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Abstract

This paper summarizes the research done for a master thesis at the Molecular Biophysics group,

part the of the Physics Department of Utrecht University. Using a custom microscope set-

up, we have researched the effects of polarization on the shape of Stimulated Emission-Depletion

doughnuts in a high NA objective, simulating an actual STED environment. Additionally, rather

than a vortex phase plate, we have used a Spatial Light Modulator to generate the doughnuts.

The results are compared to theoretical predictions resulting from simulations.
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Chapter 1

Introduction

After the establishment of the electromagnetic theory of Maxwell in the late 19th century, there

was a sense that the medium and speed of light were nature’s last remaining secret, where we

were confident that we had figured out practically everything else. However, when a solid expla-

nation was finally given by the theory of special relativity, the universe was found to be much

more complex than the elegant theories of the physicists of that time would indicate. In that

sense, one would not be wrong to say that light has been one of physics greatest adversaries.

Of course, light has also given us the possibility to gain a grasp of the very small when we

were introduced to the microscope (besides giving us the ability to observe our surroundings),

but even then light has been physics’ ‘anti-hero’ as its wavelike properties have put limits on

the minimum resolution of the microscope. Still, this has not stopped scientists to figure a way

around lights’ properties and overcome these limits in order to image structures much smaller

than would be seem possible.

In this thesis we have focused on an increasingly popular microscope technique named Stim-

ulated Emission Depletion, or STED, microscopy where much better resolutions are obtained

than with a regular light microscope. As we will see, STED requires a modified focus in the

shape of a doughnut, where its shape and size have a large effect on the resolution. Here, we will

try to create these doughnuts using a Spatial Light Modulator (SLM). First, we will analyze the

effects of a SLM on light, before we use it to create doughnuts. Then, we will analyze the shape

and size of the generated doughnuts in a relevant environment, where we also take into account

possible effects on the light’s polarization. These experiments will be carried out with use of two

custom-made set-ups.
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Chapter 2

Theory

Before the establishment of the microscope by Antony van Leeuwenhoek in 1673 [1], basically no

one had had any knowledge of the world below the millimetre scale. The smallest living creature

known in that time would be species of mite which, by microscope standards, still reaches a

colossal size of 0.3 mm [2]. Since the Dutchman’s discovery, many new scientific disciplines

have emerged and great progress has been made in our understanding of the very small which,

(in)directly, gave us further understanding of systems much larger than a mere mite. However,

the smaller the matter we wish to study becomes, the harder it gets to overcome the many

difficulties and limits that arise within light microscopy. Nevertheless, in the years more and

more techniques and theories have been put forward which have enabled us to overcome certain

limits and to reach new levels of control.

2.1 Light Microscopy

To understand the implications of using light microscopy, we will first discuss the basic properties

of light. When Maxwell first used his theory to describe an electromagnetic wave in vacuum, he

found that this wave must travel with a speed equal to the speed of light as had been measured in

experiment. This observation led him to conclude that light must be a transverse electromagnetic

wave with both an electric- and a magnetic component. Subsequently, he found that the electric

field of a plane electromagnetic wave traveling in the ẑ direction, is given by:

E(z, t) = Eoe
2πi
λ (z−vt) (2.1)

Where λ equals the wavelength of the wave and v is its velocity. Here, the amplitude of the

wave, Eo is a vector and its direction is called the polarization of the wave while its magnitude is

called the amplitude. Another important concept in wave physics is the concept of phase. The

phase of a wave gives the fraction of the wave cycle that has elapsed relative to the origin. Here,

we first define a state of the wave as the origin with phase 0. Then, moving further in space (or

time) the phase will linearly increase from 0 to 2π where the state of the wave is equal to the

state at the origin. To illustrate, this means that a position where the phase of the wave is π

tells us the wave is halve way through its cycle. To summarize, the phase φ of the wave at a
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2.1. LIGHT MICROSCOPY CHAPTER 2. THEORY

Figure 2.1: Computer simulation of the Airy Disc. The right profile plot shows the Airy Disc
for a system where rAiry ≈ 250 nm. [4].

position z where the origin is at z = 0 is given by:

δφ(z) =
2π

λ
(z mod λ) (2.2)

Finally, phase is used to compare the states of two waves with the same frequency v/λ to compare

their relative states. If two waves are simultaneously in the same part of the cycle they are said

to be ‘in phase’.

Now, we will see that these wave-like properties of light limit the image resolution of a mi-

croscope: if an uniform bundle of light is focused, the lateral intensity distribution in the focus

will have the shape of finite-sized spot with light/dark rings surrounding it, known as the Airy

Disc [3]. This pattern is shown in figure 2.1. The (lateral) radius of the first dark ring surrounding

the central spot can be shown to be:

rAiry = 1.22
fλ

D
(2.3)

Figure 2.2: Schematic drawing
to show how the Numerical Aper-
ture (NA) of a lens is related to
its other properties.

Here, f is the focal length of the lens, λ is the wavelength

of the light in vacuum and D is the diameter of the focused

beam. In microscopy, a more common and useful way to

describe the properties of the focus lens (objective) is by its

Numerical Aperture (NA), defined as:

NA = n sin θ (2.4)

where n the refractive index of the medium and θ is the

halve angle at the focus spanned by the optical axis and the

beam diameter, see figure 2.2. From this figure, it can easily

be shown that the the NA of the objective and its other

properties relate as follows:

NA = n sin

(
arctan

D

2f

)
≈ n D

2f
(2.5)
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2.1. LIGHT MICROSCOPY CHAPTER 2. THEORY

Where the last approximation is usually valid in the case of a microscope objective. Notice that

the NA of a microscope not just tells us at which angle light is focused on the sample, but that

this also describes the range of angles at which light can be collected from the sample, meaning

objectives with a high NA are able to collect more signal. Subsequently, we now get for rAiry:

rAiry = 0.61
λ

NA
(2.6)

This equation gives the spot size of a laser bundle given the wavelength λ of the bundle and

the objective’s Numerical Aperture. Clearly, a high NA results in a smaller focus spot. The

relationship between spot size and resolution is an important one: this is illustrated for scanning

microscopy where images are constructed by scanning a focus through a part of the sample while

collecting signal at predetermined positions (pixels). This in contrast to wide-field microscopy

where the entire sample is illuminated simultaneously. In the case of scanning microscopy, the

finite size of the focus causes an object in the sample to be imaged as a convolution of the object

with the focus. To understand this, assume one images a reflecting point particle δ(t, s) by

scanning through it with a focus with intensity distribution A(x, y). During the scan the focus

will illuminate a finite area of the sample larger than one pixel. Then, whenever the particle is

present somewhere inside the illuminated area, signal will be collected. Mathematically, we get:

I(x, y) =

∫∫
δ(t, s)A(x− t, y − s)dsdt = A(x, y) (2.7)

such that this particle will be imaged as a spot with radius rAiry. Additionally, if two (or more)

small particles are separated by a distance smaller than 2 ·rAiry, the convolutions of the particles

will overlap, see figure 2.3. Classically, if the spatial distance between the particles is in Smaller

than rAiry, the particles will appear merged and one is unable to resolve them, preventing the

microscope to distinguish structures within this order of magnitude. Commonly, the minimum

distance between resolvable particles is the definition of spatial resolution in microscopy. In this

case, this distance is known as the Rayleigh Criterion which in equation form, results in equation

2.6. To put this limit in perspective, visible light has a wavelength in the order of the 102 nm

(a) (b) (c)

Figure 2.3: Series of images illustrating the ability of a microscope to resolve individual particles:
Fig. a, two convolved point particles with no overlap are resolvable. Fig. b, a convolution of two
point particles with a small overlap can still be deconvolved. Fig. c, if the distance between the
particles is too small, it is no longer possible to resolve the particles.
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2.1. LIGHT MICROSCOPY CHAPTER 2. THEORY

and practically, the highest NA possible for an air objective (n = 1) equals 0.95. As a result, a

light microscope will have a resolution in the order of 102 nm. Unfortunately, many biological

structures have sizes or posses details well below this resolution. As a result, conventional

light microscopes will be unable to fully resolve these samples. Now, it is sometimes possible

to deconvolve the image afterwards with a computer to obtain a higher resolution image [5].

However, deconvolution is often not possible if proper knowledge (particle size, background,

noise, etc.) is unavailable nor practical since the computation cost is high [6].

2.1.1 Fluorescent Microscopy

In light microscopy, images are generally not (just) formed by collecting the reflection of the

illumination light. Instead, more often a property of certain molecules and structures to fluoresce

is used: this is the ability of particles to absorb photons within a certain energy range by

excitation of an electron in its outer shell to a higher energy level.

Figure 2.4: Jablonski diagram illus-
tration the fluorescence process [7].

After the electron has been excited it will lose some en-

ergy due to non-radiative processes before it falls back

towards its original energy level by emission of a pho-

ton with a slightly lower energy (higher wavelength).

This process is schematically illustrated in figure 2.4.

Many (biological) structures exhibit fluorescent prop-

erties and even when they do not, it is possible to la-

bel them with fluorophores, as a very nice property of

fluorescence microscopy is the fact that the emission

spectrum is very molecule-specific, making it possible to

recognize specific fluorophores in the sample by means

of spectroscopy. Unfortunately, the Rayleigh Criterion

still holds true for fluorescent microscopy. Additionally, the process is destructive to the fluo-

rophores such that after a number of fluorescent cycles, the fluorophore molecule will break down

or ‘bleach’, which means signal can no longer be extracted from it. Still, fluorescent microscopy

is very popular and it has seen many new applications and improvements over the years. One of

the latter is a method to increase the image resolution beyond the Rayleigh Criterion, known as

Stimulated Emission Depletion microscopy.

