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Convention

The following notational convention will be used throughout the paper:

- a, b, c, d, e, . . . for event variables

- p, q, r, s, . . . for propositional variables

- t1, t2, t3, t4, . . . for timepoints

- π1, π2, π3, π4, . . . for periods

- A,B,C,D, . . . for sets

- P,Q,R, S, . . . for predicates of arbitrary arity

- A, T ,F ,G, . . . for functions

Indices will be skipped whenever they won’t be needed. Any deviations from this con-

vention will be explicitly stated. The arrow “⇒” is used for entailment, “→” for material

implication.

Let (A,B) where: A - is a non-empty set (domain), B - is a set of n-ary relations, be

a relational structure. I.e. a structure in which there is a set of some entities (called

a domain) and a set of relations defined over the domain. Relation R in a relational

structure (A,B) is:

asymmetric iff ∀a, b ∈ A[R(a, b)→ ¬R(b, a)]

antisymmetric iff ∀a, b ∈ A[(R(a, b) ∧R(b, a))→ b = a]

intransitive iff ∀a, b, c ∈ A[(R(a, b) ∧R(b, c))→ ¬R(a, c)]1

1This property is sometimes called antitransitivity.
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Chapter 1

Introduction

When I say “I have a red umbrella” it follows that I have an umbrella. But somehow,

saying “I do not have a red umbrella” does not entail that I do not possess any umbrella

at all. For some, this might be peculiar enough, but it gets worse when we consider a

sentence: “I don’t have an umbrella”. At this point, beside being fed up with umbrella

sentences, the reader might be sure that I do not posses a red umbrella.

We can infer all these sentences from the other sentences, because there is a particular

connection between information conveyed in language and reasoning. On the semantic

level this connection is called entailment. Since entailment is one of the most promi-

nent mechanism in language inferences, it is important to understand how and why the

aforementioned inferences are valid. These phenomena can be analysed by considering

monotonicity properties of natural language inferences. At least since Ladusaw [1980]

and Fauconnier [1975] it is believed that these properties can tell us a lot about an

interesting class of natural language operators.

Probably most natural language operators are monotone.1 This means that they are

either monotone increasing (upward entailing (UE)), or monotone decreasing (downward

entailing (DE)). The former usually means that they preserve entailment. Inferences

licensed by these operators are inferences from subsets to supersets. More generally they

preserve structure of some sort. Formally: let Q be an arbitrary operator, and let p, q

be propositions. Then, Q is UE iff:

∀p, q[(p 1 q)→ (Q(p) 2 Q(q))]

1Compare [Barwise and Cooper, 1981, p. 187]. In Universal 6 they propose: “The simple NP’s of
any natural language express monotone quantifiers or conjunctions of monotone quantifiers.”

1
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Where 1,2 are given relations. In natural language analysis the interesting case is when

 2 is entailment. The  1 can be defined in various ways, as will be done below. E.g.

a determiner some is monotone increasing in its right argument because:

(1.1) Some elephants walk fast. ⇒ Some elephants walk.

On the other hand, monotone decreasing or downward entailing (DE) operators reverse

the order of entailment, or more generally, reverse given structure. Inferences triggered

by these operators are inferences from supersets to subsets. Formally: let P be an

arbitrary operator, and let p, q be propositions. Then, P is DE iff:

∀p, q[(p 1 q)→ (P(q) 2 P(p))]

Where  1,2 as above.

Negation is well known for reversing the order of entailment. E.g. a determiner no is

monotone decreasing because:

(1.2) No elephants walk. ⇒ No elephants walk fast.

An important of feature of Ladusaw’s work, was the idea that, particular linguistic items

(so called negative polarity items, NPIs for short) could only be licensed in DE contexts.

A classic example is the expression to lift a finger. It can be properly used only within

a negative context as in 1.3, but not in a positive context as in 1.4:

(1.3) She didn’t lift a finger to help him.

(1.4) *She lifted a finger to help him.

Ladusaw claimed that polarity licensing depends on a derived logical meaning of a sen-

tence. This is interesting, because it gives a clear example of a phenomenon primarily

embedded in the semantics, and as such gives a strong argument why do we need seman-

tic representation.2 To sum up this short introduction into the concept of monotonicity,

we should also remark that there exist functors which are neither UE, nor DE. These

are called non-monotone.

The crucial thing to note here is that humans make inferences based on monotonicity

automatically, without any difficulties, usually barely thinking about it. This is not the

2See Israel [2004] for a critical review.
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case with computers. As presented below, a lot of effort is put into so-called entailment

recognition, but this rarely concerns monotonicity properties.

In 2004 a generic task called Textual Entailment Recognition (RTE) was proposed (Da-

gan and Glickman [2004]). The definition of the task is reminiscent of entailment but

only to some extent.

