UTRECHT UNIVERSITY

MASTER’S THESIS ARTIFICIAL INTELLIGENCE

(45 EC)

Norm-based distributed controllers

in a Multi-Agent System

Supervisor:
dr. M. M. DASTANI

Authors:
J. T. BAUMFALK Second assessor:
B. W. A. PooT prof. dr. J-J.Ch. MEYER

Adwvisor:
B. J. G. TESTERINK

July 2015

;A}“L”’éa
EN

Universiteit Utrecht

i

Abstract

Autonomous vehicles will most likely participate in traffic in the near future.
These autonomous vehicles have private goals they want to achieve, which
might conflict with the goals of the traffic system designers. To ensure that
the goals of the system are met, the vehicle behavior needs to be influenced.
Since the vehicles are autonomous, their behavior cannot be controlled di-
rectly. One way of influencing behavior indirectly is through norms. A norm
is a violable rule that describes correct behavior. Vehicles who do not com-
ply with the norm may receive a sanction, such as a monetary fine. The
norms are issued to the vehicles by traffic control systems, which monitor
the vehicles and sanction them when norm violations are detected.

In this thesis, we present a formal model and a corresponding imple-
mentation for a norm-based multi-agent system for traffic. We created a
formal model of vehicles, traffic regulations and traffic controllers and im-
plemented this in an extension of a state-of-the-art traffic simulator named
SUMO. The features of this extension are presented in several demonstrative
experiments.

il

v

Acknowledgements

We would like to express our gratitude to our supervisor Mehdi Dastani
for the useful comments, feedback and cooperation during the writing of
our paper and this master thesis. We are also grateful to John-Jules Meyer
for reading and grading our thesis. Furthermore we would like to thank
everybody who provided useful tips, feedback and support: Lies Dijkstra,
Ted Poot and Minke Brandenburg. But most of all we would like to thank
Bas Testerink, who always quickly provided feedback, was ready to give
advice, could share in our frustration, and whose support greatly improved
the quality of this thesis.

vi

Work Distribution

This thesis is a joint effort of both Barend Poot and Jetze Baumfalk. We
have worked together on the model and its implementation for more than
nine months. During that time, we both profited from each others insights,
comments and corrections. It is therefore impossible to exactly determine
who is the author of what. However, we did keep track of who wrote the
main part of each chapter. For the sake of clarity and transparency, you
will find the ‘main’ author of each chapter in the table below. However, it
is important to stress that we are both the spiritual fathers of each chapter
and the application accompanying this thesis.

Table 1: Work distribution in this thesis

Chapter | Title Main author
1 Introduction Barend

2 Background Barend

3 Model Jetze

4 Implementation | Barend

5 Experimentation | Jetze

6 Conclusion Jetze

vil

viii

Contents

1 Introduction

1.1 Methodology
1.2 Research Questions
1.3 Overview.

2 Background and Related Work

2.1 Agent Systemso
211 Agents
2.1.2 Norms
2.1.3 Norm-based controllers

2.2 Simulation

2.3 Related Work

2.4 Chapter Summary

3 A Multi-Agent Model for Traffic

3.1 Environment

3.2 Norms and Controllers
3.2.1 Example Norm

3.3 Agents
3.3.1 Profile
3.3.2 Actions
3.3.3 Directive distance measure
3.3.4 Action Selection
3.3.5 Deliberation Example.

3.4 Chapter Summary,

4 Implementation
4.1 SUMO e
4.2 Global control structure

X

= N

ot ot Ot

X CONTENTS

4.3 Framework Structure 37
4.3.1 Flowof control 39

4.3.2 Road Network 41

4.3.3 Norms 41

4.3.4 Norm-based controllers 43

435 Agents 44

4.4 Chapter Summary 44

5 Experiments 47
5.1 Merge scenarioo 48
5.2 Experiment 1: SUMO and our extension 49
5.3 Experiment 2: Simple norms and Advanced norms 51
5.4 Experiment 3: Violating norms 52
5.5 Experiment 4: Observation sharing between controllers . . . 54
5.6 Chapter Summary 56

6 Conclusions & Future Research 57
6.1 Answering the research questions o7
6.2 Discussion 58
6.3 Futureresearch 59
Bibliography 61

Appendix: User Guide 65

Chapter 1

Introduction

Automation takes place in all our lives. More and more devices around us
display autonomous behavior and many applications run with minimal or
reduced human intervention. These devices range from your typical house-
hold thermostat to your smartphone. One of the most recent and interesting
developments in the field of automation is that of the autonomous vehicle.
Companies like Google [21] and Nissan [11] are creating self-driving cars ca-
pable of driving autonomously, without intervention from a human driver.
These vehicles pose both a challenge and an opportunity for our current
traffic regulations. Currently, the Google self-driving vehicles have already
driven over a million miles in the United States with just a few incidents!.
They have proven to be able to adapt to other vehicles and the traffic regula-
tions currently in place. However, current traffic control systems might not
be optimal, since autonomous vehicles are inherently different from human
drivers and the current system is tailored to human drivers. For example,
these autonomous vehicles are able to cope with precise and more frequently
changing directives, while for humans speed limits are given in multiples of
10 and do not change in quick succession.

These new vehicles open up an array of possibilities for new traffic control
systems. These driverless cars are autonomous and may have private goals
which can be in conflict with the goals of the traffic system designer. For
example, like human drivers these autonomous vehicles will most likely aim
to arrive at their point of destination as quickly as possible. Hence, any di-
rectives to decrease their velocity will be in conflict with their private goals.

1Google now posts monthly reports on their driverless vehicle on the project website:
http://www.google.com/selfdrivingcar/

http://www.google.com/selfdrivingcar/

It is important therefore, that like vehicles with human drivers, these au-
tonomous vehicles are monitored and controlled in some way while respect-
ing the autonomy of the vehicle. To be able to handle these autonomous
vehicles in future traffic networks, a system is required that preserves the
autonomy of the vehicles and is relatively similar to our current traffic reg-
ulation system in order to preserve control over human drivers, allowing for
mixed populations of human drivers and autonomous vehicles on the road.
In this thesis we present a prototype of such a system. We created a
model of future traffic and their regulations, as well a prototype implemen-
tation of that model. This implementation enables research on the effect of
new traffic regulations on future traffic scenarios with autonomous vehicles.
In the next section, we introduce the methods used to realize this imple-
mentation. Next, we pose our research questions and their correlation to the
chapters. Finally, an overview of the remainder of this thesis is presented.

1.1 Methodology

Both human drivers and self-driving vehicles display autonomous behavior.
Because of this defining property a natural way to represent them is by using
agents. While the term agent remains difficult to define, for now it suffices
to say that it is some autonomous entity with the ability to observe and
and act upon its environment. A multi-agent system (MAS) is a system
that consists of multiple intelligent agents that can interact with each other
and their environment [40]. We feel that the multi-agent system perspective
is a natural way to look at the development of autonomous cars in traffic.
Not only does the concept of self-driving cars correspond with intelligent
agents described in the literature [41], the notion of traffic regulations has
been linked before with normative systems in MAS [18]. Furthermore, a
multi-agent system model is able to cope with a population of heterogeneous
agents. This means that besides modeling different types of artificial agents,
this system can be used for modeling human drivers, since they too can be
seen as some sort of intelligent agent [10].

A system that is a widely proposed way of regulating the behavior of
agents, is to employ norm-based controllers [17]. These controllers issue
norms to the agents, which tell them how (not) to behave. Through moni-
toring, the controllers determine whether the agents comply with the norms.
Through sanctioning, the controllers can punish the noncomplying agents.
In this way, agents can be coaxed (but not forced, since they are autonomous)

2

to change their behavior towards a desired form of behavior needed for
achieving the goals of the system. This system is similar to how vehicles are
currently controlled, as traffic regulations are similar to norms. Therefore,
we think that is a good choice to use this norm-based controller approach
in a traffic setting.

It would be expensive to verify such a multi-agent system in practice,
since a large traffic network and a decent number of vehicles are needed in
order to collect the necessary data. Therefore, we employ a simulator to
model traffic as a multi-agent system. Simulations are often used in traffic
situations as an inexpensive way to test out new policies [24]. We built our
framework on top of SUMO, an open source, mature traffic simulator [8].
We will introduce this traffic simulator in Chapter 4.

1.2 Research Questions

In this thesis we will describe our framework which aims to simulate future
traffic scenarios with the use of norm-based controllers in a multi-agent
system. QOur aim is not to represent an entirely realistic image of future
traffic featuring autonomous vehicles, instead we aim to show the merit of
norm-based controllers in these future traffic scenarios. The main research
question of this thesis is:

How can future traffic be modeled and implemented using norm-
based controllers within the MAS paradigm, and can this paradigm
be used to improve traffic safety and efficiency?

For the modeling part, we turn to existing theories. There is already a
wide body of work regarding the monitoring and control of agents in norm-
based systems. We will discuss the relevant articles and see how we can
use existing and proven theories for our traffic scenario to create a formal
specification for traffic from a MAS standpoint. This part will answer the
first subquestion:

How can we model future traffic within the MAS paradigm?

After the formal specification, we will present our implementation of the
specification. A large part of the domain-specific work is already done by
the SUMO software package.? We will explain what SUMO is and then show

2See the website http://sumo-sim.org for the software package.

http://sumo-sim.org/

how we implemented our specification by building on top of the simulation
package. This will answer our second subquestion:

How can we implement the MAS model of future traffic?

Finally, we will present several scenarios that illustrate how norm-based
controllers in conjunction with the MAS paradigm can improve on future
traffic in terms of safety and efficiency. This will answer our final subques-
tion:

Can norm-based controllers in conjunction with the MAS paradigm
improve on traffic safety and efficiency?

1.3 Overview

The remainder of this thesis is structured as follows. In Chapter 2 we in-
troduce the reader to the concepts used in this thesis and provide some
background. In Chapter 3 we discuss how we can construct a formal multi-
agent model for traffic. This will answer the first subquestion. In Chapter
4, we discuss how to implement the formal framework developed in Chapter
2. We look at a state-of-the-art traffic simulator, SUMO and see how we
can integrate this with our multi-agent system, thus answering the second
subquestion. In Chapter 5, we will validate our framework through a num-
ber of experiments. Through the discussion of the results, we will answer
subquestion three. After this, we will answer the main research question,
summarize the findings and contributions for this thesis and point into direc-
tions for future research in Chapter 6. Finally a user guide for our extension
is provided in the appendix.

Chapter 2
Background and Related Work

While the notion of agents, controllers and norms are well-discussed terms
within computer science and artificial intelligence, it is far from trivial to
provide an accurate definition to either of these concepts. The goal of this
chapter is to provide the reader with a broad overview and context surround-
ing the concepts covered in this thesis. First, we start by describing Agent
Systems. We explain the notion of an agent as autonomous entity in Section
2.1.1 and look at how such agents can be combined in a multi-agent system.
Next, we look at controllers and norms which can be used to regulate the
behavior of agents in Section 2.1.2 and Section 2.1.3. Finally, we describe
the notion of agent-based simulation in Section 2.2. After this background
overview, we review some related work.

2.1 Agent Systems

2.1.1 Agents

We often ascribe feelings and thoughts to computers and machines, since
many of these machines have an active influence on our environment. For
example, a simple household thermostat is an active entity since it is able to
autonomously influence the room temperature. It shows a sense of agency,
the capacity to act in its given environment autonomously. These active
entities are what we call “Agents”. A popular definition of an agent in
computer science is given by Wooldridge [40]:

“An agent is a computer system that is situated in some envi-

ronment, and that is capable of autonomous action in this envi-
ronment in order to meet its design objectives.”

An agent is an entity that observes us-
ing sensors and operates within its environ-
ment in order to reach a certain goal. It is
able to execute actions using actuators and
modify the environment in the process. It
can (partially) observe the environment which
may change dynamically at any time. Agents
may apply a Sense-Plan-Act [29] cycle to in-
teract with the environment and other agents.
First, the sensors on the agent observe, per-
ceiving new information about the environ-
ment. The acquired information is stored in
the agent’s knowledge base and old facts about
the environment are updated in accordance
with the new data. Secondly, the agent will
reason about these revised facts by generating
a plan that, if executed, will establish the next
state associated with the most desirable envi-
ronment. Finally, the agent will execute (act)
this plan upon the environment using its ac-

Use sensors to observe
environment.

Y

1. Update knowledge base
2. Calculate plan based on
updated knowledge base

— Execute plan on environment

Sense

Plan

Act

Figure 2.1: A general Sense-

Plan-Act cycle

tuators and changing the environmental state, at which point the cycle will
restart. The way in which an agent interacts with its environment and possi-
ble other agents or artifacts distinguishes if the agent conforms to a weak or
strong notion of agency as described by Wooldridge [41]. The characteristics

for weak agency are:

e autonomy: the agent should have some degree of control over the

actions it chooses and its internal state.

e social ability: the agent should be able to communicate with other
agents, artifacts and /or humans via an agent-communication language.

e reactivity: the agent senses the environment and reacts to changes in

this external world.

e pro-activeness: the agent not only reacts to events in the world, but
also actively tries to achieve its own goals.

Thus, the simple thermostat mentioned above represents an agent with
a weak notion of agency, it autonomously decides to turn on the boiler if
its internal state shows it needs to do so, it can communicate by display-
ing the current temperature and will react to temperature changes in the
environment. It continually checks the environment for changes and reacts
accordingly.