2.1.2 STED: increasing the resolution with doughnuts

The apparent hard limit that the Rayleigh Criterion prescribes, has not stopped scientists to

develop methods that defy it. These methods are appropriately dubbed ‘super resolution’ tech-

niques and one of these methods is the previously described subsequent deconvolution of mi-

croscope images to obtain a much better resolution. A different, increasingly popular method

which works with fluorescent microscopy, is called Stimulated Emission Depletion (STED) mi-

croscopy. In contrast to deconvolution, STED will increase the resolution of the microscopy in

‘real time’ by decreasing the effective radius of the focus spot in the microscope. To achieve

this, a STED set-up utilizes two lasers: the first provides the usual excitation spot like any

8



2.1. LIGHT MICROSCOPY CHAPTER 2. THEORY

regular fluorescent microscope, pushing electrons in a higer energy level. The second however,

will de-excitate (deplete) the outer part of the excitation spot such that an excitation spot is

left with a much smaller radius. Figure 2.5 illustrates this process: after the excitation beam

has illuminated the sample, it will leave a part of the sample excited (figure 2.5a). Afterwards,

a doughnut shaped beam (2.5b) will deplete part of the just excited fluorophores. Due to the

shape of this beam, mostly the center part of the illuminated area will be still be excited and

provide signal (figure 2.5c). This way, two bundles both obeying Rayleigh Criterion can create a

system with a much lower effective lateral resolution. Now, one might wonder what the resulting

(a) (b) (c)

Figure 2.5: Series of images shown to illustrate the STED process. fig. a shows the shape of the
excitation spot after the laser has illuminated the sample. Next, fig. b shows the shape of the
focus the depletion beam which will de-excite part of the excitation shop. Afterwards, the area
in the sample which has been excited has been reduced in size significantly (fig. c).

resolution of a STED microscope is quantitatively. Unfortunately, this is not as trivial as one

might assume, as the excitation spot that results from the two laser beams is not just dependent

on the relative shapes, but also on the relative intensities of the bundles. However, the key is to

determine the radius at which significant de-excitation is achieved. This radius is dependent on

several properties such as:

• the radius of the doughnut of the depletion beam: obviously, if the radius of the doughnut

is larger, the resolution becomes worse. Ideally, this radius is as small as possible.

• the intensity in the center of the depletion beam: if the intensity in the center of the

depletion beam is not zero, it will decrease signal.

• the relative intensities of the two beams: the higher the relative intensity of the doughnut

spot, the bigger the region where significant depletion is achieved, the better the resolution.

In practise, many factors will play a role on the quality of STED and resolutions between 80 nm

to 2.5 nm have been reported [8]. Because of these reasons, it is very important to be able to

correctly describe the doughnut shape of the depletion beam.. In this thesis, the generation and

the characterization of STED doughnuts will be the key subject of study and we will focus our

analysis on the first two points just mentioned.
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2.2. FOURIER OPTICS CHAPTER 2. THEORY

2.2 Fourier Optics

To understand how we can obtain a doughnut shaped focus, we will now discuss a field of

study named Fourier Optics which states that lenses in certain situations can perform a Fourier

Transformation on a beam of light. With it, we can better understand how we are to modulate

the focus from a spot to a doughnut. Here, we will only discuss this subject with a focus on its

applications, as it is important to fully grasp its origin in order to use it.

2.2.1 The Fresnel Integral

Fourier Optics finds its origin in Christian Huygens who tried to explain the physical properties of

light in a more elegant and powerful manner than the by then accepted ray optics: he (correctly)

assumed that light is a type of wave and that every point on the wave front can be interpreted

as an individual point source. A century later, Augustin Fresnel translated Huygens’ theory to a

mathematical model and even though the model had no basis in experiment, it was remarkable

that Huygens’ principle was found to agree quite well with experimental results. Later, other

scientists such as Gustav Kirchhoff gave more theoretical derivations of the theory, confirming

that Huygens’ model was conspicuously accurate.

To explain how light propagates according to Fresnel-Huygens theory, we will introduce the

following system: a light beam travels through the vacuum in the ẑ-direction where we focus

on the complex wave field E(ξ, η) of this light in the (ξ,η) plane perpendicular to ẑ. Next, we

are interested in the complex wave field E(x, y) = Eo(x, y)eiφ(x,y) in the (x, y) plane located a

distance z from the (ξ,η) plane, see figure 2.6. Here, Eo(x, y) is the amplitude of the electric field

while φ(x, y) is the phase. Here, we will refer to the E(ξ, η) as the Fourier plane and to E(x, y)

as the image plane. As mentioned earlier, the

Figure 2.6: Geometry of eq. 2.8 [9].

Huygens-Fresnel principle assumes that every point of

E(ξ, η) can be seen as its own point source and the fi-

nal wave field E(x, y) is the sum of all the contributions

of these point sources. Additionally, Fresnel found that

two corrections where needed to obtain agreement with

his measurements. The first of which was a pre-factor i/λ

and the second was a so-called obliquity factor which we

have taken as cos θ. What resulted is now known as the

Fresnel-Huygens Diffraction Integral [9] [10]:

E(x, y) =
i

λ

∫
Σ

E(ξ, η)
exp [ikr]

r
cos θds (2.8)

Where r is the distance between points P1(ξ, η) and Po(x, y) and Σ describes the area of the

cross section of the beam. At this time, it is found useful to convert the variables in the integral

to Cartesian coordinates. From geometry in figure 2.6, it can be shown that that r equals:

r = z

√
1 +

(
ξ − x
z

)2

+

(
η − y
z

)2

(2.9)

10



2.2. FOURIER OPTICS CHAPTER 2. THEORY

In many cases, z will be much larger than the (maximum)lateral distances ξ − x or η − y

between two points. Therefore, we can approximate eq. 2.9 to the first order binomial expansion

obtaining:

r ≈ z

[
1 +

1

2

(
ξ − x
z

)2

+
1

2

(
η − y
z

)2
]

(2.10)

These results, combined with placing the finite size of the beam in the definition of E(ξ, η), eq.

2.8 can shown to be approximately:

E(x, y) =
ieikz

λz
e
ik
2z (x2+y2)

∫∫ ∞
−∞

E′(ξ, η)e−
1
λz 2πi(ξx+ηy)dξdη (2.11)

with:

E′(ξ, η) = E(ξ, η)e
ik
2z (ξ2+η2) (2.12)

Here, you can recognize the integral as a Fourier Transform of E′
(
ξ
λz ,

η
λz

)
which means that

the field E(x, y) (aside from some pre-factors) can be found by Fourier transforming the field of

E′
(
ξ
λz ,

η
λz

)
after it has been multiplied by a quadratic phase factor.

2.2.2 Fourier Lens

we will see that the Fourier Transform is approached even more accurately if a lens is placed

between the two planes. We begin by describing the shape of the lens as a function of the distance

from the optical axis. To illustrate this, a lens is schematically illustrated in figure 2.7.

Figure 2.7: Schematic illustra-
tion of a lens, where the radius
of curvature R2 of part 02 of
the lens is shown.

Here, the lens is divided into three parts 01, 02 and 03. The

thickness of the total lens in the optical axis is ∆o. If R1 and

R2 are the radii of curvature of section 1 and 2 respectively, it

follows from the geometry of fig 2.7 that the thickness ∆(ξ, η)

of the lens, assuming a small radius of curvature, equals:

∆(ξ, η) = ∆o −
ξ2 + η2

2

(
1

R1
− 1

R2

)
(2.13)

Due to the refractive index n of the lens, light propagate more

slowly in the lens than in the vacuum. As a result, the phase

modulation of the light due to the lens depends on the thickness

at the point of incidence:

δφ(ξ, η) = kn∆(ξ, η) + k(∆o −∆(ξ, η)) (2.14)

Here, the first part of the equation gives the phase delay as a result of the lens, while the second

part in the equation is the phase delay resulting from the remaining free space. Assuming a

collimated, uniform beam with amplitude Eo, E(ξ, η) directly after the lens is given by:

E(ξ, η) = Eoe
ik(n∆(ξ,η)+∆o−∆(ξ,η)) (2.15)
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2.2. FOURIER OPTICS CHAPTER 2. THEORY

Now, we substitute the previously derived function for ∆(ξ, η):

E(ξ, η) = Eoe
ink∆oe−

ik
2f (ξ2+η2) (2.16)

where we have combined the part of the formula containing the physical properties of the lens

n,R1 and R2 in a single value f , called the focal length of the lens:

1

f
= (n− 1)

(
1

R1
− 1

R2

)
(2.17)

we can conclude that a lens will introduce a circular quadratic phase shift to a wave front which

can be mathematically expressed as:

Tl = e−
ik
2f (ξ2+η2) (2.18)

where we have dropped the constant phase term, since only the relative phase is interesting.

Therefore, a lens will introduce the phase shift found in eq. 2.18. As a result, the part of eq.

2.11 within the integral for a system with a lens becomes:∫∫ ∞
−∞

E′(ξ, η)Tle
− 1
λz 2πi(ξx+ηy)dξdη (2.19)

If we now work out the functions within this Fourier integral, we get:

E′(ξ, η)Tl = UTle
ik
2z (ξ2+η2) = Ue

ik
2 ( 1

z−
1
f )(ξ2+η2) (2.20)

Such that in the case of z = f , we end up with:

E′(ξ, η) = E(ξ, η) (2.21)

Which means that the integral in eq. 2.11 becomes a true Fourier integral and only the Fresnel

term outside the integral remains. To recall, z was the distance between the two planes in figure

2.6: apparently, if an image plane is placed directly against the lens, the Fourier transform of

the image should be found in the focal plane of the lens. This is the fundamental understanding

that has led to the discipline of Fourier Optics. Additionally, one can show that the Fresnel term

outside the integral disappears in case the (ξ, η) plane is also placed a distance f in front of the

lens, which means that E(x, y) will be the exact Fourier transform of U
(
ξ
λf ,

η
λf

)
. we will use

these observations to explain the effects of beam modulation on the shape of the focus by the

Spatial light modulation.
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2.3. DOUGHNUT BEAM GENERATION CHAPTER 2. THEORY

2.3 Doughnut beam generation

Now, we will use the previous to discuss how the doughnut is generated in STED microscopy. To

start, we will first describe in more detail how the intensity distribution in a focus is calculated

for a regular, uniform bundle. Then, we will show how

Figure 2.8: Geometry of diffraction
with a circular aperture. Not shown
are the cylindrical coordinates in the
aperture plane Φ and ρ.

one can modulate the beam such that instead of an Airy

Pattern, a Doughnut shaped focus will form. To explain

this, we will look now at the diffraction of light that occurs

in the case of a circular aperture, as illustrated in figure

2.8, which shows the geometry of the situation. Here, light

enters an aperture with radius a from the left side behind

the blue surface. Subsequently, the intensity distribution

that appears on a surface a distance L from the aperture

can be calculated. As we have already seen, the electric

field amplitude E(q, ϕ) in the far-field due to diffraction

at the circular aperture can be calculated by a Fourier

Transform. If we convert eq. 2.11 to cylindrical coordi-

nates, it can be shown that [11]:

E(q, ϕ) ∝ 1

L

∫ a

ρ=0

∫ 2π

Φ=0

E(ρ,Φ)ei(kρq/L) cos(ϕ−Φ)ρdρdΦ

(2.22)

Again, this equation tells us that the (complex) electric field at a position in the far field is

proportional to the sum of all the contribution of the different rays of light at the aperture,

taking into account possible interference between the different rays. In the case of an uniform,

coherent bundle with unit intensity, we get E(ρ,Φ) = 1.0. Additionally, in this case we expect

rotational symmetry in the far field which means we can take ϕ = 0. Subsequently, the integral

becomes:∫ a

ρ=0

∫ 2π

Φ=0

ei
kρq
L cos ΦρdρdΦ (2.23)

where the inner integral has the same form as the zero-th order Bessel Function Jo(u) with

u = kρq/L, which can be defined as [12]:

Jo(u) =
1

2π

∫ 2π

0

eu cos νdν (2.24)

Subsequently, we can write:

E ∝ 2πL

(kq)2

∫ u=kaq/L

u=0

Jo(u)udu = 2
πa2

L

J1(kaq/L)

kaq/L
(2.25)

where we have used the following identity of the Jo:∫ w

0

Jo(u)udu = wJ1(w) (2.26)

13



2.3. DOUGHNUT BEAM GENERATION CHAPTER 2. THEORY

Finally, by placing a lens with focal distance f in the circular aperture, such that the just derived

intensity distribution will exist in the focus of the lens, it can be shown that for I(q) in the case

of an uniform, coherent bundle through a circular aperture we get in the focus f :

I(q) = Io

[
2
J1(kaq/f)

(kaq/f)

]2

(2.27)

where we have used the fact that for the (average) intensity holds I = 0.5EE∗ (or |E|2). This is

the function of an Airy Disc with center intensity Io, and it is the function visualized in figure 2.1.

