30.69 00:00:18.36 0,992 0,998 0,984 0,991
NN 03:36:21.88 00:00:09.32 0,999 0,999 0,999 0,999

Bayes 00:06:00.52 00:12:11.14
Typo

0,998 0,998 0,998 0,998
Forest 00:02:32.86 00:01:00.90 0,852 0,994 0,708 0,827
NN 03:42:31.35 00:00:22.82 0,997 0,997 0,997 0,997

Bayes 00:06:11.85 00:06:55.38
Compound

0,998 0,998 0,998 0,998
Forest 00:02:57.64 00:00:50.59 0,852 0,994 0,708 0,827
NN 03:42:56.66 00:02:37.69 0,997 0,997 0,996 0,997

Table 8.11: Results of custom implementations for class Brakes

67

Model Size Train Eval Options Acc Prec Rec F1

Bayes

Small

00:00:00.27 00:00:00.09

None

0,960 0,928 0,998 0,961
Forest 00:00:00.00 00:00:00.03 0,888 0,995 0,780 0,874
NN 00:01:44.46 00:00:00.05 0,998 0,998 0,998 0,998
SVM 00:00:15.98 00:00:01.41 0,997 0,998 0,996 0,997
Bayes 00:00:00.48 00:00:00.25

Detectors

0,960 0,928 0,998 0,961
Forest 00:00:00.73 00:00:00.15 0,968 0,990 0,948 0,969
NN 00:01:45.58 00:00:00.30 0,998 0,998 0,998 0,998
SVM 00:00:14.10 00:00:01.39 0,997 0,998 0,996 0,997
Bayes 00:00:00.33 00:00:00.17

Stemming

0,960 0,928 0,998 0,961
Forest 00:00:00.63 00:00:00.12 0,977 0,990 0,965 0,977
NN 00:01:41.14 00:00:00.30 0,998 0,998 0,998 0,998
SVM 00:00:14.44 00:00:01.39 0,997 0,998 0,996 0,997
Bayes 00:00:00.55 00:00:01.35

Typo

0,959 0,926 0,998 0,961
Forest 00:00:00.94 00:00:01.29 0,948 0,990 0,913 0,950
NN 00:01:42.79 00:00:00.60 0,997 0,996 0,998 0,997
SVM 00:00:14.88 00:00:01.79 0,997 0,998 0,996 0,997
Bayes 00:00:00.36 00:00:00.89

Compound

0,959 0,926 0,998 0,961
Forest 00:00:01.83 00:00:00.62 0,948 0,990 0,913 0,950
NN 00:01:43.05 00:00:00.60 0,998 0,998 0,998 0,998
SVM 00:00:14.05 00:00:01.79 0,997 0,998 0,996 0,997
Bayes

Med

00:00:01.11 00:00:00.33

None

0,990 0,980 1,000 0,990
Forest 00:00:00.00 00:00:00.12 0,887 0,999 0,774 0,872
NN 00:06:12.58 00:00:00.18 0,998 0,997 0,999 0,998
SVM 00:01:21.66 00:00:08.31 0,998 0,998 0,997 0,997
Bayes 00:00:01.66 00:00:00.58

Detectors

0,989 0,978 1,000 0,989
Forest 00:00:01.33 00:00:00.40 0,989 0,998 0,980 0,989
NN 00:06:15.07 00:00:00.34 0,999 0,997 1,000 0,999
SVM 00:01:24.32 00:00:08.58 0,998 0,998 0,997 0,997
Bayes 00:00:01.08 00:00:00.49

Stemming

0,990 0,981 0,999 0,990
Forest 00:00:01.40 00:00:00.34 0,989 0,998 0,980 0,989
NN 00:06:01.70 00:00:00.36 0,999 0,998 1,000 0,999
SVM 00:01:18.89 00:00:08.40 0,997 0,998 0,996 0,997
Bayes 00:00:01.91 00:00:03.35

Typo

0,991 0,982 0,999 0,991
Forest 00:00:01.48 00:00:01.34 0,947 0,998 0,904 0,949
NN 00:06:10.54 00:00:01.41 0,999 0,998 1,000 0,999
SVM 00:01:13.89 00:00:08.61 0,997 0,998 0,996 0,997
Bayes 00:00:01.32 00:00:02.34

Compound

0,991 0,982 0,999 0,991
Forest 00:00:01.39 00:00:01.36 0,947 0,998 0,904 0,949
NN 00:06:10.76 00:00:01.43 0,999 0,998 0,999 0,999
SVM 00:01:12.39 00:00:08.51 0,997 0,998 0,996 0,997
Bayes

Large

00:10:20.12 00:08:15.46
None

0,998 0,990 1,000 0,995
Forest 00:01:07.43 00:00:06.89 0,999 0,996 0,995 0,996
NN 03:45:21.03 00:09:42.13 0,999 0,998 0,998 0,998

Bayes 00:03:20.94 00:13:10.15
Detectors

0,998 0,990 1,000 0,995
Forest 00:01:03.87 00:00:07.95 0,999 0,996 0,995 0,996
NN 03:44:06.08 00:00:13.29 1,000 0,998 0,999 0,998

Bayes 00:01:07.26 00:00:25.55
Stemming

0,998 0,990 0,999 0,995
Forest 00:00:19.74 00:00:07.61 0,999 0,996 0,995 0,996
NN 03:33:55.34 00:00:08.92 0,999 0,998 0,997 0,998

