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Abstract

It is important to analyse unemployment data, so intervention instruments can be improved and
the unemployed can exit social security faster. To this end this paper presents a number of data
analysis techniques that can be used to estimate the probability of outflow and the effectiveness
of intervention instruments.

Firstly classification trees and survival analysis are used to give insight into the influence of
features on the chance of outflow. Furthermore the classification trees can also be used to predict
the chance of outflow for new clients. We found some features that seem to greatly influence the
chance of outflow.

Secondly novel matching algorithms are used to create a treatment and comparable control
group for four intervention instruments. Survival analysis is then used to analyse the differences
between the groups. We conclude that two of the four intervention instruments are significantly
better than other intervention instruments.
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Chapter 1

Introduction

Reintegration from unemployment is an interesting problem. According to Eurostat1 the un-
employment rate in the Netherlands in April 2015 was 7 percent. Financially supporting this
group can be costly, therefore the government offers training programs and other ways of sup-
port to help people find a job. Nevertheless these trainings are also costly. According to the
State Budget of 20162, the costs of unemployment expenditure will be 12 billion euros, whereas
reintegration and support costs 7 billion euros a year (to put this into perspective, the Dutch
defence budget is 7,5 billion euros).

It is important to monitor the effectiveness of reintegration, although this might prove to be
difficult. Traditional methods rely on surveys or controlled experiments. This approach however
ignores the vast amount of data that is already present in different databases. This project
focuses on using machine learning techniques on various datasets to give insight into the data
and effectiveness of intervention instruments. This insight can then be used to identify possible
difficulties and improving the intervention instruments. This research was performed on the data
of a municipality in the Netherlands in collaboration with Ynformed3.

In the remainder of this chapter the research questions and the study design will be discussed
and in Section 1.3 a summary of the reintegration system in the Netherlands will be given. In
Chapter 2 the used datasets will be discussed and the preprocessing on the datasets will be
explained. In Chapter 3 the theoretical background will be discussed by referring to related
literature. In Chapter 4 the used algorithms and methods will be discussed and in Chapter 5
the experiments and the result from those experiments will be given. Finally Chapter 6 will
conclude the results of this thesis.

1.1 Study design

This project is intended as a pilot to find out how data science can improve the effectiveness of
reintegration. Therefore the research question for this project is:

‘How can we use data mining techniques on social security data to improve the
effectiveness of reintegration?’

To illustrate the steps involved and the study plan Figure 1.1 is used.

1http://ec.europa.eu/eurostat/en/web/products-datasets/-/UNE_RT_M
2https://www.rijksoverheid.nl/onderwerpen/prinsjesdag/inhoud/miljoenennota-rijksbegroting-en-troonrede/

huishoudboekje
3www.ynformed.nl
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1.2. RESEARCH METHODOLOGY CHAPTER 1. INTRODUCTION

Figure 1.1: Diagram that illustrates the design of this study. The left blocks indicates the clients
and their features, the middle blocks indicate the intervention instruments and the right blocks
indicate the outflow. The steps correspond to the sub-questions.

As we can see in Figure 1.1 some sub-questions can be defined to specify the research:

1. Can client features be used to predict the outflow from social security?

This sub-question can give us more insight into groups that have a small or large probability
of outflow. The outcome is influenced by the intervention instruments, so if we find groups
of clients that have a large chance of outflow than this might also be the effect of the
intervention instruments. A classification model can thus give us insight into the effects of
the client features given the current intervention policy.

2. Can client features be used to predict the outflow from social security for clients that have
participated in a specific intervention?

The answer to this sub-question might help to find groups of clients for which an interven-
tion does or does not seem to help. Note that we can’t answer this question for clients that
have not received the specific intervention.

3. Which intervention(group) has a higher outflow rate than other intervention(group)s?

This sub-question will give more insight into the effectiveness of an intervention. We also
might have to adjust for bias introduced by the assignment of interventions, which is not
at random. Solving this problem is a large part of this research, see Section 3.2 for a more
in depth look at this problem.

1.2 Research methodology

The research methodology used in this research project is CRISP-DM (CRoss-Industry Standard
Process for Data Mining), which is clearly explained in the article by Colin Shearer[25]. CRISP-
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DM is a data mining framework that can be used in practically every data mining project. It
consists of six steps: business understanding, data understanding, data preparation, modelling,
evaluation and deployment (see Figure 1.2). Furthermore, this project will also follow the Scrum
paradigm, including weekly Scrum-meetings and four sprints of three weeks.

Figure 1.2: The CRISP-DM framework.
Arrows indicate the order of the steps,
the outer arrows denote the cyclic na-
ture of the process. (By Kenneth Jensen,
licensed under http://creativecommons.

org/licenses/by-sa/3.0/)

Below the steps are briefly explained.

Business understanding In this step the business objectives are stated. These objectives are
then transformed into data mining goals and a project plan is made. These steps are mostly
covered in this chapter.

Data understanding In this step the data is collected and explored on its surface properties.
Furthermore, the quality of the data will be verified.

Data preparation In the data preparation step the data is prepared for modelling by combining
or selecting data and by cleaning the database. The data understanding and preparation
steps will be covered in Chapter 2.

Modelling In this step modelling techniques are selected and applied on the prepared data set.
Furthermore, the model is assessed on the quality of the outcome.

Evaluation In this step the generated models are evaluated to ensure that the outcome is the
answer to the original business objectives and the next steps are chosen.

Deployment In this step the model is presented in such a way that it satisfies the client goals.
For instance, as a presentation or as part of a tool. The modelling, evaluation and deploy-
ment steps are discussed in Chapter 5.

As we can see in Figure 1.2 most steps are cyclic, especially Data Preparation and Modelling
since it is often necessary to modify the data if we want to use a different model.

5
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1.3 Background on social security

Social security is organised differently in every country. In the Netherlands if a person loses his job
then he can first apply for unemployment insurance (Werkloosheidswet), which is a temporary
insurance that lasts at most three years, if the client has worked long and frequent enough
before losing his job. In the Netherlands this is regulated by the UWV (Uitvoeringsinstituut
Werknemersverzekeringen). The unemployment insurance is not part of this research.

If someone has not worked (enough) before losing his job or if the unemployment insurance
ends before finding a job and if he does not have enough capital then he can apply for social
security (Participatiewet, former Wet Werk en Bijstand). The social security is regulated by the
individual municipalities.

These municipalities can within the boundaries of the law, make their own rules and are also
financially responsible for paying both the social security and the intervention instruments.

Social security can end for various reasons:

Work The client finds a full-time job

Schooling The client is fit for (additional) schooling

Income The client receives income from another source

Enforcement The client is not eligible for social security, or the client does not keep to agree-
ments

Transition The client moves to another municipality, dies, gets incarcerated or starts a rela-
tionship

Remaining The partner exits the social security for one of the above reasons or other reasons

These outflow reasons are used throughout the land and are drafted by Divosa4.
The amount of social security benefit received may also be reduced for various reasons, such as

receiving part-time income or having cost-divisors. People (children and partners excluded) who
live together with a client are counted as cost divisor since they share in their costs. Therefore
the social security is reduced on the basis of the number of cost divisors.

This research focusses not only on the social security records but also on the intervention
instruments. Intervention instruments are treatment programs for clients which can help them
in various ways. There are many possible intervention instruments, but we will focus on the
following interventions:

Intervention E Nowadays everyone receives this intervention. It requires its participant to
perform simple manual labour to test their perseverance and skills. This intervention
instrument will not be analysed in the matching, since everyone should get this instrument
removing the possibility of a control group.

Intervention A This intervention instrument gives clients a temporary workplace to get work-
ing experience. This intervention is typically given to clients that have a greater distance
to the labour market.

Intervention B This intervention instrument actively helps clients to get a job. This in-
tervention instrument is mostly assigned to clients with a smaller distance to the labour
market.

4www.divosa.nl
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1.3. BACKGROUND ON SOCIAL SECURITY CHAPTER 1. INTRODUCTION

Intervention C This intervention instrument is actually a collection of instruments meant for
clients with a smaller distance to the labour market.

Intervention D This intervention instrument is also a collection of instruments. These inter-
vention instruments are however meant for clients with a greater distance to the labour
market.

The last two intervention instruments are grouped together by experts from the municipality,
based on their target audience and purpose.

7



Chapter 2

Dataset

In this chapter we will discuss the available dataset and preprocessing steps. In Section 2.1 a
description of the data will be given along with the challenges that are present in this dataset.
In Section 2.2 the pre-processing steps will be discussed.

2.1 Data understanding

2.1.1 Dataset description

The available data is structured in several CSV (Comma Separated Value) files, which are ex-
ported from various database systems. The reference date of all datasets is April 2016. Most
of the data lies between 2011 and April 2016. There is also some data from before 2011, how-
ever in 2011 a new administration system was put into operation and only active records were
transferred (see Figure 2.1). Table 2.1 gives an overview of the datasets.

Figure 2.1: Histogram of the end dates in years of the social security records from 2006.

8



2.1. DATA UNDERSTANDING CHAPTER 2. DATASET

Dataset name Number of records Description
Client Kenmerken 10391 Birth-date, nationality, gender,

marital status, living arrange-
ments, housing and number of
children

Buurten 10311 Neighbourhoods
Geboorteland 7058 Native countries
Opleiding Taalniveau 9891 Education and language levels

(contains many missing values)
Kostendelers 1126 Cost-divisors
Schuldhulpverlening 1599 Debt relief
Kenmerk aggressief 63 Clients who have been found ag-

gressive
Competensys 4079 Survey data about education, so-

cial skills, addiction etc.
Instroom Uitstroom Partner 9574 Social security records, contains

start and end date and reason of
outflow

Agendaplanner 52874 Appointments and presence of
clients (4086 clients)

Maatregelen 2776 Penalty statements
Boetes 836 Fines
Dvl Voorzieningen 40370 Intervention instruments (9660

clients)
Parttime Inkomsten 18750 Declarations for part-time in-

come (2170 clients)

Table 2.1: Names, sizes and description of the datasets used in this research

Three very interesting covariates from the Competensys dataset are Loonwaarde, Partici-
patie trede and Werk afgelopen jaar . Loonwaarde (Wage value) is an estimate of the percentage
of paid work a client can handle. So a Loonwaarde between 80 and 100 percent indicates that the
client most likely will be able to get a full-time job, while a client with a Loonwaarde between 0
and 30 percent might never be able to handle a full-time job.

