
Msc Thesis
ICA-5487447

How do clusters evolve?

Papachristou Dimitra
August, 2016

Supervisor: prof. dr. A.P.J.M. Siebes

2

Contents

1 Introduction 3

2 Topic modeling 3
2.1 Static topic modeling algorithms . 4
2.2 Evolution topic modeling algorithms . 7

3 Clustering 9
3.1 Hierarchical vs. Partitional clustering algorithms 10
3.2 Hard vs. Overlapping Clustering algorithms . 12
3.3 Complete vs. Partial Clustering algorithms . 13

4 From topic modeling to clustering: a translation 13

5 Frequent Itemset Mining 14
5.1 KRIMP in general . 14
5.2 How does KRIMP fit in? . 15

6 Our problem: evolving clusters 15

7 KRIMPevol algorithm 16

8 Experiments - First set 17
8.1 Database . 17
8.2 Pre-processing . 17
8.3 Statistics . 18
8.4 Results . 18

9 Experiments - Second set 19
9.1 Identification of clusters . 20

9.1.1 Construction of newCT . 20
9.1.2 Case 1 . 21
9.1.3 Case 2 . 22
9.1.4 Case 3 . 24
9.1.5 Case 4 . 24
9.1.6 Case 5 . 26

9.2 Zoom into dissimilarities . 27
9.2.1 First epoch . 28
9.2.2 Second epoch . 29
9.2.3 Third epoch . 29

10 Conclusions 30

11 Future Work 31

3

Abstract

An American computer programmer and science fiction writer, Daniel Keys Moran, once said
that although we can have data without information, we cannot have information without
data [1]. This quote describes pretty much the whole concept around data mining and the
significance of making sense out of data. The original motivation for this thesis arises from
a digital humanities’ problem. The aim of this project is to build an algorithm which can
identify an evolving process between clusters of objects.

1 Introduction

We live in the era of data. Every day, 2.5 quintillion bytes of data are produced and stored.
Data alone are of no use as they can provide only poor information. Making sense from the
data available is a complex problem that spans many areas of research with applications in any
discipline. It is estimated that more than 80% of the information is stored in text form [73]. Due to
this explosion of the available data, more and more researchers focus on text mining. Text mining
is a knowledge discovery technique that uses computational intelligence to discover previously
unknown information by extracting information from written resources [50]. Text mining tasks
include document classification [4], document clustering [5] and theme identification [6]. Topic
models are statistical models that perform text analysis and text mining to a large unclassified
collection of texts. They have received a lot of attention in the last decade. According to Google
Scholar, the most popular topic modeling paper [7], written by D. Blei et al., has received 13,700
citations since 2003.

2 Topic modeling

No one likes their sayings to be pointed out as ‘off topic’. Some online forums do not allow you to
post an ‘out of topic’ comment in their websites. This reveals the importance of knowing the topic
of a discussion. Topic is the subject of a conversation, what a newspaper article is about or the
theme of a student’s essay. Topic modeling represents a suite of algorithms that identifies topics in
a collection of documents. The difference between topics and words is that words are observable
throughout an article or a document, whereas topics are not. They are latent and harder to be
identified. The resulted topics of topic modeling algorithms can be used to search, visualize and
summarize large collections of texts. A variety of domains can profit from topic modeling, from Im-
age Retrieval to Bioinformatics. There are several examples in literature in diverse fields including
document summarization [8], text segmentation [9] and informational retrieval [10]. Topic models
identify the ‘hidden’ latent structure behind a text by clustering the words using similarity. Topic
refers to a collection (cluster) of words that frequently occurs together and represents the topic as
a whole. An example of resulted topics from a topic modeling algorithm is illustrated in Figure 1.
The corpus used was a 1.8 million collection of articles from the New York Times [11]. In this ex-
ample, the words inside a topic make sense, such as “game team play” and “restaurant menu food”.

One way to classify the algorithms used for topic modeling is according to the use of the “bag
of words” assumption. As the name indicates, this class of algorithms treats the words of a doc-
ument as being a group of objects in a woman’s bag. We all know how messy this can be and
how the objects are shuffled; hence, the order of the words in a document does not matter. The
remaining algorithms do take into account the sequence of words during their analysis. Another
distinction between topic models denotes the type of the used technique, whether it is supervised
or not. A supervised method requires existing labels or annotations in the documents whereas in
an unsupervised procedure, topics emerge from the analysis of the initial texts. In this paper, a
distinction regarding the adoption of time assumption is presented. In section 2.1, topic models
that do not consider the publication date of the documents (‘static’) are exploited whereas topics
that accept time association (‘evolution’) follow in section 2.2.

4

Figure 1: Topics found by analyzing 1.8 million articles from the New York Times. [11]

2.1 Static topic modeling algorithms

An early topic modeling algorithm which remains popular was introduced by Papadimitriou et al.
in 1998 [12] under the name Latent Semantic Indexing (LSI). LSI, also known as Latent Semantic
Analysis (LSA) is a ‘bag of words’ and unsupervised technique. The model attempts to find simi-
lar documents (sharing a topic) by mapping both the words of the documents and the documents
themselves into a “concept” space. Similarity between documents can be measured by using a
distance metric, such as the cosine distance. Precisely, LSI starts by representing a corpus through
a huge term-document matrix, the tf-idf matrix A. Tf–idf, short for term frequency–inverse doc-
ument frequency, is a statistical measure that determines words in a collection of documents that
are useful for defining the topic of each document [13]. Matrix A consists of rows which represent
the words in the corpus and columns which denote each document. Each cell A[i,j] corresponds
to the frequency of i term in the j document. Local and global weighting are applied due to the
fact that the importance of terms varies within and among the documents. After the creation of
the co-occurrence matrix, a mathematical technique named singular value decomposition (SVD)
is applied to transform the document-term-matrix into a high dimensional space containing both
documents and words concurrently [14]. SVD, first published by G. Golub et al. in 1965 [15],
decomposes the matrix A into three new matrices:

A = TΣV T

where T is the m by r = rank(A) term-topic matrix, Σ is the r by r singular value matrix and D
is the n by r document-topic matrix [16]. Next, the algebraic method SVD achieves a reduction
of the dimensionality of the matrix by isolating the singular values of A [17]. LSI interferes in this
procedure by choosing a reduction factor, smaller than the rank of matrix A, namely K. Through
this approach, terms and documents are converted to points in a smaller, k-dimensional space.
However, there is no perfect choice for K and the proper way to decide the K value is still an open
question.
LSI can also point out similarity between documents that do not have common words. This
occurs when the documents share frequently co-occurring terms. The main drawback of LSI is
that the method is not statistically oriented. LSI assumes that the data are normally distributed
which may result in negative numbers inside the co-occurrence matrix, a bad approximation for
frequency counts [18]. Another disadvantage of LSI approach is that the method faces difficulties
in dealing with polysemy (a word having more than one meaning) and synonymy (different words
sharing the same meaning). In addition, SVD is a time consuming procedure with vast storage
requirements.

5

The LSI model was later used for the develop of probabilistic Latent Semantic Indexing (pLSI)
by Hofmann in 1999 [19]. pLSI introduces the actual use of topics as it assumes that there is
an additional level between words and documents: topics. pLSI is also an unsupervised method,
meaning that the topics do not exist before the analysis. Topics are discovered from the texts, each
topic consists of a list of words and the documents can then be classified according to the resulted
topics. Similarly with LSI, the pLSI model depends on the frequencies of terms (words) in the
documents. Although pLSI follows the idea of LSI, it is statistically oriented. pLSI defines a proper
generative data model [20] and hence, overcomes the drawbacks of LSI. The algorithm estimates
the probability of a word w belonging in a document d through simple Bayesian probability. The
model treats the documents as mixture proportions of latent topics [21]. pLSI makes the following
assumptions: a document d is generated with a probability p(d), a topic z is selected with a
probability p(z|d) and a word, w, is generated with a probability p(w|z). The probability that a
word is selected by a document is:

p(w, d) = Σzp(d)p(w|z)p(z|d)

The parameters and the topics are estimated using the Expectation Maximization (EM) algorithm
[22]. The above equation can be seen as a matrix factorization similar to SVD where T matrix
relates to p(w|z), Σ to p(d) and V to p(z|d). The plate notation of pLSI can be seen in Figure
2 where the rectangles (plates) represent replication. M denotes the sequence of the documents
{d1, d2, . . . , dM} and N the words in each document di {wi1, wi2, . . . , wiN}. As depicted, a topic z
depends on the document d and a word w, on the topic z. Furthermore, a word w is conditionally
independent of d, given z. The variables d and w are the observed ones (shaded) whereas the
variable z represents the latent, hidden variable (non-shaded).
The generative model of PLSI suffers from at least two critical problems [7] [23]. Firstly, since the
probability distribution of each document on the hidden topics is estimated independently, the
number of parameters grows linearly with the size of the corpus leading to overfitting problems
[24]. Secondly, as the topics arise from the training documents, it is difficult for the model to be
applied to new, unobserved documents [26].

Figure 2: Plate notation for pLSI [25]. Figure 3: Plate notation for LDA [29].

In 2003, Blei introduced the Latent Dirichlet Allocation (LDA) which is perhaps the most common
topic model currently in use [7]. Matthew L. Jockers, attempted to explain the gist of LDA without
using any mathematical equation, via writing a vignette [30] which can be easily used as a bedtime
story. The story takes place in a small mythical town where writers from over the world visit to
seek inspiration for their novels and books. In this bizarre city, there is a place called the ‘LDA
buffet’ which instead of food, serves words divided into several baskets (themes). Two writers,
inhabitants of the town, borrowed their themes from the buffet and right after they completed
their manuscripts, they got mugged by a thief. The robber had been banned from the buffet and
wanted to find out the today’s menu, the topics that were served and used by the writers that day.
He already knew the amount of topics served (k) and wanted to discover which these topics were
by looking at the stolen manuscripts. The LDA topic model tries to do exactly the same thing
with the story’s burglar, i.e.: identify the topics in a given corpus assuming that a fixed number of
topics was used. The story continues with the thief shuffling the words of the scripts in a big jug
and then dividing the words into k plates. After the random separation, the thief examines each
word of the articles in the context of the other words that are distributed throughout each of the
bowls and in the context of the manuscript from which it was taken. Then, based on calculated
probabilities (more on that later) he decides whether the world should be moved in another plate
or not. Every time that he considers a word, he assumes that all the other words are correctly
distributed in the bowls. This procedure should be repeated until the assignment of the bowls do