The stronger notion of agency relies on a mentalistic view. In this view,
an agent can reason more explicitly about its internal state. The strong
notion of agency is characterized by its use of the notions of beliefs, desires
and intentions and even emotions [12, 5, 28]. Rao and Cohen elaborate on
this Belief, Desire and Intention (BDI) architecture of agents [13, 31]. In this
work, the behavior of agents and their decision-making process is determined
by these three mental attitudes. These three mentalistic terms define the
informational, motivational and deliberative states of the agent respectively.
The knowledge base mentioned above represents the beliefs of an agent, it
is everything the agent knows about the world, regardless of it being true.
The desires of an agent are its goals, that which determines together with its
current beliefs which plan or action is to be executed next. The intentions of
an agent show what the agent is committed to do, it intends to do something
if it has started executing a certain plan.

As stated previously, agents are situated in an environment which they
can sense and influence. The environment has a certain state. An agent
has the capability to (partially) sense the environment and can differentiate
between different states in the environment. An agent takes actions based on
its perceived state and its internal goals. The performed action can influence
the environment, thus changing the environmental state and (perhaps) the
perceived state. Often, an agent is not certain if its action succeeds or even
what the effect of its action is. Thus, it predicts it is in one of a certain
number of states after acting, instead of just the one state in which its
action had the desired outcome.

The action which the agent will execute on the environment can be de-
cided in several ways. For example, the agent can be provided with a direct
mapping from perceived states and goals to actions. Another often used
and intuitive technique for selecting the next course of action is the use of a
utility function [40]. Such a function calculates the desirability of a future
state of affairs, by investigating which goals are satisfied in which states.
The agent predicts the future states of the environment following from the
possible actions. It then employs the utility function which assigns a real

value to every environmental state and finally decides on the action which
leads to the most desirable state, i.e. the state with the highest numerical
value.

A system with multiple agents situated in the environment is called a
Multi-Agent System (MAS). The interesting aspect of such a system is the
interaction between agents. In order to work towards a shared goal, or even
just their own goals, these agents benefit from being able to communicate,
cooperate, coordinate and negotiate with each other. We can discern be-
tween first-order and second-order intentional systems [15]. In a first-order
intentional system, agents have a mentalist attitude, that is some kind of
beliefs and desires. In a second-order intentional system, agents also have
beliefs and desires about beliefs and desires, either their own, those of others
or both.

Since agents are often self-interested entities, next to cooperation MAS
also show elements of competition. A well-known example is the Contract-
Net Protocol [33]. The Contract-Net Protocol is a task-sharing protocol
which resembles an electronic marketplace. Here agents can either announce
tasks to the network as a manager, or accept tasks as a contractor. Agents
recognize tasks that will help realize their goal and bid against each other
for these tasks. If they are unable to complete their assigned tasks however,
sub-contracts can be generated and awarded to other agents. Agents both
cooperate by helping each other to reach their respective goals, while com-
peting by bidding for tasks. This protocol shows that both cooperation and
competition can be used in order to solve problems faster and with better
results.

2.1.2 Norms

As described in Section 2.1, agents interact in a common environment. How-
ever, besides the goals and desires of agents themselves, there may also be
globally desired system properties. An example of this are traffic systems,
where every agent (vehicle) in the system has a certain set of goals (i.e. get
home as soon a possible), the system itself aims to keep every agent safe
with the use of globally system properties (i.e. do not drive faster than
120 km/h). In order to ensure these global desired system properties, the
behavior of agents needs to be coordinated. Norms are an effective means
to coordinate agents’ behavior [16]. Norms are used to constrain behavior
by laying down rules of how agents ought to behave or should not behave.

Typical norms (regulations) in traffic systems are, “Keep your distance” or
“Do not drive through a red light”. If a norm’s specification is violated,
then the displayed behavior is undesired.

In this thesis we are interested in using norms to coordinate or influence
autonomous vehicles” behavior, not directly controlling the vehicle them-
selves. This method requires controlling structures that can both monitor
(observe the environment and the agents in the environment) and control
(impose sanctions on agents). We will elaborate on these controllers in Sec-
tion 2.1.3. If a controller in an environment prevents agents from creating a
violating state, we talk about regimentation [22]. In case of regimentation,
while agents may be able to execute an action which would bring about
a violating state, these states are not allowed by the controller monitoring
the system and can thus not be reached. Simply put, if agent behavior
cannot violate norms due to a controller, regimentation is applied. In this
case where controllers are designed to prevent violating states, there is no
use for violations since norms cannot be violated. Another solution is norm
enforcement [20]. With norm enforcement, a controller aims to impede vi-
olating agents in order to enforce desired behavior. Sanctions are used by
the controllers in order to do so.

Norms are statements about the desired behavior agents in the multi-
agent system, not the actual behavior in the MAS. For computer science, this
is an important distinction that was often disregarded in the past. Formally,
such statements can be modeled by Deontic Logic [38]. Meyer et al [27]
illustrate the importance of deontic logic in normative computer science
systems with the following argument:

“Until recently in specifications of systems in computational envi-
ronments the distinction between normative behavior (as it should
be) and actual behavior (as it is) has been disregarded: mostly
it 1s not possible to specify that some system behavior is non-
normative (illegal) but nevertheless possible. Often illegal behav-
ior is just ruled out by specification, although it is very important
to be able to specify what should happen if such illegal but possi-
ble behaviors occurs! Deontic logic provides a means to do just
this by using special modal operators that indicate the status of
behavior: that is whether it is legal (normative) or not.”[27].

A multi-agent system where norms are employed is called a normative
multi-agent system. In such a system, the agents are not directly controlled.

However, agents should be able to reason about norms and subsequently
modify their behavior. In order to do so, deontic logic is used to formally
cope with normative concepts such as obligations (an action required to
take) and prohibitions (an action forbidden to take). Some research has
been done in this area by Meneguzzi et al [26], considering the impact of
norms on the practical reasoning of agents, including an implementation in
the AgentSpeak(L) language. Furthermore, Alechina et al [1] presented the
norm-aware programming language N-2APL, in which agents try to achieve
their goals and obligations while respecting the prohibitions as stated by
norms. An explanation of Deontic Logic does not fit the scope of this thesis
however, since we build on the definition of norms as provided by Tinnemeier
[36], who states that full-blown deontic logic is not needed for a norm-based
implementation since it is impractical to implement just to make use of the
limited possibilities it provides.

A formal definition of norms is provided by Tinnemeier [36] who con-
siders norms as consisting of norm schemes and norm instances. A norm
scheme is described as a conditional obligation or prohibition with a certain
deadline. These obligations and prohibitions are described by what is called
brute facts. Tinnemeier uses the definitions of brute and institutional facts
as described by Searle [32]. Brute facts represent situations in reality, albeit
mental or physical. A common brute fact describing an agent may for ex-
ample be that agent’s position in the world. Institutional facts however are
facts that depend on social institutions for their existence; they are an im-
position on the brute state of the environment. A brute fact may be that an
agent has a piece of paper with some specific print on it. The institutional
imposition might be that the agent owns 5 euro which can be exchanged for
goods.

A norm scheme as described by Tinnemeier [36] states under which con-
dition a specific obligation or prohibition should be instantiated for an agent.
A norm scheme is defined by a condition which establishes when the norm
becomes active, an obligation or a prohibition of what the agent must (not)
do and a deadline, which defines when the obligation or prohibition ends.
An obligation should be met before the deadline and a prohibition may not
occur before the deadline. The condition, obligation, prohibition and dead-
line are all conjunctions of brute and institutional facts that should be seen
by the agent as a set of instructions. For example, If the system is in such
a state that this conjunction of literals holds for the condition, then there
is either a duty or it is forbidden to establish the brute state in which the

10

obligation or prohibition holds.

A norm instance is created when the condition of a norm scheme is satis-
fied. It is an active unconditional obligation or prohibition with a deadline.
In this manner every norm instance is coupled with a specific norm scheme.
Since norms can be violated, undesired agent behavior may still occur. One
way to impede future undesirable behavior is to punish agents who do not
conform to the norms. The agents can be punished by imposing sanctions
on them when a violation occurs.

A description of sanctions can be found in work done by Dastani et
al [14, 37]. In their work, two constructs related to sanctioning are used:
counts-as rules and sanction rules. The counts-as rules state which states
of the environment ‘count-as’ being a violating state, and which type of
violation they are. The sanction rules couple these violations to changes in
the environment, i.e. a punishment to the violating agent. It is important
to stress that although sanctioning is most often associated with a negative
effect on an agent, in essence it is nothing more than a change to the model,
and therefore could also be used to reward.

Tinnemeier couples every sanction rule to a specific norm by creating an
equivalence between the precedent of the sanction rule and a violation on
either the obligation or prohibition of the norm instance. If this sanction
is imposed on an agent, its brute state may be changed, for example, the
amount of currency he owns could be decreased, representing a monetary
fine.

To be able to cope with these norms and react to imposed sanctions, our
agents are required to be norm-aware. We take our definition of norm-aware
agents from Alechina et al [1]:

“(...) it can deliberate on its goals, norms and sanctions before
deciding which plan to select and execute. A norm-aware agent
is able to violate norms (accepting the resulting sanctions) if it
is in the agent’s overall interests to do so, e.g., if meeting an
obligation would result in an important goal of the agent becoming
unachievable.”

This means that agents in a normative environment have a more elabo-
rate reasoning cycle than agents who are not norm-aware. Besides predicting
if the state that results from the execution of their actions approximates the
goal, they also deliberate if this may result in violating a norm and if the

11

sanction that will consequently be imposed on them is worth closing in on
their goal.

2.1.3 Norm-based controllers

As stated above, to properly enforce norms a controller that monitors these
agents is required. Such a controller is a common thing in environments
where many agents operate. In a first-order intentional system, agents only
deliberate about their own utility and actions. As we have seen in Section
2.1.2, norms can be used to announce the globally desired system properties.
However, in order to be effective, these properties also need enforcement. A
widely proposed and effective mechanism to control individual agents are
norm-based controllers [9].

Controllers have two tasks, observing and controlling the agents in the
environment. The notion of controllers is based on the norm-based artifacts
mentioned in Dastani et al [14]. Here, a normative multi-agent system is
considered to contain two separate modules, an organization module and an
environmental module. The agents move about and perform actions in the
environmental module while the organization module specifies the norms
and enforces them by monitoring, controlling and imposing sanctions on
agents. In this manner, controllers maintain the agents’ autonomy while
promoting desirable behavior.

The monitoring and controlling of these norm-based controller structures
can be implemented in two distinct manners, either endogenous or ezxoge-
nous. When the controllers monitor the agents with the use of external
sensors and inform them of norms or sanctions by sending messages, they
are exogenous. If this is the case, norms are defined explicitly. This allows for
both maintenance of current norms and easy implementation of new norms.
With endogenous controllers, the norms are intrinsic to the agents design.
This means that if a new norm is implemented, a new type of agent should
be inserted into the system. While this type of system is more secure since
monitoring and controlling is an intrinsic process, it would be impractical
to modify or introduce norms at runtime.

Many applications where controllers are employed feature a single all-
knowing institution [2, 14]. However, distributed control has various bene-
fits. Distributed systems have an increased robustness, parallel processing of
data, less communication of data and modular maintenance [35]. We believe
this is also strongly the case for future traffic where sensors and controllers

12

are geographically distributed and where different parts of road networks
are governed by different sets of norms and regulations. For these reasons
and since the amount of data generated and processed is big, we aim at
distributed controllers monitoring sensor data as well as enforcing norms.
While decentralized controlling is more robust in the sense that it avoids
the problem of single point of failure, it also introduces new issues. In de-
centralized monitoring one has to make sure that the sensors are cooperating
correctly to detect norm violations in a timely fashion [34].

2.2 Simulation

Of special interest for this thesis is traffic simulation. A traffic simulator is a
tool used to model transportation systems in virtual simulations. These sim-
ulations are used to, for example, determine bottlenecks in a road network,
try out new policies before implementing them on the road or to simulate
traffic flows as part of monitoring in a real life, real-time system. It is often
much more practical to use a virtual simulation, since real-life experiments
would be costly and take a considerable amount of time.

One of the main defining features of a simulator is the amount of de-
tail in which traffic is simulated. The simulation may have different levels
of granularity; these levels can be classified as microscopic, mesoscopic and
macroscopic. [19, p. 137]. Microscopic models study the individual enti-
ties in traffic simulations; vehicles, bikes and possibly pedestrians. These
models keep track of the properties of every entity, their velocity, position,
acceleration and so on. Mesoscopic models are less detailed, in these models
the vehicles are represented in platoons, (groups of several vehicles) where
every vehicle in the platoon is assumed to be identical to another. Finally,
macroscopic models, these are quite similar to the mesoscopic models, al-
beit more sophisticated. The platooning of vehicles is also applied, grouping
several vehicles together. With this method however, equations regarding
the speed, density and flow of the traffic stream are used to provide a more
accurate representation.

When simulating a traffic scenario where every vehicle is represented by
an agent, a microscopic level of detail is required. The following character-
istics are common of a microscopic model.

e Ontological Correspondence. The agents in the model correspond to
real world actors.