Definition 1.1. Textual entailment is defined as a directional relationship between pairs

of text expressions, denoted by T (the entailing “Text”) and H (the entailed “Hypoth-

esis”). We say that T entails H if human reading would typically infer that H is most

likely true. [Dagan et al., 2013, p. 3]

The task was meant to establish a framework which could unify most of the research

done in connection with semantic inferences (such as: question answering, information

retrieval, summarising, etc.). Until now, there were seven RTE-challenges, and the

amount itself should be enough to show that the task is not easy. In the last challenge to

date, the main task was to recognise textual entailment within a given corpus. Averages

of the best system were: precision = 46.96 %, recall = 49.08 %, F-measure = 48 %.3

Due to the lack of space, and the complicated nature of the task, reader is welcomed to

see Bentivogli et al. [2011] for details.

Systematic understanding of entailment reversal could be very helpful in such tasks as

mentioned above. For example, many of the systems employed in the RTE field use

databases such as WordNet.4 WordNet marks many semantic relations between the

items it contains. Even though researchers try to exploit these relations in entailment

recognition, sometimes it is not possible without paying attention to the monotonicity

of the inference. E.g. hyponymy (cat is a hyponym of pet) preserves entailment in

monotone increasing contexts, but not in the monotone decreasing ones. Compare:

(1.5) I have a cat. ⇒ I have a pet.

(1.6) I don’t have a cat. 6⇒ I don’t have a pet.

This can lead to errors, since, as can be read in Dagan et al., p. 126:

[...] robust recognition of the monotonicity direction still seems beyond state

of the art in most applied systems. Thus, in practice, systems generally

assume the upward monotonicity case, which is by far more frequent.

3Precision is the proportion of the retrieved cases that are relevant, recall is the fraction of relevant
instances that are retrieved, and F-measure is a harmonic mean of these two.

4See Miller [1995] for an overview.
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The aforementioned shows that recognition of monotonicity properties would be very

welcomed in the RTE area. Some try to solve this problem by actually using Ladusaw’s

idea. In Danescu-Niculescu-Mizil and Lee [2010], Danescu-Niculescu-Mizil et al. [2009]

the authors try to employ the connection between NPI’s and DE contexts to construct

an algorithm which could retrieve DE operators. Although the idea is definitely worth

mentioning, the results are a bit controversial. E.g. quite a few items found by the

authors does not necessarily make the related inference monotone decreasing. For ex-

ample, take the finding which they mark as an “interesting case” i.e. essential for. The

justification from the paper is [Danescu-Niculescu-Mizil et al., 2009, p. 143]:

(1.7) Talent is essential for singing. ⇒ Talent is essential for singing a ballad.

However, note:

(1.8) (a) singing loudly ⇒ singing

(b) Talent is essential for singing. 6⇒ Talent is essential for singing loudly.

The inference in 1.8 (b) does not hold since, even if talent is essential for singing, it is

definitely not essential for singing loudly. There are more cases like the one above, but

critique of the paper is not our goal. Especially since the authors seem to be aware of

the problems, and their approach is definitely a step in the right direction.

In this paper I will not try to solve problems with monotonicity from the RTE field.

However, such problems should be a convincing evidence that it is important to acquire

knowledge about monotonicity patterns in natural language. This will be the goal of the

work presented below. I will investigate entailment properties of two temporal operators,

namely before and until . Formal investigations of such inferential patterns should give

certain empirical predictions. These predictions will be tested in an experimental study.

We shall now advance to different motivations for the presented research, namely: time

and events.

1.1 Time and Events

An important aspect of how we experience reality is connected to the perception of time.

Time itself is fundamental in almost every aspect of reality, and yet we are unable to

investigate its nature directly. It might be that to some extent our experience of time is

encoded in the language we use.
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In Kamp [1979] H. Kamp discusses a particular way of representing time in discourse

using events. As he points out, many of the information exchanged by people, in any

meaningful conversation, concerns certain events. Usually the existence of the given

event is presupposed by the participants, and the temporal relationship is given by

the discourse itself. Since discourse participants treat those entities and the relations

between them as primitives, maybe the easiest way of reconstructing such a discourse,

is to start exactly with those primitives.

We shall also note that there are psychological and philosophical arguments for choosing

events as basic building blocks in modelling time. We don’t experience time directly, but

rather we perceive it through events which have certain duration, or through change. We

definitely can not perceive instants. As Bertrand Russell puts it in one of his lectures:

Even if there be a physical world such as the mathematical theory of motion

presupposes, impressions on our sense-organs produce sensations which are

not merely and strictly instantaneous, and therefore the objects of sense of

which we are immediately conscious are not strictly instantaneous. Instants,

therefore, are not among the data of experience and must be either inferred

or constructed. It is difficult to see how they can be validly inferred; thus we

are left with the alternative that they must be constructed. [Russell, 1914,

lecture IV] as quoted in Hamm and Bott [2014].