6

not change meaning that the topics are correctly recognized. The output of the robbery would
not only be the resulted topics (bowls) but the ingredients of the documents as well. For example,
an output could be that story 1 consists of 40% of topic A whereas this topic constitutes the 50%
of story 2.
In more detail, LDA is an extension of pLSI and therefore a topic is assumed to be a probability
distribution over a fixed vocabulary of words and the documents consist of a mixture of topics.
However, LDA handles the mixture topic proportions of a document as hidden variables drawn
from a single Dirichlet (Dir) distribution, instead of actual parameters of the model. Consequently,
LDA overcomes the overfitting problem of pLSI and has the ability of calculating probabilities for
new, emerging documents. The difference between these models can be seen in their plate notation
as well. The plate notation of LDA is depicted in Figure 3. Again, the shadowed node represents
the observed variable of the model, the word, whereas the non-observed ones the latent variables.
As shown, there is an extra layer in the model where D denotes the collection of documents and K
the specified number of topics. Let V be the size of the vocabulary, ~α a positive K-vector and ~η a
positive V-vector. Then, the Dir(α) denote a K-dimensional Dirichlet and Dir(η) a V-dimensional
Dirichlet. The hidden topical structure is represented by: the topics βk, the per-document topic
proportions θd and by the per-word topic assignments zd,n. The Dirichlet distribution is given by:

p(θ|α) =
Γ(
∑
i αi)∏

i Γ(αi)

∏
i

θαi−1

The Dirichlet distribution is specified by the positive K-vector parameter α and Γ denotes the
Gamma function:

Γ(z) =

∫ ∞
0

tz−1e−tdt

Blei et al. [7] chose the Dirichlet distribution based on its properties that support the parameter
estimation as well. These properties include that Dirichlet is an exponential distribution, it has
finite dimensional sufficient statistics and is conjugate to the multinomial distribution.
The generative process of LDA can be summarized as [29]:

1. For each topic k, draw a distribution over words βk ∼ Dir(η).

2. For each document,

(a) Draw a vector of topic proportions θd ∼ Dir(α).

(b) For each word,

i. Draw a topic assignment zd,n ∼Mult(θd).

ii. Draw a word wd,n ∼Mult(φzd,n).

The LDA model assumes the above generative process for a corpus and then tries to backtrack
the procedure in order to find the topics in the collection of the documents (thief’s technique).
The inferential problem of LDA is to calculate the posterior distribution of the hidden variables
given a document and the corpus parameters α and β [28] using the following equation [7]:

p(θ, z|w,α, β) =
p(θ, z, w|α, β)

p(w|α, β)

As exact inference of the posterior distribution is challenging, various approaches for approximate
inference can be used such as Laplace approximation, variational approximation, and Markov
chain Monte Carlo (also known as Gibbs sampling [27]). Via this process, the probability of each
topic per word is calculated. The assigned topic for each word is simply the most likely topic.
This procedure is repeated until it converges. During the loop, at each iteration, the algorithm
assumes that all topic assignments except for the current word (to be assigned) are correct in each
iteration.
The main drawback of the LDA model is that it is unable to model any relationships between
topics. In the Dirichlet distribution, the components are independent of each other and there are
no relationships among topics [31]. As a consequence, topics cannot share words, i.e.: the same

7

word cannot occur in more than one topic.

The later topic models are generally extensions of LDA, such as Correlated topic model (CTM).
CTM improves the LDA technique by modeling also the correlations among topics and was in-
troduced by Blei et al. in 2007 [32]. The model assumes a logistic normal distribution in order
to model the relations among topics. The CTM follows the same generative process with LDA
except that the topic proportions are drawn from a logistics normal instead of a Dirichlet distri-
bution. The plate notation of CTM is shown in Figure 4. However, the added flexibility of the
CTM comes at a computational cost [32] as the CTM requires a lot of calculations. Additionally,
existing variations of LDA and LDA model itself, can only deal with a small corpus and model a
limited number of topics [33]. For a massive collection of documents containing a large number of
topics, LDA algorithms are often inefficient [34].

Figure 4: Plate notation for CTM [29].

2.2 Evolution topic modeling algorithms

A new cluster of algorithms that has attracted much attention is the evolution topic models. The
idea behind the topic evolution models is that topics evolve in time and analyzing articles that
differ a lot in their publication dates can cause problems when defining the topics. Using these
models, a researcher can comprehend the evolution of the topics and how a topic has changed
over time. The first paper among these models was published in 2006 by Wang et al., under the
name Topic Over Time (TOT) [35]. In this model, each topic is a fixed word distribution and the
algorithm models the probability that a document includes a topic based on the publication date
of the document. In the original paper, the authors describe the generative process of the model
in two ways. The plate notations of these two alternatives are depicted in Figure 5. As shown,
both methods follow the LDA notation. The generative process of the first notation (a) can be
summarized as:

1. For each topic z, draw a Multinomial distribution φz ∼ Dir(β).

2. For each document d, draw a Multinomial θd ∼ Dir(α).

3. For each word wd,i in document d,

(a) Draw a topic assignment zd,i ∼Mult(θd).

(b) Draw a word wd,i ∼Multi(φd,i)

(c) Draw a timestamp td,i ∼ Beta(ψzd,i)

In the above process, a timestamp is generated for every word of the documents. However,
all words that correspond to the same document have the same timestamp as well. The other
generative process of the TOT algorithm is presented in Figure 5 (b). Instead of generating a
timestamp for each word, one timestamp for each document in the corpus is generated.

TOT is an LDA-style topic model where a topic is associated with a continuous distribution over
time without any Markov assumption or discretization of time. The algorithm builds a narrow-
time-distribution topic when a word co-occurrence occurs for a short time, whereas it creates a
broadtime-distribution topic for a long existing word co-occurrence.

8

Figure 5: Plate notation for TOT [35].

Similar to LDA, the distributions are intractable for exact inference and hence, the authors used
Gibbs sampling for approximate inference. An example output of the model would be a diagram
over time where we ‘track’ a chosen topic and observe its occurrences throughout time. The draw-
back of TOT model is the assumption that topics and their meaning are constant over time which
concludes that a change in a topic involve a change in topic co-occurrence instead of changes in
the word distribution belonging to each topic. Therefore, we cannot see any evolution of the topics.

Later this year, Blei et al. proposed another evolution model based on the LDA approach, the
Dynamic Topic Model (DTM) [36]. The algorithm organizes the documents on (disjoint) time
slices and hence, a topic is a sequence of distributions over the words. Each time slice is modeled
by a K-component LDA topic model in which the k-th topic represents a smooth evolution of the
k-th topic at the previous time slice. For the detection of the evolution sequence, the model uses
Gaussian (Normal) distributions, specifically, the model chains the parameters for each topic k
(βt,k) at different time slices as being evolved with a Gaussian noise from its predecessor:

βt,k|βt−1,k ∼ N(βt−1,k, σ
2I)

Each topic is a sequence of distributions over words. In the LDA model, topic proportions, θ, are
drawn from a Dirichlet distribution. In DTM, the authors use a logistic Normal distribution again
in order to express the uncertainty concerning the topic proportions:

αt|αt−1 ∼ N(αt−1, δ
2I)

The generative process of the DTM in slice t can be summarized as:

1. For each topic z, draw a Normal distribution βt,k|βt−1,k ∼ N(βt−1,k, σ
2I).

2. For each topic z, draw a Normal distribution αt|αt−1 ∼ N(αt−1, δ
2I).

3. For each word document d,

(a) Draw θd ∼ Dir(α).

(b) For each word w,

i. Draw a topic assignment zd,i ∼Mult(θd).

ii. Draw a word assignment wt,d,n ∼Mult(f(βt,z)).

π simply maps the multinomial natural parameters to the mean parameters. The graphical repre-
sentation of the DTM is shown in Figure 6. Notice that, when the horizontal arrows are removed,
every slice is a separate LDA model. Similarly with LDA, estimating the parameters of the
modes constitutes an inference problem. The authors apply variational methods, in particular,
the variational Kalman filtering and the variational wavelet regression for approximate inference.
An example output of the algorithm could be a graphical representation of a chosen topic where
the top-ranked words would be displayed. That way, the changes in word’s popularity could be
recognized. The disadvantage of this model is that it assumes that there is a fixed number of

9

Figure 6: Plate notation for DTM [36].

topics in every time slice which is quite unrealistic. Topics can emerge or die or appear with a
different frequency such as Olympics (every 4 years) or Asia Cup (every 2 years).

The most recent topic evolution model approach tries to add information about the topic evolution
from the document itself. Scientific papers include a value information in their citations and the
papers they refer to. Similarly, online articles such as blogs or twitter posts contain data in the
form of hyperlinks. An evolution topic model that takes into consideration the citations of the
papers was published in 2001 by Jo et. al [37]. The authors state that citation supports the topic
detection as well as the discovery of the topic evolution. If a document di cites a lot of papers from
topic B, it is likely that it contains the topic successor of topic B. The model was not named by
its creators, in this paper is called Citation Evolution Topic Model (CETM) for convenience. The
CETM tries to discover the topology of topic evolution inherent in a corpus. A topic is defined
as a quantized unit characterized by evolution changes, i.e.: changes in topic’s word distribution.
The algorithm starts by looking at the collection of the documents in chronologically order and
selects whether the document introduces a new topic or not. A new topic is identified as the
specified content cannot be explained by any of the found documents as well as that is being used
by a sufficient amount of following documents. CETM uses the mixture of word distributions
and a word distribution θ is drawn from a multinomial distribution over the vocabulary V of
the corpus. In the learning phase of the algorithm, the LDA topic model is integrated while
Lagrangian multipliers are also used for inference. After the discovery of the existed topics, the
CETM builds a graph having as nodes the topics and the edges of the graph demonstrate the
citation-relation of the topics. An edge is created between two topics if they are semantically
related with a probability greater that the random chance. In the output graph the speed of
the evolution of each topic can be absorbed as well as the stability of a topic. However, the
method does not consider the direction of the relationships between the documents concluding
that a milestone paper would not be recognized by the algorithm . The main drawback of the
TEM arises from the use of the citation of the documents. This research has focused on modeling
scientific papers thus it is not applicable to other data sets.

3 Clustering

Clustering is a method extensively used in the domain of data mining. It is defined as the process
of finding groups of similar objects in the given data [39]. A similarity measure is used to assess
the similarity between the objects. Cluster analysis should not be confused with classification as
the latter requires predefined classes in the data (labeled data). Hence, document clustering refers
to the unsupervised technique of clustering documents/texts/sentences etc. Document clustering

10

can be beneficial regarding documents retrieval [40] and supporting browsing [41]. In addition,
clustering can handle the document clusters to provide summary insights into the overall content
of the underlying corpus [65]. Consequently, clustering is strictly related with topic modeling. In
this section, the main types of clustering [66] are described and a translation from topic modeling
to clustering follows.