13

e Heterogeneous Agents. Agents are not identical in their decision mak-
ing process.

e Representation of the environment. The real-world environment is
modeled.

e Bounded Rationality. The agents in the model are somewhat rational,
but may divert from rational behavior. This means that they try to
achieve their goals, but may be faced with circumstances that force
them to act non-optimal.

In validation one checks the accuracy of the model’s representation of
a target. A model requires precision and openness in assumptions at the
service of a specific goal. Therefore, its validity should be determined for
that same goal. In this section we describe three different kinds of models
with different goals and therefore a different kind of validation.

The first kind of model is the abstract model. The abstract model is
a very simplified model of the real world and is not intended to be a real
description of the world. Instead, its purpose is to get some feeling for the
problem at hand to determine an appropriate middle range model. There-
fore it can be validated by its most important feature: it should portray
the macro-level regularities we wish to explain. Moreover, there should be
an accurate connection between micro-level behavior and macro-level reg-
ularities. Lacking abstract high-level empirical data this validation means
comparing (common sense) theoretical propositions in this field of expertise
to the model’s behavior by a technique called sensitivity analysis.

The second kind of model is the middle-range model. This model is more
fleshed out than the abstract model and has a closer link to the problem at
hand. However, it is still general enough to be used for different cases. Since
it has close ties to reality, it can be validated by using actual empirical data.
Although in a qualitative way, a quantitative match is not expected.

The final kind of model is the facsimile model (literally: ‘make the same’).
The aim of this model is to represent a specific phenomenon as closely as
possible, so that predictions can be made about that phenomenon. It can
be validated by giving it a situation of the past and checking that it follows
the same steps as were taken in the real world.

14

2.3 Related Work

Our approach has some similarity with that of Baines et al. [2] since they
employ autonomous agents and use governing institutions to influence agents
to show desirable behavior. However, Baines et al. concentrate on agents’
internal architecture, situational awareness, and the communication between
agents. The project is set up with realistic maps imported from the Open
Street Map foundation and uses real-world data from a highway in the UK,
the M25.

While our framework is related to the work done by Baines et al., the
aim of our research is different. Our driver model is deliberately kept simple
in order to focus on the interaction between traffic controllers on the one
hand, and agents and traffic controllers on the other hand. Furthermore,
our framework is not developed in order to simulate the existing real-world
scenario. Finally, our framework supports decentralized traffic controllers
while Baines et al. focus on a single, all knowing, institution.

Another comparable line of research has been done by Balke et al. [3].
In their extended abstract, Balke et al. discuss the difference between off-
line and on-line reasoning of institutions (similar to norm-based traffic con-
trollers) governing open multi-agent systems. They state that most research
up to that point had been focused on the off-line reasoning of institutions,
which can be used to research the static properties of institutions. The
on-line reasoning of institutions concerns the monitoring and controlling of
agents, observing if norms are being violated and informing agents if this is
the case. In this implementation, there is a single institution with the title
"The Governor” with which agents can communicate and receive informa-
tion regarding possible consequences of their actions.

Our approach is most closely related to the on-line reasoning as described
by Balke et al. However, communication between the agents and the insti-
tution is handled in a different way. Within our framework, the information
provided by agents to the traffic controller is acquired via sensors. This is a
more realistic representation of traffic situations, since it is often beneficial
for the agent to not disclose any information about itself. Furthermore, in
our model, multiple traffic controllers are present, creating a more robust
and better controlled system through communication between these institu-
tions.

15

2.4 Chapter Summary

In this chapter, we presented the concepts necessary for understanding the
rest of this thesis. We described what agents are, and how they try to achieve
their goals. We also discussed that since agents are self-centered, their goals
might not align with that of the system. Norms were presented as a solution
to impeding undesired agent behavior while preserving the agent autonomy.
We also introduced the notion of controllers, which monitor the system and
issue norms. Furthermore, we provided a short introduction into simulation,
discussing the various kinds of simulation models that are used. Finally, we
presented some work that was related to ours by Baines et al and Balke et
al .

16

Chapter 3

A Multi-Agent Model for
Traffic

The goal of this chapter is to introduce our formal model of future traffic.
The model is based of the concepts introduced in Chapter 2 where we in-
troduced the concepts of agents, norms and controllers. We will present our
implementation of this model in Chapter 4. We will use multi-agent system
concepts to formalize the notion of future traffic systems. More concretely,
we will define the different parts of such a traffic system in terms of the
concepts treated in Chapter 2.

The rest of this chapter is structured as follows. First, we begin with
defining the environment, the structure where all the agents reside in. Sec-
ond, we describe the norms which are used to guide the agent behavior.
Third, we specify controllers, which issue the norms to agents and verify if
the agents comply to the norms. Finally, we specify the agents, how they
choose actions and how they deal with norms. For an overview of how the
concepts and definitions throughout this chapter are related to each other,
see Table 3.1.

3.1 Environment

We formalize the traffic domain by specifying the environment. The envi-
ronment is the external world in which agents reside and where they hold
some influence. In a traffic setting, the environment consists of the roads
and the lanes the vehicles can drive on. The roads are connected to each
other using junctions, forming the road network.

17

Table 3.1: Overview of all symbols used in this chapter and a description of
the concept they stand for

Symbol | Description

RN The road network

N The set of nodes that represent junctions

N; The set of entrance nodes of the road network, subset of N
Nout The set of exit nodes of the road network, subset of N

E The set of edges that represent roads

L The list of lanes belonging to a road

O The set of physical objects situated in the road network

Oyen The set of all vehicles in the road network, subset of O

Osens The set of all sensors situated in the road network, subset of O
I Set of all norm instances

NS Set of all norm schemes

C Set of all controllers

S The set of all sanctions

IS The set of all information sources. It is the union of C and Ogeps
P The set of all agent profiles

A The set of all agent actions

18

A road network consists of all the roads and junctions in the scenario.
Every node in a road network must occur as a start or an end node of a
road in the the road network. Some nodes have only one edge connected to
them, these nodes can be seen as the entry and exit nodes. These nodes
coincide with the entry and exit points of a road network. An intuitive
formal representation of the road network is a directed graph. The edges
correspond to the roads, and the nodes correspond to the junctions.

Definition 3.1 (Road Network). The road network RN is a directed graph
RN = (N, E),

where N is a set of nodes that represent junctions and E is a set of edges
representing roads connecting the junctions. The set of all entrance/exit
nodes is denoted N;, € N and N,,; C N respectively. [|

Each road has a certain distance and has a list of lanes. The order of the
list corresponds with how lanes are connected to each other. For example,
in Figure 3.1 it is possible to traverse in one step from lane 2 to lane 1 or
lane 3, but not to lane 4, since lane 2 and lane 4 are not directly connected
to each other. Hence, the list of lanes would be [1,2,3, 4].

Figure 3.1: A road example with four lanes.

Definition 3.2 (Road). Let RN be a road network. A road r in RN =
(N, E) is specified as a tuple

r= <nstart7 Nend, L7 length>7

where Ngpart, Neng € IN are the start and end node of the road respectively,
with (Nstare; Nena) € E; L is the list of lanes; length is the length of the
road. [|

19

The road network is populated by various physical objects. In our for-
malization, the only physical objects that exists are vehicles, which drive
on the road, and road sensors, which are used by traffic control systems to
detect vehicles. A physical object has unique identifier. Furthermore, it has
a certain position in the road network, which is determined by the road and
lane they are on and their position on that road. Finally, they also have a
certain velocity (which can be zero) and length.

The location of a physical object o is defined as loc = (r, [, pos). Here, r
and [are the road and corresponding lane where o is located, with [€ r.L,
pos € R and 0 < p < r.length is where o is positioned on the road in meters.
The properties id, v, length and loc of an object o can be referred to by o.1d,
0.v, o.length and o.loc respectively.

Definition 3.3 (Physical object). A physical object o is specified as a tuple
o = (id,v,length, loc)

where id € N is the object identifier, v € R is the velocity in m/s, length € R
is the length of the object in meters and loc is the position of the object in
the road network. [|

The set of all physical objects is denoted O, the set of all vehicles is
denoted O,.;, € O and the set of all road sensors is denoted Og,,s € O, with
Open U Ogens = O and Oyep, N Ogens = 0. A particular instance of a physical
object is called a physical object state.

3.2 Norms and Controllers

As mentioned in the Chapter 2, a proposed way of regulating traffic is by
using norm based distributed controllers. Specifically, norm schemes and
norm instances as used by Tinnemeier were discussed in Section 2.1.2. In
our model, the norm schemes and norm instances are defined in a more
abstract way, allowing for a wide range of possible implementations. In the
context of traffic, norm instances should be interpreted as traffic regulations
or directives issued to the vehicle.

A norm instance is associated with a vehicle id (as defined in Definition
3.3). Furthermore, it has a function that is used by the controller to check
norm compliance. This function takes as input a set of vehicle objects, and
returns true if the norm is violated and false otherwise. In addition, the

20

norm instance has a vehicle state that serves as the directive, i.e. this is the
state the autonomous vehicle should achieve. The vehicle state is used by the
agent to determine what it should do to oblige to the norm. Furthermore, a
norm instance contains a directive type, which denotes whether the directive
is an obligation or a prohibition.

Note that the norm compliance function receives a set of vehicle objects
instead of just the one vehicle object associated with the norm instance. The
reason for this is that this allows us to model situations in which agents are
not punished for non-compliance for reasons beyond their control. Situations
may occur where an agent is unable to confirm to a norm, since it is restricted
in its behavior because of violating agents around it. For example, suppose
a vehicle is supposed to drive 80 km/h, but it cannot do so because of
slower vehicle in front of it. By providing the norm compliance function
with additional information about vehicles, it can detect such situations
and prevent from receiving a sanction unjustly.

The norm instance also contains the sanction that is returned upon vi-
olation. In our model, a sanction s is a monetary fine, denoted in natural
numbers. Hence, in our model, the set of all possible sanctions .S corresponds
of the set of the natural numbers N.

Finally, a norm instance has a function used to check if the deadline of
the norm instance is met. It takes a set of vehicle objects as input and
returns true if the deadline condition is met and false otherwise. This
function also receives multiple vehicle objects, so that a deadline can be
determined in a flexible way. For example, a speed directive might normally
be removed after a certain point on the road, but may be kept to prevent
congestion if the speed of vehicles further down the road is low.

All functions belonging to a norm instance can read the vehicle id prop-
erty o0;q of the norm instance.

Definition 3.4 (Norm Instance). A norm instance ni is defined as a tuple

<0id7 ¢ g, ta S, d>7

where 0;4 € N is the associated vehicle, ¢ : 29 — B is the compliance
function, g € Oy, is the directive, t € {O, P} is the type of directive, s € S
is the sanction and d : 29v» — B is the deadline function.]

The set of all norm instances is denoted /. A norm scheme is used to
generate the norm instances from Definition 3.4. It is a function that takes
a set of vehicle states and returns a set of norm instances.

21

Definition 3.5 (Norm Scheme). A norm scheme ns is defined as a function
of the form ns : 29ver — 21, [

The set of all norm schemes is denoted NS. A controller uses vehicle
states and norm schemes to generate norm instances and to check norm
compliance. It receives these vehicle states using information sources. In
our model, the two information sources used are the road sensors associated
to the controller and other controllers that the controller is subscribed to.
We denote the set of all information sources IS, with IS = C U Ogeps.
We used a subscription mechanism because i) it is a straightforward way
of sharing information between specific controllers, without having to share
information with all controllers (such as with broadcasting) and ii) it is easy
to implement. The formal definition of a controller is as follows:

Definition 3.6 (Controller). Let C' be the set of all controllers. A controller
¢ € (' is specified by the following tuple

c= <Csub7 Ns; Nia Sens,B),

where Cy,;, € C' is the set of controllers ¢ is subscribed to; Ny, € NS is
the set of norm schemes; N; C [is the set of norms currently instantiated;
Sens C Ogens i the set of all road sensors connected to ¢; and B C Oy, is
the set of all vehicle states known to c. [|

As we shall see in Chapter 4, the controller is continuously performing its
monitor and control cycle. The cycle of a controller is depicted in Algorithm
3.1. First, a controller receives updates from its information sources and
saves them in its knowledge base (line 2 - 5). It uses the receive : I.S s 20ven
function, which takes an external information source and returns a set of
vehicle states retrieved from this source.

Next, the controller checks it the vehicles comply to their norm instances
and if the deadline of a norm instance is met. If the deadline is met, the
norm instance is removed (line 6 - 13). The sanctions and removed in-
stances are sent to the corresponding vehicles using the send Removed and
sendSanctions functions (line 14 - 15). Finally, new norm instances are
generated using the norm schemes. Each norm scheme can generate a set
of norm instances. The generated instances are sent to the corresponding
vehicles using the sendInstances function (line 16 - 18).

One thing to note is that a norm instance is only removed when its
deadline is met. Therefore, a vehicle can be fined multiple timed because

22

of one instance. This corresponds to the current traffic situation, where
for example a vehicle who keeps driving above the speed limit can receive
multiple tickets.

