
Department of Computing Science

MSc Thesis, ICA-3682536

Better Feedback for Incorrect Programs
by Using Contracts

Author:
Jacco Krijnen

Supervisor:
Prof. dr. J.T. Jeuring

August 21th 2016

Abstract

Ask-Elle is a programming tutor that aims to help students learn the Haskell programming lan-
guage. It does this by providing programming exercises and assisting the student during the
process. The tutor can automatically provide hints to a solution when the student gets stuck or
give counterexamples for incorrect submissions. It is these incorrect programs that we are inter-
ested in. The goal of this thesis is to improve the detail of feedback by automatically monitoring
contracts on parts of the program. When running it with the counter example, the tutor should
be able to explain more clearly what the mistake might be. We analyze a previous approach that
mixes type inference with contracts and find that this is not always correct. We then formalize
the problem statement and define a criterion for sound ways of monitoring an incorrect program.
Finally, we have implemented the system in Haskell.

1

Preface

My passion for functional programming originated in 2012, several months after finishing the
introductory course functioneel programmeren. This first encounter with Haskell was no “love
at first sight”: I had just finished my first year with good results and had learned the skill of
programming. The year had revolved around one imperative programming language which shaped
my way of thinking. I remember the joyous feeling of having no boundaries at all as for what I
could create.

Along came the second year and Haskell hit me in the face. This was a fundamentally different
way of expressing your thoughts to the computer and felt all but intuitive. The claims about
conciseness, types and purity made no sense to me, I already knew how to program. And why
did we have to work with a plain text editor after having spent months in a highly sophisticated
IDE? I think my affinity with logic and formalisms kept me somewhat interested.

After finishing the course I quickly went back to the imperative world and forgot about Haskell.
As part of an extracurricular activity a few months later, I found myself working on an assignment
about interleaving parsers with Doaitse Swierstra. It was then that I started to appreciate the
expressivity of Haskell. I was invited to assist at the summerschool for functional programming
and this is when my interest quickly started growing.

I noticed that there were many other students that had a similar first experience with functional
programming and just gave up. Although the structure of the curriculum might have been partly
to blame, there remains the fact that Haskell tooling is very minimalistic when compared to IDE’s
like Visual Studio for C# or IntelliJ for Java. The simple explanation is that these languages are
maintained by multibillion-dollar companies backing its ecosystem and tooling. Haskell on the
other hand has its roots in the much smaller academic world of programming language design. In
recent years the language is also extending towards the world of software industry. Subsequently
several initiatives 1 have as their goal to improve the tooling and ecosystem as well as offering
consultancy for companies using or wanting to use Haskell.

This thesis is an attempt to contribute to a better learning experience for beginner Haskell
programmers by using automated tooling.

I would like to thank my supervisor Johan Jeuring for the time he took in helping me realise
this thesis. Without the countless meetings, discussions at the whiteboard, feedback and pointers
to literature I would have never managed to come to this result. Furthermore I want to thank
Wouter Swierstra, Jurriaan Hage and Ruud Koot for some insightful conversations. Finally, I’d
like to thank my parents who were always willing to listen to me when I was stuck, even though
most problems were of a technical nature that went far over their heads.

1FP Complete, Industrial Haskell Group, Well-Typed among others

2

Contents

1 Introduction 4
1.1 Ask-Elle . 4
1.2 Contracts . 5

2 Syntax and semantics 7
2.1 The language λ+ . 7
2.2 The language of contracts . 7
2.3 Operational semantics of λ+ . 9
2.4 Reasoning about monitoring . 12

3 Contract Inference 15
3.1 The Hindley-Milner type system . 16
3.2 User defined contracts or refinements . 16
3.3 Correctness properties for an inference algorithm 20
3.4 Refinement contracts and strengthening . 21
3.5 Type variables and contracts . 21
3.6 Summary . 23

4 Contract Propagation and Folds 24
4.1 Folds . 24
4.2 Preserving properties . 24

4.2.1 An annotator for foldr . 26
4.3 Dependent contracts . 28
4.4 On the definition of a consistent annotator . 28
4.5 Propagation in other calls to foldr . 29
4.6 Generalizing the annotator . 29

5 Related work and future research 31
5.1 Liquid types . 31
5.2 Contracts and laziness . 31
5.3 Mechanizing the formalization . 32
5.4 Improving location information . 32
5.5 Taking contract propagating further . 33
5.6 Debuggers . 33

6 Conclusion 34

A Consistency of dependent contract annotator 35

B Implementation details 37

3

Chapter 1

Introduction

Suppose you were asked to write a function that sorts a list of integers. How many correct solutions
could you come up with? One could first choose between different sorting strategies, for example
mergesort or quicksort. But when writing actual code, it is possible to come up with infinitely
many programs that differ syntactically but are all behaviorally equivalent and all sort a list of
integers.

Equally, there are infinitely many incorrect solutions to the sorting problem. It is those pro-
grams which do not implement their specification that we are interested in. We want to explore
what techniques can be used to automatically give feedback on mistakes in such code.

In this thesis, we describe an approach for generating better feedback by using contracts. To
understand the title, we describe the two main ingredients: Ask-Elle and contracts.

1.1 Ask-Elle

Ask-Elle [15] is a programming tutor targeting bachelor students starting to learn the Haskell
programming language. It is a web-based application developed by Johan Jeuring, Alex Gerdes
and Bastiaan Heeren. The term “tutor” comes from several features it has:

Incremental programming The student can submit programs that are not finished by writing
the ? symbol for subexpressions or patterns that are yet to be implemented.

Feedback on whether the student is on the right track The tutor tracks whether the stu-
dent is on the right path by comparing the current solution with several model solutions.

Hints on how to continue when the student is stuck By having these model solutions, the
tutor can explain what steps to take to go in the right direction from a partial program.

Show counterexamples When the tutor cannot match the submitted program, it tests the
specification by using quickcheck. When a counter example is found it is presented to the
student

Currently, the feedback for incorrect programs is very minimal and the student is left on his
own to decide what the actual mistake is. When faced with a program that does not meet its
specification, we can try to generate answers to different questions. For example

• In what cases does the program behave incorrectly?

• Why, in terms of the specification, is the program incorrect?

• Where in the source code is a mistake?

4

Figure 1.1: The Ask-Elle tutor

Naturally, a static type system detects many incorrect programs by checking the types of a
program. For example, a program that squares its integer input is of types Int → Int, whereas
any sorting function should have the type [Int]→ [Int]. Such type errors are caught at compile-
time and are of course utilized by Ask-Elle. It answers the first and third question for some cases.
This technique cannot distinguish between programs with the same type, however. Quickcheck
can provide us with counterexamples for an invalid solution, answering “what cases” in a more
detailed way than a type system. We believe that by expressing the exercise specification as a
contract we can also show more precisely where and more importantly why a program is incorrect.

1.2 Contracts

A Contract specifies conditions and obligations for a function, similar to a contract in the real
world. For example, a contract might specify that a function requires an even integer and will
return a prime number greater than the provided integer. Contracts can be violated when a
function receives an incorrect value or produces an incorrect value. A violation will usually raise
an exception, giving an indication which function is to blame.

This mechanism is the basis for the design-by-contract [20], which was made popular by the
Eiffel language in the 1980’s [19].

Haskell also has contracts, for example the typed-contracts aproach [13] defines them as
follows:

data Contract a where

Prop :: (a -> Bool) -> Contract a

Function :: Contract a -> (a -> Contract b) -> Contract (a -> b)

List :: Contract a -> (Contract [a])

...

5

This defines several contructors. The first, Prop, takes a predicate to denote a simple property
of a value. The Function constructor takes a contract for the argument value and a contract for
the result value (which may depend on the argument) and produces a contract for function types.
Furthermore, the library contains useful constructs for other datatypes and typeclasses such as
lists, pairs and functors.

One can now write contracts such as

evenInPrimeOut :: Contract (Int -> Int)

evenInPrimeOut =

Function (Prop (\x -> even x))

(\x -> (Prop (\y -> isPrime y && y > x)))

Which describes a function that takes an even integer and returns a prime number that is
greater than the provided even integer. The contract can be monitored1 on any function of the
type.

f :: Int -> Int

f = monitor evenInPrimeOut $ \x -> x*x + 1

That is, monitor has type Contract a → a → a and crashes with an exception whenever the
contract is violated.

1we write monitor to be consistent with the rest of this thesis, the actual library function is called assert

6

Chapter 2

Syntax and semantics

In this chapter we will introduce λ+, the programming language that will be used for the rest of
the thesis. It is based on the lambda calculus, extended with some useful constructs such basic
datatypes, pattern matching and contract monitoring. We give a big-step call-by-value semantics
in the style of [22] that we use to define semantic equality of terms and prove a useful lemma
for Chapter 4. Furthermore, we describe the language of contracts and discuss the semantics of
contract monitoring.

2.1 The language λ+

Figure 2.1 shows the syntax of λ+. It includes the usual constructs of variables, function appli-
cation and lambda abstraction and a let-binding. Furthermore, we have boolean and numeric
literals, list constructors, common operators and pattern matching. We make a distinction be-
tween terms and annotated terms. The reason for this is that the monitor construct is not meant
to be available to the programmer, but is only inserted for contract checking purposes. We use]
to indicate an extension to an existing grammar. We will discuss the language of contracts τ in
the next section. For convenience we might write t to range over annotated terms as well when
the context is clear.

We will use the syntactical operation forget : t+ → t which recursively removes all monitor
annotations from an annotated term, i.e. forget(monitor c t) = forget(t), and for all other
terms recursively removes annotations in subterms. Furthermore, we write substitution as t[t′/x]
which recursively replaces all free occurrences of x by t′ (it also replaces variables in terms that
occur as part of a contract). We consider a top-level definition like f = t to be syntactic sugar for
let f = t in f .

We think that this language is a suitable mid-point between the pure lambda calculus and full
Haskell: the extra constructs allow us to write some realistic programs that can occur in Ask-Elle,
while keeping the language small enough to make the reasoning not too cumbersome.

2.2 The language of contracts

We present a language of contracts that is very similar to the types in a Hindlley-Milner setting,
as opposed to the usual EDSL notation in Haskell. The reason to do so is to have a convenient
notation when we will discuss type inference algorithms in Chapter 3. Although it is common
practice in Haskell to define contracts as an EDSL [13], we can see that any such contract can also
be described using this language, as predicates over basetypes appear as refinements and all the
types of the typed contracts become explicit as τbase in the refined basetype.

