
Slim: functional reactive
user interface programming

Jaap van der Plas

August 26, 2016

M.Sc. thesis ICA-3998312

Supervisors:
dr. Wouter Swierstra

dr. Atze Dijkstra

Department of Information and Computing Sciences

Abstract

Functional programming has a number of important benefits over imperative program-
ming. However, most GUI libraries for Haskell provide an imperative API. Functional
Reactive Programming provides a way for programming reactive systems in a purely
functional style. This report details the design and implementation of Slim1, an em-
bedded DSL for Haskell that applies FRP concepts for programming user interfaces. Its
strong support for implementing complex and dynamic user interfaces is demonstrated
by a comparison to existing FRP libraries.

1https://hackage.haskell.org/package/slim

https://hackage.haskell.org/package/slim

In dedication to my father.

Contents
1. Introduction 6

1.1. Imperative user interface programming . 6
1.2. Purely functional user interfaces . 7
1.3. Contributions . 8

2. Functional Reactive Programming 10
2.1. Origins . 10
2.2. Concepts . 11
2.3. Classical FRP: Reactive . 13
2.4. Network configuration as monadic actions: Sodium 14
2.5. Start times as phantom types: Reactive Banana 15
2.6. Arrowized FRP: Yampa . 17
2.7. First-order signals: Elm . 19

3. Designing Slim 21
3.1. Introduction . 21
3.2. Hello world: static components . 21
3.3. Counting clicks: values and feedback loops 21
3.4. Resettable counter: basic FRP and initialization 22
3.5. Dynamic list of counters: initialization on demand 26
3.6. Dynamic list of counters with shared state: initialized behaviors 27
3.7. Enforcing initialization with types . 29

4. Implementing Slim 31
4.1. Overview . 31
4.2. Components . 32
4.3. The Start type . 37
4.4. Events and behaviors in IO: the FRP system 39
4.5. Simulation adapter . 42

5. Related work 46
5.1. Key properties . 46
5.2. First-order FRP: Threepenny.Reactive . 46
5.3. Higher-order FRP: Sodium . 50
5.4. Pure, first-order FRP: Elm . 51
5.5. Conclusions . 52

6. Conclusion 54
6.1. Summary . 54
6.2. Future work . 54

4

Contents

Appendix A. Full implementations 57
A.1. Code omitted from section 4.2 . 57
A.2. Code omitted from section 4.3 . 61
A.3. Code omitted from section 4.4 . 62
A.4. Code omitted from section 4.5 . 64

Appendix B. List of Listings 66

Acknowledgements 68

Bibliography 69

5

1. Introduction
1.1. Imperative user interface programming
Most graphical user interfaces (or GUIs) are created using imperative programming
languages. Programs written in such languages consist of commands and statements
that affect state. Imperative programs react to events by running blocks of code called
‘event handlers’ (also ‘callbacks’ or ‘observers’.)
Consider a simple Haskell[9] program that, using a hypothetical imperative UI toolkit,

creates a button that shows the number of times it’s been clicked:

counter :: IO Widget
counter = do

let count = 0
countRef <- newIORef count
countButton <- mkButton "0"
onClick countButton $ do

count <- readIORef countRef
let count' = count + 1
writeIORef countRef count'
setText countButton (show count')

return countButton

Listing 1.1.: Imperative counting button

The click count is initialized to 0 and stored in a mutable reference created with
newIORef. A button is created with the current count as its text. Then, using onClick,
an event handler (the do-block) is registered to be run whenever the button is clicked.
This event handler reads the value of the count variable, increases it by one and stores
it before updating the button text.
The imperative model makes user interfaces easy to create: the programmer starts

with a blank slate and imagines the steps the computer has to take to produce the desired
result, and which steps have to be taken to handle user input events. The problems come
later on when existing programs have to be changed. It becomes hard to reason about
what the state of the system will be when some sequence of events has resulted in a
complex series of commands and statements to be run.
Consider extending the program from listing 1.1 with a button that resets the counter:

6

1. Introduction

resettableCounter :: IO Widget
resettableCounter = do

let count = 0
countRef <- newIORef count
countButton <- mkButton "0"
onClick countButton $ do

count <- readIORef countRef
let count' = count + 1
writeIORef countRef count'
setText countButton (show count')

resetButton <- mkButton "reset"
onClick resetButton $ do

writeIORef countRef 0
setText countButton "0"

mkContainer [countButton, resetButton]

Listing 1.2.: Imperative counting button with reset

There is now an extra resetButton element that, when clicked, resets countRef back
to 0. In addition, the label of countButton also has to be reset to 0. There is no longer
a single, simple definition of countButtons label. Instead, it now depends on multiple
separate events and their handlers:

• Initially the label is 0.
• When countButton is clicked countRef is increased and used as label.
• When resetButton is clicked both countRef and countButtons label are reset to

0.

This makes it hard for the programmer to keep track of all the various factors that
can (or should) affect a user interface element and makes it easy to introduce bugs. In
this example, for instance, the programmer might forget to update countButtons label
and only be concerned with resetting the mutable variable. This mistake would be easy
to spot in such a simple program but is easy to miss in a larger and more complex
application spread out over hundreds of source files.

1.2. Purely functional user interfaces
A solution for the extensibility problem is provided by the functional programming
paradigm. Commands and statements are replaced by equations that define how pro-
grams input relates to its outputs. These equations can be reasoned about more easily
than command sequences and provide better modularity and composition as a result[12].
But how can equations be used to define a system that reacts to events? A promising

way to do this is through Functional Reactive Programming or FRP for short. It pro-
vides a way for defining a reactive system declaratively without resorting to imperative
commands and statements.

7

1. Introduction

The program from listing 1.1 rewritten using a hypothetical FRP library would look
as follows:
program :: IO Widget
program = mdo

let
count = accumB 0 update
update = (+1) <$ onClick countButton

countButton <- mkButton (show <$> count)
return countButton

Listing 1.3.: FRP counting button

The number of clicks is tracked by count which is defined as a behavior : a time-
varying value. Through the accumulating combinator accumB creates a behavior from
an initial value of 0 and an event to update it: update. This update event is based
on the button’s onClick event but with the value replaced by the function (+1). The
button is constructed using the behavior as its label. (Note that this mdo-block does not
imply any specific creation order; the reason for this is explained in chapter 3.)
This formulation has the advantage that the state, encapsulated by the count be-

havior, is only defined in one place. The example does not define event handlers that
depend on the state; instead, the dependencies are reversed and the state depends on
the events. This dependency is more clear when we extend this example with a reset
button as before:
resettableCounter :: IO Widget
resettableCounter = mdo

let
count = accumB 0 (merge update reset)
update = (+1) <$ onClick countButton
reset = const 0 <$ onClick resetButton

countButton <- mkButton (show <$> count)
resetButton <- mkButton (pure "reset")

mkContainer [countButton, resetButton]

Listing 1.4.: FRP counting button with reset

The count behavior now depends on the reset button as well as the count button: the
update event is merged with the reset event. Compared to the extended imperative
example from the previous section, the dependencies are clear, the code is concise and
there is little room for mistakes.

1.3. Contributions
This report describes an approach for applying FRP for graphical user interface pro-
gramming.

8

1. Introduction

Chapter 2 will provide background information about functional reactive programming
and describe a couple of implementations and their unique properties. Building on this
foundation, chapter 3 describes the main contribution of this report: Slim, an FRP-based
domain-specific language for creating user interfaces.
Emphasis is placed on interfaces that with a dynamic structure based on the data they

control and are created using composable elements. A series of examples will highlight
the design choices involved to provide expressiveness for creating dynamic and complex
user interfaces. Programs are constructed along the principles of the purely functional
programming language Haskell; using equations without resorting to imperative com-
mands and statements. Chapter 4 describes an implementation of this DSL.
There are already a number of existing FRP libraries that can be used to create

user interfaces. Chapter 5 compares the DSL to some of the most popular ones and
highlights their shortcomings in comparison to the library from chapter 3 when it comes
to dynamicity, bidirectionality and composability.
Conclusions and proposals for future work are outlined in chapter 6.

9

2. Functional Reactive Programming
2.1. Origins
The concept of Functional Reactive Programming originates from the seminal paper
Functional Reactive Animation[11] It describes a language called Fran which is a domain-
specific language (embedded in Haskell) designed for modeling interactive animations.
The key idea behind Fran is to provide a way of declaring values that vary over time
in a continuous way, similar to how vector graphics are defined over continuous space.
Such time-varying value are called behaviors, each of which can be thought of as a
(pure) function from timestamp to value. To support reactivity, Fran defines events as
values available after a certain point in time. An event can be thought of as a pair of a
timestamp and a value.
Behaviors and events can depend on each other in various interesting ways (as de-

scribed in the following section) to facilitate the modeling of reactive systems. For
example, behaviors can switch to another value after an event occurrence, and events
can sample the value of a behavior at the time they occur. By combining events and
behaviors, a network configuration is created. Values flow through this network from
various source events (such as button clicks) to sink behaviors (such as dynamically
changing text labels.)
Through higher-order FRP, behaviors can themselves carry behaviors, to be switched

between (or “flattened”) so that it acts as a regular behavior. This means that the
network configuration is dynamic and that it can be reconfigured based on values that
flow through it.
Over the past two decades, FRP has been developed in several different directions.

On the theoretical side, the formal model has been extended and redefined[10] in terms
of Haskell’s Functor, Applicative[14] and Monad[17] type classes. On the practical
side, a few serious implementations problems have lead to multiple flavors of FRP with
an altered API and functionality. higher-order FRP as originally formulated sometimes
requires the unbounded recording of past values (leading to a space leak) and then later
processing these past values (leading to a time leak.)
One class of alternative FRP formulations uses the Arrow type class[15] and without

the combinators that provide higher-order behaviors. In place of events and behaviors,
arrowized FRP provides ‘signals’ which are effectively a stream of values at discrete
points in time. These signals are not exposed directly but are instead transformed via
signal functions (functions of signal to signal), which are composed through functions
provided by the Arrow type class and a set of combinators. The Arrow type class ensures
a static configuration of the signal functions, which allows for an efficient implementation
free of space and time leaks.
In addition, several other changes to the original FRP language have been proposed to

prevent space and time leaks while preserving higher-order capabilities. Elerea[16] and
FRPNow! [3] use an extra (monadic) type to ‘trim’ the start times of events and behaviors

10

2. Functional Reactive Programming

and to allow past events to be forgotten. Grapefruit[13] and Reactive Banana1 use a
phantom type parameter to distinguish between start times and force the programmer
to manually trim start times, again, to allow past events to be forgotten.
Finally, it should be remarked that FRP — at least in its original formulation — is

a very general concept capable of constructing various sorts of reactive models, from
animations to simulations and signal processors. Conal Elliott’s original formulation of
FRP focuses on events and behaviors defined over continuous time, with a capability
to speed up and slow down behaviors as you would expect from an animation toolkit.
The benefit of this is that, when consuming the values produced by a reactive model,
behaviors can be sampled at arbitrary times: because events and behaviors are defined
over continuous time, any sampling rate can be applied without affecting the model
itself. This is similar to how vector graphics can be sampled at any resolution.
In contrast, this report looks at FRP for the purposes of user interface programming.

A notion of continuous time (such a floating point value of seconds since the application
started) is not very important for user interfaces: they should react to user events at
discrete points in time. Other properties of FRP implementations are more important to
focus on such as dynamic network configurations and declarative updating of interface
elements based on events and behaviors. In addition, composability is vital when creating
large and complex user interfaces.

2.2. Concepts
The cornerstone of a reactive system is the event: the occurrence of some message
at some point in time. Reactive systems in imperative language often implement the
observer pattern: a procedure (or event handler) is registered to run when a certain
event occurs. This procedure can then perform side effects based on the event message.
Events in FRP are very similar but with the key difference that instead of regis-

tering handlers, events are used to derive behaviors and other events. They can be
thought of as a list of tuples with (monotonically increasing) timestamps and values:
type Event a = [(Time, a)]. For the purposes of user interface programming, the
Time values are only interesting for determining which events have already occurred
and which are in the future. For example, recall listing 1.3 from chapter 1 where
onClick countButton produces an event carrying unit values.

In some formulations of FRP, such as Fran[11] and FRP Now! [3], events have (at
most) one occurrence. This means that single-fire events are distinguished from event
streams, where multiple message may be produced. In most other formulations, such
as Reactive[10] and Sodium, events may have multiple occurrences. For user interface
programming, where most events (such as button clicks) may occur multiple times, this
distinction is not very useful. Most FRP implementations don’t make this distinction,
and in this thesis the multiple-occurrence variant will be used.

1Prior to version 0.9; starting from version 1.0 Reactive Banana uses the monadic type class
MonadMoment instead of phantom type parameters.

11

2. Functional Reactive Programming

While events only produce values for certain discrete points in time, behaviors can
produce values for every point in time. They can be thought of as a function of time
to value: type Behavior a = Time -> a. Alternatively, and especially in the context
of user interface programming where time is discrete, behaviors can be thought of as a
stream of values. This can be expressed as a pair of an initial value and an event that
produces new values: type Behavior a = (a, Event a). This concept is called the
stepper2 and is one of the core ways of constructing behaviors in FRP.

The stepper combinator introduces state that is only constructed from the value of
the latest event occurrence. The accumulator3 concept is more powerful in that it allows
its state to be constructed from last event occurrence as well as the previous state. For
example, count from listing 1.3 is a behavior that counts button clicks and is created
from an initial value of 0 and an event that increases this value by one.
Accumulators express one of the core concepts of reactivity: feedback loops. These

are essential in user interface programming, where user input is used to update a state,
and this state is used to update the user interface. For example, consider the program
from listing 1.3 with a button which has the number of times its been clicked as its label.
A behavior is used to express the click counter: initialized with zero, and the click event
as the event that updates the counter.
In order to use events and behaviors with the various combinators it is often necessary

to manipulate the underlying values by applying a function to them. This lifting of
functions into events and behavior is a core part of functional reactive programming.
Events have a Functor instance allows functions to be applied to event values. In the
case of the counter button this can be used to replace the event value with a function to
increase the count.
Behaviors have a Functor and Applicative instance to allow lifting of functions with

multiple parameters over multiple behaviors using combinators such as liftA2. This is
a simple and intuitive way of constructing new behaviors because they always contain
a value for every point in time. While in the original formulation events also have
an applicative instance this is not as intuitive or useful: only when there is an event
occurrence for all involved events at the same time is it possible to lift a function over
them.
The combinators mentioned above describe how to create behaviors that observe

events but it is also possible for events to observe behaviors. With the snapshot com-
binator each occurrence of an event has its value combined with the value of a behavior
at that time: snapshot :: Event a -> Behavior b -> Event (a, b).
Behaviors can also have a Monad instance. Higher-order FRP introduces the notion

of switching behaviors and events, where, for instance, a behavior may carry a be-
havior within it. This inner behavior can be exposed through a combinator such as
switchB :: Behavior (Behavior a) -> Behavior a, which flattens the nested be-
havior ‘stream’. This combinator resembles the monadic combinator join, which can be
used to implement a monad instance.