Algorithm 3.1 Pseudo code for a controller cycle
¢ = (Cguwp, N, N;, Sens, B) is a controller
for each s € c.Sens do

c.B < c¢.B Ureceive(s)

for each c,,;, € c.Cy,, do
c.B < c¢.BUreceive(csyp)

Sancpe, — 0
Nlep < 0
for each ni € c.N; do
if —ni.c(B) then
Sancpey < Sancpe, U {ni.s}
if ni.d(B) then
c.N; < c.N;\{ni}
Nl ¢ Nlyom U {ni}

. sendSanctions(Sancyey)
. sendRemoved(N I o)
. for each ns € ¢.N, do
c.N; < ¢.N; Uns(B)

sendInstances(ns(c.B))

,_.
@

—_ = =
o

e e e
SR B CNI TN

3.2.1 Example Norm

It might be enlightening for the reader to see an example of a norm at this
point. Consider the following traffic regulation:

As long as an vehicle drives on road A, it should drive 22.2 m/s.
Else, it receives a fine of 200 euros.

The following norm scheme and norm instance formalize this traffic reg-
ulation. In Algorithm 3.2 the norm scheme function written in pseudocode.
In Algorithm 3.3 and 3.4, the ¢ and d function of the norm instance are
written in pseudocode.

23

Algorithm 3.2 Pseudo code for a norm scheme
1: function Ns(B)
2 I+ 0
3 for each 0 € B do

4: if (0.loc = (A, _, _)) then

)

6

7

desiredVehState < (22.2, _,)
I + I U(o.id, c,desiredVehState, O, 200, d)

return /

The norm scheme works as follows. It cycles through all observations
(line 3), and creates a norm instance for every agent that is on road A (line
4-6). Note that the directive type is an obligation. Finally, it returns the
set of created norm instances (line 7).

Algorithm 3.3 Pseudo code for checking compliance
1: function ¢(B)

2 for each o’ € B do

3 if (0'.id = 0,q) & 0'.loc = (A, _,_) & (0'.v = 22.2) then

4: return true

5

6

else
return false

The compliance function checks if the vehicle occurs in the observed data,
if it drives on road A and if it does drives 80km/h (line 3). If this is the
case, the function returns true. Else, it returns false.

Algorithm 3.4 Pseudo code for checking the deadline
1: function D(B)

2 for each o' € B do

3 if (0'.id = 0,4) & (0'.loc # (A, _,)) then

4: return true

)

6

else
return false

The deadline function returns true if the vehicle occurs in the observed
data and the vehicle does not drive on road A, and returns false otherwise.

24

3.3 Agents

The concept of autonomous vehicles has a large overlap with autonomous
agents as treated in Section 2.1.1. In this section, we will define autonomous
vehicles in terms of agents. An overview of all the functions defined and used
in this section can be found in Table 3.2.

An agent is situated in the environment as an autonomous vehicle. It can
sense its environment and exert influence on this environment using actions.
The agent has a certain goal it wants to achieve, namely to arrive on time
at a certain destination. The destination is modeled by an exit node in the
road network. Agents are able to receive traffic regulations, understand these
regulations and decide whether or not to obey them. These deliberations are
steered by their agent profile. The agent profile, as explained in more detail
in Section 3.3.1, models the differences between various types of autonomous
vehicles, such as their dislike for certain sanctions and the intensity of their
to be on time. The formal agent structure is defined as the following:

Table 3.2: Overview of the functions used in Section 3.3

Function | Description Function type

Js sanction grading function S—R

o arrival time grading function | N — R

e action effect function Oper, X A = Oyen

f expected arrival time function | Oy, — N

0 directive distance measure Open X I — R

u action utility function Open, X P x A x 2!
Q action selection function Open X Px 21 — A

Definition 3.7 (Agent). An agent is specified by the following tuple.
A = (veh, goal,prof, N;).

Here, veh € O, is a physical vehicle situated in the road network, goal €
Nouwt X N is the goal of the agent consisting of a destination (an exit node)
and a desired arrival time, prof € P is the profile of the agent as defined in
Definition 3.8 and N; C I is a set containing all norms instances known to
the agents. |

In the next sections, we will explain and define the concepts of an agent
profile. We will also describe what actions agents can take to move around

25

in the environment, how they deliberate about which action to take and how
they take norms into account with these deliberations.

3.3.1 Profile

We expect autonomous vehicles in future traffic to be able to disregard
traffic regulations. An autonomous vehicle might disregard a regulation if it
thinks it is better off by not obeying. The reasoning about regulations and
sanctions can differ between autonomous vehicles. An agent may dislike a
certain sanction more than another agent, just as one agent might care more
about arriving on time than another agent might.

We model these notions in our model using an agent profile. The agent
profile consists of a sanction grading function g, and an arrival time grading
function ¢;. These functions model the tension between the desire of an
agent to evade sanctions and the desire of an agent to arrive on time at their
destination.

The function g, is a function that specifies how unsatisfied an agent will
be with a sanction. Since monetary fines are used as sanctions, g5 can for
instance model the wealth difference between agents. A wealthy agent will
be less unsatisfied with a fine than an impoverished agent. In order to model
the dissatisfaction with sanctions, in our model the output of g, is always
negative. That is, an agent is never content with a sanction.

The function g; is a strictly monotone function that quantifies the satis-
faction of an agent of arriving at its destination at a certain time. The value
of g; will be maximal if the agent arrives at its destination on its goal time.
Differences between instances of g; model the different levels of impatience
between autonomous vehicles.

Definition 3.8 (Agent Profile). An agent’s personal profile prof is specified
by:

prof = (s, gr)

here, gs : S — R« is the sanction grading function that returns how im-
portant it is to avoid a given sanction from S and g; : N — R is the arrival
time grading function that determines the importance for an agent to arrive
at its destination on time. With P we denote the set of all possible personal
profiles. |

26

3.3.2 Actions

We want the implementation of our model to be able to simulate traffic
scenarios with large numbers of autonomous agents. Therefore, we wanted
to keep the agents’ model simple, so that the deliberation cycle could be
executed quickly. Hence, agents have a limited range of actions to deliberate
about and their deliberations are kept simple.

In order to show realistic vehicle movement while following a certain
route, agents are able to execute four types of actions: change their velocity,
change their lane, change the route which they are currently following or
change nothing at all. Firstly, agents can change their velocity each time
step, either increasing or decreasing it by a set amount, these amounts are
specified in our model. However, these changes in velocity are of course
limited by the acceleration and deceleration values of the vehicle itself.

Secondly, an agent can decide to change its current lane, going either to
the lane right or left of him if there are more lanes on that side. A lane
change action is typically taken to take over leading vehicle with a lower
average velocity or to merge into another lane in preparation to take a turn
onto another road.

Thirdly, the agents are able to change the current route they are follow-
ing. If an agent happens to receive information about certain roads ahead
which are on his route (by observing a variable message sign for example),
this new information can cause the agent to deliberate about his situation
and calculate a new possible route. This action requires some sort of path-
planning algorithm and enough knowledge about the road network.

Finally, agents can decide to change nothing. If they decide this, they
simply continue on their current route with their current speed on their
current lane.

Agents in this system are homogeneous with respect to the actions they
can execute. The formal definition of the set of actions A available to every
agent is the following:

Definition 3.9 (Action space).
A ={a,|r € {0.1,-0.1,1,-1,5,—5,10,—10, 20, =20} }U{lie ¢, lright, change oute, €},

where a, stands for an increase/decrease in velocity, [, stands for changing
lane to the left /right and € denotes the action of changing nothing. |

An agent is able to estimate the next state it will be in after executing
a certain action. This prediction is needed to see if any norm instances

27

will be violated. Agents can reason about the future with the local action
effect function e : Oyep, X A > O,ep, which returns the next expected vehicle
state, given a vehicle state and an action. For instance: the vehicle’s current
velocity is 20 m/s and it accelerates by 5 m/s as an action. It would then
expect its velocity for the next simulation tick to be at 25 m/s, if this is
possible within its acceleration capabilities. It was sufficient for the purposes
of our thesis to use the same action effect function for all agents. The
function e is used when calculating the utility of a certain action.

Each time a prediction over the next state is made, the agent will also
calculate a new expected arrival time. For this the function f : Oyep — N is
used. This function returns an expected arrival time given a vehicle state.
This function reflects for instance the GPS planning tools that vehicles have
available. The function f is uniform for all agents, but can be parameterized
in the future in order to make more optimistic or pessimistic agents. The
utility function itself is explained in more detail in the next section.

3.3.3 Directive distance measure

In our model, agents plan only action in advance to keep the deliberation
cycle fast. However, some norm instances cannot be met in one step, such as
the directive to change multiple lanes. Therefore, an agent needs to be able
to reason about whether an action will bring it closer or further away from
fulfilling a norm instance. To this end agents use a directive distance measure
0 : Open X I — R which returns, given a vehicle state and a norm instance,
a real number denoting the expectancy of the agent that it can comply with
the norm instance in t..; — t steps. A lower number corresponds with a
higher expectancy. If the agent needs zero steps to adhere to the norm,
the output of § is zero. Otherwise the distance proportionally moves to 1
given the current time. If the control system will check obligation fulfillment
before the agent can achieve compliance (i.e. top —t < &;), then § should
return 1.

In our model, autonomous vehicles expect that the control system will
check whether a directive is fulfilled somewhere between the current time ¢
and the current expected exit time t.,;; for the vehicle. The minimal amount
of steps needed to adhere to the norm is denoted as d;. For instance, suppose
that a vehicle at time step ¢ receives the directive to drive 25 m/s, and that
it can accelerate to this speed in minimally 3 time units. In that case, §; = 3.

28

Definition 3.10 (Directive distance measure). The directive distance mea-

sure ¢ is defined as (6,1 .
. min s bexit —
B({0.1)) = ==

where o is the vehicle state, ¢ is a norm instance, t is the current time, t..;
is the expected exit time and ¢; is the minimal number of steps needed for
compliance. |

3.3.4 Action Selection

Agents select actions using an action selection function. This function, de-
noted «, returns an action given a vehicle state, an agent profile and a set
of norm instances. An action is selected based on its utility. The action
utility is determined by the action utility function u, as defined in Defini-
tion 3.12. The action selection function returns the actions which has the
highest action utility.

A tie-break mechanism is used when two or more actions have the highest
utility. If such a situation occurs, then the action with the highest priority is
chosen. The less an action changes the agent state, the higher its priority is.
For example, in a tie-break situation, doing nothing is preferred to increasing
velocity to a small amount, which in turn is preferred to increasing velocity
to a larger amount, which in turn is preferred to changing lane. We chose
for this ‘least impactful action’ tie-break ordering since we believe this to be
intuitive behavior. However, this ordering is not essential to our framework
and can be replaced by arbitrary tie-break orderings.

Definition 3.11. The action selection function o : Oyep, X P x 21 — A is
defined as

a(o,prof,ni) = argsmax,. 4 (u(o, prof,ni,a)),

where o € O, is a vehicle state, prof € P is an agent profile, ni C [is a
set of norm instances and w is the action utility function. |

The action utility function is used to calculate the utility of taking an
action. The function takes as input an agent profile as defined in Definition
3.8, a set of norm instances and an action. It returns a real value denoting
the utility of taking that action with the agent profile and the set of norm
instances. The utility function returns the sum of two parts. The first part
is the utility from the expected arrival time based on the new vehicle state.
The second part consists of the sum of the multiplication of the directive

29

distance and the sanction severity for each norm instance. Note that the
second part is always zero or negative, since ¢ has a positive codomain and g,
has a negative codomain. Hence, the utility for noncompliance is considered
to be negative.

Definition 3.12. The action utility function u : Oyep X P x 2f x A = R is
defined as:

u(o, (gs, g¢),ni,a) = g:(f(0")) + Z (8(0',ni.g) - gs(ni.s)),

(nien)

where o € O, is a vehicle state, prof € P is an agent profile, ni C [is a
set of norm instances, a € A is an action and o' = e(o0, a) |

The action utility function models the tension between being on time
and receiving no sanctions. It is able to model situations in which vehicles
knowingly ignore directives, because either the profit for being on time is
very high, or the dissatisfaction for the fine for disobedience of a directive
is very low. It is also able to model the opposite, a situation in which
a vehicle knowingly aims for a undesirable arrival time because it is not
willing to receive the fines associated with disobeying the directives. Hence,
the action utility function can capture the deliberations of the autonomous
vehicles we expect to see on the road in the future. We therefore feel that
it is a plausible utility function to use in our model.

3.3.5 Deliberation Example

The reader might also benefit to see the agent model in action. Suppose we
have two agents, a poor impatient agent, and an affluent impatient agent.
Their current speed is 20 m/s, their maximum speed is 30m/s, they can
accelerate/decelerate with 10m/s and the distance to their destination is
1080 meters. Since both are in a hurry, their arrival time grading function

g; is defined as
time) = bestTime
giltime) = time
where bestTime is defined as the minimal travel time in seconds, i.e. the
time it would take the agents to travel the distance if they could go their

maximum speed all the time. In this case,

However, the road the agents travel on has a speed norm, with the max-
imum speed being 10 m/s. Not obliging to this norm gives a fine of 200
euro’s, denoted finesgy. The poor agent cannot afford this fine, so its sanc-
tion grading function gs; with respect to a fine of 200 euros is defined as

95(200) = —20.

The affluent agent can easily afford this fine, so its sanction grading
function g, is defined as

95(200) = —2.