Bayes 00:01:06.10 00:00:40.13
Typo

0,998 0,990 0,999 0,995
Forest 00:00:27.57 00:00:20.59 0,957 0,995 0,791 0,881
NN 03:39:57.22 00:00:22.75 0,999 0,998 0,994 0,996

Bayes 00:01:06.99 00:00:47.57
Compound

0,998 0,990 0,999 0,995
Forest 00:00:29.41 00:00:20.93 0,957 0,995 0,791 0,881
NN 03:39:59.67 00:00:22.92 0,999 0,998 0,995 0,997

Table 8.12: Results of custom implementations for class Air conditioning

68

Results of Azure Machine Learning

69

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

00:02:08 00:00:18

None

0,969 0,974 0,978 0,976
SVM 00:00:31 00:00:24 0,963 0,962 0,981 0,972
Forest 00:00:32 00:00:26 0,955 0,982 0,948 0,965
Bayes 00:00:17 00:00:19 0,956 0,976 0,955 0,966
NN 00:02:10 00:00:17

Detectors

0,970 0,974 0,980 0,977
SVM 00:00:35 00:00:20 0,964 0,962 0,983 0,972
Forest 00:00:30 00:00:27 0,963 0,982 0,960 0,971
Bayes 00:00:20 00:00:17 0,957 0,976 0,957 0,966
NN 00:02:02 00:00:17

Stemming

0,963 0,979 0,963 0,971
SVM 00:00:32 00:00:30 0,963 0,972 0,971 0,971
Forest 00:00:26 00:00:28 0,959 0,982 0,954 0,968
Bayes 00:00:19 00:00:20 0,957 0,984 0,949 0,966
NN 00:02:19 00:00:19

Typo

0,966 0,977 0,971 0,974
SVM 00:00:40 00:00:20 0,967 0,972 0,977 0,974
Forest 00:00:34 00:00:22 0,964 0,971 0,974 0,972
Bayes 00:00:19 00:00:16 0,975 0,983 0,978 0,980
NN 00:02:17 00:00:23

Compound

0,983 0,986 0,987 0,987
SVM 00:00:43 00:00:26 0,981 0,983 0,987 0,985
Forest 00:00:32 00:00:21 0,983 0,981 0,992 0,987
Bayes 00:00:22 00:00:16 0,984 0,989 0,986 0,987
NN

Med

00:04:08 00:00:24

None

0,966 0,984 0,963 0,973
SVM 00:00:49 00:00:37 0,964 0,984 0,961 0,972
Forest 00:00:55 00:00:30 0,962 0,989 0,952 0,970
Bayes 00:00:21 00:00:21 0,961 0,985 0,955 0,970
NN 00:04:20 00:00:27

Detectors

0,970 0,985 0,968 0,976
SVM 00:00:57 00:00:30 0,961 0,983 0,957 0,970
Forest 00:00:55 00:00:28 0,958 0,987 0,948 0,967
Bayes 00:00:29 00:00:33 0,962 0,984 0,958 0,971
NN 00:04:12 00:00:24

Stemming

0,972 0,984 0,973 0,978
SVM 00:00:50 00:00:26 0,971 0,983 0,972 0,978
Forest 00:00:50 00:00:27 0,965 0,992 0,954 0,973
Bayes 00:00:24 00:00:32 0,970 0,986 0,968 0,977
NN 00:04:47 00:00:26

Typo

0,980 0,982 0,987 0,985
SVM 00:01:16 00:00:30 0,974 0,983 0,977 0,980
Forest 00:01:04 00:00:24 0,979 0,988 0,980 0,984
Bayes 00:00:27 00:00:28 0,977 0,983 0,981 0,982
NN 00:04:34 00:00:31

Compound

0,989 0,991 0,991 0,991
SVM 00:01:20 00:00:33 0,989 0,989 0,993 0,991
Forest 00:01:09 00:00:30 0,988 0,990 0,992 0,991
Bayes 00:00:29 00:00:31 0,986 0,990 0,988 0,989
NN

Large

00:42:41 00:01:00

None

0,987 0,993 0,983 0,988
SVM 00:07:40 00:00:37 0,977 0,985 0,973 0,979
Forest 00:11:29 00:00:36 0,979 0,987 0,974 0,980
Bayes 00:01:30 00:00:23 0,976 0,986 0,969 0,978
NN 00:41:54 00:00:57

Detectors

0,988 0,994 0,984 0,989
SVM 00:07:57 00:00:39 0,977 0,984 0,973 0,979
Forest 00:11:23 00:00:44 0,975 0,983 0,971 0,977
Bayes 00:01:39 00:00:27 0,975 0,986 0,969 0,978
NN 00:42:58 00:01:06

Stemming

0,987 0,992 0,985 0,989
SVM 00:07:32 00:00:33 0,977 0,985 0,974 0,979
Forest 00:11:17 00:00:45 0,978 0,984 0,976 0,980
Bayes 00:01:43 00:00:26 0,976 0,987 0,969 0,978
NN 01:01:27 00:01:20

Typo

0,994 0,996 0,992 0,994
SVM 00:22:04 00:00:43 0,989 0,992 0,988 0,990
Forest 00:14:58 00:00:46 0,991 0,997 0,987 0,992
Bayes 00:03:01 00:00:31 0,987 0,993 0,984 0,989
NN 01:05:06 00:05:24