Participatie trede (Participation step) indicates the level in which a client might participate
in society and it ranges from 1 (isolated) to 6 (paid job).

Werk afgelopen jaar (worked past year) indicates if the client has worked in the past year.

2.1.2 Challenges of the datasets

For every client there is potentially a lot of data, however not every client appears in every dataset.
For some datasets this introduces no problems. Take for example the debt relief dataset, if a
client does not appear in the dataset then he has no debt relief. However if a client does not
appear in the neighbourhoods dataset, then his neighbourhood is unknown. See Figure 2.2 for
an example of the overlap between the datasets.

Another challenge with this data is unknown values in the datasets themselves. Since the
datasets are the result of an administrative process, values that are not known at the time or not
important are not filled in. This might lead to problems later on. See Figure 2.3 for a missingness

9
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Figure 2.2: The overlap between the Competensys, neighbourhoods (Buurten) and client data
(Client kenmerken). It can be clearly seen that the Competensys data is only known to part of
the clients, which introduces a lot of unknown values.

map of all datasets after joining on client number.

Figure 2.3: The missingness map for the data. The large black stripes represent the missing data
introduced by the Competensys data.

Next to the missing values, some covariates might also change without our knowledge. For
example the number of children is only administrated when it is necessary, which means that it is
usually recorded at the start of the social security but never updated. Also some data might be

10



2.2. DATA PREPARATION CHAPTER 2. DATASET

entered differently depending on which consultant entered the data. For example if a client has
no children one consultant might administrate 0 as value, while another one might leave it blank,
thus creating an unknown value. In this case we assumed that a 0 really means no children and
an empty field means unknown.

Furthermore many datasets, such as the data from Competensys are filled in by both the
client and consultant based on their conversations. Although the quality of this data is not easily
verified, experts at the municipality guarantee that this is the most up-to-date and complete data.

2.2 Data preparation

Before we can use the data it has to be cleaned and ordered. To easily access the data a MySQL
database is used and all CSV files are imported as database tables. Then all data is formatted
(numbers to Integer, dates to Date objects etc.), obviously wrong data is changed (for example
19-11-2105 to 19-11-2015) by manually checking the maximum and minimum date-values and
missing values are denoted by NULL.

Some values have too many categorical values, for example nationality which has 88 different
possible values. These values are categorized (e.g. nationality becomes the binary variable ‘Dutch
nationality’). The reason of outflow is also categorized into the six categories defined in Section
1.3.

The next step is to create a data table where every row corresponds to a social security record
from a client, that contains all (important) covariates and the response variable(s). To create this
table we join all data sets about a client with the social security data set. Furthermore if a client
has two or more social security records that are less than three months apart we combine them
into one record to avoid analysing recurrent clients or administrative transitions. The reason of
outflow for this combined record will be the final reason of outflow of the last record (or none if
the clients is still in social security). This data table can then be used in the subsequent analysis
steps (see Chapter 4).

To incorporate the intervention programs we also create a data table combining the social
security records and intervention programs. In this table each row corresponds to an intervention
program that falls into a social security record. Intervention programs that do not fall into a
social security record are not taken into account, since we can never know the result of such an
intervention. The resulting data table thus consists of all information in the previous data table
combined with the intervention instrument followed and the start time of this intervention.

Since intervention instruments can start up to three months before the start of the social
security we subtract three months from the start date of the record. Then we combine an
intervention program with a social security record when more than ten percent of the program
falls in the period of the social security record. This is done to avoid assigning a treatment to a
social security record when the treatment falls mostly in the previous record.

All preprocessing steps have been discussed with experts working for the municipality.

2.2.1 Imputation

As described in the previous section, there are a lot of missing values. Some machine learning
methods, such as classification trees can handle missing values. However if we want to use a
method that does not handle missing values we have to get rid of them.

There are three ways to get rid of missing values:

1. Remove the rows that contain missing values

2. Remove the columns that contain missing values

11
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3. Impute (fill in) the missing data

Since using only the first two approaches can remove potentially important information we
opt for a combination of the three approaches.

For the imputation we use Single Imputation (SI). For more details about the imputation
algorithm see Section 4.3.1.

Because Competensys has proven to be important information and since more than half of the
clients have no Compentensys data we filter out all the client that have no known Competensys
data. We then impute the unknown values in the remaining rows.

We could also have imputed all missing values, however since more than half of the Com-
pentensys values are unknown, single imputation would increase the uncertainty of the data too
much. Furthermore, since Competensys contains much more useful data than the rest we can’t
simply ignore it, since that would increase the bias in the dataset.

12



Chapter 3

Theoretical background

In this section related work will be discussed to provide a theoretical background on analysis
on unemployment data. In Section 3.1 related work which involves survival analysis will be
discussed. In Section 3.2 we will discuss related work that uses matching. In Section 3.3 we
will discuss literature about data science in the domain of social security. In Section 3.4 Dutch
literature about the Dutch social security will be discussed and finally in Section 3.5 the problems
of causality vs. correlation will be addressed.

3.1 Survival analysis

To analyse the social security records and the effect of the intervention instruments, it is useful
to look at the length of the social security. A popular technique for this situation is survival
analysis.

Survival analysis[18] is most commonly known in the medical field to predict the survival
time, for example for leukaemia patients[3]. This technique might also be of use in this project,
because social security records are somewhat similar to medical survivor records. In both cases
clients receive ‘treatment’ during a certain period and clients can have an event (outflow) or
clients can be censored (still receiving social security at the end of the study or leaving the study
prematurely).

A paper that resembles the topic discussed in this paper is the paper by Bruce D. Meyer[22]
where they use survival analysis to analyse the unemployment insurance duration and height of
men from twelve different states in the United States. They found that a higher benefit negatively
impacts the chance of leaving unemployment and that the chance of leaving unemployment rises
in the weeks prior to when benefits lapse. As explained in Section 1.3 there is a difference
between the unemployment insurance and social security. The project described in this paper
focuses solely on social security data.

For survival analysis it is often useful to estimate the survival curve for an entire group. One
of the estimators often used for this task is the Kaplan-Meier estimator[15]. When we want to
know the influence of different covariates on the survival time we can use a (semi-)parametric
survival model. One of the most popular models is the Cox proportional hazards model[10].
This model can handle multiple covariates and we can estimate the effect of these covariates
on the length of the unemployment duration. The paper by Alenka Kavkler et al.[16] uses Cox
regression models to compare the unemployment duration in five Central and Eastern European
countries. They found differences in unemployment duration between the various countries and

13
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they also found that the differences between age groups become less pronounced the longer the
unemployment spell lasts.

Another paper by S. van Buuren et al.[29] uses survival analysis to find a relation between
missing blood values and the survival rate. To impute the missing blood values they used Multiple
Imputation (MI). The combination imputation and survival analysis used in the previous paper
will also be of use in this project. Multiple imputation and other missing data techniques are
also discussed in the paper by Shafer and Graham[24].

3.2 Matching

To help the outflow of clients, the effectiveness of intervention instruments has to be analysed.
The paper by Seamus McGuinness et al.[21] describes the effect of six types of training on the
employment chances in Ireland. They found that the clients that participated in a training
were less likely to be unemployed at the end of the study period. However, the effect varies
by the type and duration of the training received. These training programmes are not assigned
at random. For example, consider a training that helps young people manage their finances
better. This training will only be assigned to young people, so we might bias the effect of
this training since young people tend to get a job faster regardless of the training. Therefore,
Seamus McGuinness et al. use a matching algorithm called propensity score matching[23] which
accounts for the covariates that predict the type of training to reduce the impact of this bias.
Propensity score matching is a very popular matching method, but it is not without criticism.
As King and Nielsen describe in their paper[17] propensity score matching tries to approximate
a randomized experiment, where both the observed and the unobserved covariates are in balance
between treatment and control on average. However other matching methods approximate a
fully blocked experiment, where the observed covariates are (almost) exactly in balance and the
unobserved covariates are balanced on average. Therefore propensity score matching might even
increase the imbalance and it might be a good idea to look at alternatives. An alternative to
propensity score matching is using the Mahalanobis distance[19]. Instead of using one dimension
for matching it calculates the distance using all the covariates, similar to Euclidean distance, but
it also takes the spread of the data into account.

Another paper that describes the treatment effect of training programmes is written by Bram
van Dijk[30]. In his paper he describes the effect of three different job-training programmes on
the unemployment duration in Slovakia. To correct for the non-random assignment of training
programmes he incorporates the unobserved heterogeneity into a multivariate mixed proportional
hazards model. He found that two of the three programs shorten the unemployment duration
substantially. The two papers of McGuinnesss et al. and van Dijk resemble our situation,
however in our case the number of training programmes is much higher and the number of
records is smaller.

3.3 Social security data mining

As said before not much work has been done on social security data mining, however there is a
special interest group that specializes in social security data mining1. The members of this group
have published papers about different kinds of social security data mining such as the paper by
H. Zhang et al.[32] where sequential pattern mining is used to train a sequence classifier that
can be used for debt prevention in the social security area. The paper by Longbing Cao[9] gives

1http://datamining.it.uts.edu.au/ssdm/
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an overview of the field of social welfare and social security data mining. Almost all papers
published by this group use a combination of (sequential) pattern mining and classification.