2As a combinator: stepper :: a -> Event a -> Behavior a
3One such a combinator produces a behavior: accumB :: a -> Event (a -> a) -> Behavior a

12

2. Functional Reactive Programming

Higher-order FRP is where things become less intuitive as the network configuration
is dynamically changing. In the next chapter it will be demonstrated that higher-order
FRP leads to increased complexity and code structures that are reminiscent of imperative
code.

2.3. Classical FRP: Reactive
Conal Elliott’s Reactive library for Haskell is the successor to his Fran library and im-
plements the idea’s from his paper “Push-pull functional reactive programming”[10]. It
implements largely the same language as Fran but it leverages the Haskell type-classes
Functor, Applicative, Monad and Monoid extensively instead of implementing its own
lifting combinators. Reactive implements a higher-order FRP language that is prone
to space and time leaks: it contains combinators that may prevent the history of some
events and behaviors from being garbage collected.
The paper provides denotational semantics of the FRP system which is also used to

guide the implementation. Its API is purely functional with no hints of IO actions being
used. However, unsafePerformIO is used for caching and spawning threads.

Behaviors are defined in terms of events while events are defined in terms of future
values. Upon sampling these future values will block the current thread until they
become available. When combining future values multiple threads are created so that
they can be received as they become available. Actual Time values are used to determine
the exact order in which events occur.
The following example will demonstrate Reactive’s API and its leak problem. It imple-

ments the behavior numClicks that counts the number of times a button is clicked, and
a behavior numClicksToggled that either shows Just the amount of clicks or Nothing,
based on an event that toggles this.

13

2. Functional Reactive Programming

-- provided by Reactive: this switches in new behaviors as they are produced by an event
switcher :: Behavior a -> Event (Behavior a) -> Behavior a

-- event that fires whenever the button is clicked
clicks :: Event ()

-- event that decides whether or not the amount of clicks should be shown
toggle :: Event Bool

-- behavior that accumulates the number of clicks
numClicks :: Behavior Int
numClicks = accumB 0 ((+1) <$ clicks)

-- behavior that shows Nothing, or Just the number of clicks
numClicksToggled :: Behavior (Maybe Int)
numClicksToggled = switcher (pure Nothing) (showClicks <$> toggle)

where
showClicks True = Just <$> numClicks
showClicks False = pure Nothing

Listing 2.1.: Toggled counter button in Reactive

This example is problematic from an implementation standpoint because of the state
that is kept by the numClicks behavior. Consider the following chain of events: toggle
produces a False message to signal that clicks should not be shown, followed by a number
of clicks messages. numClicks is not currently switched in, but may be switched in
at some later point. The implementation doesn’t know this however: numClicks is not
currently reachable from the observed behavior numClicksToggled. This means that
in order to properly count all clicks messages, they have to be retained so that they
can later be used when numClicks is evaluated. In Reactive, this means that the past
messages of clicks cannot be garbage collected because numClicks still holds references
to it.

2.4. Network configuration as monadic actions: Sodium
Sodium4 is a Haskell library that implements a higher-order FRP language in Haskell us-
ing the monadic Reactive type to specify when events and behaviors are created. Many
functions involving events and behaviors are Reactive actions. This always makes it
clear when, for example, event messages should start to be observed: the combinator
to accumulate event values results in an action to create a behavior, instead of a be-
havior directly. Only when this action is run will the resulting behavior start observing
the event. This means that it is only possible to keep track of history by explicitly
accumulating it.
Sodium is implemented using IO and mutable references: events are essentially a

form of the observer pattern, where an IO action can be subscribed to event messages.

4https://hackage.haskell.org/package/sodium

14

https://hackage.haskell.org/package/sodium

2. Functional Reactive Programming

Behaviors consist of a mutable reference to the current value and an event that fires
when this value is updated.

The following example demonstrates how Sodium prevents the space and time leak
that is possible in Reactive:

-- provided by Sodium: this switches in new behaviors as they are produced by a behavior
switch :: Behavior (Behavior a) -> Reactive (Behavior a)

-- provided by Sodium: because accumulation involves state, this combinator produces an
action
accum :: a -> Event (a -> a) -> Reactive (Behavior a)

-- event that fires whenever the button is clicked
clicks :: Event ()

-- event that decides whether or not the amount of clicks should be shown
toggle :: Event Bool

-- action to create a behavior that accumulates the number of clicks
mkNumClicks :: Reactive (Behavior Int)
mkNumClicks = accum 0 ((+1) <$ clicks)

-- action to create a behavior that shows Nothing, or Just the number of clicks
mkNumClicksToggled :: Reactive (Behavior (Maybe Int))
mkNumClicksToggled = do

toggled <- accum False (const <$> toggle)
numClicks <- mkNumClicks
let

showClicks True = Just <$> numClicks
showClicks False = pure Nothing

switch (showClicks <$> toggled)

Listing 2.2.: Toggled counter button in Sodium

This example demonstrates how reactive network configurations are created from ac-
tions using monadic composition. These actions tell Sodium exactly what is going on:
because numClicks is created only once it is clear that this behavior will be sampled
in the future and that it should start its observation of clicks. Note that the name
numClicks refers to that specific instantiation of mkNumClicks within the context of
mkNumClicksToggled. In Sodium it is always clear from context when a stateful event
or behavior is initialized and so it is safe to use dynamically switched events and behav-
iors. The downside of Sodiums Reactive API is that, because every stateful combinator
is an action, even programs that do not involve higher-order FRP have to use monadic
constructs extensively.

2.5. Start times as phantom types: Reactive Banana
Reactive Banana is a Haskell library that uses extra types and type parameters to
keep track of when events and behaviors start. Events and behaviors have an extra

15

2. Functional Reactive Programming

(phantom) type parameter that indicates their start time. This type parameter is bound
to the context in which they are first defined, which means that it is not possible to
initialize stateful events and behaviors within switching combinators. These contexts
are introduced by the monadic Moment-type; the phantom type parameters are bound
by functions that involve Moment actions.

In practice this means that some parts of a network configuration will be explicitly
initialized by actions similar to how it’s done in Sodium. An important difference is that
only the parts involved in dynamic switching and side effects involve actions. Stateful
combinators that do not involve dynamic switching (such as accumB) are pure functions.
The following example will demonstrate this by implementing the same toggled click
behavior as before:

-- provided by Reactive Banana: this explicitly initializes a behavior at a certain
moment
trimB :: Behavior t a -> Moment t (AnyMoment Behavior a)

-- provided by Reactive Banana: this switches in new behaviors that are not bound to a
context
switchB :: Behavior t a -> Event t (AnyMoment Behavior a) -> Behavior t a

-- an action to create a network configuration, based on events
networkDescription :: forall t. Event t () -> Event t Bool -> Moment t ()
networkDescription clicks toggle = do

let
-- a behavior that counts the number of clicks, bound to the same start time as the
events and the network itself
numClicks :: Behavior t Int
numClicks = accumB 0 ((+1) <$ clicks)

-- create a new behavior that can be used in other contexts
numClicks' <- trimB numClicks

let
-- behavior that shows Nothing, or Just the number of clicks
numClicksToggled :: Behavior t (Maybe Int)
numClicksToggled = switchB (pure Nothing) (showClicks <$> toggle)

where
showClicks True = Just <$> numClicks'
showClicks False = pure Nothing

-- in a real program there would be output handlers here
return ()

Listing 2.3.: Toggled counter button in Reactive Banana

The example demonstrates how the switch combinator’s augmented type enforces
explicit initialization through a Moment action (trimB.) The types of the combinators
trimB and switchB are essential to Reactive Banana’s type system:

trimB converts a behavior tied to a certain context (the t in Behavior t a) into
a Moment action to create a behavior that is not: AnyMoment Behavior a. The type

16

2. Functional Reactive Programming

constructor AnyMoment is used in place of a quantifier for an impredicative type which,
according to the author[1], should be read as forall s. Moment s (Behavior s a),
a type GHC could not handle well at the time. The resulting behavior has its history
“trimmed” and will thus not hold on to it because it no longer depends on it.
The switchB can use an event that produces such trimmed behaviors to switch them in

and out at any point in time; these behaviors can be freely sampled or simply discarded
without worrying about past-dependence. Note that regular stateful combinators, such
as accumB, are not actions. Non-dynamic parts of the network are composed using pure
combinators.
The benefit of Reactive Banana’s approach is that first-order stateful combinators

are pure functions, just like in Fran and Reactive, while space and time leaks are ruled
out by the type system. The drawback is in the type system itself: even a simple
first-order program requires care for the phantom type parameter and higher-order FRP
requires conversion back and forth between AnyMoments and plain Events and Behaviors,
involving monadic Moment actions. In fact, starting from version 1.0, its author has
decided to replace the phantom types with a more monadic API similar to that of
Sodium[2].

2.6. Arrowized FRP: Yampa
Yampa is a Haskell library that implements “Arrowized FRP”, which unifies events and
behaviors into a single type—signals—and involves constructing signal functions instead
of reactive networks. Signals are a stream of values that change at discrete points in
time. Events can be modeled as a stream of Maybe values, with occurrences represent as
Just values. It does not have combinators or lifting functions for working with signals
directly: signals are manipulated using signal functions of type SF a b, which can be
thought of as a function of Signal a to Signal b. Signal functions are composed
using the methods provided by its Arrow type-class instance and Haskell’s proc syntax
for arrows. Although they can create stateful signals, signal functions themselves are
stateless.
In Yampa, reactive networks are modeled as a signal function, transforming an

input signal to an output signal. The signals themselves are never explicitly initialized
or trimmed, only composed as part of other signals. As a result, implementing the
same example application as in the previous chapter confronts us with a choice: when
the toggled click count (NumClicksToggled) is toggled off, should it continue observing
clicks?5 In Reactive, the most straight-forward implementation automatically continues
observing clicks (which turned out to involve a space and time leak.) In Sodium and
Reactive Banana, emulating this behavior was accomplished using explicit initialization.
Yampa, however, does not provide a switching combinator that supports this same

behavior. This limitation stems from the fact that there is no way to work with sig-
nals directly and there is thus no combinator to switch signals either. Although signal

5Evan Czaplicki (author of Elm[7]) used a very similar example to highlight this design choice when
working with higher-order FRP[6].

17

2. Functional Reactive Programming

functions can be switched dynamically6, because they are stateless this functionality is
strictly less powerful than the switching combinators of classic higher-order FRP.
Instead, the same behavior as in the previous examples must be implemented by

combining both the click counting signal and the toggled signal into one:

-- provided by Yampa, this function creates a stepper signal function
hold :: a -> SF (Event a) a

-- provided by Yampa, this function creates an accumulator signal function
accumHold :: a -> SF (Event (a -> a)) a

-- signal function that counts the number of occurrences of the input event (ie. clicks)
numClicksSF :: SF (Event ()) Int
numClicksSF = proc clicks -> do

accumHold 0 -< (+1) <$ clicks

-- signal function with two input events: clicks and toggle, the output is the switched
amount of clicks
numClicksToggledSF :: SF (Event (), Event Bool) (Maybe Int)
numClicksToggledSF = proc (clicks, toggle) -> do

numClicks <- numClicksSF -< clicks
showClicks <- hold False -< toggle
returnA -<

if showClicks
then Just numClicks
else Nothing

Listing 2.4.: Toggled counter button in Yampa

numClickSF is a signal function that takes a signal of click events and produces a
signal that counts the clicks using the accumHold signal function, which creates an
accumulating signal. numClicksToggledSF combines it with a hold signal function,
which creates a stepper signal, to produce a signal that can choose its value between
either two. Essentially, numClicksToggledSF creates a signal with as state a tuple of
the amount of clicks and a boolean that decides whether or not to show it.
Through its Arrow-based API, Yampa makes it hard to create space and time leaks.

However, because of its focus on signal functions instead of signals, the developer is forced
to think about interaction between signals in a different, more indirect way compared
with classical FRP.

In addition, because signal functions are limited to just one input and output type,
various different input events and output actions must be combined. This leads to
increased complexity in larger applications.

6Through combinators such as rSwitch :: SF a b -> SF (a, Event (SF a b)) b, which switches to
a signal function provided by an event produced from another signal function.

18

2. Functional Reactive Programming

2.7. First-order signals: Elm
Elm is a Haskell-inspired language designed for creating user interfaces using FRP7. Its
compiler targets Javascript and HTML. Similar to Arrowized FRP, events and behaviors
are unified as signals. However, signals can be worked with directly in a manner similar
to “classic” FRP. Such signals are the only way to provide interactivity: Elm does not
have anything similar to Haskell’s IO type for controlling side effects.

Elm’s FRP system is limited to first-order signals and so there are no switching com-
binators of any kind. This limitation is by-design: no complicated phantom types or
monadic constructs are necessary for programming Elm and its programs are straight-
forward. In fact, Elm encourages developers to embrace this limitation: there is a
standard architecture to be used for Elm applications[8]. It involves a single accumu-
lator that processes an input signal carrying commands that describe how the single
piece of state must be updated. This state is then used to produce an interface element
structure which contains event sources.
The following example describes how a toggled button can be expressed in Elm using

its first-order FRP combinators.