Such a construction can be done with events as primitives as will be presented below.

The fact that we can construct instants out of events seem to be a good reason to include

the latter in our ontology. But can we argue that they are more than just theoretical

construction based on intuition?

Recently psychologists have started to examine whether events play a role in how we

structure changing state of affairs. E.g. Zacks et al. [2001] found that their subjects

perceived time in a pre-recorded movie, as consisting of discrete events. Even more,

some of the findings suggest that the subjects were organising events into a hierarchical

structure. I.e. each of the coarse grained events contained more finely grained events,

and the events from a given level followed other events from this level. All this should

be enough to justify the use of events in modelling time. In the next section we will

discuss natural language means used to talk about time.
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1.2 Temporal Prepositions

Temporal prepositions trigger fascinating inferential patterns and, simultaneously, they

involve temporal reference. Since these are expressions, which we use in everyday lan-

guage to talk about events in time, it seems that investigating them, could add something

to our understanding of time perception.

Operators encoded in temporal prepositions seem to posses inference properties simi-

lar to quantifiers. For example (1.9) before is transitive as is all, and (1.10) while is

symmetric similarly to some.5,6

(1.9)

A before B

B before C

A before C

all A are B

all B are C

all A are C

(1.10)
A while B

B while A

some A are B

some B are A

Recently, Zwarts and Winter [2000] made a successful attempt of employing a generalised

quantifier approach toward prepositional phrases (PPs) with spatial prepositions. This

seems also to be a right choice for studying PPs with temporal prepositions. In the

aforementioned paper, the authors begin with the observation that functions denoted

by spatial prepositions “should return entities with measurable distance and direction”

(p. 4). This is motivated by realising that PPs can be modified by expressions which

convey some additional information about distance or direction. Some examples follow

(taken from Zwarts and Winter, p. 3):

(1.11) (a) The tree is behind the house. (bare PP)

(b) The tree is ten meters [behind the house]. (modified PP)

(1.12) deep under the castle, diagonally above the door, far outside the city, right in

front of the car

As the authors explain:

5The inference with while in (2) might not be necessarily true, because of the contextual dependencies
of while. The background event might be seen as the longer one. E.g. She had lunch while playing games.
might not mean the same as: She played games while having lunch. However, when we treat it as an
abstract operator it should hold.

6The examples, the way of presenting them, and many other things were inspired by Zwarts and
Winter [2000].
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these structures are classified as PP modification [...] because the additional

expression syntactically applies to a PP (or a P-bar) to produce another PP

(P-bar). (p. 3)

In terms of modification, temporal prepositions bear certain resemblance to spatial

prepositions. However it seems that in speech, time has only one dimension. If we de-

pict this dimension as a line, there are only two variables which value could be changed:

direction and length (amount). In reality, only one of these is modified. Consider these

examples:

(1.13) shortly after dancing, 30 minutes before going out, almost until he was asleep.

In all of the above cases, the only effect of the modifier, is to refine the exact amount

of time between the event in the main clause (omitted above), and the event in the

temporal clause. Temporal direction of interest is already given by the preposition

used. Therefore, we can generalise, the only effect of a proper modification of temporal

expression is to delimit the “field of (temporal) action”.7 It seems, there are no modifiers

which would apply to the direction itself.

All these observations show that there are similarities between spatial and temporal

prepositions and between temporal prepositions and quantified statements. Hopefully

we could exploit these similarities in order to investigate the inferences triggered by

temporal prepositions. This will be done using tools provided by the theory of gener-

alised quantifiers. I will try to give such an analysis with respect toward two temporal

prepositions, namely until and before. As will be shown in the next section, these prepo-

sitions trigger interesting inference patterns. Possibly there is a connection between our

perception of time and relations which are encoded in temporal prepositions. Since

these relations manifests themselves in the linguistic reasoning concerning time, we will

investigate such reasoning. This will be done by, first modelling the operators behind

these two prepositions using events, and then by testing how well such models predict

natural language use.

1.3 Before and Until

This section will concentrate on showing different intuitions concerning before and un-

til , and how these intuitions were accounted for by different researchers. I will try to

7This excludes such modifiers as e.g. only, exactly which have much more complex behaviour, prob-
ably uniform across different arguments.
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demonstrate that these accounts and intuitions often contradict each other, and there-

fore coming to definite conclusions without experimental studies is very difficult, if not

impossible.