Another paper by W. Xu et al.[31] takes a different approach and tries to predict the unem-
ployment rate using search engine query data, instead of the social security data itself. They
conclude that their tool can be used to analyse and predict the unemployment rate without delay.

3.4 Dutch reports on social security

The implementation of social security differs a lot between countries. Therefore it is useful to
look at Dutch papers about social security. These papers are often sociological and use surveys
or simple statistical models instead of data mining. Nevertheless, they can still be informative
and give more insight into the domain of social security and intervention instruments. The new
social security legislation called the Participation Act was installed in 2015 and uses among other
methods wage subvention as an intervention instrument (see Borghouts et al.[6]). Other reports
about social security are the quick scan[4] commissioned by the ministry of social affairs and em-
ployment, which gives an overview of scientific papers about social security and a report about
the effectiveness of reintegration instruments[5]. According to this report using a waiting period
before starting the social security procedure has a great effect on the inflow, furthermore partici-
pating in an intervention program has more effect on the outflow chance than doing nothing but
this effect only occurs after thirty weeks. Note that in our research we do not consider the inflow,
but focus only on the outflow. Also useful is a report about the effectiveness of reintegration in
the unemployment insurance[13], which concludes that effectiveness of reintegration instruments
depends on the client group and the moment the instrument is used.

3.5 Causality vs. correlation

One of the focusses of this research is to examine the effectiveness of intervention instruments,
but we must keep in mind that there is a difference between prediction and causality. In the first
case we want to train a model that makes predictions about the dependent variable using the
observed values of the independent variables whereas in the latter case the independent variables
are regarded as causes of the dependent variable. Furthermore, when dealing with missing or
unobserved variables we can still get a good prediction, but the causality relation might be false
since important information is missing or unobserved. This dilemma is described in the first
chapter of the book by Paul Allison[1].

Next to the dilemma of causality vs. correlation we are also interested in quantifying the
causal effect of the treatment. Consider for example a regression model, with a binary variable
indicating treatment (T), client features (X) and the outcome (O). If we want to quantify the
effect of the treatment, we must also include the client features that influence the assignment
to the treatment and the outcome, otherwise we might over- or underestimate the effect of the
treatment on the outcome. See Figure 3.1 for an illustration.

T O

X

Figure 3.1: An illustration of the effect of the client features (X) and the treatment (T) on the
outcome (O)
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Chapter 4

Methods

In this chapter the different models and algorithms that are used in this project are discussed.
In Section 4.1 the different survival analysis models and metrics are discussed. In Section 4.2 the
matching methods are discussed and in Section 4.3 the imputation of missing data is discussed.

In this project we will mostly use R as a programming language. The book by Peter
Dalgaard[11] gives an introduction to statistical and data mining tasks in R, including survival
analysis.

4.1 Survival analysis

Survival analysis is an analysis method that models time-to-event data. It has many applications
in the medical domain, but can also be used to model the time until failure for machines or time
until recidivism for ex-convicts. In this case we use survival analysis to model the time it takes
until a client exits the social security.

An event in survival analysis corresponds to death or failure in most examples, luckily our
event is a lot more positive. The time component can be viewed as survival time; the time
period a client survives in the dataset. Notice that long survival times are in this case unwanted,
because we want a client to flow out of the system as soon as possible.

Another aspect of survival analysis is censoring. There are two types of censoring: left and
right censoring. Left censoring means that a client gets the event before it is observed, either
because he receives the event before the start of the study or because the observation of an event
always happens after the first exposure (for example when testing for a disease that manifests
itself later).

Right censoring means that the observed survival time is shorter than the actual survival
time. There can be two types of right-censoring:

• The client experiences the event after the study period (or never)

• The client withdraws from the study (for example if he moves to another city, if he is being
detained, or if he exits the social security for other reasons)

In our case we only have to deal with right-censored data, since we immediately know when
a client exits the social security. As opposed to regression models, survival analysis uses the cen-
sored data up until the point where censoring occurs, since the client that experiences censoring
would also survive until that time if censoring had not occurred.
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Survival analysis uses two quantitative terms; the survival function (S(t)) and the hazard
function (h(t)). The survival function gives the probability that a client survives longer than
some time t:

S(t) = Pr(T > t), (4.1)

where T is the survival time. The survival function is a monotonically decreasing function:

S(t1) ≥ S(t2) ∀t1 < t2, (4.2)

which follows from the definition of the survival function, since the survival rate can never
increase when t increases. The hazard function is given by:

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)
∆t

. (4.3)

The hazard rate can be explained as: ”The instantaneous potential per unit time for the
event to occur, given that the individual has survived up to time t”.[18]

There is a clear relation between the hazard function and the survival function. If the hazard
function is a constant λ then the following function describes the relation between the two
functions:

h(t) = λ⇔ S(t) = e−λt. (4.4)

For most survival analysis tasks the survival [27] package in R is used.

4.1.1 Kaplan-Meier estimator

The Kaplan-Meier estimator is a non-parametric method to estimate the survival function[15].
To calculate the survival function a product limit function is used:

S(tj) =

j∏
i=1

Pr(T > ti|T ≥ ti), (4.5)

where ti is the i’th failure time and Pr(T > ti|T ≥ ti) can be calculated by dividing the number
of observations that survive past time ti by the total number at risk at time ti. Observations are
at risk when they have not yet experienced the event and they are also not (yet) censored. Note
that since this is a non-parametric method, it does not depend on any of the covariates, nor can
it be used as a good model to predict survival times for new observations. It does however give
us an estimation of the survival function for the data set and we can easily plot the resulting
curve (see Figure 4.1). Since the Kaplan-Meier estimator calculates the survival function only at
every failure time, the Kaplan-Meier estimator produces a step curve, while the actual survival
function should result in a smooth curve. However when the number of failure times increases,
the Kaplan-Meier estimator will resemble the actual survival curve.

4.1.2 Cox proportional hazards model

The Cox proportional hazards model[10] is a very popular method for survival analysis. It is a
semi-parametric model and instead of directly defining the survival function it defines the hazard
function as:

h(t,X) = h0(t) exp

(
p∑
i=1

βiXi

)
, (4.6)
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Figure 4.1: A Kaplan-Meier plot. A step indicates a failure time where one or more clients
experience an event. The tick marks indicate censoring and the shaded areas correspond to the
confidence intervals.

where X is the vector of covariates. h0(t) is the baseline hazard which does not contain
any of the covariates while the exponential expression contains the covariates but not the time.
Therefore this model can only handle variables that do not change over time. Though there exist
implementations of this model that can handle time-varying variables[28]. Because the baseline
hazard remains unspecified the model is called semi-parametric.

If we divide both sides of the previous equation by h0(t) we get de definition of the hazard
ratio:

h(t)

h0(t)
= exp

(
p∑
i=1

βiXi

)
(4.7)

If we take the logarithm of both sides the right-hand side becomes a linear combination of
covariates and coefficients similar to a linear regression model.

Since the baseline hazard remains unspecified, we do not have to make any assumptions about
the distribution of the hazard function. However since the Cox proportional hazards model can
only handle time-independent variables, the effect of each variable is assumed to be constant
over time. This assumption is called the proportional hazards assumptions, which is the basis of
the Cox proportional hazards model.

4.1.3 Parametric models

An alternative to the Cox proportional hazards model is a parametric model. Parametric models
fit a specified distribution in terms of unknown parameters to calculate the survival function.

Examples of parametric models, with their survival function are:

Exponential S(t) = e−λt
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Weibull S(t) = e−λt
p

Log-logistic S(t) = 1
1+λtp

Here the λ is parametrized by the covariates and other parameters, while p is held fixed. Note
that when p = 1, Weibull is the same as exponential. Furthermore the hazard function for the
exponential model is only the constant λ, so the proportional hazards assumption will always
hold in this case.

Not all parametric models are proportional hazards models, though many are Accelerated
Failure Time models. The AFT assumption is that the effect of the covariates is proportional
with respect to the survival time.

4.1.4 Survival tree

A very different approach to survival analysis is using a Classification and Regression Tree
(CART). Classification trees use recursive partitioning to split the data in groups using a splitting
criterion.[7]

For Survival Analysis, the splitting criterion that is mostly used is the log-rank statistic,
which will be discussed in Section 4.1.5. The algorithm splits the data on the split with the best
log-rank score until a stopping criterion is met, for instance minimum split size or bucket size.

The principle of a survival trees can also be extended to a survival random forest, which
trains multiple survival trees on samples of the data and covariates and then pools the result of
all the trees.

For creating survival trees the party package is used and for creating the Survival Forests the
randomForestSCR package is used.

4.1.5 Log-rank test

The log-rank test or Mantel-Cox test[20] is a statistic that tests if two or more groups are
statistically equivalent, with respect to their survival function. This test is used in the splitting
criterion of survival trees, but it can also be used to test for differences in multiple Kaplan-Meier
curves.

The log-rank test first calculates the expected cell counts for each failure time j ∈ {0, 1, ..., q}
for group i ∈ {1, 2} between (in this case) two groups:

ei,j =

(
ni,j

n1,j + n2,j

)
× (m1,j +m2,j), (4.8)

where ei,j is the expected cell count for group i at time j, ni,j is the total number at risk for
group i at time j and mi,j is the number of failures in group i at time j.