-- signal that pulses whenever the button is clicked
clicks : Signal ()

-- signal that decides whether or not the amount of clicks should be shown
toggle : Signal Bool

-- signal that accumulates the number of clicks
numClicks : Signal Int
numClicks =

let
plus1 () x = x + 1

in
foldp plus1 0 clicks

-- behavior that shows Nothing, or Just the number of clicks
numClicksToggled : Signal (Maybe Int)
numClicksToggled =

let
showClicks b x = if b then Just x else Nothing

in
map2 showClicks toggle numClicks

Listing 2.5.: Toggled counter button in Elm

Elm uses different names and combinators from the other libraries; foldp (“fold past”)
is a type of accumulator, map is fmap, and map2 is its version of Haskell’s Applicative
combinator liftA2. Similar to the Arrowized FRP implementation from the previ-
ous section no switching combinator is available to implement the desired functionality.

7This section describes Elm as of version 0.16. Elm version 0.17 removed the Signal type and FRP
combinators and now provides only an accumulating combinator to be used at the top level (main.)

19

2. Functional Reactive Programming

Instead, the numClicksToggled signal chooses its value by lifting a function over the
numClicks and toggle signals. Note that all signals in Elm must be defined as top-level
bindings; Elm’s strict semantics takes care of efficient and leak-free run-time behavior.

Although Elm programs are straight-forward and involve no scary types or exotic
syntactical constructs, the limitation to first-order FRP is very apparent when developing
more complex user interfaces. The Elm Architecture provides guidelines for working
around this limitation, with a few caveats. Chapter 5 provides a more in-depth analysis
of this issue.

20

3. Designing Slim
3.1. Introduction
This chapter describes a series of domain-specific languages for creating user interfaces
in Haskell. The languages are of increasing expressiveness and are described alongside
example user interfaces of increasing dynamicity, ranging from a static label to a dynamic
list of buttons. The final language, Slim, provides a safe and purely functional way to
develop user interfaces in Haskell. Its implementation is described in chapter 4.

3.2. Hello world: static components

span :: String -> Component
staticRoot :: Component -> IO ()

Listing 3.1.: Functions used to implement the listing 3.2

The Component data type is used to define static structures of user interface elements.
Due to its ubiquity and ease of use, the user interfaces in this chapter (and in the rest of
this thesis) will be described in terms of HTML. Accordingly, each value of Component
defines an HTML structure, consisting of an HTML element and zero or more child
elements.
This component structure is sufficient for the most basic example of a user interface: a

 element with the text “Hello, World!” (listing 3.2.) This component is rendered
as the root component of the user interface by the staticRoot action.

runHelloWorld :: IO ()
runHelloWorld = staticRoot helloWorld

helloWorld :: Component
helloWorld = span "Hello, World!"

Listing 3.2.: Example: Hello world

3.3. Counting clicks: values and feedback loops

button :: String -> Component ()
statefulRoot :: a -> (a -> Component a) -> IO ()
instance Functor Component

Listing 3.3.: Functions used to implement listing 3.4

The next step up in dynamicity is a single feedback loop: a button with as its label
the number of times it has been clicked. The definition of its component structure relies

21

3. Designing Slim

on recursion: every time it is clicked the button produces an event. This event is used
to accumulate the amount of clicks and the button is rendered based on this state.
The type of values of this event are expressed by the type parameter of Component,

which in the case of button’s click event is the unit type as it carries no information.
Component’s instance of the Functor typeclass allows the event values to be updated or
replaced.
This accumulator structure can be defined using a function that somewhat resembles

a fix-point combinator: statefulRoot. This combinator accumulates a value based on
an initial state, and a function from a state to a component. The resulting component
produces an event with an updated state value. This component is then rendered as the
root component of the user interface.
In the following example (listing 3.4) the count is initialized to 0 and the component

is a button which shows the current count. Using Component’s Functor instance, more
specifically the <$ combinator, the unit value produced by the button’s event is replaced
by the amount of clicks.

runCounter :: IO ()
runCounter = statefulRoot 0 counter

counter :: Int -> Component Int
counter x = x + 1 <$ button (show x)

Listing 3.4.: Example: counting clicks

At first glance it would seem that this program completely replaces the button on
every click. The component renderer1, however, keeps track of any previously rendered
components and only updates the elements and attributes that have changed. This is
done by first rendering components as an intermediate HTML tree structure, the Virtual
DOM2. This intermediate structure is then compared to the version from the previous
render, and only the differences are applied to the actual DOM. This technique was
pioneered by Facebook’s React library for Javascript[4].

In this case, when the button is clicked, only the body text of the button is replaced.
This allows changes in state to be reflected by the user interface without explicitly defin-
ing when and how these changes should be made. This is a key property of the Component
type that, when combined with FRP, allows for dynamic component structures to be
defined. This will be demonstrated in a later example.

3.4. Resettable counter: basic FRP and initialization

div :: [Component a] -> Component a

Listing 3.5.: Functions used to implement listing 3.6
1For the precise mechanism, please refer to the implementation chapter.
2DOM stands for Document Object Model, the programmatic model for working with HTML structures

in web browsers.

22

3. Designing Slim

The following example involves two buttons: each counts the number of clicks but
button #2 is reset to zero whenever button #1 is clicked. This can be implemented in
at least two ways: using a single piece of state for both values and using separate states.
The version with the single piece of state can be implemented using (almost) entirely
the same functions as those used in the previous example.
Storing the counts of both buttons in the same state also means that there is a single

feedback loop: clicks on either button are merged into a single event stream. This
merging is done by the div function, which produces an HTML <div> element and
serves as a container element for the two buttons. Each button produces an event with
counts of both buttons: button #1 increases its own count while resetting the other to
zero, while button #2 only increases its own value and leaves the other the same.

runCountPair :: IO ()
runCountPair = statefulRoot (0, 0) countPair

countPair :: (Int, Int) -> Component (Int, Int)
countPair (x,y) = div [button1, button2]

where
button1 = (x + 1, 0) <$ button (show x)
button2 = (x, y + 1) <$ button (show y)

Listing 3.6.: Example: resettable counter using one feedback loop

Although this example looks simple and demonstrates that the functions used in list-
ing 3.4 are powerful enough for this use case, it also illustrates a limitation of the single
feedback loop: the counts of each button (bound to x and y) are not defined in a sin-
gle place. Both counts are defined by both buttons: button #1 is concerned not only
with its own count but is also with resetting the count of button #2, and button #2 is
concerned with the count of button #1 even though it has no business changing it.

getEvent :: Component a -> Event a
merge :: Event a -> Event a -> Event a
stepper :: a -> Event a -> Behavior a
mount :: Behavior (Component a) -> Component a
instance Functor Event
instance Functor Behavior
instance Applicative Behavior

Listing 3.7.: Functions used to implement listing 3.8

Instead, the following example uses two separate feedback loops, where button #1 is
defined based only on itself and button #2 is defined based on both. For this, several
new concepts will be introduced:

• The event stream produced by button #1 will be accessed so that it can be used
for defining button #2.

• Button #2’s count depends on multiple event streams: its own and that of button
#1. These event streams will be combined and used for accumulating state.

23

3. Designing Slim

• Button #1 will be referenced in multiple places: in defining button #2 and in the
root component structure (the container element.)

The following example will show how basic FRP constructs can be used to define the
two feedback loops and their state. The getEvent function is used to produce the event
streams from two counter components which are then used to define stateful behaviors
using stepper. The resulting behaviors are used to define the counter components as
type Behavior (Component Int) (time-varying components, with an event stream of
Int values). These counter components are then mounted in the container div element.

runTwoCounters :: IO ()
runTwoCounters = staticRoot twoCounters

twoCounters :: Component Int
twoCounters =

let
bCount1 = stepper 0 (getEvent button1)
bCount2 = stepper 0 (merge (0 <$ getEvent button1) (getEvent button2))
button1 = mount (counter <$> bCount1)
button2 = mount (counter <$> bCount2)

in
div [button1, button2]

counter :: Int -> Component Int
counter x = x + 1 <$ button (show x)

Listing 3.8.: Example: resettable counter using two feedback loops

This example contains a serious problem, however: button1 and button2 are defined
as pure values, while used in multiple places. This causes a problem for the calls to
the getEvent and mount functions: both functions should refer to the same actual
component as it is rendered on the screen, while this component does not have any
real identity. Referential transparency dictates that button1 must be equal to its body
expression, so what should happen if this expression is used to add it to the container
element? The root of the problem is that the let-bindings provide a name for expressions
but not an identity.

runStartRoot :: Start (Component Dynamic void) -> IO ()
startC :: Behavior (Component Static a) -> Start (Component Dynamic a)
getEvent :: Component Dynamic a -> Event a
mount :: Component Dynamic a -> Component Static a
instance Functor Start
instance Applicative Start
instance Monad Start
instance MonadFix Start

Listing 3.9.: Functions used to implement listing 3.10

The Start monad provides a way to create an identity for components as they are
added to the user interface. This type only deals with initialization of components

24

3. Designing Slim

and behaviors: it marks the point in time at which components and behaviors are
‘booted up’ in order to be used by subsequent getEvent and mount calls. By using the
startC action to produce initialized components, the following example specifies exactly
how each button should be shared between the various behaviors and the container
component. The Start monad is ultimately run when the root component is rendered
by the runStartRoot function.
With the introduction of initialized components it also becomes important to tell them

apart from regular, static components. Components that have not been initialized yet,
produced by functions such as button and div are now marked Static while initialized
component, produced from a behavior of static components, are marked Dynamic.

runResettableCounter :: IO ()
runResettableCounter = runStartRoot resettableCounter

resettableCounter :: Start (Component Dynamic Int)
resettableCounter = mdo

let
bCount1 = stepper 0 (getEvent button1)
bCount2 = stepper 0 (merge (0 <$ getEvent button1) (getEvent button2))

button1 <- startC (counter <$> bCount1)
button2 <- startC (counter <$> bCount2)
startC (pure (div [mount button1, mount button2]))

counter :: Int -> Component Static Int
counter x = x + 1 <$ button (show x)

Listing 3.10.: Example: resettable counter using two feedback loops and sharing

The Start monad is used to explicitly initialize each button, after which they can
be used as an event source. Button #1 is referred to three times: in defining its own
behavior, button #2’s behavior, and in producing the root component. If instead this
definition would be based on an (uninitialized) Component value, its value would not
contain any uniquely identifying information and its meaning in the context of the user
interface would be unclear. By using the monadic bind for initializing the button compo-
nents, they can then be used as an event source and child component without ambiguity.
Recursive-do notation (based on the MonadFix instance) is used to define the buttons

based on their own events. Recursive monadic expressions can easily lead to “black
holes”, where a computation depends (possibly indirectly) on its own result and becomes
stuck. The getEvent function, however, is implemented in such a way that it is always
safe to use in computations that rely on its result. By making sure event subscription is
delayed until after the component is fully defined it is safe to use getEvent on initialized
components that are defined later. (This does not hold for the mount function but use of
this function in a recursive way would mean mounting a component inside itself which
raises philosophical issues.)
The functions introduced for the last example can be used to implement a couple of

the functions used previously:

25

3. Designing Slim

staticRoot :: Component Static a -> IO ()
staticRoot c = runStartRoot (startC (pure c))

statefulRoot :: a -> (a -> Component Static a) -> IO ()
statefulRoot init mkComponent = runStartRoot $ mdo

dynComponent <- startC $ mkComponent <$> stepper init (getEvent dynComponent)
return dynComponent

Listing 3.11.: Implementations of staticRoot and statefulRoot

3.5. Dynamic list of counters: initialization on demand

silence :: Component Static a -> Component Static void
track :: Eq k => Behavior [k] -> (k -> Start (Component Dynamic a)) -> Behavior
[Component Dynamic a]

Listing 3.12.: Functions used to implement listing 3.13

The previous example shows how to implement an interface with multiple, separate
feedback loops, each with their own piece of state. The following example consists of a
list of counter buttons, a button to add a counter to the end of the list and a button
to remove the last counter from the list. While this could be implemented using the
same constructs as the previous example, this would lead to a data flow that is probably
less than ideal. The states of the all counter buttons in the list must be combined in a
single value and feedback loop because, until now, feedback loops could not be added
and removed at run-time.
First off, the silence function can be used to suppress the events from a component

that you are not interesting in. This is useful when the events from a component are
already observed separately, and shouldn’t interfere with the events produced by the
structure it is mounted in.
The track function can be used to implement a dynamic list of initialized components.

Based on a behavior with a list of keys and a function to create a new component based
on such a key a behavior is created that starts components for every key currently in the
list. Component are only initialized once for any given key, and then stored for when
they may reappear later.
This limited form of dynamic switching is powerful enough for user interfaces but

limited enough to not require initialization itself. Tracking may start at any point after
the behavior of keys has been initialized; the result will be the same because it can
“catch up” by initializing components for all keys right away.

26

3. Designing Slim

runDynamicCounters :: IO ()
runDynamicCounters = runStartRoot dynamicCounters

dynamicCounters :: Start (Component Dynamic Int)
dynamicCounters = mdo

let
bAmount = stepper 0 (getEvent controls)
bKeys = (\n -> [1..n]) <$> bAmount

controls <- startC (mkControls <$> bAmount)
buttons <- startC (div . map mount <$> track bKeys mkCounter)
startC (pure (div [silence (mount controls), silence (mount buttons)]))

mkCounter :: Int -> Start (Component Dynamic Int)
mkCounter k = mdo

button <- startC (counter <$> stepper 0 (getEvent button))
return button

counter :: Int -> Component Static Int
counter x = x + 1 <$ button (show x)

mkControls :: Int -> Component Static Int
mkControls x =

div
[min 10 (x + 1) <$ button "+"
, max 0 (x - 1) <$ button "-"
]

Listing 3.13.: Example: initialization on demand

3.6. Dynamic list of counters with shared state: initialized
behaviors

accumB :: a -> Event (a -> a) -> Behavior a
startB :: Behavior a -> Start (Behavior a)

Listing 3.14.: Functions used to implement listing 3.15

The example in this section is much like the previous one, with one extension: the
counter buttons in the list also track the clicks on all buttons, in addition to just their
own, and show both counts separately. There is one important detail here that requires
a new function for the implementation to work as expected: explicit initialization of
behaviors.
In the previous examples, all behaviors were initialized together with the component

that uses them. In this example, several initialized components (the counter buttons)
should share a behavior: the total amount of clicks. Behaviors are defined as pure values
in let-bindings; if care is not taken to initialize this shared behavior, a problem similar
to the one of example 5 will appear: when referencing the same behavior from multiple
places, how should this behavior be shared?