3.1 Hierarchical vs. Partitional clustering algorithms

One of the most popular categories of clustering algorithms is the hierarchical clustering [42].
The idea behind hierarchical clustering is that, depending on the agreed level of detail, the clus-
tering algorithm can further split the resulted clusters into smaller (or merge into larger) ones.
Hierarchical clustering produces a conceptual hierarchy and thus is distinguished as a nested se-
quence of partitions [43]. The output of such an algorithm is a dendrogram, a tree-like structure
which represents the nested clusters. Hierarchical clustering is then divided into two categories:
agglomerative and divisive [44]. Assume that N items are to be clustered. The algomerative
clustering (aka bottom-up) starts with N clusters, each of them containing a single item. The
final clusters are formed after some merging operations. Specifically, at each iteration, the two
more similar objects (groups) are merged. The procedure is repeated until all the objects are
merged into one single cluster. On the contrary, the divisive clustering (aka top-down) initializes
all the N items in one cluster and iteratively divides the cluster(s) until N clusters are created.
From a computational perspective, the divisive hierarchical clustering is more problematic than
the agglomerative as it requires all possible divisions of the constructed clusters into subsets to be
taken into account. In Figure 7 the dendrogram of these two approaches is shown. Hierarchical

Figure 7: Hierarchical clustering dendrogram. [45]

clustering does not require the number of clusters to be selected in advance [46]. The join (or
splitting) of the clusters at each step is based on a distance measure (linkage) that comprehends
how similar or not the clusters are. The intergroup similarity can be defined with a variety of
ways given a distance measure between the objects (points) of the clusters. The four well-known
metrics to measure the cluster similarity (distance) are described below [47]:

• Single linkage

The distance d between two clusters is defined as the minimum distance between the cluster
objects. The shortest distance of any item of one cluster (A) from any member of the other
cluster (B) [48] is also known as Nearest Neighbor Cluster Distance:

d(A,B) = min
x∈A,y∈B

|x− y|

The single linkage is a widely used and simple method with efficient implementations. However,
the algorithm is likely to fail on detect clusters with irregular shapes and is sensitive to outliers
in the data set. In addition, the metric can produce ‘chaining’ where close objects belonging to
different groups can lead to early merging of those groups.

• Complete linkage

The distance d between two clusters is defined as the maximum distance between the cluster
objects. The longest distance of any item of one cluster (A) from any member of the other cluster

11

(B) [49] is also known as Furthest Neighbor Cluster Distance:

d(A,B) = max
x∈A,y∈B

|x− y|

Complete linkage overcomes the chaining’ problem but is yet sensitive to outliers. The distance
used may as well be considered as the diameter of the new cluster (maximum within-cluster
distance).

• Group average

The distance d between two clusters is defined as the average distance between the objects of the
clusters:

d(A,B) =
1

|A| · |B|
·
∑

x∈A,y∈B
d(x, y)

This method appears as a compromise of the two above ones. It has been proven to be efficient
and widely used in experiments. Nevertheless, is it computationally expensive for large data sets
as the computation of the average similarity between a large number of pairs is required.

• Centroid linkage

The distance d between two clusters is defined as the distance between the cluster centroids CA
and CB , where the centroid is the center of a cluster, the average across all the objects:

d(A,B) = |CA–CB |

This metric appears to be robust to outliers in the data set. A drawback of the method is that
the centroid of each cluster moves as more clusters are merged. Hence, the distance of different
clusters may decrease making the results difficult to comprehend. The choice of the cluster dis-
tance metric defines the clustering strategy and hence the properties of the resulting clusters and
the dendrogram itself [50]. This reveals the importance of the metric used while the pros and cons
of each method should be taken into account by the user.

In contrast, patritional (or partitioning) clustering [51] creates only one set of clusters given a
parameter k denoting the desired number of clusters [52]. This method yields a single partition
of the input data into k non-overlapping clusters, which are constructed due to global and local
criteria applied by the algorithm. The algorithm starts with an initial cluster partition which is
iteratively improved until the criteria are reached. Typically, the global criteria involve maximizing
some measure of similarity within each cluster, while maximizing the dissimilarity of different
clusters [53].
The most commonly used and the classical example of partitional clustering method is the k-
means algorithm and its many variants [54]. The main idea is to create k centroids, one of each
cluster. The position of the centroids is crucial and they are initialized as far from each other as
possible. The centroid is the mean point (center) of each cluster. Each point is then assigned to
a cluster according their similarity (e.g.: distance) to the cluster centroid. Next, the new centroid
of each cluster is computed based on the new assigned members of the cluster and the procedure
is repeated until the process converges, i.e. the elements of the clusters do not change in two
sequential iterations. The algorithm aims at minimizing the following objective function:

k∑
j=1

n∑
i=1

||xi–cj ||2

where n is the number of objects in the data set, xi a data point and cj the centroid of a cluster.
The k-means is a relatively efficient algorithm which has been used in literature for many years.
However, the results critically depend on the initial choice of cluster centroids [55].

12

3.2 Hard vs. Overlapping Clustering algorithms

Partitional clustering can be later divided into hard and overlapping Clustering. Hard clustering
generates a hard partition where each data element is assigned to one and only one cluster. Hard
clustering is also known as exclusive clustering and is generally simpler and with a lower time
complexity than the overlapping clustering algorithms [56]. As defined [57], a hard partition of a
data set Z is a set of subsets {Ai|1 ≤ i ≤ c} with the following properties:

c⋃
i=1

Ai = Z

Ai ∩Aj = ∅, 1 ≤ i 6= j ≤ c

∅ ⊂ Ai ⊂ Z, 1 ≤ i ≤ c

First equation shows that the union of all subsets Ai equals Z, all the items. Next, these subsets
should be disjoint and the last property indicates that none of the subsets is empty nor contains
the whole items. An example where hard clustering would be suitable is the case of blood type
clustering. If we were about to cluster people regarding their blood type, each of them should be
assigned into one and only cluster.
In terms of membership functions, hard clustering can be formulated as:
Let µik be the membership function of the ith subset Ai of Z for the cluster k. The elements
should satisfy the following conditions:

µik ∈ {0, 1}, 1 ≤ I ≤ c, 1 ≤ k ≤ N
c∑
i=1

µik = 1, 1 ≤ k ≤ N

0 <

c∑
i=1

µik < N, 1 ≤ I ≤ c

As shown, the membership function is either 0 or 1 while for each element, the sum over all the
clusters equals 1, i.e.: it can only belong to one cluster. The last condition illustrates that there
is none cluster with 0 or N (all) elements.

In contrast, there are a lot of situations where an object belongs to more than one cluster. Hence,
an overlapping or non-exclusive clustering which allows one element to belong to more than one
cluster simultaneously feels more natural as the world is not just black and white [58]. For
example, a data point referring to a person can belong to the clusters ‘Students’ and ‘Employees’
as he/she can study at a University and work at the same time. A visual representation of hard
and overlapping clustering is illustrated in Figure 8. The clusters in each picture are indicated by
dotted circles and in case (a) a hard clustering is displayed whereas in (b) an overlapping one.

Figure 8: Hard vs. overlapping Clustering. [59]

Overlapping clustering is also known as soft or fuzzy clustering [60]; characterizing a clustering
type with proportions. In fuzzy clustering, each element has a degree of membership for each
cluster between 0 (absolutely does not belong) and 1 (absolutely belongs). Mathematically, a

13

fuzzy set S is characterized by a membership function which associates each point x in the data
set to a real number in the interval [0,1] which represents the degree of membership of x in S [61].
Hence, the difference is that the membership function can be any number in the interval [0,1]
instead of the set {0,1}.

µik ∈ [0, 1]

c∑
i=1

µik = 1, 1 ≤ k ≤ N

0 <

c∑
i=1

µik < N, 1 ≤ I ≤ c

Fuzzy clustering can be also found as probabilistic clustering in the literature. Again, the sum of
the membership weights (probabilities) of each data element must sum to 1.
The most famous fuzzy clustering algorithm is the Fuzzy c-Means algorithm. The algorithm is
very similar to k-means and aims to minimize the following:

c∑
i=1

n∑
k=1

µmik · ||xi–cj ||2, 1 ≤ m <∞

where c is the number of subsets, clusters, and N the size of the dataset. µik denotes the member-
ship function and xi, cj the data points and the centroids of the clusters respectively. In addition,
m, is a parameter determining the fuzziness of the resulting clusters. When m is large, the mem-
berships are smaller resulting to fuzzier clusters. When m in 1, the memberships converge to 0 or
1 resembling the hard clustering. In the absence of experimentation or domain knowledge, m is
commonly set to 2 [62]. At each iteration, Fuzzy c-Means calculates also the coefficients of being
in the clusters for each point and stops when the centroids coverage.

3.3 Complete vs. Partial Clustering algorithms

The complete clustering algorithm requires every data element to be assigned to a cluster when
the algorithm terminates [63]. In mathematical terms, complete clustering is a hard clustering
method. Similarly, the set of subsets {Ai|1 ≤ i ≤ c} of a dataset Z should satisfy the same equa-
tions with hard clustering (section 3.2). An example where complete clustering is needed could
be for the arrangement of the different student groups for a lab session. The professor wants to
assign each and every student to a group.

On the other hand, a partial clustering algorithm allows some objects not to belong to an existing
cluster. Through this technique, outliers or noise in the data set do not influence the resulted
clusters. The motivation for this clustering is that some elements of a data set can be one-of-a-kind
and cannot be similar with any other object. Thus, the union of the subsets does not equal the
dataset:

c⋃
i=1

Ai ⊆ Z

For example, in a notable episode from Seinfeld [64], the character named George reveals to his
future wife that he wants his first child to be named ‘Seven’. Imagine a data set with names as
elements which are to be clustered. The name ‘Seven’ would (probably) denote an outlier which
could be avoided with a partial clustering technique. In Figure 9, a visualization of the difference
between complete (a) and partial (b) clustering is presented.

4 From topic modeling to clustering: a translation

A specific document belongs to a given cluster with a probability θ. Topic modeling attempts to
model the value of that probability [65]. That way, the various topics of a corpus can be considered
as clusters and the documents as the elements to be assigned. Therefore, topics are analogous to

14

Figure 9: Complete vs. Partial Clustering. [59]

clusters and the amount of clusters is the same with the number of topics (usually denoted by
k). In topic modeling, a document is a mixture of topics, i.e. a document can consist of more
than one topic. This can be translated in cluster analysis by the use of soft clustering where a
document is allowed to appear in multiple (overlapping) clusters. To conclude, the discovery of
topics in a corpus that topic modeling algorithms achieve can be done by applying a clustering
algorithm in the collection of the documents.

5 Frequent Itemset Mining

Frequent Itemset Mining (FIM) is an essential and interesting branch of data mining and data
analysis. FIM searches for regularities in a database in order to extract useful information. The
method attempts to discover interesting patterns that best describe the data, such as association
rules or correlations. The original motivation for FIM came from the need to analyze the ‘shopping
basket’, a research on customer’s behavior regarding their purchased products [67]. An example
of an association rule is that if a customer buys eggs and pizza, he will also buy beer with a
probability of 60%. Possible applications of the resulted rules are: improvement of store layout,
promotion of products, cross-selling (suggestion of other products) and many others.