Then the log-rank statistic is calculated using the following formula:

Log-rank statistic =
(O2 − E2)2

Var(O2 − E2)
, (4.9)

where O2 − E2 =
∑q
j=1(m2,j − e2,j). The estimated variance can be calculated as follows:

Var(Oi − Ei) =

q∑
j=1

n1,jn2,j(m1,j +m2,j)(n1,j + n2,j −m1,j −m2,j)

(n1,j + n2,j)2(n1,j + n2,j − 1)
. (4.10)

Note that in this case we defined the log-rank statistic in terms of group two, however using
group one will yield the same result.
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The null hypothesis being tested is that there is no significant difference between the groups.
Since the log-rank statistic approximates a chi-square distribution with one degree of freedom,
the p-value can be read from the tables of the chi-square distributions. A p-value < 0.05 indicates
that the null hypothesis should be rejected, indicating a clear difference between both groups.

4.1.6 Concordance index

The Concordance index (or c-index)[12] is a popular metric for survival analysis. In contrast to
a mean squared error metric, the concordance index only considers the order of the predicted
event times.

To compute the Concordance index we first form all pairs of observations. Then remove all
pairs where the shorter time is censored and remove all pairs where the survival time is the same
and they are both censored. Now we can use the following formula to compute the c-index:

c-index =
#Concordant+ 0.5×#Ties

#Pairs
, (4.11)

where a predicted pair is concordant if the predicted order is the same as the actual order
and a pair is tied if the predicted survival time for a pair is the same. Note that a c-index of 1
denotes perfect concordance, while a c-index of 0.5 means that the model performs not better
than a random order.

Instead of calculating the c-index using a model that is trained on the entire dataset it might
be better to use a bootstrapping approach.

Bootstrapping creates a dataset by sampling from the dataset with replacement, where the
sample contains as many rows as the original dataset. Since we sample with replacement there
will be duplicates in the sample. This sample is then used as a dataset to train the model and
the rows that are not sampled are used as test set. We finally take the average over all samples
to calculate the bootstrapped c-index. In our case we use 100 bootstrap samples to get a reliable
estimate.

To calculate the c-index we use the validate function from the rms package, which gives us
the Somers’ D score[26] which can be easily transformed to the Concordance index using:

Dxy = 2× (c-index− 0.5). (4.12)

4.2 Matching

If we want to analyse the effect of a treatment, we could look at the Average Treatment Effect
(ATE) which is defined as:

ATE = E(y1|x, T = 1)− E(y0|x, T = 0), (4.13)

where y1 is the outcome for the treatment group and y0 is the outcome for the control group,
x is the vector of covariates and T is a binary variable indicating treatment. While this might
work fine in a random experiment, in our case this will not suffice, since the assignment to
treatment is based on the features of the client and not at random. For an example of why this
will not work, see Section 3.2.

A better way to analyse the treatment effect is to look at the Average Treatment Effect on
the Treated (ATET):

ATET = E(y1|x, T = 1)− E(y0|x, T = 1). (4.14)
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The second term is counter-factual and can never be observed. Therefore we have to estimate
the second term by matching every observation from the treatment group to a similar observation
from the control group. Then the difference in outcome can be attributed to the treatment.

In this section we will discuss different matching procedures to find for each observation
from the treatment group a similar observation from the control group, resulting in an increased
balance between the treatment and control group.

When using a matching method all covariates that influence the outcome or the assignment
to treatment must be present in the model. However this leads to a difficulty in our case.

Time is important in the assignment of treatment, because some treatments are only assigned
after some time in social security. Not including time as a covariate in the matching might lead
to an unfair matching. Consider a treated observation T with failure time xT and treatment
start time tT which is matched to an observation from the control group C with failure time xC
(see Figure 4.2).

Suppose that xC is smaller than tT . This results in an unfair matching since C did not get
the chance to participate in the treatment, because he exited the social security before tT .

However including time is not fair either since it is also part of the outcome (time to event).
Including time would increase the balance of the outcome between the treatment and control
group, which leads to a smaller difference between the groups.

t x
T

C

T

x

T

C
Figure 4.2: An unfair matching between a controlled observation C and a treated observation T .

Our approach is to use a customized matching where for every treated observation T a match
can only be made to an observation from the control group C if xC >= tT (see Listing 4.1).

Listing 4.1: Pseudo code for the matching. Calculating the distance can be done using PSM or
some other distance measure.

f o r ( i in 1 : row ( treatment ) ) {

# Control has to have a longe r s u r v i v a l time
# than s t a r t o f treatment
pos matched <− cont ro l g roup [ time >= s t a r t t i m e v o o r z [ i ] ]

# F i l t e r out matches a l r eady made
pos matched <− pos matched [ ! ( ID %in% control matched$ID ) ]

best match <− min ( d i s t ance ( treatment [ i ] , pos matched ) )

i f ( row ( best match ) > 1)
a r b i t r a r i l y break t i e s

contro l matched <− combine ( c o n t r o l . matched , bes t . match )
}

21



4.2. MATCHING CHAPTER 4. METHODS

The matching can be divided into two steps:

1. Calculate the distances between the treatment group and the control group (e.g. propensity
score, Mahalanobis distance)

2. Use a matching method to find a control group that closely matches the treatment group
(Nearest Neighbour, Caliper matching)

For the matching phase we will use nearest neighbour matching. Note that this leads to
a matched control group that has the same size as the treatment group. We could also have
used a matching with replacement which would lead to a smaller control group or match every
treatment unit to two or more control units which leads to a larger control group. In the next
subsections the different distance metrics will be discussed.

4.2.1 Propensity score matching

One of the most popular matching procedures is propensity score matching (PSM)[23].
The propensity score is defined as the chance that a client receives treatment:

p(X) = Pr(T = 1|X), (4.15)

where X is the vector of covariates and T is a binary variable that indicates if the client
has received treatment. The Propensity score can be estimated using a logistic regression model,
where the outcome variable indicates participation in the treatment. This step effectively reduces
the dimensions to one and the distance is calculated as follows:

d(x,y) = |p(x)− p(y)|. (4.16)

A downside of this method is that if two clients have the same propensity score, they don’t
necessarily have the same covariate values. Furthermore as mentioned in Section 3.2 PSM ap-
proximates a random experiment as opposed to the stronger fully blocked experiment, which
might increase imbalance.

4.2.2 Normalized distance matching

Another approach is to use a distance metric such as the Euclidean distance. First the data is
scaled so that every covariate has the same mean and standard deviation. If we do not scale
than age for example would be more important in the matching than a binary covariate, since
the difference in age between two clients can easily be greater than the difference in some binary
covariate. Therefore scaling makes sure that every covariate is equally important in the matching.
The distance after scaling can then be calculated as follows:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2, (4.17)

where x and y represent two observations and xi and yi represent the i’th covariate for both
observations. The distance can then be used in the matching phase to find a closest match.
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4.2.3 Weighted distance matching

Instead of using just the Euclidean distance we can also use different weights for every covariate.
To calculate the optimal weights for every covariate a genetic algorithm is used. Then the weights
can be used to calculate a weighted distance:

d(x,y) =

√√√√ n∑
i=1

wi × (xi − yi)2, (4.18)

where wi is the weight for the i’th covariate. For the genetic algorithm the function genMatch
from the Matching library is used with a population size of 100 and a maximum of 100 iterations.

4.2.4 Mahalanobis distance matching

Instead of Euclidean distance it is common to use the Mahalanobis distance[19]. The Mahalanobis
distance is calculated as follows:

d(x,y) =
√

(x− y)TΣ−1(x− y), (4.19)

where x and y are the two observations and Σ is the covariance matrix, which contains the
covariance between all pairs of covariates. Instead of just looking at the differences between the
observations it also takes the covariance of the different variables into account. Note that this
requires that the covariance matrix can be inverted. When the covariance matrix is the identity
matrix then the Mahalanobis distance reduces to the Euclidean distance. Note that scaling prior
to calculating the Mahalanobis distance is not needed, since the Mahalanobis distance scales all
covariates based on the covariance matrix.

4.3 Missing data

As discussed in Section 2.2.1 we use imputation to fill in missing values. When dealing with
missing data we can distinguish three patterns of missingness[24]:

• Missing at Random (MAR)

• Missing Completely at Random (MCAR)

• Missing Not at Random (MNAR)

MAR denotes that the distribution of the missingness does not depend on the missing parts,
but it can depend on the observed part. MCAR denotes that the missingness does not depend on
either the observed or the missing parts. If the distribution depends on the missing part as well
then it is MNAR. If the missingness pattern is MNAR then imputing missing values becomes
very difficult and we need to incorporate the reason of missingness into our model.

For multiple imputation the missingness must be MAR or MCAR. So we have to prove that
our missingness pattern is not MNAR. In the ideal situation we would contact the clients that
have missing data to find out if it the missingness depends on the missing data itself. However
this is infeasable in our case.

However we argue that data is missing when a consultant either forgets to administrate it or
if the data is not useful for their social security and intervention instruments. In that case the
missingness depends either on the probability of a consultant forgetting to fill it in (MCAR) or
on their social security and intervention instruments (MCAR).
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4.3.1 Multiple imputation

To impute the missing data the MICE (Multiple Imputations by Chained Equations) algorithm
is used.[8] The MICE algorithm works for data that is MAR or MCAR.

Multiple imputation is a technique where multiple imputed datasets are created from an
incomplete dataset. Then the analysis will be done on every imputed dataset and finally the
results are pooled. This decreases the uncertainty when dealing with imputed values.

MICE uses separate imputation models for every covariate using a technique called chained
equations. It follows the following steps for every imputation[2]:

1. Replace the missing values with the mean for every covariate as placeholder

2. For every covariate:

(a) Remove the placeholder and set the missing values to NA

(b) Use a regression model (e.g. logit/probit) to impute the missing values using the other
covariates

3. When every missing value is imputed, repeat step 2 for some cycles, commonly ten times
to improve the imputation

In our case the missingness of some covariates is substantial. Some of the values from Compe-
tensys have a missingness of 61%. Therefore as mentioned before in Section 2.2.1 we first remove
the rows of clients that have no known Competensys data and we remove some covariates that
are not important. The resulting missingness can be found in Table 4.1.