Compound

0,995 0,997 0,994 0,996
SVM 00:23:47 00:02:13 0,991 0,993 0,991 0,992
Forest 00:17:45 00:01:41 0,994 0,996 0,992 0,994
Bayes 00:04:16 00:03:31 0,991 0,994 0,989 0,992

Table 8.13: Results of Azure ML for class Maintenance

70

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

00:02:10 00:00:20

None

0,950 0,977 0,947 0,962
SVM 00:00:33 00:00:22 0,948 0,972 0,948 0,960
Forest 00:00:34 00:00:26 0,948 0,951 0,971 0,961
Bayes 00:00:17 00:00:21 0,945 0,981 0,935 0,957
NN 00:02:06 00:00:28

Detectors

0,953 0,980 0,948 0,964
SVM 00:00:33 00:00:28 0,945 0,965 0,952 0,958
Forest 00:00:33 00:00:24 0,946 0,952 0,967 0,959
Bayes 00:00:17 00:00:25 0,945 0,981 0,935 0,957
NN 00:02:10 00:00:23

Stemming

0,952 0,975 0,952 0,963
SVM 00:00:28 00:00:29 0,956 0,977 0,956 0,966
Forest 00:00:29 00:00:29 0,950 0,968 0,956 0,962
Bayes 00:00:21 00:00:14 0,951 0,984 0,941 0,962
NN 00:02:15 00:00:19

Typo

0,967 0,971 0,979 0,975
SVM 00:00:50 00:00:28 0,968 0,974 0,977 0,976
Forest 00:00:37 00:00:23 0,969 0,980 0,973 0,976
Bayes 00:00:23 00:00:18 0,970 0,983 0,971 0,977
NN 00:02:32 00:00:19

Compound

0,978 0,991 0,976 0,983
SVM 00:00:40 00:00:25 0,974 0,988 0,973 0,980
Forest 00:00:41 00:00:29 0,971 0,982 0,974 0,978
Bayes 00:00:21 00:00:18 0,977 0,994 0,971 0,982
NN

Med

00:04:05 00:00:22

None

0,974 0,978 0,958 0,968
SVM 00:00:48 00:00:29 0,972 0,971 0,962 0,966
Forest 00:01:01 00:00:24 0,953 0,943 0,945 0,944
Bayes 00:00:24 00:00:23 0,972 0,976 0,956 0,966
NN 00:03:59 00:00:28

Detectors

0,974 0,975 0,962 0,968
SVM 00:00:54 00:00:25 0,972 0,970 0,962 0,966
Forest 00:01:01 00:00:25 0,958 0,954 0,944 0,949
Bayes 00:00:25 00:00:21 0,971 0,974 0,956 0,965
NN 00:04:22 00:00:27

Stemming

0,971 0,969 0,961 0,965
SVM 00:00:56 00:00:20 0,965 0,954 0,962 0,958
Forest 00:01:00 00:00:25 0,955 0,958 0,933 0,946
Bayes 00:00:21 00:00:23 0,972 0,979 0,954 0,966
NN 00:04:48 00:00:24

Typo

0,980 0,974 0,977 0,976
SVM 00:01:09 00:00:17 0,973 0,968 0,968 0,968
Forest 00:01:16 00:00:27 0,970 0,978 0,949 0,963
Bayes 00:00:24 00:00:24 0,981 0,985 0,969 0,977
NN 00:04:43 00:00:22

Compound

0,988 0,989 0,982 0,986
SVM 00:01:35 00:00:34 0,986 0,980 0,987 0,983
Forest 00:01:25 00:00:26 0,983 0,993 0,967 0,979
Bayes 00:00:30 00:00:26 0,987 0,990 0,977 0,984
NN

Large

00:43:29 00:00:57

None

0,996 0,964 0,970 0,967
SVM 00:07:04 00:00:35 0,991 0,939 0,910 0,924
Forest 00:14:07 00:00:28 0,991 0,973 0,883 0,926
Bayes 00:01:41 00:00:18 0,992 0,949 0,916 0,932
NN 00:43:55 00:00:59

Detectors

0,996 0,969 0,967 0,968
SVM 00:08:27 00:00:37 0,991 0,939 0,911 0,925
Forest 00:14:30 00:00:32 0,991 0,980 0,882 0,928
Bayes 00:01:33 00:00:23 0,992 0,952 0,916 0,934
NN 00:43:14 00:01:00

Stemming

0,997 0,972 0,973 0,973
SVM 00:08:15 00:00:32 0,993 0,955 0,930 0,942
Forest 00:12:49 00:00:36 0,993 0,978 0,919 0,947
Bayes 00:01:36 00:00:21 0,993 0,957 0,930 0,943
NN 01:13:57 00:01:51

Typo

0,996 0,957 0,982 0,969
SVM 00:23:57 00:00:43 0,991 0,956 0,894 0,924
Forest 00:18:16 00:00:41 0,993 0,986 0,907 0,945
Bayes 00:03:11 00:00:26 0,990 0,959 0,879 0,917
NN 01:11:57 00:06:09

Compound

0,999 0,984 0,998 0,991
SVM 00:26:29 00:02:46 0,996 0,979 0,962 0,970
Forest 00:18:40 00:01:17 0,996 0,989 0,944 0,966
Bayes 00:04:30 00:03:39 0,996 0,983 0,958 0,970