Additionally, in the case of microscopy, it is more useful to express I(q) in terms of experimental

properties like NA and λ. This way, we get:

I(q) = Io

[
2
J1( 2πNA

λ q)

( 2πNA
λ q)

]2

(2.28)

Clearly, the size of the focus spot of an objective is determined by the NA of the objective and

the wavelength of the laser, as we have seen before in eq. 2.6. Now, how do we go from a Airy

pattern to a doughnut? Frankly, this is surprisingly simple: we keep the same geometry and

uniform bundle. However, this time we take the uniform beam and assume it has a phase that

linearly changes with the angle Φ such that we get:

E(Φ) = 1.0eiΦn (2.29)

This phase distribution is often called a vortex and n is the topological charge of the vortex. To

clarify the shape of the phase distribution, figure 2.9a shows a two-dimensional representation

of the phase with a phase mask for n = 1: it shows a cross section of the beam in grey scale

where phase is represented from 0 (black) to 2π (white). Obviously, the position of the 0 is

arbitrary as the phase of a wave only has meaning if it is compared to the phase of a different

part of the beam. Furthermore, since 0 and 2π mean equal phase, the two extremes in the image

represent equal phase. Finally, figure 2.9b shows the phase using a three-dimensional image for

more clarity: the phase has the shape of a corkscrew. It is noteworthy, that near the center of

the beam, light of all phases is present. This will lead to destructive interference which can make

it insightful why the center will show a minimum for this beam, as we shall see. At this point,

we again use in eq. 2.29 to calculate the intensity distribution in the focus:

E(q, ϕ) ∝ 1

L

∫ a

ρ=0

∫ 2π

Φ=0

ei(Φn+ kρq
R cos(Φ))ρdρdΦ (2.30)

This time, if we take n = 1 the part in the integral has the same form as the first order Bessel

Function J1(u) with u = kρq/L, which can be defined as:

J1(u) =
1

2πi

∫ 2π

0

ei(ν+u cos(ν))dν (2.31)

Subsequently, we now use the following approximation [14]:∫ u

0

J1(w)wdw =
π

2
u [J1(u)Ho(u)− Jo(u)H1(u)] (2.32)
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(a) (b)

Figure 2.9: Two images showing the phase distribution of the cross section of the beam, expressed
by equation 2.29. The right image is taken from Leach et al. (2004) [13].

where Ho and H1 are respectively known as the first- and second order Struve functions. Then,

this will give for the intensity in the case of a lens placed in the aperture:

I(q) = Io

[
π
J1( 2πNA

λ )Ho(
2πNA
λ )− Jo( 2πNA

λ )H1( 2πNA
λ )

2πNA
λ

]2

(2.33)

This result is visualized in figure 2.10 where 2.10a shows the the result from equation 2.33 com-

pared to the Airy Disc (dashed) for the same Io. From this figure, it can be seen that we expect

zero intensity in the center, as was desired. Not surprisingly, the doughnut has a lower peak

intensity as the total power contained in the focus must be conserved. For completeness, a graph

which compares the approximation made in eq. 2.32 to the exact (numerical) solution of the

integral is shown in figure 2.10b which shows that the made approximation is very accurate.

Before we continue, one might wonder what the effect of a higher topological charge n will be

on the doughnut shape is, as it makes sense that this will give an even more effective vortex.

However, higher values of n will result in an increase of the doughnut focus size, making them

unpractical for STED microscopy. Additionally, it must be noted that a negative topological

charge (n = −1) will mirror the direction of the phase delay which will, in this case, give the

same focus shape. In experimental set-up, the required phase distribution is often obtained using

a vortex phase plate, generating the phase required for the STED doughnut. These optical ele-

ments can create nearly perfect vortexes. However, they are very inflexible as they only work for

specific wavelengths. As mentioned in the introduction, we will try to generate doughnuts using

a Spatial Light Modulator (SLM) instead, which is technically a variable phase plate, such that

we’re able to control the phase distribution of the light. As a result, a SLM is more versatile and

should be able to successfully modulate light of multiple wavelengths as well as correct set-up

misalignment. For these reasons, a SLM is interesting to study. In chapter 3, we will discuss the

properties of the Spatial Light Modulator in greater detail.
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(a) (b)

Figure 2.10: Fig. a shows the intensity profiles in case of a circular aperture and an uniform
bundle for both an uniform phase- (Airy Disc, dashed) and a vortex phase bundle (Doughnut,
solid). Fig. b compares both sides of eq. 2.32 where the left side has been calculated numerically.

Finally, we can conclude that a beam with a vortex phase will have a focus in the shape of

a doughnut. Additionally, it can be shown that this still holds true if a Gaussian beam is as-

sumed instead of an uniform bundle. In future characterization of the doughnuts, we will not

always use the approximation of eq. 2.32 as we do not have an uniform beam. In that case, we

will evaluate the integral numerically.

2.4 Polarization: doughnuts and high NA

So far, our calculations have neglected the polarization of the light. In fact, the diffraction inte-

gral used previously only takes amplitudes into account assuming all parts of the beam interfere

freely, which is not necessarily the case. Usually, light from a laser is linearly polarized and

Figure 2.11: The calculated focus
shapes of linearly polarized light in
the Vx direction, obtained using an
objective with NA of 1.0 (left) and
0.2 (right), taking into account de-
polarization effects. Image taken
from Ganic et al. (2003) [15].

the calculations hold up fine. However, lenses, especially objectives with a high NA, exhibit a

depolarization effect [16] and as a result, we can not just assume our current predictions to hold

up in these cases. Therefore, we need to take a look at the effect of polarization on the shape

of the doughnut in focus. Fortunately, research on this topic has already be conducted which

we will discuss here. Figure 2.11 shows some results obtained from computer simulations taken
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from Ganic et al. (2003) [15]. The right image is the result of a simulation for linearly polarized

light in the Vx direction in the case of an objective with a NA of 0.2. Apparently, our previous

calculations hold up quite well in this case as it shows the predicted symmetric doughnut with a

nice minimum in its center. However, if we shift our focus towards the left image, which assumed

a very high NA of 1.0; it shows grave distortion of the doughnut: not only has the rotational

symmetry disappeared, showing increased relative intensity in the Vy direction. Additionally,

the center minimum is non-zero and elongated which, as we discussed, has a large effect on the

quality of STED.

Where does this distortion originate? Interestingly, it was found that the effects of the ob-

jective introduce a Vz (axial) component of the electric field in the focus which in the case of a

vortex phase has its maximum in the center of the focus, causing the increased minimum seen

in the upper part of figure 2.11. Besides, even though the Vx component still has the shape

of a doughnut, it has lost its rotational symmetry forming the observed aberrations. From the

Figure 2.12: The calculated ratio of
|Ez|2/|Ex|2 as a function of NA, giving
an indication on the distortion caused by the
depolarization in the objective. The figure
has plotted results for three different values
of topological charge. As mentioned earlier,
we are only interested in a charge of ‘1’,
while other charges seem to behave similarly.
Image taken from Ganic et al. (2003) [15].

paper, it was observed that the Vz component has its intensity nearly completely centralized in

the center, while the Vx component still possess a nice center minimum. Therefore, the ratio

|Ez|2/|Ex|2 can give us some information on the quality of the minimum in the center, indirectly

quantifying the deviation from the ‘perfect’ doughnut shape. This ratio is plotted as a function

of NA in figure 2.12, taken from the same paper. Here, we indeed see an increase of the ratio

|Ez|2/|Ex|2 for larger NA. Interestingly, the ratio seems to be rather small for low NA (< 0.4)

but it rapidly increases after a NA of approximately 0.5, showing that the polarization will

have a large impact on the shape of the focus. Note that in these calculations, n was assumed

unity so that we get NA = sin θ. While the implication of figures 2.11 and 2.12 do not seem

very encouraging, it is still possible to obtain an undisturbed doughnut in the focus as similar

calculations have shown nice results in the case of circularly polarized light [17]. Figure 2.13,

shows these calculations. Here, it is also shown that the orientation of the circularly polarized

light is very important as it has to be the same as the orientation of the vortex phase: else the

results show a worse minimum than linearly polarized light, despite the nice angular symme-

try. In this case, it must be noted that instead of altering the direction of the polarization, it is
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Figure 2.13: The direction of the circular polarization compared to the direction of the vortex
phase has a big effect on the quality of the zero. Image taken from Hao et al. (2010) [17].

also possible to change the direction of the phase by changing the sign of the topological charge n.

To summarize, we expect polarization to play a big role in the shape of the doughnut for objec-

tive with a high Numerical Aperture. Since these doughnuts are utilized in STED microscopy,

practically all relevant experimental set-ups will contain these objectives, since they are neces-

sary to increase the resolution of the microscope. Therefore, for complete characterization, it is

important to take into account the polarization in the experiment.

2.5 Gerchberg-Saxton Algorithm

Lastly, to show a relevant application of Fourier Optics and to give more insight in the capabilities

of a SLM, we will now briefly discuss a famous algorithm which applies this theory. let’s say

we desire an intensity distribution I1(x, y) which is much more complex than, for example, a

doughnut and we wish to know if we there is a phase mask that will generate this shape if a

bundle of light is focused with this modulated phase. In this problem, the two electric field

amplitudes are known (the initial distribution |Eo| and the desired distribution |E1| =
√
I1), the

initial phase φo(ξ, η) is the to be determined variable (the phase mask) while φ(x, y) is a free

parameter because for now we are not interested in the phase at the focus, just the intensity. This

problem of finding φo(ξ, η) is known in literature as one variant of the phase-retrieval problem.

