
UTRECHT UNIVERSITY

MASTER THESIS

Anomaly Detection in Application
Log Data

Author:
Patrick KOSTJENS

First supervisor:
Dr. A.J. FEELDERS

Second supervisor:
Prof. Dr. A.P.J.M. SIEBES

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computing Science

in the

Algorithmic Data Analysis Group
Department of Information and Computing Sciences

August 2016

ICA-3733327

http://www.uu.nl/en
http://www.cs.uu.nl/groups/ADA/
http://www.cs.uu.nl

iii

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Department of Information and Computing Sciences

Master of Science in Computing Science

Anomaly Detection in Application Log Data

by Patrick KOSTJENS

Many applications within the Flexyz network generate a lot of log data.
This data used to be difficult to reach and search. It was therefore not used
unless a problem was reported by a user. One goal of this project was to
make this data available in a single location so that it becomes easy to search
and visualize it. Additionally, automatic analysis can be performed on the
log data so that problems can be detected before users notice them. This
analysis is the core of this project and is the topic of a case study in the
domain of application log data analysis.

We compare four algorithms that take different approaches to this prob-
lem. We perform experiments with both artificial and real world data. It
turns out that the relatively simple KNN algorithm gives the best perfor-
mance, although it still produces a lot of false positives. However, there are
several ways to improve these results in future research.

Keywords: Anomaly detection, data streams, log analysis

HTTP://WWW.UU.NL/EN
http://www.uu.nl/en/organisation/faculty-of-science
http://www.cs.uu.nl

v

Acknowledgements
First and foremost, I would like to express my gratitude to Dr. Ad Feelders
for all his feedback, advice and reviews throughout the process. Further-
more, I would like to thank Prof. Dr. Arno Siebes for being the second su-
pervisor of this thesis.

I would also like to thank everybody at Flexyz and in particular Iwan
Faber and José Hilgenkamp for making my internship there possible and
their help with finding a topic for my research. I also would like to espe-
cially thank everybody that helped me gather all the data that was needed
for this project.

Finally, I would also like to thank my family, friends and girlfriend for
their mental support throughout this project.

vii

Contents

Abstract iii

Contents vii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Business motivation 1
1.1.2 Scientific motivation 2

1.2 Problem statement . 2
1.3 Challenges . 3
1.4 Research questions . 4
1.5 Outline . 5

2 Background 7
2.1 Log data . 7

2.1.1 Available data . 7
2.1.2 Data gathering . 8

Infrastructure . 8
Preprocessing . 10

2.2 Related work . 11

3 Algorithms 13
3.1 ELKI . 13
3.2 Non-temporal approach . 14

3.2.1 Nearest neighbour-based algorithms 14
K-nearest neighbours 14
Local outlier factors 16

3.2.2 Clustering-based algorithms 17
Cluster-based local outlier factors 19

3.3 Temporal approach . 20
3.3.1 Method outline . 21

Probabilistic model . 21
Learning and inference 23

3.3.2 Implementation notes 25

viii

4 Experiments 27
4.1 Artificial data . 27

4.1.1 Used data . 27
4.1.2 Experimental setup . 28
4.1.3 Results . 30

4.2 Real world data . 33
4.2.1 Used data . 33
4.2.2 Experimental setup . 34

Manual classification 35
Comparison to experiments using artificial data . . . 36
Use of data . 38

4.2.3 Results . 38

5 Evaluation 41
5.1 Scientific evaluation . 41

5.1.1 Research question 1 41
5.1.2 Research question 2 42
5.1.3 Research question 3 43

5.2 Business evaluation . 43

6 Conclusion 45
6.1 Discussion . 45
6.2 Future work . 46

A Results 47
A.1 Artificial data . 47

A.1.1 Confusion matrices by algorithm 47
A.1.2 Confusion matrices by dataset 47

A.2 Real world data . 49
A.2.1 Confusion matrices by algorithm 49
A.2.2 Confusion matrices by dataset 49

B Datasets 53

Bibliography 55

ix

List of Figures

2.1 An overview of the infrastructure used for gathering and an-
alyzing logs. 9

3.1 LOF use case by Breunig et al. [4]. 17
3.2 Graphical model for λ(t) and N0(t). The parameters λ0, δ,

and η are the periodic components of λ(t) and couple the
distributions over time [15]. 23

3.3 Graphical model for z(t) andN(t). The variables are coupled
over time by the Markov structure of z(t) [15]. 23

B.1 Number of log records for application 1 aggregated per 12
hours from May 1st until May 28th. 53

B.2 Number of log records for application 2 aggregated per 12
hours from May 1st until May 28th. 54

B.3 Number of log records for application 3 aggregated per 12
hours from May 1st until May 28th. 54

xi

List of Tables

4.1 Overview of the used artificial datasets. 28
4.2 Example confusion matrix indicating the meaning of TP, FP,

TN, and FN. 29
4.3 F1-scores of implemented algorithms on the artificial datasets

with normalization. 32
4.4 F1-scores of implemented algorithms on the artificial datasets

without normalization. 33
4.5 Example table for precision and recall computation 36
4.6 F1-scores of implemented algorithms on the real world datasets. 40

A.1 Confusion matrix for KNN anomaly algorithm over all arti-
ficial datasets. 47

A.2 Confusion matrix for LOF algorithm over all artificial datasets. 47
A.3 Confusion matrix for CBLOF algorithm over all artificial datasets. 47
A.4 Confusion matrix for MMPP algorithm over all artificial datasets. 47
A.5 Confusion matrix for artificial dataset 1 over all algorithms. 48
A.6 Confusion matrix for artificial dataset 2 over all algorithms. 48
A.7 Confusion matrix for artificial dataset 3 over all algorithms. 48
A.8 Confusion matrix for artificial dataset 4 over all algorithms. 48
A.9 Confusion matrix for artificial dataset 5 over all algorithms. 48
A.10 Confusion matrix for artificial dataset 6 over all algorithms. 48
A.11 Confusion matrix for artificial dataset 7 over all algorithms. 48
A.12 Confusion matrix for KNN algorithm over all real world datasets. 49
A.13 Confusion matrix for LOF algorithm over all real world datasets. 49
A.14 Confusion matrix for CBLOF algorithm over all real world

datasets. 49
A.15 Confusion matrix for MMPP algorithm over all real world

datasets. 49
A.16 Confusion matrix for real world dataset 1 over all algorithms. 49
A.17 Confusion matrix for real world dataset 2 over all algorithms. 50
A.18 Confusion matrix for real world dataset 3 over all algorithms. 50
A.19 Confusion matrix for real world dataset 4 over all algorithms. 50
A.20 Confusion matrix for real world dataset 5 over all algorithms. 50
A.21 Confusion matrix for real world dataset 6 over all algorithms. 50
A.22 Confusion matrix for real world dataset 7 over all algorithms. 50
A.23 Confusion matrix for real world dataset 8 over all algorithms. 50
A.24 Confusion matrix for real world dataset 9 over all algorithms. 51
A.25 Confusion matrix for real world dataset 10 over all algorithms. 51
A.26 Confusion matrix for real world dataset 11 over all algorithms. 51
A.27 Confusion matrix for real world dataset 12 over all algorithms. 51
A.28 Confusion matrix for real world dataset 13 over all algorithms. 51
A.29 Confusion matrix for real world dataset 14 over all algorithms. 51
A.30 Confusion matrix for real world dataset 15 over all algorithms. 51

xii

A.31 Confusion matrix for real world dataset 16 over all algorithms. 52
A.32 Confusion matrix for real world dataset 17 over all algorithms. 52
A.33 Confusion matrix for real world dataset 18 over all algorithms. 52

xiii

List of Abbreviations

CBLOF Cluster-Based Local Outlier Factors
ELKI Environment for deveLoping KDD-applications supported

by Index-structures
FN False Negative
FP False Positive
KNN K-Nearest Neighbours
LOF Local Outlier Factors
LRD Local Reachability Distance
MAP Maximum A Posteriori
MCMC Markov Chain Monte Carlo
MMPP Markov Modulated Poisson Process
TN True Negative
TP True Positive

1

Chapter 1

Introduction

Modern applications and servers can produce big amounts of log data. As
the number of servers and applications grows, the amount of log data that
is produced quickly becomes too big to analyze manually. Additionally,
most of the records in this data are not interesting, because they are part of
normal operation. However, the records that are interesting are not easily
found because there are relatively few of them. We still do want to find
these records though since they can indicate, for example, problems with
an application or server.

1.1 Motivation

This thesis research is executed as an internship at Flexyz. Every thesis has
a motivation from a scientific perspective. However, due to the fact that
this thesis research is done in the form of an internship, there is also a direct
motivation from a business perspective. We will start by looking at that
business perspective, followed by the scientific motivation.

1.1.1 Business motivation

There are a number of reasons why we might consider a log record or a
group of log records to be interesting:

• A message is new and we never saw it before.

• A message appears more often than usual.

• A message appears less often than usual.

• A message stops appearing.

Messages matching any of the above descriptions can be considered to
be anomalies and are therefore potentially interesting. Because there are a
lot of messages in the logs and we only want to know about the interest-
ing ones, automatic analysis of those messages would greatly reduce the
amount of manual work needed. An additional benefit of automatic anal-
ysis is that it can be pro-active. This means that an automatic analysis tool
can constantly monitor the logs and report interesting messages as soon as
they occur. This has a big advantage, namely that problems can be detected
much faster. Without such a tool, the logs would only be searched when
there is a known problem about which a user wants to find more informa-
tion. This also means that problems would be detected by the user of an
application or server, while in the case of automatic analysis of the logs,

2 Chapter 1. Introduction

problems can be detected and possibly solved before a user suffers from
them.

Data mining techniques may provide a solution that can be used by such
a tool. Those techniques need to be unsupervised, because it is infeasible to
create a labeled set of log records.

1.1.2 Scientific motivation

Aside from the business perspective, there also is a scientific motivation.
There are some fields within anomaly detection that have received some
special attention, like intrusion detection [19] and fraud detection [8]. A
domain that has received less attention is that of log data analysis. Algo-
rithms that are focussed on a different domain are not necessarily useless
for our domain, but they may need some adjustments. The different do-
mains can use some of the same general algorithms, but the priorities may
be different. For example, in intrusion detection, it is required to immedi-
ately block intrusive requests, and therefore the algorithm should be able to
determine whether something is an intrusion or not very quickly. In fraud
detection however, it may not be a problem if this takes some more time,
but it may be more problematic if a case of fraud is missed.

In all domains a similar consideration has to be made. Since anomaly
detection algorithms do not have perfect accuracy, generally a balance be-
tween false positives and false negatives has to be found. If the algorithm is
more strict, more false positives (messages marked as anomalies while they
are not) may occur, while a more loose algorithm might have more false
negatives (undetected anomalies). When determining how to balance these
two errors for a specific domain, the severity of both a false positive and a
false negative has to be taken into account. In the case of log data analysis,
a false positive will generally result in unnecessarily spent man hours. A
false negative may result in a problem with an application or server that is
detected later on by a user, which can cause dissatisfaction or possibly data
loss. Within this domain it may even depend on the application which is
worse.

Another way the human workload can be reduced is by showing enough
context when an anomaly is detected. If we can, for example, show that a
message was classified as an anomaly because it started occurring more
or less often, this can help when investigating the problem. An additional
improvement would be to group messages that jointly showed the same
deviation from the usual pattern into a single report so that there is more
detail available about the problem. This can prevent or reduce the need
to research whether multiple reported anomalies are related and are indi-
cators for the same problem. Some of the points mentioned above are not
only relevant from the scientific perspective, but also from the business per-
spective.

1.2 Problem statement

We already looked at a brief definition of the problem in the previous sec-
tion. In this section, we will discuss the definition of the problem and some
properties of the problem in more detail.

1.3. Challenges 3

In the motivation, we already mentioned some reasons for an anomaly
to be identified as such. Two of these reasons were already pretty clear. A
new message we did not see before or a message that stops appearing is
relatively easy to detect. However, determining when to report a message
that appears more or less often than usual is a bit more difficult. Since
some variation in the number of log records being written is expected for
our application domain, we do not want to report an anomaly if there is
one extra message while there usually are a million messages in a certain
time interval. Although the threshold for this kind of anomaly cannot be
an absolute number or percentage that is chosen beforehand, we can make
this a bit more concrete.

If we look at previous log records, we can determine which log records
are a different report of the same messages. Over these messages, we can,
for example, calculate the average over a certain time window. Naturally,
some types of log records may show more variation than others. Therefore,
a fixed percentage of allowed deviation from the average will not work
properly. What we can do, however, is calculate the mean and standard
deviation over a certain period of time. We can then determine the bounds
on the variation by taking the range from, for example, the mean plus or
minus twice the standard deviation. If the number of recorded log records
then falls outside this bound, we report an anomaly. The exact bounds may
still require tuning, which will be done during the experiments.

It may seem like this definition of an anomaly is almost enough to solve
the problem with a relatively simple algorithm. However, the amount of
log records we expect during the day, for example, may be different from
the amount of log records during the night. Since a mean and standard
deviation cannot handle these kinds of patterns, we need more advanced
algorithms that find these patterns so that we know to what part of the data
new observations should be compared. If we know what parts of the data
we expect the new data to match, we can use the idea described above.
Note that some or most of the algorithms we are going to discuss may have
their own way to set a boundary between anomalies and expected data.
Such algorithms will not necessarily use this idea, but something similar to
prevent setting an absolute boundary.