27

3. Designing Slim

This behavior, bTotal, should start counting before the first counter button appears,
and be used to define all counter buttons. In the following example, this behavior is
therefore explicitly initialized right before the root component, using the startB func-
tion. This initialized behavior is then shared by all the counter buttons, regardless of
when they are initialized themselves.

runDynamicCounters' :: IO ()
runDynamicCounters' = runStartRoot dynamicCounters'

dynamicCounters' :: Start (Component Dynamic Int)
dynamicCounters' = mdo

let
bAmount = stepper 0 (getEvent controls)
bKeys = (\n -> [1..n]) <$> bAmount

controls <- startC (mkControls <$> bAmount)
bTotal <- startB (accumB 0 ((+1) <$ getEvent buttons))
buttons <- startC (div . map mount <$> track bKeys (mkCounter' bTotal))
startC (pure (div [silence (mount controls), silence (mount buttons)]))

mkCounter' :: Behavior Int -> Int -> Start (Component Dynamic Int)
mkCounter' bTotal k = mdo

let bCount = stepper 0 (getEvent comp)
comp <- startC (counter' <$> bCount <*> bTotal)
return comp

counter' :: Int -> Int -> Component Static Int
counter' x y = x + 1 <$ button (show (x,y))

Listing 3.15.: Example: initialization on demand with a shared behavior

Consider what would happen if this behavior was not initialized at the start but
instead left uninitialized. On initializing each counter button it would then initialize its
own version of the behavior instead of sharing it. As a result, buttons added after one
or more clicks are made would start from zero as they will have missed the click events
that occurred before their initialization. The startB functions mark the start time of
behaviors, and the Start monad is used to keep track when each behavior is initialized.
Start times are an import aspect of FRP networks because they are necessary to

prevent ambiguity and space/time leaks. Consider a behavior that keeps track of an
event stream defined by a parent component, initialized earlier. Should the behavior
observe events from before its initialization? If so, this requires keeping track of all
event occurrences, should they ever be required by some future component. If not, this
requires some specification of when exactly this event stream will start to be observed.

28

3. Designing Slim

3.7. Enforcing initialization with types

runStartRoot :: (forall s. Start s (Component (Dynamic s) a)) -> IO ()
track

:: Eq k
=> Behavior (Local t) [k]
-> (k -> (forall s. Start s (Component (Dynamic s) a)))
-> Behavior (Local t) [Component (Dynamic t) a]

startC
:: Behavior (Local t) (Component Static a)
-> Start t (Component (Dynamic t) a)

startB :: Behavior (Local t) a -> Start t (Behavior Shared a)
getEvent :: Component (Dynamic t) a -> Event (Local t) a
useB :: Behavior Shared a -> Behavior (Local t) a

Listing 3.16.: Functions used to implement listing 3.17

The previous section demonstrated explicit initialization of behaviors to allow shared
state between component ‘scopes’ (calls to startC.) The important difference between
such scopes is that of their start times: in listing 3.15, the root component scope
(component) starts when the application first runs, while its child component scopes
(mkCounter) start based on events. The example in this section shows how Haskell’s
type system can be used to prevent events and behaviors from ‘leaking’ into scopes where
they would produce unpredictable results. More precisely, the extended types used by
the example enforce the following invariants:

• Initialization done by track may involve only uninitialized events and behaviors,
which will be initialized at the start time specified by track, and previously ini-
tialized events and behaviors that can be shared. In other words: events and
behaviors that are not explicitly initialized may not escape the scope in which
they are defined.

• Dynamic components that are initialized by another scope may not be used as
event source or sub-component. In other words: initialized (dynamic) components
may not escape the scope in which they are initialized.

This is achieved by introducing a new type variable t on Component, Event, Behavior,
and Start, which indicates their scope:

• Static components are not limited in scope: Component Static a

• Dynamic components are limited in scope t: Component (Dynamic t) a

• Local behaviors (and events) are limited in scope t: Behavior (Local t) a

• Shared behaviors (and events) are not limited in scope: Behavior Shared a

This type variable is bound by the universal quantifier in the types of runStartRoot
and track. Essentially, this means that the type variable cannot leak between scopes: a

29

3. Designing Slim

value tagged with type variable t cannot be part of two different function calls to either
runStartRoot or track. This is very similar to (and inspired by) the ST type of the
Haskell standard library, where a type variable is used to ensure references to mutable
variables do not escape the context in which they are defined.
listing 3.17 implements a simple counter button using the track combinator. The

behavior that is tracked is a list with always just one (unit) element, so there is always
just one button, but it is initialized by track and is thus in its own scope.

runTrackedCounter :: IO ()
runTrackedCounter = runStartRoot trackedCounter

trackedCounter :: (forall s. Start s (Component (Dynamic s) Int))
trackedCounter = mdo

let
bKeys = pure [()]
bButton = track bKeys (mkCounter bCount)

bCount <- startB (stepper 0 (getEvent button))
button <- startC (div . map mount <$> bButton)
return button

mkCounter :: Behavior Shared Int -> () -> Start t (Component (Dynamic t) Int)
mkCounter bCount () = startC (counter <$> useB bCount)

counter :: Int -> Component Static Int
counter x = x + 1 <$ button (show x)

Listing 3.17.: Example: explicit initialization enforced by the type system

Note the type of mkCounter: its first argument is a shared behavior. listing 3.18
shows what would happen if, instead, this would be a local (uninitialized) behavior.
This produces a type error in the definition of bButton: the t parameter from the local
behavior bCount is bound to the initialization action, as you can see from the type of
mkCounter, while it should be unbound. The initialization scope must be independent:
this is enforced by the universal quantifier on the second argument of track.

trackedCounter' :: (forall s. Start s (Component (Dynamic s) Int))
trackedCounter' = mdo

let
bKeys = pure [()]
bButton = track bKeys (mkCounter' bCount)
bCount = stepper 0 (getEvent button)

button <- startC (div . map mount <$> bButton)
return button

mkCounter' :: Behavior (Local t) Int -> () -> Start t (Component (Dynamic t) Int)
mkCounter' bCount () = startC (counter <$> bCount)

Listing 3.18.: Example: track used with a local behavior, which causes a type error

30

4. Implementing Slim
4.1. Overview
The implementation of Slim consists of the following parts:

• The Component type with its smart constructors and rendering functions. This
part of the system involves the definition of components, element definitions, and
event subscriptions.

• The Start data type and associated functions that are responsible for running
components, combining the FRP system and Virtual DOM.

• An FRP system with events and behaviors with a distinction between local and
shared events and behaviors (as described in chapter 3.) This system does not
expose IO actions but does allow for recursive definitions with no restrictions.
In addition, it provides a limited form of higher-order FRP through the track
combinator.

• An adapter that binds to a traditional, imperative graphical user interface library.
This system provides handles input from the user interface by firing the master
DOM event and handling the actions produced in response to that event.

The code in this chapter makes use of the following GHC extensions:

• GADTs for distinguishing between Component types and supporting child events of
a different type as the parent component.

• EmptyDataDecls for the “tag” types Local, Shared, Static and Dynamic, which
serve only as type parameter but don’t have members.

• FlexibleInstances for defining class instances for Event, Behavior and Component
in combination with specific tag types.

• RecursiveDo for recursive do-syntax (mdo.)
• RankNTypes for defining the StartComponent wrapper type.
• GeneralizedNewtypeDeriving for deriving instances for the wrapper type Start.
• RecordWildCards for wild card pattern match and update syntax for record fields.

For example, when matching a component as StaticComponent { .. } all record
fields are in scope as values. As an expression, StaticComponent { .. } con-
structs a component with all appropriately named bindings in scope used as argu-
ments to the constructor.

The implementation relies on only a few basic dependences, namely base (for the
prelude), containers (for Map and Set), mtl (for reader-writer-state monads) and pretty
for pretty-printing HTML documents from the simulator adapter.

31

4. Implementing Slim

Some of the implementation code is omitted from this chapter and combination instead
be found in appendix A. The full implementation can also be found on Hackage1 and
GitHub2.

4.2. Components
The Component type represent an interface element, optionally with child components.
It is defined as a GADT with records to distinguish between the different constructors
based on the type parameter t. There are three variants:

• Static components represent the state of interface elements at a single point in time.
They have an ElementDefinition describing a DOM node, an EventRouter that
describes how they should produce events and a list of (static) child components.

• Dynamic components represent interface elements that vary over time. (Recall
from chapter 3 that they are created from a behavior of static components.) They
have a unique ComponentId (used in the ComponentRegistry described later on)
and an event. This event, constructed using an EventRouter, is used to produce
values based on the component’s interface elements or subcomponents.

• Mounted components represent dynamic components that are part of another com-
ponent. They are constructed using the smart constructor mount and simply wrap
a dynamic component so that it can be used as a static component.

Component has a Functor instance which maps a function over the events produced
by the component. This is done using the Functor instances of EventRouter and Event,
both of which are described in section 4.4.

1https://hackage.haskell.org/package/slim
2https://github.com/jvdp/slim

32

https://hackage.haskell.org/package/slim
https://github.com/jvdp/slim

4. Implementing Slim

data Dynamic t
data Static

data Component t a where
StaticComponent ::

{ c_elementDefinition :: ElementDefinition
, c_eventRouter :: EventRouter b a
, c_children :: [Component Static b]
} -> Component Static a

DynamicComponent ::
{ c_id :: ComponentId
, c_event :: Event Shared a
} -> Component (Dynamic t) a

MountedComponent ::
{ c_component :: Component (Dynamic t) a
} -> Component Static a

instance Functor (Component t)

mount :: Component (Dynamic t) a -> Component Static a
mount = MountedComponent

Listing 4.1.: Component type definition

The ElementDefinition type represents the “virtual DOM” and describes an HTML
element: it has a (optional) namespace3, tag name, list of attributes and an (optional)
text body. In addition it defines a list of events that the element should produce. Note
that there is no parameter for event types: event data is always of type EventData
(which is an alias for String.)

data ElementDefinition = ElementDefinition
{ ed_namespace :: Namespace
, ed_tagName :: TagName
, ed_attributes :: [(AttributeName, AttributeValue)]
, ed_text :: Maybe String
, ed_eventSources :: [EventName]
}

type Namespace = Maybe String
type TagName = String
type AttributeName = String
type AttributeValue = String
type EventName = String

Listing 4.2.: Component type definition

A component’s event depends on two things: the events defined on the DOM element
it represents (such as the “click” event for a button component) and events of child
components (such as those of a div container element.) This configuration is defined
using the EventRouter type which consists of a set of functions to produce events based

3Namespaces are necessary in HTML when embedding XML fragments such as SVG.

33

4. Implementing Slim

on the DOM event and child events. It has a Functor instance and support multiple
event subscriptions for the same element, in addition to child events.
Child components’ events are mapped to the result type and then merged together

with the DOM events. This is done by the mkEvent function.

type EventData = String

data EventRouter a b = EventRouter
{ er_dom :: ElementId -> Event Shared b
, er_sub :: [Event Shared a] -> Event Shared b
}

instance Functor (EventRouter a)

mkEvent :: EventRouter a b -> ElementId -> [Event Shared a] -> Event Shared b

Listing 4.3.: Event routing

EventRouters are constructed using one of two smart constructors: nullRouter dis-
cards child events and does not produce a DOM event, while childRouter merges child
events. Subscription to DOM events is done using the addEvent function which updates
the er_dom field by merging in an event that subscribes to specified EventName, and
adding the event name to the the ed_eventSources field of the element definition.
Component events can be suppressed using the silence function. This is useful when

mounting an initialized component in a container element or when discarding the events
a static component was initialized with, such as the click event for a button component.

nullRouter :: EventRouter a b
childRouter :: EventRouter a a

addEvent :: EventName -> (EventData -> a) -> Component Static a -> Component Static a

silence :: Component Static void -> Component Static a

Listing 4.4.: Creating and updating event routers

Static components are constructed with one of the following three smart constructors:

• containerComponent constructs a component with child components, routing their
events using childRouter. Used for container elements such as <div>.

• textComponent constructs a component with a text body instead of child compo-
nents. Used for text elements such as

• emptyComponent constructs a component with no text body or child components.
Used for empty elements such as <input>.

34

4. Implementing Slim

containerComponent
:: Maybe String -> String -> [(String, String)] -> [Component Static a]
-> Component Static a

textComponent
:: Maybe String -> String -> [(String, String)] -> String
-> Component Static Void

emptyComponent
:: Maybe String -> String -> [(String, String)]
-> Component Static Void

Listing 4.5.: Component smart constructors

Whenever a component is first initialized a RenderedComponent is created. This
type has fields for the component that was rendered, its unique element identifier and
any rendered child components. Next, when the component is updated (in response to
events), this rendered component is compared with the updated component structure.
This process, called reconciliation, is performed using the monadic Reconciliation type
which is based on RWS and consists of:

• A reader of ComponentId -> ElementId to lookup element identifiers for compo-
nents. This is necessary when adding a mounted component as child element.

• A writer of ElementAction to instruct the GUI library adapter layer on which
actions to perform. These actions cover all possible HTML element mutations
necessary to create and update a user interface. Since the reconciliation system
only refers to elements by their identifiers the adapter layer is tasked with keeping
track of the actual elements.

• A state of ElementId to produce fresh element identifiers for when new elements
are created.