Before

Let’s begin by considering certain intuitions from natural language. By saying that one

event is before the other, we certainly want to express that the first event was earlier

than the second. If this was all, it would be enough to model before with “<”, i.e.

temporal precedence relation. This is clearly not correct. Consider a sentence:

(1.14) Alice was driving before calling Mary.

Since before means here only “precedes in time”, and there are two events in this sen-

tence, there are also two possible interpretations. Either

(a) Alice was driving, she stopped, and then she called Mary, or

(b) Alice started driving at some time t1, and then at some time t2 she was still driving

and she called Mary.8

Let’s deal with the case (a) in the first place. When expressing the fact that one event

was before the other, we don’t necessarily want to say that the first one finished before

the second one started. Often we want to say that the first event begun before the

second one (which is the case in (b)). Consider longer events, and a relation expressed

in the sentence:

(1.15) John was in Australia before Kyle was.

Usually, in such situations, we do not expect John to be back from Australia only to

make the sentence true. Of course these sentences may have the reading in which the

events do not overlap, but surely it is not the only reading available.

Considering the (b) case, note that here we already interpret before as more than just the

precedence relation. This is because we explicitly assumed the existence of two different

times such that one event starts in the first one, and continues at least until the second

one, and the other event starts at the second time. Nothing like this is in the relation

itself. This should suffice to show that we need some other rendition of before.

8If this was the case, I condemn Alice’s unlawful behaviour.
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However, before should have certain properties usually connected with the relation of

temporal precedence. E.g. before seems to be transitive and asymmetric (as first pointed

out by Anscombe [1964]). More data from natural language can be obtained if we

consider some broad notion of monotonicity (why “broad notion” is going to be clarified

later on). We might notice that before clauses should be monotone decreasing. This is

because apparently NPIs are acceptable in before clauses (1.16), and because it licenses

inferences from supersets to subsets. E.g. if you know that Suzy danced during a party,

then the inference in 1.17 appears to be valid.

(1.16) She caught the baby before Tom moved a muscle.

(1.17) Suzy was running before partying. ⇒ Suzy was running before dancing.

Since the the interpretation of before we are discussing at the moment is clearly inspired

by Anscombe, and because we need to account for the monotonicity properties discussed

above, our definition of before should satisfy these conditions:

Intuitions 1.1 (Before 0 ). a before b is true iff:

(a) there is a time t1 at which a happens,

(b) for all times t2 such that b happens at t2, t1 precedes t2

Universal quantification in (b) ensures that the temporal clause will be monotone de-

creasing, and taken together, these conditions are very similar to how Anscombe’s pro-

posal is treated in Beaver and Condoravdi [2003].

On the other hand universal quantification over times is problematic as pointed out by

Landman [1991]. This is because a before definition which would use such quantification

in the temporal clause could be vacuously satisfied, i.e. a before b is predicted to be true

even if there is no time b. This is exploited by Beaver and Condoravdi in, what they

call Ketchup problems. Consider the sentence (K ):

(K ) David ate lots of ketchup before he made a clean sweep of all the gold medals in

the Sydney Olympics.9

If we follow the conditions given in Intuitions 1.1, (K ) is predicted to be true, even if

David never went to the Olympics.

9This is the example 32 in Beaver and Condoravdi.
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We shall investigate how serious this objection is. Note that one might not want to

exclude certain situations already in the semantics. By saying that, one thing was

before the other we only put them in a certain relationship, and we might never be sure

when this second thing will be fulfilled. I.e. there always is a possibility that David will

be granted with all the gold medals from the Sydney Olympics at some later point in

his life, because of some strange series of events.

If this is not convincing, we might always argue that there are pragmatic features which

come into play. The whole persuasive force of the ketchup problem comes from the fact

that the reader presupposes that David actually won all the gold medals at the Sydney

Olympics. This happens because before is a presupposition trigger. In order not to let

such strange things occur, we might want to reject the sentence when the presuppositions

of the involved statements are not satisfied. In such case (K ) would be neither true, nor

false, but undefined.

However, one might really want to ensure that, when saying a before b, there exists some

time t2 in which b happens. This can be done by explicitly encoding it in semantics.

This is, more or less, the approach taken by Heinämäki [1972] (as presented in Beaver

and Condoravdi). Intuitive conditions behind this approach differ:

Intuitions 1.2 (Before 1 ). a before b is true iff:

(a) there is a time t1 at which a happens,

(b) there is a time t2 at which b happens,

(c) t1 precedes t2

These two approaches are incompatible with each other. Possibly, one can always find

some arguments which would make the first or the second more convincing. Fortunately,

as we will see, definitions build upon each of these approaches predict different inferential

patterns. These predictions can be tested, and this will be the method which will be

followed here. We shall now discuss the case of until .