1.3 Challenges

Some challenges have already come up in the previous sections. An extra
challenge that may be of scientific interest is that it is likely that there will
be gaps in the data. If the server that gathers all the logs is temporarily
unavailable or there is a network disruption, the log messages might get
lost for a certain amount of time for one or more servers. More reasons that
cause loss of log messages exist so gaps in the data are a near certainty. The
difference between these kind of gaps and complete downtime of a certain
server may be hard to detect. However, for the intended purposes of the
application, we want the tool to report that there is a problem when there is
a gap in the logs. Additionally, we do not want the classification of future
log messages to change significantly because of such gaps, or any other
anomalies for that matter.

4 Chapter 1. Introduction

Another challenge, that has briefly been discussed above as well is the
fact that the amount of log data that has to be processed can be enormous.
This brings us challenges on multiple fronts. First of all, we have to be able
to perform the anomaly detection on the data fast enough, otherwise we
will not be able to report anomalies in real-time. A second problem is that
we can only keep a limited history of the log data before running out of
disk space. This means that we need algorithms that can work with some
aggregated form of the data if we want to be able to use more than a couple
of days of history as we will see in Chapter 2. The last challenge related to
the scale of the data is the fact that we cannot load (nearly) all the data in
memory for processing. This once more means that the algorithms either
need to be able to work with an aggregated form of the data or that they
need to be rather memory efficient as well aside from the required running
time efficiency.

Depending on the knowledge of the data our algorithms have, another
possible challenge might be caused by the fact that not all log data is ac-
curate. As we will see later, the data, for example, includes a field with
the log level for a log record. This indicates the severity of the message be-
ing logged. However, these severities are not always accurate. This prob-
lem has been confirmed by a domain expert, so any algorithm that attaches
meaning to this information might be influenced by the inaccurate data.

1.4 Research questions

The motivations, problem and challenges discussed in the previous sections
lead us to the following research questions:

(1)
Can on-line anomaly detection be performed on log data while
limiting the number of false positives?

(2)
Can the anomalies be placed in context so that we can clearly state
why they are classified as anomalies?

(3)
Can the anomaly detection model handle changes over time with-
out future predictions being influenced by incidental anomalies?

The first research question can be answered by conducting experiments
with the different algorithms that will be discussed. The second question
may depend on the algorithm, and may also require some new method to
be developed to identify messages that belong together. Therefore, it will
require some extra research and experimentation aside from the implemen-
tation of the algorithms that are going to be discussed.

The third question is quite difficult to answer. Although one might
expect that this can be answered by creating some artificial datasets that
test this behaviour and looking at the results the different algorithms give
for these datasets, this would probably not give very representative re-
sults. Since we do not know what kind of changes in the application be-
haviour are present in the real world data, it is not possible to create artifi-
cial datasets that reliably model this behaviour. Aside from the way to find
the answer, we may be able to achieve the desired behaviour by removing
anomalies from the dataset after they have been reported. However, some
algorithms may already be showing the desired behaviour and do therefore

1.5. Outline 5

not require modification. One danger of removing the anomalies from the
dataset after detection is the fact that changes over time may not be found,
therefore it may be necessary to store these anomalies elsewhere so that
they can be incorporated into the dataset again when they seem to be form-
ing a new or changed pattern. This does make the changes more difficult
though and still only prevents future predictions from being influenced.

1.5 Outline

We will start the rest of the thesis by looking at some background informa-
tion. This, among other things, includes the way we gather log data, what
log data we gather, and an overview of related work. Next, we discuss the
algorithms we use in the experiments and the tools we use to implement
these algorithms. After that we take a look at the experiments that were
performed and we will evaluate the results. Finally, we briefly summarize
our findings in the conclusion.

7

Chapter 2

Background

In this chapter, we will be discussing some background information regard-
ing this case study. This information will give some more insight into the
problem domain. We will do this by discussing what log data is available
and how we gather and process it. Furthermore, we will look at related
work that might be relevant to this research.

2.1 Log data

The background information regarding the log data will be split into two
parts. First, we will discuss the data that is available for our research. After
that, we will take a look at how we acquired that data.

2.1.1 Available data

For every log record, we have a lot of data available. We may not use all
of the data in the log process and will only discuss the relevant properties
here. The most important field for the user that handles the reports is the
message field. This contains the actual message that was logged and there-
fore can give a lot of information about the possible problem. However, this
field is not really used in our analysis.

As we already discussed briefly, our analysis may depend on finding all
the log records that log the same message at a different time or, for example,
for a different user. Although the actual message may seem like a logical
way to group log records, we have data that can make this far easier. Note
that some information about the user may be present in the message. There-
fore, the exact text of the message may be different, while we still want to
group these kinds of log records together. A rather reliable way to group
log records, is to group them based on the location in the code that logged
the message. We have information like the name of the class, the file, and
the line number where the log record was generated. By combining this
information with the information about the application and the host it runs
on, we can group all the log records that belong together per instance of an
application. Note that no two applications with the same name run on the
same server, therefore the combination of host name and application name
uniquely identifies an application.

Although the content of the message in a log record is not required for
analysis, we of course do keep track of it because it needs to be reported
when reporting an anomaly. Aside from the fields we just discussed, some
additional data is available that may help in the analysis. We also have log
levels (i.e. debug, warning, error, etc.) and timestamps for every log record.

8 Chapter 2. Background

The log levels may be used to customize the thresholds for anomalies. For
example, a certain deviation from the norm for errors may need to be re-
ported sooner than would be required for warnings. However, this can
later be added as a useful feature by the company, but it is not a part of our
research. Timestamps are, of course, required to know when the messages
were logged and are therefore essential for the analysis.

2.1.2 Data gathering

We split the explanation of the data gathering process into two parts. We
start by discussing the general infrastructure used for the entire process.
After that, we will explain the preprocessing of the data in more detail.

Infrastructure

At the start of the project, all the log files were simply stored on the disks
of the servers they were generated on. However, this made it difficult to
access and analyze the logs. Therefore, we needed to create a solution that
gathers all these logs and stores them in a central location, which allows
more easy access to the logs. The log messages should be transferred from
the applications and servers to the central location with all the logs auto-
matically. During normal operations, it takes at most a couple of seconds
for a log record to get from the application that generates it to the Elastic-
search cluster, so real-time analysis using the central Elasticsearch database
is possible.

This process has been devised and implemented during the first phase.
This setup started gathering logs from multiple applications within the
Flexyz network at the beginning of April. Therefore, plenty of log data
from different production servers is available for our experiments. The pro-
cess uses the ELK1-stack. The ELK-stack is a combination of Elasticsearch,
Logstash, and Kibana. It is commonly used to make log data, but also other
unstructured data, easily accessible and should not be confused with the
unrelated ELKI framework we will be discussing later.

A visualization of the used infrastructure can be found in figure 2.1. For
the servers that are newly created, some rough specifications are outlined
in the boxes representing those servers. Note that these specifications can
change when required. Also note that the additional box behind the Elas-
ticsearch server means that another server with the same tasks and speci-
fications will be used. Those servers will serve as an Elasticsearch cluster.
The dotted lines represent requests by users and are not part of the analysis
process. The other lines represent connections that are part of the analysis
process.

The process starts with log messages that are generated by applications
on the servers in the bottom of the image. Log messages can also be gen-
erated by the servers themselves. In both cases, the systems logging utility,
called rsyslog, will be used to send all the logs from the server (and appli-
cation) to the proxy in the middle. Note that other servers and applications
that cannot use rsyslog can also be added later on, but rsyslog was chosen
as the initial tool because it is already present at the majority of the servers.

1See: https://www.elastic.co/webinars/introduction-elk-stack

https://www.elastic.co/webinars/introduction-elk-stack

2.1. Log data 9

FIGURE 2.1: An overview of the infrastructure used for
gathering and analyzing logs.

Of course far more servers and customer networks can exist than depicted
in the figure.

The proxy forwards all the logs that it receives to the first Logstash
server (on the right). This Logstash server also contains a RabbitMQ in-
stance. Logstash will store all incoming messages in this queue. The second
Logstash server will then read the messages from the queue and extract all
the required information from them. It then stores the messages in Elas-
ticsearch. The RabbitMQ queue is added to prevent loss of log messages
in case the Logstash server occasionally cannot process the messages fast
enough.

When the log messages are persisted in Elasticsearch, several applica-
tions can read the messages that are stored there. One of those applications
is Kibana. This tool can create visualizations and summaries of the data in
Elasticsearch. It is not essential to our research, but it can help exploring the
data that is available. It is also used by other people within the company to
do some ad hoc analysis of the data in Elasticsearch.

The server that will run the tool based on the research in this thesis
project, is the log analysis server. This server also reads its data directly
from Elasticsearch and stores it in an aggregated form. It will then analyze
the messages and serve the anomalies that are found using a web interface.
This web interface can be reached by users through the same proxy that is
used for incoming messages. The same idea regarding the proxy holds for
Kibana as well.

10 Chapter 2. Background

Preprocessing

Some preprocessing is needed to get the log data from the applications that
generate the data to a database in which we can easily search it. This pro-
cess is related to the infrastructure we just discussed, because the differ-
ent servers in that infrastructure perform different operations on that data.
First, we will discuss the process for the log data that is generated by the
applications. After that we will look at the process for log data generated by
the servers. The difference between the two is not very big, but nevertheless
important.

The majority of the applications at Flexyz is written in Java. For these
applications, we add a library that sends the log data that is generated to
rsyslog in a JSON format. Note that rsyslog is the software used for log-
ging and, in our case, transferring the data. This data includes quite a bit
of information about the message being logged. The following fields are
recorded:

• message: The text of the record that is being logged.

• line_number: The number of the line in the Java code that generated
the message.

• class: The Java class in which the message was generated.

• thread_name: The name of the thread that logged the message.

• method: The name of the Java method that logged the message.

• level: The log level of the message (i.e. debug, error, warning, etc.).

• logger_name: The name of the Java logger that logged the message.

• file: The name of the Java file that logged the message.

• exception: Only logged in case an exception occurred.

– exception_class: The Java class name of the exception that was
thrown.

– exception_message: The message of the exception that was thrown.

– stacktrace: The call hierarchy to the point in code where the ex-
ception was thrown.

• timestamp: The date and time at which the message was generated.

Next, rsyslog creates a new JSON object for every record that is received
from the application. In this object, the originally received object is added,
as well as the name of the host the application is running on. The name of
the application that generated the log message is also added to this object.
This object is then sent to the proxy server, which in turn forwards it to the
first Logstash instance.

This Logstash instance then puts the object in the RabbitMQ queue as
discussed in the previous part about infrastructure. The second Logstash
instance, which reads the data from the queue, then continues the process-
ing. It first decodes all the JSON. Next, it parses the timestamp of the
message into a format that can be used more efficiently for storage and

2.2. Related work 11

querying. It also flattens the object so that all the information from the Java
application (including the exception if it is present) is available at the same
level in the object as the host and application name. Finally, it makes all
the text in the level field lowercase, so that it becomes uniform across all
applications. The fully processed log record is then sent to the Elasticsearch
cluster, so that it can be queried easily by the analysis tool and other appli-
cations.

The process for other applications, including system processes, is not
much different. However, those log records contain less information. Al-
though these records do have a message, level, and timestamp, they have none
of the other fields we listed above. As for the messages from the Java appli-
cation, a host and application name is added to these records as well. The
rest of the process is the same, except for the fact that the timestamp gener-
ated by the other applications is different and therefore will be parsed in a
different way.

As we mentioned in Section 2.1.1, the data will be grouped using the
host, application, class, and line_number. The aggregations we create are time
based. For example, to compress the data, we can record the counts of each
group of messages per 5 minutes. This approach allows us to store the data
for a longer time. Note that the specific aggregations we need may depend
on the algorithm. However, this general aggregation will be used so that
we can hopefully prevent having to completely throw away data because
we are running out of storage. If other aggregations cannot be deduced
from this aggregation, they will simply have to be made over a shorter time
period.

2.2 Related work

Anomaly detection is a field within data mining that has already developed
techniques that are applicable to the sort of problem we are considering
here. The field is known under a few different names, including outlier
detection, novelty detection, noise detection, deviation detection, outlier
mining, and exception mining [14]. However, not all the techniques for
anomaly detection are applicable due to the specific properties of our do-
main as we discussed before. We already mentioned that some specific
applications of anomaly detection (e.g. fraud detection, network security)
have received extra attention [8, 19]. Although the techniques presented
there may be usable in our domain as well, we will use general anomaly
detection techniques as the starting point.

Some very useful surveys have already been published that compare
many different algorithms [6, 7, 11, 14, 18, 19]. These surveys present a
good overview of the different types of algorithms that are available and
are useful when deciding what algorithms to use. However, they do not
actually implement the algorithms and compare their performance.

The surveys generally group the algorithms by their approach. These
approaches include clustering-based, nearest neighbour-based, information
theoretic, classification-based, and temporal approaches. We will discuss
most of these approaches in the next chapter, but not all of them can be
used in our domain. Since our domain requires an unsupervised method,
we cannot use information theoretic and classification-based methods as

12 Chapter 2. Background

those methods require labeled training data. The other approaches can be
used and we use the information in these surveys as a starting point for our
research.