If we now assume the observation of the previous section regarding the Fourier relation between

the two planes to hold, we have the following relation between the parameters:

F
(
|Eo(ξ, η)|eiφo(ξ,η)

)
=
√
I1(x, y)eiφ1(x,y) (2.34)

From this point we will for clarity, where possible, not show the variables of the amplitude and

phase functions. The just described problem has been around for quite a while now and the most

famous approach was published in 1972 by R.W. Gerchberg en W.O. Saxton. They introduced

an iterative algorithm to recover φo for the given intensity pair Eo and E1. This algorithm is

now befittingly known as the Gerchberg-Saxton (GS) algorithm and it works a follows [18]:

• the algorithm starts by taking the of the complex electric field Eo = |Eo|eiφo which contains

the known source intensity
√
Io = |Eo| and a random φo.

• the (discrete) two dimensional Fourier transform of Eo is performed, resulting in E′1.
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• the phase of E′1, φ′1 is preserved, but the amplitude |E′1| is discarded and replaced with the

square root of the desired intensity I1, such that E′1 =
√
I1e

iφ1

• the inverse Fourier transform of E′1 is performed, obtaining E′o.

• finally, φ′o of E′o is preserved while the amplitude is now set to the square root of Io,

obtaining E = |Eo|eiφ
′
o which will be the input for the next cycle.

The idea is that |E′1| and |E1| will become more and more similar as more iterations are per-

formed, which will mean that φo is the desired phase mask. For clarity, a diagram of the GS

algorithm is shown in figure 2.14. Usually, the algorithm is stopped when the just mentioned

Figure 2.14: Diagram illustration the GS algorithm. Starting with the Fourier Transform of
the source intensity Is combined with a random phase φo, one discards the amplitude in the
Fourier Domain and replaces it with the desired amplitude |Ef |. Afterwards, the Inverse Fourier
Transform results in E′o from which the phase φ′o is used as the new input together with Is.

parameters differ less than a certain threshold δ:∑
|E′1| − |Ef | < δ (2.35)

As is indicated in the example of figure 2.14, the GS algorithm should be able to produce foci in

very unusual shapes like houses, faces, smiles, etc. which has found application in holography.

Conclusively, if we can control the phase of a bundle, the algorithm can make it possible to use

this to direct the shape of the beam in the focus. In this thesis, this will not be the focus of

experiment, but we will try to use the Gerchberg Saxton algorithm to modulate the focus to

arbitrary shapes and briefly report the results for further research.
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Chapter 3

Instrumentation

To characterize the doughnuts we have split the experiment roughly in of two parts: firstly,

we have continued previously performed research on the effects of the Spatial Light Modulator

on light [19]. Secondly, we have researched the shape of SLM-generated doughnuts in a STED

environment. Additionally, both parts have been researched using two different experimental

set-ups and (re)building the set-ups was a large part of this thesis. Additionally, we will discuss

some of the characteristics of the set-up like the effects of the spatial light modulator and give

details about the performed measurements.

3.1 SLM set-up

The first set-up was centered around the SLM, and images were made directly of the SLM-

modulated beam. Figure 3.1 shows the schematic outline of the set-up: an Omicron LuxX® 642

nm laser was used as a source of vertically polarized, coherent light. The radius of the beam

was expanded by a beam expander with a 50 µm pinhole in its focus, generating a clean Airy

Pattern which in laser physics is often approximated as a Gaussian Bundle. Then, the light falls

on the SLM where it is modulated. Afterwards, the modulated light passes through a series of

20 cm lenses set up to form a 4f correlator, which will be discussed shortly. Finally, the beam is

focused on a 1600x1200 pixel camera (Nikon Digital-Sight® 2MBWc, 1/1.8 inch, long axis: 7.2

mm) by a f = 40 cm lens. Importantly, because a lens is used to focus, we expect depolarization

effects to be negligible. This way, we should be able to observe purely the effects of the SLM on

the focus. This set-up was made for this thesis and no component was kept from the previous

experiment [19].

From figure 3.1, it is clear the SLM is tilted slightly. Initially, this was not the case such

that the modulated beam would travel back towards the laser. Because of this, a beam splitter

was placed in this path in order to reflect (part of) the modulated light. Theoretically, this is

a better way to set-up the SLM as currently light falls on the SLM at an angle which might

cause small aberrations. However, it was found that the initial geometry showed fringing in the

intensity pattern of the modulated light, possibly caused by interactions between the incoming
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Figure 3.1: Schematic of the SLM
setup: laser emitted light is ex-
panded and cleaned up by a beam
expander, before it falls on the SLM.
After the beam is modulated by the
SLM, it continues through a set of
lenses before being focused in a cam-
era, such that the shape of the beam
in focus can be determined.

and outgoing light at the surface of the beam splitter. Additionally, the SLM was controlled by

custom software written in LABVIEW. This software was partly rewritten as it contained some

bugs, superfluous code and was not always user-friendly.

3.1.1 The Spatial Light Modulator

The Spatial Light Modulator that we have used was a Hamamatsu Liquid Crystal on Silicon

(LCOS) SLM [20]. Its active area consisted of an LCD display containing 600x792 8-bit pixels

with a short axis of 7.5 mm. Every pixel could be given a digital value from 0 to 255 which

corresponds a phase delay it gives to the part of the light beam that falls on that particular

pixel, such that the SLM should be able to give, to an extend, any arbitrary phase pattern to

a beam of light. For example, one can generate a vortex phase by converting the values of the

phase mask of figure 2.9a to the corresponding pixel values of the SLM. A phase mask where the

phase values have been converted to the corresponding SLM pixel values is called a kinoform.

After the light has passed through the SLM, its path continues as if the light has been reflected.

If the SLM is connected to a computer, the PC would see it as an external monitor which made

it very easy to display kinoforms on the SLM display.

When using spatial light modulators of this type, a few things are important to note. Firstly,

the SLM will only effectively modulate light that is polarized in the direction of the orientation

of the liquid crystals which, for the SLM setup, meant light had to be polarized in the vertical

direction. Fortunately, this is the same polarization as the laser emits and no adjustments needed

to be made. Secondly, even if the light is correctly polarized, the SLM will not be 100% efficient

which means that part of the beam will remain its initial phase. This part of the beam we will

dub the ‘zero-th order’ or ‘reflected beam’ as this part of the bundle is simply reflected at the

SLM surface without modulation. The modulated beam we will call the ‘first-order’. Thirdly, the

pixel value that corresponds to a full 2π phase delay depends on the wavelength of the incident

light, as the SLM in question is able to modulate light in the wavelength interval of 620-1100 nm.

In the case of 642 nm, the 2π value was 127, which mend that the possible phase values given

at every pixel are nπ/127 with n an integer. Consequently, this means that at this wavelength

the precision by which the SLM can introduce phase at every pixel is reduced by a factor ‘2’ as

the maximum number of possible values the SLM can display was 255. This is a downside of the
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SLM: its window has a discrete grid and can only display distinct values and as a result the SLM

will always approximate theoretical kinoforms to a certain extend. This could cause problems in

certain situations.

Unsurprisingly, the fact that the SLM has such a control of phase, means it has far more capa-

bilities than just creating vortexes. As we have seen, Fourier Optics implies that, under certain

conditions, lenses can perform Fourier Transformations of the complex Electric Field at a par-

ticular wave front. On the other hand, we just described the SLM as controlling φ(ξ, η) and

we have already seen that in that case we might be able to modulate the beam completely by

displaying φ(ξ, η) resulting from the Gerchberg Saxton algorithm which mean we can, theoret-

ically, approximate any desired focus. Because of this, SLM’s like these and others have found

(possible future) applications in many area’s such as particle trapping [21], adaptive optics [22]

and holography [23].

3.1.2 The 4f correlator

As mentioned before, the two lenses with a focal length of 20 cm form a 4f correlator. The 4f

system is a widely used optical system, despite being a remarkably simple system; consisting

of two lenses of equal focal length f . These lenses are placed 2f apart, as can be seen in the

example of figure 3.2: if a wave front, in our case the SLM, is placed a distance f in front of one

lenses,

Figure 3.2: Schematic illustration of a 4f corre-
lator.

the lens will perform a Fourier Transform of

the wave front in the SLM plane, imaging it in

the focus. Afterwards, this image will again be

Fourier transformed, this time by the second

lens, recreating the wave front of the object

a distance f from the second lens. Now, the

fact that the wave front of the beam in front

of the 4f system is translated spatially, means

that any small aberrations like deviations from

the optical axis, are not present a that point.

Moreover, the 4f correlator makes it possible

place the wave front at the SLM ‘inside’ the objective lens by placing the lens a distance f from

the second lens. This way, the Fourier Transform of the wave front should be imaged in the

camera. Additionally, the mid-focus that appears between the two lenses makes it possible to

block out-of-focus elements of the beam. For these reasons, we decided to also use a 4f correlator

in the SLM set-up.

3.1.3 Beam modulation by the SLM

To gain more insight in the way a spatial light modulator modulates light beams and to take

the first steps in characterizing its effects, we will now discuss to types of modulation that are

very common. Firstly, it is possible for a SLM to change the beam direction. As a result the
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beam will have a focus that is tilted laterally compared to the reflected beam. To obtain a tilt

in, for example, the x̂-direction, the following phase modulation needs to be applied by the SLM

window:

δφ(x, y) = (2πna)x (3.1)

Which basically is a linear relation between x and δφ(x, y) Here, n is the variable used to control

the amount of tilt and a is a coefficient such that n corresponds to one δφ(d) = 2πn where d

is the SLM window size in the direction of x̂. This way n = 1 corresponds to a single 2π cycle

of phase shift between the two sides of the SLM. Figure 3.3a shows an example of a kinoform

with n = 8 which can be placed on the SLM. Additionally, figure 3.3b explains the effects of the

Figure 3.3: Two images clarifying how tilt is generated.

(a) phase mask that will cause a tilt
in the direction of the beam of light.