The FIM problem considers a set of distinct items I = {i1, i2, ..., in} and a transactional database
D. A transaction t ⊆ I contains items that correspond to the purchased products a costumer
bought. A pattern X is a set of items (itemset) and is contained in t iff X ⊆ t. The support of
a pattern X is the number of the supersets of X in D, i.e.: how many times these products are
bought together. An itemset is then considered as frequent if its support is greater that a given
threshold, minsup.

A major problem in Frequent Itemset Mining is the explosion of the number of resulted patterns
due to the difficulty of finding only the most interesting sets. Mining the database with strict
constraints leads to few patters that usually are of no use as they are the most obvious (common)
ones. In contrast, losing the constraints produces an enormous number of resulted patterns.
Fortunately, many approaches using different means have been inventing regarding this problem.

5.1 KRIMP in general

To tackle the problem of pattern explosion, Siebes et al. [68] proposed an algorithm that uses the
MDL principle, i.e.: the best set of frequent itemsets is the set that compresses the database best.
Later that year, the above compression method was named KRIMP by Leeuwen et al. [69]. The
name of the algorithm was inspired by the Dutch word ‘krimp’ which means ‘to shrink’. MDL
stands for minimum description length and is capable of finding the model that describes the
database best [70]. More formal, the MDL principle can be described as follows: Given a set of
models H, the best model H ∈ H is the one that minimizes

L(H) + L(D|H)

15

where L(H) is the length, in bits, of the description of H and L(D|H) is the length, in bits, of
the description of the data when encoded with H.

The models considered by the algorithm are code tables. A code table consists of a two-column
table in which the left-hand side contains itemsets while the right one, a code for each of the
itemsets. The algorithm gives a unique encoding to each possible transaction and aims to find the
one code table which compresses the whole database best. KRIMP follows a heuristic and simple
greedy search strategy [71]:

1. Start with a standard code table ST , containing the singletons only of itemsets X ∈ I.

2. Add the itemsets from one by one. If the resulting codes lead to a better compressed size,
keep the code. Otherwise, discard the code.

It has been proven that KRIMP achieves a dramatic reduction in the number of resulted itemsets
and picks the itemsets that matter most [71]. The output of the algorithm is the optimal code
table for the given database.

5.2 How does KRIMP fit in?

Apart from compression, code tables can be used for classification as well. The KRIMP classifier
performs excellent comparing to the best classifiers available [71]. Furthermore, KRIMP can also
be used for clustering purposes as shown in 2009 by van Leeuwen et al. [72]. The clustering
problem can be formulated as follows: Let I be a set of items and db a bag of transactions over
I. Find a partitioning db1, ..., dbk of db and a set of associated code tables CT1, ..., CTk such that
the total encoded size of db ∑

L
(
CTi, dbi

)
is minimized. The authors describe the goal of the problem as finding the mixtures of samples
from different distributions. The different distributions denote the different buying patterns that
occur in a transactional database. In the paper, it is concluded that the optimal decomposition
can be driven from the original code table CT. In order to find that partitioning of the database,
the proposed algorithm does not consider any distance metric and no parameter has to be set.
In fact, KRIMP algorithm is applied to the whole dataset that results in a CT and a heuristic
procedure follows. The heuristic finds the set of the subsets of the CT that minimizes the total
encoded size of db, denoting the clusters.

6 Our problem: evolving clusters

The original motivation for this thesis arises from a digital humanities’ challenge. Digital Human-
ities are defined by the Digital Humanities Quarterly journal as

“a diverse and still emerging field that encompasses the practice of humanities
research in and through information technology, and the exploration of how the
humanities may evolve through their engagement with technology, media, and
computational methods.”

Historians expressed the need of analyzing themes or topics in a corpus over time using digital
humanities tools. Until now, topic modeling algorithms have been mostly used in order to identify
the topics in each epoch. The term ‘epoch’ indicates a period of time lasting one year or more.
After the detection of topics in each epoch, historians tended to research these topics and tried
manually to spot any differences or similarities with a view to understand their evolution. Not
only the notion of doing things “manually” irritates the computer science family, but an algorithm
widely applicable to any data set is preferred.As discussed in section 2, static topic modeling algo-
rithms have various drawbacks that make them unsatisfactory about the defined problem. Each of
the presented static topic models constitute an improved version of the previous one. The last one,
a variation-extension of LDA technique does not perform sufficient enough in a quite large data

16

set. Likewise, the evolution topic models are not a suitable solution to this problem either. The
existing evolution topic models lack of flexibility and can only be sufficiently applied in specific
occasions. They expect data sets with particular properties, such as containing a fixed number of
topics, a number of references, to mention but a few.

A solution to handle this problem was inspired by the parallelism between a transactional database
and a corpus. To conclude, the research question of this thesis is:

”Given a set of items I and a database db over I divided into epochs, determine the clusters in db
and how they evolved over time.”

7 KRIMPevol algorithm

In the previous sections, a literature review on the existing methods that are currently used in
order to identify evolution in a database, was performed. This section includes a detailed de-
scription of the proposed algorithm, KRIMPevol; a mean to identify an evolving process between
clusters of objects that belong to different time intervals. Furthermore, the implementation and
the experiments performed in order for its validation and the conclusions drawn follow.

The name that was selected for the algorithm indicates its ancestor -the KRIMP algorithm- and
emphasizes its capabilities regarding the evolution process. But, what is meant with the word
‘evolution’? Clusters are groups of similar objects that share some characteristics. An object can
be anything: from a person to a word, from a planet to ant species. Clusters can exist today and
tomorrow, they can be found in the present, in the past or in the future. Therefore, clusters of
the same population can exist in different time intervals. It would be of interest to zoom into a
cluster and see how it evolved through the years, i.e. the changes of its components from time to
time. This is when KRIMPevol steps in. As input, KRIMPevol algorithm takes a database over
a set of objects (items) that are divided into epochs. With the term epoch, a fixed period of time
with a specific duration is assumed. The desired output of the algorithm is a graph containing the
identified clusters within each epoch and the correlations between the clusters over the epochs.
The pseudo-algorithm of the algorithm KRIMPevol follows:

Input: db (database), dur (duration of each epoch)
Output: diagram containing the clusters and their correlations

Algorithm KRIMPevol

1: split the db into epochs of duration dur
2: for each epoch do
3: apply KRIMP clustering - find the best set of clusters

4: for each cluster do
5: compute dissimilarities between clusters

6: correlate the clusters depending on their dissimilarities

At step 3, the optimal partition of each epoch is determined using the algorithm build by van
Leeuwen et al. in 2009 [72]. The iterative algorithm uses the MDL principle and, without any
prior knowledge, splits the data randomly in a fixed number of parts representing the clusters
(k). Then, the KRIMP compressor is applied to each part and the transactions are re-assigned
to the specific compressor that encodes the transaction best (shortest). The algorithm attempts
to cluster the database for all the possible numbers of clusters within the range [2,|db|] where |db|
represents the size of the database, i.e. the number of transactions. Each time, the found total
encoded size (dbsize) is compared with the best found so far and thus the best size and best k is
determined. Due to the fact that each transaction is randomly initialized, each experiment was
repeated 10 times and the smallest dbsize found was chosen as the output (as proposed by the

17

authors).

At step 5, the dissimilarities between the clusters are calculated. A cluster, is a database part
which has its own descriptive codetable (CT). Therefore, in this phase of the algorithm, the
dissimilarity measure implemented by Vreeken et al. [74] can be used. The generic and symmetric
dissimilarity measure between two databases, x and y, is defined as the maximum of two mirrored
aggregated code length difference measurements through the equation:

DS(x, y) = max

{
CTy(x)− CTx(x)

CTx(x)
,
CTx(y)− CTy(y)

CTy(y)

}
A small dissimilarity shows a strong correlation between the two databases as the two databases
are more or less the same, whereas higher scores indicate greater dissimilarity.

At step 6, the correlations of the clusters are drawn. In the previous step, the dissimilarities of
clusters over the (different) epochs have been calculated. In this step, the internal dissimilarities
of the clusters belonging in the same epoch are also needed. Theoretically speaking, when two
clusters from two different epochs have a dissimilarity smaller than the minimum dissimilarity of
each cluster in its own epoch (internal), they are related and they indicate an evolving process. If
the dissimilarity is bigger, they are irrelevant.

Experiments were performed in order to test and validate the proposed algorithm. The focus was
mainly in the two steps: step 3 and 6 respectively which are described in sections 9.1 and 9.2.

8 Experiments - First set

8.1 Database

In order to test the proposed algorithm, we first attempted to perform the experiments using a real
database. As the motivation for creating the algorithm was the identification of themes -cluster
of words-, a database of categorical data was chosen. A database which contains the registered
names of the Dutch citizens from 1889 onward was provided by Gerrit Bloothooft. More precisely,
each row in the db, represents a person (entity) where each entity holds four attributes, namely:
‘family ID’, ‘name’, ‘gender’ and ‘year’. The first attribute is unique across all the families and
can be used to indicate the siblings across the db as they share the same number ID. The column
name contains only the first name of each person followed by the gender (M/F) and the year of
birth. For the experiments of this thesis, the column gender was ignored. An example row of the
Names db is: 44 Marcus M 1966.

8.2 Pre-processing

The purpose of the pre-processing phase, is to create a database of names similar to a transac-
tional db. As known, in a transactional db, each row represents a costumer and its purchased
products, his/her shopping options. Having this in mind, a parallelism can be found between a
customer and his/her products with a family and their chosen children’s names. To create this
transactional-like database, the column of family ID was used as an indicator to merge the names
of all the children of each family in one row. For each family, the year of birth of the firstborn
child was saved to be used for the next pre-processing step.

As described in section 7, the KRIMPevol algorithm splits the database into epochs of a fixed
duration. Using the year of birth of the eldest child in each family, the rows of the new database
were sorted and split into smaller databases (epochs). Each epoch was chosen to have a duration
of 10 years. This division resulted in 13 epochs with a decade duration whereas the last one
contained the remaining 5 years. Moreover, the categorical names were coded in order to create
a database comprised by integer numbers. To conclude, the last phase of the pre-processing in-
cluded a cleaning process regarding the year of birth. Eight entries were found to have a year of

18

birth equal to zero. The first one belong to a family in which the second child was born in 2001.
Therefore, the zero year of birth was obviously a mistake and was replaced with 2000. However,
this was not the case for the other 7 persons. As the correct year of birth could not be indicated,
the seven rows that had a mistaken year of birth were deleted.

An example row of an epochs is: 13 1988 846 855 998. The first number, 13, is the family ID, the
year of the firstborn child follows and then, the coded names of each child. The specific family
has three children. In the version of epochs which was used for the experiments, the information
containing the family ID as well as the year of birth were deleted.