35

4. Implementing Slim

data RenderedComponent where
RenderedComponent ::

{ rc_component :: Component t a
, rc_id :: ElementId
, rc_children :: [RenderedComponent]
} -> RenderedComponent

type ElementId = Int

data ElementAction
= Create ElementId Namespace TagName
| Replace ElementId ElementId
| Destroy ElementId
| SetAttribute ElementId AttributeName AttributeValue
| UnsetAttribute ElementId AttributeName
| SetText ElementId (Maybe String)
| AddChildren ElementId [ElementId]
| Subscribe ElementId EventName
| Unsubscribe ElementId EventName

type ComponentId = Int

type Reconciliation a = RWS (ComponentId -> ElementId) [ElementAction] ElementId a

Listing 4.6.: Rendered components and reconciliation types

The initial rendering of a component is done by the firstRender function. It produces
a RenderedComponent, used for the next reconciliation, and an Event, created using the
event router described earlier. Only rendering a static component requires work to be
done; mounted components and the dynamic components within them have already been
rendered previously and can be referred to by their element identifier.

firstRender :: Component t a -> Reconciliation (RenderedComponent, Event Shared a)

reconcile
:: RenderedComponent -> Component t a
-> Reconciliation (RenderedComponent, Event Shared a)

reconcileChildren
:: ElementId -> [RenderedComponent] -> [Component t a]
-> Reconciliation [(RenderedComponent, Event Shared a)]

updateElement :: RenderedComponent -> ElementDefinition -> Reconciliation ()

terminate :: RenderedComponent -> Reconciliation ()

Listing 4.7.: Rendering and reconciliation

The reconcile function is responsible for updating existing interface structures. It
compares a previously rendered component with the next iteration. When both are de-
termined to be compatible (based on namespace and tag name) the attributes are added,

36

4. Implementing Slim

updated and removed where necessary and child elements are compared recursively. If
they are incompatible the element is removed and recreated using firstRender.
Reconciliation of a component’s child elements is done by pairwise comparison of the

previously rendered list of child components and the new list of child components. If
they were previously not rendered they are created. If they are missing from the new
list they are removed. If they they are both present they are passed to the reconcile
function.
Finally, updateElement works by checking changes in the element definition’s fields

and writing the appropriate element actions where they differ. The terminate function
removes a rendered component by writing the destroy action for the element and all of
its child components recursively.

4.3. The Start type
The monadic Start type is used to initialize components and provide them with an
identity (concretely: ComponentId.) It is defined in terms of the Execution type which
provides an environment in which components are initialized, updated and rendered,
using an RWST monad transformer stack:

• A reader of MasterDomEvent to provide access to the DOM events that various
elements are subscribed to.

• A writer of ElementAction to instruct the GUI library adapter layer on which
actions to perform. These actions are produced by Reconciliation actions de-
scribed in the previous section.

• A state of (ComponentRegistry, ComponentId, ElementId) to keep track of ac-
tive components and produce fresh element and component identifiers.

• A base type of IO which is used for mutable references.

type ComponentRegistry = Map ComponentId ElementId
type MasterDomEvent = Event Shared DomEventInfo
type DomEventInfo = (ElementId, EventName, EventData)
type Execution =

RWST MasterDomEvent [ElementAction] (ComponentRegistry, ComponentId, ElementId) IO

Listing 4.8.: Execution type definition

In order to support recursive definitions execution should in some cases be deferred
when initializing a component. For this reason Start uses the Deferred monad trans-
former which provides delayed execution by using a writer monad that gathers up actions
to be run later. The runDeferred function is used to run Deferred actions; it first runs
the specified action and then recursively runs any actions that were deferred.

37

4. Implementing Slim

newtype Deferred m a = Deferred { unDeferred :: WriterT [Deferred m ()] m a }
deriving (Functor, Applicative, Monad, MonadFix, MonadIO)

instance MonadTrans Deferred where
lift x = Deferred (lift x)

defer :: Monad m => Deferred m () -> Deferred m ()
defer m = Deferred (tell [m])

runDeferred :: Monad m => Deferred m a -> m a
runDeferred m = do

(x, ms) <- runWriterT (unDeferred m)
unless (null ms) (runDeferred (sequence_ ms))
return x

Listing 4.9.: Deferred type definition

The Start type is a wrapper around Deferred Execution actions, without the MonadIO
instance to prevent library users from running arbitrary IO actions. As described in sec-
tion 3.7 it has a phantom type parameter t to distinguish between scopes of different
startC and track actions.

The StartComponent type provides a shorthand for a Start action that produces a
dynamic component. This type can be used to prevent having to specify the universal
quantifier for its scope.

newtype Start t a = Start { unStart :: Deferred Execution a }
deriving (Functor, Applicative, Monad, MonadFix)

newtype StartComponent a = StartComponent (forall s. Start s (Component (Dynamic s) a))

executeStart :: Start t a -> Execution a
executeStart = runDeferred . unStart

executeReconciliation :: Reconciliation a -> Execution a

Listing 4.10.: Start type definition

Component rendering and reconciliation (Reconciliation actions) are run as an
Execution action using the fuction executeReconciliation. This function keeps track
of fresh element identifiers and element actions and uses the component registry to pro-
vide the function that looks up element identifiers by component identifier.
Components, reconciliation and deferred execution come together in the startC func-

tion. It uses an event proxy (explained in the next section) to allow the component to be
used immediately while further setup is deferred. Effectively, initialization of the FRP
network is done in multiple phases:

• First, events are initialized, ready for subscription by behaviors.
• Next, behaviors are initialized by setting up IORefs and subscribing to events.

38

4. Implementing Slim

• Finally, the FRP network is subscribed to by the DSL layer and used to render
components.

Similar to startC, the functions startE and startB can be used to initialize events
and behaviors respectively. These are defined using executeE and executeB which
are described in the following section. Last but not least is track which unwraps
StartComponent and sets up a new behavior and subscribes to the behavior passed
to it. As that behavior produces new keys, new components are started and tracked
based on these keys.

startC :: Behavior (Local t) (Component Static a) -> Start t (Component (Dynamic t) a)

startB :: Behavior (Local t) a -> Start t (Behavior Shared a)

startE :: Event (Local t) a -> Start t (Event Shared a)

track
:: Eq k => Behavior (Local t) [k] -> (k -> StartComponent a)
-> Behavior (Local t) [Component (Dynamic t) a]

Listing 4.11.: Starting components, events and behaviors

4.4. Events and behaviors in IO: the FRP system
The FRP system is built up around the Event type. There are two constructors:

• Local events are actions that create shared events.
• Shared events implement the “observer pattern”: a handler action can be sub-

scribed which will receive the event value when the event fires. The action of
subscribing to this event produces an action that unsubscribes the handler.

The Functor instance for events applies the mapping function to the value received
by the handler action.

data Local t
data Shared

data Event t a where
LocalE ::

{ e_run :: Execution (Event Shared a)
} -> Event (Local t) a

SharedE ::
{ e_subscribe :: (a -> Execution ()) -> Execution (Execution ())
} -> Event Shared a

instance Functor (Event (Local t))
instance Functor (Event Shared)

Listing 4.12.: Event type definition

39

4. Implementing Slim

There is also a Monoid instance which merges events by subscribing handler actions
to all underlying events. The unit value (mempty) is an event which never fires; the
handler action is simply discarded. For convenience and consistency with other FRP
libraries, these functions are also available with the names never and merge. Merging a
list of events can be done with the derived monoid combinator mconcat, also available
as mergeAll.

instance Monoid (Event (Local t) a)
instance Monoid (Event Shared a)

never :: Event (Local t) a
never = mempty

merge :: Event (Local t) a -> Event (Local t) a -> Event (Local t) a
merge = mappend

mergeAll :: [Event (Local t) a] -> Event (Local t) a
mergeAll = mconcat

Listing 4.13.: Event monoid

Events are created by the newEvent action which produces a (shared) event and an
action to fire the event, pushing a value to its handlers. This is implemented by keeping
a registry of event handlers by a unique identifier. Firing the event is done by simpling
calling all the handlers in the registry with the event value.
Subscription is done by producing a fresh identifier and adding the handler to the

registry at that identifier. The handler can be unsubscribed by deleting the handler for
the identifier from the registry.

newEvent :: IO (Event Shared a, a -> Execution ())
proxyEvent :: IO (Event Shared a, Event Shared a -> Execution ())
whenJust :: Event t (Maybe a) -> Event t a

Listing 4.14.: Event creation

Another way to create an event is by creating a proxy for another event that can later
be swapped using the proxyEvent function. This function returns a new event and an
action to set that event as proxy for a given event. This is done by first unsubscribing
to the previously proxied event and then subscribing to the new event.
Events can also be filtered using the whenJust function, which only runs the handler

actions when the Maybe-wrapped value is not empty.
Behaviors are built on top of Event and there are again two constructors:

• Local behaviors are not yet initialized: they are implemented as an action that
produces an initialized behavior.

• Shared behaviors are initialized: they consist of an action to read their current
value, and an event that fires whenever the value has refreshed.

40

4. Implementing Slim

The Functor instance applies the mapping function to the action that reads the cur-
rent value. There is also an Applicative instance: pure is defined as a behavior that
always returns a given value and never changes, and <*> is defined by reading the current
value of the given behaviors.

data Behavior t a where
LocalB :: Execution (Behavior Shared a) -> Behavior (Local t) a
SharedB :: Execution a -> Event Shared () -> Behavior Shared a

instance Functor (Behavior (Local t))
instance Functor (Behavior Shared)

instance Applicative (Behavior (Local t))
instance Applicative (Behavior Shared)

Listing 4.15.: Behavior type definition

Behaviors can be created from events using the stateful combinators stepper and
accumB, the former being implemented in terms of the latter. accumB is implemented
by initializing a mutable reference and subscribing to the event. When the event fires
its value is used to update the reference. The same event is then also used to indicate
when the behavior is changed.

accumB :: a -> Event (Local t) (a -> a) -> Behavior (Local t) a
accumB x e = LocalB $ do

ref <- liftIO (newIORef x)
e' <- e_run e
e_subscribe e' $ \f -> do

x <- liftIO $ readIORef ref
let x' = f x
liftIO $ writeIORef ref x'

return SharedB
{ b_sample = liftIO $ readIORef ref
, b_pulses = () <$ e'
}

stepper :: a -> Event (Local t) a -> Behavior (Local t) a
trackM :: Eq k => Behavior (Local t) [k] -> (k -> Execution a) -> Behavior (Local t) [a]

Listing 4.16.: Creating and tracking behaviors

The track combinator is implemented using the trackM combinator which implements
a form of higher-order FRP: a behavior of key values is observed, and when new keys are
added an action is run to produce a value. These values are tracked in a list of key-value
pairs. When a key is removed from the list the corresponding value is dropped.
As described in chapter 3, events and behaviors can be shared using startB re-

spectively startE. This is implemented using executeB respectively executeE. The
executeB function uses deferred execution to defer initialization to allow for recursive
definitions. Upon initial execution only an (uninitialized) reference to actual behavior

41

4. Implementing Slim

value is created, while execution of the behavior itself (involving event subscription in
the case of accumB) is deferred.
Shared events and behaviors can be converted back to local ones using useE respec-

tively useB, which simply wrap them in the corresponding constructors. Finally, events
can be extracted from dynamic components using the function getEvent which simply
accesses the c_event field and localizes the event using useE.

executeB :: Behavior (Local t) a -> Deferred Execution (Behavior Shared a)
executeB lb = do

ref <- liftIO (newIORef (error "behavior not yet initialized"))
defer . lift $ do

sb <- b_run lb
liftIO (writeIORef ref sb)

return SharedB
{ b_sample = b_sample =<< liftIO (readIORef ref)
, b_pulses = SharedE $ \h -> do

SharedB { .. } <- liftIO (readIORef ref)
e_subscribe b_pulses h

}

executeE :: Event (Local t) a -> Deferred Execution (Event Shared a)
executeE le = lift (e_run le)

useB :: Behavior Shared a -> Behavior (Local t) a
useB b = LocalB (return b)

useE :: Event Shared a -> Event (Local t) a
useE e = LocalE (return e)

getEvent :: Component (Dynamic t) a -> Event (Local t) a
getEvent DynamicComponent { .. } = useE c_event

Listing 4.17.: Initialization and conversion

4.5. Simulation adapter
The runStartRoot function is used for starting a component structure. Given a root
component it runs an IO action that returns a list of element actions for the initial
render, the element identifier of the root element and an action to fire the master DOM
event.

42

4. Implementing Slim

runStartRoot
:: StartComponent a -> IO ([ElementAction], ElementId, DomEventInfo
-> IO [ElementAction])

runStartRoot (StartComponent sc) = do
(mde, fire) <- newEvent
(comp, s@(reg, _, _), as) <- runRWST (executeStart sc) mde (Map.empty, 0, 0)
ref <- newIORef s
let

update dei = do
s <- readIORef ref
((), s', as) <- runRWST (fire dei) mde s
writeIORef ref s'
return as

return (as, reg ! c_id comp, update)

Listing 4.18.: Running the root component

The GUI adapter is responsible for processing event actions and rendering the actual
user interface elements to the screen while keeping track of elements by their given
identifier. This section will describe an adapter that simulates an HTML DOM by
applying element actions on a tree structure.
The Document type holds a map of node elements by their identifier and the identifier

of the root element. The Node type represents an HTML element and is very similar
to the ElementDefinition type. Child nodes are expressed using a list of element
identifiers.
type Document = (Map ElementId Node, ElementId)
data Node = Node

{ n_elementId :: ElementId
, n_namespace :: Namespace
, n_tagName :: TagName
, n_attributes :: Map AttributeName AttributeValue
, n_text :: Maybe String
, n_eventSources :: Set EventName
, n_children :: [ElementId]
} deriving Show

newNode :: ElementId -> Namespace -> TagName -> Node
newNode n_elementId n_namespace n_tagName = Node

{ n_attributes = Map.empty
, n_text = Nothing
, n_eventSources = Set.empty
, n_children = []
, ..
}

applyAction :: Document -> ElementAction -> Document

Listing 4.19.: Document and node type definition

Applying actions to the simulated node structure is done using the applyAction
function. This involves straight-forward inserts, updates and deletes from the node map

43

4. Implementing Slim

and node fields.
The document can be pretty-printed using the ppDocument function. This function

renders the element structure as a string and show all elements identifiers, attributes
and event sources.

ppDocument :: Document -> String

startSim
:: StartComponent void -> IO (Document, Node -> EventName -> EventData -> IO Document)

findNode :: Document -> (Node -> Bool) -> Node
findNodeN :: Int -> Document -> (Node -> Bool) -> Node
findNodes :: Document -> (Node -> Bool) -> [Node]

Listing 4.20.: Simulating user interaction

The startSim function is based on runStartRoot and takes care of applying element
actions to the document structure. Given a root component it returns the initially
rendered document and an action to fire DOM events.
The simulator adapter is useful during development of user interfaces to test compo-

nents and inspect the elements they create. The functions findNode, findNodeN and
findNodes can be used to find nodes within the document structure based on a predicate.
The example of listing 4.21 demonstrates how the document simulator can be used

to start a component and click on a button. The output of running this example is as
follows:

initial render:
<button#0 onclick>

0
</button#0>

after button click:
<button#0 onclick>

1
</button#0>

44

4. Implementing Slim

sim :: IO ()
sim = do

(doc, fire) <- startSim example
putStrLn "initial render:"
putStrLn (ppDocument doc)
putStrLn ""
putStrLn "after button click:"
doc' <- fire (findNode doc (\Node { .. } -> n_tagName == "button")) "click" ""
putStrLn (ppDocument doc)
return ()

example :: StartComponent Int
example = StartComponent $ mdo

comp <- startC $ counterButton <$> stepper 0 (getEvent comp)
return comp
where

counterButton :: Int -> Component Static Int
counterButton x = x + 1 <$ Html.onClick (Html.button (show x))

Listing 4.21.: Example: simulation of the counter button component

45

5. Related work
5.1. Key properties
This chapter will compare Slim, the main contribution from this thesis, to a couple
of modern (FRP) libraries for creating user interfaces, ranging from a first-order FRP
with imperative supplements to higher-order FRP. The strengths and drawbacks of each
library will be highlighted, focusing on the following properties:

Dynamicity
Can interface elements be created and updated in a declarative manner, without
resorting to imperative code? Some applications contain interface elements which
must to be added, changed or removed based on application state.