Figure 2.2 shows the syntax of contracts. The third production of τ shows that any basetype is
decorated with a refinement (a predicate) that limits the set of values indicated by that basetype.
For example {x : Int | x>=0} indicates the type of natural numbers. These kind of types are often

7

Basic Term

t ::= x variable

| λx.t lambda abstraction

| t t application

| let x = t in t let binding

| t⊕ t ⊕ ∈ {+, -, *, &&, ||, ==, <, >}, binary operator

| case t of

p1 → t1

. . .

pn → tn case distinction

| n n ∈ Z, numeric literal

| True | False Boolean literal

| t:t | [] list constructors

Annotated Term

t+ = t]
|monitor τ t contract monitoring

Pattern

p ::= x variable

| [] empty list

| p : p non-empty list

Figure 2.1: The syntax of λ+

referred to as refinement types. Instead of {x : τ | True}, we might write x : τ , or just τ , depending
on whether we want to bind x or not. Similarly, we might write {τ | ρ} if we do not want to name
the value. Finally we write > for {x : τ | True} when the type τ is clear from the context.

Similarly to [24] we use the notation Γ ` σ in Figure 2.3 to indicate that contract schema σ is
well-formed in an enviroment Γ that binds variables to types. A well-formed contract should only
have refinements that are correctly typed ([Refined-basetype]). Note that this premise is an actual
type judgement from our implicit type system for λ+. Furthermore variables bound in refined base-
types should be correctly scoped for dependent contracts ([Refined-basetype], [Function-Base]).
In the case of a higher order function ([Function-HO]), the domain is not named and therefore the
environment Γ is not extended.

Well-formed contract schemes allow for so-called dependent contracts that can state relations
between input and output. For example, {x : Int | x >= 0} → {y : Int | y > x} describes a
function that expects a natural number and returns an integer that is larger than the provided
integer.

8

Contract

τ ::= a, b, c type variable

| τ → τ function

| {x : τbase | ρ} refined basetype

Base type

τbase ::= Bool | Int | . . .
Refinement

ρ ::= α, β, γ Refinement variable

| t term

Contract scheme

σ ::= ∀a.σ Polymorphic binding

| τ monomorphic type

Figure 2.2: The syntax of contracts

2.3 Operational semantics of λ+

In Figure 2.4 we define a big step call-by-value operational semantics for closed annotated terms.
The big-step semantics are based on those of a call-by value lambda calculus. The judgements

come in the form t ⇓m v, which we read this as “Term t evaluates to value v with monitoring
result m”. First we define the subset of terms that constitute values. A monitoring result is either
no violation X or a violation with a specific message s. The operator / is a left biased choice,
used to collect violation results. Note that we only define evaluation for closed terms by means
of substitution, thus not requiring a rule for variables. Furthermore, we omit the semantics of the
binary operators, as these follow their usual primitive implementation.

The [Value] rule states that any term t that is a value evaluates to itself with no violations. The
[App] rule has the usual evaluation semantics with β -substitution with violation result m1/m2/m3

(we will elaborate on this violation part of the semantics in the next subsection). Note that
subtitution is also performed in the refinement terms of contracts, for example in rule [Mon-2] and
[Mon-3]. This ensures that refinements of dependent contracts can use the actual arguments for
their free variables. The [Letrec] rule allows recursive function bindings (other types of values will
diverge). The [Case-*] rules describe pattern matching that, similar to [App], “binds” the variables
by substitution. Finally, the [Mon-*] rules describe the process of contract monitoring. [Mon-1]
and [Mon-2] evaluate the refinement (which on itself cannot cause violation, hence the X). The
[Mon-3] rule describes the case of a refinement variable, in which case no checks are performed as
such contracts indicate unconstrained types. The most interesting rule [Mon-4] gives the semantics
for monitoring a dependent function contract. Such an expression evaluates to another function,
which will monitor its domain with contract τ1 in the case and monitor the result t′ with contract
τ2. Note that a refinement in τ2 may mention the variable x, which is therefore bound on the term
level as x as well.

Note that the ⇓ relation on t+× (m× v) is a partial function (modulo alpha conversion). This
follows from the fact that the rules are syntax-directed: for every term at most one rule applies.

9

Well-formed contract scheme Γ ` σ

Γ ` t : Bool fv(t) ⊆ vars(Γ)
[Refined-basetype]

Γ ` {x : τbase | t}

[Refinement-variable]
Γ ` {x : τbase | α}

Γ ` τ Γ, x : τbase ` τ ′ τ = {x : τbase | ρ}
[Function-Base]

Γ ` τ → τ ′

Γ ` τ Γ ` τ ′ τ 6= {x : τbase | ρ}
[Function-HO]

Γ ` τ → τ ′

Γ ` σ [Contract-schema]
Γ ` ∀a.σ

Figure 2.3: Well-formed contract schemes

Monitoring results and exception semantics

In practice, most contract library implementations [6,13] implement contract violations in the form
of exceptions. That is, the program halts as soon as the contract is found out to be violated. Since
usual exception semantics are quite cumbersome to formalize with big-step semantics (resulting
in a “duplication problem” [3]) we choose a different approach to keep the semantics as simple
as possible: a contract violation will not halt execution. Rather, the program silently collects
violations and combines them using the / operator. This operator is left-biased, so the argument
order matters. In general, the order of arguments for / in the rules of figure 2.4 follows the order
of evaluation, effectively collecting the first violation encountered by evaluation. For example, in
[Case-1] the message resulting from t has priority over the message from t1. By choosing violation
messages in this way, we obtain the same message that an exception mechanism would give us.
The [App] and [Cons] rules are the only rules that do not specify the order of evaluation of their
subterms, as is common for big-step semantics. We therefore arbitrarily choose the first term to
have precedence.

Incorporating a complete exception semantics would also be unnecessary as we do not need
a catching mechanism (contract violations are not observable for the programmer). Another
difference with this approach is that for diverging programs, we cannot obtain a contract violation,
whereas exception semantics might have stopped the program execution when the violation was
raised. We argue that for our purposes this is no problem: Ask-Elle only specifies terminating
functions. In case a student accidentally produces a non-terminating program, Ask-Elle will give
a time-out message.

An advantage of this approach is that by introducing a different collecting semantics we could
technically collect all contract violations, just like a compiler collects multiple type-errors. How-
ever, for the scope of the Ask-Elle tutor, it is not necessary to present the student with multiple
messages. Furthermore, some messages might not make sense since they are consequences of other
violations, for example a postcondition that relies on a precondition. In compiler error messages
there is not always a clear error that comes first and presenting the errors in the right order is
non-trivial [11].

10

Value v

n ∈ Z,m ∈ String

λx . t, n, True, False, [] are values

t1 and t2 are values

t1 : t2 is a value

Monitoring result m

m ::= X no violation

| s s ∈ String, contract violation

m1 / m2 =

{
m1 if m1 = s
m2 otherwise

Strict evaluation t ⇓m v

t is a value [Value]
t ⇓X t

t1 ⇓m1
v1 t2 ⇓m2

v2
[Cons]

t1 : t2 ⇓m1/m2 v1 : v2

t1 ⇓m1 λx . t t2 ⇓m2 v1 t[v1/x] ⇓m3 v2 [App]
t1t2 ⇓m1/m2/m3

v2

t1[let x = t1 in x/x] ⇓m1 v1 t2[v1/x] ⇓m2 v2 [Letrec]
let x = t1 in t2 ⇓m1/m2

v2

t ⇓m1
v1 p unifies with v1 by substitutions θ θt1 ⇓m2

v2
[Case-1]

case t of {p→ t1; ps} ⇓m1/m2
v2

t ⇓m1 v1 p, v1 do not unify case v1 of ps ⇓m2 v2 [Case-2]
case t of {p→ t1; ps} ⇓m1/m2

v2

t2 ⇓m v t1[v/x] ⇓X True
[Mon-1]

monitor {x : | t1} t2 ⇓m v

t2 ⇓m2
v t1[v/x] ⇓X False s is the violation message

[Mon-2]
monitor {x : | t1} t2 ⇓ s v

t ⇓m v
[Mon-3]

monitor {x : | α} t ⇓m v

t ⇓m λx.t′
[Mon-4]

monitor ((x : τ1)→ τ2) t ⇓m λx.case (monitor τ1 x) of x→monitor τ2 t
′)

Figure 2.4: Big step call-by-value evaluation of λ+

11

The violation message

For violations to have some actual use to the programmer, we need an accompanying message.
The [Mon-2] rule has the rather abstract premise: “s is the violation message”. This is on purpose
to keep the semantics as simple as possible. Furthermore, there are different ways to produce a
useful message. In any case, the message should depend on the contract being monitored. For
example by giving well-formed contracts a bit more structure: Γ ` {x : τbase | t | s} where s is
a String-like expression that can contain free variables such that vf(s) ⊆ vars(Γ). Lauwers [16]
goes even further by taking the syntax tree and line/columnn information into account when
generating these messages. Yet another way is by relying on the operational semantics to provide
useful location information such as a stack trace [1].

Call-by-value

We chose a strict semantics for our language to simplify the operational semantics and the rea-
soning involved in the next chapters. Although Ask-Elle obviously runs Haskell, we justify this
simplification for now by the fact that the nature of the exercises is to introduce functional pro-
gramming, and not so much lazy semantics. We will go into more depth on the required changes
for lazy semantics in chapter 5 on future research.

2.4 Reasoning about monitoring

For the rest of this thesis, we will use the following notation:

1. t means that t ⇓ s v for some violation message s and value v. We say that t raises a
violation

2. tX means t ⇓X v for some value v. We say that t is violation free

In chapter 4, we will prove some properties of certain program transformations. In the rest of
this section we define semantic equality in terms of the operational semantics and prove a simple
Lemma that we will use later on.