Until

A nice result shown in Kamp [1968], is that two two-argument operations since and until

(definitions omitted) are functionally complete with respect to continuous linear orders.

This means that any first-order temporal relation, which can be expressed in continuous

linear order, can be expressed using only combinations of these two operators. This

might suggest that until expresses a more powerful, and possibly more complex relation
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than before. First we shall see whether natural language intuitions accord with such a

statement.

When we say:

(1.18) Suzy was writing until three in the morning.

we want to express at least that there was some time in which Suzy started writing, and

that for all the times between that time and three in the morning, she was writing. It is

not clear, whether she was really writing for all the time (compare Nouwen [2008]). E.g.

if she had a small break, to pour herself a glass of water, we probably would say that

she still was writing. The other thing which is not obvious at all, is whether she finished

at three, or did she continue to some later time. It is difficult to decide what is the

status of the endpoint in until sentences. It might be either encoded in the semantics

or rendered as a pragmatic feature.

In the latter case, it is an implicature of sorts, and therefore it could be canceled.

We could try such a cancellation and see whether it is clearly contradictory. Suppose,

someone utters sentence 1.18, and then continues, in the manner presented below:

(1.19) Suzy was writing until three in the morning. In fact, she finished just before

breakfast.

No contradiction arises. However, one might argue for the opposite case by pointing out

two facts. They both have to do with the continuity of action.

First, it is possible that, we understand the situation depicted in 1.19 as not being

continuous. I.e. Suzy was writing until three, than she had a (somehow meaningful)

break, and then she continued until breakfast. This would mean that the endpoint is

encoded in the semantics of the expression, and apparent cancellation of the implicature

is not a cancellation at all, but nevertheless it forces the hearer to accord the meaning

of two sentences in a way which resolves the contradiction.

The second argument is inspired by the study of properties of generalised quantifiers.10

It might be that until is intransitive. Consider an inference below:

(1.20)

Peter was watching a movie until he started eating.

Peter was eating until midnight.

?? Peter was watching a movie until midnight.

10As done by Van Benthem [1984].
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Whether the conclusion holds is dubious. If this was the case that in all such inferences,

the conclusion does not follow, this would strongly suggest that the end-point is seman-

tically encoded. Of course, these are not very convincing arguments, and we shouldn’t

treat them as such. They just show that it is very difficult to decide what is a proper

semantic reconstruction of until , when one’s views are only backed up by intuitions.

To add even more uncertainty, we shall reflect upon such three inferences, which validity

depends on monotonicity properties of until :

(1.21)
John was writing until the power went out.

?? John was writing until the power went out and the alarm rang.

(1.22)

eating event is a part of dinner event

John was writing until he started eating.

?? John was writing until dinner.

(1.23)

running precedes taking a shower

John was stretching until he started running.

?? John was stretching until he took a shower.

Whether one want to accept any of these inferences depends on what they believe to be

the exact meaning of until. There are at least three different possibilities. These will

be presented by stating intuitive conditions which different definitions of until might

satisfy.

Intuitions 1.3 (Until 0 ). a until b is true iff:

(a) there is a time t1 at which a happens,

(b) there is a time t3 at which b happens,

(c) for all such times t2 which are in between t1 and t3, a also happens in t2

The interpretation above is the minimal interpretation. It only preserves what could

be called continuity, i.e. that the event a goes on without stopping for a certain time.

Note that here there is no constraint on the precedence of events involved. According

to these conditions, if b precedes a, a until b would be vacuously satisfied. This might

seem strange. These conditions assume that most of the features of until are due to

pragmatic mechanisms it triggers.



Introduction 13

Intuitions 1.4 (Until 1 ). a until b is true iff:

(a) there is a time t1 at which a happens,

(b) there is a time t3, at which b happens,

(c) t3 succeeds t1,

(d) for all such times t2 which are in between t1 and t3, a also happens in t2

The conditions in the Intuitions 1.4 are the ones behind the aforementioned definition

given in Kamp [1968]. A similar definition is also used in De Swart [1996]. The only

difference between the Intuitions 1.3 and 1.4 is the point (c) in the latter. Here, it is

explicitly stated which event precedes which.

Intuitions 1.5 (Until 2 ). a until b is true iff:

(a) there is a time t1 at which a happens,

(b) there is a time t3, at which b happens,

(c) a doesn’t happen in t3,

(d) t3 succeeds t1,

(e) for all such times t2 which are in between t1 and t3, a also happens in t2

The conditions given above change the previous ones in a very small, yet meaningful

detail. This is the explicit end-point encoded in the semantics. These conditions make

the respective definition of until the most constrained.

One can see differences among these three intuitive definitions as if they were on a scale.