Table 8.14: Results of Azure ML for class Serpentine belt

71

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

00:02:21 0:00:26

None

0,963 0,980 0,964 0,972
SVM 00:00:31 0:00:27 0,947 0,969 0,950 0,959
Forest 00:00:35 0:00:29 0,942 0,966 0,945 0,956
Bayes 00:00:25 0:00:21 0,941 0,960 0,950 0,955
NN 00:02:17 0:00:27

Detectors

0,970 0,979 0,976 0,977
SVM 00:00:37 0:00:24 0,967 0,982 0,968 0,975
Forest 00:00:38 0:00:29 0,956 0,972 0,961 0,966
Bayes 00:00:19 0:00:25 0,953 0,967 0,962 0,964
NN 00:02:15 0:00:21

Stemming

0,968 0,974 0,977 0,976
SVM 00:00:34 0:00:27 0,972 0,983 0,974 0,979
Forest 00:00:36 0:00:21 0,957 0,983 0,952 0,967
Bayes 00:00:19 0:00:15 0,955 0,971 0,961 0,966
NN 00:02:47 0:00:21

Typo

0,969 0,979 0,974 0,976
SVM 00:00:54 0:00:29 0,962 0,980 0,962 0,971
Forest 00:00:45 0:00:30 0,958 0,981 0,955 0,968
Bayes 00:00:25 0:00:19 0,966 0,982 0,967 0,974
NN 00:02:50 0:00:20

Compound

0,975 0,988 0,974 0,981
SVM 00:00:59 0:00:28 0,975 0,989 0,973 0,981
Forest 00:00:49 0:00:33 0,973 0,986 0,973 0,979
Bayes 00:00:23 0:00:21 0,972 0,988 0,970 0,979
NN

Med

00:04:14 0:00:31

None

0,950 0,956 0,968 0,962
SVM 00:00:56 0:00:32 0,952 0,962 0,966 0,964
Forest 00:01:09 0:00:24 0,966 0,971 0,977 0,974
Bayes 00:00:26 0:00:20 0,951 0,961 0,965 0,963
NN 00:04:20 0:00:29

Detectors

0,964 0,968 0,977 0,972
SVM 00:01:04 0:00:27 0,966 0,969 0,979 0,974
Forest 00:00:59 0:00:26 0,965 0,974 0,972 0,973
Bayes 00:00:27 0:00:27 0,961 0,968 0,973 0,971
NN 00:04:12 0:00:31

Stemming

0,963 0,970 0,974 0,972
SVM 00:01:00 0:00:27 0,964 0,970 0,975 0,972
Forest 00:01:00 0:00:29 0,967 0,974 0,975 0,975
Bayes 00:00:25 0:00:22 0,959 0,967 0,970 0,969
NN 00:05:58 0:00:30

Typo

0,970 0,976 0,979 0,977
SVM 00:02:03 0:00:22 0,969 0,977 0,976 0,976
Forest 00:01:25 0:00:28 0,971 0,979 0,977 0,978
Bayes 00:00:27 0:00:30 0,968 0,974 0,977 0,975
NN 00:05:32 0:00:26

Compound

0,978 0,989 0,977 0,983
SVM 00:02:05 0:00:32 0,979 0,983 0,985 0,984
Forest 00:01:23 0:00:29 0,977 0,982 0,983 0,983
Bayes 00:00:33 0:00:35 0,974 0,983 0,977 0,980
NN

Large

00:42:35 0:01:08

None

0,984 0,981 0,980 0,981
SVM 00:08:22 0:00:29 0,971 0,970 0,962 0,966
Forest 00:14:00 0:00:31 0,975 0,981 0,960 0,970
Bayes 00:01:57 0:00:21 0,969 0,973 0,955 0,964
NN 00:46:08 0:01:07

Detectors

0,987 0,984 0,985 0,985
SVM 00:08:39 0:00:32 0,979 0,980 0,972 0,976
Forest 00:13:29 0:00:36 0,981 0,984 0,971 0,977
Bayes 00:01:48 0:00:22 0,977 0,980 0,967 0,973
NN 00:44:44 0:01:05

Stemming

0,988 0,989 0,983 0,986
SVM 00:09:28 0:00:35 0,980 0,980 0,973 0,976
Forest 00:13:27 0:00:39 0,981 0,985 0,970 0,978
Bayes 00:01:48 0:00:23 0,977 0,980 0,966 0,973
NN 01:14:45 0:01:51

Typo

0,990 0,988 0,989 0,988
SVM 00:31:40 0:00:56 0,981 0,982 0,972 0,977
Forest 00:19:23 0:00:43 0,985 0,992 0,974 0,983
Bayes 00:03:58 0:00:44 0,978 0,981 0,967 0,974
NN 01:17:39 0:01:42

Compound

0,993 0,991 0,992 0,991
SVM 00:37:02 0:01:16 0,985 0,983 0,981 0,982
Forest 00:19:20 0:01:09 0,989 0,993 0,981 0,987
Bayes 00:04:37 0:03:10 0,982 0,983 0,975 0,979

Table 8.15: Results of Azure ML for class Tyres

72

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

0:02:04 0:00:20

None

0,993 0,992 0,997 0,995
SVM 0:00:32 0:00:25 0,990 0,992 0,992 0,992
Forest 0:00:30 0:00:25 0,988 0,989 0,992 0,991
Bayes 0:00:21 0:00:23 0,993 0,994 0,995 0,995
NN 0:02:04 0:00:26