(b) Illustration of the effect of linear tilt on
the SLM. If points A and C are 2πn ‘out
of phase’, points A and B will form a new
wave front.

phase mask on the beam: a linearly increasing delay of phase results in a tilt of the wave front

of the modulated beam. Due to this tilt, the modulated beam diverges linearly from the zero-th

order after leaving the SLM. From the figure, it can be shown that the expected lateral shift δx

in the focus, in case of a 4f correlator, which puts the SLM wave front ‘inside’ the imaging lens,

should be the equal to:

δx = f · tan

(
arcsin

nλ

d

)
(3.2)

Where f is the focal length of the objective lens and λ equals the wavelength of the light. Since

λ is very small compared to d, equation 3.2 can be approximated by:

δx = n

(
fλ

d

)
(3.3)

Which means a linear relation can be expected between n and δx. This way the physical quantity

δx has been related to the controllable quantity n in the program. To confirm this, δx was

measured on the camera for increasing n and the results can be found in figure 3.4. Here, a

23



3.1. SLM SET-UP CHAPTER 3. INSTRUMENTATION

linear fit of the data is plotted in red. Besides the fit, equation 3.2 is shown (dashed), with the

earlier mentioned values for all the instrumental constants. During this measurement, we could

observe the effects of tilt on the camera where we estimate a typical error of ±0.03 mm. This

plot shows clearly that in this case, there is a good understanding of the effect of the SLM on

the beam shape. Interestingly, we could have also predicted the tilt using Fourier Optics. For

Figure 3.4: Figure showing the measured re-
lation between n and δx. The dashed black
line shows the linear fit of the data, while the
red line show the graph of equation 3.2

this purpose, it is important to focus for a moment on the meaning of the coordinates in eq.

2.11: in this integral, the two set of coordinates were x
λf ,

y
λf and ξ, η (for z = f). Since x, y are

spatial coordinates, the latter pair of coordinates has the have the dimensions of m−1 and which

is a frequency. In this case we interpret this as the frequency of the phase delay on the SLM

or φo. Following this, we can see the tilt phase mask as a sawtooth function, see fig 3.5a. The

Fourier Transform of this function is a series of equally spaced delta-functions with decreasing

amplitudes representing the frequencies. Then, the primarily frequency F of the phase mask

(a) (b)

Figure 3.5: The saw-
tooth function and its
Fourier Transform.

(the first harmonic) equals the number of sawtooths present per meter, or:

F =
n

d
(3.4)

Then, the distance δx from the zero-th order this frequency will exist, equals:

F =
n

d
=
δx

λf
→ δx = n

(
fλ

d

)
(3.5)

Which is the exact position as predicted using ray optics. This suggests that for every frequency

component in the phase mask, we expect an intensity spot in the focus. Finally, notice that the

way the frequency is defined, it can also be interpreted as the slope of φo/2π.
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Next, similar measurements were performed for the kinoform generating an axial shift (defo-

cus). In this case, the phase function is the shape of a two-dimensional, spherical parabola which

causes the beam either to diverge or to converge. As a result, the focus is shifted in the axial

direction. This time, the quantity n correspondents to the coëfficient in the parabola on the

SLM window:

δφ(x, y) = 2πn · a(x2 + y2) (3.6)

Notice that this follows directly from eq. 2.18. Here, a is again a pre-factor such that δφ = 2πn

at the short edge of the SLM display (x2 + y2 = 0.25d2). This means for a:

a =
4

d2
(3.7)

And, consequently:

δφ(x, y) =
8πn

d2
(x2 + y2) (3.8)

The result form the previously calculated phase shift introduced by a lens was (eq. 2.18):

δφ(x, y) =
π

λf
(x2 + y2) (3.9)

Comparing the two equations, can see n < 0 corresponds to a positive lens, such that the phase

delay decreases radially. With the relation between δφ and f , it is possible to determine fSLM,

the focal length of the SLM, when this phase mask is applied:

fSLM =
d2

8λn
(3.10)

Finally, figure 3.6 illustrates the effects of the kinoform on the position of the focus. Assuming

Figure 3.6: Illustration of the effect of a
quadratic phase function on the axial posi-
tion of the focus. In the case of a 4f correla-
tor, x = 0 as in that case, the SLM window
is imaged unto the objective lens.

the incident light is collimated and in the case of a 4f system, it can be shown using the lens

formula, that the axial displacement δz as a function of n equals:

δz =
1

1
f −

8λn
d2

− f (3.11)

Where f is the focal length of the imaging lens. This time, we have measured z = −(δz − f)

as a function of n and the results are shown in figure 3.7, showing good agreement with the

theoretical prediction. Here, the measurements were a little harder to perform as it was more
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Figure 3.7: Figure showing the results from
the measurements characterizing the effects
of a defocus phase mask on the lateral posi-
tion of the focus. Recall that f = 40 cm for
the SLM setup. Again, the dashed line shows
the predicted behaviour while the red line is
the fit of the data.

difficult to accurately measure the distance from the focus point to the imaging lens, which re-

sults in the larger error bars. Still, the measurements again seem to agree very well with the

predicted curve. To summarize, the models introduced in theory are capable to predict the ef-

fects on the beam for the more simple phase masks. While these observations might seem not

that useful, in fact they are quite significant if we wish to use the SLM for adaptive optics in

the future. For example, it is possible to use the defocus to correct the beam if the sample

is slightly out of focus. However, this means you need to be able to convert the n coefficient

in the program to a physical shift δz in the focus. By confirming the models, the relation be-

tween n and δz is determined which makes it possible to use the SLM for these simple corrections.

Finally, we wish to note that it is possible to generate multiple modulations for a spot by simply

summing over the individual phase masks. The kinoform K(ξ, η) that needs to be displayed on

the SLM to give the beam two or more phasemasks φn, is:

K(ξ, η) =
nmax

2π
· [

(
N∑
n=1

φ1(ξ, η)

)
mod 2π] (3.12)

where nmax is the value on the SLM LCD that corresponds to 2π. Additionally, in some ap-

plications, it is desired to obtain multiple, modulated beams. In this case, it can be shown

the required kinoform can be found by calculating the complex argument of the array of the

individual phase masks [24]:

K(ξ, η) =
nmax

2π
· [arg

(
N∑
n=1

Ane
iφn

)
mod 2π] (3.13)

Where An is the weight of every individual beam, meaning it should also be possible to control the

intensity for each beam. This ability could be particularly useful for trapping multiple particles

or for dumping intensity.
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3.2 STED set-up

If we wish to reliably characterize STED doughnuts generated by a SLM, it is important to

study them under relevant experimental conditions. For example, we have already discussed

that theory predicts the Numerical Aperture has a great effect on the doughnut shape in case of

linearly polarized light. Therefore, we have used an actual scanning microscopy set-up with the

goal to image fluorescent samples with a doughnut shaped focus, generated by the SLM. For con-

venience, we will dub this set-up as ‘STED set-up’ to distinguish it from the previously discussed

SLM setup. The STED set-up was an adaptation of a pre-existing set-up where we have made

some modifications. From the imaged convolution of the doughnuts with the beads, we should

be able to determine if we can predict the doughnut shape. Figure 3.8 shows the STED set-up,

which is necessarily more complex than the one used to simply image the focus directly. The

Figure 3.8: Schematic illustration of the set-up. The light emitted by the laser (488 nm) is again
expanded. Afterwards, a λ/2 wave-plate was used to rotate the polarization 90° such that the
it would match with the SLM LCD orientation. After modulation, the light is passed through
a 4f correlator which an iris in its focus to block the zero-th order. Then, the light would pass
through a λ/4 wave-plate if we wished to generate circularly polarized light. Subsequently, a
dichroic mirror would reflect the light towards the Nikon 60x, NA 1.2 water objective where
the light was focused on a sample placed on a computer controlled scanning stage. The signal
from the sample would be collected by the objective and travel through the dichroic, an optinal
linear polarizer and the long pass filter to be focused on a fiber which was connected to a Photo
Multiplier Tube, converting the light signal to an electrical signal. Eventually, this electric signal
was collected by a computer.

laser used was again an Omicron LuxX®, be it with a lower wavelength of 488 nm. To obtain a

larger beam the light emitted from the laser was passed through a beam expander with a pinhole

in the focus. Afterwards, the light would pass through a λ/2 wave-plate in order to rotate the
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polarization 90°. This way we obtained horizontally polarized light, such that it matched with

the SLM, a different Hamamatsu LCOS-SLM (400-700 nm) which was rotated 90° as well. This

was done as it was found that the earlier orientation did not preserve the polarization of the

beam, as we will show later. Here, it must be noted that for geometrical reasons, we have used

the SLM at an tilt (10°) larger than advised in the manual, which prescribed a maximum tilt of

5°. Fortunately, we initially did not observe any effects resulting from this tilt. As mentioned

before, the SLM has a limited efficiency resulting in the zero-th order beam. Hence, On the

SLM display, a tilt kinoform was used to separate the reflected and modulated beams. Then,

both beams pass through a 4f correlator which was aligned for the first order. Because an iris

was placed in the focus, the zero-th order is blocked. Afterwards, the remaining first order could

be made circularly polarized by a λ/4 wave-plate if desired. Regardless of the polarization, the

light would enter the objective after being reflected by a dichroic mirror. The objective used

was a Nikon 60x, 1.2 NA water immersion objective [25] with a back aperture of 1.0 cm. This

objective would focus the light on a fluorescent sample, placed on a stage which could perform

a XY scan, controlled by a computer. The objective would also collect the signal emitted by the

sample. The emission would subsequently pass through the diochroic and the long pass filter,

placed to block the fraction of the excitation light that was reflected from the sample. If desired,

a linear polarizer could be placed in front of the long pass filter. Then, the light was focused on

a pinhole mend to block environmental light and then coupled onto a fiber which transmitted

the signal to the Photo Multiplier Tube (PMT) which converted the signal to an electric signal.

Afterwards, this electric signal was amplified and sent to the computer where the images were

formed.

Finally, after the set-up was built, it was made operational which meant firstly that we con-

firmed that the stage was correctly controlled by the computer, as to make sure the XY scan

is performed properly. Secondly, the PMT was tested to see whether it converted the signal

correctly and that it was properly amplified. Here, it is crucial that the PMT is grounded as it

was found that this could generate very strong noise. Thirdly, the set-up had to be very precisely

aligned as the doughnuts were observed to be very prone to distortion.