On the left side of a scale there are expressions which carry the most semantic meaning

and which allows for the least pragmatic interpretations. In the middle pragmatic and

semantic parts are in balance. On the far right, the semantic meaning is the least

determined which in turn reinforces pragmatic power. On the scale Until 0 would be to

the right, Until 1 in the middle, Until 2 is semantically the strongest one, and would

be on the far left. As will be shown in the next section, these different conditions result

in definitions which license different inferences.



Chapter 2

Logic and Semantics

2.1 Event Structures

We will now consider event structures as proposed in Kamp [1979]. Let event structure

be a triple: E = 〈E,≺,©〉. Where: E is a set of events, ≺ is a time precedence relation,

© is an event overlap relation. The two relations satisfy postulates Ax 1 - Ax 6.

Ax 1. ∀a∀b(a ≺ b→ ¬b ≺ a)

Ax 2. ∀a∀b∀c((a ≺ b ∧ b ≺ c)→ a ≺ c)

The precedence relation is asymmetric and transitive.

Ax 3. ∀a(a© a)

Ax 4. ∀a∀b(a© b→ b© a)

The overlap relation is symmetric and reflexive.

Ax 5. ∀a∀b(a ≺ b→ ¬(a© b))

This property is called separation. If an event a precedes event b they can not overlap.

Note, that since overlap is symmetric we also have: ¬(b© a).

Ax 6. ∀a ∀b∀c∀d((a ≺ b ∧ b© c ∧ c ≺ d)→ a ≺ d)

This one is called transfer. One could see it as a way of transferring precedence by

overlap. If a precedes b, b overlaps c, and c in turns precedes some d, then overlap works

as precedence. So a precedes d.

14
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Ax* 7. ∀a∀b(a ≺ b ∨ a© b ∨ b ≺ a)

Overlap and precedence taken together are total. Every event either precedes one an-

other, or overlaps one another.

Whether we want to accept Ax 7 is dubious. Kamp, (p. 382) gives several reasons

why this is so. Concertning our purposes, the strongest is probably the observation

that usually in discourse, information about temporal relationship between events is

not complete, and any attempt at modelling events in discourse, should take this into

account e.g. but assuming only a partial order.1

Any event can be a temporal subset of the other. This is obtained using the aforemen-

tioned relations. For any two events a, b we have:

a v b iff ∀e(e ≺ b→ e ≺ a) and

∀e(b ≺ e→ a ≺ e) and

∀e(e© a→ e© b)

Note that this relation is not antisymmetric. Two events can be temporally equal and

yet they don’t need to be the same event. I.e. it can be that c v d and d v c, but d 6= c

(see working example below).

2.2 Time Points and Propositions

We want a way to locate events in time which would be somehow independent of the

events themselves. To do that we will use instants (I will use the notions instants and

time points interchangeably).2 [Kamp, 1979, p. 378] observes that, a maximal subsets

of E of pairwise overlapping events can be used as such. Formally:

Instants. t is an instant (time point) in E iff

1. t ⊆ E
1As the author points out, this incompleteness of the information conveyed is especially visible in

eyewitness reports (footnote 7):

The speaker tries to piece the events as best as he can. The various aspects of the case
may come back to him more or less at random. Often he will be able to reconstruct the
true temporal sequence of the occurrences he relates, and to communicate this additional
information, only in the latter part of the discourse. Sometimes he won’t arrive at a
complete articulation of the temporal relations at all.

2There are at least two ways in which one can obtain instants. In order to give a better review I
discuss another one in the Appendix A.
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2. ∀e1, e2 ∈ t(e1© e2)

3. ∀e1 ∈ (E \ t)∃e2 ∈ t[¬(e1© e2)]

Consider a structure:

T = 〈I,<〉 where:

• I is a set of (all) instants in E

• t1 < t2 iff ∃e1 ∈ t1∃e2 ∈ t2(e1 ≺ e2)

It is easy to verify that this structure is a strict partial order. It would be linear, if

we were to accept Ax 7. We can use this construction to “measure” our events in an

objective manner. An event goes on at time t1 if it is an element of t1. An example can

be find below.

Figure 2.1: A working example

A working example3

Let E = {a, b, c, d, e, f, g, h}. Let relations between events in E be:

• Temporal precedence: a ≺ c, c ≺ e, d ≺ f, f ≺ g

• Subevent relation: a v b, b v a, g v h, h v g

• Overlap relation: c© d, d© e, e© f

We can easily derive time points from this structure.

Time points: t1 = {a, b}, t2 = {c, d}, t3 = {d, e}, t4 = {e, f}, t5 = {g, h}.