In this example, the action space of the agents is restricted to A =
{€,a10,a_10}. In Table 3.3, we see the utilities for each of these actions and
both agents. The highest rewarded action for the poor agent is to indeed
oblige to the norm by decreasing its speed, since it the negative utility of
getting the sanction is too high. The affluent agent is in a position to not
decrease its speed to oblige to the norm, since it can afford the fine. In fact,
it will even increase its speed, since it then maximizes its utility. Hence, the
poor agent will select the action a_;o and the affluent agent will select the
action aqg.

Table 3.3: The utilities of a poor and a rich agent with various actions

Change nothing

Accelerate 10m/s

Decelerate 10m/s

New velocity 20m/s 30m/s 10m/s
Norm speed 10m/s 10m/s 10m/s
Remaining travel time 54s 36s 108s
gt 0.67 1.00 0.33
0y 1 2 0

o = =0.019 525 = 0.055 0
Sanction utility poor agent | 0.019 - —20 = —0.38 | 0.055 - —20 = —1.10 | 0.00
Sanction utility rich agent | 0.019- -2 = —-0.04 | 0.055-—-2=—0.11 | 0.00
Utility poor agent 0.67 - 0.37 = 0.29 1.00 - 1.10 =-0.10 | 0.33
Utility rich agent 0.67 - 0.04 = 0.63 1.00 - 0.11 = 0.89 0.33

31

3.4 Chapter Summary

In this chapter, we presented a model for future traffic that is based on
the concepts of multi-agent systems. We first defined the environment and
the objects residing in it as the road network and vehicles and sensors re-
spectively. Next, we modeled traffic regulations and traffic controllers as
norms and controllers from the multi-agent system paradigm. Finally, we
presented our definition of an autonomous vehicle as an intelligent agent.
Different kind of agents can be created using the agent profile, which con-
tains an arrival time grading function and a sanction grading function.

32

Chapter 4

Implementation

In Chapter 3, we have given a formal specification of a multi-agent system
for traffic. In this chapter we describe how we implemented this specification
and what choices we made during implementation.

The goal of our application was to simulate traffic as a multi-agent sys-
tem, using a heterogeneous, norm-aware agent population, as well as norm-
based controllers which monitor and influence the agent behavior. We build
this normative MAS application as a separate module on top of an existing
simulator as an extension. The motivation for our choice of traffic simulator
is expanded on in Section 4.1.

While developing, we kept two requirements in mind. First of all, we
wanted the implementation to be extensible. That is, we want to allow
for easy addition or modification of data sources, simulation packages and
classes without having to alter the rest of the program. Furthermore, we
wanted our program to be efficient, since some use cases for our framework
include a large number of agents.

The framework was developed using the Java language. We chose Java
as the implementation language since i) it is the language we have the most
experience with, ii) it is a cross-platform language and iii) Java is used often
in implementing agent systems®.

The remainder of this chapter describes how our extension was imple-
mented. We will start by explaining why we chose an existing traffic simula-
tor instead of developing our own, and will motivate our choice for this spe-
cific simulator. Following that, we will expand on the model-view-controller

1See http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software for
a comparison of various agent software implementations.

33

http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software

design pattern used for the global control structure of the program in Sec-
tion 4.2. Finally in Section 4.3 the framework structure and its relation to
the formal framework as explained in the previous chapter is discussed.

4.1 SUMO

In this section we will expand on the traffic simulator compatible with our
extension. We chose the SUMO (Simulation of Urban MObility)[23] simu-
lation package. SUMO is an open-source, microscopic, state-of-the-art traffic
simulator and allows for complex simulations. It features the modeling of
different traffic modalities, such as pedestrians, cars and public transport.
Since this is a microscopic simulator, all vehicles are modeled individually,
as opposed to modeling traffic as multiple streams.

We chose SUMO as simulation package for the following reasons. First
of all, it is very fast. It is possible to simulate thousands of vehicles concur-
rently in various scenarios. This feature is important since we required our
application to be efficient. Secondly, it is a robust and mature traffic sim-
ulator. It has been in development for over fourteen years and has become
very sophisticated over the years. Thirdly, it has a very active development
community. The team behind SUMO is quick in answering questions and
giving support. Finally, it is very easy to manually manipulate traffic and
individual cars in SUMO using TraCI (Traffic Control Interface).

TraCl is an extension to SUMO which allows external programs to influ-
ence the simulation via the TCP/IP protocol. For example, one can instruct
SUMO to increase the speed of a certain car at runtime. This way, we can
model cars as agents in a straightforward fashion and thus easily implement
our MAS as a separate module to this simulator. It is also worth mentioning
that we have improved the TraCIl mechanism during the implementation of
our framework, yielding an average speedup of 4.8 times compared to the
unmodified version.

This framework was implemented as an extension to SUMO, rather than
modifying the source code of SUMO directly. There are several reasons for
this. First of all, vehicles in SUMO are only goal-driven in a limited way.
Their goal is to follow a certain route, as opposed to having a specific location
as their destination. Second, SUMO agents are preprogrammed to follow a
specific route. They only respond reactively to their environment, instead
of deliberating on what action would best suit them. Finally, vehicles in
SUMO are only norm-aware in certain situations. For example, they stop

34

for a red light and they obey to the right of way. This is because vehicles in
SUMO move according to specific car-following and lane-changing models
and this car-following model is not created with norm-aware agents in mind.
The most commonly used car-following model made by Stefan Krauf is
designed purely to create realistic traffic flows on a macroscopic level, since
in most traffic simulations individual movement on the microscopic level
is not interesting [25]. In contrast, we aim at designing cars with a more
fine-grained sense of control and most importantly, the ability to violate
norms.

There are also pragmatic reasons to propose a SUMO extension rather
than alter its code. For example, we can now support multiple versions
of SUMO, starting from SUMO 0.20 and upwards. This also makes our
extension more accessible to users, since it eliminates the need for users
to recompile SUMO before they can use the framework. Furthermore, by
building on top of SUMO, our system is only loosely coupled to it. This
makes it easier to switch to another traffic simulator if one so desires.

4.2 Global control structure

One of the requirements was to make the program easy to extend. We did
this by using the Model-View-Controller (MVC) design pattern. A design
pattern is a solution for a recurring problem in software, in this case the
problem of decoupling various parts of a software solution. This design
pattern fits our application well, since the MAS part is decoupled from the
traffic simulator. The model-view-controller pattern splits responsibilities of
the program into three parts, allowing for separation of concerns.

The model part abstracts away from the representation of domain-specific
knowledge. Different model instantiations might represent the knowledge in
different ways, but can be used in similar fashion. The view part abstracts
away from how the user is informed and can influence the rest of the pro-
gram. Finally, the controller part abstracts away over how the events raised
by the user, the view and the model are processed.

In our implementation, we employed a separate data model, simulation
model, view and a controller module. Figure 4.1 depicts how the different
parts are instantiated. The data model parses the initial values needed for
the multi-agent part of the simulation. See Table 4.1 for an overview of the
files that are parsed by the data model. Our implementation for the MAS
model is XML based. That is, it parses a set of XML-files to instantiate the

35

variables needed to run the program. The XML implementation was chosen
because of its human readability and ease of parsing.

This simulation model is used to
define how our framework can use
the underlying simulation package . vt
SUMO to control cars and coordi- View Framework
nate traffic. Thus, our framework ()
is used rather as a layer on top of kﬂ[
an existing traffic simulation than a
traffic simulation in its own right.

We chose to decouple our agent and
controller framework from the ac- Data

Simulation
tual traffic framework for several Model Model

reasons. First of all, this decou-
pling allowed us to use an existing

traffic simulation package for the ac- TraCl
tual traffic simulation. We could

. . } XML MAS % T
thus immediately get started with specification
the agent and controller part, with- SUMO
out first developing a traffic simula- SUMO-GUI

tor ourselves. Secondly, the decou-

pling, as mentioned earlier, allows

for quick swapping of traffic simu- Figure 4.1: The Model-View-Controller
lators. For the usage of a different structure.

traffic simulator, only the simulation model should be changed. And finally,
by keeping the multi-agent system logic different from the simulation logic,
it should be relatively easy to switch from the traffic domain to a different
domain without rewriting agent and traffic controller code completely.

The controller is the part of the framework which binds together the
models and the view. The controller retrieves information from the models,
and uses that to generate framework responses, such as agent actions. These
responses are returned to the simulation model, which uses this information
to calculate the next state. Each state is sent to the view part of the software,
which visualizes the current state of affairs. In Figure 4.1, the program flow
for the controller is depicted.

The view module is employed to show information to the user and let
the user interact with the simulation. For our purposes, a simple text-
based, non interactive interface was sufficient. However, it is possible to add

36

interactivity and graphical visualisations, but these features are considered
future work.

File Description

scenario.net.xml Specification of the roads, their connections and the lanes of
the roads. Native SUMO file.

scenario.rou.xml Specification of the routes driven by agents. Native SUMO
file.

agents used in the scenario.

scenario.prof.xml | Specification of the different agent types and distribution of

norms associated with the controllers.

scenario.org.xml Specification of the controllers, along with the sensors and

scenario.sens.xml | Specification of the sensors placed on the lanes.

SUMO file

scenario.norms.xml | Specification of the different norm schemes.

Table 4.1: Files read by the MAS Model

4.3 Framework Structure

In previous sections, we discussed the general outline of our framework and
what simulation package we used. In this section the implementation of
the model presented in the previous chapter is described in more detail. We
start by providing an overview of control flow. Following that, we expand on
the different Java classes we implemented. The Java classes are structured
in a similar way to the formal model. First of all, there is the road network
package, which contains all the code relating to sensors, roads, lanes and
their connections. Secondly, there is the agent package. This package con-
sists of the template Agent class, some derived implementations from this
class and some auxiliary classes. Thirdly, we have the norm package. In this
package, the prototype norm scheme and instances are implemented, as well
as some more complex norms. Finally, we discuss the controller package.
This package contains the controller class as well as the classes needed for
communication between controllers. An UML overview of all packages is
provided in Figure 4.2.

37

Road Network

momnﬂ

+ Nodes: + From:
+ Roads: +To:

+ LanelList:
+ addRoad(): + Length:
+ addNode(): ’

Lane ﬂ

Agent

+ Agentld: :

+ GoalNode:

+ GoalTime:

+ ExpectedArrivalTime:
+ Sanctions

+ Norm instances

+ doAction(sanctions, time, norminstances):
+ Utility(time, sanctions):

Traffic Controller ﬂ

+ NormSchemes:

+ Normlinstances:

+ KnowledgeBase:

+ Sensors:

+ SubscribedControllers:

+ ReadSensors():
+ InstantiateNorms():
+ UpdateBeliefs()

Norminstance ﬂ

+ Obligations
+ Sanction:

AgentData ﬂ

NormScheme
+ Sanction: Sanction
+ CheckCondition()

+ Obligation():
+ Deadline():

+ Velocity:
+ PhysicalObject

+ Lanelndex: + xPos:
+ yPos
Agent Action
Physical Object ﬂ + getTime():
Sensor ﬂ + Roadld: + getSanctions():
extends + Laneld:
+ Distance: extendde€num AgentAction
+ Length:
+ Velocity: changelane
changeRoad
» changeVelocity+
mxﬁm_:am changeVelocity-
Y

Package.RoadNetwork

Basic Agent
+ AgentProfileType:

+ SanctionGrade(sanction):
+ ArrivalTimeGrade(time):

Package.Agent

Sanction ﬂ

+ SancType:

enum SanctionType

LowFine,
HighFine

Package.TrafficController

Figure 4.2: An UML overview of our framework

4.3.1 Flow of control

The sequence diagram depicted in Figure 4.3 on page 40 depicts the flow of
control of our extension. The program starts by initializing the controller
ctrl, the controller then acts as a central hub which regulates all information
streams between the different modules. First the Datamodel dataModel is
requested to parse all XML files corresponding to the scenario with the
function getMASData (). In these files the configuration of the environment,
controllers and agents is specified.

After all the initial data is read from the XML files, the environment is
set up. All roads, junctions and sensors are initialized in our extension, using
the same XML input files SUMO will use to set up its road network. This
is executed by the function setupEnvironment () which returns a RoadNet-
work structure containing all roads, junctions, routes and sensors. Next,
the agents can be initialized with the function instantiateAgents(). Us-
ing the data parsed in the XML file, together with a seed specified as a
command-line argument and the road network that was just generated, a
list of agents and their respective spawn times is created and then passed
back to the controller module. The next step is setting up the traffic control
systems with setupTCs (), coupling them to specific norm schemes and sen-
sors on the road. Then it is time to start the SUMO traffic controller with
the setupSimulation() function. Together with several of the initial XML
files, our extension provides information about the agents and the spawning
times of those agents. Finally the view module is set up with setupView().
Since we have not implemented a GUI yet, in our case this module keeps
track of statistics about the simulation and outputs those statistics on the
console.

After the setup of both our extension and SUMO is completed, the main
loop is started. This loop will run until the simulation length specified in
one of the initial XML files has been reached. The first function called
with every iteration of this loop is nextSimState (), this function requests
SUMO to execute a single time step and subsequently returns the most
recent data about the road network and the vehicles in the simulation. Next
is the update cycle of the MAS part of the extension, it is quite similar to
setting up and there is thus no need to elaborate. Then the controller calls
the nextMASState () function, this function uses the updated environment,
agent and traffic controller data in order to calculate new actions for the
agents to execute. This function returns a map containing all agents with
their respective actions to the controller.