Definition 2.4.1. Values v and v′ are semantically equal, written v ≡ v′, when either

• v = v′ (syntactic equality modulo alpha conversion)

• or v = v1 : v2 and v′ = v3 : v4 and v1 ≡ v3 and v2 ≡ v4

• or v = λx.t1 and v′ = λy.t2 and ∀t. t1[t/x] ≡ t2[t/y] (extensional equality)

Definition 2.4.2. Terms t and t′ are semantically equal, written t ≡ t′ if

t ⇓m v ∧ t′ ⇓m v′ ⇒ v ≡ v′

Note that the above definitions are mutually recursive: in the case that we consider value
equality on lambda’s we need term equality and for terms we evaluate and require again value
equality. The definitions are not cyclic however, one can see this by considering the type of a
lambda value: τ1 → τ2, of which τ2 indicates the type of the body. Although τ2 can be a term
that evaluates to another lamda, types are finite meaning that eventually the body of a lambda
will evaluate to a value that is not a lambda. So in all cases we have a “finite” amount of mutual
recursion between the two definitions.

As an example of semantic equivalence, consider 2 + 2 ⇓X 4. By the [Value] rule, we have
4 ⇓X 4 and thus 2 + 2 ≡ 4. This principle can be generalized to all judgements: t ⇓X v implies
t ≡ v. In proofs we will refer to these kind of equivalences as Eval-[Rulename].

From many of the rules we can also obtain some other useful equivalences. For example, if we
have t1 t2 ⇓X v then we know, because the rules are syntax-directed, that there exists a t such

12

that t1 ≡ λx. t and v1 such that t2 ≡ v1 and t1 t2 ≡ t[v1/x]. We will refer to such equivalences as
[Rulename].

We now lay out some groundwork for proving in equational reasoning style. First, we observe
that ≡ forms an equivalence relation on values and on terms, so we can write proofs in the form
t1 ≡ · · · ≡ tn. Furthermore note that equality on the syntactic level (x = y) implies semantic
equality (x ≡ y), we will explicitly write = for reasoning at the meta-level during equational
reasoning proofs.

Lemma 2.4.1. (Substitution lemma) ∀t, t′, v, x. t ⇓m v ⇒ t′[t/x] ≡ t′[v/x]

Proof By induction over t′. In the case that t′ = x, we directly see that x[t/x] ≡ t ≡
v ≡ x[v/x]. In case t′ = y (y being a variable) and x 6= y it is equally simple to see. In all
other language constructs we can use the induction principle to assume equivalent subterms that
therefore evaluate to equivalent values.

Lemma 2.4.2. (General substitution lemma) ∀t1, t2, t3, x. t1 ≡ t2 ⇒ t3[t1/x] ≡ t3[t2/x]

Proof We first prove for the case that t1 and t2 are values, i.e. v1 = t1, v2 = t2

• If v1 = v2, then t3[v1/x] = t3[v2/x] and semantic equivalence follows directly.

• If v1 = v11 : v12 and v2 = v21 : v22 then by definition we have v11 ≡ v21 ∧ v12 ≡ v22, and
inductively t1[y : z/x][v11/y][v12/z] ≡ t1[y : z/x][v21/y][v22/z]

• If v1 = λx.t and v2 = λx.t′, observe that in both derivation trees of t3[v1/x] and t3[v2/x] the
only rule that will evaluate t and t′ is [App]. The third premise of that rule asserts t[v1/x]
and t′[v1/x] respectively. By the definition of semantic equivalence on functions, these are
so too.

In the case that t1 and t2 are not values, note that there exist values v1 ≡ v2 such that
t1 ⇓m v1 ∧ t2 ⇓m v2, by definition of equivalence on terms. We can then invoke the substitution
lemma to prove:

t3[t1/x]

{substitution lemma} ≡ t3[v1/x]

{above reasoning} ≡ t3[v2/x]

{substitution lemma} ≡ t3[t2/x]

The following lemma is very useful for equational reasoning, we will use it for terms with
free variables, which are implicitly defined. For example, it is common to reason about a term t
containing foldr as if it was let foldr = . . . in t

Lemma 2.4.3. (Replacing a variable by its definition) (let x = t1 in t2) ≡ (let x = t1 in t2[t1/x])

Proof By the [Letrec] rule there exists a value v1 such that t1[let x = t1 in x/x] ≡ v1 and
let x = t1 in t2 ≡ t2[v1/x].

let x = t1 in t2

{[Letrec]} ≡ t2[v1/x]

{[Letrec]} ≡ t2[t1[let x = t1 in x/x]/x]

{a[b[c/x]/x] = a[b/x][c/x]} = t2[t1/x][let x = t1 in x/x]

{[Letrec]} ≡ let x = t1 in t2[t1/x]

We now prove two properties specific to contract monitoring.

13

Lemma 2.4.4. (monitor (> → ϕ) t1) t2 ≡monitor ϕ (t1 t2)

Proof By [Mon-4], there exist x, t′ such that t1 ≡ λx. t′

(monitor (> → ϕ) t1) t2

{gen. subst.} ≡ (monitor (> → ϕ) (λx. t′)) t2

{Eval-[Mon-4]} ≡ (λx.case (monitor > x) of x→monitor ϕ t′) t2

{Eval-[Mon-1] & gen. subst} ≡ (λx.case x of x→monitor ϕ t′) t2

{[Case-1]} ≡ (λx.monitor ϕ t′[x/x]) t2

= (λx.monitor ϕ t′) t2

{[App]} ≡ monitor ϕ t′[t2/x]

{[App]} ≡ monitor ϕ ((λx.t′) t2)

{gen. subst} ≡ monitor ϕ (t1 t2)

Lemma 2.4.5. ∀t. tX⇒ t ≡ forget(t)

Proof By induction on t. Assume t ⇓X v and forget(t) ⇓m v′. We present only a few cases
to show the essence of the proof:

• t = monitor c t1

By assumption we have a derivation for monitor c t1 ⇓X v ending in one of the [Mon-*]
rules which always includes a premise that evaluates t1:

· · · t1 ⇓X v · · ·
[Mon-*]

monitor c t1 ⇓X v

By applying the induction hypothesis on t1, we get forget(t1) ⇓X v. By the definition of for-
get we have that forget(t1) = forget(monitor c t1) and thus forget(monitor c t1) ⇓X v.
By assumption, we have that forget(monitor c t1) ⇓m v′ and since ⇓ is a partial function,
we have m = X and v = v′ (so v ≡ v′).

• t = t1 t2

Consider forget(t) = forget(t1 t2) = forget(t1) forget(t2). By assumption we have two
derivations ending in the [App] rule:

t1 ⇓m1
λx. t3 t2 ⇓m2

v1 t3[v1/x] ⇓m3
v2

[App]
t1 t2 ⇓X v2

forget(t1) ⇓m′
1
λx′. t′3 forget(t2) ⇓m′

2
v′1 t′3[v′1/x] ⇓m′

3
v′2

[App]
forget(t1) forget(t2) ⇓m′

1/m
′
2/m

′
3
v′2

First note that any term that evaluates to a value and contains no monitor construct will
always be violation free: with a simple inductive argument over the rules without [Mon-*]
we see that s is never introduced, only [Value] introduces a X, and any of the other rules
combine using X / X = X. So we have that m′1 = m′2 = m′3 = X. By the definition of /
we find that m1 = m2 = m3 = X, then by applying the induction hypothesis on t1 with
the first premise of both [App] derivations, we have that λx. t3 ≡ λx′. t′3. Similarly with
induction on t2 we have that v1 ≡ v′1. Subsequently, we have t3[v1/x] ≡ t′3[v′1/x], so by the
third premises of both derivations, we have v2 ≡ v′2.

14

Chapter 3

Contract Inference

In this chapter we investigate some earlier work on propagating contracts by adapting a type
inference algorithm. We formalize the problem statement and show that such an approach is not
correct.

Suppose we have a function definition that does not implement its specification-contract, and
we have proof for this in the form of a valid input that causes an invalid output. We will call this
situation the incorrect implementation scenario. How could we localize the programming mistake
in the definition of this function? A natural idea would be to manually annotate parts of the
function’s definition with some more contracts and see which parts break and which don’t when
run with the problematic input. Not only can we narrow down the location of the problem, but
by using contracts we write down the intent or specification so we can get a clue why the program
is incorrect. Since contracts look very similar to types as we know them from the Hindley-
Milner types, could we piggyback on the well-known algorithm W to free the programmer from
this annotation burden? Of course, such an algorithm would be of great help in the Ask-Elle
programming tutor to provide feedback for students.

Previous effort has been made on this specific idea, in their master theses [25] [16] , Stutterheim
and Lauwers introduced a type-system based on Hindley-Milner and presented an accompanying
inference algorithm. The basic idea is derived from an example of insertion sort:

isort xs =

let insert = \x ys . case ys of

[] -> [x]

(y:ys) -> if x < y

then x:y:ys

else insert x ys

in foldr insert [] xs

The programming mistake being that in the else branch, the value y is forgotten to be added to
the list. The Haskell type of foldr that we are used to is (a → b → b) → b → [a] → b. Now
if we know that the specification contract of isort is [Int] → {r : [Int] | nonDescending r},
we could instantiate b with {ys : [Int] | nonDescending} and thus derive that insert has type
Int→ {[Int] | nonDescending} → {[Int] | nonDescending}. This contract can then be monitored
on uses of insert, and we get a more precise idea of where the mistake in the program is.

But their work is not yet finished. For example, dependent contracts are not supported, while
these are necessary to describe specifications that relate input to output, like xs : [a] → {ys :
[a] | reverse ys == xs}. There are also some issues remaining regarding subtyping and there has
not yet been an actual integration in Ask-Elle. It seems worthwhile to continue their investigations.
Furthermore, the idea of trying to infer contracts is not new, [24] presents an algorithm for a limited
form of refinement types, using logical qualifiers called liquid types (which stands for logically
qualified types). There has also been work in the area of imperative programming languages,

15

such as [4] on inferring contracts for extracted Java methods from automated refactoring. We will
discuss this related work later in Chapter 5.

Algorithm W is directly connected to the Hindley-Milner type system, so to understand algo-
rithm W we will take a closer look at the Hindley-Milner type system. In this chapter, we will
try to extend the Hindley-Milner system as well as algorithm W in a step-by-step fashion. We
investigate what the differences between contracts and the Hindley-Milner types entail and what
difficulties arise when trying to design an inference algorithm similar to algorithm W.

3.1 The Hindley-Milner type system

The Hindley-Milner system [5] is one of the most well-known type systems for the lambda calculus.
It consists of a set of deduction rules to prove type judgements. A type judgement is of the form

Γ ` t : σ

It specifies a ternary relation between a context Γ, a lambda term t and a typescheme σ. We read
this as “In the context Γ term t has type(scheme) σ”.