Note that: t1 < t2 < t3 < t4 < t5. So even that, in the event structure, it is not the case

that d precedes e, one can clearly see that d is (in some sense) earlier than e, because:

d ∈ t3 and e ∈ t4, and t3 < t4. Compare Figure 2.1.

3This is inspired by the example from Landman, p. 194.
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2.2.1 Propositions

We are interested in expressing certain relations between events. However, Kamp com-

mits himself to a more ambitious task, i.e. to be able to model changes. We shall use

his approach simplifying wherever possible.

Kamp defines two functions. Loosely speaking, first one returns the content of the

event, the other one returns its state. We will only be concerned with the second one.

Originally it maps atomic formulas of a language into four different values: P,F,B,C.

We need only two of them in order to give the truth conditions in the model.

An event model is a tuple: M = 〈E,≺,©,A1,A2〉. Where E,≺,© as before and A1,A2

are functions.

• A2(e)(ϕ) = P means: ϕ is true throughout e.

• A2(e)(ϕ) = F means: ϕ is false throughout e.

Assume we have an instant structure (a point structure described above) over such

model: T (M). We can define (simplified) truth in such a model.

[[ϕ]]T (M),t = 1 iff ∃e ∈ t : A2(e)(ϕ) = P

I will write p(t1) iff there is an event a such that, a ∈ t1 and A2(a)(p) = P. Formally:

p(t1) ≡df ∃a[a ∈ t1 ∧ A2(a)(p) = P]

2.3 Before and Until

2.3.1 The definitions

Having the logical background settled, I shall present different definitions for before and

until. These definitions are formalised versions of the Intuitions from chapter 1 (section

1.3). They will be put in terms of events. In 2.2.1 we’ve seen how to switch between

events and propositions which are true during the respective events. However, since two

out of three properties we are interested in, are stated in terms of temporal relations,

it seems easier to give the definitions for events and switch to propositions only when

necessary. I provide two examples of “propositional” variants for some of the definitions
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(marked with (b)). In a slightly informal way: if O is an operator on events, then it can

be translated into its propositional variant O∗ by substituting every expression of the

form: e ∈ t with the expression of the form: p(t).

Before

Definition 2.1.

(a) BEF0(a, b) ≡df ∃t1[a ∈ t1 ∧ ∀t2(b ∈ t2 → (t1 < t2))]

(b) BEF ′0(p, q) ≡df ∃t1[p(t1) ∧ ∀t2(q(t2)→ (t1 < t2))]

Definition 2.2. BEF1(a, b) ≡df ∃t1[a ∈ t1 ∧ ∃t2((b ∈ t2) ∧ (t1 < t2))]

Until

Definition 2.3.

(a) UNT0(a, b) ≡df ∃t1∃t3[(a ∈ t1) ∧ (b ∈ t3) ∧ ∀t2(t1 < t2 < t3 → a ∈ t2)]

(b) UNT ′0(p, q) ≡df ∃t1∃t3[p(t1) ∧ q(t3) ∧ ∀t2(t1 < t2 < t3 → p(t2))]

Definition 2.4.

UNT1(a, b) ≡df ∃t1∃t3 > t1[(a ∈ t1) ∧ (b ∈ t3) ∧ ∀t2(t1 < t2 < t3 → a ∈ t2)]

Definition 2.5.

UNT2(a, b) ≡df ∃t1∃t3 > t1[(a ∈ t1) ∧ (b ∈ t3) ∧ (a 6∈ t3) ∧ ∀t2(t1 < t2 < t3 → a ∈ t2)]

2.3.2 Monotonicity

We can posit at least three natural types of monotonicity in the event structures. I will

begin by defining these notions, and by giving some examples (these may be sometimes

dubious). Then, I will prove monotonicity properties for each of the definitions.

Note that, from the relational point of view, temporal prepositions are of the form:

T (A,B). So, as is the case with quantifiers, we can talk about “left” and “right”

monotonicity. Below are the definitions for the “right” monotonicity. The other one is

defined analogously. A function is non-monotone if it is neither monotone increasing nor

monotone decreasing.
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EMON and PMON are defined on events not on propositions. This might seem prob-

lematic, since nothing in natural language expresses events. But we already know how

to obtain the corresponding propositions (using the functions A1 and A2), and these are

expressed by sentences.

MON 1. Temporal function T is event monotone (EMON)

(a) increasing (EMON↑) iff ∀e, a, b ∈ E[(a v b)→ (T (e, a)→ T (e, b))]

(b) decreasing (EMON↓) iff ∀e, a, b ∈ E[(a v b)→ (T (e, b)→ T (e, a))]

A function is event monotone when it preserves or reverses the containment of events.