39

simModel : dataModel :
env : Environment agent : Agent tcs: TrafficController ctrl : Controller SimulationModel Datamodel view : View
T T T
| !
m getMASData
_ P E—
R setupEnvironment ! T
]]
1 1 I
instantiateAgents | |
I I I
I I
setupTCs ! !
———————— e T p “ m
T — setupSimulation
s e
1
setupView B
e e _J
- m
I I
main loop ;] .
—— nextSimState
s e
I_n updateEnvironment
updateAgents
I
1
S —-— updateTCs
! —————— e
I
I I
_ !
nextMASState
IIIIIIIIIIIII B e ————
]
I
| —— updateSim —|
“ S
I
I I
“ i updateView »
! = —————————— be——————————————————
I - I
I I
I I
I I

Figure 4.3: UML sequence diagram of the framework control flow.

The next step is to return this information to SUMO, in preparation for
its next time step. Finally the view is updated with the new data, which is

then again outputted to the console.

4.3.2 Road Network

The road network package, depicted
by Figure 4.4, defines the environ-
ment. It contains the Node class,
which corresponds to cities, junc-
tions and/or destinations. Since we
use the same network XML file as
SUMO does, a node object simply
consists of an X and Y coordinate.
The Road class is defined exactly
as specified in Definition 3.2, con-
taining a from and to node, since
all roads are directed. Furthermore,
each Road object contains a list of
lanes, and a length, which simply is
the calculated length between two
nodes.

The Lane class has a lane index,
denoting which part of the road it
represents. Finally, the road net-
work contains the Sensor class. The
Sensor class is derived from the
PhysicalObject class, thus, it has
a certain location, that is a posi-
tion on a lane belonging to a certain

Road Network

+ Nodes: List<Node>
+ Roads: List<Roads>

+ addEdge(): void
+ addNode(): void

Road

E Node E

+ xPos: Double
+ yPos: Double

+ From: Node

+ To: Node

+ LanelList: List<Lane>
+ Length: Float

Physical Object {I

+ Roadld: Road
+ Laneld: Lane
+ Distance: Float
+ Length: Float
+ Velocity: Float

Lane {I

+ Lanelndex: Int

Sensor {I

extends

Figure 4.4: UML overview of the road
network class.

edge. A sensor reports every vehicle that travels over it to an associated

controller.

4.3.3 Norms

In the norm package, depicted by Figure 4.5 the norm scheme and instance
are implemented. These are two distinctive but equally important norm
artifacts. The first one is the norm scheme. The norm scheme contains

41

several functions and a sanction to be imposed on the agent if it fails to
comply. It is important to note that we only implemented the obligation
part of norms, since that was sufficient for our purposes.

The first function is CheckCondition(),

which returns a boolean and uses as
input the most recent AgentData as
acquired by the controller to check | + Sanction: Sanction
if this norm should currently be ef-
fectuated. Secondly, Obligation(),
which receives data about a cer-

NormScheme

+ CheckCondition(BruteFact): boolean
+ Obligation(Agent): AgentData
+ Deadline(Agent): BruteFact

tain agent and returns an obligation

for the agent. An obligation con- Norminstance {I AgentData E
sists of a AgentData objects. For)
an acent to comply with such an + Oblg: AgentData + Velocity: Int

g ply + Sanction: Sanction + Ag: PhysicalObject

obligation, its velocity and position

must be equal to the values speci- |enum SanctionType

fied by the obligation. It is possi- : Sanction
ble to specify the obligations only LowFine,

. . HighFine
partially, e.g. only specify the lane

+ SancType: SanctionType

an agent has to drive on, but not

its speed. The agent is then free to

choose its speed, but has to drive Figure 4.5: UML overview of the norm
on the specified lane to evade the (]ass.

sanction. Finally, the norm scheme

contains the deadline, which specifies when becomes inactive.

The deadline is also implemented as a function Deadline (), which sim-
ilarly receives as input an agent and returns a brute fact. If this brute
fact will evaluate to be true, the deadline will be met. Finally, the norm
scheme contains the sanction to be imposed on the agent if it does not
comply with an obligation. A sanction can currently be one of two types,
SanctionType = {LowFine, HighFine}. Note that we kept the monetary
amount of the fines abstract. New sanctions that specify a monetary amount
can easily be created, but this limited collection is sufficient for the scope
this thesis.

Norm instances are norm schemes with agent-specific information at-
tached. It is possible to assign each norm instance of a certain norm scheme
with a unique velocity. Thus, each agent will be obliged to drive at this
specific velocity and the system can influence individual agents in distinct

42

ways. The norm instance class has two attributes, the first is the obligation
as described above. Secondly, the norm instance contains a sanction, this
means that the agent is aware of which sanction will be imposed on him
when he fails to comply to either obligation.

4.3.4 Norm-based controllers

Similar to the rest of the classes,
the controllers were kept close to TrafficController E
the formal definitions as provided)

+ NormSchemes: List<NormScheme>

in Chapter 3. The controllers are + Norminstances: List<Norminstance>

structured in the following way. :ggg‘é";‘fg_gﬁsfseér']-sizt;Age”tDat”

The controller class contains firstly, | + SubscribedControllers: List<TrafficController>
a list of subscribed controllers,

+ ReadSensors(): List<AgentData>,

SubcribedControllers. These + InstantiateNorms(): List<NormInstance>
. . . + UpdateBeliefs(): void

controllers receive all information
about vehicles observed by the func- Physical ObiectE Sensor E
tion readSensors() at every tick.

. + Roadld: Road
Secondly, a list of norm schemes + Laneld: Lane
that will be effectuated by said con- + EIStatr::el-ilFlc:at Sxionds

. . + Length: Floa

troller during runtime. These norm + Velocity: Float

schemes are listed in the org.xml
file which we use to initialize the
program. Thirdly, a list of norm in-
stances. These norm instances are
generated by the controller and sent
to the coupled agents in the function instantiateNorms(). Fourthly, ev-
ery controller keeps track of the most recent brute facts. As we mentioned
above, these facts are either read by sensors, which are physical objects, or
are received from controllers the controller is subscribed to. The knowledge
base is updated every tick with the updateBeliefs() function. Finally,
the controller class contains a list of sensors associated with the controller.
These sensors are part of the Road Network class described in Section 4.3.2.

Figure 4.6: UML overview of the con-
troller class.

43

4.3.5 Agents

The structure of the agent pack-
age is depicted in Figure 4.7. It
is structured as follows. There is a © Agontid: n

base class Agent, which contains the | +GoalNode: Node

1. . . + GoalTime: Int
utility and the doAction function + ExpectedArrivalTime: Int

: i + Sanctions: List<Sanction>
as deﬁned m Deﬁnltlon 312 The + Norm instances: List<NormInstance>
tlme.gradlng f.unctlon and sanction + doAction(sanctions, time, normInstances): AgentAction
grading function are implemented |+ Utiity(ime, sanctions): Float
in agent subclasses. For exam-
ple, an affluent agent might have a
: : : + Roadld: Road + getState(): AgentData
sanction grading function that val- | ¥ o< "oa + getTime(): Float
. : . + isRelevant: boolean
ues monetary sanctions lower than + Distance: Float
. . + Length. Float
other sanctions, while a poor agent + Velocity: Float
. changelane
might value these monetary sanc- changeRoad
. . . extends changeVelocity+
tions higher. Different agent types changeVelocity-
can be defined by selecting a cer-
tain AgentProfile, which all ex-
. + SanctionGrade(sanction): Float
tend from the Ba31cAgent class. + ArrivalTimeGrade(time): Float
The actions an agent can execute at
any time are as specified in Defini-
tion 3.9. Each action class also im-
plements the action effect function e
and the expected arrival time func-
tion f as defined in Chapter 3. In the implementation, these functions are
called getState and getTime respectively. Furthermore, each action also
has a function isRelevant, which specifies in which states an action is rele-
vant. For example, the action [;.r; is not relevant when the road the vehicle
traverses on consist of only one lane. The usage of the isRelevant func-
tion speeds up the program, since it reduces the number of actions that are
considered each deliberation cycle.

Agent

Physical Object 3 | AgentAction 3 |

extends enum AgentAction

Basic Agent

Figure 4.7: UML overview of the agent
class.

4.4 Chapter Summary

In this chapter, we discussed the implementation of our model. We talked
about the SUMO simulator which we used as a basis to build on. Further-
more, we showed how we divided our implementation into several disjoint

44

parts using the Model-View-Controller paradigm. Finally, we provided a
detailed explanation of how we implemented the various parts of the model,
using UML diagrams.

45

46

Chapter 5

Experiments

In the previous chapters we have given the formal definition of our frame-
work, as well as a description of how our framework was implemented. The
aim of this chapter is to provide some scenarios in which norm based traffic
control systems are useful. To this end, we tested the performance of our
normative agent based traffic approach using four experiments. The first
experiment considers a ramp-merging scenario where the main road consists
of a single lane, while on the second, third and fourth experiment the main
road has two lanes. In the second experiment the second lane is accessi-
ble for all drivers, but in the third experiment the second lane is marked
as an “emergency only” lane. Finally, in the fourth experiment, the ramp-
merging scenario is used twice in succession in order to demonstrate the use
of communication and coordination between decentralized traffic controllers.

Since the goal of this chapter is to present the enabling technologies that
our framework provides, we have deliberately exaggerated some aspects of
the experiments. This way the effect of norm based systems becomes more
apparent. We also report some observed values from the scenarios, to give
some indication of the performance of our system when compared to a certain
baseline. The contents of this chapter are based on an earlier publication of
our work in [6].

The experiments were set up as follows. Each experiment was run for
a length of one simulation hour (3600 ticks). The spawn rate shown in the
tables of the experiments is defined as the chance of a driver spawning every
tick. If there is not enough room to spawn a driver at a certain time, SUMO
puts the vehicle on hold and spawns it at the earliest possible time when
space is available.

47

We gathered results by running each experiments in two different scenar-
ios. The first scenario was used to establish a baseline of performance, the
second scenario was used to see if an improvement could be made on this
baseline. Both scenarios were run one hundred times for every experiment.
The values displayed in the tables are the averages over those hundred runs.
In the tables, the throughput is defined as the number of vehicles leaving the
simulation every tick. Similarly, the average speed is the average speed over
all runs in m/s, and finally the average gap is the average distance between
two cars in meters. Also defined for each experiment is the mazimum ex-
pected throughput, this is the expected throughput if each vehicle could keep
driving its maximum speed throughout the scenario and can be calculated
by the following formula: throughput,,.. = 60p, where p is the probability
of a car entering the simulation on a tick.

5.1 Merge scenario

The experiments we use in this chapter are all based on a ramp merging
scenario. We briefly expand on this scenario here, but more details and an
in depth treatment on ramp merging is explained by Basker et al ([4]). We
illustrate our framework by applying it to the common example of merging
a ramp (access road) and a main road onto a single traffic stream. The goal
in this scenario is to make optimal use of the output capacity of the network
whilst not causing unnecessary traffic jams for the secondary traffic stream
or compromising safety.

In Figure 5.1, a schematic representation of the aforementioned ramp
merging scenario is given. Triangles are vehicles that travel in the direction
towards they point. White vehicles are the vehicles that have not yet received
their obligation from the control system, while the black vehicles have passed
a sensor and thus received a personalized norm instance. In Figure 5.1 the
vehicles without a norm instance are vehicles A, B, C' and D. On the road
there are lane sensors (s1 to s5) which can detect the status of vehicles that
are residing on them. For the scenario to work correctly, it is necessary
that either the sensors are sufficiently long, or the vehicles sufficiently slow,
so that no vehicle can pass undetected. The sensors should also be placed
at a distance far enough from the merge point m, so that vehicles have
enough time to comply to the obligation before the deadline. There are two
important points on the road, point m where the two roads merge, and point
e where the vehicles exit the scenario. Distances ds and do are agent’s A

48

K_A
[s > s > >
== Bs > S [=ls> B> B> B> B3
B A 7,/ F —~
dsafe
dc
4
S3
C
D

Figure 5.1: The ramp merging scenario

and C’s distances to m, and d..; is the distance from the merge point to
the exit point, and dg, . is the distance between vehicles that is deemed
safe, which we call the minimal gap. Ideally A and C traverse d4 and d¢
such that they arrive at m with a distance dg.f. and can accelerate to their
maximum speed within the distance d,.;.

Monitoring happens through interpreting the observations of sensors. In
the case of SUMO we use lane detectors that can sense the vehicles that
driving along the area they cover. Specifically, each sensor can detect the
identity, velocity and position of each vehicle on the sensor’s area. Further
parameters such as the maximum velocity, acceleration and deceleration
capabilities can be assumed within reasonable margins. The traffic control
system uses the sensor data to monitor and control the traffic on the road.

5.2 Experiment 1: SUMO and our extension

The first experiment illustrates the distinction in behavior between the de-
fault SUMO vehicles and the norm-aware agents implemented in our model.
This experiment implements a classic ramp-merging situation, where both
the main road and ramp both consist of a single lane. In the scenario with
our extension, a single traffic controller observes the vehicles and commu-
nicates tailored norm instances to each vehicle. A norm instance in this

49

experiment consists of just a personalized target velocity, since there is no
choice of lanes on the main road. The expected result is that the usage of
norms in the scenario with our extension results in a higher average velocity
and a better throughput of vehicles since traffic jams will be prevented.