Aside from different approaches, another important topic that is dis-
cussed in several papers is the definition of anomalies and what types of
anomalies exist [6, 7]. Chandola et al. distinguish three types of anoma-
lies, namely point anomalies, contextual anomalies and collective anoma-
lies. Point anomalies are anomalies where a single record is considered to
be an anomaly in a global context. A contextual anomaly is the same, ex-
cept that the point is only considered to be an anomaly in a smaller, local,
context while it is not considered to be anomalous in a global context. Col-
lective anomalies are caused by the presence or absence of groups of records
that usually occur together. Throughout this thesis, we will be looking at
point and contextual anomalies.

13

Chapter 3

Algorithms

To be able to answer the research questions posed in Chapter 1, we will
implement several algorithms in an attempt to solve the problems these
questions pose. The algorithms we implement, and the way we implement
them will be discussed in this chapter. Before discussing the algorithms
themselves, we will have a look at the ELKI framework [23]. This frame-
work can help make the implementation of some of the algorithms easier
and also make it easier to compare the results of different algorithms. After
discussing ELKI, we will go over the different algorithms we are going to
compare. We discuss the details of how the algorithms work, as well as any
relevant implementation details.

The algorithms we discuss can be subdivided into different categories
in several ways. First of all, we can group them based on their problem
approach. We discuss algorithms with clustering-based approaches as well
as distance-based, nearest neighbour-based, and evolving prediction ap-
proaches. Another way to subdivide the algorithms is to split them into a
group that uses the temporal aspect of our data and a more general group
that does not. In this chapter, we first group the algorithms based on this
temporal aspect. Within the two groups, we subdivide the algorithms into
groups based on the approach to the problem that is taken.

3.1 ELKI

ELKI is an open source project that attempts to make the implementation
and comparison of many algorithms in data mining easier [23]. Although
it contains algorithms from several areas within data mining, it focuses on
unsupervised methods in outlier detection and cluster analysis. The al-
gorithms for outlier detection are, of course, the most relevant for this re-
search.

The use of this framework can help us in several ways. First of all, a
lot of algorithms have already been implemented, which means we do not
need to implement them all ourselves. This saves time that can be spent on
other parts of the research, like comparing more algorithms, and can pre-
vent mistakes in our implementations that could affect performance. Addi-
tionally, the performance comparison between different algorithms is more
fair since the algorithms share a lot of code and have similar overhead. This
results in a far more comparable performance than would be the case with
implementations from different people. A third advantage is the fact that
the results should be easier to reproduce since the implementation of the
algorithms is known and freely available.

14 Chapter 3. Algorithms

ELKI has been designed as a modular framework. This means that com-
ponents can easily be replaced. As a result, we can change a lot about an
algorithm without changing the implementation of that algorithm. With
ELKI it is, for example, easy to switch the distance function of an algorithm
thereby making the algorithm more flexible and possibly usable with more
datasets. Another example of this advantage can be found in algorithms
that work using some clustered version of a dataset. With ELKI, such algo-
rithms can easily be combined with many different clustering algorithms
which can give better results.

ELKI also has a disadvantage. It is built so that you give a dataset as the
input and, in our case, get anomaly scores and some other information as
the output. However, some of the algorithms we will be seeing in the next
sections do not fit this model. Streaming-based algorithms in particular
will not be able to fit in the ELKI model. The general idea behind these
algorithms, as we will see later, is to keep a model that changes over time.
This model is updated using new data as it arrives and is used to predict
for those new records whether they are outliers or not. Although such an
algorithm could be implemented in ELKI, it would not make much sense
since ELKI gets a static dataset as its input and forgets everything once it
has computed the results. Implementing such a streaming algorithm would
therefore mean that all the data would have to be read again when new
data is added. This would defeat the purpose of the algorithm and we
will therefore not implement such algorithms in ELKI. To determine the
performance of an algorithm in our experiments, the streaming part is not
required. So, although it may be faster when actually using the algorithms
to use some streaming algorithm, it is not necessary for our experiments as
long as the results are the same.

3.2 Non-temporal approach

We will start by discussing the algorithms that take a general approach.
These algorithms do not attach any special meaning to the temporal aspect
of the data and treat it like any other feature.

3.2.1 Nearest neighbour-based algorithms

The common idea behind nearest neighbour-based algorithms for anomaly
detection is to compute an anomaly score using some relation (for example,
the distance) to a number of nearest neighbours. We will start the discus-
sion with the KNN outlier detection algorithm by Ramaswamy et al. [21].
After that we will look at a LOF algorithm by Breunig et al. [4, 5].

K-nearest neighbours

In 1998, Knorr and Ng proposed an anomaly detection algorithm that used
a simple and intuitive definition [16]. Their definition considers every point
that has no more than k points within a distance d to be an anomaly. In their
definition, k and d are user defined parameters. The paper by Knorr and Ng
was the basis for the first K-nearest neighbour (KNN) anomaly detection
algorithm by Ramaswamy et al. in 2000 [21].

3.2. Non-temporal approach 15

The changes to the original idea that were made by Ramaswamy et
al. were made to solve a few important shortcomings. The disadvantages
Ramaswamy et al. identified were the following:

1. The user has to specify a distance, d, which can be difficult to deter-
mine.

2. There is no ranking among the anomalies.

3. The algorithm is too inefficient to scale to higher numbers of dimen-
sions.

Especially the first two points can be a problem in our application domain.
This is the reason we will experiment with the algorithm by Ramaswamy
et al. rather than the algorithm by Knorr and Ng.

Before looking at the solution Ramaswamy et al. have for the problems
mentioned above, we will first discuss the algorithm they came up with.
They built their algorithm based on the following definition of an anomaly:
“Given a k and n, a point p is an outlier if no more than n− 1 other points in the
dataset have a higher value forDk than p”. In this definition, Dk is the distance
to the k-th nearest neighbour of a point. This distance, Dk, is used as the
anomaly score for this algorithm.

The definition that is given requires two parameters for the algorithm,
namely, k and n. k indicates the number of neighbours that is taken into
account, while n specifies the number of anomalies that has to be found.
However, setting the expected number of anomalies beforehand may not
be desirable. We will therefore work with a ranking of all the points based
on their anomaly scores. Based on the relative anomaly scores that are
found, we can then determine which of the points are outliers and which
are not. We can, for example, separate the anomalies from the normal data
by putting a boundary between the two at twice the mean anomaly score.
This is just an example, and the experiments will determine what kind of
threshold works well.

There is a trivial way to convert the above definition into an algorithm.
The simple algorithm Ramaswamy et al. propose is a block nested-loop
algorithm which has a running time that is quadratic in the size of the in-
put. Alternatively, they also proposed two more efficient algorithms to find
anomaly scores matching the above description. One uses an R*-tree to
perform KNN queries, while the other partitions the data and prunes parti-
tions that cannot contain anomalies thereby reducing the number of points
to check. A disadvantage of this second algorithm is that it does not pro-
duce a complete ranking and therefore the idea we discussed above cannot
work. Since the version of the algorithm that uses an R*-tree is already
implemented in ELKI, we will use that for our experiments and discussion.

The pseudocode for the indexed algorithm as it is implemented in ELKI
can be found in listing 1. This is not exactly the same code as Ramaswamy
et al. proposed. An important difference is the fact that we produce a com-
plete list of all points with their anomaly scores instead of returning only
the anomalies (i.e. the top n). The outliers are than selected using a different
threshold than a predetermined constant. Another important difference is
that the implementation within ELKI can easily switch between different
indexes, including R-Trees, M-Trees, k-d-trees, and also linear scans. When

16 Chapter 3. Algorithms

using the linear scan, the algorithm is roughly equal to the simple quadratic
implementation we mentioned before.

Algorithm 1: Pseudocode for indexed KNN algorithm [21].
Input : Positive integer k, dataset D
Output: Anomaly scores for all points in D

1 index← BuildRStarTree (D)
2 results← []
3 for Point p ∈ D do
4 distance← FindKthNearestNeighbourDistance (k, p, index)
5 Add distance for p to results
6 end
7 results← SortDescending (results)
8 return results

Ramaswamy et al. solved the first problem by setting a fixed number
of anomalies that have to be found instead of setting a fixed distance. The
algorithm we give above, which is also the way it is implemented in ELKI,
also removes the need to specify this parameter. The first problem is thereby
solved completely, although some threshold above which points are marked
as anomalies still has to be chosen. However, this is the case for all the
anomaly detection algorithms. The second problem is also solved by both
the original proposal and the pseudocode we gave. Since the distance to
the kth neighbour is used as the anomaly score, a ranking is automatically
possible. Whether the third problem is solved, depends on the index struc-
ture that is used. However, in the case of both the proposed R*-tree and the
simple quadratic approach, the algorithm scales well with the number of
dimensions.

Since the publication of this algorithm, many improvements have been
proposed. Among others Angiulli and Fassetti proposed a similar algo-
rithm that works with streaming data [1]. Their algorithm should be able
to give a performance improvement over the algorithm discussed above
when working with streaming data, since it prevents analyzing the entire
dataset again when new data arrives. Another possible improvement that
also works with streaming data was proposed by Yang et al. [28]. Aside
from these two, many more options have been proposed [2, 12, 24].

As discussed above, the indexed and the simple version of the algorithm
by Ramaswamy et al. have already been implemented in ELKI. We will
therefore use this publicly available version of the algorithm to make the
experiments easier and more fair. Some of the alternative algorithms we
just mentioned have also been implemented in ELKI. Therefore we can
easily switch to an algorithm that improves some possible problems of the
original algorithm.

Local outlier factors

Based on their own paper from 1999, Breunig et al. proposed the Local Out-
lier Factor (LOF) algorithm in 2000 [4, 5]. While previous nearest neighbour-
based algorithms had problems with varying densities within the dataset,
the LOF algorithm was built with the idea to solve this problem in mind.

3.2. Non-temporal approach 17

The general idea behind the LOF algorithm is to compute the degree to
which a point is an anomaly with respect to some local region around the
point, while previous algorithms generally computed this with respect to
the entire dataset. This improves the ability of the algorithm to recog-
nize anomalies in datasets with clusters of varying densities. The example
Breunig et al. give, can be found in figure 3.1. In this example, most algo-
rithms mark o1 as an anomaly, but, without looking at the local context, o2
is not marked as an anomaly because it is as close to C2 as all the points in
C1 are to each other. In contrast, LOF is able to capture both o1 and o2 as
anomalies, without marking the points in C1 as anomalies.

FIGURE 3.1: LOF use case by Breunig et al. [4].

The pseudocode for the LOF algorithm can be found in listing 2.
As can be seen in the pseudocode of the algorithm, the algorithm mainly

consists of two steps. First, the Local Reachability Distances (LRDs) are
computed. The LRD is a measure that indicates the closeness of a point to its
nearest neighbours. In the second step, the LOF scores are computed. This
score indicates the LRD of a point, compared to the LRDs of its neighbours.

With the KNN algorithm, we already saw that many different modifi-
cations for a single algorithm can be proposed. The same is the case for
the LOF algorithm by Breunig et al. [4, 5]. Some authors modified the algo-
rithm to make it more usable with streaming data [20]. Others have tried to
improve the algorithm to make it usable in more or different scenarios [17,
26, 29]. Although many versions of this algorithm exist, we start the exper-
iments with this original version. If a certain problem with the algorithm
occurs (like performance problem, or a specific failure in detecting anoma-
lies), we can always try to solve it by going over the possible improvements
to determine if one of those may solve the problem. The original LOF al-
gorithm by Breunig et al., as well as many of the proposed improvements
have already been implemented in ELKI. This makes it easy for us to ex-
periment with the algorithm, and if necessary switch to another version of
the algorithm without much effort.

3.2.2 Clustering-based algorithms

The general idea behind clustering-based algorithms is that normal data in-
stances are part of a cluster, while anomalies are relatively far away from

18 Chapter 3. Algorithms

Algorithm 2: Pseudocode for LOF algorithm [4].
Input : Positive integer k, dataset D
Output: Anomaly scores for all points in D

1 LRDs← []
2 for Point p ∈ D do
3 sum← 0
4 neighbours← FindKNearestNeighbours (k, p)
5 for Neighbour n ∈ D do
6 kthDistance← FindKthNearestNeighbourDistance (k, n)
7 sum← sum + max (dist (n, p), kthDistance)
8 end
9 if sum > 0 then score← |neighbours| /sum

10 else score←∞
11 Add score for p to LRDs
12 end
13

14 LOFs← []
15 for Point p ∈ D do
16 LRDp← LRDs[p]
17 sum← 0
18 neighbours← FindKNearestNeighbours (k, p)
19 for Neighbour n ∈ neighbours do
20 sum← sum + LRDs[n]
21 end
22 score← sum/(LRDp · |neighbours|)
23 Add score for p to LOFs
24 end
25 return LOFs

3.2. Non-temporal approach 19

those clusters. Some clustering-based techniques also take cluster density
into account to determine more accurately whether a point is part of a clus-
ter. We are going to discuss the cluster-based local outlier factors algorithm,
which takes this approach and was proposed by He et al. [13].