8.3 Statistics

The Names db consists of 12,899,245 entries of four attributes. The minimum year of birth is 1889
whereas the maximum 2015. There is one entity registered in 1889 and there are six youngest
citizens, born in 2015. The maximum number of children of the same family is 22 and the first
child of that family was born in 1940. The identified number of the different families in the whole
database is 4,379,762 whereas the amount of different names 253,468. It came as no surprise that
the most common name in Netherlands, over the past 130 years is ‘Maria’.

8.4 Results

Having the epoch databases ready to use, the algorithm KRIMPevol was applied. Unfortunately,
the results were not as expected. The clustering algorithm could not identify any possible clus-
tering within the epochs and the best number of clusters found (k) was always equal to |db|, the
number of rows of each epoch. Even with bigger or smaller epochs, the result was the same. An
example output of epoch 3, which was found during the experiments can be seen in Figure 10.
As shown, the size of the database decreases as the number of clusters grows. At the last tested
number of clusters, |db|, the smallest size of the database is achieved.

Figure 10: Clustering results - Epoch 3

Our mission was then redefined: why this approach is not functional? At first, the implemented
algorithm was tested. With a view to validate the clustering algorithm, the database mushroom,
borrowed form UCI repository, was used. The specific database was also used in [72] where the
reported best k was 20. In our experiments, we also found that the smallest size of the db was
achieved when the db was clustered in 20 parts. Not only the dbsize did not dropped as the
number of clusters was increased, but the size of the database for k=20 was 38 times smaller than
the dbsize for k=|db|. Next, the duration of the epochs and therefore the amount of rows were
considered. The results were the same either with a duration of one year or fifty.

19

Hence, the problem arises from the form/type of the database. What are the differences between
a transactional db and the used ones? After a lot of thinking and trials, the alphabet length of
the database and the average length of the database rows were found responsible. In Table 1, a
comparison between transactional databases and the Names db are shown. Again, three databases
that were also used in [72] are compared.

db nR avgL aL %
Adult 48,842 15 95 0.01
Mushroom 8,124 23 117 0.06
Nursery 12,960 9 21 0.02
Names 4,379,762 3 253,468 1.93
Example epoch 559 2.58 217 15.05

Table 1: Characteristics of the databases

In Table 1, nR refers to the number of rows (transactions), avgL to the average length of each row
and aL to the alphabet length of the database, the number of items (levels). The last column is
the percentage of the unique items (items used only once) and help us to compare the databases.
As shown, the percentage of unique items is really small in the transactional databases, whereas
in the Names db is 100 times bigger. When the database is split into epochs, the unique items are
even more as the amount of people gets smaller. Another big difference, is the average length of
each row. In the Names db, only the siblings of each family are known which significantly narrows
the database.

After the conclusion that the Names db cannot be used with KRIMPevol, the quest for a new
working database began. Although it was hard to find a database with the specific requirements
(transactional-like, over the years), the exploration was fascinating. Throughout this search, very
interesting databases came across our path, such as a database containing the last words of every
inmate executed since 1984 in Texas [77] or information on how Americans have met their spouses
and romantic partners [78]. After the long search, the best option to overcome the encountered
problems is to work with an artificial database. In the next section, the process followed to create
such a database is described.

9 Experiments - Second set

The key to overcome the absence of an over-the-years transaction-like database was found in a
scientific paper. Vreeken et al. [75] proposed an algorithm that generates a synthetic database
given a database and its code table. Consequently, a database over the years can be constructed
using a transactional-like as the starting one and creating the latter epochs using this algorithm.
Synthetic data are defined as “any production data applicable to a given situation that are not
obtained by direct measurement” according to the McGraw-Hill Dictionary of Scientific and Tech-
nical Terms [76]. The algorithm [75] was published in 2007 with the original purpose of preserving
sensitive information in the data, a process of data anonymization. It follows the principles of
KRIMP algorithm [68] and uses the code table found by compressing the database. After chang-
ing the frequencies of the itemsets in the code table, the algorithm generates new transactions
separately. The transactions are formed using the itemsets of the CT which are picked based
on their frequencies. The algorithm makes sure that each attribute gets a value for each gener-
ated transaction and hence, produces transactions of the same (maximum) length. The produced
database consists of the same amount of rows (transactions) as the original one, but someone can
simply produce more or less - depending on what is needed.

In this thesis project, the described algorithm was implemented and tested using an example
database dbex. After finding the best clustering (x) for the dbex, the produced CTs were used by
the algorithm to generate new (sub)databases for each cluster (without changing their frequencies).
The subdatabases were later merged into a new big database of the same size as the original. By
running again the clustering algorithm with the new constructed db, the best number of clusters

20

was again x and the resulted clusters were very similar to the previous original ones. This procedure
validated our implementation of the algorithm and allowed us to continue.

9.1 Identification of clusters

This section contains a detailed description of the followed procedure for the validation of the
KRIMPevol algorithm. As mentioned in Section 7, the focus is on two steps of the algorithm. In
this section, the step 3 of the algorithm KRIMPevol is studied. The scope of these experiments is
to understand the requirements under which the algorithm correctly identifies new created clus-
ters or unused ones. In Section 9.2, the experiments focus on step 6: associating the clusters of
different epochs using the dissimilarities found.

The database that was chosen as the starting one (first epoch) is the mushroom db. The database
has 1824 instances (rows), with attributes corresponding to 23 species of mushrooms and therefore,
23 columns [79]. The whole database was first clustered using the clustering algorithm and was
best clustered into 20 clusters. For the validation of the algorithm, we need to construct a new
epoch and review the evolution between the constructed epoch (second) and the original one
(first). The new database is constructed as follows: Using a combination (more on that in the
next section) of three out of the twenty clusters, a new CT (newCT) is created. Following the
previous described algorithm, the artificial corresponding database of the newCT is produced.
Later, the produced database is merged with the remaining, already existing db parts, of the
20− 3 = 17 clusters and the new epoch (database) is ready to use.

9.1.1 Construction of newCT

The new CT is a rich combination of three of the CTs produced by the clustering of the database.
As mentioned above, the database was clustered into 20 clusters. In this thesis, we performed 20
iterations to guarantee the accuracy of the results. By partitioning the database into 20 parts,
the best encoded size achieved was 229705.85 and the average (internal) dissimilarity between the
clusters of the database was 8.3. The dissimilarity found in [72] within the clusters of the same
database was 7.8. The small difference is due to the randomized structure of the algorithm. In
addition, the amount of iterations performed in this project were 20 (double the ones used in [72]),
meaning that a slightly better clustering of the specific database was mighty achieved.

We arbitrary take into consideration three out of the twenty clusters, namely cluster 0, 7 and 14,
with an amount of rows of 208, 147 and 192 respectively. The chosen clusters share a common
feature: they are multipliers of 7, which I consider as my ‘lucky number’. It turned out they share
almost the same amount of rows which makes them a great choice. For the database build using
the newCT, the amount of generated transactions is chosen to be 200, roughly the size of the used
CTs. The merged database of the remaining 17 clusters sum up to 7577 rows and therefore the
new db contains 7577 + 200 = 7777 rows (it was a coincidence - I swear!).

To summarize, three CTs are used and the newCT is the combination of these CTs represented
by the equation:

k0 · CT0 + k1 · CT7 + (1− k0 − k1) · CT14

where k0 ∈ [0, 1] and k1 ∈ [0, 1 − k0]. The equation forms a 2-simplex or a so-called triangle.
Imagine a triangle having as vertices the given CTs. A point p inside the triangle corresponds to a
possible newCT. The distance of the point and each vertex represents the proportion of that CTi
in the newCT. The farthest a point from a vertex is, the less the specific CTi will contribute to the
newCT. Therefore, the centroid of the triangle symbolizes the newCT with equally contributed
CTs (each 33.33%). When the point p is on the edge of the triangle, it consists only from the CTs
of the vertices of the specific edge and so on.

If k2 = 1− k0 − k1, the next cases were considered:

21

newCT
Case No. k0 k1 k2 CT0 CT7 CT14
1 0 0 1 - - 100%
2 0 0.2 0.8 - 20% 80%
3 0 0.3 0.7 - 30% 70%
4 0 0.4 0.6 - 40% 60%
5 0.33 0.33 0.33 33% 33% 33%

Table 2: Construction of the newCT

The newCT contains the proportion shown in Table 2 for each case. When a CT contributes by
α%, we randomly take the α% of the non-sigleton itemsets rows and the α% of sigleton ones and
copy them to the new (empty) CT. Each case is described in detail in the following sections.

9.1.2 Case 1

In case 1, the following proportions are applied for the construction of the newCT: 0% of CT0,
0% of CT7 and 100% of CT14. By constructing the newCT that way, the two clusters, 0 and 7,
are ‘deleted’ and the algorithm is expected to understand that. Hence, the expected best number
of resulted clusters (k) is 20− 2 = 18.

In Table 3, the dissimilarities of the newCT and the three CTs used can be found. As expected,
the dissimilarity between the newCT and CT14 is zero since they are identical.

CT0 CT7 CT14
newCT 8.458473 7.716713 0.000000

Table 3: Dissimilarities with newCT - Case 1.

A snapshot diagram of the clustering results is demonstrated in Figure 11. The x axis of the figure
represents the number of tested clusters (k) while the y axis the calculated size of the database
for that specific partition. As it can be seen, the smallest size of the database (sizedb) is achieved
for k=18, as expected.

Figure 11: Clustering results - Case 1

Furthermore, to guarantee that the algorithm does not find correlation between the clusters that
do not exist in the second epoch, the dissimilarities between the clusters of the different epochs

22

are examined. As mentioned before, a cluster is associated with a new, evolving cluster iff the
dissimilarity with the new db is smaller that the dissimilarity of the specific cluster in its own
database.

In Table 4, the dissimilarities within the first epoch for the three clusters are shown. This table
will be used as indicator for finding correlation between the clusters of the second and the first
epoch in all cases. The minimum dissimilarities of each cluster are highlighted and they can be
used as thresholds: when the dissimilarity between the clusters of the second and the first epoch
are smaller than the minimum of the starting epoch, evolution is assumed. In Table 5, the dis-
similarities of the three clusters of the starting epoch are compared with the new found clusters.
The number 1 is used before the clusters of the second epoch for identification reasons.