The personalized speed for each vehicle is calculated as follows. First,
the sensor readings of the sensors on the main road and the ramp road are
combined to create a merge list. This is done using the algorithm described
in [39]. This merge list contains the desired order in which the vehicles
should arrive at the merge point. It is based on the arrival time at the
merge point of the vehicles at their current velocity. Next, the personalized
speed for each vehicle is calculated. The personalized velocity is calculated
by solving a set of equations so that the arrival time of a vehicle at the
merge point is at least 2.5 seconds after the car in front of it. This way,
traffic safety is ensured, since an adequate distance is maintained between
vehicles.

The spawn rate of the vehicle input stream will be slightly higher on the
main road to create a realistic traffic situation. In the first scenario of the
experiment, the main road has priority over the ramp, comparable to an
real life merging situation. In the second scenario, three sensors are placed
on the road, one on the main road, one on the ramp and a control sensor
on the output road. A single traffic control system observes the vehicles in
the simulation and communicates tailored norm instances to each vehicle. In
this scenario, the norm scheme used provides a personalized speed obligation
to vehicles.

SUMO agents | Norm-aware agents
Main road Spawn rate | 20% 20%
Ramp Spawn rate 15% 15%
Throughput 16,16 21,01
Max throughput 21 21
Throughput % 76,95% 100,05%
Average Speed 3 20,97
Average Gap 13,81 101,82

Table 5.1: The results for the first scenario
As is clear from the results in Table 5.1, there is an increase in both

throughput, average speed and the average amount of space between the
vehicles. This is the case since in the SUMO scenario a traffic jam instantly

50

forms on the ramp, because of the relatively high density of cars on the
main road. In the scenario with our extension however, the vehicles adjust
their speed so that the merge happens smoothly (Figure 5.2). These results
confirm our expectation that coordination by a norm-based traffic control
system improves traffic flow classic ramp-merging scenarios. Note that the
throughput % value exceeds a hundred percent. This is possible because the
spawn rate is probability based and thus can exceed the maximum expected
throughput.

Figure 5.2: Screenshot depicting the difference in performance in the first
scenario. The top scenario uses our norm aware agents and merge norm.
The bottom scenario uses the default SUMO drivers.

5.3 Experiment 2: Simple norms and Ad-
vanced norms

The goal of the second experiment is to compare traffic control systems using
simple and advanced norms. In each scenario, the road network is observed
by a traffic control system. In the SimpleNorm scenario, the traffic controller
employs the same norm as in the first scenario. In the AdvancedNorm
scenario, the traffic control system can also the regulation for the vehicles

51

to change lanes in order to reduce the pressure on the rightmost lane and
prevent congestion. The lane change directive will be given to a driver when
its calculated velocity on the merge point is below a certain threshold. For
this experiment the threshold was set to “z=. Our expectation is that in
this multi-lane scenario, the control system with the advanced norm can
successfully cope with a higher input stream of vehicles while the traffic
controller with the simple norm cannot.

The setup for the SimpleNorm scenario is a copy of the extension sce-
nario in experiment 1, except that in this case the main road has two lanes
instead of one, and moreover, the input stream of vehicles of both roads are
increased. The AdvancedNorm scenario implements extra sensors on the
second lane, but is exactly the same in every other aspect.

As can be observed from the results in Table 5.2, the simple norm cannot
handle the increased spawn rate of vehicles in this scenario. The average
speed is has diminished severely, as well as the average gap between vehicles.
This means congestion is abundant in the SimpleNorm scenario. However,
the AdvancedNorm copes very well with the increased input stream of vehi-
cles. In this scenario the throughput approximates the maximum expected
throughput closely, which indicates that the vehicles move throughout the
simulation without much congestion.

SimpleNorm | AdvancedNorm
Main road Spawn rate | 30% 30%
Ramp Spawn rate 20% 20%
Throughput 20,38 29,01
Max throughput 30 30
Max throughput % 67,93% 99,70%
Average Speed 3,31 14,91
Average Gap 14,2 61,49

Table 5.2: The results for the second scenario

5.4 Experiment 3: Violating norms

The third experiment illustrates that autonomous vehicles are able to reason
about norms. Experiment 1 has shown that the vehicles are norm-aware.
However, autonomous vehicles in our model also have the capabilities to not

92

comply with certain obligations if these are of low importance to them. In
this experiment the leftmost lane is an emergency lane, reserved for certain
traffic in order to help with accidents and other emergencies. Therefore
regular vehicles will get sanctioned if caught driving on this lane. Since this
lane remains mostly empty, this is a viable option for autonomous vehicles
who greatly value a faster arrival time and whose owners are in a financial
position which makes them willing to take a fine. We expect that the vehicles
of affluent owners will choose to take a sanction and win some time, while
the vehicles of poor owners choose not to.

The scenario is the same as with experiment 2. However, the leftmost
lane is only open for emergency vehicles. In the Poor Drivers scenario, the
input stream consists of drivers who are impatient, but in a substandard
financial position. The Affluent Drivers scenario spawns drivers who care
about being sanctioned, but are willing to take a fine if by doing so they can
arrive closer to their goal arrival time with a significant amount of time.

The results for this experiment are shown in Table 5.3. We can see
that with this experiment the difference in throughput, average speed and
average gap is much smaller. However, a large distinction in the number of
sanctions can be seen. This indicates a difference in behavior between the
groups of drivers. On average about 133 affluent drivers decide to drive on
the emergency lane in an hour of simulation. This shows a clear difference
in behavior from the poor drivers, who never decide to change lanes.

Poor drivers | Affluent drivers
Main road Spawn rate | 20% 20%
Ramp Spawn rate 15% 15%
Throughput 20,48 20,88
Average Speed 12,95 14,42
Average Gap 48,37 69,29
Sanctions 0 133,12

Table 5.3: The results for the third scenario

53

4 N [N

LI _
[_Iss
& &

. AN J

Figure 5.3: Distributed traffic control setting. Rounded boxes indicate local
traffic controllers. The left controller is connected to sensors 1 to 5 and the
right controller to sensors 6 to 10

<
Y. v

Figure 5.4: Traffic streams (arrows) without coordination. Bottom: traffic
streams with coordination.

5.5 Experiment 4: Observation sharing be-
tween controllers

In our final experiment, we demonstrate the distributed control features of
our framework. More specifically, we demonstrate ability of traffic controllers
to share sensor readings, so that they can effectuate their norms more ef-
fectively. The scenario in this experiment consists of two merge points in
succession (Figure 5.3). At each merge point, a norm is used by a local traf-
fic controller to merge the traffic. For this, each controller uses local road
Sensors.

o4

If the traffic controllers do not share their observations, the traffic streams
flow like the top situation in Figure 5.4. The average speed on the left lane
is higher than on the right lane, since no merging occurs there. So the
traffic that arrives on the left lane stays there, and some traffic on arriving
on the right lane switches to the left lane as well. The ramp traffic streams
merge in on the right lane of the main road. After the first merge point, the
vehicles can move freely move from left to right and vice versa. However, this
behavior can cause congestion at the second merge point when the traffic
stream of the second ramp road is too dense.

The solution that we implemented in our observation sharing scenario
was to redirect all traffic observed by the left control system to the left lane
when the traffic stream on the second ramp rood is too dense. This way,
the traffic on the second ramp can continue on the main road unhindered by
oncoming traffic. However, by default the left control system relies on only
its own sensor readings and cannot detect the traffic stream on the second
ramp. Therefore the controller from the right needs to inform the controller
on the left about the traffic density on the second ramp.

Hence, the left traffic control system subscribes to the observations of the
right controller. Therefore, it receives the sensor data of the sensor sg from
the right traffic controller. When a high traffic density on the second ramp
is detected by the left controller, it issues directives to the vehicles to move
to the left lane. Else, it issues the directives used in the merge scenarios
discussed earlier. The resulting traffic streams should resemble the streams
in the bottom depiction of Figure 5.3. We expect that the coordinating
traffic control systems perform better in terms of throughput, average speed
and average gap, since less congestion should occur at the second merge
point.

The results of experiment 4 are listed in Table 5.4. A small increase
in the throughput and a larger increase the average speed and gap in the
coordinated control systems scenario compared with uncoordinated control
systems scenario can be observed. Thus, giving vehicles on the main road
the obligation to change to the left lane quickly after the first merging
point appears to prevent the delays as observed in the original scenario.
These preliminary results support our hypothesis that observation sharing
and communication between traffic control systems are beneficial for traffic
regulation.

55

No Coordination | Coordination
Main road Spawn rate | 25% 25%
Ramp #1 Spawn rate | 15% 15%
Ramp #2 Spawn rate | 35% 35%
Throughput 43,81 44.74
Average Speed 11.32 14.60
Average Gap 62.47 66.03
Max throughput 45 45
Max throughput % 97,36% 99,36%

Table 5.4: The results for experiment four

5.6 Chapter Summary

In this chapter we discussed various experiments we performed using our
framework. First, we presented an experiment that revolved around the no-
tion of norm-aware agents. Secondly, we showed an experiment that demon-
strated a more complex norm. Thirdly, we discussed an experiment in which
showed that regulations could be ignored . Finally, we presented an exper-
iment in which distributed controllers were employed. In general, the out-
comes of these experiments were positive. That is, our framework performed
better than the SUMO baseline and simpler versions of our framework.

56

Chapter 6

Conclusions & Future Research

The aim of this thesis was to answer the question how can future traffic
be modeled and implemented using norm-based controllers within the MAS
paradigm, and can this paradigm be used to improve traffic safety and ef-
ficiency?. We divided this question up into three subquestions about the
formal traffic model, the implementation of the model and the experiments
with it. In this chapter we will review the answers to the subquestions. We
will critically discuss our work and give some suggestions for future research.

6.1 Answering the research questions

The first subquestion how can we model future traffic within the MAS paradigm?
was answered in Chapter 3. We presented our formal model of future traffic,
which couples the notions of traffic controller, autonomous vehicle and traffic
regulation to that of the multi-agent system concepts of controller, agent and
norm introduced in Chapter 2. We specified how agents deliberate about
norms issued by controllers, and how these agents could be endowed with
different behaviors using agent profiles. Our formalization was deliberately
kept abstract, allowing for various implementations.

In Chapter 4 we answered the subquestion how can we implement the
MAS model of future traffic?. We discussed our implementation and the
choices we made during development. Our implementation is written in
Java and build on top of the SUMO traffic simulation package. It is con-
structed using the Model-View-Control design pattern, which allows for easy
changing of the domain specific model and the visual representation. In the
implementation, one can easily design different scenarios consisting of vari-

57

ous traffic situations and regulations.

Finally, we presented some experiments using our framework in Chapter
5. The goal of the experiments was to show that the norm based multi agent
system approach was useful to model and improve certain traffic situation.
We presented four experiments, all based on ramp merge scenarios. Each
experiment consisted of two scenarios, where the second scenario included a
more complex instantiation of our framework than the first one. In all ex-
periments, the second scenario performed better than the first one in terms
of efficiency. Furthermore, we also demonstrated that our framework can
be used to improve the safety in traffic by creating a norm which causes
agents to keep a safe distance from each other while also increasing traffic
efficiency. Thus, the subquestion can norm-based controllers in conjunc-
tion with the MAS paradigm improve on traffic safety and efficiency? was
answered positively.

6.2 Discussion

In this section we discuss our presented framework and take note of some
strengths and weaknesses. First of all, we presented positive results of our
experiments in Chapter 5. However, we acknowledge that some scenarios
were not completely realistic. In the first experiment, the merge scenario
did not have an acceleration lane aligned with the main road. Furthermore,
in the final experiment the traffic density of the second merge lane was higher
than one would expect in the real life.

Nonetheless, we feel that this is not a large issue. The aim of our exper-
iments was not to demonstrate that our model supports extensive realistic
scenarios. Our goal was rather to present our extension as an enabling tech-
nology for specifying and testing norm based traffic control systems. Fur-
thermore, since our framework allows for a wide range of agent and norm
implementations, we believe that more complex scenarios can be modeled
by refining the agents and norms.

Second of all, this refinement of agent and norms is possible because
of the abstract nature of our framework. We especially kept very few con-
straints on how norm schemes and instances work. The upside of this is that
this gives a lot of freedom to users of our framework. For example, they can
construct norms which keep a record of previous violations, allowing norms
to adapt to changing environments, or they can implement violation func-
tions in such a way that vehicles aren’t punished for violating norms that

58

they could not possibly obey. The downside is that this freedom might make
it more difficult for the users to construct norms at all. By restricting the
norms to a small logic or a domain specific language, one can do less but in
an easier way.

Third of all, in our framework, sanctions are used in a restricted way.
They are only interpreted as being a monetary fine. One could also add
support for non-monetary sanctions, such as the revoking of a permit to
drive on a certain road. Furthermore, in the literature sanctions are used
not only as a way to correct wrong behavior, but also as a way to correct
wrong states. Thus, a sanction does not not be a punishment to the violator,
but can also be a countermeasure to return from an undesired to a desired
state.

Finally, our framework does not allow explicitly for regimentation. How-
ever, we are unsure if this is possible in a traffic environment. A vehicle
cannot bring about every state that it wishes, but is also dependent on the
vehicles around it. It is possible to issue a norm instance with a sanction of
infinite euros to all vehicles to ensure that they try their best to comply with
that norm. However, this is still no guarantee that the undesirable state can
be reached. For example, a car cannot reduce it speed from 120 km/h to 0
km/h in one second, no matter how high the fine.