Cluster-based local outlier factors

In 2003, He et al. proposed the cluster-based local outlier factors (CBLOF)
algorithm [13]. The algorithm has similarities to both cluster-based algo-
rithms and the algorithms based on the idea of Local Outlier Factors (LOF)
by Breunig et al. [4]. He et al. combine these ideas by first clustering the
data so that those clusters can then be used to compute an anomaly score in
a way similar to LOF. Any clustering algorithm can be used in the cluster-
ing step, but of course the quality of the results of the clustering algorithm
can significantly influence the quality of the results of CBLOF.

Suppose we have a dataset D. We can then compute a clustering of
this dataset using an arbitrary clustering algorithm that assigns every point
in D to a cluster. We can now order the clusters by size, so that we have
|C1| ≥ |C2| ≥ · · · ≥ |Ck|. Let us denote the clusters C1, C2, . . . , Ck where k is
the number of clusters. The intersection of any pair of these clusters should
be empty, while the union of all clusters should contain all the observations
in the dataset.

The next step in the algorithm is to find a boundary separating the Large
Clusters (LC) from the Small Clusters (SC). Let us denote the index of this
boundary with b. There are two possibilities to define this boundary. The
first formula to find a boundary is the following:

(|C1|+ |C2|+ · · ·+ |Cb|) ≥ |D| · α (3.1)

The alternative is the following:

(|Cb| / |Cb+1|) ≥ β (3.2)

In these equations α and β are user defined parameters. α should be set
between zero and one and represents the ratio of the data that should be
covered by the LC. β should be set to a value bigger than one and defines
a lower bound on the relative size between two consecutive clusters. In
equation 3.1, the idea is to add the biggest clusters to the set LC until some
user defined part of the data is covered. This intuitively separates the bigger
clusters from the smaller ones. The idea behind equation 3.2 is that a useful
location for the boundary between LC and SC could also be between two
clusters that have a relatively big difference in size. More specifically, it
sets a boundary between two consecutive clusters if the next cluster is β
times smaller than the previous cluster. These two equations might result
in different values for b. If that is the case, the smaller value is used.

After finding the boundary, b, we create the sets LC and SC. LC simply
contains all clusters with an index smaller or equal to the boundary, or more
formally LC = {Ci | i ≤ b}. SC contains the remaining clusters, more
formally denoted as SC = {Ci | i > b}.

20 Chapter 3. Algorithms

The final step is to compute the CBLOF scores for every element in D.
He et al. use the following equation to compute this score for t ∈ D.

CBLOF (t) =

{
|Ci| ·min(dist(t, Cj)) : t ∈ Ci, Ci ∈ SC and Cj ∈ LC
|Ci| · dist(t, Ci) : t ∈ Ci, Ci ∈ LC

(3.3)
As can be seen in the equation, the first option in the piecewise function
is used for the data points that belong to a cluster in SC, while the second
option covers the points that are part of LC. The distances to the clusters in
the equation are the distances to the representative point of the cluster. This
can, for example, be the mean of the cluster, but depends on the algorithm
used for clustering. The formula for points in SC gets the distance between
the current point and the nearest cluster part of LC. For elements in LC, the
distance to the cluster the element is part of is used. To incorporate the size
of the cluster the elements belong to, the distances are multiplied with the
cardinality of the cluster they belong to to get the CBLOF score.

The above definition is not very intuitive, so we will discuss how it
works. The points in the large clusters (i.e. LC) are considered to be the
normal points, while the points in the small clusters (i.e. SC) are considered
to be possible anomalies. For every large cluster, we compute a point that
represents that cluster (this can, for example, be the mean of all points in
the cluster). The anomaly score of a point that is part of a large cluster is
then defined as the distance between that point and the central point of the
cluster. This means that the anomaly score increases when the point is fur-
ther away from the point that represents the cluster. For points that are not
part of a large cluster, the anomaly score is defined as the distance to the
closest point that represents a large cluster. This way, the anomaly scores
for points that are far away from all large clusters will be higher than the
anomaly scores for the points that are still relatively close to one or more
large clusters. This method to compute anomaly scores has some similari-
ties to LOF, with the important difference that the distances are computed
with clusters instead of individual points.

This algorithm was not yet part of the ELKI framework [23], but was a
good candidate to be added. Therefore I implemented this algorithm my-
self within the ELKI framework and sent it back to the ELKI maintainers.
They accepted the contribution and therefore this algorithm is now part of
ELKI and available for anyone to use. The algorithm is set up so that it
can use many different clustering algorithms available within ELKI. That
makes it possible to easily conduct experiments with the CBLOF algorithm
combined with many different clustering algorithms to find an optimal
combination without any extra coding efforts required. It is also possible to
use different distance functions in the computations of the CBLOF scores.
This may be useful for some datasets, but is probably not required for our
experiments.

3.3 Temporal approach

Contrary to the non-temporal approaches, the algorithms with a temporal
approach do give a specific meaning to the time aspect of the data. A pos-
sible way to use this information can, for example, be to attach less value

3.3. Temporal approach 21

to older observations while more recent observations have more influence
on the results. It can also be used to find, for example, a daily repeating
pattern. While there may be ways to do this with non-temporal algorithms
as well by, for example, extracting the right features, temporal algorithms
have an advantage in this area since they were designed with the tempo-
ral idea in mind. This is basically a bit of domain specific knowledge that
is used in an attempt to improve the results at the cost of the generality
of the algorithm. However, this loss of generality is not a problem in our
case study because all our data does have a temporal aspect, giving us the
possibility to use this kind of algorithm.

We are going to discuss an algorithm based on Markov Modulated Pois-
son Processes that was proposed by Ihler et al. [15]. This algorithm roughly
takes an evolving prediction approach. The general idea behind algorithms
using the evolving prediction approach is to create and maintain a model
of the data. As new data arrives, this model is updated and used to classify
the new data.

The approach is based on time-varying Poisson processes. The algo-
rithm is built to analyze data using the observed counts in fixed, consec-
utive time periods. This matches the aggregations we discussed in Sec-
tion 2.1. Ihler et al. distinguish two kinds of anomalies in the data. The first
group, which is not interesting, is the group containing all the slight devi-
ations which are basically caused by noise in the data. The second group,
which is the group of anomalies we want to find, is the group containing
the actual anomalies indicating significantly different behaviour. Ihler et al.
attempt to separate these two by defining a model of uncertainty which in-
dicates how unusual a point in the data is. Additionally, they incorporate
persistence in the model. This addition increases the likeliness of a point
being an anomaly if it is part of a set of multiple consecutive points that are
more likely to be an anomaly. This decreases the probability that a single
point that is slightly deviating from the norm is marked as an anomaly.

The proposed probabilistic model uses two aspects of time. The first
is the time of day and the second is the day of the week. The algorithm
can optionally be configured to link the rates or time profiles of all days,
weekdays and weekend days separately, or all days separately. A Bayesian
approach is used to incorporate learning and inference into the model.

3.3.1 Method outline

We will discuss the method proposed by Ihler et al. in two parts. First,
we take a look at the probabilistic model that they use. After that, we will
discuss the way learning and inference is performed.

Probabilistic model

The algorithm assumes that the counts are determined by a combination
of two functions. The first represents the normal behaviour, which only
depends on the time (day of week and time of day). The second models the
anomalies we want to find, which disturb the normal behaviour. This can
be captured in a model as follows:

N(t) = N0(t) +NE(t)

22 Chapter 3. Algorithms

In this model, N0(t) models the normal behaviour while NE(t) models the
anomalous behaviour. To be able to find the deviations modeled by the
second function, we first have to find the baseline represented by the first
function. We will therefore start with an explanation of how the normal
behaviour is modeled.

The normal behaviour is modeled using a model based on a model pro-
posed by Scott [25]. This model is based on the Poisson distribution. How-
ever, instead of using a constant λ, a function depending on the time is
used. This function is defined as

λ(t) = λ0 δd(t) ηd(t),h(t)

In this function, d(t) represents the day of the week as a number from 1 to 7.
h(t) represents the time of the day as the number of the aggregation interval
the observation is a part of. λ0 is the average rate of the Poisson process
over an entire week. δi adds a per day variation. This makes it possible
to, for example, model a higher average rate for Mondays and a lower one
for Sundays. Finally, ηj,i models the variations during the day for a time
period i on day j. This makes it possible to, for example, model a higher
rate during the day and a lower rate at night. The day of the week is also
taken into account here to allow different patterns during a day depending
on the day of the week.

The second function we discussed above models the anomalous be-
haviour. To model this function, Ihler et al. use a binary process that indi-
cates whether the data at a given time indicates the presence of an anomaly:

z(t) =

{
1 if there is an event at time t
0 otherwise

The probability distribution over z(t) is modeled by a Markov process over
time. The following transition probability matrix is used for this process:

Mz =

(
1− z0 z1
z0 1− z1

)
This gives us an expected time between anomalies of 1/z0, while each anomaly
has an expected duration of 1/z1. Using the beta distribution, β, we give z0
prior

z0 ∼ β(z; aZ0 , b
Z
0)

and z1 prior
z1 ∼ β(z; aZ1 , b

Z
1).

Using the probability distribution, z(t), we can model the second func-
tion as follows:

NE(t) ∼

{
0 if z(t) = 0

P (N ; γ(t)) if z(t) = 1

In this function, P is a Poisson distribution and γ is defined as:

γ(t) ∼ Γ(γ; aE , bE)

To make these functions a bit more clear, Ihler et al. also provide two

3.3. Temporal approach 23

graphical models that show the relations between the variables and func-
tions. These graphical models can be found in figures

FIGURE 3.2: Graphical model for
λ(t) and N0(t). The parameters λ0,
δ, and η are the periodic components
of λ(t) and couple the distributions

over time [15].

FIGURE 3.3: Graphical model for z(t)
and N(t). The variables are coupled
over time by the Markov structure of

z(t) [15].

For our case study, we are looking for the periods of time where z(t)
is 1, since this indicates that something anomalous is going on at time t.
Optionally, we can also look at γ(t) or NE(t) to find the magnitude of the
deviation caused by the anomaly. This magnitude may help answer the
second research question, because it can provide some extra information
about the reason something is classified as an anomaly.

This probabilistic model also has a disadvantage that is mentioned by
the authors themselves. This disadvantage is the fact that the model does
not support negative contributions to the expected count. This means that
anomalies that have a negative contribution to the number of observations
cannot be detected.

Learning and inference

The second part of the method covers the learning part of the model. This
part of the method is related to the third research question, which considers
the handling of changes over time and influence of past anomalies.

Ihler et al. simplify this problem by first assuming that the data covers
an integral number of weeks [15]. This is not a real restriction, because
the difference between the available data and the next integral number of
weeks can be filled as unobserved, thereby not influencing the result.

As we can see in figures 3.2 and 3.3, λ0, δ, η, z0, and z1 are all condi-
tionally independent. Therefore, we can compute the maximum a posteri-
ori (MAP) estimates or draw posterior samples of the parameters λ(t) and
{z0, z1} using the complete data {N0(t), NE(t), z(t)}.

Using the above information, posterior distributions can be inferred
over the variables using Markov Chain Monte Carlo (MCMC) methods [9,
10]. Ihler et al. propose to do this by iterating between drawing samples
of the hidden variables {z(t), N0(t), NE(t)} and the parameters given the
complete data. We will discuss both steps in more detail later in this section.
The complexity of each iteration in the above process is linear in the length
of the time series. Ihler et al. claim this process converges quite quickly.

24 Chapter 3. Algorithms

We will now discuss the sampling of the hidden variables given parame-
ters first. After that, we will discuss the process of sampling the parameters
given the complete data.

To sample the hidden variables, we will use a variant of the forward-
backward algorithm by Baum et al. [3]. Using this algorithm, we can draw
a sample sequence z(t) given the transition probability matrix, M , and the
periodic Poisson mean, λ(t). For each t ∈ {1 . . . T}, the conditional distri-
bution, p(z(t)|{N(t′), t′ ≤ t}), is computed in the forward pass. To do this,
the following likelihood functions are used:

p(N(t)|z(t)) =

{
P (N(t);λ(t)) z(t) = 0∑

i P (N(t)− i;λ(t))NBin(N ; aE , bE/(1 + bE)) z(t) = 1

For the backward pass, samples are drawn as follows:

Z(T) ∼ p(z(t)|z(t+ 1) = Z(t+ 1), {N(t′), t′ ≤ t})

We can compute N0(t) and NE(t) given z(t) = Z(t). To do this, we take
N0(t) = N(t) if z(t) = 0. If z(t) = 1, we draw N0(t) from the discrete
distribution

N0(t) ∼ f(i) ∝ P (N(t)− i;λ(t))NBin(i; aE , bE/(1 + bE))

We set NE(t) = N(t) − N0(t). In the case of unobserved data, N0(t) and
NE(t) are drawn independently given z(t).