Some terms can have multiple types in the same context. For example, take this derivation of
a type for the identity function Γ ` λx.x : Bool→ Bool

x : α ∈ [x : α]
[Var]

[x : α] ` x : α
[Abs]

ε ` λx.x : α→ α [Gen]
ε ` λx.x : ∀α.α→ α [Inst]
ε ` λx.x : Bool→ Bool

Note that the last two judgements are both valid typings for the identity and we could write
a similar derivation for Γ ` λx.x : Int → Int. In the Hindley-Milner system, it is guaranteed
that any typable term has a principal type: a most general type of which all other types are a
specialization [5]. In the above case, ∀a.a→ a is the principal type.

Since the deduction rules can be stated in a syntax-directed manner, it is possible to have an
algorithm that can test whether a type judgement is valid, also known as a static type-checker.

3.2 User defined contracts or refinements

In our first attempt to modify the Hindley Milner system, we will look at user defined contracts.
Any contract library in Haskell allows the programmer to express a certain predicate on a term.
For example, using the syntax of typed-contracts [13], we can write:

let pos = Prop (\x -> x > 0)

eq1 = Prop (\x -> x == 1)

in Function pos (_ -> eq1)

This defines a contract for a function that accepts a positive integer and returns an integer that
equals 1. The Prop constructor has type (a → Bool) → Contract a, giving the programmer the
possibility to write down a predicate for a value. The Function constructor has type Contract a→
(a→ Contract b)→ Contract (a→ b).

To fit this in the Hindley Milner system, we extend the grammar of types:

τ ::= τ → τ | α | {x : τbase | t}
τbase ::= Bool | Int | . . .

16

Any base type is now refined by a predicate term t. Such types are often called refinement
types in literature [8] so we will call them the same. We will now summarise the consequences of
this extension for the type system, inference algorithm, unification algorithm and correctness of
inference.

Consequences for the Hindley-Milner type system

In what ways does this affect the type system, and more importantly, algorithm W? For the type
system, it means we want to allow proofs for judgements like ε ` 5 : {x : Int | x <= 10}. In this
particular example we could just prove it by falling back on a semantics of our language:

5 <= 10 ⇓X True

ε ` 5 : {x : Int | x <= 10}

Effectively “typechecking by evaluation”. So typechecking this term is still possible, although
termination is not guaranteed as it requires evaluation of the refinement term under consideration.

But this idea does not extend to functions. This is where it gets more complicated, because
for a function type {x : τ1 | ϕ} → {y : τ2 | ψ} we get by the [Abs] rule that

[x : {x : τ1 | ϕ}] ` t : {y : τ2 | ψ} : τ

ε ` λx.t : {x : τ1 | ϕ} → {y : τ2 | ψ}

For closed terms we could use the evaluation semantics of the language, but in this case t is
not closed. In order to evaluate open terms, we need some sort of environment with expressions
bound to all free variables. But all we know about the free variable x is that ϕ holds. We could
formulate the problem as ∀x : τ1.ϕ ⇒ ψ ⇓X True, but since there are infinitely many values of
type Int for x, typechecking by evaluation is clearly not an option anymore.

Even worse, the seemingly small addition of refinements allows to state complex theorems:

f x = if x == 1

then 1

else if even x

then f (div x 2)

else f (3*x + 1)

f takes a number x and unless that number equals 1, it recursively continues with x
2 when x

is even or 3x + 1 when x is odd. Suppose we want to type check ε ` f : {x : Int | x>0} →
{y : Int | y==1}. This exact problem is known as the Collatz conjecture and is still an unsolved
problem in mathematics [2]. Clearly, the expressiveness of refinement types comes at the cost of
undecidability of typechecking.

Still, much work has been done on static checking of refinement types [24]. The common way to
obtain a terminating algorithm is by limiting the language that can be used for the refinements to
that of a decidable logic, and then using a automated theorem prover to solve a set of constraints
obtained by the refinement types. For example [26] use QF-EUFLIA, which is a decidable logic
of equality, uninterpreted functions and linear arithmetic. In another direction there has been
work on a hybrid approach: doing as many checks statically and deferring the rest to run-time
monitoring [10]. In our case, it is not acceptable to limit the language of refinements since we
need to express the complete specification of a programming exercises.

Consequences for correctness of inference

In the previous section, we found that refinement types come at a cost: we lose the ability to check
a type at compile time. This seems highly problematic for any inference algorithm then, since type
inference is supposed to produce valid typings. This leads us to an important realisation: it is
not our intended goal to infer valid types or contracts: in our “incorrect implementation scenario”

17

we already know that the program does not meet its specification (its type) and have a counter
example to prove it. But if we do not want to infer valid typings, we have to infer invalid typings.
But which ones exactly? We will try to give a formal criterion in section 3.3.

So while algorithmW’s soundness and completeness are defined with respect to the type system
rules, any correctness properties for the adapted inference algorithm should be defined in terms
of the semantics of contract monitoring.

Consequences for the inference algorithm

Suppose we adapt algorithmW and treat refined types just like base types are treated in Hindley-
Milner. Some questions arise that we try to discuss here. A first obvious question would be: how
would refinement types enter during the inference process? When inspecting the rules of ordinary
Hindley-Milner, we find that the primitive types like Int and Bool enter because they appear in
the rules for constants and primitive operators like +. For refinement types, we cannot do the
same, as there are many equally valid refinement types. Take for example the plus operator:

(+) :: {x : Int | True} → {y : Int | True} → {z : Int | True}
(+) :: {x : Int | x > 0} → {y : Int | y > 0} → {z : Int | z /= 1}
(+) :: {x : Int | even x} → {y : Int | odd x} → {z : Int | odd z}
. . .

One could come up with arbitrary many valid types for the + operator. Which type should be
inferred? Although in regular Hindley-Milner terms can have an arbitrary amount of types as well,
such as id, we always infer the principal type, which in a sense “captures” all other possible types:
any other type is a specialization of the principal type and the process of unification construc-
tively shows this. With refinement types, we do not have a similar concept to the principal type.
Although such a property is nice to have, it does not have to be fatal for an adapted algorithmW,
we might be able to live with just any relevant inferred type. The question that remains however,
is where those relevant refinements should come from.

In the “incorrect implementation scenario”, we of course have the top-level contract at our
disposal. It gives us refinements of the top-level argument types and a refinement for the result
type. In his thesis, Stutterheim notes that “In essence, [usage of the top-level contract by the
inference algorithm] is not very different from the way an explicit type annotation is persisted
through a program in type inference”. In the classic Hindley-Milner system, it is not difficult to
add a rule for type annotations:

Γ ` t : τ
Γ ` (t :: τ) : τ

That is, an annotated term t :: τ has type τ if we can derive that exact type for the term.
Also, for algorithm W this would translate to another case of unification:

W(Γ, t :: τ1) =

let (τ2, θ1) =W(Γ, t)

θ2 = U(τ1, τ2)

in (θ2τ2, θ2 ◦ θ1)

So there seems to be a way for refinements to enter during the inference: by means of annota-
tions. But a more important question follows: how do these types propagate through the program
and does this happen correctly? The core mechanism that handles this in algorithm W is the
unification subroutine U which we will discuss in the next subsection.

18

Another question is, can we actually infer new refinement types from existing ones. For exam-
ple, if we consider

(+) :: {x : Int | x > 0} → {y : Int | y > 0} → {z : Int | ?}

Can we infer a refinement that holds on the result type? One correct refinement is True, but
this does not tell anything new. In this case, we could do some integer specific reasoning to deduce
that {z : Int | z > 0}. Unfortunately, these kind of properties cannot be computed in general
because of Rice’s theorem. But remember, we are not trying to infer correct types per se, just
types that follow from the top-level contract.

Consequences for unification

Two types τ1 and τ2 are unifiable if there exists a substitution θ such that θτ1 = θτ2. θ is called
a unifier of τ1 and τ2. In algorithm W, Robinson’s unification algorithm [23] is used to compute
a unifier, denoted as a partial function U : τ × τ ⇀ Subst.

Now, in the presence of refinements, what should we think of

U({x : Int | even x}, {y : Int | odd (y+1)})

There exists no unifier for these types, but yet they are clearly equal! Equality of arbitrary
refinements is undecidable, so that seems problematic. And what about

U({x : Int | even x}, {y : Int | y > 10})

These types differ, and if we treat refinement types like other base types, the algorithm would
stop and give a type mismatch error. But this is not the behaviour we seek! We are fully aware
that the program under consideration might contain refinement type errors and more importantly,
it could well be the case that these types are not yet final, just like a variable can instantiated,
a refinement might get even more refined. Suppose that this specific example of unification is
caused by a function application f x. We could argue that this is evidence that the types should
be even stronger, so the “intersection” {x : Int | even x && x > 10} might be a desired outcome.
After all, the point of unification in algorithm W is to produce substitutions that find the most
“specialized” outcome. Now suppose that we have a way of recording the specialization of this
type (ordinary substitutions on variables do not suffice to state this) there are issues regarding
subtyping. Consider for instance the case where we have an application square x and we know

Γ = {x 7→ {x : Int | even x}
square 7→ {x : Int | True} → {y : Int | True}}

Then from unification of the argument type with the parameter type, we learn that x : {x :
Int | even x && True} and square : {x : Int | even x && True} → {y : Int | True}. This last
type is not valid in general, not every call to square should enforce its argument to be even. The
resulting refinement is stronger than (i.e. a subtype of) both types being unified.

But why does this problem not occur in ordinary Hindley-Milner? In the case of id 5 we unify
U(αn, Int) to specialize id to Int→ Int, but obviously not every call to id is of type Int→ Int.
It is the quantifiers of type schemes that “protect” other occurrences of id. More specifically, we
have that Γ(x) = Int and Γ(id) = ∀α.α→ α, and algorithm W instantiates this occurrence of id
with a fresh variable αn for some unique number n.

So one might argue that this idea could be extended to a type system with refinement types:
have every function application f x only compute the intersection of refinements for that specific
occurrence of f. The problem with this idea is that no more refinement types are distributed
through the program, all information is kept “local” at the application. Whereas vanilla HM
also allowed substitutions to have a “global effect”, since inference variables not only originate

19

from instantiating polymorphic types, but are also introduced at binding sites, such as a lambda
abstraction.