Detectors

0,994 0,994 0,997 0,995
SVM 0:00:36 0:00:22 0,993 0,992 0,997 0,995
Forest 0:00:25 0:00:26 0,988 0,989 0,992 0,991
Bayes 0:00:27 0:00:20 0,993 0,994 0,995 0,995
NN 0:02:10 0:00:24

Stemming

0,991 0,992 0,994 0,993
SVM 0:00:30 0:00:31 0,987 0,991 0,989 0,990
Forest 0:00:21 0:00:33 0,990 0,989 0,995 0,992
Bayes 0:00:21 0:00:21 0,983 0,989 0,985 0,987
NN 0:02:30 0:00:22

Typo

0,996 0,998 0,995 0,997
SVM 0:00:48 0:00:28 0,995 0,997 0,995 0,996
Forest 0:00:30 0:00:26 0,991 0,994 0,992 0,993
Bayes 0:00:22 0:00:23 0,989 0,995 0,988 0,992
NN 0:02:33 0:00:27

Compound

0,997 1,000 0,995 0,998
SVM 0:00:46 0:00:20 0,995 0,997 0,995 0,996
Forest 0:00:37 0:00:27 0,994 0,997 0,994 0,995
Bayes 0:00:23 0:00:24 0,992 0,995 0,992 0,994
NN

Med

0:04:09 0:00:27

None

0,996 0,993 0,999 0,996
SVM 0:00:52 0:00:24 0,995 0,990 0,999 0,994
Forest 0:00:55 0:00:27 0,995 0,990 1,000 0,995
Bayes 0:00:27 0:00:19 0,994 0,995 0,992 0,993
NN 0:04:34 0:00:28

Detectors

0,997 0,994 0,999 0,996
SVM 0:00:56 0:00:23 0,996 0,993 0,999 0,996
Forest 0:00:51 0:00:25 0,995 0,990 1,000 0,995
Bayes 0:00:25 0:00:23 0,994 0,995 0,992 0,993
NN 0:04:09 0:00:27

Stemming

0,995 0,990 0,999 0,994
SVM 0:00:58 0:00:24 0,995 0,990 1,000 0,995
Forest 0:00:55 0:00:25 0,994 0,987 1,000 0,993
Bayes 0:00:25 0:00:18 0,993 0,992 0,993 0,992
NN 0:04:32 0:00:29

Typo

0,998 0,997 0,999 0,998
SVM 0:01:14 0:00:32 0,998 0,997 0,999 0,998
Forest 0:00:55 0:00:26 0,998 0,996 1,000 0,998
Bayes 0:00:25 0:00:24 0,995 0,995 0,995 0,995
NN 0:04:59 0:00:25

Compound

0,999 0,997 1,000 0,998
SVM 0:01:11 0:00:29 0,998 0,997 0,999 0,998
Forest 0:01:11 0:00:29 0,998 0,997 0,999 0,998
Bayes 0:01:03 0:00:30 0,998 0,997 0,999 0,998
NN

Large

0:00:26 0:00:30

None

0,996 0,997 0,994 0,995
SVM 0:42:37 0:01:06 0,998 0,978 0,991 0,985
Forest 0:07:39 0:00:34 0,997 0,978 0,987 0,983
Bayes 0:11:01 0:00:36 0,998 0,974 0,997 0,985
NN 0:01:38 0:00:22

Detectors

0,998 0,985 0,989 0,987
SVM 0:44:42 0:01:09 0,998 0,977 0,991 0,984
Forest 0:08:36 0:00:34 0,997 0,979 0,986 0,983
Bayes 0:11:21 0:00:26 0,998 0,974 0,997 0,985
NN 0:01:44 0:00:24

Stemming

0,998 0,984 0,989 0,987
SVM 0:43:38 0:01:04 0,997 0,977 0,987 0,982
Forest 0:09:14 0:00:31 0,997 0,977 0,985 0,981
Bayes 0:11:34 0:00:32 0,998 0,977 0,995 0,986
NN 0:56:37 0:01:24

Typo

0,999 0,990 0,995 0,992
SVM 0:21:40 0:00:40 0,998 0,985 0,995 0,990
Forest 0:10:47 0:00:30 0,999 0,988 0,998 0,993
Bayes 0:03:00 0:00:38 0,998 0,986 0,992 0,989
NN 1:01:32 0:02:04

Compound

0,999 0,991 0,996 0,993
SVM 0:23:32 0:02:02 0,999 0,986 0,995 0,991
Forest 0:10:33 0:01:42 0,999 0,990 0,998 0,994
Bayes 0:03:28 0:01:14 0,999 0,986 0,995 0,990

Table 8.16: Results of Azure ML for class Battery

73

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

00:02:11 00:00:24

None

0,984 0,981 0,976 0,978
SVM 00:00:38 00:00:28 0,981 0,976 0,973 0,974
Forest 00:00:36 00:00:35 0,959 0,963 0,924 0,943
Bayes 00:00:17 00:00:24 0,981 0,986 0,962 0,974
NN 00:02:14 00:00:23

Detectors

0,984 0,984 0,973 0,978
SVM 00:00:46 00:00:29 0,984 0,976 0,981 0,978
Forest 00:00:38 00:00:23 0,963 0,972 0,927 0,949
Bayes 00:00:21 00:00:22 0,981 0,986 0,962 0,974
NN 00:02:08 00:00:24