The simplification to use an integral number of weeks helps us with
the sampling of the parameters given the complete data. Because of this
simplification, the time period covered by our data can be broken down as
follows:

T = 7 ·D ·W

In this formula, D is the number of time intervals in a day, and W is the
number of weeks. Because we have an integral number of weeks, the com-
plete data likelihood is given by:∏

t

e−λ(t)λ(t)N0(t)
∏
t

p(Z(t)|Z(t− 1))
∏

Z(t)=1

NBin(NE(t))

Because we can choose conjugate prior distributions, the posteriors are given
by distributions of the same form with parameters given by sufficient statis-
tics. To make the definition of the posterior distributions a bit easier, we
define the following:

Si,j =
∑

t:
d(t)=i,
h(t)=j

N0(t),

Si =
∑
j

Si,j ,

S =
∑
i

Si

3.3. Temporal approach 25

Using these definitions, we get the following posterior distributions:

λ0 ∼ Γ(λ; aL + S, bL + T)

1

7
[δ1, . . . , δ7] ∼ Dir(αd1 + S1, . . . , α

d
7 + S7)

1

D
[ηj,1, . . . , ηj,D] ∼ Dir(αh1 + Sj,1, . . . , α

h
D + Sj,D)

To sample z0 and z1, we do something similar. We first define the following
simplification:

Zi,j =
∑

t:
z(t)=i,
z(t+1)=j

1 for i = {0, 1}, j = {0, 1}

We can then compute z0 and z1 as follows:

z0 ∼ β(z; aZ0 + Z01, b
Z
0 + Z00)

z1 ∼ β(z; aZ1 + Z10, b
Z
1 + Z11)

The above functions can be tuned to change the number of detected
events by changing the priors to the transition parameters of z(t). Note
that bad values for these parameters can also cause overfitting of the data.
Since the presence of anomalies is modeled by z(t), we can get posterior
probabilities that indicate when anomalies occur using p(z(t)|{N(t)}).

3.3.2 Implementation notes

The authors published their own implementation of the algorithm1. Since
no ELKI or other easy to use implementation is available, we will be using
this original implementation in our experiments. The authors wrote their
code in Matlab, which has a few consequences. First of all, Java and Mat-
lab cannot communicate directly, so we have to make some modifications
to allow our tool to send data and retrieve the results. Another important
consequence is the fact that we cannot compare the computational perfor-
mance with the other algorithms we discussed. This comparison would
be unfair because Matlab and Java programs may show fundamentally dif-
ferent performance characteristics. Additionally, this implementation may
be far more or less optimized than the implementations of the other algo-
rithms.

However, despite these disadvantages, we are still using this implemen-
tation because the algorithm is fairly complex. The implementation by Ihler
et al. took roughly 300 lines of code. Besides the fact that it would take a
lot of time to translate the Matlab code to Java, it is also likely that mistakes
would be made in this process. This could result in invalid results in our
experiments or, if the mistakes are detected, cost even more time.

1Algorithm implementation by Ihler et al. [15]:
http://www.ics.uci.edu/ ihler/code/event.html

http://www.ics.uci.edu/~ihler/code/event.html

27

Chapter 4

Experiments

We can divide our experiments into two parts. First, we will perform some
experiments using artificial datasets to test some basic functionalities of the
implemented algorithms. After that, we will experiment using the data we
gathered from different servers at Flexyz.

4.1 Artificial data

Since the real world dataset does not contain any labels, it is more difficult
to validate our results. Therefore, we use some basic artificial datasets to
check whether the algorithms we use will be able to detect some typical
anomalies we expect to find in our real world dataset. This is of course not
a real validation or test for the algorithms, but it can help us answer the
research questions and it may show us flaws that we might miss if we only
worked with unlabeled data. We will also test how the algorithms handle
the absence of anomalies. This part is also fairly important because not
every real world case will contain anomalies either.

We will first discuss the details of the artificial data. After that we look
at the setup used for the experiments and we conclude with the results we
found using the artificial data.

4.1.1 Used data

The used datasets all spawn 28 days. We will experiment with datasets
with different properties, including noise, wave patterns, anomalies, and
different weekend patterns. The dataset will be divided into buckets of five
minutes, so that there are 288 buckets per day. The data for each bucket
is a simple count, indicating the number of observations in the given time
interval. We use a base value of a 1000 for each bucket. The waves we
mentioned above will cause a maximum deviation of 500. The influence of
the other properties depends on the dataset and will be discussed below.

The datasets that were generated and that are used for this part of the
experiments can be found in table 4.1. The dataset column contains an iden-
tifier so that we can easily refer to a dataset. In the weekend column, the
relative ratio for weekend days is given. Noise is given in the third column
and the value displayed is the λ value for a Poisson distribution. This noise
is either added or subtracted. Both addition and subtraction have an equal
chance of happening. In the wave column, the number of hours a single
wave in the data is specified. A zero in that column means that the counts
do not vary throughout the day. The last two columns give information

28 Chapter 4. Experiments

about the anomalies that are present. The first of the two gives the prob-
abilities that at any given bucket the data changes from non anomalous to
anomalous and from anomalous to non anomalous respectively. Note that
zeroes in that column indicate the absence of anomalies in the data. The
last column contains the ratio between the anomalous data and the normal
counts in case of an anomaly.

Dataset Weekend Noise Wave Anomaly prob. Anomaly
(ratio) (λ) (hours) (start/end) (ratio)

1 1 0 0 0/0 N/A

2 0.5 0 0 0/0 N/A

3 1 0 24 0/0 N/A

4 1 20 24 0/0 N/A

5 0.5 0 24 0.005/0.9 0.5

6 0.5 20 24 0.005/0.9 2

7 0.5 20 0 0.002/0.95 1.5

TABLE 4.1: Overview of the used artificial datasets.

We will discuss dataset 6 as an example. This dataset contains half the
observations on weekend days, compared to other days of the week. Ad-
ditionally, noise causes the counts to be deviating from the norm by either
adding or subtracting samples from a Poisson distribution with a λ of 20.
Furthermore, the data has a wave pattern with a period of a day. This means
that there will be less than average observations during the night and more
than average during the day. The probability that anomalous data is present
at a bucket while the previous bucket contained normal data is 0.5%. If the
last bucket was anomalous, the chance that this bucket is also anomalous is
90%. When an anomaly is present, this means that the counts are twice the
normal counts at any given time.

4.1.2 Experimental setup

The approach for the experiments with the artificial data is different from
the approach used with the real data. We will discuss the setup for the real
data in Section 4.2.2. In Chapter 3, we discussed four algorithms and their
implementations. These algorithms were KNN [21], LOF [4], CBLOF [13],
and MMPP [15]. The experiments in this section will be performed using
these four algorithms.

For this part of the experiments, we have labeled data. We can therefore
compute both the precision and the recall for each algorithm and configu-
ration. The number of configurations we have to test depends on the al-
gorithm, or, more specifically, the parameters of the algorithm. Besides the
parameters for the algorithms, we can also tune the threshold for outliers.
We will test the following parameters for the different algorithms:

• KNN: {k ∈ N | 1 ≤ k ≤ 10}

• LOF: {k ∈ N | 1 ≤ k ≤ 10}

4.1. Artificial data 29

• CBLOF:

– k ∈ {1, 2, 4, 5, 8, 10, 20}
– α ∈ {0.7, 0.8, 0.9, 0.95}
– β ∈ {1.5, 2, 3}

• MMPP: No parameters

Besides these parameters we also tune the threshold. We use the follow-
ing general formula to compute the threshold:

a ·mean+ b · variance

In this function, a and b are parameters we tune. mean is the mean of
the anomaly scores of the algorithm and variance is the variance of the
anomaly scores. We can find the values for a and b in a post processing step
because it is simply a filter over the results of an algorithm. It is not part
of the algorithm itself and therefore we do not need to run the algorithm
again to test different values for a and b. For a we pick a value from the set
{1, 1.5, 2}. The possible values for b are {0, 1, 1.5, 2}. Since the optimization
can be done in a post processing step that is relatively fast compared to the
algorithm execution, we do a complete grid search over the possible values
for a and b. Note that we do this for every algorithm and parameter set sep-
arately, because both may significantly influence the anomaly scores. It can
therefore give better results if we optimize the threshold for each specific
case. The threshold is the same for every dataset however.

To find the optimal parameter values for the algorithm specific param-
eters, we do need to run the algorithm for every combination of parameter
values we want to test. Because the number of algorithms and the possible
number of parameter combinations is relatively limited, we also do a com-
plete grid search to find the optimal algorithm specific parameter values.

Now that we have determined which algorithm configurations we need
to run, we also have to specify a way to make a fair comparison between
the results to determine which algorithm and which configuration performs
best. First of all, we need to make sure the results are realistic and not
caused by overfitting. To do this, we split the datasets into a training and
test part. As we mentioned in Section 4.1.1, all datasets contain data for
four weeks. Because we are dealing with temporal data, we cannot split the
data into arbitrary parts and we can therefore not do k-fold cross validation
for an arbitrary k. Note that we cannot do this because this might make it
impossible to detect certain trends over time in the data. We will therefore
split the data into two parts. The first three weeks will be used for training
and the last week will be used for testing.

Prediction
Positive Negative

Actual
Positive TP FN
Negative FP TN

TABLE 4.2: Example confusion matrix indicating the mean-
ing of TP, FP, TN, and FN.

30 Chapter 4. Experiments

The last thing we need is a way to assign a score to the results, so that we
can compare them. We will use several concepts explained by Rijsbergen
for this part [22]. We can extract a confusion matrix with the true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) counts
from the results of an algorithm. See Table 4.2 for an explanation of the
exact definitions of these counts. Next, we can compute the precision and
recall as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

Since optimizing one of those measures is trivial, we need a way to com-
bine them to get a meaningful score. We use the F1 score to do this. The F1

score can be computed as follows:

F1 = 2 · precision · recall
precision+ recall

This harmonic mean of precision and recall weights precision and recall
equally, but penalizes significantly different scores, thereby preventing op-
timization of only one of the factors. Using the above, we get an F1 score for
every dataset. We combine these scores into a single score for an algorithm
by computing the average over all datasets.

The complete procedure used for this part of the experiments can be
found in Listing 3. The pseudocode presented there represents the actual
implementation of the above explanation.

There is one pre-processing step that we have not yet discussed. This
step applies only to the ELKI algorithms (KNN, LOF, CBLOF). Because
these algorithms do not give any special meaning to the time related fea-
tures, we perform a feature wise normalization. This step is necessary be-
cause the counts in a log bucket can be very big (i.e. many thousands or
even more). The big variety in this feature can overshadow the variation
in the other features, which can make it difficult to actually use the infor-
mation given by those features. To prevent this we scale all the features to
an interval from zero to one, mapping the minimum and maximum value
for each feature to zero and one respectively. This step is not used for the
temporal algorithm because this algorithm uses the time related features
differently. The only generic feature that remains is therefore the count for
a bucket. Since this feature is not put in a feature space with any other
features, scaling does not influence the results. We will also run the experi-
ments without this pre-processing step to see how it affects the results.

4.1.3 Results

The summarized results can be found in Table 4.3. More detailed results of
the experiments with the artificial data can be found in Appendix A.1. Con-
fusion matrices per dataset and per algorithm can be found in these more
detailed results. We can see some big differences between the algorithms
in Table 4.3. Based on those results, we can see that the KNN algorithm
has the best performance overall, while the LOF algorithm comes in a close
second.

4.1. Artificial data 31

Algorithm 3: Pseudocode for execution of experiments with artificial
data.
1 output← []
2 for Algorithm a ∈ algorithms do
3 scores← []
4 for Dataset S ∈ datasets do
5 for Configuration c ∈ a.configurations do
6 results← RunAlgorithm (a, S.train, c)
7 mean← GetMean (results)
8 stdev ← GetStdev (results)
9 for a, b ∈ thresholds do

10 threshold← a ·mean+ b · stdev
11 precision, recall← Evaluate (results, threshold)
12 F1 ← 2 · precision · recall/(precision+ recall)
13 Add (c, a, b, F1) to scores
14 end
15 end
16 end
17 optimal← GetParametersWithBestScore (scores)
18 testScores← []
19 for Dataset S ∈ datsets do
20 results← RunAlgorithm (a, S, optimal)
21 testResults← results.test
22 threshold←

optimal.a ·GetMean(results) + optimal.b ·GetStdev(results)
23 precision, recall← Evaluate (testResults, threshold)
24 F1 ← 2 · precision · recall/(precision+ recall)
25 Add (optimal, F1) to testScores
26 end
27 totalScore←

∑
testScores/7

28 Add row with a, totalScore, optimal, and testScores to output
29 end
30 return output

32 Chapter 4. Experiments

Algorithm KNN LOF CBLOF MMPP

Score 0.781 0.755 0.571 0.161

Parameters k = 4 k = 6 α = 0.7 a = 2
a = 1.5 a = 1.5 β = 1.5 b = 0
b = 0 b = 0 k = 8

a = 1
b = 1

1 1.000 1.000 1.000 0.000

2 1.000 1.000 1.000 0.000

3 1.000 1.000 1.000 0.000

4 0.000 1.000 1.000 0.000

5 0.469 0.410 0.000 0.000

6 1.000 0.449 0.000 0.616

7 1.000 0.429 0.000 0.508

TABLE 4.3: F1-scores of implemented algorithms on the ar-
tificial datasets with normalization.