3.2.1 SLM orientation

As we mentioned, we had rotated the SLM 90° for the STED setup, to prevent the SLM from

affecting the polarization of the light beam: according to the manual, a tilted SLM should be used

in combination with horizontally polarized light such that the polarization direction is parallel to

the plane of the tilt of the SLM. If this were not the case, it was observed that the polarization

of the light was effected. The polarization of the beam was determined by placing a rotatable

linear polarizer in the beam path while measuring the transmittance. In the case of perfectly

linear polarized light, we expect the linear polarizer to block all the light if its orientation is at

a 90° angle with the polarization of the beam. Figure 3.9 shows the scaled fits of the measured

intensities where the black line shows the measured intensity in front of the SLM while the dashed

line shows the measured intensity after the SLM. we indeed see the linear polarizer initially blocks
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Figure 3.9: Fits of the transmittance of light
as a function of the orientation of the linear
polarizer. The black line shows the fit from
the measurements before the SLM, while the
dashed line shows the data from after the
SLM. Clearly, after the SLM the light is ellip-
tically polarized and its direction was slightly
changed (the position of the maximum and
minimum is found at a different angle).

close to 100% of the light, confirming the light was linearly polarized. However, after the light

had passed through the SLM, the linear polarizer did no longer block all the light, indicating the

light was now elliptically polarized. Additionally, the angle at which maximum transmittance is

measured also changed, which means the polarization direction is influenced as well. If the SLM

is orientated as advised however, these effects were not observed and the polarizer was able to

block practically all the light (98.5% before vs. 98.3% after the SLM).

3.2.2 Sample

The sample that was used in the STED set-up consisted of Fluoresbite® Yellow Green Carboxy-

late Microspheres with a diameter of 0.2 µm, manufactured by Polysciences [26]. The excitation

spectrum of these beads do not reach maximum excitation efficiency at the wavelength of 488 nm

that we used, nor could we collect the signal where the emission has its maximum (484 nm) since

this is a lower wavelength than the excitation beam. However, we have used this sample anyway

because this was the type of microspheres that was available to us at the time the experiment

was performed. Moreover, the spectrum shows high emission from 484 nm to approximately 530

nm, meaning we will still collect enough signal even after the long-pass filter at 510 nm. The

size of the beads is in the order of magnitude of the expected microscope resolution such that

we expect to view the convolution of these beads with the focus.

3.2.3 Experimental details

In the experiment, we wished to image a number of beads using foci with both types of po-

larization. The images where made by scanning the sample through the focus with a pixel

dwell time of 1 ms and a pixel lag of 3.55 ms. Additionally, the highest available resolution of

the images was 400x400 pixels. To improve the execution speed of the experiment, we wished

to image multiple beads at a time. Unfortunately, this led to a problem because we observed

this required scanning regions of ∼ 15x15 µm, leading to a maximum pixel pitch of ∼ 40 nm.

However, we estimated that this would not be a high enough sample rate to accurately mea-

sure the small doughnuts. Consequently, we decided to lower the beam diameter to 0.44 cm

to reduce the effective NA, which increases the focus size according to eq. 2.6. Moreover, an

increased focus size reduces the the effects of the convolution with the beads. Still, this will
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also reduce the effects of polarization as these are most prominent for high NA. To illustrate

this, if we assume that the effective NA scales linearly with the beam radius, we will obtain

an effective NA 0.44 · 1.2 = 0.52 leaving us at a NA = sin θ of 0.44 in figure 2.12 where the

|Ez|2/|Ex|2 ratio is only ∼ 0.1. This means we would also predict an increase of the ratio of

the peak to the center of ∼ 0.1. Still, we were confident that this difference would be measurable.

The measurements were performed as follows, we would first image a number of beads with

both the focus spot as well as the doughnut, using circularly polarized light with the linear

polarizer not present. Afterwards, we would continue imaging with a linear polarizer placed in

front of the long pass filter as seen in figure 3.8. This way, by measuring in two perpendicular

directions, we could determine the polarization of the signal. After these images were made, we

would remove the quarter wave plate and repeat these steps with the linearly polarized light.

This way, we should be able to determine how the vortex phase influences the shape of the

focus, how polarization affects the focus shape and how polarization effects the polarization of

the signal. Note that this requires a large number of measurements per beads, and we noticed

significant bleaching during the measurements. Fortunately, even with the loss of signal we were

still able to perform all the measurement, but this does mean that we cannot properly compare

the intensities between the different measurements.

3.2.4 Doughnut model

To compare the shapes of the imaged beads to the theory and determine the quality of the

doughnuts, we also simulated the imaging of the beads with the focus. To accomplish this, we

first needed a model of the beam shape at the back aperture of the objective such that we can

calculate the spot shape using the diffraction integral. To estimate the beam shape, we need to

determine the intensity distribution of the beam at the back aperture. To achieve this, we recall

that after a pinhole, a beam of light forms a Airy Pattern. Consequently, after the first pinhole

shown in figure 3.8, the size of this pattern in front the 20 cm lens is predicted to be:

rAiry = 1.22
fλ

D
(3.14)

where f is in this case the focal length of the lens and D is pinhole diameter. Filling in f = 20

cm and D = 20 µm, gives a radius of the Airy Disc of 0.6 cm. Next, as we have mentioned

we used an iris to reduce the beam diameter to 0.44 cm, such that only the center part of this

beam was used. Conclusively, we estimated the beam to be a cutt-off Airy Disc with a radius of

0.44 cm. When we calculated the estimated beam shape, we found that the predicted doughnut

size will be slightly larger than it would have been in the case of an uniform bundle, as can be

seen in figure 3.10. In contrast, the height of the minimum does not differ significantly. After

calculating the focus size, we simulated how the beads are convolved using this focus. For this,

we simulated a convolution of the focus with the bead where we have used two models for the

bead: a box model and a spherical model. Firstly, for the box model we assumed that the signal

as a result of excitation, is the same everywhere on the bead. This is what we expect if the

fluorescent molecules are only present on the bead’s surface. In contrast, for the second model,
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(a) (b)

Figure 3.10: Diagrams of the predicted donut profiles in case of an uniform (dashed) and
Gaussian (solid) bundle. Figure a shows the expected focus profile while the graph in figure b
shows the convolution with a 200 nm bead, where the spherical model of the bead was used.

Figure 3.11: Diagram of the predicted convo-
lution profiles in case of a spherical- (dashed)
and the box bead model (solid). The two pro-
files only differ significantly in the center of
the doughnut.

we assumed that the signal increases gradually (as a sphere) when approaching the center of the

bead meaning that here, we simulate the molecules being present in the entire body of the bead.

Figure 3.11 shows the results of the convolution for both models with the previously discussed

expected doughnut profile. Here, we see that the shape of both convolutions are mostly very

similar but that the height of the expected minima depend greatly on the chosen model. For the

sample we have used, we expect the box model to be more closely resembling the beads. These

simulations we will use to characterize the measurements where we will specifically look at: the

predicted doughnut size and shape compared to the spot size and the intensity in the minimum.

Additionally, we will determine and how these criteria are affected by the polarization of the

beam.
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Chapter 4

Results

We have split the results in two parts: first, we show the results of beam modulation by the

SLM, indicating what is possible in terms of beam shaping and giving a starting point for more

complex modulation. Second, we show the results obtained from the STED set-up where we

have imaged the 0.2 µm beads.

4.1 Beam modulation

We start by showing the images obtained from the camera when a vortex phase kinoform was

applied on the SLM. These results will be presented mostly qualitatively because they primarily

serve to demonstrate control over the SLM. First, figure 4.1 shows both the reflected- and mod-

ulated beam where we have separated the two beams by also displaying a tilt kinoform on the

SLM window. From the image, we derived a modulation efficiency of 88% which is very good

Figure 4.1: Image of the zero-th
and first order beams, captured by
the camera. The modulation effi-
ciency was determined to be 88%.

given the estimate of the manufacturer of an average efficiency of 82%, indicating that the SLM

is a little more efficient at the used wavelength. From the image, the modulated beam seems to

have a nice shape comparable to figure 2.11. Additionally, figure 4.2 shows a linear profile of the

doughnut of figure 4.1. The profile comfirms that this a very symmetric doughnut with a nice

minimum. However, the minimum is not precisely zero, as there was a residual intensity present

of 6% of the peak intensity. This is most likely caused by the fact that the measured signal at each

pixel originates from the entire area of this pixel, increasing the minimum. Still, it must be con-

firmed for the final experiments that the minimum is indeed very close to zero as it will obviously
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Figure 4.2: Image of the linear profile of the
first order, captured by the camera. The cen-
ter still has an intensity of 6% of the peak
intensity.

have an influence on the measurements and our model assumes no residual intensity in the center.

Next, we wished to comfirm eq. 3.13 and generate multiple foci on the SLM. Figure 4.3a indeed

shows two doughnuts which were created using this method. Both doughnuts were observed to

be similar regarding size and shape. Moreover, it is possible to vary An between foci as can be

seen in figure 4.3b where the lower doughnut contains four times the power of the upper one (we

have enhanced the brightness to increase the visibility the upper doughnut). Unfortunately, the

creation of multiple foci also increases the presence of the so-called ghost spots, one of which can

be seen in the top of figure 4.3a where we note that we have increased the brightness of the ghost

spots to improve their visibility. These spots arise because the SLM can only modulate phase and

(a) (b)

Figure 4.3: Two images showing that the SLM is able to generate multiple foci as well as control
their relative intensity. Fig. a shows that the slm can generate multiple foci. Fig. b shows that
it is possible to control the relative intensity of these foci, with the lower focus containing 4 times
the power of the upper focus. In fig. a, the existence of ghost spots is also apparent.

not intensity such that it is not always able to completely generate the desired intensity distri-

bution in the focus. Not surprisingly, these ghost spots can cause problems if they, for example,

unintentionally trap particles during an experiment. Figure 4.4a shows an even better example
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with three doughnuts, where the ghost spots actually overlap with the modulated beams, which

would be a big issue(See figure 4.4b for the same image with enhanced contrast). Fortunately, a

workable solution was found by correction the kinoform K(ξ, η), obtaining Kcorr(ξ, η) [24] [27]:

Kcorr(ξ, η) =
nmax

2π
· [

∣∣∣∣∣
N∑
n=1

Ane
iφn(ξ,η)

∣∣∣∣∣
2( N∑

n=1

Ane
iφn(ξ,η)

)
mod 2π] (4.1)

This way, evey component of the combined phase mask is first multiplied by the absolute value of

the complex addition of the individual phase masks. The result of this modification can be found

in figure 4.4c: the new kinoform has reduced the modulation of the ghost spots, putting them

towards the first order and removing their doughnut shape. Moreover, while the modulation

efficiency was observed to be lower, the shape of the three doughnuts has remained intact.