Composability
Can interface elements be defined as isolated components, to be seamlessly com-
bined with other components? Large applications are composed of many different
interface elements. By grouping these interface elements together in small units
they can be developed in isolation from the rest of the system. Applications can
then be built by combining these components, much the same way those compo-
nents were built by combining the basic interface elements.

Bidirectionality
Can components display the changes that they capture, using feedback loops and
local state? Some components may need to process user input and keep small
amounts of local state. Consider an interface element that supports drag-and-drop
functionality where mouse positions are stored so that mouse move offsets can be
computed and applied to element and its data.

5.2. First-order FRP: Threepenny.Reactive
5.2.1. Overview

Threepenny is a user interface library for Haskell that ships with a first-order FRP system
that integrates well with the imperative parts. Although Threepenny applications run
in Haskell, the user interface is HTML-based and viewed via a browser.
Interface elements are created using side-effecting actions of type UI but they can be

updated using the sink action which uses the output of a behavior to keep an element
attribute up to date. This function connects the output of a behavior with the attribute
of an element and keeps that attribute up to date with the value of the behavior.
Creating elements using sink is declarative: the element is created once and updated

based on the specified behavior. In simple cases, where not much dynamicity is needed,
no further actions need to be run to update interface elements after they are created.
For example, a simple counting button implemented in Threepenny looks as follows:

46

5. Related work

-- creates a button element; UI is not much more than a wrapper around IO
button :: UI Element

-- creates an accumulating behavior
accumB :: a -> Event (a -> a) -> UI (Behavior a)

-- returns an event that fires when the element is clicked
click :: Element -> Event ()

-- reverse function application, this is used to update attributes on an element after
creation
(#) :: a -> (a -> b) -> b

-- the type of an attribute for element type x, input type i and output type o
data ReadWriteAttr x i o

-- attribute representing the text contents of an element
text :: ReadWriteAttr Element String ()

-- use a behavior to continually update an attribute on an element
sink :: ReadWriteAttr x i o -> Behavior i -> UI x -> UI x

Listing 5.1.: Threepenny library functions used by listing 5.2

counter :: UI Element
counter = do

countingButton <- button
count <- accumB 0 ((+1) <$ click countingButton)

return countingButton
sink text (show <$> count)

Listing 5.2.: Simple counting button implementation in Threepenny

Note the careful order of setup steps: first the button element is created, then a
behavior is initialized based on the behavior, and then the button is reconfigured to use
the behavior for its text attribute.

5.2.2. Dynamicity

While Threepenny’s sink combinator is very useful for updating attributes of a static
set of interface elements, things become more complicated when the structure of interface
elements is dynamic. This is illustrated by the following example which implements a
list of buttons, each of which keeps track of their own click count, and they can be added
and removed by buttons labeled “+” and “-”.

47

5. Related work

-- runs an IO action from UI
liftIO :: UI a -> IO a

-- creates a new event and an action to fire it
newEvent :: IO (Event a, a -> IO ())

-- register an event handler for an element's event
on :: (element -> Event a) -> element -> (a -> UI void) -> UI ()

-- merge two events with the function applied when they fire simultaneously
unionWith :: (a -> a -> a) -> Event a -> Event a -> Event a

-- attribute representing the child elements of an element
children :: ReadWriteAttr Element [Element] ()

-- aligns elements in a row
row :: [UI Element] -> UI Element

-- aligns elements in a column
column :: [UI Element] -> UI Element

Listing 5.3.: Threepenny library functions used by listing 5.4

listOfCounters :: UI Element
listOfCounters = do

(addElement, fireAddElement) <- liftIO newEvent

plusButton <- button
set text "+"

on click plusButton $ \() -> do
newCounter <- counter
let

update es = es ++ [newCounter]
liftIO (fireAddElement update)

minusButton <- button
set text "-"

let
remove [] = []
remove es = init es
removeElement = remove <$ click minusButton

elements <- accumB [] (unionWith (.) addElement removeElement)
elementsDiv <- div

sink children elements

column
[row [return plusButton, return minusButton]
, return elementsDiv
]

Listing 5.4.: Dynamic list of counting buttons in Threepenny

48

5. Related work

Listing 5.4 consists of a considerable amount of imperative code: the click event from
plusButton has an event handlers with side effects attached. This is because creating
a new counter element (see listing 5.2) is an action with a side effect: a new interface
element is created and a behavior is initialized. The event handler uses a specially
created event (addElement) that it can fire manually with the newly created element.
From this event (and the click event from minusButton which simply drops the last
element from the list), a behavior is created that contains the counter elements to be
shown.

5.2.3. Composability

Creation of elements in Threepenny always requires side-effecting actions so components
must also be defined as actions. These actions are of type UI, which is a wrapper around
IO. Consequently, Threepenny components consist of actions with unconstrained side-
effects, so composability is not controlled by Haskell type-system. In addition, the order
in which components are run may have affect the outcome.

5.2.4. Bidirectionality

Bidirectionality in a Threepenny application may involve recursive definitions. This can
sometimes be problematic because many combinators involve actions for which the pre-
cise order is important. The following example illustrates this by implement a counting
button using a recursive do-block.

counter :: UI Element
counter = mdo

countingButton <- button
sink text (show <$> count)

count <- accumB 0 ((+1) <$ click countingButton)

return countingButton

Listing 5.5.: Recursive implementation of a counting button in Threepenny

In listing 5.5 the sink combinator is applied before the count behavior is defined.
This is possible because the sink’s implementation1 explicitly defers observation of the
behavior until the UI block has run. If it it wasn’t this code would produce a program
that gets stuck in an endless loop due to two actions that are mutually dependent on
each other’s result. This situation can be triggered by simply swapping the lines for
countingButton and count.
In practice it is not always clear how to avoid this issue in Threepenny when using

just FRP combinators and recursive do-notation. This means that bidirectionality in

1UI includes a writer monad with IO actions to be run at the end of a UI block. (The Deferred monad
transformer from Chapter 4 is inspired by this method.)

49

5. Related work

Threepenny sometimes involves regular do-blocks and imperative actions; for instance
using split element definitions such as in listing 5.2 or using extra events as in listing 5.4.

5.3. Higher-order FRP: Sodium
5.3.1. Overview

To recap from section 2.4, Sodium is a Haskell library for general purpose higher-order
FRP. The Reactive type is used to initialize stateful events and behaviors and can also
contain side-effecting (IO) actions.

Although it does not include any functionality for creating user interfaces it is straight-
forward to use Sodium together with Threepenny. For instance, interface updates can
be performed by producing actions from events using execute :: Event (Reactive
a) -> Event a. As many of its combinators involve the Reactive monad most Sodium
code lives in do-blocks and consists of side-effecting actions.

5.3.2. Dynamicity

Sodium’s higher-order FRP functionality goes some way towards making dynamic inter-
face element structures possible to define declaratively. An application that consists of
a dynamic list of counting buttons tests an FRP library in the following ways:

1. Can interface elements be added and removed based on events in a declarative
way?

2. Can events produced from these interface elements be merged into a single event
stream?

Sodium’s switch combinator takes care of the latter, but the first still requires IO
actions being run in response to events. Chapter 3 shows this can be solved by tight
integration between the FRP combinators and user interface library.

5.3.3. Composability

Just as with Threepenny, user interface components written using Sodium will consist of
actions that may involve IO, providing no guarantees about composability. Composition
involves managing side-effects and careful ordering of initialization.

5.3.4. Bidirectionality

Unlike most of Threepenny’s UI actions, Sodium’s Reactive actions are capable of re-
cursive definitions. The FRP system has a notion of transactions: behaviors are only
updated at the end of transactions so that actions will observe values set by the previous
transaction. As a result, it is easier to recursively define events and behaviors based on
themselves without the program becoming stuck.

50

5. Related work

5.4. Pure, first-order FRP: Elm
5.4.1. Overview

To recap from section 2.7, Elm is a programming language specialized for creating user
interfaces using first-order FRP. Instead of distinguishing between events and behaviors,
Elm works with signals2 which can be thought of as behaviors defined over discrete
time. Because FRP in Elm is first-order, network configurations are static and signals
of signals cannot be flattened.
Elm’s interface library is based on a virtual DOM, similar to Facebook’s React, and

targets HTML. The main function is the only “sink” applications can utilize and it must
be a Signal representing the structure of the whole user interface. Whenever this signal is
updated the new structure is compared to the previous one and the changes are applied
to the actual HTML DOM. The user interface structure may contain event sources that
specify which events should be subscribed to and to which signal (via an address) these
events should be sent.

5.4.2. Dynamicity

The combination of FRP and a virtual DOM interface is sufficient for expressing how
a user interface structure depends on events over time. An application with a dynamic
list of counting buttons can be implemented using an Html div element with a varying
number of child buttons. However, signals cannot be added and removed dynamically
in Elm so each button must posts its events to the same signal.

5.4.3. Composability

Although the Html type can provide dynamic user interfaces, it is limited when it comes
to composability. Html values cannot introduce any state or signals; they must be
provided separately. As a result, components in Elm consist of several different parts
which need to be integrated into different places in the application::

• A model type that defines all the state the component needs. This type needs to
be added in the application model type as its own field so that it can be stored,
updated and used for the view function.

• An action type and update function to apply actions to the state to update it. This
type needs to be added to the application action type under its own constructor
so that they can be fired and handled.

• A view function that creates an Html structure from the state. This view function
needs to be added to the application view function. In addition, it must be passed
its own part of the application state and its actions need to be wrapped with the
new constructor.

2Just like chapter 2, this section describes Elm as of version 0.16 since version 0.17 removed the FRP
system.

51

5. Related work

In short, the issue with composability in Elm is caused by the inability to define com-
ponents as single, isolated units and instead the need to integrate them in multiple places
the application. In addition to the inconvenience, this limitation introduces boilerplate
code (such as the introduction of extra type constructors) and increased complexity.

5.4.4. Bidirectionality

Elm enforces a strict unidirectional data flow: user input is sent to a statically defined
set of signals which are then used to update the state and generate an interface element
structure. This element structure defines the user input events and how they should be
channeled. Data always flows in this circle and state is only kept at one place. As a
result, components cannot work with their own signals directly and cannot have local
state: bidirectionality within components is simply not possible.

5.5. Conclusions
Threepenny.Reactive provides a simple set of FRP combinators that integrates well with
the (imperative) Threepenny user interface toolkit.

+ Easy to use FRP combinators that integrate well with imperative code. This
makes it easy for programmers experienced with imperative GUI programming
to get started with FRP and allows seamless embedding of FRP in imperative
applications.

+ Properties and non-interactive interface elements such as text labels and colors are
easy to hook up to behaviors using sink.

- Because it is limited to first-order FRP it is frequently necessary to use imperative
actions to effect changes in the network configuration and user interface.

- Stateful FRP networks are defined by side-effecting UI actions.
- While it is possible to specify recursive events and behaviors using UI’s MonadFix
instance, it easy to introduce recursive actions that cause the program to become
stuck.

Sodium features a powerful FRP system that is well-equipped for the dynamicity of
the network editor application.

+ Dynamic reactive networks can be expressed using its higher-order FRP constructs.
+ Recursive events and behaviors are easy to define.
- While the higher-order FRP constructs facilitate dynamic data flow, imperative
actions are still required for the dynamic interface elements.

Of the related work described in this chapter, Elm allows for the simplest, smallest
and purest example applications (in the ‘purely functional’ sense.)

52

5. Related work

+ Applying the patterns described in the Elm Architecture tutorial resulted in an
application consisting of modular components, communicating via localized chan-
nels.

+ The immediate-mode interface provided by the elm-html library allows for seamless
interface updates without writing code that keeps track of changes.

+ Elms first-order, side-effect free FRP constructs results in code that is simple and
easy to reason about.

- Elm applications consist of a single, one-directional data flow, and each component
has to be hooked up to it in several different places (view, updates, actions, and
state.)

- When components rely on channels (as prescribed by the Elm Architecture) instead
of signals they cannot have local state.

Slim combines the strengths of all of the 3 examined FRP libraries:

+ It provides an immediate-mode interface for simpler interface updates.
+ It provides a way to define components so that they can be seamlessly integrated,

without hooking them up in multiple places.
+ It allows components to define local state without compromising referential trans-

parency.
+ It allows recursive definitions with no risk of the program becoming stuck.