Another interesting observation we can make is the fact that the scores
for datasets 1 through 4 are always either 0 or 1. This can be easily explained
however. The score that is shown is an F1 score which is a combination of
precision and recall as we saw in the previous section. Since there are no
actual anomalies in datasets 1 through 4, the precision can either be 1 (no
anomalies reported) or 0 (one or more anomalies reported). The recall is
always 1 since we cannot miss any anomalies. This results in an F1 score
of 0 if an anomaly is reported and an F1 score of 1 if no anomalies are re-
ported. Based on the results, it seems that the MMPP algorithm cannot
handle the absence of anomalies very well. Furthermore, the limitation of
the MMPP algorithm we discussed in Section 3.3.1 (i.e. anomalies with a
negative contribution to the observation count cannot be detected) shows
itself in the score for dataset 5. This is the only dataset containing anomalies
with a negative contribution and the algorithm gets a rather bad score here,
while it performs relatively well on the datasets containing anomalies with
a positive contribution to the count.

We can gain some more insight into some of the algorithms if we look
at the more detailed results in Appendix A.1. We can for example see that
the CBLOF algorithm does not predict any anomalies at all. Furthermore
it seems that the LOF and KNN algorithms are also rather conservative in
marking data points as an anomaly. The LOF algorithm does not have any
false positives while the KNN algorithm has only one. However, both still
find quite a lot of true positives. Especially the KNN algorithms still has
a high number of true positives, which of course also explains its gener-
ally good score. Another number that stands out is the high number of
false positives produced by the MMPP algorithm. Although this algorithm
manages to find a lot of actual anomalies, this comes at the cost of a high
number of false positives.

4.2. Real world data 33

The results for the different algorithms without the normalization pre-
processing step can be found in Table 4.4. The results for the MMPP algo-
rithm are, of course, the same since the normalization step was not used
for this algorithm. For the other algorithms we find some surprising results
however. While the KNN and LOF algorithm had better scores while using
normalization, the CBLOF algorithm works a lot better without normaliza-
tion. Its score actually comes close to the score of the KNN algorithm with
normalization.

Algorithm KNN LOF CBLOF MMPP

Score 0.622 0.59 0.766 0.161

Parameters k = 4 k = 4 α = 0.9 a = 2
a = 1.5 a = 1.5 β = 3 b = 0
b = 1.5 b = 1.5 k = 1

a = 2
b = 0

1 1.000 1.000 1.000 0.000

2 1.000 1.000 1.000 0.000

3 1.000 1.000 1.000 0.000

4 0.000 0.000 1.000 0.000

5 0.735 0.808 0.000 0.000

6 0.092 0.250 0.520 0.616

7 0.528 0.074 0.842 0.508

TABLE 4.4: F1-scores of implemented algorithms on the ar-
tificial datasets without normalization.

4.2 Real world data

Contrary to the artificial datasets, we do not have any labels for the real
world data. This means we will have to take a slightly different approach
to validate our results. To do this, we will first discuss what data is available
and what data we are using. Next, we will discuss the experimental setup
for the real world data and compare it to the setup for the artificial data.
Finally we will take a look at the results and make a quick comparison with
the results for the artificial datasets.

4.2.1 Used data

As we already discussed in Section 2.1, a lot of data has been gathered from
various production servers at Flexyz. However, a lot has changed in the
applications and servers since we started gathering the logs. Therefore, not
all data is usable. Some applications have, for example, only logged data
for a short time which means we cannot find any meaningful trends in this
data. Aside from these reasons to exclude applications from our analysis,
we also do not use data from applications that are not used in production.

34 Chapter 4. Experiments

We do this because development, test, and acceptance environments have
highly varying log statistics. If someone worked on an application for a
day, an application may log millions of messages while very few messages
are logged when nobody worked on that application for a day. Although
variations over time also exist in applications in production environments,
these changes are generally less extreme. Another reason to choose these
applications is because of the simple fact that these applications are most
interesting from a business perspective.

Aside from picking applications, we also have to choose a time interval
for the data we use. We have roughly two months of data available. How-
ever, for the biggest part of April, the number of applications sending their
log data to our infrastructure was fairly limited. Furthermore, a fairly big
interruption in the process of collecting log data caused a gap at the start
of June. We will therefore use four weeks of consecutive data gathered in
May. Specifically, we will use the data gathered from the 1st of May until
the 28th of May.

Based on the above criteria, three applications were selected. How-
ever, this does not mean that we can only perform our analysis on three
datasets. These three applications generated nearly 600 unique messages.
We can therefore perform experiments with different levels of aggregations
of the data. We can, for example, analyze the statistics for individual mes-
sages, messages aggregated per class or messages aggregated per applica-
tion. This will be discussed in more detail in the explanation of the exper-
imental setup. The three applications that we selected logged almost 1.4
billion messages in the four weeks we are looking at, so enough observa-
tions are available to analyze the data at different levels of detail.

Some figures containing the aggregated counts can be found in Ap-
pendix B. Figure B.1 contains the aggregations for application 1. Applica-
tion 2 can be found in Figure B.2 and application 3 can be found in Fig-
ure B.3. The aggregations in these graphs are per 12 hours, so a lot of
patterns and deviations may not be visible at this level of detail. We can
already see some patterns however. For example, in all datasets we can see
that there is a fairly big difference between the number of log records before
noon and after noon. Furthermore we can see in dataset 1 that the number
of records that is logged is a lot less on every Sunday. In application 2
and especially in application 3 we can see that the number of log records is
quite a bit higher at the beginning of the period compared to the remaining
weeks. It is interesting to see how the anomaly detection algorithms handle
this.

4.2.2 Experimental setup

The same algorithms we used for the artificial data will be used with the
real world data. The parameter values may be different however since we
will be tuning them again with only real world data. What makes these
experiments more difficult and less efficient is the fact that we do not have
labeled real world data available. We will therefore have to verify the re-
ported anomalies manually.

This also means that we cannot compute an exact recall or precision
since it is not feasible to manually go through all the data to find every
anomaly. Although an exact precision and recall are not possible, we can

4.2. Real world data 35

still compute them using the partial classifications. When we find an anomaly
using one algorithm, but a second algorithm does not find this anomaly, we
know that an anomaly was missed by that second algorithm. Since we can-
not be sure that the union of all detected anomalies contains all anomalies,
we cannot compute a complete recall. We can, however, still use this partial
measure as a rough indicator to compare the different algorithms. A simi-
lar problem exists for the calculation of the precision. We will now discuss
these points in some more detail.

Manual classification

The manual classification is an important part of these experiments because
it greatly influences the results. It also takes quite some time, because a lot
of possible anomalies have to be checked manually to determine whether
they actually are anomalous. In the artificial results, we saw that the MMPP
algorithm reported a very high number of false positives. Since we have
to check possible anomalies manually, we will not be checking every re-
ported anomaly because this is simply not possible. To speed up this pro-
cess, some automation has also been done. We will now discuss how this
process works.

A script automatically fetches the most likely anomalies for each algo-
rithm configuration and dataset. Next, it fetches the data points that are
likely related to the possible anomaly currently being classified. The fol-
lowing points were used as the related data points:

• All points on the same time and day of the week, but in different
weeks than the current observation.

• Observations at the same time on the previous two and next two days.

• Points in the bucket before and after the current observation.

All these points are then presented in chronological order, together with
the observation being classified. It is then manually entered whether the
current observation is an anomaly or not. This classification is, amongst
other things, based on the mean and variation amongst the other points,
compared to the current observation. Generally, the related points in a dif-
ferent week are more important than the related points on a different day
and the points on a different day are more important than the points at a
different time. Of course, this process is influenced by a certain amount of
subjectivity. If this was not the case, we would not require the algorithms
discussed here, because the problem would already be solved.

We already mentioned that the process presents the possible anomalies
per algorithm configuration and dataset. Since we do not validate all the
data points, we need a condition to stop classifying the current dataset.
When classifying the test data, we stop when the majority of the last 20
points we checked is not actually anomalous. For the training data, we
use the same condition, but with the addition that we check at most 100
possible anomalies per algorithm configuration and dataset. We add this
extra condition because many more configurations need to be checked for
the training data and the other condition may be insufficient to keep the
extent of the required manual work within feasible limits.

36 Chapter 4. Experiments

Data point Actual Manual classification Prediction

1 Y Y Y

2 N N N

3 Y Y N

4 N N Y

5 Y — Y

TABLE 4.5: Example table for precision and recall computa-
tion

Of course we will go through the list of reported anomalies starting at
the most likely anomaly, working our way down to reports with a lower
certainty. This way the chance is smaller that a lot of actual anomalies are
missed after we stopped searching. Anomalies that we found by hand will
of course be saved so that we do not have to validate them again if another
algorithm or configuration reports the same anomaly. This last point also
means that it is likely that more manual classification results are available
for an algorithm configuration and dataset than we verified for that specific
configuration and dataset (i.e. the classifications from other algorithm con-
figurations, which may cover different data points, are also available when
validating the current configuration and dataset).

Comparison to experiments using artificial data

Aside from being time consuming, the manual classification we just dis-
cussed has another consequence. We already briefly mentioned it, but it
affects the computation of the precision and recall. This causes an impor-
tant difference compared to the results for the artificial data.

An exact computation is not possible because we have not manually
classified all the data points, so we cannot be certain we know all the points
that are anomalous. We therefore compute the precision and recall the
same way as in the artificial experiments, with the added assumption that
the points that we did not manually classify are not anomalous. We will
demonstrate this using a small example.

The data for our example can be found in Table 4.5. The first column
contains the numbers we use to refer to the data points. The second column
indicates whether the point is actually an anomaly. The third and fourth
column contain our manual classification and the prediction respectively.
A Y means that the point is anomalous according to that column, while
N means it is not. The “—“ means that a point has not been manually
classified. Note that point 5 would have been classified in our real data, but
we did not classify it here, so that the example data can be kept as small as
possible.

We will now demonstrate how the missing manual classification influ-
ences the results using the example above. The actual precision is 2

3 , be-
cause point 1 and 5 are correctly predicted to be an anomaly while point 4
is not. However, the precision we would predict for our experiments is 1

3

4.2. Real world data 37

because point 5 is assumed to be non anomalous, because this point was
not classified.

The influence on the recall is slightly different. The actual recall would
be 2

3 , because points 1, 3, and 5 are anomalous, but only 1 and 5 are pre-
dicted. However, based on the manual classifications, the recall is 1

2 because
point 5 is assumed to be non anomalous.

So, in this example, both the precision and recall based on the manual
classification are lower than the actual precision and recall. If data point
5 would be non anomalous, the results would be the same for the man-
ual classification and the actual results. However, if the prediction for data
point 5 would be non anomalous, while it actually was anomalous, the pre-
cision and recall would be overestimated.

Based on the above example, we can see that both the precision and
recall based on the manual classification results can be different from the
actual precision and recall. This can result in both overestimation and un-
derestimation. However, our assumption is that the differences caused by
the incomplete manual classification are small. This is assumption is the
result of the way we do our manual classification.

For every dataset, we manually classified anomalies predicted by every
algorithm starting with the most likely anomalies until a majority of the
last 20 was actually not anomalous. The idea behind this method is that
we catch as many anomalies as possible with a limited amount of work.
Even though some algorithms may not find many anomalies, algorithms
that perform well find a lot of the anomalies and these results are also used
for the other algorithms as we already described. Therefore, we make the
assumption that the remaining data points, which have not been manually
classified, do not contain many anomalies. Assuming this is true, our esti-
mated precision and recall are not much different from the actual precision
and recall, because we saw in the example that differences are caused by
missing classifications of actual anomalies.

Another source of differences in the estimated prediction is caused by
predicting a data point is anomalous when it is not manually classified.
This should not be a significant problem because this can only be the case
if the algorithm already predicted many invalid anomalies, otherwise the
point would have been manually checked. Additionally, this problem should
be limited due to the used threshold (i.e. it is never optimal to predict
anomalies amongst the unclassified data points, therefore an optimal thresh-
old should exclude these predictions).

Although the precision and recall are possibly not completely accurate,
we will still be using them to validate the results, because there is no better
method available. This does mean that the scores for this part of the exper-
iments cannot be directly compared to the results for the artificial data or
the results in other research. However, it does give us the ability to compare
the achievements of the different algorithms and configurations we used.

Aside from these important differences in validating the results, we can
also do a lot of things the same way as we did for the artificial data. We
will use the same possible parameter configurations and threshold func-
tion. The experiments will also be performed both with and without nor-
malization for the ELKI algorithms. The procedure for this part of the ex-
periments therefore still has a lot of similarities to the experiments for the
artificial data.

38 Chapter 4. Experiments

Use of data

Instead of the 7 datasets used for the artificial data, we will be using 18
datasets for this part of the experiments. The aggregations in these datasets
can be grouped in different levels of detail. We will use 9 datasets that con-
tain aggregations for a single unique message. Furthermore 6 datasets will
contain the aggregations for all messages within a single class. In this case,
a class is a Java class and the aggregation therefore includes all messages
that are logged from within that class. The other 3 datasets will contain ag-
gregations over the entire application. This results in the following contents
for our datasets:

• Application 1:

– Messages: datasets 1, 2, 3

– Classes: datasets 10, 11

– Application: dataset 16

• Application 2:

– Messages: datasets 4, 5, 6

– Classes: datasets 12, 13

– Application: dataset 17

• Application 3:

– Messages: datasets 7, 8, 9

– Classes: datasets 14, 15

– Application: dataset 18

The given dataset numbers match the numbers in the results. For example,
when we discuss datasets 2 and 11 in the results, we can use the above list
to find out that both are part of application 1. We can also see that dataset
2 contains aggregations for a single message, while dataset 11 contains ag-
gregations for all messages within a Java class. The messages and classes
are randomly selected within the applications.