Stutterheim makes a different choice for unification, by not taking the intersection, but the
strongest of the two types, with the idea that if these types are to “match”, one of them should
be a subtype of the other. He approaches this by having a flattened type structure: there is
no distinction between base types, variables or refinements. Instead there are only predicates to
describe all these basic types. E.g. type variables are now represented as true, Int as isInteger
x etc. Furthermore he indexes every such predicate type1 with unique integers so that substitutions
prescribe which exact contract to substitute for another. This labeling has the effect that distinct
variables can now be represented (e.g. true0 and true1), but also to specify that specific refinements
might be even stronger (isInteger5 might be found to be isEven0). His adapted unification
algorithm then states that

U(cn, cm) = [cn 7→ cm] iff cn /∈ free(cm) ∧ JcmK ⊆ JcnK
U(cn, cm) = [cm 7→ cn] iff cm /∈ free(cn) ∧ JcnK ⊆ JcmK

Where n,m are indices for the predicate types. JcnK ⊆ JcmK denotes a subtyping relation.
One of the problems with this approach is that deciding such a subtype relation is not possible
for arbitrary contracts, and Stutterheim gives no hints on how to compute this. Furthermore, we
have that contravariant positions in a function type are not handled correctly with respect to the
subtyping relation. On a different angle, the indexing does not completely help with solving the
above problem that occurs with square x: algorithm CW finds that square : true1 → true2 and
when applied to x : even3 we get from unification that [true1 7→ even3]. Note that this is better
than not having any indices, since the substitution states only to replace true1, so it will not
affect any other truek with k 6= 1. It still causes any other application of square to incorrectly
have a stronger precondition.

Lauwers also identifies this problem, but proposes a unification algorithm that does not compare
subtyping of predicate types and fails unification completely if such types differ, meaning that the
algorithm does not produce any meaningful result when the types get interesting.

3.3 Correctness properties for an inference algorithm

There are two important properties of algorithm W:

• Soundness When W (Γ, t) = σ then Γ ` t : σ

• Completeness When t is typable in Γ (there exists a σ1 such that Γ ` t : σ1) then
W (Γ, t) = σ, where σ is the principle type of t.

Soundness ensures that W only produces correct typings, while Completeness ensures that it
can do so for every typable term (and additionally producing the principal type).

In chapter two, we have seen that contract monitoring is a run-time process, checks are per-
formed for specific program executions only. So while monitoring is generally not capable of
showing that a term satisfies its refinement type, it can show that a term does not satisfy its
refinement type, i.e. Γ 0 t : σ.

Definition 3.3.1. An annotator is a mapping A : t × σ → t+ which maps a term and top-level
contract to a term, such that forget(A(t, σ)) ≡ t.

Intuitively, an annotator can only modify the program by adding monitor constructs and
constructs that do not “change” the semantics of the original program. The trivial annotator A0

is defined as A0(x, c) = monitor c x
For annotators we use the following shorthand notation:

1Stutterheim refers to these as user-defined contracts, but in this setting we try to avoid the word contract

20

• A(t, σ)X means ∀−→x . A(t, σ)−→xX

Definition 3.3.2. An annotator A is consistent when for all terms t, top-level contracts σ

1. A0(t, σ)X⇒ A(t, σ)X

2. ∀−→x . A0(t, σ)−→x ⇒ A(t, σ)−→x

In other words, correct programs should not raise violations and violations raised by A0 are
preserved by A. The exact violations might differ though and A might give violations in cases
that A0 does not.

3.4 Refinement contracts and strengthening

In the thesis of Stutterheim [25], the algorithm CW is presented, which resembles algorithmW. It
computes a set of substitutions and a contract for the complete term. Just like algorithmW, we can
use the substitutions to obtain a contract for every subexpression. The differences include changes
to the unification algorithm to handle subtyping and addition of realistic language constructs to
the underlying lambda-calculus.

Another important change to algorithm W is to index all contracts with an integer, this
is necessary since subtyping might cause certain contracts to strengthen. E.g. when we have
to compute the following unification U(intn, natm), the produced substitution (intn 7→ natm)
without indices would affect any int in the program to be substituted for nat, which is of course
unwanted.

Suppose we are given the following program t =

\n -> let inc x = x + 1

in inc (inc n)

and a top-level contract σ = {x : Int | even x} → {y : Int | even y}. Essentially, algorithm CW
will find that inc : {x : Int | α} → {y : Int | β}. And with the knowledge that the function returns
a {x : Int | even x}, we will obtain the substitution β 7→ even x. However, when annotating the
program this causes both occurrences of inc to monitor that their output is even, which is not
the case for the inner call.

When viewed as an annotator ACW , we have that

ACW (t, σ) 0 ⇓ “0 + 1 is not even” 2 while A0(t, σ)X

Thus breaking the first part of the consistency definition. The problem is that inc can have a
different refined type at every occurrence.

3.5 Type variables and contracts

Lauwers proposes in his thesis a two-step algorithm for inferring contracts [16]. The first step uses
algorithm W to find the usual Hindley-Milner types for all bound identifiers, which are then used
as a template for so-called initial contracts. The second step consists of an algorithm somewhat
similar to algorithm W, named algorithm CHW. It produces a sequence of substitutions obtained
from unification.

The initial contracts from step 1 are constructed in the following way from a Hindley-Milner
type

1. A type variable α is directly converted to a contract variable α

2. Every occurrence of a type constructor b is converted to a unique (fresh) contract variable

21

3. Every function type τ1 → τ2 is converted to a contract c1 → c2 by recursively converting τ1
and τ2 to c1 and c2 respectively

For example, the type of map (α → β) → [α] → [β] is converted to (α → β) → γα → δβ.
Note the two different contract variables for the list occurrences. It is clear that such contracts
(or refinements) do not have to be equal per se. Take for example tail :: [a] → [a], which drops
the first element from a list. We know that refinements over the list structure (such as length) are
not preserved by this function.

Having equal contract variables is crucial for the rest of the inference process, since they provide
the mechanism for “distributing” interesting contract information over the rest of the program.
In this section, we argue that even type variables as produced by Hindley-Milner cannot always
be used as equal contract (refinement) variables.

Take for example a common Haskell function until

until :: ∀α.(α→ Bool)→ (α→ α)→ α

Suppose now that we have a trivial exercise to write a program that produces an even integer.
We use until for a rather artificial implementation:

n = until (>= 10) (+1) (-5)

For the identifier until, the following initial contract is produced: (α → β) → (α → α) → α.
Subsequently, the second step will unify U(α, even), resulting in substitutions that when applied
to until’s initial contract results in (even→ β)→ (even→ even)→ even. It should be clear that
any application of the second argument (+1) will now violate its contract even → even, which
should not have been inferred in the first place. In terms of annotators: if we define an annotator
ACHW which annotates the program with contracts as inferred by algorithm CHW, we get

ACHW (n, even) ⇓ :“The argument -5 to the function (≥ 10) is not even” 2

while A0(n, even) ⇓X 2

This breaks the second part of the consistency definition. Clearly there is something wrong
with the assumption that equal type parameters from Hindley-Milner carry over to equal type
parameters in the setting of refinement types. But why is this? After all, we read a polymorphic
type signature as valid for all types α ...

The core of the problem is the [App] rule which, in Hindley-Milner, forces the argument type
and the domain type to be equal:

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1 [App]
Γ ` t1t2 : τ2

In algorithm W, this rule translates to computing a unification of the two types, resulting in
multiple occurrences of the same type variable. With refinement types this rule is too strong:
functions tend to be subtype polymorphic: any argument is accepted that is a subtype of the
domain of the function. For example, a function f that accepts any integer, can also accept an
integer that has a refinement type {x : Int | even x ∧ x > 0}. This does not mean that they
should be forced to be equal, unification is not the right mechanism to use.

To understand why this subtype polymorphism is incorrectly handled in until, consider the
definition

let until p f x = if p x then x else until p f (f x) in ...

The recursive occurrence of until may not be polymorphic because the [Let] rule forces the
right hand side to use a monomorphic version, as polymorphic recursion is undecidable. Hence

22

from applying until p f on f x, a substitution is obtained for f that unifies with the unification
variable introduced for x in the [Abs] rule.

But one could argue that Hindley-Milner types also exhibit some form of subtyping, why is
there no similar problem then? Typeschemes have a basic order defined on them, which can be
thought of as subtyping. The relation can be defined as follows 2

τ ′ = [αi := τi]τ βi /∈ free(∀α1 . . . ∀αn.τ)

∀αn.τ v ∀β1 . . . ∀βm.τ ′

For example, ∀a.a → a v Int → Int. The set of functions with the former type is a subset
of the function with the latter type. Or when seen from the perspective of Liskov’s substitution
principle [17], a value of type ∀a.a → a can be safely used in a context where a function of type
Int → Int is expected, simply by means of instantiation. But note that only typeschemes form
such a relation, not monotypes. And since it is syntactically not possible to have typeschemes
on contravariant positions, like the domain of a function arrow, functions can not be subtype-
polymorphic in their arguments. Any actual application consists of two monotypes.

3.6 Summary

The main reason that we cannot simply adjust algorithm W for propagating (invalid) refinement
types over the program is that the essential mechanism for spreading information, namely type
variables and substitutions, breaks in the setting of refinement types. Equal type variables are
not equal refinement types per se. Furthermore, from a function application the algorithm can
no longer conclude that the function’s domain is equal to the refinement that might hold for
the argument. Circumventing this with universal quantifiers as in polymorphic types defeats the
purpose of propagating the refinement types.

2from https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system#Polymorphic_type_order

23

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system#Polymorphic_type_order

Chapter 4

Contract Propagation and Folds

In this chapter we investigate the possibilities of propagating contracts in a somewhat constrained
setting. We drop the idea of using a type inference algorithm and investigate the behaviour of
folds. First we reason about the use of folds and their relation to inductive properties. Then we
describe a simple annotator that propagates contracts over a program defined as a fold. We allow
the use of dependent contracts and show that we have defined a consistent annotator.

4.1 Folds

A fold or catamorphism is a recursion scheme for writing recursive programs over a specific
datatype. The programmer only writes down the interesting parts of the computation and the
fold takes care of the actual recursion. A very common example is the Haskell function foldr for
lists.

foldr :: (a -> b -> b) -> b -> [a] -> b

sum xs = foldr (+) 0 xs

length xs = foldr (_ x -> x + 1) 0 xs

foldr’s first two arguments are known as the algebra of the fold: for both list constructors,
the cons and empty list, the programmer provides a way of computing the final value for which
they may use the recursive result of folding the tail.