Stemming

0,978 0,965 0,976 0,970
SVM 00:00:35 00:00:23 0,979 0,970 0,973 0,972
Forest 00:00:34 00:00:25 0,970 0,986 0,932 0,958
Bayes 00:00:19 00:00:23 0,985 0,994 0,965 0,979
NN 00:02:20 00:00:24

Typo

0,982 0,981 0,970 0,975
SVM 00:00:42 00:00:23 0,979 0,965 0,978 0,972
Forest 00:00:30 00:00:36 0,973 0,991 0,935 0,962
Bayes 00:00:15 00:00:27 0,980 0,986 0,959 0,973
NN 00:02:18 00:00:25

Compound

0,982 0,983 0,967 0,975
SVM 00:00:44 00:00:29 0,983 0,978 0,976 0,977
Forest 00:00:43 00:00:21 0,985 0,992 0,967 0,979
Bayes 00:00:22 00:00:22 0,985 0,986 0,973 0,980
NN

Med

00:04:14 00:00:25

None

0,982 0,956 0,968 0,962
SVM 00:00:52 00:00:33 0,978 0,942 0,966 0,954
Forest 00:01:02 00:00:23 0,976 0,959 0,938 0,948
Bayes 00:00:26 00:00:24 0,986 0,985 0,953 0,969
NN 00:04:16 00:00:26

Detectors

0,983 0,960 0,968 0,964
SVM 00:00:55 00:00:30 0,980 0,948 0,966 0,957
Forest 00:01:02 00:00:32 0,971 0,972 0,902 0,936
Bayes 00:00:30 00:00:28 0,985 0,982 0,953 0,968
NN 00:04:18 00:00:25

Stemming

0,988 0,966 0,981 0,974
SVM 00:00:54 00:00:26 0,989 0,971 0,983 0,977
Forest 00:01:05 00:00:25 0,971 0,970 0,902 0,935
Bayes 00:00:25 00:00:19 0,984 0,982 0,947 0,964
NN 00:04:51 00:00:32

Typo

0,988 0,972 0,977 0,975
SVM 00:01:15 00:00:34 0,985 0,953 0,985 0,969
Forest 00:01:22 00:00:33 0,981 0,982 0,936 0,959
Bayes 00:00:27 00:00:24 0,983 0,974 0,951 0,962
NN 00:04:58 00:00:32

Compound

0,994 0,987 0,985 0,986
SVM 00:01:20 00:00:41 0,991 0,971 0,991 0,981
Forest 00:01:17 00:00:23 0,992 0,987 0,977 0,982
Bayes 00:00:27 00:00:25 0,994 0,991 0,981 0,986
NN

Large

00:41:52 00:01:01

None

0,998 0,949 0,960 0,954
SVM 00:07:28 00:00:33 0,996 0,942 0,892 0,916
Forest 00:12:51 00:00:27 0,996 0,976 0,883 0,927
Bayes 00:01:46 00:00:25 0,997 0,960 0,914 0,936
NN 00:44:15 00:01:01

Detectors

0,998 0,946 0,965 0,955
SVM 00:07:37 00:00:33 0,996 0,942 0,894 0,917
Forest 00:12:55 00:00:33 0,997 0,976 0,897 0,935
Bayes 00:01:35 00:00:24 0,997 0,956 0,916 0,935
NN 00:43:10 00:01:03

Stemming

0,996 0,916 0,958 0,936
SVM 00:07:40 00:00:34 0,996 0,938 0,908 0,923
Forest 00:12:58 00:00:32 0,996 0,962 0,872 0,914
Bayes 00:01:38 00:00:27 0,996 0,954 0,912 0,932
NN 01:07:31 00:00:45

Typo

0,998 0,961 0,960 0,961
SVM 00:23:09 00:00:47 0,996 0,939 0,899 0,918
Forest 00:17:04 00:00:38 0,997 0,978 0,912 0,944
Bayes 00:03:23 00:00:28 0,996 0,962 0,873 0,915
NN 01:12:33 00:01:05

Compound

0,998 0,960 0,971 0,965
SVM 00:25:03 00:02:07 0,997 0,961 0,941 0,951
Forest 00:17:22 00:01:20 0,998 0,977 0,954 0,966
Bayes 00:04:28 00:01:07 0,996 0,974 0,890 0,930

Table 8.17: Results of Azure ML for class V-belt

74

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

00:02:08 00:00:20

None

0,944 0,934 0,985 0,959
SVM 00:00:36 00:00:29 0,943 0,958 0,956 0,957
Forest 00:00:42 00:00:23 0,949 0,972 0,950 0,961
Bayes 00:00:20 00:00:19 0,947 0,966 0,953 0,960
NN 00:02:14 00:00:23

Detectors

0,946 0,937 0,985 0,960
SVM 00:00:33 00:00:25 0,944 0,958 0,958 0,958
Forest 00:00:33 00:00:29 0,948 0,966 0,955 0,960
Bayes 00:00:19 00:00:23 0,947 0,966 0,953 0,960
NN 00:02:01 00:00:29

Stemming

0,954 0,974 0,956 0,965
SVM 00:00:27 00:00:31 0,956 0,977 0,956 0,966
Forest 00:00:36 00:00:27 0,960 0,981 0,958 0,969
Bayes 00:00:22 00:00:17 0,963 0,986 0,958 0,972
NN 00:02:26 00:00:29