4.2.3 Results

The summarized results for the real world data can be found in Table 4.6.
More detailed results, including confusion matrices over all algorithms and
datasets, can be found in Appendix A.2. Before we discuss the results in
more detail, there are a few things that should be taken into account with
respect to the interpretation of the results. We already mentioned the first
and most important one in the explanation of the experimental setup. The
recalls and precisions that were used to compute the F1 scores are not nec-
essarily correct and these scores can therefore not easily be compared to re-
sults of other experiments. It should also be taken into account that there is
a certain level of subjectiveness to the manual classification process, which
may influence the results. This is caused by the fact that there are no strict
rules that determine when something is an anomaly.

Based on the results in Table 4.6, we can already make quite a few in-
teresting observations. First of all, the KNN algorithm seems to give the

4.2. Real world data 39

best performance of the four algorithms, just like in the artificial experi-
ments. As we could expect from the results for the artificial data, the per-
formance for the KNN and LOF algorithm was better with normalization,
while the CBLOF algorithm performed better without it. The optimal pa-
rameter values are quite different from the parameter values for the artifi-
cial data though.

When we look at the results for the individual datasets, we can see that
the best score is always achieved by either the KNN or the LOF algorithm.
For dataset 9, we see the same kind of scores we saw in some of the artifi-
cial datasets. This dataset almost exclusively consists of the same constant
value. The few values in the test part of the dataset that were different were
not reported in the list of most extreme anomalies by any of the algorithms
and were therefore not marked as anomalies. Since the KNN algorithm was
the only one that did not report any anomalies for this dataset, this resulted
in a perfect score for that algorithm while the other algorithms got a score
of 0.

Looking at the results for the individual datasets, we can furthermore
see big differences in the scores for the different datasets. This may sim-
ply be explained by big differences between the different datasets. During
manual validation, it turned out that there does not seem to be much of a
pattern in some of the datasets. This results in a dataset where it is nearly
impossible to find some sort of normal behaviour, which in turn causes
many false positives and false negatives.

Using Table 4.6, we can also determine whether the different levels of
aggregations we used have an impact on the performance. The comparison
would of course be more reliable if we had more datasets, but with the data
we used in the experiments, it seems that the analysis at the level of individ-
ual messages works best. For the best performing algorithm (i.e. KNN), this
level has an average score of 0.455 while the average score at the class level
is 0.379 and the average score at the application level is 0.109. Especially
the gap between the application level and the other levels is relatively big.
Although the presented F1 scores are probably not normally distributed,
we will give the standard deviations for each level to give an indication of
how different the scores within each level are. For the message level, the
standard deviation is 0.346. It is 0.320 for the class level and 0.115 for the
application level.

If we look at the confusion matrices in Appendix A.2, we find some
unexpected numbers. While the MMPP algorithm was the only algorithm
that reported a lot of false positives for the artificial data, all algorithms
show this behaviour with the real world data. Although this might par-
tially be explained by anomalies that were not manually checked due to the
conditions discussed in the experimental setup, it is unlikely that this ex-
plains a majority of the false positives. If we look at the confusion matrices
per dataset, we also see that this behaviour is not caused by any specific
dataset.

40 Chapter 4. Experiments

Algorithm KNN LOF CBLOF MMPP

Score 0.372 0.242 0.164 0.116

Parameters k = 1 k = 9 k = 2 a = 1.0
normalized normalized α = 0.8 b = 2.0
a = 1.0 a = 1.0 β = 2.0
b = 1.5 b = 1.0 not normalized

a = 1.0
b = 0.0

Messages

1 0.285 0.383 0.234 0.172

2 1.000 0.357 0.333 0.250

3 0.462 0.154 0.133 0.190

4 0.557 0.667 0.370 0.185

5 0.266 0.462 0.234 0.175

6 0.357 0.590 0.279 0.203

7 0.048 0.035 0.024 0.019

8 0.117 0.152 0.094 0.045

9 1.000 0.000 0.000 0.000

Classes

10 0.630 0.088 0.044 0.054

11 0.545 0.414 0.359 0.320

12 0.150 0.133 0.077 0.065

13 0.802 0.476 0.444 0.210

14 0.048 0.045 0.024 0.013

15 0.097 0.114 0.075 0.037

Applications

16 0.241 0.196 0.173 0.106

17 0.051 0.055 0.031 0.023

18 0.034 0.036 0.015 0.029

TABLE 4.6: F1-scores of implemented algorithms on the real
world datasets.

41

Chapter 5

Evaluation

We already looked at the results in a bit more detail in the previous chapter.
In this chapter, we will look at the results from a different perspective. We
will therefore discuss what these results mean for both the scientific and the
business perspective we discussed in Chapter 1. The research questions will
be used to evaluate the results from a scientific perspective. To evaluate the
results from a business perspective, we will look at the solutions provided
to the requirements we discussed in Section 1.1.1.

5.1 Scientific evaluation

The following research questions were posed in the introduction:

(1)
Can on-line anomaly detection be performed on log data while
limiting the number of false positives?

(2)
Can the anomalies be placed in context so that we can clearly state
why they are classified as anomalies?

(3)
Can the anomaly detection model handle changes over time with-
out future predictions being influenced by incidental anomalies?

The answers to these questions cannot entirely be inferred from the results
presented in the previous chapter, because not all underlying data was pre-
sented. This is not possible due to the size of this underlying data. We
will, however, discuss the relevant details here to be able to give answers to
the questions. Furthermore, the answers to the questions, of course, differ
depending on the used algorithm.

5.1.1 Research question 1

The first question consists of two parts. The on-line part depends partially
on the infrastructure and partially on the analysis process. The infrastruc-
ture used in this project can get the log records from the source application
to the central point where analysis happens in a matter of seconds. How-
ever, working with aggregations is a core part of the approach we took and
these aggregations consist of buckets that aggregate logs over a period of 5
minutes. This means that we can do a new analysis every 5 minutes. This
is not completely real-time but still fast enough for the intended purposes.

The last important step is the time it takes for the anomaly detection
algorithm to compute the anomaly scores. This varied per algorithm and
even per dataset in our experiments. While this took less than a second
for the ELKI algorithms, the MMPP algorithm took nearly 90 minutes on

42 Chapter 5. Evaluation

the most difficult dataset, while the other datasets took from anywhere be-
tween a few seconds and a few minutes. As we mentioned before, a direct
comparison in computational performance cannot be made due to the im-
plementation differences, but unless an optimized version of the MMPP al-
gorithm is a few orders of magnitude faster, it may not be usable for on-line
analysis. The ELKI algorithms seem to be usable for this purpose though.

The second part, limiting the number of false positives, has a less pos-
itive answer if we look at the results from the previous chapter. Although
the answer varies a bit across the different algorithms, there are generally
a lot of false positives. If we look at the results in Appendix A.2, we see
that all the algorithms have at least 8 times more false positives than true
positives. The actual numbers may, as we discussed in the previous chap-
ter, be somewhat different, but this part does not look very positive. One
way to solve this problem would be to simply increase the threshold. This,
however, comes at the cost of an increase in false negatives. It is a business
motivated decision to decide what is an optimal balance. A new optimal
configuration can then be computed by replacing the F1 score by a version
that emphasizes the more important part.

Although the answer to the question is a bit more complicated than a
simple yes or no, the answer based on our experiments is no because the
number of false positives is simply too high. However, this does not neces-
sarily mean that the algorithms are not usable as we discussed above.

5.1.2 Research question 2

The answer to the second research question can be split into two cases. In
the introduction we mentioned four reasons why an observation could be
an anomaly. One case is formed by the observations we never saw before
and the observations that are completely new. The second case is formed
by the other two reasons, namely the number of occurrences increased or
decreased.

The anomalies in the first case are fairly easy to detect, so the answer
for that part of the question is yes. The second case is a bit more diffi-
cult. None of the algorithms give a reason why something is marked as an
anomaly. Instead, they only give an anomaly score. We cannot directly in-
fer the reason from this score. However, based on the features we used for
the algorithms, we can determine to which other points the observations
were likely compared. We can then compute whether the anomaly has a
lower or higher number of occurrences compared to the other data points.
This, in most cases, gives us a slightly more detailed reason why something
is classified as an anomaly. Additionally, the related data points could of
course also be shown to the user.

If a simple message stating that an observation deviates from the norm
is detailed enough, the above is of course not necessary as we can distin-
guish between the two cases of anomalies we can encounter. With the above
option taken into account, it seems possible to place anomalies in a context
so that it becomes clear why something is classified as an anomaly.

5.2. Business evaluation 43

5.1.3 Research question 3

The experiments have not provided much help in answering the last re-
search question. Because it is difficult to predict what kind of trend changes
we can expect in the real world data, it is not feasible to try and answer this
question with the artificial experiments. However, answering this question
with the real world data is also quite difficult. There are two fundamental
reasons that cause this.

First of all, we have not collected data over a period of time that is long
enough to detect these kinds of changes. When determining the research
questions, we hoped to gather enough data to answer this question, but
unfortunately not enough usable data was gathered. The second reason
that makes answering this question more difficult is the fact that it would
be very difficult to find these patterns. Since we do not know beforehand
that these behavioural changes are present or where they occur, we will
have to find them manually in order to determine how the different algo-
rithms cope with these changes. Due to the size of the data, it can be very
challenging to find these patterns.

Although we cannot answer this research question based on our own
findings, it seems reasonable that subtle changes in the behaviour of the
application would not cause problems with our sliding window idea. This
idea is supported by a topic found in other research which is called concept
drift [27]. Since we only look at the last four weeks, it can be expected that
the changes would slowly be incorporated into the model. The length of
this period can of course be changed if this is required. Based on the above,
we might expect this research question to be answered positively, but more
research is required to actually prove this for our application.

5.2 Business evaluation

We discussed the motivation for this project from a business perspective in
Section 1.1.1. Some of these motivations have overlap with the scientific
motivation. The biggest and most important part is of course the detection
of anomalies. The answer for that part roughly matches our answer to the
first research question. The analysis is possible, but it is probably desirable
to modify the parameter values to reduce the number of false positives.

There was an additional business motivation however. A system that
uses automatic analysis can also possibly be used to perform automatic pro-
active analysis. This also has some overlap with the on-line aspect of the
first research question, but requires some extra features. This is all possible
though.

We already saw that the near real-time analysis is possible with, at least,
the ELKI algorithms. This can then be turned into a pro-active system fairly
easily. To gather all the data, we already collected all the logs and aggre-
gated that in a central system. Our analysis tool can already use this data.
An interface to show reported anomalies has also been created. The only
thing that still needs to be done to achieve the required analysis is automat-
ically running the analysis algorithm every 5 minutes. Since this is not a
difficult change, this part of the business requirements is met.

45

Chapter 6

Conclusion

In this thesis, we have made a comparison between four algorithms with
a different approach to anomaly detection. We evaluated the performance
of these algorithms when applied to an anomaly detection problem for ap-
plication log data analysis, which is an unsupervised learning problem in
our case. The KNN, LOF, CBLOF and MMPP algorithms were all com-
pared for this domain and evaluated using both artificial and real world
data. It turned out that the relatively simple KNN algorithm gave the best
performance. However, a lot of false positives were still generated using
the parameter values that were optimal with respect to the F1 score.

During this thesis project, contributions from both a scientific and busi-
ness perspective were made. The scientific contributions were the follow-
ing:

• Presented a comparison of different algorithms in an application do-
main that is relatively unexplored.

• Implemented and shared the CBLOF algorithm in the ELKI frame-
work, so that it can easily be used in other research.

• Implemented and shared some bug fixes and other minor improve-
ments for the ELKI framework, so that future developments become
slightly easier.

The contributions from a business perspective were the following:

• Implemented a scalable infrastructure that gathers log data from ap-
plications across the network so that this data becomes searchable and
visible.

• Selected and implemented some of the core components required for
automated log data analysis.

6.1 Discussion

The F1 score was used in this research as a measure for the anomaly detec-
tion performance. However, a version of this measure that focuses more on
precision than recall might be more desirable because the optimal parame-
ter values for the F1 measure generate too many false positives. Although
it may be difficult to determine what measure is ideal from a business per-
spective, it is fairly easy to incorporate in this method. Before an automatic
analysis tool is useful for Flexyz, this still requires some discussion and
possibly some experimenting.

46 Chapter 6. Conclusion

6.2 Future work

A lot of work has already been done in this thesis, but, of course, more work
can always be done. We will discuss some useful extensions here, but this
list is by no means complete.

In the thesis, the manual validation of the data cost a lot of time. It is
likely that same problems exist for future work in this area and it would
therefore be a very useful project to create an open and freely available la-
beled dataset with application log data. This could significantly speed up
future research, while also making it possible to compare different studies
and algorithms.

Another obvious but useful extension to this work would be to extend
the experiments to more algorithms to see if there are algorithms available
that work even better. It would also be interesting to see how different in-
tervals for the aggregations affect the results. Repeating the research done
here, but with more data could also be useful since that could add the pos-
sibility of researching changing trends in the data and how the different
algorithms cope with these changes.