53

6. Conclusion
6.1. Summary
Creating interactive user interfaces traditionally involves an imperative programming
style. Commands and statements react to input events to update the system state and
interface elements. An unanticipated sequence of input events or subtle bugs in the event
handlers may lead to an invalid system state.
Functional programming provides an alternative to the imperative style by relying on

(pure) functions and by providing equational reasoning. In turn, Functional Reactive
Programming (FRP) defines the essentials for modeling reactive systems using pure
functions and equations.
This report introduces Slim, a DSL for Haskell that allows for pure functional user

interface programming using FRP. Its language constructs are substantiated and demon-
strated by a set of example user interfaces of increasing dynamicity.
Slim combines pure FRP constructs with an immediate mode interface element ren-

dering library based on a Virtual DOM. By taking advantage Haskell’s type system the
programmer can define stateful FRP networks without using order-dependent monadic
structures. Components can be defined in a monadic do-block to indicate dependen-
cies between components. These dependencies may be cyclical using (safe) recursive
definitions.
A proof-of-concept implementation is provided that, while being relying on IO actions,

provides a pure API. In addition, a GUI simulator is provided that can be used to (unit)
test components and programs without running an actual GUI library.
Slim is compared to a number of established FRP libraries in programming interfaces

to demonstrate how it is able to seamlessly implement classes of user interfaces that the
existing libraries struggle with.

6.2. Future work
The simulator adapter makes it possible to write unit tests and QuickCheck[5] properties
for interactive programs. A set of helpers and properties should make it easier to test
components and check if expected properties hold.
Running a program in debug mode could write a log of element actions to facilitate

debugging. Such a log could be played back in simulation mode so that the exact state
of the interface elements can be checked at every step to identify problems.
Slim is not as expressive as other higher-order FRP languages because mount only

instantiates components, not behaviors directly. This is not as expressive as, for example,
switchB as component’s events has to originate from the DOM. The consequences of
this limitation deserves further experimentation in larger applications.
The implementation relies heavily on IO. An implementation that relies less on mu-

table references and more on pure updates could be more efficient and easier to debug.

54

6. Conclusion

The Event type described in chapter 4 misses a few possibly useful combinators such
as accumulation and snapshotting. Adding new ways to create Events may need further
testing to ensure recursive definitions are still safe.
There is currently no defined way of interacting the “outside world” such as the file

system. The implementation could be extended so that the value produced by the root
component is returned when a DOM event is fired. Alternatively, a new ElementAction
constructor could be introduced for this purpose.
The implementation listed in chapter 4 is not tuned for performance. There may be

cases where strictness annotations limit memory usage to provide speedups. Events and
behaviors may also benefit from memoization to improve sharing when they are used in
multiple places. In addition, a single input event may lead to multiple events triggering
rerenders so it may be more efficient to delay reconciliation in those cases.
The virtual DOM algorithm could be improved by taking advantage of element and

component identifiers to track subtrees throughout the component structure instead of
focusing only on the position they are in. For example, when reordering a list of compo-
nents it would be more efficient to reorder the elements as well instead of recreating the
elements. This would require an extra ElementAction constructor for moving elements
from one place of the DOM structure to another.
Not much care has been taken to prevent memory leaks; components that are removed

from the program are not cleaned up. This could be accomplished using weak references
or through a more pure implementation.

55

Appendices

56

A. Full implementations
A.1. Code omitted from section 4.2
instance Functor (Component t) where

fmap f component = case component of
StaticComponent { .. } ->

StaticComponent { c_eventRouter = fmap f c_eventRouter, .. }
DynamicComponent { .. } ->

DynamicComponent { c_event = fmap f c_event, .. }
MountedComponent { .. } ->

MountedComponent { c_component = fmap f c_component }

instance Functor (EventRouter a) where
fmap f EventRouter { .. } = EventRouter

{ er_dom = fmap f . er_dom
, er_sub = fmap f . er_sub
}

mkEvent :: EventRouter a b -> ElementId -> [Event Shared a] -> Event Shared b
mkEvent EventRouter { .. } ei subEvents = er_dom ei <> er_sub subEvents

nullRouter :: EventRouter a b
nullRouter = EventRouter

{ er_dom = const mempty
, er_sub = const mempty
}

childRouter :: EventRouter a a
childRouter = EventRouter

{ er_dom = const mempty
, er_sub = mconcat
}

addEvent :: EventName -> (EventData -> a) -> Component Static a -> Component Static a
addEvent en f c@StaticComponent { .. } = StaticComponent

{ c_eventRouter = c_eventRouter
{ er_dom = \ei -> fmap f (getDomEvent en ei) <> er_dom ei
}

, c_elementDefinition = c_elementDefinition
{ ed_eventSources = en : ed_eventSources
}

, ..
}
where

ElementDefinition { .. } = c_elementDefinition
EventRouter { .. } = c_eventRouter

silence :: Component Static void -> Component Static a
silence c =

57

A. Full implementations

case c of
StaticComponent { .. } -> StaticComponent

{ c_eventRouter = nullRouter
, c_elementDefinition = c_elementDefinition { ed_eventSources = [] }
, ..
}

MountedComponent { .. } -> MountedComponent
{ c_component = c_component { c_event = never }
, ..
}

containerComponent
:: Maybe String -> String -> [(String, String)] -> [Component Static a]
-> Component Static a

containerComponent ed_namespace ed_tagName ed_attributes c_children = StaticComponent {
.. }

where
c_eventRouter = childRouter
c_elementDefinition = ElementDefinition { .. }
ed_text = Nothing
ed_eventSources = []

textComponent
:: Maybe String -> String -> [(String, String)] -> String
-> Component Static Void

textComponent ed_namespace ed_tagName ed_attributes text = StaticComponent { .. }
where

c_eventRouter = nullRouter
c_children = []
c_elementDefinition = ElementDefinition { .. }
ed_text = Just text
ed_eventSources = []

emptyComponent
:: Maybe String -> String -> [(String, String)]
-> Component Static Void

emptyComponent ed_namespace ed_tagName ed_attributes = StaticComponent { .. }
where

c_eventRouter = nullRouter
c_children = []
c_elementDefinition = ElementDefinition { .. }
ed_text = Nothing
ed_eventSources = []

freshElementId :: Reconciliation ElementId
freshElementId = do

i <- get
put (i + 1)
return i

firstRender :: Component t a -> Reconciliation (RenderedComponent, Event Shared a)
firstRender rc_component = case rc_component of

58

A. Full implementations

StaticComponent { c_elementDefinition = ElementDefinition { .. }, .. } -> do
rc_id <- freshElementId
tell $

[Create rc_id ed_namespace ed_tagName
, SetText rc_id ed_text
] ++
[Subscribe rc_id en | en <- ed_eventSources
] ++
[SetAttribute rc_id an v | (an,v) <- ed_attributes
]

(rc_children, subEvents) <- unzip <$> mapM firstRender c_children
tell

[AddChildren rc_id
[childId
| RenderedComponent { rc_id = childId } <- rc_children
]

]
return (RenderedComponent { .. }, mkEvent c_eventRouter rc_id subEvents)

DynamicComponent { .. } -> do
rc_id <- ($ c_id) <$> ask
return (RenderedComponent { rc_children = [], .. }, c_event)

MountedComponent { .. } ->
firstRender c_component

reconcile
:: RenderedComponent -> Component t a
-> Reconciliation (RenderedComponent, Event Shared a)

reconcile
rc@RenderedComponent

{ rc_component = StaticComponent { c_elementDefinition = prevElementDefinition }
, ..
}

rc_component@StaticComponent { .. }
| isCompatible prevElementDefinition c_elementDefinition = do

updateElement rc c_elementDefinition
(rc_children, subEvents) <- unzip <$> reconcileChildren rc_id rc_children c_children
return (RenderedComponent { .. }, mkEvent c_eventRouter rc_id subEvents)

reconcile
renderedComponent@RenderedComponent

{ rc_component = DynamicComponent { c_id = prevId }
}

DynamicComponent { .. }
| prevId == c_id
= return (renderedComponent, c_event)

reconcile renderedComponent MountedComponent { .. } =
reconcile renderedComponent c_component

reconcile renderedComponent component = do
terminate renderedComponent
(renderedComponent', event) <- firstRender component

59

A. Full implementations

tell [Replace (rc_id renderedComponent) (rc_id renderedComponent')]
return (renderedComponent', event)

isCompatible :: ElementDefinition -> ElementDefinition -> Bool
isCompatible node node' =

ed_namespace node == ed_namespace node' && ed_tagName node == ed_tagName node'

reconcileChildren
:: ElementId -> [RenderedComponent] -> [Component t a]
-> Reconciliation [(RenderedComponent, Event Shared a)]

reconcileChildren parentId renderedComponents components =
catMaybes <$> mapM reconcileChild (zipMaybe renderedComponents components)
where

reconcileChild m =
case m of

(Just renderedComponent, Just component) -> do
(renderedComponent', event) <- reconcile renderedComponent component
return (Just (renderedComponent', event))

(Just renderedComponent, Nothing) -> do
terminate renderedComponent
return Nothing

(Nothing, Just component) -> do
(renderedComponent, event) <- firstRender component
tell [AddChildren parentId [rc_id renderedComponent]]
return (Just (renderedComponent, event))

zipMaybe :: [a] -> [b] -> [(Maybe a, Maybe b)]
zipMaybe (x:xs) (y:ys) = (Just x, Just y) : zipMaybe xs ys
zipMaybe [] ys = [(Nothing, Just y) | y <- ys]
zipMaybe xs [] = [(Just x, Nothing) | x <- xs]

updateElement :: RenderedComponent -> ElementDefinition -> Reconciliation ()
updateElement

RenderedComponent { rc_component = StaticComponent { c_elementDefinition = old }, .. }
new = do

tell $ updateText ++ updateAttributes ++ updateEventSources
where

updateText
| ed_text old /= ed_text new = [SetText rc_id (ed_text new)]
| otherwise = []

updateAttributes =
[UnsetAttribute rc_id an | an <- Map.keys $

Map.difference oldAttributes newAttributes
] ++
[SetAttribute rc_id an v | (an,v) <- Map.toList $

Map.differenceWith updateAttr newAttributes oldAttributes
]
where

oldAttributes = Map.fromList (ed_attributes old)
newAttributes = Map.fromList (ed_attributes new)
updateAttr new old = if new == old then Nothing else Just new

60

A. Full implementations

updateEventSources =
[Unsubscribe rc_id en | en <- Set.toList $

Set.difference oldEventSources newEventSources
] ++
[Subscribe rc_id en | en <- Set.toList $

Set.difference newEventSources oldEventSources
]
where

oldEventSources = Set.fromList (ed_eventSources old)
newEventSources = Set.fromList (ed_eventSources new)

terminate :: RenderedComponent -> Reconciliation ()
terminate RenderedComponent { .. } = do

tell [Destroy rc_id]
mapM_ terminate rc_children

A.2. Code omitted from section 4.3
startB :: Behavior (Local t) a -> Start t (Behavior Shared a)
startB b = Start (executeB b)

startE :: Event (Local t) a -> Start t (Event Shared a)
startE e = Start (executeE e)

track
:: Eq k => Behavior (Local t) [k] -> (k -> StartComponent a)
-> Behavior (Local t) [Component (Dynamic t) a]

track b f = trackM b (\k -> case f k of StartComponent c -> executeStart c)

executeReconciliation :: Reconciliation a -> Execution a
executeReconciliation r = do

(reg, cid, eid) <- get
let (x, eid', as) = runRWS r (reg !) eid
tell as
put (reg, cid, eid')
return x

startC :: Behavior (Local t) (Component Static a) -> Start t (Component (Dynamic t) a)
startC b = Start $ do

c_id <- lift freshComponentId
(c_event, redirect) <- liftIO proxyEvent
b' <- executeB b
defer . defer . lift $ do

comp <- b_sample b'
(rc, ev) <- executeReconciliation (firstRender comp)
setComponentElementId c_id (rc_id rc)
redirect ev
ref <- liftIO $ newIORef rc
e_subscribe (changes b') $ \comp' -> do

rc <- liftIO $ readIORef ref
(rc', ev) <- executeReconciliation (reconcile rc comp')

61

A. Full implementations

setComponentElementId c_id (rc_id rc')
liftIO $ writeIORef ref rc'
redirect ev

return ()
return DynamicComponent { .. }

freshComponentId :: Execution ComponentId
freshComponentId = do

(reg, cid, eid) <- get
put (reg, cid + 1, eid)
return cid

setComponentElementId :: ComponentId -> ElementId -> Execution ()
setComponentElementId cid eid = do

(reg, cid', eid') <- get
put (Map.insert cid eid reg, cid', eid')

A.3. Code omitted from section 4.4
instance Functor (Event (Local t)) where

fmap f (LocalE me) = LocalE (fmap f <$> me)

instance Functor (Event Shared) where
fmap f (SharedE g) = SharedE $ \h -> g (h . f)

newEvent :: IO (Event Shared a, a -> Execution ())
newEvent = do

counter <- newIORef 0
registry <- newIORef Map.empty
value <- newIORef Nothing

let
subscribe handler = liftIO $ do

i <- readIORef counter
writeIORef counter (i + 1)
modifyIORef registry (Map.insert i handler)
return . liftIO $ do

modifyIORef registry (Map.delete i)

fire x = do
liftIO $ writeIORef value (Just x)
handlers <- Map.elems <$> liftIO (readIORef registry)
mapM_ ($ x) handlers

return (SharedE subscribe, fire)

proxyEvent :: IO (Event Shared a, Event Shared a -> Execution ())
proxyEvent = do