There also exist folds for other recursive datatypes. In fact, for any datatype there exists a
fold that, given an algebra, recursively computes a value. Folds come from category theory, where
they are formally defined as the unique homomorphism from an initial algebra into some other
algebra in the category of F-algebra’s for some endofunctor F. In their classic paper [18], Meijer et
al have given a wonderful exposition of how this formal definition of folds (among other recursion
schemes) can be applied in functional programming.

Folds are interesting for our problem because they constrain computations to the structural
recursion on a datatype, which strongly resembles inductive reasoning of properties over such
data. We start by investigating the relation between properties that hold for the fold and for their
algebra. For now, we will restrict ourselves to the case of folds over lists.

4.2 Preserving properties

The common way to prove properties over recursive datatypes is by case analysis for the possible
constructors and of course, induction for recursive positions. For example, suppose we want to
prove a property ∀xs.ϕ(xs) where xs is a list, we can do so by proving the property for the empty
list and for the non-empty list by using induction. In order to prove a property of the form

24

∀xs.ϕ(foldr f e xs), where f and e form the algebra, we find that some additional properties are
required for f and e.

Let Γ = {∀x r.ϕ(r)⇒ ϕ(f x r), ϕ(e)} i.e. the assumptions that f preserves ϕ and the constant
e satisfies ϕ. In natural deduction style, we will now prove:

Γ ` ∀xs.ϕ(foldr f e xs) (4.1)

Γ, IH ` ∀x r.ϕ(r)⇒ ϕ(f x r)
{r := foldr f e xs}

Γ, IH ` ∀x.ϕ(foldr f e xs)⇒ ϕ(f x (foldr f e xs))

Γ, IH ` ∀x xs.ϕ(foldr f e xs)⇒ ϕ(f x (foldr f e xs))

Γ, IH ` IH

Γ, IH ` ∀xs.ϕ(foldr f e xs)

Γ, IH ` ∀x xs.ϕ(f x (foldr f e xs)
{def. foldr}

Γ, IH ` ∀x xs.ϕ(foldr f e (x : xs))

Figure 4.1: Cons case

We then split the proof in two: one for each of the two construtors of the list datatype. In
figure 1 we use induction to prove that for a list of the form x : xs the property ϕ holds. In figure
2, we have a trivial proof for the case the list is empty.

Γ ` ϕ(e)

Γ ` ϕ(foldr f e [])

Figure 4.2: Nil case

From these two proofs we can conclude that

Cons case Nil case
Γ ` ∀xs.ϕ(foldr f e xs)∧
Γ⇒ ∀xs.ϕ(foldr f e xs)

We can read
∧

Γ as stating that the algebra (f, e) is ϕ-preserving. It is not hard to see that
this proof be generalized to arbitrary datatypes. A bit more informal, we have that if an algebra is
ϕ-preserving, the fold on any list has property ϕ. Its contraposition sounds interesting with regard
to contract propagation: if there is a list for which the fold does not have ϕ, then the algebra is
not ϕ-preserving.

Back to contracts then: can we, by this reasoning, blame the algebra for not preserving the
desired property? Unfortunately, no. We do not exclude a situation in which f is not ϕ-preserving
but ϕ holds on the fold anyways. Monitoring the algebra would be a mistake. If however, we can
prove the reverse implication:

¬
∧

Γ⇒ ¬ϕ(foldr f e xs) (4.2)

we effectively state that a violation which occurs during the monitoring of the algebra implies
that we would also have a violation on the monitoring of the fold. This is what it means to be a
cause of the top-level violation and is what we intuitively expect from a consistent annotator.

Unfortunately, this formula does not hold. Consider the following counter example:

f 0 = 3

f n = n * 2

e = 2

ϕ = even

25

The precedent holds, as f does not preserve ϕ, but the answer will be 21+length xs for any list
xs, an even integer. So it is not safe to monitor the contract > → even→ even on the definition
of f as other calls to the function might trigger unwanted violations.

We can however weaken the antecedent of the contraposition to find the following formula

∀xs.ϕ(foldr f e xs)⇒ (3)

(xs = y : ys ⇒ϕ(f y (foldr f e ys)))

∧ (xs = [] ⇒ϕ(e))

The validity of this formula simply follows from the definition of foldr, and it states that both
parts of the algebra, as used in the fold, should return a value that has ϕ.

So from (2), which does not hold, we can conclude that it is not safe to monitor ϕ on the
definition of the algebra, but from (3) that it is justified to monitor ϕ on the application of the
algebra within the fold.

4.2.1 An annotator for foldr

The above idea can be turned into a simple annotator:

Afoldr(foldr t1 t2,> → ϕ) = foldr (monitor (> → > → ϕ) t1)(monitor ϕ t2)

Afoldr(t, σ) = A0(t, σ)

There are a few things to note about this annotator. First, we observe that the added contracts
will be monitored repeatedly on all recursive calls of foldr. Furthermore, note that instead of the
original > → ϕ → ϕ we had in mind, the argument that is the recursive result is not monitored
by f . This is indeed not necessary, as can be seen with a simple inductive argument: any value
recursively computed by the fold is already monitored by the part of the algebra that produced
it.

We now show that this annotator is consistent by our definition from Chapter 3. We only show
this for the first case of Afoldr, as the second is equal to the trivial annotator.

Recall that we use monospace typesetting for variables in λ+ (x, y, foldr ...), and math
typesetting for meta variables ranging over terms (t, x, xs . . .). Furthermore, ≡ denotes semantic
equality as defined in Chapter 2 while = denotes regular meta equality (for example forget(x) =
x). In the proofs below we use equational reasoning over semantic equality, but since meta equality
implies semantic equality we mix the two operators to help the reader in distinguishing them.

Theorem 1. A0(foldr t1 t2,> → ϕ)X⇒ Afoldr(foldr t1 t2,> → ϕ)X

Proof : Assume A0(foldr t1 t2,> → ϕ)X. We have to prove Afoldr(foldr t1 t2,> → ϕ)X,
meaning ∀z. Afoldr(foldr t1 t2,> → ϕ) zX. We do this by induction on z.

26

case z =[]

Afoldr(foldr t1 t2,> → ϕ)[]

{Def. Afoldr} = foldr (monitor (> → > → ϕ) t1) (monitor ϕ t2)[]

{Def. foldr} ≡ monitor ϕ t2

{Def. foldr} ≡ monitor ϕ (foldr t1 t2 [])

{Lemma 2.4.4} ≡ (monitor (> → ϕ) foldr t1 t2)[]

{Def. A0} = A0(foldr t1 t2,> → ϕ)[]

which is violation free by assumption

case z = x : xs

Afoldr(foldr t1 t2,> → ϕ)(x : xs)

{Def. Afoldr} = foldr (monitor (> → > → ϕ) t1) (monitor ϕ t2) (x : xs)

{Def. foldr} ≡ (monitor (> → > → ϕ) t1) x

(foldr (monitor (> → > → ϕ) t1)(monitor ϕ t2) xs

{Def. Afoldr} = (monitor (> → > → ϕ) t1) x (Afoldr(foldr t1 t2,> → ϕ) xs)

{IH & Lemma 2.4.5} ≡ (monitor (> → > → ϕ) t1) x (forget(Afoldr(foldr t1 t2),> → ϕ) xs)

{def. annotator} ≡ (monitor (> → > → ϕ) t1) x (foldr t1 t2 xs)

{Lemma 2.4.4} ≡ monitor ϕ t1 x foldr t1 t2 xs)

which is violation free by assumption

The equality labeled {IH & Lemma 2.4.5} is an important step. The induction hypothesis
states that Afoldr(foldr f e,> → ϕ)xsX, which by Lemma 2.4.5 equals (Afoldr(foldr t1 t2,> →
ϕ) xs)

Theorem 2.
∀xs. (A0(foldr t1 t2,> → ϕ) xs ⇒ Afoldr(foldr t1 t2,> → ϕ) xs)

Proof

case []

assume A0(foldr t1 t2,> → ϕ)[]
Afoldr(foldr t1 t2,> → ϕ)[]

{As in Theorem 1} ≡ A0(foldr t1 t2,> → ϕ)[]

which raises a contract violation by assumption

case x : xs

assume A0(foldr t1 t2,> → ϕ)(x : xs)
Afoldr(foldr t1 t2,> → ϕ)(x : xs)

{As in Theorem 1} ≡ (monitor (> → > → ϕ) t1) x (Afoldr(foldr t1 t2,> → ϕ) xs)

for readability, let r = Afoldr(foldr t1 t2,> → ϕ)xs

{Lemma 2.4.4} ≡ monitor ϕ (t1 x r)

if r then also t1 x r by the [App] rule, and subsequently

monitor ϕ (t1 x r) , by the [Mon-*] rules.

otherwise rX, by Lemma 2.4.5 r = forget(r) = forget(Afoldr(foldr t1 t2,> → ϕ) xs)

= foldr t1 t2 xs by definition of annotator, so monitor ϕ (t1 x r)
by assumption

27

4.3 Dependent contracts

In this section we will extend the annotator for folds to handle more contracts. Note that Afoldr
only works for contracts of the form > → σ. While this is useful to write some properties, often
it is not enough for a complete specification. For the sorting function we can write

> → {r : [Int] | nondesc r}
where nondesc [] = True

nondesc [x] = True

nondesc (x:y:xs) = x <= y && nondesc (y:xs)

However, this is not a full specification of a sorting function, for example const [] will never
give any contract violation.

The complete specification can be expressed with a dependent contract

xs : > → {r : [Int] | nondesc r && r ‘isPermOf‘ xs}
where nondesc [] = True

nondesc [x] = True

nondesc (x:y:xs) = x <= y && nondesc (y:xs)

isPermOf xs ys = sort xs == sort ys

One more advantage of this constrained setting is that, as opposed to the type inference
approach, it is quite clear how dependent contracts should be propagated.

Aπfoldr(foldr f e, (xs : >)→ {y : τ | ϕ}) = foldr’ (λxs.ϕ) f e

Aπfoldr(t, σ) = monitor σ t

where foldr’ c f e xs = monitor (c xs) $ case xs of

[] -> e

(y:ys) -> f y (foldr’ c f e ys)

Instead of annotating the algebra we change the definition of foldr to monitor the dependent
contract with the list being folded over. Note that the term ϕ might have a free variable xs which
is therefore bound using the lambda. The proof for consistency of this annotator can be found in
Appendix B.