Typo

0,974 0,982 0,979 0,980
SVM 00:00:48 00:00:27 0,963 0,976 0,968 0,972
Forest 00:00:46 00:00:28 0,959 0,968 0,970 0,969
Bayes 00:00:23 00:00:23 0,973 0,986 0,973 0,979
NN 00:02:23 00:00:23

Compound

0,982 0,981 0,992 0,986
SVM 00:00:46 00:00:30 0,977 0,978 0,988 0,983
Forest 00:00:43 00:00:25 0,970 0,973 0,982 0,977
Bayes 00:00:25 00:00:25 0,982 0,989 0,983 0,986
NN

Med

00:04:05 00:00:27

None

0,961 0,979 0,961 0,970
SVM 00:00:48 00:00:37 0,958 0,970 0,966 0,968
Forest 00:00:59 00:00:32 0,954 0,978 0,951 0,964
Bayes 00:00:26 00:00:27 0,957 0,974 0,960 0,967
NN 00:04:15 00:00:35

Detectors

0,960 0,980 0,959 0,969
SVM 00:01:01 00:00:25 0,959 0,972 0,964 0,968
Forest 00:00:56 00:00:37 0,954 0,977 0,952 0,965
Bayes 00:00:30 00:00:24 0,957 0,975 0,960 0,967
NN 00:04:25 00:00:20

Stemming

0,968 0,987 0,964 0,975
SVM 00:01:02 00:00:27 0,962 0,981 0,961 0,971
Forest 00:00:59 00:00:31 0,963 0,981 0,961 0,971
Bayes 00:00:27 00:00:23 0,960 0,978 0,961 0,969
NN 00:04:35 00:00:22

Typo

0,972 0,987 0,970 0,979
SVM 00:01:23 00:00:33 0,968 0,977 0,973 0,975
Forest 00:01:07 00:00:30 0,965 0,973 0,973 0,973
Bayes 00:00:28 00:00:24 0,971 0,980 0,975 0,978
NN 00:04:41 00:00:27

Compound

0,981 0,986 0,985 0,985
SVM 00:01:25 00:00:25 0,981 0,984 0,986 0,985
Forest 00:01:17 00:00:30 0,973 0,977 0,981 0,979
Bayes 00:00:32 00:00:32 0,978 0,984 0,983 0,983
NN

Large

00:44:49 00:01:02

None

0,994 0,985 0,981 0,983
SVM 00:07:47 00:00:32 0,987 0,971 0,959 0,965
Forest 00:13:46 00:00:43 0,986 0,983 0,942 0,962
Bayes 00:01:39 00:00:23 0,987 0,971 0,957 0,964
NN 00:47:07 00:01:11

Detectors

0,993 0,983 0,981 0,982
SVM 00:08:32 00:00:33 0,987 0,972 0,957 0,964
Forest 00:13:39 00:00:45 0,986 0,982 0,944 0,963
Bayes 00:01:42 00:00:24 0,987 0,973 0,956 0,964
NN 00:45:18 00:01:06

Stemming

0,993 0,983 0,976 0,980
SVM 00:08:01 00:00:34 0,987 0,974 0,955 0,964
Forest 00:13:07 00:00:37 0,986 0,981 0,942 0,961
Bayes 00:01:43 00:00:25 0,986 0,977 0,949 0,962
NN 01:06:13 00:00:41

Typo

0,996 0,989 0,990 0,990
SVM 00:25:05 00:00:55 0,990 0,974 0,971 0,972
Forest 00:16:54 00:00:49 0,993 0,988 0,972 0,980
Bayes 00:03:17 00:00:28 0,990 0,977 0,968 0,973
NN 01:11:44 00:01:32

Compound

0,997 0,987 0,995 0,991
SVM 00:27:44 00:01:58 0,993 0,978 0,983 0,981
Forest 00:18:20 00:01:52 0,994 0,991 0,978 0,984
Bayes 00:03:47 00:00:56 0,992 0,980 0,979 0,979

Table 8.18: Results of Azure ML for class Brakes

75

Model Size Train Eval Options Acc Prec Rec F1

NN

Small

00:02:05 00:00:18

None

0,976 0,989 0,974 0,982
SVM 00:00:34 00:00:24 0,971 0,980 0,976 0,978
Forest 00:00:33 00:00:32 0,967 0,985 0,965 0,975
Bayes 00:00:23 00:00:25 0,957 0,975 0,959 0,967
NN 00:02:04 00:00:26

Detectors

0,976 0,991 0,973 0,982
SVM 00:00:36 00:00:33 0,970 0,983 0,971 0,977
Forest 00:00:37 00:00:28 0,965 0,984 0,962 0,973
Bayes 00:00:19 00:00:30 0,955 0,974 0,958 0,966
NN 00:02:08 00:00:18

Stemming

0,971 0,980 0,976 0,978
SVM 00:00:38 00:00:23 0,965 0,971 0,976 0,974
Forest 00:00:33 00:00:24 0,965 0,983 0,964 0,973
Bayes 00:00:14 00:00:30 0,963 0,983 0,961 0,972
NN 00:02:20 00:00:27

Typo

0,973 0,979 0,980 0,980
SVM 00:00:35 00:00:20 0,973 0,983 0,976 0,979
Forest 00:00:30 00:00:29 0,972 0,992 0,965 0,978
Bayes 00:00:10 00:00:27 0,963 0,977 0,967 0,972
NN 00:02:14 00:00:24