Covariate Missingness
Number of children 0.2539
Working experience 0.0989
Werk afgelopen jaar 0.0632
Etnicity 0.0368
Participatie trede 0.0295
Neighbourhood 0.0250
Dutch nationality 0.0006

Table 4.1: Missingness table of covariates before the imputation. Covariates not mentioned in
this table have no missing values.

Although the missingness of the number of children is still a bit high, the rest of the covariates
all have a missingness under ten percent. Also the total percentage of missingness in the entire
dataset is only 1.539%.

In this paper we will use the MICE algorithm with only one imputation, since the focus of
this research is not on the imputation but on the analysis and matching steps. Furthermore the
total missingness is still relatively low, so we expect that the uncertainty introduced by using
single imputation is not very high. Using only one imputation makes the analysis a lot easier
since we only have one imputed dataset and we do not have to pool the results.
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Chapter 5

Experiments

In this section the results of the experiments will be discussed. In Section 5.1 the results from
the Shiny tools will be discussed. In Section 5.2 the results from the classification models will be
presented. In Section 5.3 we discuss the result from the Survival Analysis models and in Section
5.4 we will look at the effect of the intervention programs.

5.1 Analysis using Shiny-tool

To effectively receive feedback on the used models and the data, two tools are used that are
written in R using the Shiny package1. This creates a web-interface that can automatically
update plots and other objects when the input changes. The first tool uses classification trees
to predict the outflow given client features. The second tool uses the Kaplan-Meier estimator to
plot the survival functions for different groups.

These tools make it easier explain how these models work to domain experts. Addition-
ally since these tools can be used to dynamically update the output we can interactively find
interesting results together with the domain experts.

5.1.1 Classification trees

The first tool that was built is based on classification trees. This model is chosen because it is
easy to explain how it works and it can show the effect of different covariates. The response
variable is a binary variable that indicates either outflow or no outflow. The user can select
which outflow reasons count as outflow and which reasons should be ignored. See Figure 5.1 for
a screenshot of the tool.

To avoid categorizing social security records that have just began as the ’no outflow’ category,
all records that are still running for less than half a year are filtered out (this period can be altered
in the tool). Furthermore multiple filters can be used to filter the dataset. Filters can be applied
to the Loonwaarde, the age and duration of the social security, but also to the intervention
instruments. In the last case clients who did not receive the selected treatment are filtered out
to create a tree from clients that have followed a specific treatment. This might help to find
groups of clients for which an intervention could work or not.

It is impossible to summarize all results from this tool, since it can produce a nearly infinite
number of classification trees. Some interesting trees can be found in Appendix A.1.

1http://shiny.rstudio.com/
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Figure 5.1: Screenshot from the classification tree tool. To the left a sidebar is shown with many
possible filters and plotting options, in the center the classification tree is shown and below the
tree information about the tree and intervention instruments in the leaf nodes can be found.

Some of the features that improved or deteriorated the chance of leaving the social security
system were already known, however there were also some surprises. As expected a low age
(< 28) and a high Loonwaarde were important characteristics, but more surprisingly having one
or more children or one or more cost divisors significantly reduces the chance of outflow.

Interestingly when filtering on intervention instrument, two classification trees were different
from most of the other trees. For Intervention E the most important feature to predict outflow
was if someone had a Dutch nationality. For Intervention B two of the most important features
where if someone had worked the previous year and part-time income. This might be logical
since this intervention instrument is focused on actively assisting clients to get a job.

5.1.2 Survival analysis

The second tool plots the survival curves based on the Kaplan-Meier estimator. The user can
customize which outflow reasons count as an event. The outflow reasons that are not selected are
considered censored. Furthermore it is also possible to filter the dataset using filters comparable
to the classification tree tool. See Figure 5.2 for a screenshot of the tool.

As is the case with the previous tool it can create many different interesting curves. Some of
the curves can be found in Appendix A.2.

Some interesting results from the tool were:

• Males exit the social security faster and the proportion of males to exit the social security
is much bigger than females

• Clients that have part-time income have a lower survival rate (except for the group with
the highest Loonwaarde)

26



5.2. CLASSIFICATION MODELS CHAPTER 5. EXPERIMENTS

Figure 5.2: Screenshot from the Survival analysis tool. To the left the sidebar with filters and
plotting options is shown, in the center the Survival function is plotted using the Kaplan-Meier
estimator. Beneath the Survival function, the log-rank score and number of observations can be
found.

• The biggest difference in curves was due to Werk afgelopen jaar equals ’yes’, which signif-
icantly reduced the time to outflow

5.2 Classification models

For consultants, who help clients with their reintegration, it might be useful to know which
clients have a high probability of exiting the social security within six years. Therefore we also
trained some classification models to predict the chance of outflow.

The models used were classification tree, conditional inference tree and Naive Bayes, since
the implementation of those models in R can easily handle unknown values. We assume that
the reader is familiar with Naive Bayes and classification trees. Conditional inference trees are
based on the framework proposed by Hothorn et al.[14]. They test for independence between
the covariates and the response variable to find the covariate with the strongest association to
the response variable before finding an optimal split in that covariate. According to the authors
this prevents the variable selection bias and over-fitting of traditional classification trees.

Among the models Naive Bayes performed the best. In Figure 5.3 the accuracy, precision
and recall are plotted against different thresholds. The plots for the other two models can be
found in Appendix B.1.

This model can be used to automatically give a score to every new client that enters the
social security. The consultants then can use this score to help people with a low (or medium)
score first instead of clients that are bound to exit the social security faster.
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Figure 5.3: Performance of the Naive Bayes classifier. The horizontal black line indicates the
baseline accuracy when we classify all cases as the majority class (no outflow).

5.3 Survival analysis models

This section describes the different survival analyses that were performed. In the remainder of
this chapter the data is first imputed using the following procedure.

From all the Competensys data the covariate with most known values is found. All clients
that have no known value for this covariate are removed. Covariates that are not informative
or that contain too many unknown values are removed. The remaining data is imputed using
MICE with one imputation and a maximum of 5 MICE iterations.

5.3.1 Cox proportional hazards model

Cox proportional hazards model is the first survival model we tested. The event is in this case
outflow to a full-time job, other outflow reasons are again considered censored. The resulting
output can be found in Appendix C.1.

The most significant covariates are age, gender, part-time income, Loonwaarde, Partici-
patie trede and Werk afgelopen jaar . The covariate with the most positive coefficient (shorter
survival time) is the highest level of Loonwaarde, while the covariate with most negative coeffi-
cient is not having worked the past year.

The coefficients can be interpreted as follows: Consider the covariate Werk afgelopen jaar
equals ’no’. The coefficient of −1.15 means that if someone has not worked the past year then
the log hazard ratio decreases by 1.15. A negative coefficient indicates a positive effect on the
expected survival time and thus a negative estimated effect on the hazard.

The concordance index of the model is 0.811, when the model is trained on the complete
dataset and 0.791 on average with 100 bootstrap samples.

When using the Cox proportional hazards model, we should first check if the proportional
hazards assumption holds. This can be tested using a statistical test. The output of this test
can be found in Appendix C.2.
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As we can see the global p-value is lower than 0.05, which indicates a likely violation of the
proportional hazard. Both part-time income and the number of children have a p-value below
0.05, however simply removing those covariates can make the model perform worse.

In Figure 5.4 the value of the coefficients of part-time income and children is shown over time.
It seems that the influence of part-time income on the log hazard hazard ratio increases in the
first year and the influence of children decreases slightly.
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Figure 5.4: Coefficients of part-time income (left) and children (right) plotted over time. If the
plotted curve is completely horizontal, then the effect of the covariate is independent over time.

Note that a violation of the proportional hazards does not make the model useless, but the
underlying statistical model will most likely not hold.

5.3.2 Parametric survival models

Since the proportional hazards assumption is probably violated we also look at parametric sur-
vival models. In this case we consider the exponential, Weibull and log-logistic models. The
output of the log-logistic model can be found in Appendix C.3.

The concordance index for the models trained on the entire dataset can be found in Table
5.1.

Model Apparent Bootstrapped
Exponential 0.810 0.789
Weibull 0.811 0.792
Log-logistic 0.813 0.792

Table 5.1: Concordance indices for the parametric survival models trained on the entire dataset
(apparent) and average of 100 bootstrap samples.

As we can see the concordance index is practically the same for all the different methods.
The scores for the Cox proportional hazards model are also comparable to these scores.
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Also the coefficients and the significance of the covariates are practically the same as the
output from the Cox proportional hazards model. Note that the sign of the coefficients from the
parametric models is opposite to the Cox proportional hazards model.

5.3.3 Survival trees

As is the case with the normal classification trees, we can make many different survival trees
depending on different filters and outflow. However one of the most interesting survival trees is the
one for outflow to work (see Figure 5.5). This analysis can also be very useful for visualizing the
effect of the covariates, since it combines insights from the Kaplan-Meier curves and classification
trees.

Figure 5.5: Plot of a survival tree for outflow to work. At every node the p-value of the split is
shown and the splitting criterion. At the leaf nodes the Kaplan-Meier estimators are shown for
every group.

In Figure 5.5 the survival tree is displayed. We can see that Werk afgelopen jaar is the most
important covariate, with a p-value < 0.001. The group with lowest survival rate is the third leaf
node, which has almost four times as many events as the total group. This group has worked
last year, has the highest Loonwaarde and no part-time income. This is an interesting result
since part-time income is a positive feature overall, however for the group that has worked last
year and has the highest Loonwaarde it is a negative feature. Note that the third and fourth leaf
node have similar survival ratios at the end of the study period, however the third leaf node has
a steeper survival curve indicating a shorter survival time.