Looking for generic ways to reduce the relative number of false posi-
tives could also be an interesting research area. Multivariate analysis could
be an approach to do this. While we only experimented with univari-
ate analysis, multivariate analysis looks at combinations of log messages
throughout time to determine whether anomalies occur. These combina-
tions of messages may provide more information than the individual mes-
sages. This can therefore be used to improve the quality of the results. How-
ever, the method used to combine messages is important, but also difficult.
While some combinations may provide informations, many combinations
may not be useful. So, although this kind of analysis may improve the re-
sults, it can be difficult to get right.

Finally there is also some work that can still be done from a business
perspective. As we discussed above there are still a few things that need
to be done to get this automatic analysis running in a production environ-
ment. It would definitely be interesting to see how the parts of that system
that were provided in this thesis project work together. Of course it would
then also be very useful to know how satisfied the users are with the auto-
matic analysis and the results that it produces.

47

Appendix A

Results

A.1 Artificial data

A.1.1 Confusion matrices by algorithm

Prediction
Positive Negative

Actual
Positive 197 43
Negative 1 13871

TABLE A.1: Confusion matrix for KNN anomaly algorithm
over all artificial datasets.

Prediction
Positive Negative

Actual
Positive 67 173
Negative 0 13872

TABLE A.2: Confusion matrix for LOF algorithm over all
artificial datasets.

Prediction
Positive Negative

Actual
Positive 0 240
Negative 0 13872

TABLE A.3: Confusion matrix for CBLOF algorithm over all
artificial datasets.

Prediction
Positive Negative

Actual
Positive 147 93
Negative 1866 12006

TABLE A.4: Confusion matrix for MMPP algorithm over all
artificial datasets.

A.1.2 Confusion matrices by dataset

48 Appendix A. Results

Prediction
Positive Negative

Actual
Positive 0 0
Negative 355 7709

TABLE A.5: Confusion matrix for artificial dataset 1 over all
algorithms.

Prediction
Positive Negative

Actual
Positive 0 0
Negative 345 7719

TABLE A.6: Confusion matrix for artificial dataset 2 over all
algorithms.

Prediction
Positive Negative

Actual
Positive 0 0
Negative 388 7676

TABLE A.7: Confusion matrix for artificial dataset 3 over all
algorithms.

Prediction
Positive Negative

Actual
Positive 0 0
Negative 202 7862

TABLE A.8: Confusion matrix for artificial dataset 4 over all
algorithms.

Prediction
Positive Negative

Actual
Positive 35 213
Negative 402 7414

TABLE A.9: Confusion matrix for artificial dataset 5 over all
algorithms.

Prediction
Positive Negative

Actual
Positive 301 279
Negative 111 7373

TABLE A.10: Confusion matrix for artificial dataset 6 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 75 57
Negative 64 7868

TABLE A.11: Confusion matrix for artificial dataset 7 over
all algorithms.

A.2. Real world data 49

A.2 Real world data

A.2.1 Confusion matrices by algorithm

Prediction
Positive Negative

Actual
Positive 678 60
Negative 6427 15255

TABLE A.12: Confusion matrix for KNN algorithm over all
real world datasets.

Prediction
Positive Negative

Actual
Positive 557 181
Negative 5480 16202

TABLE A.13: Confusion matrix for LOF algorithm over all
real world datasets.

Prediction
Positive Negative

Actual
Positive 481 257
Negative 9535 12147

TABLE A.14: Confusion matrix for CBLOF algorithm over
all real world datasets.

Prediction
Positive Negative

Actual
Positive 268 470
Negative 6600 15082

TABLE A.15: Confusion matrix for MMPP algorithm over
all real world datasets.

A.2.2 Confusion matrices by dataset

Prediction
Positive Negative

Actual
Positive 287 73
Negative 1519 3169

TABLE A.16: Confusion matrix for real world dataset 1 over
all algorithms.

50 Appendix A. Results

Prediction
Positive Negative

Actual
Positive 16 8
Negative 34 86

TABLE A.17: Confusion matrix for real world dataset 2 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 12 16
Negative 63 113

TABLE A.18: Confusion matrix for real world dataset 3 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 43 25
Negative 91 201

TABLE A.19: Confusion matrix for real world dataset 4 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 206 90
Negative 1014 1614

TABLE A.20: Confusion matrix for real world dataset 5 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 300 160
Negative 1002 1650

TABLE A.21: Confusion matrix for real world dataset 6 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 46 26
Negative 2893 5067

TABLE A.22: Confusion matrix for real world dataset 7 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 123 57
Negative 2100 3532

TABLE A.23: Confusion matrix for real world dataset 8 over
all algorithms.

A.2. Real world data 51

Prediction
Positive Negative

Actual
Positive 0 0
Negative 2012 5992

TABLE A.24: Confusion matrix for real world dataset 9 over
all algorithms.

Prediction
Positive Negative

Actual
Positive 74 58
Negative 1682 6250

TABLE A.25: Confusion matrix for real world dataset 10
over all algorithms.

Prediction
Positive Negative

Actual
Positive 26 14
Negative 60 140

TABLE A.26: Confusion matrix for real world dataset 11
over all algorithms.

Prediction
Positive Negative

Actual
Positive 151 81
Negative 2511 5217

TABLE A.27: Confusion matrix for real world dataset 12
over all algorithms.

Prediction
Positive Negative

Actual
Positive 199 121
Negative 341 1055

TABLE A.28: Confusion matrix for real world dataset 13
over all algorithms.

Prediction
Positive Negative

Actual
Positive 45 23
Negative 2764 5196

TABLE A.29: Confusion matrix for real world dataset 14
over all algorithms.

Prediction
Positive Negative

Actual
Positive 100 44
Negative 2181 3515

TABLE A.30: Confusion matrix for real world dataset 15
over all algorithms.

52 Appendix A. Results

Prediction
Positive Negative

Actual
Positive 260 132
Negative 2211 5461

TABLE A.31: Confusion matrix for real world dataset 16
over all algorithms.

Prediction
Positive Negative

Actual
Positive 55 21
Negative 2623 5365

TABLE A.32: Confusion matrix for real world dataset 17
over all algorithms.

Prediction
Positive Negative

Actual
Positive 41 19
Negative 2941 5063

TABLE A.33: Confusion matrix for real world dataset 18
over all algorithms.

53

Appendix B

Datasets

FIGURE B.1: Number of log records for application 1 aggre-
gated per 12 hours from May 1st until May 28th.

54 Appendix B. Datasets

FIGURE B.2: Number of log records for application 2 aggre-
gated per 12 hours from May 1st until May 28th.

FIGURE B.3: Number of log records for application 3 aggre-
gated per 12 hours from May 1st until May 28th.

55

Bibliography

[1] F. Angiulli and F. Fassetti. “Detecting distance-based outliers in streams
of data”. In: Proceedings of the sixteenth ACM conference on Conference
on information and knowledge management. ACM. 2007, pp. 811–820.

[2] F. Angiulli and C. Pizzuti. “Fast outlier detection in high dimensional
spaces”. In: PKDD. Vol. 2. Springer. 2002, pp. 15–26.

[3] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. “A maximization tech-
nique occurring in the statistical analysis of probabilistic functions
of Markov chains”. In: The annals of mathematical statistics 41.1 (1970).
JSTOR, pp. 164–171.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF: iden-
tifying density-based local outliers”. In: ACM sigmod record. Vol. 29.
ACM. 2000, pp. 93–104.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “Optics-of: Iden-
tifying local outliers”. In: Principles of data mining and knowledge discov-
ery. Springer, 1999, pp. 262–270.

[6] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection: A sur-
vey”. In: ACM computing surveys (CSUR) 41.3 (2009). ACM, p. 15.

[7] V. Chandola, A. Banerjee, and V. Kumar. “Outlier detection: A sur-
vey”. In: ACM Computing Surveys (2007). ACM.

[8] T. Fawcett and F. Provost. “Adaptive fraud detection”. In: Data mining
and knowledge discovery 1.3 (1997). Springer, pp. 291–316.

[9] A. E. Gelfand and A. F. Smith. “Sampling-based approaches to calcu-
lating marginal densities”. In: Journal of the American statistical associ-
ation 85.410 (1990). Taylor & Francis Group, pp. 398–409.

[10] S. Geman and D. Geman. “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images”. In: Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 6 (1984). IEEE, pp. 721–741.

[11] M. Gupta, J. Gao, C. Aggarwal, and J. Han. “Outlier detection for
temporal data”. In: Synthesis Lectures on Data Mining and Knowledge
Discovery 5.1 (2014). Morgan & Claypool Publishers, pp. 1–129.

[12] V. Hautamäki, I. Kärkkäinen, and P. Fränti. “Outlier Detection Using
k-Nearest Neighbour Graph.” In: ICPR (3). ICPR. 2004, pp. 430–433.

[13] Z. He, X. Xu, and S. Deng. “Discovering cluster-based local outliers”.
In: Pattern Recognition Letters 24.9 (2003). Elsevier, pp. 1641–1650.

[14] V. J. Hodge and J. Austin. “A survey of outlier detection methodolo-
gies”. In: Artificial Intelligence Review 22.2 (2004). Springer, pp. 85–126.

[15] A. Ihler, J. Hutchins, and P. Smyth. “Adaptive event detection with
time-varying poisson processes”. In: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM.
2006, pp. 207–216.

56 BIBLIOGRAPHY

[16] E. M. Knorr and R. T. Ng. “Algorithms for mining distancebased out-
liers in large datasets”. In: Proceedings of the International Conference on
Very Large Data Bases. Citeseer. 1998, pp. 392–403.

[17] L. J. Latecki, A. Lazarevic, and D. Pokrajac. “Outlier detection with
kernel density functions”. In: Machine Learning and Data Mining in
Pattern Recognition. Springer, 2007, pp. 61–75.

[18] M. Markou and S. Singh. “Novelty detection: a review—part 1: statis-
tical approaches”. In: Signal processing 83.12 (2003). Elsevier, pp. 2481–
2497.

[19] A. Patcha and J.-M. Park. “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends”. In: Com-
puter networks 51.12 (2007). Elsevier, pp. 3448–3470.

[20] D. Pokrajac, A. Lazarevic, and L. J. Latecki. “Incremental local out-
lier detection for data streams”. In: Computational Intelligence and Data
Mining, 2007. CIDM 2007. IEEE Symposium on. IEEE. 2007, pp. 504–
515.

[21] S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient algorithms for
mining outliers from large data sets”. In: ACM SIGMOD Record. Vol. 29.
2. ACM. 2000, pp. 427–438.

[22] C. J. van Rijsbergen. Information Retrieval. 2nd. Butterworth-Heinemann,
1979.

[23] E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, and A. Zimek.
“A framework for clustering uncertain data”. In: Proceedings of the
VLDB Endowment 8.12 (2015). VLDB Endowment, pp. 1976–1979.

[24] E. Schubert, A. Zimek, and H.-P. Kriegel. “Local outlier detection re-
considered: a generalized view on locality with applications to spa-
tial, video, and network outlier detection”. In: Data Mining and Knowl-
edge Discovery 28.1 (2014). Springer, pp. 190–237.

[25] S. L. Scott. Bayesian methods and extensions for the two state Markov mod-
ulated Poisson process. Harvard University, Deptartment of Statistics,
1998.

[26] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. “Enhancing effec-
tiveness of outlier detections for low density patterns”. In: Advances
in Knowledge Discovery and Data Mining. Springer, 2002, pp. 535–548.

[27] G. Widmer and M. Kubat. “Learning in the presence of concept drift
and hidden contexts”. In: Machine learning 23.1 (1996). Springer, pp. 69–
101.

[28] D. Yang, E. A. Rundensteiner, and M. O. Ward. “Neighbor-based pat-
tern detection for windows over streaming data”. In: Proceedings of
the 12th International Conference on Extending Database Technology: Ad-
vances in Database Technology. ACM. 2009, pp. 529–540.

[29] K. Zhang, M. Hutter, and H. Jin. “A new local distance-based out-
lier detection approach for scattered real-world data”. In: Advances in
Knowledge Discovery and Data Mining. Springer, 2009, pp. 813–822.

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Business motivation
	Scientific motivation

	Problem statement
	Challenges
	Research questions
	Outline

	Background
	Log data
	Available data
	Data gathering
	Infrastructure
	Preprocessing

	Related work

	Algorithms
	ELKI
	Non-temporal approach
	Nearest neighbour-based algorithms
	K-nearest neighbours
	Local outlier factors

	Clustering-based algorithms
	Cluster-based local outlier factors

	Temporal approach
	Method outline
	Probabilistic model
	Learning and inference

	Implementation notes

	Experiments
	Artificial data
	Used data
	Experimental setup
	Results

	Real world data
	Used data
	Experimental setup
	Manual classification
	Comparison to experiments using artificial data
	Use of data

	Results

	Evaluation
	Scientific evaluation
	Research question 1
	Research question 2
	Research question 3

	Business evaluation

	Conclusion
	Discussion
	Future work

	Results
	Artificial data
	Confusion matrices by algorithm
	Confusion matrices by dataset

	Real world data
	Confusion matrices by algorithm
	Confusion matrices by dataset

	Datasets
	Bibliography