CT0 CT7 CT14
CT0 0 8.645203 8.458473
CT1 9.880593 9.892202 9.564601
CT2 9.81002 8.436834 7.479195
CT3 9.391163 8.351768 7.517278
CT4 8.677418 8.224043 8.081466
CT5 9.526072 9.315437 8.742781
CT6 10.177761 9.212404 9.010142
CT7 8.645203 0 7.716713
CT8 8.138637 7.548962 7.483003
CT9 9.713433 8.847964 8.137517
CT10 10.084228 9.11078 8.970266
CT11 9.234586 8.44908 8.216666
CT12 8.90373 7.21675 7.916137
CT13 9.077066 8.388633 8.157391
CT14 8.458473 7.716713 0
CT15 9.169945 8.715112 8.17326
CT16 10.920519 9.788195 9.39528
CT17 8.914738 8.225952 7.996452
CT18 9.493765 8.650794 8.358883
CT19 9.172633 8.344824 7.673089

Table 4: Internal dissimilarities - First
epoch

CT0 CT7 CT14
1.CT0 9.192178 8.412497 8.054873
1.CT1 9.138803 8.379508 8.148606
1.CT2 10.914496 9.610587 8.573374
1.CT3 8.610747 7.81611 7.430294
1.CT4 9.266481 8.044403 7.325126
1.CT5 11.271595 10.266768 9.913181
1.CT6 9.540662 8.551606 8.046282
1.CT7 8.892677 8.087378 7.955511
1.CT8 10.723107 9.919362 10.100254
1.CT9 9.306474 8.591633 6.411708
1.CT10 9.197416 9.009255 8.630555
1.CT11 9.196278 8.478708 8.200873
1.CT12 8.582322 7.96973 7.981436
1.CT13 9.426066 8.972515 8.708433
1.CT14 9.020735 8.290096 7.790988
1.CT15 10.209085 9.691139 8.888955
1.CT16 8.730575 7.914072 6.513784
1.CT17 9.563605 8.957379 6.407749

Table 5: Dissimilarities between epochs - Case 1

It is easy to see that the algorithm correctly does not recognize evolution for the unused clusters.
The resulted dissimilarities are greater than the ones within the database and therefore, the
clusters 0 and 7 are not related with any other. In contrast, evolution is identified for cluster 14,
validating our steps.

9.1.3 Case 2

In case 2, the following proportions are applied for the construction of the newCT: 0% of CT0, 20%
of CT7 and 80% of CT14. In cases 2-4, both cluster 7 and 14 are used with different proportions
each time. These experiments, using various proportions, help us discover the threshold above
which both clusters are identified by the algorithm.

In Table 6, the dissimilarities of the newCT and the three CTs used can be found. As seen,
the dissimilarity of newCT and cluster 7, comparing to Case 1, has decreased. In addition, the
dissimilarity of newCT and cluster 14 is not zero anymore, as the proportion of the cluster in the
newCT is lower in this case.

23

CT0 CT7 CT14
newCT 8.423302 6.390826 1.131787

Table 6: Dissimilarities with newCT - Case 2

Similarly with Case 1, in this case, the best clustering was achieved when the database was par-
titioned into 18 clusters. The algorithm did not recognize cluster 7 as a separate one. Therefore,
we can conclude that a contribution of 20% percent from one cluster is not a sufficient percentage
as it is ignored by the algorithm. The results of the clustering of the database can be found in
Figure 12. It is clearly depicted as well that the total encoded size for k equal to 19 and 20 is
much smaller than Case 1.

Figure 12: Clustering results - Case 2.

CT0 CT7 CT14
1.CT0 9.670269 8.80819 7.944596
1.CT1 9.418395 7.037136 6.403843
1.CT2 9.611518 9.408417 7.042584
1.CT3 9.952382 9.244427 9.021881
1.CT4 10.0138 9.098221 9.366721
1.CT5 9.291969 8.650148 8.290094
1.CT6 9.871525 8.728652 8.761679
1.CT7 9.036694 8.337583 8.136143
1.CT8 8.784121 7.61713 7.920808
1.CT9 8.651378 7.930661 7.618028
1.CT10 10.222525 9.037161 8.844674
1.CT11 10.241244 8.252476 7.720122
1.CT12 9.382069 8.416459 5.782151
1.CT13 9.977582 8.276221 8.764814
1.CT14 9.321463 8.966295 8.671222
1.CT15 8.761891 8.238931 7.886045
1.CT16 8.548034 7.74383 7.654585
1.CT17 8.781811 6.901844 7.550518

Table 7: Dissimilarities between epochs - Case 2

In Table 7, the dissimilarities between the clusters of the two epochs are shown. Comparing to
Table 4 as well, correlation can be found for both the used clusters, with codetables CT7 and

24

CT14. Although in clustering results the cluster 7 was not identified, the dissimilarities showed a
correct correlation.

9.1.4 Case 3

In case 3, the following proportions are applied for the construction of the newCT: 0% of CT0,
30% of CT7 and 70% of CT14. In this case, the percentage of contibution of cluster 7 is increased,
reaching a 30%. The dissimilarities between the newCT and the old ones are shown in Table 8.

CT0 CT7 CT14
newCT 8.478641 4.889553 1.543787

Table 8: Dissimilarities with newCT - Case 3

The dissimilarity is again pretty small regarding the cluster 14, as it was mainly used in the con-
struction of the newCT. The dissimilarity of cluster 7 has significantly dropped down due to the
higher participation and it is smaller than the previous case.

The clustering results can be found in Figure 13. It is clearly depicted that the chosen amount
of clusters is again 18 and no more clusters are found. It is worth saying that, in Case 2, the
difference between partitioning the database into 18 and 19 clusters is bigger than in Case 3. More
precisely, the difference in dbsize in Case 2 between 18 and 19 cluster is 18000 whereas in Case 3 it
is only 200. This difference is highlighted as it shows that the algorithm interpret the differences
between the cases.

Figure 13: Clustering results - Case 3.

In Table 9, the dissimilarities are shown. Matching the previous case, relation is found to both
used clusters with higher similarity on the most used one.

9.1.5 Case 4

In case 4, the following proportions are applied for the construction of the newCT: 0% of CT0,
40% of CT7 and 60% of CT14. In Table 10, the dissimilarities of the newCT and the three CTs
used are displayed.

25

CT0 CT7 CT14
1.CT0 9.670269 8.80819 7.944596
1.CT1 9.418395 7.037136 6.403843
1.CT2 9.611518 9.408417 7.042584
1.CT3 9.952382 9.244427 9.021881
1.CT4 10.0138 9.098221 9.366721
1.CT5 9.291969 8.650148 8.290094
1.CT6 9.871525 8.728652 8.761679
1.CT7 9.036694 8.337583 8.136143
1.CT8 8.784121 7.61713 7.920808
1.CT9 8.651378 7.930661 7.618028
1.CT10 10.22253 9.037161 8.844674
1.CT11 10.24124 8.252476 7.720122
1.CT12 9.382069 8.416459 5.782151
1.CT13 9.977582 8.276221 8.764814
1.CT14 9.321463 8.966295 8.671222
1.CT15 8.761891 8.238931 7.886045
1.CT16 8.548034 7.74383 7.654585
1.CT17 8.811181 7.948231 7.784175

Table 9: Dissimilarities between epochs - Case 3

CT0 CT7 CT14
newCT 8.593292 3.337453 2.896171

Table 10: Dissimilarities with newCT - Case 4

As the proportions have changed, the dissimilarity in the two last columns changed as well. The
newCT resembles more the cluster 14 which is correct, as it contributed more in the creation. In
addition, the dissimilarity has significantly dropped for cluster 7 due to the growing proportion.
In cases 2-4, the dissimilarities of the newCT with the used ones are in accurate correspondence
with the proportions.

The clustering results for this case can be found in Figure 14. As the percentages changed, the
second cluster is identified as a new one and therefore the outputted result for the best k is 19.
Consequently, when a cluster contributes in the newCT by 40%, then it is identified as a separate
and independent cluster.

Figure 14: Clustering results - Case 4.

26

CT0 CT7 CT14
1.CT0 9.733399 7.707999 8.480378
1.CT1 8.400634 7.577913 7.650356
1.CT2 9.179862 9.004689 8.841698
1.CT3 9.484131 8.431836 8.341887
1.CT4 9.128845 8.477995 5.611909
1.CT5 8.971011 8.205572 8.253032
1.CT6 8.908368 7.971514 7.618075
1.CT7 10.23564 9.257343 9.082173
1.CT8 8.633002 7.913876 7.646721
1.CT9 9.240905 8.371577 8.160708
1.CT10 9.576926 8.608169 8.384755
1.CT11 9.673626 8.906916 8.686407
1.CT12 8.481774 7.730519 7.688372
1.CT13 9.127862 6.183703 8.182787
1.CT14 10.62168 9.904812 10.17423
1.CT15 8.766622 7.844529 7.17252
1.CT16 8.672243 7.131415 6.565709
1.CT17 9.736013 7.893491 8.298412
1.CT18 8.811181 7.948231 7.784175

Table 11: Dissimilarities between epochs - Case 4

The dissimilarities of the different epochs are shown in Table 11. As illustrated, similarity is
again found for both clusters. Considering the cases 2-4, we can conclude that with a percentage
of 40, a new cluster emerges and is identified in the clustering results. Furthermore, based on
Tables 3, 6, 8 and 10, it is clear depicted that as the involving percentages were linearly changing,
the dissimilarities of the newCT were altered as well. This outcome is demonstrated in Figure
15. With blue color, the dissimilarity of cluster 14 are shown whereas the red line represents the
dissimilarity of cluster 7; the lines follow the percentages of each CT used.

Figure 15: Dissimilarities of the newCT over the cases

9.1.6 Case 5

In this case, it is time to introduce all three clusters in the construction of the newCT. As con-
cluded from the previous cases, a percentage below 30% is not recognized as a separate cluster
and therefore, the case to be checked is when each cluster has a percentage of 33%, meaning that
it contributes equally to the newCT.

27

In Table 12, the dissimilarities of the newCT and the old ones are shown. In this case, the dis-
similarity is small for all clusters, even for cluster 0, as it contributes in the newCT as well.

CT0 CT7 CT14
newCT 4.482469 4.524824 6.190316

Table 12: Dissimilarities with newCT - Case 5

In Figure 16, the results of the clustering are depicted. The best clustering is achieved with an
amount of 20 clusters. All three clusters are identified by the algorithm as separate and indepen-
dent.

Figure 16: Clustering results - Case 5.

Looking at the dissimilarities in Table 13, all three clusters are found related with the second
epoch as they achieve smaller dissimilarity than their threshold within the first epoch (Table
4). Consequently, the percentages used are big enough in order for all the three clusters to be
recognized as separate ones.

9.2 Zoom into dissimilarities

Now that we know the requirements and what is needed for an evolution (change of clusters) to be
identified (proportions), it is time to look closer to the dissimilarities found. The desired output
of the algorithm is a graph in which not only the amount of clusters in each different epoch can
be seen, but also the correlations between these clusters. For example, when a cluster in epoch 1
is associated with one of the second epoch, a line should exist between them. The thicker the line,
the more correlated (similar) the clusters are. Hence, the scope of the experiments in this section
is the interpretation and validation of the outputted dissimilarities within clusters of different
epochs. By using our creativity and inventiveness we can check if the algorithm follows -and most
important understands- our thinking.