The group with the highest survival rate is fifth leaf node, which consists of clients that have
the lowest Loonwaarde and who have not worked last year. Almost no one in this group has
found a job in the study period.

5.3.4 Survival random forest

While a survival tree is an interesting model to visualize survival data, it has its drawbacks, such
as over-fitting. A random forest mostly outperforms classification trees, so instead of using a
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survival tree, we could also use a survival forest to model the survival data. The error rate and
importance of the covariates can be found in Figure 5.6.

Figure 5.6: The left plot shows the out-of-bag (OOB) error rate depending on the number of
trees used. The right plot gives the variable importance of all the covariates.

To evaluate model we again use the c-index and compare the survival forest to the Cox
proportional hazards model (see Figure 5.7). The c-index is again calculated using bootstrapping
with 100 samples.

As we can see, the Cox proportional hazards model performs slightly better than the survival
forest at all times, even though the proportional hazards assumption will likely not hold. The
random forest was built using 200 trees.

5.4 Analysis on intervention programs

Up until now we have looked at the effect of client features on the outflow, but not at the effect of
the intervention instruments. The classification tree tool can filter on intervention instruments,
but that will not tell us how the different programs compare to each other.

If we want to look at the effect of the intervention instruments we ideally want a treatment
group of clients who have only participated in that kind of treatment and a control group who
has not participated at all. Unfortunately it is almost impossible to find a treatment group that
only has had one treatment and since everyone receives some intervention instrument there also
is no such control group.

The next best thing we can do is compare a group that has received among other treatments
one particular intervention instrument and a group that has received other treatments but not
this particular intervention instrument. In this case we compare the effect of an intervention
instrument against all other intervention instruments.

This analysis requires two steps; First we must make sure that the treatment and control
group differ in their treatment, while the rest of the covariates are equal (as much as possible).
Then we can use survival analysis to plot the differences using Kaplan-Meier curves between the
two groups and check the log-rank test, to see if the curves differ significantly.
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Figure 5.7: The c-index between the Cox proportional hazards model and the survival forest. At
each timepoint the c-index is calculated using only those pairs where one of the event times is
known to be earlier than this timepoint.

5.4.1 Matching

For creating the control group we use propensity score matching, genetic matching, Euclidean
distance matching and Mahalanobis distance matching. To evaluate the effect of the matching
we use the Standardized Mean Difference (SMD), which in this case is calculated as follows:

SMDi = 100%× mean(Ti)−mean(Ci)

sd(Ti)
, (5.1)

where Ti indicates the i’th covariate of the treatment group and Ci the i’th covariate of the
control group. To evaluate the result of the matching we can look at the difference of the SMD
before and after the matching. See Tables 5.2, 5.3, 5.4 and 5.5 for an overview of the average SMD
over all covariates for the intervention instruments Intervention A, Intervention B , Intervention
C and Intervention D .

As we can see Mahalanobis distance and PSM usually work best on reducing the overall SMD.
However different matching methods may differ in their SMD for important covariates. So the
overall SMD does not say everything and we should use multiple matching techniques.

5.4.2 Survival analysis

Now that we have a matched control group, for every intervention instrument we can use the
Kaplan-Meier estimator to plot the survival function for the treatment and control group.
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Before After
Matching mean min SE max SE mean min SE max SE
PSM 10.225% 8.066% 12.385% 4.149% 3.480% 4.818%
Gen. Match 10.225% 8.066% 12.385% 6.776% 5.542% 8.010%
Norm. Match 10.225% 8.066% 12.385% 5.269% 3.994% 6.544%
Mahalanobis 10.225% 8.066% 12.385% 4.158% 3.322% 4.994%

Table 5.2: Standardized mean difference for Intervention A over all covariates, before and after
the matching and the standard error on both sides.

Before After
Matching mean min SE max SE mean min SE max SE
PSM 21.025% 17.385% 24.664% 3.945% 3.380% 4.509%
Gen. Match 21.025% 17.385% 24.664% 9.522% 7.961% 11.083%
Norm. Match 21.025% 17.385% 24.664% 5.729% 4.443% 7.015%
Mahalanobis 21.025% 17.385% 24.664% 3.536% 2.963% 4.109%

Table 5.3: Standardized mean difference for Intervention B over all covariates, before and after
the matching and the standard error on both sides.

Before After
Matching mean min SE max SE mean min SE max SE
PSM 19.025% 15.846% 22.205% 2.528% 2.165% 2.891%
Gen. Match 19.025% 15.846% 22.205% 7.727% 6.467% 8.988%
Norm. Match 19.025% 15.846% 22.205% 5.399% 4.005% 6.794%
Mahalanobis 19.025% 15.846% 22.205% 3.574% 2.812% 4.335%

Table 5.4: Standardized mean difference for Intervention C over all covariates, before and after
the matching and the standard error on both sides.

Before After
Matching mean min SE max SE mean min SE max SE
PSM 14.417% 12.447% 16.387% 8.500% 7.466% 9.534%
Gen. Match 14.417% 12.447% 16.387% 6.945% 5.752% 8.138%
Norm. Match 14.417% 12.447% 16.387% 5.873% 4.433% 7.312%
Mahalanobis 14.417% 12.447% 16.387% 5.329% 4.305% 6.354%

Table 5.5: Standardized mean difference for Intervention D over all covariates, before and after
the matching and the standard error on both sides.

Since Mahalanobis distance and PSM score the best in their overall standard mean difference
we use those two methods for the Kaplan-Meier curves. In Table 5.6 the log-rank statistics for
the different Kaplan-Meier curves can be found.

As we can see only for Intervention B and Intervention C the treatment and control group
have significantly different KM-curves according to most matching algorithms.
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Intervention PSM Gen. Match Norm. Match Mahalanobis
Intervention A 0.611 0.274 0.416 0.974
Intervention B 0.000 0.001 0.005 0.008
Intervention C 0.094 0.000 0.011 0.380
Intervention D 0.983 0.303 0.518 0.297

Table 5.6: Log-rank statistics score on Kaplan-Meier estimators on the matched dataset, using
different distance metrics.

Figure 5.8: The Kaplan-Meier estimator for Intervention A on the matched dataset using the
Mahalanobis distance matching (left) and PSM (right).

Intervention A

For the instrument Intervention A we can see that the curves do not differ that much, however
the treatment group seems to have a slower start but in the end it catches up to the control group
(see Figure 5.8). This might be due to the nature of the intervention instrument, which requires
participants to work at a certain place to get experience. During that phase they cannot easily
get another job. However if we look at the log-rank statistic, the curves do not differ significantly,
so this intervention instrument does not work better than other instruments for these clients.

Intervention B

For the instrument Intervention B we can see a clear difference in the curves (see Figure 5.9). Not
only does the curve for the treatment group lie completely beneath the control curve, the curves
also move further apart, indicating an increasing effect. As we have seen in the previous section
the difference before matching is also biggest in this program. This is because this program
is intended for clients that have a bigger chance of getting a full-time job. To do this, this
intervention instrument actively assists clients to get a job. As we can see in the log-rank score
these curves also differ significantly according to all matching methods.

Intervention C

The Kaplan-Meier curves for Intervention C look similar to those of Intervention B (see Figure
5.10). This might be because the target audience for this intervention is comparable to that
of Intervention B . According to the genetic and normalized matching the Kaplan-Meier curves
differ significantly, but according to the Mahalanobis distance they do not differ significantly. In
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Figure 5.9: The Kaplan-Meier estimator for Intervention B on the matched dataset using the
Mahalanobis distance matching (left) and PSM (right).

Figure 5.10: The Kaplan-Meier estimator for Intervention C on the matched dataset using the
Mahalanobis distance matching (left) and PSM (right).

the plot from the Mahalanobis distance both curves are almost the same in the beginning, they
only begin to differ after 3-4 years. This might indicate the effect is largest for clients that have
been in the social security for a longer time.

However PSM gives the best match and in the right plot we can see a slight difference between
the curves. The p-value of the log-rank score is in this case 0.094 which is significant at α = 0.1.

Intervention D

For the last intervention Intervention D , the Kaplan-Meier curves are a lot harder to interpret
(see Figure 5.11). This is because the number of treatments in this group is a lot lower en the
different training programs that make up this intervention might differ. According to the log-
rank score the curves do not differ significantly, which means that this intervention might not
work better than other intervention instruments for these clients, however it is also probably not
worse than other intervention instruments for these clients.
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Figure 5.11: The Kaplan-Meier estimator for Intervention D on the matched dataset using the
Mahalanobis distance matching (left) and PSM (right).
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Chapter 6

Conclusion

From the analysis follows that there are some personal features that influence the chance of
outflow given the current intervention assignment policy, such as Loonwaarde, Participatie trede,
Werk afgelopen jaar , age, gender and part-time income. The importance of this covariates can
be found in both the classification trees and the survival analysis. The classification trees however
also suggest that the number of children and cost divisors are important features. Using these
analyses it is possible to predict if an individual has a high chance of outflow. These models tend
to work well, but will probably not be used in the near future, since they require a standardized
central dataset that can be easily updated.

Using survival analysis models we can better model the time it takes until someone exits the
social security. Even though the proportional hazards assumption will probably not hold for
some of the covariates, Cox proportional hazard model still performs well and can be used to
find the importance and significance of the different covariates, while survival trees can be used
to partition the space on log-rank score to create interesting new insights.

Finally using matching and survival analysis we found that both Intervention B and Inter-
vention C worked better than other intervention instruments for clients that typically received
those interventions, while Intervention A and Intervention D did not perform significantly better
or worse than other interventions. This might indicate that it is easier to help clients that are
more likely to find a job in the first place and that helping them further improves their speed of
exiting the social security.