4.4 On the definition of a consistent annotator

At this point we can better explain the considerations and subtleties for the definition of a con-
sistent annotator in Chapter 3. Originally, we came up with a different definition:

∀x. A(t, σ)−→x ⇐⇒ A0(t, σ)−→x (4.3)

This definition came from the intuition that the behaviour of the trivial annotator is always
“right”: it monitors the specification on top-level, treating the program as a black box. We found
however, that Afoldr was not consistent by this definition:

A0(foldr (+) 0,> → even)[1,2,3] ⇓ 6

however

Afoldr(foldr (+) 0,> → even)[1,2,3] ⇓ : “3 + 0 is not even”

28

At first sight, the behaviour seems indeed incorrect. But as we inspect the contract, we find
that the violation does make sense. The recursive call encounters the list [3], which itself is a
counter example for the given contract (which is supposed to hold for all inputs).

Furthermore, we found a very subtle point in the definition of an annotator: the requirement
that forget(A(t, σ)) = t was intended to be syntactical equality. In other words, an annotator
should only “decorate” the program with monitor functions. The reason to do so was to exclude
bogus annotators that produce different programs or artificial constructions that could circumvent
the definition of consistency. For example:

Acheat(t,> → ϕ)x = if ϕ (t x) then t x else Aincorrect(t,> → ϕ)x

This annotator effectively checks whether the toplevel annotator would succeed, and if so, also
succeeds by not annotating the program. This always satisfies the first part of the consistency
definition. The second part of the definition can now easily be satisifed by incorrect annotators like
Afalse(t, σ)x = : “always fails” or ACHW . It became apparant that this restriction of syntactic
equality was too strong: when annotating with dependent contracts we also have to modify the
program by adding extra parameters. As a solution, we have decided that we want semantic
equality after removing the monitor constructs, keeping in mind that these extra introduced
parameters are exclusively used in the monitor function. After the forget operation, the program
will never use the parameters, thus semantic equality for this annotator is preserved. Furthermore,
a contract is no longer a Bool-valued function, but rather an abstract datatype that can only be
used by monitor and constructed with → and Prop which wraps a Bool-valued function. This
excludes annotators such as Acheat.

4.5 Propagation in other calls to foldr

The propagation of contracts by Afoldr is limited to programs directly expressed as a fold. A
natural question is whether this annotation mechanism extends to other uses of folds in the
program. Consider this example

p = foldr f e . (1:)

And suppose that the specification for p is the contract > → {x : Int | isPrime x}. This is
the algebra:

where f 1 x = (x-x) + 2

f n x = n + x

e = 42

Clearly, the program is correct with respect to the specification, as it will always return 2.
The propagation technique of Afoldr cannot be used though, as it would cause contract violations
in recursive applications of the algebra: not all intermediate fold results are prime numbers.
Effectively, this occurrence of foldr f e has a restricted domain: the image of (1:), non-empty
lists of which the first element is a 1. So any contract > → ϕ that should hold for p does not hold
for foldr f e after composing with a different function that might restrict the domain. A correct
contract to use for propagation foldr f e with would be {xs : [Int] | take 1 xs == [1]} → {r :
τ | ϕ}. Unfortunately, computing the image of a function is undecidable in general.

4.6 Generalizing the annotator

Folds are not exclusive to lists. When using the functor representation of datatypes, we can simply
generalize the annotator for foldr:

29

Aπfold(fold alg, (x : >)→ ϕ) = fold’ ϕ alg xs

Aπfold(t, σ) = monitor σ t

where fold’ c alg x =

(monitor (c x) . alg . fmap (fold’ c alg) . out) x

Again, we define a slightly modified fold combinator that recursively monitors every usage of
the algebra.

We omit a consistency proof as generic datatypes are not really expressible in our language.
This example is purely to show how one could generalize fold annotators.

30

Chapter 5

Related work and future research

In this chapter we discuss some relevant related work and describe possible future research to
continue the current effort.

5.1 Liquid types

Liquid types, short for Logically Qualified Data Types, is a system that combines Hindley-Milner
type inference with predicate abstraction to automatically infer dependent refinement types to
prove safety properties of OCaml programs [24]. Liquid types are a subset of general refinement
types in the sense that only certain refinements are allowed. The system considers only predicates
that are formed as a conjunction of a fixed set of qualifiers. In the paper, the algorithm DSOLVE
is introduced, which performs the liquid type inference. This seems very relevant in the context
of Chapter 3 as it does seem possible to infer refinement types for programs.

The inference process is started by introducing templates, based on the Hindley-Milner types,
refinement variables are introduced for each base type, representing the yet unknown refinements.
The second step is to introduce constraints: well-formedness constraints that ensure that the
refinements can only refer to program variables that are “in scope”. Subtyping constraints express
a dataflow relation. For instance that the true branch is a subtype of the complete if-then-else
type (with the assumption that the condition is true) and similarly for the else branch (with the
condition assumed to be false). After collecting the constraints, they are solved using a least
fixpoint-like algorithm for the well-formedness constraints and an embedding in a decidable logic
for the subtyping constraints that is solved by any automated theorem prover.

The problem is that for such a system to work, the predicates have to be embeddable in a
decidable logic. This is useful for inferring and checking specific properties. In the paper, we find
examples of properties that can be expressed with equality, uninterpreted functions and arithmetic.
The work hints at another set of qualifiers to proof safe array bounds checking, but it seems far
from obvious that top-level contracts in Ask-Elle which specify complete specifications fit in any
decidable logic.

Also note that this is a proper inference system in the sense that inferred refinement types
are valid typings (as opposed to the motivation of using algorithm W for propagating “incorrect”
properties). When applying their DSOLVE algorithm on a student program it would find some
refinement type that holds for the program. The work mentions manual annotations but does not
show how this is incorporated by DSOLVE.

5.2 Contracts and laziness

In Chapter 2, we decided to present a strict semantics for a reason. In “The interaction of contacts
and laziness” [7], Degen et al. investigate the semantics of contract monitoring in a lazy language
and analyze existing explorations of the design space. They note that there is no agreed-upon

31

intended meaning or theory. The work compares three different approaches by means of two
criteria:

Meaning preservation which informally means that monitoring a contract either results in a
contract violation or leaves the behaviour of the program unchanged.

Completeness states that every violation of a contract is detected in the form of an exception
(or in our case a violation monitoring result).

Note that meaning preservation is similar to the requirement in our definition of an annotator,
i.e. that forget(A(t, σ)) ≡ t. The motivation behind meaning preservation is that contract
monitoring should not make a program more strict. Whereas the annotator requirement is merely
meant to exclude invalid program transformations. We could prove that in a strict language, an
annotator will always produce meaning preserving programs.

What Degen et al. show is that for a lazy language, it is not possible to have both properties
at the same time, although each property can be achieved in isolation. For example, HJL moni-
toring [13] is not complete as its monitor operation (called assert) does not guarantee checks of
preconditions:

assert :: Contract a -> a -> a

...

assert (Fun c f) a = (\x -> assert (f x) (a x)) . assert c

When f and a are not strict in x (which is an expression of the form assert c y), c will never
be monitored.

On the other hand, eager contract monitoring [6] gives up meaning preservation in favor of
completeness. It achieves this by adding many seq constructs in order to make functions always
check precondition arguments regardless of whether the function is lazy or not. Similarly, contracts
on pairs are strict on both components. Obviously this could change the semantics of the program.

Now suppose we would adapt the operational semantics of this thesis for a call-by name seman-
tics. The question then is, in the context of Ask-Elle, which of the two properties is preferable and
how would this affect the proofs for consistent annotators? As the authors suggest, for programs
depending on laziness meaning preservation is more important. On first sight this seems right,
after all it seems wrong to change the behaviour of the submitted program and in our formalism
consisten annotators are not allowed to do so. As a consequence, we lose completeness which
implies that in some cases there would be fewer feedback as some violations may not be raised. It
should be investigated whether this could lead to non-sensical feedback of other contracts being
violated instead.

5.3 Mechanizing the formalization

All current reasoning about consistent annotators is done in “pen-and-paper” style, with a com-
plementary implementation of the language whereas this seems perfectly suited for a dependently
typed language such as Coq or Agda [9, 21]. This could combine the implementation with the
proofs and have the proofs machine-checked. This could be an interesting exercise for a student
learning a depedently-typed language.

5.4 Improving location information

The current implementation of the language and annotators does not actually take into account
line and column numbers for violation messages. Location info is something that is crucial for a
student to have. As Lauwers already made a big effort on incorporating this information in the
generation of contracts, it might be a useful effort to improve this.

32

5.5 Taking contract propagating further

As we have demonstrated, folds are suitable for propagating contracts in a consistent way. We
believe that there are more possibilities for such propagation. For instance, any structurally
recursive call of the top-level program, a case-split or if then else construct at the top-level
of the program can all use the top-level contract in some way. It is important to keep in mind
that these annotators only work for direct top-level occurrences due to function composition: a
program f . g with contract c1 → c2, it is not generally decidable what the domain contract for
f is. (see Section 4.5). A possible improvement to this problem is the realization that composition
with surjections (e.g. tail, reverse, drop n etc.) does give the opportunity of computing the
domain contract of f.

In practise, students new to Haskell often prefer explicit recursion over the use of foldr. The
question is how we can use the annotator for folds in such programs. One possibility is to try
and apply a program transformation to “extract” a fold from the program code and consequently
annotate the fold using Afold. Hu and Iwasaki [14] have described an algorithm that derives a
hylomorphism, an unfold followed by a fold. Adapting this algorithm for only folds seems definitely
possible, but there are some consequences. Any violation now has to be translated back to the
original program code, which is not straightforward. Furthermore, the program transformation
has to be proven to be semantically equivalent to obtain any of the consistency properties of the
annotator. Another way is to define a new annotator which only annotates programs in which it
“recognizes” a fold, which in turn requires its own consistency proof.

Program tranformations can only use the syntactic structure of a student program to propagate
contract information. Another possible perspective on the problem is to incorporate propagation in
the operational semantics. This might give more possibilities to propagate contracts, for example:

if t1 then (monitor c t2) else (monitor c t3) ⇓m v
[Mon-ITE]

monitor c (if t1 then t2 else t3) ⇓m v

A clear disadvantage of such an approach is that in practice this would require special support
in a compiler or interpreter.