Firstly, the ingredients of an evolving database that will be used for testing have to be found. We
simply select some clusters (arbitrary - no lucky numbers this time) from the mushroom db which
will be used for building the evolving database. These are the clusters with codetables: CT1,
CT5, CT6 and CT16. For identification, the number before the codetable name corresponds to
the epoch the specific cluster belongs. For example, 0.CT1 represents the CT of the first (initial)
epoch, 1.CT1 the second etc.

28

CT0 CT7 CT14
1.CT0 9.354919 8.901068 8.608921
1.CT1 9.281156 8.152927 7.369147
1.CT2 10.80854 9.955626 10.24014
1.CT3 8.132377 7.807353 7.85833
1.CT4 8.195073 8.064633 7.956905
1.CT5 9.750019 8.751838 8.518875
1.CT6 10.07563 9.112906 8.891978
1.CT7 9.595093 6.096486 8.625916
1.CT8 8.547653 8.001103 7.875218
1.CT9 9.142222 8.439041 7.979182
1.CT10 9.147262 8.130437 7.977593
1.CT11 9.479187 8.714024 8.627788
1.CT12 8.415635 8.354611 8.419516
1.CT13 8.893149 8.184176 8.293511
1.CT14 9.35381 8.49873 8.18197
1.CT15 8.305014 7.812502 7.470197
1.CT16 9.962105 8.91846 8.687659
1.CT17 9.255911 7.839164 8.423586
1.CT18 10.86114 10.02002 9.788415
1.CT19 10.12273 8.612696 7.215286

Table 13: Dissimilarities between epochs - Case 5

To check the algorithm alongside with our creation process, both the internal and external dis-
similarities have to be taken into account. As specified in the previous section, relations are found
between two clusters of different epochs iff the dissimilarity between them is smaller than the
internal dissimilarities in their epoch.

In this section, a new evolving database will be built using elements from the mushroom db.
When a new epoch is created, the dissimilarities between the new and the previous epoch will be
examined. Each time, the internal and the external dissimilarities are shown in a Table where the
internal dissimilarities are indicated with gray background color.

9.2.1 First epoch

Starting with, the first epoch is chosen to be composed by three clusters, namely cluster 1, 5 and
6 of the mushroom db with codetables CT1, CT5 and CT6. The databases of the specific clusters
are merged into one database which was clustered again in order to avoid bias. Successfully, the
algorithm yielded that the amount of clusters that achieves the smallest encoded size (47373.88)
is again 3. The new clusters have names 0, 1 and 2. As we are not interested with the corre-
spondence of the ones used, the naming is kept that way. The internal dissimilarities between the
found clusters of the first epoch are shown in Table 14.

0.CT0 0.CT1 0.CT2
0.CT0 - 9.131157 9.64668
0.CT1 9.131157 - 9.007286
0.CT2 9.64668 9.007286 -

Table 14: Dissimilarities - epoch 0

It can be concluded that in order for a cluster to be related with one of the first epoch, a dissimi-
larity smaller than 9.1, 9.0 and 9.0 should be found respectively for each cluster. These thresholds
can be found by looking at the Table column-wise.

29

9.2.2 Second epoch

In the second epoch, a new cluster is introduced to the database in a ‘hidden’ way. The newCT
will be constructed using a mix combination of an existing cluster and an emerging one, namely
cluster 16. As shown in section 9.1, a small percentage of 30% allows us to have a cluster which is
not yet identified. Therefore, the second epoch consists of the proportions: 100% of 0.CT0, 100%
of 0.CT1 and newCT=70% of 0.CT2 + 30% of 0.CT16. The algorithm concluded that the best
partition is achieved by 3 clusters, as expected. The dissimilarities between the clusters of epoch
0 and 1 are shown in Table 15.

0.CT0 0.CT1 0.CT2 1.CT0 1.CT1 1.CT2
0.CT0 0 9.131157 9.64668 5.30034 4.368648 7.573722
0.CT1 9.131157 0 9.007286 4.445204 6.4843 7.218963
0.CT2 9.64668 9.007286 0 8.776188 10.56329 2.833096
1.CT0 5.30034 4.445204 8.776188 0 10.04717 7.888785
1.CT1 4.368648 6.4843 10.56329 10.04717 0 9.074285
1.CT2 7.573722 7.218963 2.833096 7.888785 9.074285 0

Table 15: Dissimilarities - epoch 0 & 1

We simply relate each new cluster with the one of the previous epoch that is more similar to. As
seen, each cluster corresponds to only one of the previous database and vice versa; the minimum
of each row is the minimum of each column as well. This accurate result correctly shows a
correspondence of 1-1 between the epochs. However, although cluster 2 was used with a smaller
proportion of 70%, the results show a great similarity of this cluster with the one of the new epoch.
Therefore, the clear amount of the output dissimilarity does not indicate the level of correlation
and this hypothesis is not validated by the results of the artificial database. The output figure of
the algorithm is shown in Figure 17, where each cluster of epoch 0 is related with one of epoch 1,
following the actions taken.

Figure 17: Output of epoch 0 & 1 Figure 18: Output of epoch 1 & 2

9.2.3 Third epoch

In the third epoch, the introduction of the new cluster is clearly made. The involving percent-
age of the cluster 16 is now 45% which exceeds the threshold for detection. Hence, the third
epoch consists of the proportions: 100% of 0.CT0, 100% of 0.CT1 and newCT=65% of 0.CT2
+ 45% of 0.CT16. For this epoch, clustering resulted to 4 clusters due to the high proportion of
the new cluster. The dissimilarities between the clusters of epoch 1 and 2 are depicted in Table 16.

30

1.CT0 1.CT1 1.CT2 2.CT0 2.CT1 2.CT2 2.CT3
1.CT0 0 10.047165 7.888785 5.793717 6.061742 5.994211 5.932117
1.CT1 10.047165 0 9.074285 6.411897 5.852088 7.224501 8.504822
1.CT2 7.888785 9.074285 0 6.230407 8.060714 7.038461 6.617685
2.CT0 5.793717 6.411897 6.230407 0 8.539365 8.900065 7.279305
2.CT1 6.061742 5.852088 8.060714 8.539365 0 8.856824 7.975933
2.CT2 5.994211 7.224501 7.038461 8.900065 8.856824 0 7.813925
2.CT3 5.932117 8.504822 6.617685 7.279305 7.975933 7.813925 0

Table 16: Dissimilarities - epoch 1 & 2

The third epoch consists of 4 clusters and therefore, we examine the dissimilarities in Table 16,
row-wise. Unfortunately, the correlations between the clusters of the two epochs are not easily
identified. Clusters 0 and 1 of the third epoch can be easily correlated with clusters 0 and 1 of
the previous epoch respectively. However, there is also a strong similarity between cluster 0 of
the second epoch and the two remaining ones, namely 2 and 3. The results of the correlation
between epoch 1 and 2 can be found in Figure 18. As seen, three of the clusters of the third epoch
are found related with one of the previous epoch - which is not what was created. The desired
results would be an 1-1 correlation between two of the four clusters of epoch 2 while the remaining
two would be related with one remaining of the old clusters, following the creation process of the
epoch (illustrated in Figure 19).

After this observation, research and trials took place with a view to better interpret the dissimi-
larity numbers and correlations. Sadly, the correlation between clusters of different epochs seems
more complex than we firstly thought. In Figure 19, a desired output of the epochs 0, 1 and 2 is
depicted. As mentioned, the algorithm was unable to find a correct correlation between the last
two epochs and this difficulty remained in all the experiments and trials made with different ways
of construction. It is therefore concluded that KRIMPevol is capable of recognizing the amount of
clusters in each epoch (and produce an output as shown in Figure 20) but more research and steps
should be made for the correct recognition of the evolution. An idea for future research is the
exploration of the dissimilarities and the construction of an equation that can better understand
and output the correct correlations between the clusters.

Figure 19: Desired output of KRIMPevol Figure 20: Output of KRIMPevol

10 Conclusions

The original motivation for this thesis arises from a digital humanities’ challenge where Historians
expressed the need of analyzing themes or topics in a corpus over time using digital humanities
tools. The first six sections of this project consist of a literature review of the existing methods as
well as the proposal of a new idea based on the KRIMP algorithm. The next sections includes a

31

detailed description of the KRIMPevol algorithm, a mean to identify an evolving process between
clusters of objects that belong to different time intervals. The implementation and the experi-
ments performed in order for its validation successfully verified the first part of the algorithm but
were unable to do the same for the other part.

More precisely, the algorithm can correctly identify the number of clusters belonging to different
epochs of a database and understand when different clusters occur or die. It creates a graph that
illustrates the clusters in each epoch, like the one in Figure 20. However, correlations between
clusters were not successfully implemented as the dissimilarity measure was not enough for this
step. More research, steps or modifications on the measure so that can be used with different
epochs have to be made to produce an output as the graph in Figure 19.

11 Future Work

The proposed idea for the establishment of evolution within a database was partially validated
during the experiments. Regarding step 3 of the algorithm, the capability of KRIMPevol of
recognizing emerging clusters as well as detecting when a cluster does not exist anymore was
proven. Unfortunately, in order to find the specific correlations and connect the clusters of the
different epochs, the simple measure of dissimilarity is not enough. Although for a small amount
of clusters the correlation was easily identified, this was not the case for the later epochs. This
result creates space for future work in order for this property of the KRIMPevol to be implemented
as well. Therefore, a suggestion for future research would be to closely examine the correlation of
internal and external epochs and trying to come up with an equation that can result into correct
correlation.

32

References

[1] Daniel Keys Moran. (n.d.). BrainyQuote.com. Retrieved March 21, 2016, from
BrainyQuote.com Web site:
http://www.brainyquote.com/quotes/quotes/d/danielkeys230911.html

[2] Gelbukh, A. (2011). Computational Linguistics and Intelligent Text Processing. Springer.

[3] Berry Michael, W. (2004). Automatic Discovery of Similar Words. Survey of Text Mining:
Clustering, Classification and Retrieval. Springer Verlag, New York, 200, 24-43.

[4] Rodŕıguez, M. D. B., Hidalgo, J. M. G., & Agudo, B. D. (1997). Using WordNet to complement
training information in text categorization.

[5] Hotho, A., Staab, S., & Stumme, G. (2003). Ontologies improve text document clustering.
Proceedings of the third IEEE International Conference in Data Mining. 541-544.

[6] Ponte, J. M., & Croft, W. B. (1997). Text segmentation by topic. Proceedings of the Advanced
Technology for Digital Libraries . 113-125.

[7] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of
machine Learning research, 3, 993-1022.

[8] Haghighi, A., & Vanderwende, L. (2009). Exploring content models for multi-document sum-
marization. Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics. 362-370.

[9] Sun, Y., Lin, L., Deng, H., Li, J., He, B., Sun, R., & Ouyang, P. (2008). Structural changes
of bamboo cellulose in formic acid. BioResources, 3(2), 297-315.

[10] Wei, X., & Croft, W. B. (2006). LDA-based document models for ad-hoc retrieval. Proceedings
of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval. 178-185.