In Section 1.1 we discussed the sub-questions:

1. Can client features be used to predict the outflow from social security?

2. Can client features be used to predict the outflow from social security for clients that have
participated in a specific intervention?

3. Which intervention(group) has a higher outflow rate than other intervention(group)s?

Both the classification trees and survival analysis models can be used to answer the first
sub-question. It appears that client features can be used to predict both the survival time in the
social security and if someone exits because of a specific reason.

To answer the second sub-question we can again look at the Shiny tools. In both tools we
can filter on the intervention instrument to look at the influence of client features on the outflow
within an intervention group. Furthermore the classification tree tool can also give for every
leaf-node a list with the top 6 interventions followed by the clients in that leaf node.
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Finally to answer the third sub-question we used an approach that consists of a matching
phase and Kaplan-Meier curves.

Which brings us to the main research question: ‘How can we use Data Mining techniques on
social security data to improve the efficiency of reintegration?’

It seems there are a lot of different techniques useful in the domain of social security, where
survival analysis is a specifically good technique.

6.1 Discussion

The municipality where this project was executed was enthusiastic about the results. Currently
they are still discussing what to do with the insights gained from this research. One of the results
will probably be the deployment of the Shiny tools on a laptop. These tools can then be used to
look for additional patterns and features in the dataset that we have not found yet. The tools
will most likely be used by the statistics department of the municipality.

Furthermore a presentation about the results was also given to the management team that
handles the social security. The reactions were very positive on the results. Still it can be difficult
to apply the results to their policy, since it requires a different way of handling data.

Even though we are very careful to precisely formulate the assumptions made during the
matching, there can still be a problem with the quality of the matching, either because we have
too little data or because the balance is too low. Interpreting the quality of the balance is difficult
and highly depends on the context and imbalance before the matching. In our case having no
difference between the treatment and control groups is infeasible. However since the balance has
been greatly increased by the matching we conclude that the matching is good enough.

Another problem related to the matching is that the treatment group also participates in
other interventions. Therefore we do not know for certain that the effect is only thanks to the
intervention instrument that is currently investigated.

Yet another problem is that of implementation. For this project the data was manually
extracted from different databases from the municipality and many preprocessing steps were
performed before the analysis could be done. However these kind of analysis are more useful when
they can be done more than once. Currently this is not easily possible since the preprocessing
and manual extraction are a large part of this project. Also using prediction models that can
continuously predict and update its model requires a more standardized dataset for example in
the form of a data warehouse.

We must always keep in mind that the results found using the different models signify cor-
relation but not necessarily causation. Even though outflow always occurs after the features are
known, there might still be hidden features that also play an important roll.

6.2 Future work

While this project was successful in presenting some ways where data science can help to improve
the efficiency of reintegration there are always data science techniques which could also be useful
in this field. We experimented briefly on using clustering which seems like a promising technique
on finding target audiences for intervention instruments. Also sequential pattern mining might
be a good technique to analyse the order of different intervention instruments that clients can
follow.

Another way to look at the imbalance between the treatment and control group is to include
both the intervention instrument and the covariates in a survival model such as the Cox pro-
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portional hazards model. While this was briefly tried in this project, more research would be
required to evaluate the usefulness of such a model.

Also it might be better to include time-varying variables in the Cox regression model, because
some covariates will definitely change over time, such as age.

Another improvement would be to use multiple imputation instead of single imputation and
fit the models on every imputed dataset before pooling the results together.

Finally analysing this data more than once could lead to valuable insights, especially if the
municipality decides to change their policy on the basis of this analysis. Then it would be good
to analyse the result of such a policy change.
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Appendix A

Shiny Tool

A.1 Classification trees

Below are some interesting classification trees that were extracted from the classification tree
tool.

Figure A.1: Classification tree on all outflow reasons

In Figure A.1 we can see a classification tree that classifies all outflow reasons as outflow.
The first split is on the number of cost-divisors. Only 26 percent of all people with cost divisors
exit the social security as opposed to 57 percent of the people who do not have cost-divisors.
The group with the largest probability of outflow consist of clients with no cost divisors, an age
below 26, no children and no problems with writing.

Figure A.2 classifies only work, schooling and income as outflow reasons. These reasons might
be seen as positive outflow reasons, since the client flows out of social security with less financial
problems. We have a similar group with high probability of outflow as in the previous figure, but
now there is also a small group of older clients with high Loonwaarde who can handle pressure
and have no financial problems. This group has a high ratio of outflow but is also small.

Instead of looking at outflow within the study period (five years) Figure A.3 classifies the
same outflow reasons as the previous figure but within one year. There is only one group with a
high probability of outflow within one year. This group consists again of young clients with no
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Figure A.2: Classification tree for outflow reasons: work, schooling, income

Figure A.3: Classification tree for outflow within a year

children or cost-divisors and additionally they have a Dutch nationality.
Figure A.4 classifies outflow after a year (using the same outflow reasons as the previous two

trees). In this tree other covariates appear. One very important one is having part-time income.
There is also a small group with a high probability of outflow, namely clients without part-time
income, who have worked the past year and have either a low or high Participatie trede and live
in a certain neighbourhood.

Figure A.5 classifies outflow within the group of clients that have received Intervention E .
Interestingly the most important covariate in this case seems to be if a client has a Dutch
nationality. Again age, the number of children and how a client handles pressure are important
covariates.

Finally Figure A.6 classifies outflow within the group of clients who receive Intervention
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Figure A.4: Classification tree for outflow after a year

Figure A.5: Classification tree for intervention Intervention E

B . As we can see the probability of outflow within Intervention B is higher than on average.
Furthermore there are more positive groups then in the previous figures. Since Intervention B
focusses on getting clients a job as fast as possible Werk afgelopen jaar is the most important
covariate.
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Figure A.6: Classification tree for intervention Intervention B
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A.2 Kaplan-Meier curves

Below are some interesting Kaplan-Meier curves from the Survival Analysis tool. In all curves
we only look at the outflow reason ’work’.

Figure A.7: Kaplan-Meier curves with stratified gender and Loonwaarde

(a) Gender

(b) Loonwaarde

In Figure A.7 we can see the Kaplan-Meier curves stratified on gender (left) and Loonwaarde
(right). As we can see a higher portion of males flow out of the social security then females.
Furthermore the outflow seems to correspond with the expected Loonwaarde, where a high
Loonwaarde indicates a high chance of outflow (to work). The p-value of the log-rank score is in
both cases 0, indicating a significant difference between the curves.

Figure A.8: Kaplan-Meier curves with stratified part-time income and Werk afgelopen jaar

(a) Part-time income (b) Werk Afgelopen Jaar

In Figure A.8 the Kaplan-Meier curves stratified on part-time income (left) and Werk afgelopen jaar
(right) are displayed. The p-value of the log-rank score for is 0.01 for part-time and 0 for
Werk afgelopen jaar , again indicating a significant difference. For both curves the difference in
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outflow tends to get bigger over time and for Werk afgelopen jaar the difference between the two
curves is exceptionally large indicating a big advantage for people with recent working experience.
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Appendix B

Classification models

B.1 Performance of tree models

Below the performance is given for the other classification models that were tested. The hori-
zontal line indicates the baseline accuracy of the majority class (no outflow).

Figure B.1: Performance of the classification tree

49



B.1. PERFORMANCE OF TREE MODELS APPENDIX B. CLASSIFICATION MODELS

Figure B.2: Performance of the conditional inference tree
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Appendix C

Survival analysis

C.1 Output Cox proportional hazards model

Below is the output of the Cox proportional hazards model.

Call:

coxph(formula = func, data = x)

n= 2937, number of events= 391

coef exp(coef) se(coef) z Pr(>|z|)

LEEFTIJD -0.021292 0.978934 0.004626 -4.602 0.000004177450 ***

NED_NATION1 0.314563 1.369660 0.214615 1.466 0.142729

AfkomstNiet-westerse allochtoon -0.403875 0.667728 0.154352 -2.617 0.008882 **

AfkomstWesterse allochtoon 0.349842 1.418843 0.301188 1.162 0.245422

COD_GESLACV -0.664408 0.514578 0.125313 -5.302 0.000000114553 ***

COD_LEEFVao -0.316419 0.728754 0.331024 -0.956 0.339133

COD_LEEFVge 0.240601 1.272014 0.152700 1.576 0.115108

COD_HUISVeigenaar 0.022863 1.023126 0.565328 0.040 0.967741

COD_HUISVhuurder 0.056943 1.058596 0.465537 0.122 0.902648

COD_HUISVinrichting -0.922717 0.397438 1.117131 -0.826 0.408821

COD_HUISVinwonend 0.287528 1.333128 0.622005 0.462 0.643895

AAN_KINDER -0.266533 0.766030 0.092513 -2.881 0.003964 **

BUURT02 Zuidoost 0.052570 1.053977 0.204035 0.258 0.796675

BUURT03 Graafsepoort 0.097722 1.102656 0.199777 0.489 0.624732

BUURT04 Muntel/Vliert 0.132627 1.141825 0.220581 0.601 0.547664

BUURT05 Rosmalen Zuid -0.021025 0.979194 0.384363 -0.055 0.956376

BUURT06 Rosmalen Noord 0.356279 1.428006 0.296089 1.203 0.228868

BUURT07 De Groote Wielen 1.000439 2.719476 0.318008 3.146 0.001655 **

BUURT08 Empel 0.177605 1.194354 0.475476 0.374 0.708753

BUURT09 Noord -0.166118 0.846946 0.205223 -0.809 0.418254

BUURT10 Maaspoort 0.400239 1.492181 0.231269 1.731 0.083519 .