5.6 Debuggers

A completely different approach to providing feedback is a semi-automatic one: providing a de-
bugger to the student. This has the important advantage that a student can track the counter
example and decide which contracts should hold where, even in places where an automatic analysis
would be undecidable. For Haskell, the ghci debugger [12] is the most well known, but there has
also been specific work on interactive fault localization with debugging 1. A disadvantage is the
well known problem that debugging with lazy semantics is non-intuitive because evaluation might
jump from thunk to thunk. Especially for new students not aware of the operational semantics
of the language this might be highly confusing. Furthermore, it might be quite a big engineering
effort to integrate such a tool in the programming tutor.

1https://wiki.haskell.org/Hoed

33

Chapter 6

Conclusion

We have thoroughly investigated previous work on using an adapted algorithmW for propagating
contracts in student programs. In order to show that such an approach is not correct we formal-
ized the notion of an annotator : a program transformation of which the resulting program can
additionally produce contract violations but is otherwise semantically equal to the original student
program.

The formalization is presented with a lambda calculus λ+ that has some realistic language
constructs. We gave a strict operational semantics and defined behaviour equivalence on terms
and values. This equivalence relation formed the basis of a set of lemma’s and useful theorems
for proving the main criterium of valid program transformation: a consistent annotator. Such an
annotator transforms programs to monitor contracts that can raise violations in a “consistent”
way when comparing with a trivial annotation: only monitoring the top-level contract.

We have used the formalization to show that the algorithm W approach is incorrect and given
examples of annotators that we prove to be consistent, also including dependent contracts. We
have implemented this language and the consistent annotators.

The formalization has been implemented in Haskell including the complete λ+ language, its
semantics, annotators and some examples.

34

Appendix A

Consistency of dependent contract
annotator

In this appendix we prove that Aπfoldr from Chapter 4 is consistent.

Lemma A.0.1. A0(t, (x : >)→ ϕ) ≡ λx.monitor ϕ (t x)

Proof

A0(t, (x : >)→ ϕ)

{η-reduction} ≡ A0((λx.t x), (x : >)→ ϕ)

{Def. A0} = monitor ((x : >)→ ϕ) (λx.t x)

{Eval-[Mon-4]} ≡ (λx.case (monitor > x) of x→monitor ϕ (t x)))

{Eval-[Mon-1]} ≡ (λx.case x of x→monitor ϕ (t x))

{Eval-[Case-1]} ≡ λx.monitor ϕ (t x)

Theorem 3. let t = foldr t1 t2 and c = (xs : >)→ ϕ for any terms t1, t2 and contract ϕ. Then
A0(t, c)X⇒ Aπfoldr(t, c)X

Proof : AssumeA0(t, c)X. We have to proveAπfoldr(t, c)X, meaning ∀z. Aπfoldr(foldr t1 t2, (xs :
>)→ ϕ) zX. We do this by induction on z.

case z = []

A0(foldr t1 t2, (xs : >)→ ϕ)[]

{Lemma A.0.1} ≡ (λxs.monitor ϕ (foldr t1 t2 xs))[]

{Eval-[App]} ≡ monitor ϕ[[]/xs] (foldr t1 t2 [])

{Def. foldr} ≡ monitor ϕ[[]/xs] t2

{Eval-[App]} ≡ monitor ((λxs.ϕ)[]) t2

{Eval-[Case-1]} ≡ monitor ((λxs.ϕ)[]) (case [] of {[] -> t2 ; ...})
{Def. foldr’} ≡ foldr’ (λx.ϕ) t1 t2 []

{Def. Aπfoldr} = Aπfoldr(foldr t1 t2, (xs : >)→ ϕ)[]

35

case z = y:ys

A0(foldr t1 t2, (xs : >)→ ϕ)(y : ys)

{Lemma A.0.1} ≡ (λxs.monitor ϕ (foldr t1 t2 xs))(y : ys)

{Eval-[App]} ≡ monitor ϕ[y : ys/xs] (foldr t1 t2 (y:ys))

{Def. foldr} ≡ monitor ϕ[y : ys/xs] (t2 y (foldr t1 t2 (y : ys))))

{IH & Lemma 2.4.5} ≡ monitor ϕ[y : ys/xs] (t2 y (Aπfoldr(foldr t1 t2, (xs : >)→ ϕ)(y : ys))

{Def. Aπfoldr} ≡ monitor ϕ[y : ys/xs] (t2 y (foldr’ (λxs.ϕ) t1 t2)(y : ys))

{Def. foldr’} ≡ foldr’ (λxs.ϕ) t1 t2 (y : ys)

{Def. Aπfoldr} = Aπfoldr(foldr t1 t2, (xs : >)→ ϕ)

Theorem 4.
let t = foldr t1 t2 and c = (xs : >)→ ϕ for any terms t1, t2 and contract ϕ. Then
∀xs. (A0(t, c) xs ⇒ Aπfoldr(t, c)xs)

Proof

case z = [], suppose A0(t, c)[] , then

Aπfoldr(t, c)[]

= (foldr’(λxs.ϕ) t1 t2)[]

= monitor ϕ[[]/xs] t2

= (λxs.monitor ϕ t2)[]

= A0(t, c)[]

which raises a violation by assumption

case z = y : ys, suppose A0(t, c)(y : ys) , then

Aπfoldr(t, c)(y : ys)

= (foldr’ (λxs.ϕ) t1 t2)(y : ys)

≡ monitor ϕ[y : ys/xs] (t1 y (foldr’ (λxs.ϕ) t1 t2 ys))

≡ monitor ϕ[y : ys/xs] (t1 y (Aπfoldr(t, c) ys))

Call this last term r.

If (Aπfoldr(t, c) ys) , then r because of strictness of t1 and monitor.

Otherwise, if (Aπfoldr(t, c) ys)X, then (Aπfoldr(t, c) ys) ≡ t ys by Lemma 2.4.5 and

r ≡ A0(t, c)(y : ys), which raises a violation by assumption

With these two theorems, we have proven that Aπfoldr is consistent.

36

Appendix B

Implementation details

We have implemented the presented language λ+ in Haskell1 together with the annotators and
examples of correct and incorrect student programs attempting to implement insertion sort. The
annotator Aπfoldr has been implemented and a basic feedback message for contract violations is
produced.

The repository contains different modules for syntax, evaluation and sample programs. All
modules are self-documented and the readme.md file contains instructions for running the code.

1http://github.com/jaccokrijnen/thesis-implementation

37

Bibliography

[1] Tristan OR Allwood, Simon Peyton Jones, and Susan Eisenbach. Finding the needle: stack
traces for ghc. In Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages
129–140. ACM, 2009.

[2] Ştefan Andrei and Cristian Masalagiu. About the collatz conjecture. Acta Informatica,
35(2):167–179, 1998.

[3] Arthur Charguéraud. Pretty-big-step semantics. In European Symposium on Programming,
pages 41–60. Springer, 2013.

[4] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition inference from inter-
mittent assertions and application to contracts on collections. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 150–168. Springer, 2011.

[5] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 207–212. ACM, 1982.

[6] Markus Degen, Peter Thiemann, and Stefan Wehr. True lies: Lazy contracts for lazy languages
(faithfulness is better than laziness). In In 4. Arbeitstagung Programmiersprachen (ATPS09).
Citeseer, 2009.

[7] Markus Degen, Peter Thiemann, and Stefan Wehr. The interaction of contracts and laziness.
Higher-Order and Symbolic Computation, 25(1):85–125, 2012.

[8] Ewen Denney. Refinement types for specification. In Programming Concepts and Methods
PROCOMET98, pages 148–166. Springer, 1998.

[9] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chetan Murthy, Catherin Parent,
Christine Paulin-Mohring, and Benjamin Werner. The COQ Proof Assistant: User’s Guide:
Version 5.6. INRIA, 1992.

[10] Cormac Flanagan. Hybrid type checking. In ACM Sigplan Notices, volume 41, pages 245–256.
ACM, 2006.

[11] Bastiaan J Heeren. Top quality type error messages. Utrecht University, 2005.

[12] David Himmelstrup. Interactive debugging with ghci. In Proceedings of the 2006 ACM
SIGPLAN workshop on Haskell, pages 107–107. ACM, 2006.

[13] Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional programming.
In International Symposium on Functional and Logic Programming, pages 208–225. Springer,
2006.

[14] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomorphisms from
recursive definitions, volume 31. ACM, 1996.

38

[15] Johan Jeuring, Alex Gerdes, and Bastiaan Heeren. Ask-elle: A haskell tutor. In European
Conference on Technology Enhanced Learning, pages 453–458. Springer, 2012.

[16] BPY Lauwers. Contract inference for the ask-elle programming tutor. 2014.

[17] Barbara H Liskov and Jeannette M Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

[18] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Conference on Functional Programming Languages and
Computer Architecture, pages 124–144. Springer, 1991.

[19] Bertrand Meyer. Eiffel: A language and environment for software engineering. Journal of
Systems and Software, 8(3):199–246, 1988.

[20] Bertrand Meyer. Design by contract. Prentice Hall, 2002.

[21] Ulf Norell. Dependently typed programming in agda. In Advanced Functional Programming,
pages 230–266. Springer, 2009.

[22] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[23] J Alan Robinson. Computational logic: The unification computation. Machine intelligence,
6(63-72):10–1, 1971.

[24] Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In ACM SIGPLAN
Notices, volume 43, pages 159–169. ACM, 2008.

[25] Jurriën Stutterheim. Contract inferencing for functional programs. 2013.

[26] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. Re-
finement types for haskell. In ACM SIGPLAN Notices, volume 49, pages 269–282. ACM,
2014.

39

	Introduction
	Ask-Elle
	Contracts

	Syntax and semantics
	The language +
	The language of contracts
	Operational semantics of +
	Reasoning about monitoring

	Contract Inference
	The Hindley-Milner type system
	User defined contracts or refinements
	Correctness properties for an inference algorithm
	Refinement contracts and strengthening
	Type variables and contracts
	Summary

	Contract Propagation and Folds
	Folds
	Preserving properties
	An annotator for foldr

	Dependent contracts
	On the definition of a consistent annotator
	Propagation in other calls to foldr
	Generalizing the annotator

	Related work and future research
	Liquid types
	Contracts and laziness
	Mechanizing the formalization
	Improving location information
	Taking contract propagating further
	Debuggers

	Conclusion
	Consistency of dependent contract annotator
	Implementation details