(a) (b)

(c)

Figure 4.4: Images illustrating the effect of the ghost spot suppression from equation 4.1. Fig. a
and b show the initial three modulated doughnut spots with the ghost spots existing partially in
between these beams, disrupting the quality (fig. b is the same image with enhanced contrast).
Next, fig. 4.4c shows the same modulation with the suppression of the ghosts spots, placing
them towards the zero-th order and reducing their intensity.
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4.1.1 Gerchberg-Saxton Algorithm

To further test the capabilities of the SLM, we have implemented the Gerchberg-Saxton algorithm

to generate a very unusual intensity distribution in the focus; a house including a window and

a door, all desired to have the same intensity. As source intensity, we approximated the beam

profile as a Gaussian and we used a random initial phase φo. In this experiment, we have not

used a threshold δ, since we found that the algorithm did not improve the focus quality after

30 iterations. To illustrate this, figure 4.5a shows the result from 30 iterations while figure b

has had 60. Apparently, these extra 30 iterations do not seem to have brought any noteworthy

improvements. To confirm this, an attempt was made to quantify the quality of the patterns.

This was done by measuring the variance of the intensity in an area of the image. By dividing

the variance by the mean intensity of the area, we could say something about the quality of the

focus as we desired an uniform intensity. This method is by no means perfect, but at least gives

us a quantitative result. For 30 iterations, this ratio was found to be 0.55 while 60 iterations

gave a ratio of 0.59. In both cases, this indicates that the profile fluctuates rather significantly

but that after 30 iterations no further improvement comes from the extra iterations. In this case,

the quality was actually worse. From the images, these fluctuations are visible as distortions and

(a) (b)

Figure 4.5: Two images showing the results of Gerchberg Saxton algorithm. Fig. 4.5a has had
the algorithm do 30 iterations, while fig. 4.5b has had 60. Image size is 7.18x5.32 mm (the size
of the camera sensor).

speckles with 100% contrast. In the future, if we wish to create distributions where the quality

is very important (arrays of STED doughnuts, for example), these speckles are a major concern.

Additionally, these speckles were seen regardless which shape we tried to generate. Since this is

not the primarily subject of this thesis, we will only discuss the possible sources of these speckles

(and their possible solutions) shortly. To start, one aspect we noticed was the large effect of

the approximation of the source intensity, as can be seen in figure 4.6. Here, from figure 4.6a to

figure 4.6d gradually increased the radius of the estimated source intensity from 0.5x, 0.75x, 1.0x

the standard deviation of the actual Gaussian profile to a perfectly uniform bundle (the actual

source intensity remained constant). From these images, the results are observed to improve
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when the estimated source intensity is closer to the actual value while the result generated with

the completely uniform bundle shows again more distortion. On the other hand, the result

from figure 4.6a seems to posses some nice profiles at certain points, but appears blurred and

incomplete on others. These findings are confirmed by the measured ratio of the variance of the

intensity divided by its mean, visible in table 4.1. Interestingly, when the calculated phase masks

Ratio intensity variance/mean

0.5 SD 0.88
0.75 SD 0.55
1.0 SD 0.47
uniform 0.68

Table 4.1: Table indication the fluctuations in the pattern depending on the estimated initial
intensity distribution. Lower values mean less flunctuations.

were Fourier transformed, it was found that the best results are obtained if the phase mask is

combined with an uniform bundle, even if the algorithm had assumed a non-uniform bundle. we

might explain this by understanding that no matter what the algorithm does, an uniform bundle

fully utilizes the SLM display such that every component the kinoform is equally represented.

However, in the case of a Gaussian bundle, the kinoform components on the outer part of the

SLM window are not fully present in the focus. Therefore, we suggest to use a large top-hat beam

to improve the modulation of the light. Moreover we must realize that the displayed kinoforms

are discrete and necessarily do not contain the all information. Unfortunately, we do not expect

these observations to fully solve the speckle problem: the source of these speckles most likely lies

in the fact that we can only control the phase of the light and not the intensity. As a result, the

phase distribution causes interference resulting in dark speckles similar to the manner we create

the minimum for the doughnuts. These complex distribution can only be accurately obtained

if both phase and amplitude are controlled, such that we have approximately an uniform phase

in the focus. Currently, multiple methods have already been proposed to achieve this, either by

using one or two SLM’s to control the phase in both planes, using superpixels [28], smoothing

constraints [29],or by spatially averaging multiple kinoforms [30]. However, these methods are

quite complex and beyond the scope of this research. Here, our goal was to achieve good control

over the SLM and understand how it modulates light. Now that we have established this, we

will continue to the results of the doughnut analysis.
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(a) (b)

(c) (d)

Figure 4.6: Results from the Gerchberg-Saxton algorithm where the initial intensity was esti-
mated to be a Gaussian with: 0.5SD (a), 0.75SD (b) and 1.0SD (c) where SD is the actual
measured standard deviation of the beam. Figure 4.6d is the result where an uniform intensity
was estimated. Image size is 7.18x5.32 mm.
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4.2 Doughnut Analysis

Before we imaged the beads with the STED set-up, we had imaged the reflection of the doughnut

by temporarily removing the fiber (coupler) and placing a camera in the focus of the 15 cm lens

(see figure 3.8). A result can be seen in figure 4.7. From this, we established that the center of

the doughnut had a nice zero and possessed good symmetry. Next, the results from the STED

Figure 4.7: Image of the doughnut on
the camera placed in the focus of the 15
cm lens seen in figure 3.8, after it has
passed through the objective where it
was reflected. The measured intensity
in the center is zero. The distortions
seen on the image originates from dust
on the camera sensor.

set-up were obtained from the sample in three scanning sessions where a total 13 beads were

imaged thoroughly (4, 6 and 3 beads for each session respectively). The beads were imaged with

a sample rate of one pixel every 50 nm for the first and the third sessions while a rate of one

pixel every 75 nm was used for the second session. This was the case, because we imaged a larger

area where this was the maximum obtainable pixel pitch (see the front of the thesis for an image

of the second session). Firstly, figure 4.8 shows both ‘wide-field’- and closeup images of the four

beads from the first session. Here, sub-figures 4.8a and 4.8c were created with an uniform phase,

showing regular convolution spots. In contrast, figures 4.8c and 4.8d show the same beads now

imaged with the vortex phase kinoform displayed on the SLM window. In both cases, the light

was circularly polarized, which predicted the best doughnut shapes.

4.2.1 Doughnut size

For the quantitative analysis, we first determined the size of the beads in the images. This way, we

can verify that these beads were imaged in focus and confirm whether our theoretical predictions

of the bead size is correct. In order to determine the size of the beads, radial profile plots of the

beads were made in ImageJ [31], using a custom plugin called ‘Radial Profile Plot’ [32]. These

profiles were obtained by averaging the measured intensity at increasing radii from the center of

the bead:

Iavg(r) =
1

2πr

2π∑
θ=0

I(θ, r) (4.2)

This way, angular asymmetries were averaged out leaving better profiles. However, the averaging

over discrete pixels and possible mistakes in pinpointing the center of the bead can result in errors

in the profiles. Still, this method was found to be more reliable than traditional cross section
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(a) (b)

(c) (d)

Figure 4.8: Images of the 200 nm fluorescent beads with, made with both an Airy Disc (a & c)
and a doughnut shaped focus (b & d). b & d are closeups of the lower left corners of image a &
c. In all cases, the focused light was circularly polarized.
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line profiles as the radial profiles provided very similar profiles for all the beads. Initially, when

the obtained profiles were compared to the theoretical predictions, it was observed that all the

measured spots were approximately 11% smaller than the predicted radius. To explain this, we

need to take several things into account.

• The discrepancy cannot be explained by suggesting the images were taken out of focus,

since this would have increased the measured radius.

• Possible mistakes in the estimated beam shape (Gaussian vs. Uniform) in the back aperture

cannot explain an error of this magnitude, as can be seen in figure 3.10 where the peak to

peak distances differ only 3%.

• The discrepancy was present in the line profiles as well, which means that it can not have

been an error in the radial profiles it.

Consequently, we suspect that the calculation of the effective NA is not valid, which may be

because the approximation of eq. 2.5 does not hold in this case, which is sometimes suggested

in literature [33] but also rejected [14]. Therefore, future research will be required to establish

the true relation between NA and beam radius. Fortunately, in this experiment, we were mostly

interested the effect of the vortex phase mask on the beam, meaning we only wish to know how

the beam profile is changed compared to the initial focus spot. Therefore, we decided that it is

reasonable to correct the theoretical prediction of the spot size to fit experiment, which resulted

in the figure 4.9. we did this by increasing the effective Numerical Aperture with 11%. Here, the

black line shows the corrected model while the coloured lines shows cross sections of the spots

seen in figure 4.8c. With the corrected model established, figure 4.10a again shows in black the

Figure 4.9: Figure showing the cross sections
of the spots shown in figure 4.8c and the cor-
rected fit which predicts the shape. The line
profile is shown, rather than the radial profile
because the line profile has a better defined
x−axis.

(corrected) theoretical model compared to the measured radial profiles of the four beads seen

in figure 4.8c where the intensity is scaled to 1.0 for r = 0. Clearly, with the correction there

is an acceptable agreement between data and theory. More importantly, figure 4.10b shows the

radial profile plots of the doughnuts where the intensities are scaled by measured intensities of

the spots. Here, the same correction was used as for the spots. From this image, again it can be

observed that the theoretical model agrees quite well with the measured size of the doughnut.

Note, that in figure 4.10b the height of the model was fitted to the data as bleaching has reduced
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(a) (b)

Figure 4.10: Figures showing the radial profiles (coloured) of both the spots (fig. 4.8c and the
doughnuts (fig. 4.8d) compared to the model laid out in this thesis (black). Note that the
intensity of model is fitted to the measured profiles to counter the effects of bleaching. Also,
the green profile represent is the upper bead which was only partly imaged, which might explain
why a deviation from the norm.

the intensity measured. At first sight, it seems that if the spot size is known, our current model

can quite accurately predict the shape of the doughnut. Still, the measured profiles seem to

deviate slightly near the edges of the foci. This phenomenon we cannot explain, but as we will

see they are, to a lesser extent, also present in the linear profiles as well (for example the blue

profile in figure 4.13a). To get better insight in the size of the beads compared to the model,

the peak of the radial profiles were fitted with a parabola and the position of the maximum was

determined. Then, these results were used to get an approximation of the Peak-Peak distance

of every doughnut. The results can be seen in table 4.2 for beads imaged with both circularly-

and linearly polarized light. From the new model, the predicted Peak-Peak distance is 0.68 µm,

which is in good agreement with the measured P-P distances for the circularly polarized foci.

Interestingly, the fits of the beads illuminated with linear polarized show slightly but significantly

smaller P-P distances. A possible explanation for this will follow later.