[11] Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference.
The Journal of Machine Learning Research, 14(1), 1303-1347.

[12] Papadimitriou, C. H., Tamaki, H., Raghavan, P., & Vempala, S. (1998). Latent semantic
indexing: A probabilistic analysis. Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems . 159-168.

[13] Rajaraman, A., & Ullman, J. D. (2012). Mining of massive datasets (Vol. 1). Cambridge:
Cambridge University Press.

[14] Landauer, T. K. & Dumais, S. T. (1997). A Solution to Plato’s Problem: The Latent Semantic
Analysis Theory of Acquisition, Induction and Representation of Knowledge. Psychological
Review, 104(2):211–240.

[15] Golub, G., & Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical
Analysis, 2(2), 205-224.

[16] Mens, T., Claes, M., Grosjean, P., & Serebrenik, A. (2014). Studying evolving software ecosys-
tems based on ecological models. (pp. 297-326). Springer Berlin Heidelberg.

[17] Salton, G., & McGill, M. J. (1986). Introduction to modern information retrieval. New York.

[18] Manning, C. D., & Schütze, H. (2000). Foundations of Statistical Natural Language Process-
ing. The MIT Press Cambridge, UK.

[19] Hofmann, T. (1999). Probabilistic latent semantic indexing. Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information retrieval
. 50-57.

33

[20] Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine
Learning, 42, 177-196.

[21] Hinneburg, A., Gabriel, H. H., & Gohr, A. (2007). Bayesian folding-in with Dirichlet kernels
for PLSI. Proceedings of the Seventh IEEE International Conference. 499-504.

[22] Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(l):l-38.

[23] Zhai, C. X. (2008). Statistical language models for information retrieval. Synthesis Lectures
on Human Language Technologies, 1(1):1–141.

[24] Si, L. & Jin, R. (2005). Adjusting mixture weights of gaussian mixture model via regularized
probabilistic latent semantic analysis. Proceedings of the Ninth Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’05).

[25] Daud, A., Li, J., Zhou, L., & Muhammad, F. (2010). Knowledge discovery through directed
probabilistic topic models: a survey. Frontiers of computer science in China, 4(2), 280-301.

[26] Clinchant, S., & Gaussier, E. (2012). Textual information access: statistical models. Wiley.

[27] Griffiths T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Science of the United States of America, 101, 5228-5235.

[28] Zhang, Z., & Zhang, R. (2008). Multimedia data mining: a systematic introduction to concepts
and theory. CRC Press.

[29] Blei, D. M., & Lafferty, J. D. (2009). Topic models. Text mining: classification, clustering,
and applications, 10(71), 34.

[30] Jockers, M. (2016, April 4). The LDA Buffet is Now Open; or, Latent Dirichlet Allocation
for English Majors. Retrieved from:
http://www.matthewjockers.net/2011/09/29/the-lda-buffet-is-now-open-or-latent-dirichlet-
allocation-for-english-majors/

[31] Lee, S., Baker, J., Song, J., & Wetherbe, J. C. (2010). An empirical comparison of four text
mining methods. Proceedings of the In System Sciences (HICSS) 1-10.

[32] Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. The Annals of
Applied Statistics, 17-35.

[33] Chen, J., Zhu, J., Wang, Z., Zheng, X., & Zhang, B. (2013). Scalable inference for logistic-
normal topic models. Proceedings of the Advances in Neural Information Processing Systems.
2445-2453.

[34] Zeng, J., Liu, Z. Q., & Cao, X. Q. (2012). A new approach to speeding up topic modeling.

[35] Wang, X., & McCallum, A. (2006). Topics over time: a non-Markov continuous-time model of
topical trends. Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining . 424-433.

[36] Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. Proceedings of the 23rd inter-
national conference on Machine learning. 113-120.

[37] Jo, Y., Hopcroft, J. E., & Lagoze, C. (2011). The web of topics: discovering the topology
of topic evolution in a corpus. In Proceedings of the 20th international conference on World
wide web. pp. 257-266.

[38] Wang, X., Zhai, C., & Roth, D. (2013). Understanding evolution of research themes: a proba-
bilistic generative model for citations. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining pp. 1115-1123.

34

[39] Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.

[40] Anick, P. G., & Vaithyanathan, S. (1997). Exploiting clustering and phrases for context-based
information retrieval. Proceedings of the ACM SIGIR Forum. 314-323.

[41] Cutting, D. R., Karger, D. R., & Pedersen, J. O. (1993, July). Constant interaction-time
scatter/gather browsing of very large document collections. Proceedings of the 16th annual
international ACM SIGIR conference on Research and development in information retrieval.
126-134.

[42] Frigui, H., & Krishnapuram, R. (1999). A robust competitive clustering algorithm with ap-
plications in computer vision. Pattern Analysis and Machine Intelligence, 21(5), 450-465.

[43] Han, J.W., Cai, Y., & Cercone, N. (1993). Data-driven discovery of quantitative rules in
relational databases. IEEE Transactions on Knowledge and Data Engineering, 5, 29-40.

[44] Xu, R., & Wunsch, D. (2005). Survey of Clustering Algorithms. IEEE Transactions on Neural
Networks, 16.3, 645-678.

[45] de Oliveira, J. V., & Pedrycz, W. (2007). Advances in fuzzy clustering and its applications.
New York: Wiley.

[46] Friedman, J., Hastie, T., & Tibshirani, R. (2009). The elements of statistical learning.
Springer.

[47] Johnson, A. & Wichern, D. (2002) Applied Multivariate Statistical Analysis, Prentice Hall,
New Jersey.

[48] Sneath, P., & Sokal, R. (1973). Numerical Taxonomy. W.H. Freeman Co., San Francisco.

[49] King, B. (1967). Step-wise clustering procedures. Journal of the American Statistical Associ-
ation, 62(317), 86-101.

[50] Berry, M. W. (Ed.). (2004). Proceedings of the Fourth SIAM International Conference on
Data Mining. SIAM.

[51] Leung, Y., Zhang, J. S., & Xu, Z. B. (2000). Clustering by scale-space filtering. Proceedings
of the Pattern Analysis and Machine Intelligence. 1396-1410.

[52] Guan, Y. (2006). Large-scale clustering: algorithms and applications. ProQuest.

[53] Maimon, O., & Rokach, L. (Eds.). (2007). Soft computing for knowledge discovery and data
mining. Springer Science & Business Media.

[54] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Obser-
vations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability.
Berkeley: University of California Press. 281-297.

[55] Markov, Z., & Larose, D. T. (2007). Data mining the Web: uncovering patterns in Web
content, structure, and usage. John Wiley & Sons.

[56] Laplante, F., Kardouchi, M., & Belacel, N. (2015). Image Categorization Using a Heuristic
Automatic Clustering Method Based on Hierarchical Clustering. Proceedings of the Image
Analysis and Recognition. 150-158.

[57] Bezdek James, C. (1981). Pattern Recognition with Fuzzy Function Algorithms.

[58] Konkol, M. (2015). Fuzzy Agglomerative Clustering. Proceedings of the Artificial Intelligence
and Soft Computing. 207-217.

[59] Withanawasam, J. (2015). Apache Mahout Essentials. Packt Publishing Ltd.

[60] Gan, G. (2011). Data Clustering in C++: An ObjectOriented Approach. Chapman and
Hall/CRC.

35

[61] Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8(1965) 338-353.

[62] Fuzzy clustering. (n.d.). In Wikipedia. Retrieved April 24, 2016,
https://en.wikipedia.org/wiki/Fuzzy clustering

[63] Samatova, N. F., Hendrix, W., Jenkins, J., Padmanabhan, K., & Chakraborty, A. (2013).
Practical Graph Mining with R. CRC Press.

[64] “Seven.”, Seinfeld. Fox. 1 Feb. 1996. Television.

[65] Aggarwal, C. C., & Zhai, C. (2012). Mining text data. Springer Science & Business Media.

[66] Tan, P. N., Steinbach, M., & Kumar, V. (2006). Cluster Analysis: Basic Concepts and
Algorithms. In Introduction to Data Mining (pp. 487-567). Addison-Wesley.

[67] Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of
items in large databases. ACM SIGMOD Record, 22(2), 207-216.

[68] Siebes, A., Vreeken, J., & van Leeuwen, M. (2006). Item sets that compress. Proceedings of
the SDM’06. 393–404.

[69] van Leeuwen, M., Vreeken, J., & Siebes, A. (2006). Compression picks item sets that matter.
Proceedings of the Knowledge Discovery in Databases: PKDD 2006. 585-592.

[70] Griinwald, P. D., Myung, I. J., & Pitt, M. A. (2005). Advances in minimum description
length: Theory and applications. MIT press.

[71] Vreeken, J., Van Leeuwen, M., & Siebes, A. (2011). Krimp: mining itemsets that compress.
Data Mining and Knowledge Discovery, 23(1), 169-214.

[72] van Leeuwen, M., Vreeken, J., & Siebes, A. (2009). Identifying the components. Data Mining
and Knowledge Discovery, 19(2), 176-193.

[73] Gelbukh, A. (2011). Computational Linguistics and Intelligent Text Processing. Springer.

[74] Vreeken, J., Van Leeuwen, M., & Siebes, A. (2007). Characterising the difference. Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining.
765-774.

[75] Vreeken, J., Van Leeuwen, M., & Siebes, A. (2007). Preserving privacy through data genera-
tion. Proceedings of the Seventh IEEE International Conference on Data Mining. 685-690.

[76] Synthetic data. (2009, November 29). McGraw-Hill Dictionary of Scientific and Technical
Terms. Retrieved from:
www.answers.com

[77] Texas Department of Criminal Justice. (2016, May 14). Executed Offenders. Retrieved from:
http://www.tdcj.state.tx.us/death row/dr executed offenders.html

[78] Rosenfeld, Michael J., Reuben J. Thomas, and Maja Falcon. (2016, May 16). How Couples
Meet and Stay Together (HCMST). Retrieved from:
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/30103?q=&paging.rows
=25&sortBy=10

[79] Lichman, M. (2013). UCI Machine Learning Repository. Retrieved from:
https://archive.ics.uci.edu/ml/datasets/Mushroom

	Introduction
	Topic modeling
	Static topic modeling algorithms
	Evolution topic modeling algorithms

	Clustering
	Hierarchical vs. Partitional clustering algorithms
	Hard vs. Overlapping Clustering algorithms
	Complete vs. Partial Clustering algorithms

	From topic modeling to clustering: a translation
	Frequent Itemset Mining
	KRIMP in general
	How does KRIMP fit in?

	Our problem: evolving clusters
	KRIMPevol algorithm
	Experiments - First set
	Database
	Pre-processing
	Statistics
	Results

	Experiments - Second set
	Identification of clusters
	Construction of newCT
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5

	Zoom into dissimilarities
	First epoch
	Second epoch
	Third epoch

	Conclusions
	Future Work