(ev, fire) <- newEvent
ref <- newIORef (return ())
let

redirect ev' = do

62

A. Full implementations

join (liftIO $ readIORef ref)
unsubscribe <- onEvent ev' fire
liftIO $ writeIORef ref unsubscribe

return (ev, redirect)

whenJust :: Event t (Maybe a) -> Event t a
whenJust e = case e of

LocalE me -> LocalE (whenJust <$> me)
SharedE f -> SharedE $ \g -> f (maybe (return ()) g)

instance Functor (Behavior (Local t)) where
fmap f (LocalB mb) = LocalB (fmap f <$> mb)

instance Functor (Behavior Shared) where
fmap f (SharedB mx e) = SharedB (f <$> mx) e

instance Applicative (Behavior (Local t)) where
pure x = LocalB (return (pure x))
LocalB mbf <*> LocalB mbx = LocalB ((<*>) <$> mbf <*> mbx)

instance Applicative (Behavior Shared) where
pure x = SharedB (return x) never
SharedB mf e1 <*> SharedB mx e2 = SharedB (mf <*> mx) (e1 <> e2)

stepper :: a -> Event (Local t) a -> Behavior (Local t) a
stepper x e = accumB x (const <$> e)

trackM :: Eq k => Behavior (Local t) [k] -> (k -> Execution a) -> Behavior (Local t) [a]
trackM lbks f = LocalB $ do

let
update xs k = do

case lookup k xs of
Just x -> return (k, x)
Nothing -> do

x <- f k
return (k, x)

bks <- b_run lbks
ks <- b_sample bks
xs <- mapM (update []) ks
ref <- liftIO $ newIORef xs
e_subscribe (changes bks) $ \ks' -> do

xs <- liftIO $ readIORef ref
xs' <- mapM (update xs) ks'
liftIO $ writeIORef ref xs'

return SharedB
{ b_sample = map snd <$> liftIO (readIORef ref)
, b_pulses = b_pulses bks
}

63

A. Full implementations

A.4. Code omitted from section 4.5
applyAction :: Document -> ElementAction -> Document
applyAction (nodes, rootId) action =

case action of
Create ei ns tn ->

(Map.insert ei (newNode ei ns tn) nodes, rootId)

Replace ei1 ei2 ->
let f n = n { n_children = [if ei1 == ei then ei2 else ei | ei <- n_children n] }
in (Map.map f nodes, if ei1 == rootId then ei2 else rootId)

Destroy ei ->
let f n = n { n_children = filter (ei /=) (n_children n) }
in (Map.map f (Map.delete ei nodes), rootId)

SetAttribute ei an av ->
let f n = n { n_attributes = Map.insert an av (n_attributes n) }
in (Map.adjust f ei nodes, rootId)

UnsetAttribute ei an ->
let f n = n { n_attributes = Map.delete an (n_attributes n) }
in (Map.adjust f ei nodes, rootId)

SetText ei t ->
let f n = n { n_text = t }
in (Map.adjust f ei nodes, rootId)

AddChildren ei eis ->
let f n = n { n_children = (n_children n) ++ eis }
in (Map.adjust f ei nodes, rootId)

Subscribe ei en ->
let f n = n { n_eventSources = Set.insert en (n_eventSources n) }
in (Map.adjust f ei nodes, rootId)

Unsubscribe ei en ->
let f n = n { n_eventSources = Set.delete en (n_eventSources n) }
in (Map.adjust f ei nodes, rootId)

ppDocument :: Document -> String
ppDocument (nodes, rootId) = renderStyle style (ppNode $ nodes ! rootId)

where
ppAttribute (k, v) = text k <> text "=" <> text v
ppEventSource k = text ("on" ++ k)
ppChildren childIds = vcat [ppNode n | Just n <- map (`Map.lookup` nodes) childIds]
ppNode Node { .. } =

text "<" <> ppElementName <+> ppAttributes <+> ppEventSources <> text ">" $$
nest 4 (maybe empty text n_text $$ ppChildren n_children) $$
text "</" <> text n_tagName <> text "#" <> int n_elementId <> text ">"

where
ppElementName = text n_tagName <> text "#" <> int n_elementId
ppAttributes = hsep (ppAttribute <$> Map.toList n_attributes)
ppEventSources = hsep (ppEventSource <$> Set.toList n_eventSources)

64

A. Full implementations

startSim
:: StartComponent void -> IO (Document, Node -> EventName -> EventData -> IO Document)

startSim s = do
(as, rootId, fire) <- runStartRoot s
let doc = foldl' applyAction (Map.empty, rootId) as
ref <- newIORef doc
let

fire' n en ed = do
doc <- readIORef ref
as <- fire (n_elementId n, en, ed)
let doc' = foldl' applyAction doc as
writeIORef ref doc'
return doc'

return (doc, fire')

findNode :: Document -> (Node -> Bool) -> Node
findNode = findNodeN 0

findNodeN :: Int -> Document -> (Node -> Bool) -> Node
findNodeN x doc f =

case drop x (findNodes doc f) of
(n:_) -> n
[] -> newNode (-1) Nothing "not found"

findNodes :: Document -> (Node -> Bool) -> [Node]
findNodes (nodes, rootId) f = filter f (bfs [nodes ! rootId])

where
bfs [] = []
bfs ns = ns ++ bfs [nodes ! i | n <- ns, i <- n_children n]

65

B. List of Listings
1.1. Imperative counting button . 6
1.2. Imperative counting button with reset . 7
1.3. FRP counting button . 8
1.4. FRP counting button with reset . 8

2.1. Toggled counter button in Reactive . 14
2.2. Toggled counter button in Sodium . 15
2.3. Toggled counter button in Reactive Banana 16
2.4. Toggled counter button in Yampa . 18
2.5. Toggled counter button in Elm . 19

3.1. Functions used to implement the listing 3.2 21
3.2. Example: Hello world . 21
3.3. Functions used to implement listing 3.4 21
3.4. Example: counting clicks . 22
3.5. Functions used to implement listing 3.6 22
3.6. Example: resettable counter using one feedback loop 23
3.7. Functions used to implement listing 3.8 23
3.8. Example: resettable counter using two feedback loops 24
3.9. Functions used to implement listing 3.10 24
3.10. Example: resettable counter using two feedback loops and sharing 25
3.11. Implementations of staticRoot and statefulRoot 26
3.12. Functions used to implement listing 3.13 26
3.13. Example: initialization on demand . 27
3.14. Functions used to implement listing 3.15 27
3.15. Example: initialization on demand with a shared behavior 28
3.16. Functions used to implement listing 3.17 29
3.17. Example: explicit initialization enforced by the type system 30
3.18. Example: track used with a local behavior, which causes a type error . . 30

4.1. Component type definition . 33
4.2. Component type definition . 33
4.3. Event routing . 34
4.4. Creating and updating event routers . 34
4.5. Component smart constructors . 35
4.6. Rendered components and reconciliation types 36
4.7. Rendering and reconciliation . 36
4.8. Execution type definition . 37
4.9. Deferred type definition . 38
4.10. Start type definition . 38
4.11. Starting components, events and behaviors 39

66

B. List of Listings

4.12. Event type definition . 39
4.13. Event monoid . 40
4.14. Event creation . 40
4.15. Behavior type definition . 41
4.16. Creating and tracking behaviors . 41
4.17. Initialization and conversion . 42
4.18. Running the root component . 43
4.19. Document and node type definition . 43
4.20. Simulating user interaction . 44
4.21. Example: simulation of the counter button component 45

5.1. Threepenny library functions used by listing 5.2 47
5.2. Simple counting button implementation in Threepenny 47
5.3. Threepenny library functions used by listing 5.4 48
5.4. Dynamic list of counting buttons in Threepenny 48
5.5. Recursive implementation of a counting button in Threepenny 49

67

Acknowledgements
I want to thank my supervisors Wouter Swierstra and Atze Dijkstra who helped me by
guiding this project in the right direction. In particular I am grateful to Wouter for his
patient and helpful supervision throughout the project, and to Atze for introducing me
to FRP and helping me identify some open problems to research.
My thanks to the Haskell community, for all their mind-bending inventions and dis-

coveries, and to Heinrich Apfelmus in particular for providing valuable feedback to my
ideas (and also for creating Reactive Banana and Threepenny GUI.)

I would not have gotten this far with my studies without my father’s support. He
inspired me and kept me motivated. I will forever remember him by everything he
helped me achieve.
My special thanks to Naomi for her support, especially when I needed it the most.

68

Bibliography
[1] Heinrich Apfelmus. FRP - Dynamic Event Switching in reactive-banana-0.7. Sept.

2012. url: http://apfelmus.nfshost.com/blog/2012/09/03-frp-dynamic-
event-switching-0-7.html.

[2] Heinrich Apfelmus. FRP - Release of reactive-banana version 1.0. Oct. 2015. url:
http://apfelmus.nfshost.com/blog/2015/10/29-frp-banana-1-0.html.

[3] Koen Claessen Atze van der Ploeg. “Princlipled Practical FRP: Forget the past,
change the future, FRPNow!” In: ICFP. 2015.

[4] Facebook Christopher Chedeau. Reconciliation | React. 2013-2016. url: https:
//facebook.github.io/react/docs/reconciliation.html.

[5] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming. ICFP ’00. New York, NY, USA:
ACM, 2000, pp. 268–279. isbn: 1-58113-202-6. doi: 10.1145/351240.351266.
url: http://doi.acm.org/10.1145/351240.351266.

[6] Evan Czaplicki. “Controlling Time and Space: understanding the many formu-
lations of FRP”. Strange Loop. 2014. url: http://www.thestrangeloop.com/
2014/controlling-time-and-space-understanding-the-many-formulations-
of-frp.html.

[7] Evan Czaplicki. Elm: Concurrent FRP for Functional GUIs. 2012. url: http://
www.testblogpleaseignore.com/wp-content/uploads/2012/03/thesis.pdf.

[8] Evan Czaplicki. “The Elm Architecture”. 2015-2016. url: http://guide.elm-
lang.org/architecture/index.html.

[9] Simon Marlow (editor). Haskell 2010 Language Report. 2010. url: https://www.
haskell.org/definition/haskell2010.pdf.

[10] Conal Elliott. “Push-pull functional reactive programming”. In: Haskell Sympo-
sium. 2009. url: http://conal.net/papers/push-pull-frp.

[11] Conal Elliott and Paul Hudak. “Functional Reactive Animation”. In: International
Conference on Functional Programming. 1997. url: http://conal.net/papers/
icfp97/.

[12] J. Hughes. “Why Functional Programming Matters”. In: Comput. J. 32.2 (Apr.
1989), pp. 98–107. issn: 0010-4620. doi: 10.1093/comjnl/32.2.98. url: http:
//dx.doi.org/10.1093/comjnl/32.2.98.

[13] Wolfgang Jeltsch. “Signals, Not Generators!” In: Trends in Functional Program-
ming. 2009, pp. 145–160.

[14] Conor Mcbride and Ross Paterson. “Applicative Programming with Effects”. In:
J. Funct. Program. 18.1 (Jan. 2008), pp. 1–13. issn: 0956-7968. doi: 10.1017/
S0956796807006326. url: http://dx.doi.org/10.1017/S0956796807006326.

69

http://apfelmus.nfshost.com/blog/2012/09/03-frp-dynamic-event-switching-0-7.html
http://apfelmus.nfshost.com/blog/2012/09/03-frp-dynamic-event-switching-0-7.html
http://apfelmus.nfshost.com/blog/2015/10/29-frp-banana-1-0.html
https://facebook.github.io/react/docs/reconciliation.html
https://facebook.github.io/react/docs/reconciliation.html
http://dx.doi.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
http://www.thestrangeloop.com/2014/controlling-time-and-space-understanding-the-many-formulations-of-frp.html
http://www.thestrangeloop.com/2014/controlling-time-and-space-understanding-the-many-formulations-of-frp.html
http://www.thestrangeloop.com/2014/controlling-time-and-space-understanding-the-many-formulations-of-frp.html
http://www.testblogpleaseignore.com/wp-content/uploads/2012/03/thesis.pdf
http://www.testblogpleaseignore.com/wp-content/uploads/2012/03/thesis.pdf
http://guide.elm-lang.org/architecture/index.html
http://guide.elm-lang.org/architecture/index.html
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
http://conal.net/papers/push-pull-frp
http://conal.net/papers/icfp97/
http://conal.net/papers/icfp97/
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326

Bibliography

[15] Henrik Nilsson, Antony Courtney, and John Peterson. “Functional Reactive Pro-
gramming, Continued”. In: Proceedings of the 2002 ACM SIGPLAN Haskell Work-
shop (Haskell’02). Pittsburgh, Pennsylvania, USA: ACM Press, Oct. 2002, pp. 51–
64.

[16] Gergely Patai. “Efficient and Compositional Higher-order Streams”. In: Proceed-
ings of the 19th International Conference on Functional and Constraint Logic Pro-
gramming. WFLP’10. Madrid, Spain: Springer-Verlag, 2011, pp. 137–154. isbn:
978-3-642-20774-7. url: http : / / dl . acm . org / citation . cfm ? id = 2008270 .
2008280.

[17] Philip Wadler. “Monads for Functional Programming”. In: Advanced Functional
Programming, First International Spring School on Advanced Functional Program-
ming Techniques-Tutorial Text. London, UK, UK: Springer-Verlag, 1995, pp. 24–
52. isbn: 3-540-59451-5. url: http://dl.acm.org/citation.cfm?id=647698.
734146.

70

http://dl.acm.org/citation.cfm?id=2008270.2008280
http://dl.acm.org/citation.cfm?id=2008270.2008280
http://dl.acm.org/citation.cfm?id=647698.734146
http://dl.acm.org/citation.cfm?id=647698.734146

	Contents
	Introduction
	Imperative user interface programming
	Purely functional user interfaces
	Contributions

	Functional Reactive Programming
	Origins
	Concepts
	Classical FRP: Reactive
	Network configuration as monadic actions: Sodium
	Start times as phantom types: Reactive Banana
	Arrowized FRP: Yampa
	First-order signals: Elm

	Designing Slim
	Introduction
	Hello world: static components
	Counting clicks: values and feedback loops
	Resettable counter: basic FRP and initialization
	Dynamic list of counters: initialization on demand
	Dynamic list of counters with shared state: initialized behaviors
	Enforcing initialization with types

	Implementing Slim
	Overview
	Components
	The Start type
	Events and behaviors in IO: the FRP system
	Simulation adapter

	Related work
	Key properties
	First-order FRP: Threepenny.Reactive
	Higher-order FRP: Sodium
	Pure, first-order FRP: Elm
	Conclusions

	Conclusion
	Summary
	Future work

	Appendix Full implementations
	Code omitted from sect:implementation-component
	Code omitted from sect:implementation-start
	Code omitted from sect:implementation-frp
	Code omitted from sect:implementation-adapters

	Appendix List of Listings
	Acknowledgements
	Bibliography