Compound

0,985 0,991 0,986 0,989
SVM 00:00:41 00:00:29 0,985 0,989 0,988 0,989
Forest 00:00:36 00:00:27 0,983 0,988 0,986 0,987
Bayes 00:00:25 00:00:17 0,978 0,985 0,982 0,983
NN

Med

00:04:25 00:00:23

None

0,988 0,978 0,993 0,985
SVM 00:00:51 00:00:34 0,987 0,981 0,988 0,985
Forest 00:01:04 00:00:23 0,986 0,982 0,984 0,983
Bayes 00:00:26 00:00:21 0,985 0,977 0,987 0,982
NN 00:04:23 00:00:22

Detectors

0,987 0,977 0,993 0,985
SVM 00:00:55 00:00:22 0,988 0,983 0,988 0,985
Forest 00:01:03 00:00:28 0,985 0,981 0,984 0,982
Bayes 00:00:21 00:00:20 0,985 0,978 0,987 0,982
NN 00:03:58 00:00:18

Stemming

0,983 0,979 0,981 0,980
SVM 00:00:47 00:00:24 0,982 0,980 0,978 0,979
Forest 00:01:00 00:00:22 0,984 0,985 0,977 0,981
Bayes 00:00:22 00:00:25 0,981 0,973 0,981 0,977
NN 00:04:46 00:00:34

Typo

0,981 0,974 0,980 0,977
SVM 00:01:09 00:00:29 0,980 0,973 0,979 0,976
Forest 00:01:06 00:00:25 0,983 0,988 0,972 0,980
Bayes 00:00:29 00:00:22 0,981 0,982 0,972 0,977
NN 00:04:36 00:00:39

Compound

0,993 0,991 0,992 0,991
SVM 00:01:12 00:00:25 0,991 0,986 0,993 0,989
Forest 00:01:11 00:00:28 0,990 0,982 0,995 0,988
Bayes 00:00:28 00:00:26 0,992 0,991 0,989 0,990
NN

Large

00:42:33 00:00:51

None

0,997 0,972 0,982 0,977
SVM 00:08:04 00:00:36 0,995 0,968 0,956 0,962
Forest 00:13:51 00:00:28 0,996 0,971 0,961 0,966
Bayes 00:01:48 00:00:21 0,995 0,968 0,953 0,960
NN 00:44:24 00:01:05

Detectors

0,996 0,973 0,970 0,972
SVM 00:08:30 00:00:28 0,995 0,969 0,956 0,963
Forest 00:13:36 00:00:35 0,996 0,975 0,961 0,968
Bayes 00:01:41 00:00:22 0,995 0,970 0,952 0,961
NN 00:44:23 00:00:58

Stemming

0,997 0,976 0,974 0,975
SVM 00:08:45 00:00:32 0,995 0,973 0,957 0,965
Forest 00:13:43 00:00:34 0,996 0,980 0,954 0,967
Bayes 00:01:45 00:00:26 0,995 0,964 0,952 0,958
NN 01:00:51 00:00:58

Typo

0,997 0,987 0,969 0,978
SVM 00:24:38 00:00:48 0,996 0,983 0,953 0,968
Forest 00:15:16 00:00:36 0,997 0,995 0,956 0,975
Bayes 00:03:17 00:00:29 0,996 0,992 0,949 0,970
NN 01:01:47 00:06:21

Compound

0,998 0,982 0,989 0,986
SVM 00:25:51 00:03:28 0,997 0,985 0,975 0,980
Forest 00:17:38 00:03:53 0,999 0,992 0,987 0,989
Bayes 00:04:24 00:03:39 0,998 0,991 0,973 0,982

Table 8.19: Results of Azure ML for class Air conditioning

76

Results of non-binary models

Model Overall Agreement Kappa κ
Naive Bayes 0.977 0.886
Neural Network 0.966 0.818
Support Vector Machine 0.978 0.891
Random Forest 0.974 0.870

Table 8.20: The results of the multi-class models

77

	Introduction
	Motivation
	Definitions
	Methodology
	Cross-Industry Standard Process for Data Mining

	Research questions
	Overview

	Previous work
	Data Understanding
	Feasibility analysis
	General
	The different Dealer Management Systems
	Normalized data
	Multilingual
	Judgement on feasibility

	Current system

	Data Preparation
	Ground truth
	Manual labeling

	Invoice entity
	Complete invoices
	Invoice lines
	'Hybrid' invoices
	Acquiring uniform data
	Invoice details
	Part/labour
	Unique car identifier
	Customer/invoice identifier
	Chain store identifiers
	Date
	Mileage
	Costs
	Amount
	Invoice header
	Codes
	Vehicle brand
	Maintenance
	Dealer identifier
	Internal visit

	Approaching the data
	Relational entity integration
	Misspellings
	Verb conjugation
	Compound words

	Modeling
	Models
	Decision tree
	Bayesian network
	Support Vector Machine
	Neural Networks

	Feature generation
	Stemming
	Compound words splitting
	Custom helpers
	Machine learning with Azure

	Parameter tweaking
	Custom C# parameters
	Azure ML parameters

	Evaluation
	Experiment setup
	Training and evaluation data sets

	Experimental results
	Evaluation versus the current system

	Conclusion
	Discussion and future work
	Acknowledgements

	Appendices
	XML data from Dealer Management Systems
	Samples of Dealer Management System data
	Results of C# implementation
	Results of Azure Machine Learning
	Results of non-binary models