4.2.2 Center minimum

Next, we wish to verify the predicted effects of polarization on the shape of the doughnut. First,

figure 4.11 shows three beads (11, 12 & 13) imaged both with linearly and circularly polarized

light. From these images, it is already clear that the intensity in the center is much less in the

case of circularly polarized light. This is even more clear from figure 4.12 which shows the vertical

line profiles of both sets of doughnuts. Here, figure 4.12b shows a much worse minimum than

figure 4.12a. Again, the black line gives the predicted doughnut shape and size of the corrected

model. To quantify these findings, we determined the ratio between the maximum intensity and

minimum intensity for every bead imaged both by linearly- and circularly polarized doughnut.

The maximum intensity was taken from the radial profiles, such that it the maximum was an

average over all angles. Subsequently, the minimum was found by averaging the found minima
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P-P circular P-P linear
(µm) (µm)

Bead 1 0.66 0.65
Bead 2 0.66 0.65
Bead 3 0.67 0.65
Bead 4 0.63 0.65

Bead 5 0.67 0.61
Bead 6 0.68 0.64
Bead 7 0.68 0.62
Bead 8 0.66 0.61
Bead 9 0.67 0.64
Bead 10 0.69 0.62

Bead 11 0.66 0.64
Bead 12 0.68 0.65
Bead 13 0.68 0.64

Average 0.67±0.01 0.64±0.02

Table 4.2: The measured P-P distance for every bead measured both with linearly- and circularly
polarized light. The errors shown in the average are standard deviations showing the spread of
the measured quantity among all the beads.

(a) (b)

Figure 4.11: Two images of beads of the third session; fig. 4.11a was imaged with circularly
polarized doughnuts, while fig. 4.11b shows the resulting image of linearly polarized light.

of both the vertical and horizontal linear profiles of each bead. The results are found in table

4.3. Now, the predicted min/max ratio for the corrected model was found to be 0.085. If the

measured ratio is compared to the predicted ratio, we see that overall, the measured ratio is

significantly higher than predicted. However, this is to be expected since the measured minima

are actually summed intensity originating from at least 50x50 nm area (one pixel). Furthermore,

since the scanning is done in discrete steps of at least 50 nm it is very likely that during a scan,
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(a) (b)

Figure 4.12: Figures showing the linear profiles (coloured) of both the circularly (fig. 4.11a) and
horizontally (fig. 4.11b) polarized light compared to the model laid out in this thesis (black).

the minimum of the focus never falls exactly on the center of a bead. As a result, the average

will always lie slightly higher than the predicted minimum. In contrast, with these things in

mind, all the beads do posses very similar ratio’s, increasing our confidence in the measurements

(note that the pixel size of beads 5-10 was different). Additionally, despite the resolution limits

it can be clearly determined that ratio of the minima and maxima was consistently worse in

the case of linearly polarized light, as theoretically predicted. To recall, in the case of linearly

polarized light, we expected the intensity in the minimum to increase approximately by 0.1 the

peak intensity which, compared to the measured averaged increase of 0.12, suggests that even

the amount of increase agrees quite well with theoretical predictions. In fact, we probably had

a higher effective NA due to the earlier discussed discrepancy in the size of the spots, which

would have brought the predicted increase even closer to the measured one. However, it must

be noted that the results in table 4.3 seem to suggest that the image resolution has had a large

effect on the measurements as beads 5-10 show significantly higher ratio and a higher increase,

which means we cannot boldly state to have observed precisely the predicted increase. Still, we

can certainly conclude that linear polarized light produces a worse minimum.

4.2.3 Polarization effects on the focus shape

A bigger challenge than the previously discussed would be to see if we can also observe the

expected increase in asymmetry in the case of linearly polarized light. As discussed earlier, we

expect an increase in the intensity in the direction perpendicular to the polarization direction

which in our case, is the direction of y−axis. Firstly, we must note that the doughnuts were

not totally symmetrical in the case of circularly polarized light, as can be seen from figure 4.13a

which shows the average of the horizontal (red) and vertical (blue) line profiles of the beads

from figure 4.8. Apparently, the doughnuts possessed a higher average intensity in the horizontal

direction as well as an asymmetry. Regardless, we can still determine any possible effects of the

polarization by comparing the profiles. Interestingly, the expected increase of the intensity in

the vertical direction should in our case, partially cancel the initial aberation leaving a more
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center/peak circular center/peak linear Increase
(%)

Bead 1 0.15 0.26 72
Bead 2 0.09 0.22 157
Bead 3 0.17 0.24 44

Bead 5* 0.16 0.37 127
Bead 6* 0.17 0.37 115
Bead 7* 0.20 0.43 115
Bead 8* 0.21 0.45 110
Bead 9* 0.20 0.41 111
Bead 10* 0.16 0.35 115

Bead 11 0.14 0.24 64
Bead 12 0.17 0.31 80
Bead 13 0.13 0.30 141

Average 0.14±0.03 0.26±0.03 86±6

Table 4.3: The measured ratio’s between the maxima and minima for each bead. The results
from beads 5-10 were not used for the average, as the data is apparently influenced by the lower
sample rate.

(a) (b)

Figure 4.13: Images comparing the averaged vertical and horizontal line profiles for both polar-
izations for the first scanning session. Fig. a shows the results for the circularly polarization
with in red, the horizontal- and in blue the vertical profile. Next, fig. b shows the results from
linearly polarized light.

symmetrical doughnut. Indeed, if we look closely at figure 4.13b we see the horizontal profile

is reduced compared the vertical profile, albeit slightly. Table 4.4 shows the measured ratio of

the horizontal maximum to the vertical profiles, confirming the initial asymmetry as all beads

posses higher maxima in the horizontal direction. Indeed, in the case of linear polarized light,

we see a reduction of this ratio, implying that the maxima in the direction perpendicular to

the polarization direction have indeed increased. Additionally, as we have already observed, we

can see in figure 4.13 that the size of the bead is slightly decreased in the case linear polarized
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light. More precisely, it seems the radius of the bead in the vertical direction is smaller. If we

again look back at figure 2.11, this is indeed what we expect. This might explain why we earlier

observed that the radial profiles of in the case the linear polarization were slightly smaller.

Table 4.4: Table showing the ratio of the peak intensities for both types of polarization.

horizontal/vertical circular horizontal/vertical linear linear/circular

Bead 1 1.13 1.06 0.93
Bead 2 1.18 1.07 0.91
Bead 3 1.12 1.04 0.93

Bead 5 1.23 1.07 0.87
Bead 6 1.11 1.01 0.91
Bead 7 1.20 1.11 0.93
Bead 8 1.16 1.04 0.90
Bead 9 1.23 1.12 0.91
Bead 10 1.18 1.10 0.94

Bead 11 1.14 1.04 0.92
Bead 12 1.11 1.06 0.96
Bead 13 1.13 1.05 0.93

Average 1.135±0.023 1.053±0.012 0.93±0.016

4.2.4 Polarization of the emission

Finally, we will discuss the measured polarization of the fluorescent signal. Figure 4.14 shows

two of these images where we compare the doughnut shape for both polarization directions.

Apparently, both images show some distortion of the doughnut, most likely caused by the addition

of the polarizer which must have shifted the beam slightly. Still, the images are very similar

indicating that the polarization of the emission is independent of the excitation. Furthermore,

rotating the linear polarizer did change the distortion but it did not introduce a noticeable

difference between the two polarization directions. Additionally, we also did not observe an

intensity dependence on the orientations of the linear polarizer, leading us to suspect that the

emission is not polarized, independent of the polarization of the excitation .
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(a) (b)

Figure 4.14: Two images showing the signal retrieved with a linear polarizer placed in the
emission path. Fig. a shows the results for circularly polarized light, while fig. b shows the same
beads imaged with linearly polarized light.
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Discussion & Outlook

Firstly, we can confirm that phase-only LCOS SLM’s are a viable and flexible option for beam

modulation and STED doughnut generation as these devices have shown efficient and accurate

beam modulation while also being very user-friendly. Besides, the effects of these SLM’s in the

case of simple kinoforms is predictable, increasing the usability. The biggest problem with these

devices have been the reported ghost spots which can, in many situations, be a major problem.

However, in the case of microscopy where only a separation from the non-modulated beam is

desired these unwanted spots are easily blocked with a mid-focus. Moreover, we have already

shown one method that can help reducing the problems caused by the presence of these ghost

spots.

If we look at the quality of the doughnut-shape foci in the STED environment, we have seen

that the doughnuts posses an acceptable center minimum and posses a nice, symmetrical shape,

indicating that the SLM was very capable of generating the doughnuts. Still, one significant aber-

ration was observed in the form of an increased intensity positioned on the ring of the doughnut.

We think this aberration might have been caused by the fact that the angle of the SLM was

bigger than advised. This may have resulted in the asymmetry in the focus shape. Therefore,

we would advice to design a future set-up where the angle of incidence of the light on the SLM

display is sufficiently small (< 5°). Also, we were unable to obtain fully circularly polarized light

with the used λ/4 wave plate where we could measure a horizontal/vertical polarization ratio of

1.16 where the desired ratio is 1.0. If a better wave plate is used, preferably one manufactured

specifically for the used wavelength, more accurate results could be obtained.

In the experiment, we have indeed observed the expected polarization effects both qualitatively

and quantitatively. We can conclude that linearly polarized light is not desired for good quality

STED, as we have seen that linearly polarized light has an increased center intensity even in the

case of a relatively low effective Numerical Aperture. Furthermore, the model used to describe

the focus shape showed good agreement with experiment.
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Still, we were not able to fully quantify and therefore confirm the exact effects from polarization

as the measurements were not precise enough. Therefore, more research will be needed: first,

because we have not been able to fully predict the effect of the beam radius on the focus size,

we suggest to first device an experiment where this relationship is measured, for one or more

objectives. In fact, after this experiment one should be able to quantify the effects of NA on the

deformation of the doughnut in the case of linear polarized light and see if this confirms simula-

tions. Furthermore, if the polarization effect are to be made more quantitative, we would advise

to use a smaller sample and a higher NA to increase possible polarization effects. However, this

will reduce the focus size significantly increasing the difficulty of the experiment. Moreover, this

will require a much higher sample rate as well, because this is necessary for a more accurate

analysis of the beam shape and the center intensity. To partly counter the need for a higher

sample rate, one could use light of a higher wavelength, as this will again increase the focus size.

Additionally, the size of the SLM window limits the maximum beam radius one can use unless an

extra beam expander is used after the SLM. Finally, it might also be interesting to measure the

focus shape with the wrong circular polarization direction to see how this affects the doughnut

shape. This is interesting, because others have shown that the current simulations might not

give accurate predictions [14].

Hopefully, with the foreknowledge of this thesis and the experimental set-up in place, future

experiments can consist of detailed quantitative measurements of the shape of the foci, with the

potential of greatly helping future STED experiments.
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