BUURT11 West -0.055625 0.945894 0.181544 -0.306 0.759301

BUURT12 Engelen -0.323508 0.723607 0.728404 -0.444 0.656947

BUURT13 Nuland 0.363992 1.439063 0.531120 0.685 0.493136

BUURT14 Vinkel 0.614395 1.848538 0.613312 1.002 0.316457

schuldhulpverlening1 -0.368782 0.691576 0.171396 -2.152 0.031425 *

parttime_inkomsten1 -0.606127 0.545460 0.117264 -5.169 0.000000235461 ***

AANTAL_KOSTENDELERS -0.189736 0.827178 0.073313 -2.588 0.009652 **

aggressief1 -0.188973 0.827809 0.719065 -0.263 0.792702

maatregel -0.131779 0.876535 0.050871 -2.590 0.009585 **

EERDER_UITK 0.099394 1.104501 0.085709 1.160 0.246184

loonwaardeLoonwaarde 30-50% 0.871476 2.390435 0.352355 2.473 0.013388 *

51



C.2. PH ASSUMPTION APPENDIX C. SURVIVAL ANALYSIS

loonwaardeLoonwaarde 50-80% 1.123851 3.076680 0.312353 3.598 0.000321 ***

loonwaardeLoonwaarde 80-100% 1.968323 7.158661 0.307642 6.398 0.000000000157 ***

werkervaringNee -0.702737 0.495228 0.225097 -3.122 0.001797 **

start_participatie_trede2 0.613061 1.846074 0.240956 2.544 0.010950 *

start_participatie_trede3 0.611466 1.843131 0.246894 2.477 0.013263 *

start_participatie_trede4 0.721380 2.057271 0.256956 2.807 0.004994 **

start_participatie_trede5 0.892436 2.441068 0.268354 3.326 0.000882 ***

start_participatie_trede6 0.470612 1.600973 0.476364 0.988 0.323189

werk_afgelopen_jaarNee -1.151484 0.316167 0.129315 -8.905 < 0.0000000000000002 ***

AANT_LAGE_BOETE -0.035100 0.965509 0.093134 -0.377 0.706269

AANT_ZWARE_BOETE -0.361462 0.696657 0.174820 -2.068 0.038675 *

AANT_WAARS_BRIEF -0.346543 0.707128 0.235284 -1.473 0.140786

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Concordance= 0.811 (se = 0.016 )

Rsquare= 0.16 (max possible= 0.864 )

Likelihood ratio test= 511.6 on 44 df, p=0

Wald test = 392.1 on 44 df, p=0

Score (logrank) test = 484 on 44 df, p=0

C.2 PH assumption
Below is the output of the proportional hazards assumption check. A p-value < 0.05 indicates a likely violation
of the proportional hazards assumption.

rho chisq p

LEEFTIJD 0.056794 1.160161 0.281432

NED_NATION1 -0.051964 1.143363 0.284943

AfkomstNiet-westerse allochtoon -0.028630 0.349188 0.554573

AfkomstWesterse allochtoon -0.013337 0.069531 0.792021

COD_GESLACV 0.023044 0.220894 0.638359

COD_LEEFVao 0.021952 0.184295 0.667708

COD_LEEFVge -0.022311 0.165082 0.684520

COD_HUISVeigenaar -0.021641 0.194358 0.659314

COD_HUISVhuurder -0.032414 0.425573 0.514169

COD_HUISVinrichting 0.052943 1.053870 0.304617

COD_HUISVinwonend 0.053545 1.165975 0.280230

AAN_KINDER -0.113438 5.686781 0.017093

BUURT02 Zuidoost 0.001498 0.000883 0.976290

BUURT03 Graafsepoort -0.000704 0.000196 0.988837

BUURT04 Muntel/Vliert 0.013838 0.076120 0.782627

BUURT05 Rosmalen Zuid 0.074543 2.175492 0.140225

BUURT06 Rosmalen Noord 0.061148 1.478422 0.224022

BUURT07 De Groote Wielen -0.028025 0.298180 0.585026

BUURT08 Empel -0.008665 0.030731 0.860841

BUURT09 Noord 0.024507 0.241407 0.623192

BUURT10 Maaspoort 0.095026 3.753470 0.052698

BUURT11 West 0.037984 0.572549 0.449248

BUURT12 Engelen -0.029824 0.359889 0.548568

BUURT13 Nuland -0.027882 0.313895 0.575300

BUURT14 Vinkel -0.007861 0.026138 0.871565

schuldhulpverlening1 0.067487 1.936045 0.164099

parttime_inkomsten1 0.160574 10.931530 0.000945

AANTAL_KOSTENDELERS 0.077278 2.619224 0.105576

aggressief1 0.021678 0.185656 0.666557

maatregel 0.060512 1.289240 0.256188

EERDER_UITK 0.006178 0.014095 0.905494

loonwaardeLoonwaarde 30-50% -0.055574 1.218310 0.269693

loonwaardeLoonwaarde 50-80% -0.006230 0.015838 0.899852

loonwaardeLoonwaarde 80-100% -0.049586 0.991626 0.319345
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werkervaringNee 0.058394 1.286888 0.256622

start_participatie_trede2 0.045586 0.823197 0.364247

start_participatie_trede3 0.076141 2.261820 0.132598

start_participatie_trede4 0.061571 1.494804 0.221473

start_participatie_trede5 0.037805 0.575226 0.448190

start_participatie_trede6 0.077150 2.347668 0.125471

werk_afgelopen_jaarNee -0.086019 3.184026 0.074361

AANT_LAGE_BOETE 0.015216 0.092980 0.760423

AANT_ZWARE_BOETE 0.062382 1.073292 0.300203

AANT_WAARS_BRIEF 0.073896 2.301996 0.129208

GLOBAL NA 69.008847 0.009384

C.3 Output parametric survival model
Below is the output of the log-logistic parametric survival model.

Parametric Survival Model: Log logistic Distribution

psm(formula = func, data = x, dist = "loglogistic")

Model Likelihood Discrimination

Ratio Test Indexes

Obs 2937 LR chi2 542.50 R2 0.213

Events 391 d.f. 44 Dxy 0.626

sigma 1.063044 Pr(> chi2) <0.0001 g 0.032

gr 2.036

Coef S.E. Wald Z Pr(>|Z|)

(Intercept) 4.8266 0.7525 6.41 <0.0001

LEEFTIJD 0.0271 0.0059 4.58 <0.0001

NED_NATION=1 -0.3882 0.2567 -1.51 0.1304

Afkomst=Niet-westerse allochtoon 0.5361 0.1880 2.85 0.0043

Afkomst=Westerse allochtoon -0.3919 0.3757 -1.04 0.2969

COD_GESLAC=V 0.8518 0.1555 5.48 <0.0001

COD_LEEFV=ao 0.3263 0.3851 0.85 0.3968

COD_LEEFV=ge -0.4121 0.1942 -2.12 0.0339

COD_HUISV=eigenaar -0.0467 0.6685 -0.07 0.9442

COD_HUISV=huurder 0.0654 0.5372 0.12 0.9030

COD_HUISV=inrichting 1.5316 1.3086 1.17 0.2418

COD_HUISV=inwonend -0.1498 0.7441 -0.20 0.8405

AAN_KINDER 0.3258 0.1104 2.95 0.0032

BUURT=02 Zuidoost -0.1715 0.2573 -0.67 0.5051

BUURT=03 Graafsepoort -0.2188 0.2503 -0.87 0.3820

BUURT=04 Muntel/Vliert -0.2874 0.2776 -1.04 0.3004

BUURT=05 Rosmalen Zuid 0.0157 0.4775 0.03 0.9737

BUURT=06 Rosmalen Noord -0.4921 0.3789 -1.30 0.1941

BUURT=07 De Groote Wielen -1.3437 0.4120 -3.26 0.0011

BUURT=08 Empel -0.0778 0.5963 -0.13 0.8961

BUURT=09 Noord 0.1526 0.2514 0.61 0.5439

BUURT=10 Maaspoort -0.4779 0.2903 -1.65 0.0997

BUURT=11 West -0.0381 0.2252 -0.17 0.8658

BUURT=12 Engelen 0.2497 0.8930 0.28 0.7798

BUURT=13 Nuland -0.4421 0.6418 -0.69 0.4909

BUURT=14 Vinkel -1.2103 0.8312 -1.46 0.1454

schuldhulpverlening=1 0.4587 0.2073 2.21 0.0269

parttime_inkomsten=1 0.8201 0.1464 5.60 <0.0001

AANTAL_KOSTENDELERS 0.2314 0.0875 2.64 0.0082

aggressief=1 0.3956 0.9966 0.40 0.6914

maatregel 0.1863 0.0631 2.95 0.0031

EERDER_UITK -0.1453 0.1049 -1.39 0.1660

loonwaarde=Loonwaarde 30-50% -0.9829 0.3974 -2.47 0.0134

loonwaarde=Loonwaarde 50-80% -1.2823 0.3511 -3.65 0.0003
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loonwaarde=Loonwaarde 80-100% -2.4121 0.3489 -6.91 <0.0001

werkervaring=Nee 0.7904 0.2605 3.03 0.0024

start_participatie_trede=2 -0.7279 0.2867 -2.54 0.0111

start_participatie_trede=3 -0.7513 0.2959 -2.54 0.0111

start_participatie_trede=4 -0.8607 0.3088 -2.79 0.0053

start_participatie_trede=5 -1.0852 0.3235 -3.35 0.0008

start_participatie_trede=6 -0.3492 0.5898 -0.59 0.5539

werk_afgelopen_jaar=Nee 1.4191 0.1614 8.79 <0.0001

AANT_LAGE_BOETE 0.0602 0.1116 0.54 0.5894

AANT_ZWARE_BOETE 0.4491 0.2128 2.11 0.0348

AANT_WAARS_BRIEF 0.4754 0.2867 1.66 0.0973

Log(scale) 0.0611 0.0422 1.45 0.1472
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