6.3 Future research

Our framework can be extended in various ways. First of all, one possi-
ble extension could be to add support for contrary to duty norms. Our
framework could be extended in a number of ways. One can add support
for contrary to duty norms ([30]). A contrary to duty norms consist of a
hierarchy of norms. An agent should comply with the norms in every layer
of the hierarchy. However if it does not comply with the first layer (and
thus incurring a sanction), it should at least comply with the second layer
or incur an even higher sanction. An example of a contrary to duty norm
is the norm “You shouldn’t break the speed limit, but if you do, you should
drive on the leftmost lane.”

Secondly, the distributed controllers could be extended. Currently, our
framework only allows for the sharing of sensor data. One could also add
the ability of controllers to share sanctions, norms and aggregates of sensor
data so that controllers can regulate traffic more effectively.

59

Third of all, vehicles could also be endowed with the ability to commu-
nicate with each other and with the controllers. In this way, they might be
able to coordinate their behavior better with other vehicles. Furthermore,
they could communicate with controllers do discuss their preferences.

Fourth of all, the framework could be used for another domain. In this
thesis, we focused on traffic, but it might also be used for say, the robot
soccer domain. It should not proof too difficult to couple this to our frame-
work, since we separated the domain specific parts of our implementation
from the more general parts.

Fifth of all, prohibitions could be implemented in our framework. The
formal model already allows for prohibitive regulations, but we did not yet
implement it.

Finally, a Graphical User Interface (GUI) could be added to the imple-
mentation. This GUI could be used for the easy creation of scenarios. It
could also be used for allow for on the fly monitoring and editing of norms.
For example, with a GUI one could investigate how the vehicle behavior
changes when one changes the sanction severity of a norm. Because of our
Model View Controller structure of the framework, this can be implemented
by only altering the View part of our extension.

60

Bibliography

1]

ALECHINA, N., DAsTANI, M., AND LOGAN, B. Programming norm-
aware agents. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2 (2012), Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
pp- 1057-1064.

BAINES, V., AND PADGET, J. A situational awareness approach to in-
telligent vehicle agents. In Modeling Mobility with Open Data. Springer,
2015, pp. 77-103.

BALKE, T., DE Vos, M., PADGET, J., AND TRASKAS, D. On-line
reasoning for institutionally-situated bdi agents. In The 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems-
Volume 3 (2011), International Foundation for Autonomous Agents and
Multiagent Systems, pp. 1109-1110.

BASKAR, L. D., DE SCHUTTER, B., HELLENDOORN, J., AND PAPP,
7. 'Traffic control and intelligent vehicle highway systems: a survey.
IET Intelligent Transport Systems 5, 1 (2011), 38-52.

BATES, J., ET AL. The role of emotion in believable agents. Commu-
nications of the ACM 37,7 (1994), 122-125.

BAUMFALK, J., DASTANI, M., PooT, B., AND TESTERINK, B. Dis-
tributed normative traffic control systems as a sumo extension. In In-
termodal Simulation for Intermodal Transport. Springer, 2016, p. to
appear.

Beck, K. Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

61

8]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BEHRISCH, M., BIEKER, L., ERDMANN, J., AND KRAJZEWICZ,
D. Sumo-simulation of urban mobility-an overview. In SIMUL 2011,
The Third International Conference on Advances in System Sitmulation
(2011), pp. 55-60.

BoeLLA, G., VAN DER TORRE, L., AND VERHAGEN, H. Introduc-
tion to normative multiagent systems. Computational € Mathematical

Organization Theory 12, 2-3 (2006), 71-79.

BONABEAU, E. Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of

Sciences 99, suppl 3 (2002), 7280-7287.

BoraA, K. Nissan gets into self-driving mode, says its autonomous cars
will be ready by 2020, May 2015. [Online; checked 26-06-2015].

BRATMAN, M. Intention, plans, and practical reason.

CoHEN, P. R., AND LEVESQUE, H. J. Intention is choice with com-
mitment. Artificial intelligence 42, 2 (1990), 213-261.

DastaNI, M., Grossi, D., MEYER, J.-J. C., AND TINNEMEIER,
N. Normative multi-agent programs and their logics. In Knowledge
Representation for Agents and Multi-Agent Systems. Springer, 2009,
pp- 16-31.

DeENNETT, D. C. The intentional stance. MIT press, 1989.

DiecNuM, F. Autonomous agents with norms. Artificial Intelligence
and Law 7, 1 (1999), 69-79.

DIGNUM, V., VAZQUEZ-SALCEDA, J., AND DIGNUM, F. Omni: Intro-
ducing social structure, norms and ontologies into agent organizations.
In Programming multi-agent systems. Springer, 2005, pp. 181-198.

Doniec, A., ESPIE, S., MANDIAU, R., AND PIECHOWIAK, S. Non-
normative behaviour in multi-agent system: Some experiments in traffic
simulation. In Proceedings of the IEEE/WIC/ACM international con-
ference on Intelligent Agent Technology (2006), IEEE Computer Soci-
ety, pp. 30-36.

62

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

28]

[29]

ELEFTERIADOU, L. An introduction to traffic flow theory. Springer,
2014.

GRoOss1, D., ALDEWERELD, H., AND DiGNUM, F. Ubi lex, ibi poena:
Designing norm enforcement in e-institutions. In Coordination, orga-

nizations, institutions, and norms in agent systems II. Springer, 2007,
pp. 101-114.

Guizzo, E. How google’s self-driving car works. IFEE Spectrum On-
line, October 18 (2011).

JONES, A. J., AND SERGOT, M. On the characterisation of law and
computer systems: The normative systems perspective. Deontic logic
in computer science: normative system specification (1993), 275-307.

KraJzEWICZ, D., ERDMANN, J., BEHRISCH, M., AND BIEKER, L.
Recent development and applications of SUMO - Simulation of Urban
MObility. International Journal On Advances in Systems and Measure-
ments 5, 3&4 (December 2012), 128-138.

KrajzEwicz, D., ERDMANN, J., BEHRISCH, M., AND BIEKER, L.
Recent development and applications of sumo—simulation of urban mo-

bility. International Journal On Advances in Systems and Measure-
ments 5, 3&4 (2012).

KrAuss, S., WAGNER, P., AND GAWRON, C. Metastable states in a
microscopic model of traffic flow. Physical Review E 55, 5 (1997), 5597.

MENEGUZZI, F., AND Luck, M. Norm-based behaviour modification
in bdi agents. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1 (2009), Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
pp. 177-184.

MEYER, J.-J., AND WIERINGA, R. J. Deontic logic: A concise
overview.

MEYER, J.-J. C. Reasoning about emotional agents. International
journal of intelligent systems 21, 6 (2006), 601-619.

NiLssoN, N. J. Principles of artificial intelligence. Morgan Kaufmann,
2014.

63

[30]

[31]

32]

33]

[40]

[41]

PRAKKEN, H., AND SERGOT, M. Contrary-to-duty obligations. Studia
Logica 57,1 (1996), 91-115.

Rao, A. S., AND GEORGEFF, M. P. Modeling rational agents within
a bdi-architecture. KR 91 (1991), 473-484.

SEARLE, J. R. The construction of social reality. Simon and Schuster,
1995.

SMITH, R. The contract net protocol: Highlevel communication and
control in a distributed problem solver, 1980. IEEFE Trans. on Comput-
ers, C' 29, 12.

TESTERINK, B., DASTANI, M., AND MEYER, J.-J. Norm monitoring

through observation sharing. In Proceedings of the Furopean Conference
on Social Intelligence (2014), pp. 291-304.

TESTERINK, B., DAsTANI, M., AND MEYER, J.-J. Norms in dis-

tributed organizations. In Coordination, Organizations, Institutions,
and Norms in Agent Systems IX. Springer, 2014, pp. 120-135.

TINNEMEIER, N. Organizing agent organizations: syntax and oper-
ational semantics of an organization-oriented programming language.
SIKS Dissertation Series 2011, 02 (2011).

TINNEMEIER, N. A., DASTANI, M., AND MEYER, J.-J. C. Orwell’s
nightmare for agents, programming multi-agent organisations. In Pro-
gramming Multi-Agent Systems. Springer, 2009, pp. 56-71.

VoN WRIGHT, G. H. Deontic logic. Mind (1951), 1-15.

WANG, Z., KuLIK, L., AND RAMAMOHANARAO, K. Proactive traffic
merging strategies for sensor-enabled cars. In Proceedings of the fourth
ACM international workshop on Vehicular ad hoc networks (2007),
ACM, pp. 39-48.

WOOLDRIDGE, M. An introduction to multiagent systems. John Wiley
& Somns, 2009.

WOOLDRIDGE, M., AND JENNINGS, N. R. Intelligent agents: Theory
and practice. The knowledge engineering review 10, 02 (1995), 115-152.

64

Appendix: User Guide

Our framework is open source and available online on Github at
https://github.com/baumfalk /TrafficMAS. It can be compiled from source,
or it can be downloaded as a binary version.

About our framework

When implementing the framework we used the test-driven development
methodology. ([7]). With test-driven development, one first writes the code
that tests the implementation before the implementation is made. If the test
passes, the implementation is assumed to be correct. Unit tests are used to
quickly detect regressions after adding new features to the code base. If a
regression occurred some unit tests that previously passed would now fail,
notifying the developers of a bug in the code.

We used Github as the storage and version management software of our
implementation. There are several reasons for this choice. First of all, it al-
lows for easy sharing of our work with the rest of the world. The repositories
are open source by default, thus everyone can download, run and modify our
implementation. Second of all, Github has a state of the art issue, milestone
and release system. This system allowed us to focus our development efforts
and keep track of our progress. Finally, Github allows for other services to
connect with it. We used this to couple a continuous integration service,
Travis, to our repository. A continuous integration service is used to con-
tinually combine the new code with the existing code base and report errors
early on in the process. Every time some code was uploaded to Github,
the Travis service ran our entire test suite of unit tests and reported if the
integration went well or if some unit tests failed.

65

https://github.com/baumfalk/TrafficMAS

How to run it

Our framework can be run as follows. Assuming you use the binary JAR
file, a scenario can be run with the following command:

java -jar TrafficMAS.jar ./scen/ scenario.mas.xml path/to/sumo
scenario.sumocfg [seed].

In this command scen is the directory the scenario is located in, scenario.mas.xml
is the main configuration file for the scenario and path/to/sumo denotes the
sumo executable to use. The sumo-gui program can also be used. The pa-
rameter scenario.sumocfg denotes the sumo configuration file used by the
scenario. Finally, the parameter seed is used to prepare the random number
generator, which is used to spawn vehicles in a probabilistic fashion. If no
seed is provided, a random one is generated by the system.

Seeing the framework in action
To see the framework in action with a simple merge scenario, follow these

steps:

1. Download and install the latest version of SUMO from www.sumo-
sim.org. At the time of writing, the latest version is 0.23.

2. Download the zip file SimpleExample.zip from
www.github.com/baumfalk /TrafficMAS /releases/tag/SimpleExample

3. Unzip the file and run the following command in the folder you un-
zipped it in:

java -jar TrafficMAS.jar sim/mergeExample/ comparetest.mas.xml
sumo—-gui comparetest.cfg.xml

You should see the merge scenario we described in Experiment 1 of Chap-
ter 5. On the top of the screen our norm-based framework can be seen, in
the bottom the vehicles with the default SUMO behavior are shown.

How to create your own scenario

Our framework also allows for the creation of your own scenarios. A Traf-
ficMAS scenario consists of several XML-files:

66

http://sumo-sim.org
http://sumo-sim.org
https://github.com/baumfalk/TrafficMAS/releases/tag/SimpleExample

a global configuration file, containing the paths to the other xml files,
as well as the simulation duration.

e a configuration file specifying which norms are used. In this file the
norms are also parameterized with scenario specific information, such
as road names.

e a configuration file which describes the norm based traffic controllers.
The file is used to define which controllers there are, which sensors they
have access to and to which other controllers they are subscribed.

e a configuration file containing the vehicle profile distributions. This
file contains the distributions of the various driver profiles and the
traffic density of the different roads.

e various sumo xml files: the xml file containing the nodes, the edges,
the sensors and the routes.

Example scenarios and their corresponding XML-files can be found on
the Github page, under the sim directory.

67

	Introduction
	Methodology
	Research Questions
	Overview

	Background and Related Work
	Agent Systems
	Agents
	Norms
	Norm-based controllers

	Simulation
	Related Work
	Chapter Summary

	A Multi-Agent Model for Traffic
	Environment
	Norms and Controllers
	Example Norm

	Agents
	Profile
	Actions
	Directive distance measure
	Action Selection
	Deliberation Example

	Chapter Summary

	Implementation
	SUMO
	Global control structure
	Framework Structure
	Flow of control
	Road Network
	Norms
	Norm-based controllers
	Agents

	Chapter Summary

	Experiments
	Merge scenario
	Experiment 1: SUMO and our extension
	Experiment 2: Simple norms and Advanced norms
	Experiment 3: Violating norms
	Experiment 4: Observation sharing between controllers
	Chapter Summary

	Conclusions & Future Research
	Answering the research questions
	Discussion
	Future research

	Bibliography
	Appendix: User Guide