In natural language there is no expression of such relation as event inclusion, but it

is possible to give some approximating examples. We shall write e.g. assume washing

hair v taking shower. This should be understood as: “assume that any event of hair

washing is temporally included in an event of taking a shower” (which could be roughly

translated to: whenever a person is taking a shower she is washing her hair). Examples:

EMON↓
Assume: dancing v partying

John took a shower before partying.

John took a shower before dancing.

↑EMON

Assume: washing hair v taking shower

John washed his hair before going out.

John took a shower before going out.

MON 2. Temporal function T is precedence monotone (PMON)

(a) increasing (PMON↑) iff ∀e, a, b ∈ E[(a ≺ b)→ (T (e, a)→ T (e, b))]

(b) decreasing (PMON↓) iff ∀e, a, b ∈ E[(a ≺ b)→ (T (e, b)→ T (e, a))]

A temporal function may preserve or reverse temporal precedence. The former is fulfilled

when from the fact, that one event is earlier than the other follows, that what happens

in the first event entails what happens in the second. The latter is the case when the

entailment is reversed. Assumptions in the examples mean that one event was earlier

than the other. Examples:

PMON↑
Assume: dancing ≺ talking

Suzy was drinking before dancing.

Suzy was drinking before talking.
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↓PMON

Assume: cleaning floors ≺ closing doors

Suzy closed the doors before going home.

Suzy cleaned the floors before going home.

MON 3. Temporal function T is entailment monotone (ENTAIL)

(a) increasing (ENTAIL↑) iff ∀p, q, r[(p⇒ q)→ (T (r, p)→ T (r, q))]

(b) decreasing (ENTAIL↓) iff ∀p, q, r[(p⇒ q)→ (T (r, q)→ T (r, p))]

Note, that above the function T is still over events, not propositions. This is what

one could call “proper” monotonicity. A temporal function preserves entailment when

it licenses inferences from subsets to supersets. It reverses entailment when it licenses

inferences from supersets to subsets. Assumptions here are straight forward, but I list

them anyway. Examples:

↑ENTAIL

Assume: writing furiously ⇒ writing

Peter was writing furiously until making a mistake.

Peter was writing until making a mistake.

ENTAIL↓
Assume: power went out and the alarm rang ⇒ power went out

Anna was writing before the power went out.

Anna was writing before the power went out and the alarm rang.

Below I will prove monotonicity properties for the proposed definitions.

2.3.3 Proofs

Before

Proposition 1. BEF0 is ↑EMON↓.

Proof. Let a, b, c, d, e ∈ E.

For ↑EMON we need to show that, if a v b, then BEF (a, c)→ BEF (b, c).

Assume a v b. Additionally assume BEF (a, c). To show: BEF (b, c).

From the definition of BEF : BEF (a, c) ≡ ∃t1[(a ∈ t1) ∧ ∀t2((c ∈ t2) → (t1 < t2))].

Take such a and t1. Since a v b, so from the definition of subevent, ∀e(e© a→ e© b).

Therefore, if a is in some t, so is b. Particularly, b ∈ t1.
Recall that t1 is such that BEF (a, c). Hence, BEF (b, c).
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For EMON↓ we need to show that, if b v c, then BEF (a, c)→ BEF (a, b).

Assume: b v c. Assume further: BEF (a, c) i.e. ∃t1[(a ∈ t1)∧∀t2((c ∈ t2)→ (t1 < t2))].

To show: BEF (a, b) i.e. ∃t1[(a ∈ t1) ∧ ∀t2((b ∈ t2)→ (t1 < t2))].

Take a and t1 as given above. Take arbitrary t such, that b ∈ t.
To show: t1 < t i.e. ∃e ∈ t1∃e′ ∈ t(e ≺ e′).

Note that, because BEF (a, c) is assumed, we have ∀t2((c ∈ t2)→ (t1 < t2)).

From the definition, t1 < t2 means that: ∃e′′ ∈ t1∃e′′′ ∈ t2(e′′ ≺ e′′′).
From the assumption that b v c: ∀d(d ≺ c→ d ≺ b).
In particular e′′ ≺ c, because e′′ ∈ t1 and t1 < t2. Hence, e′′ ≺ b.
We assumed earlier that b ∈ t. Therefore, t1 < t.

Proposition 2. BEF0 is ↓PMON↑.

Proof. Let a, b, c ∈ E.

For ↓PMON it suffices to show that: if a ≺ b, then BEF (b, c)→ BEF (a, c).

Assume: a ≺ b and BEF (b, c). To show: BEF (a, c).

From the definition of BEF we have: ∃t1[(b ∈ t1) ∧ ∀t2((c ∈ t2)→ (t1 < t2))].

Note, we have Ax 5 (separation): ∀a∀b(a ≺ b→ ¬(a© b)).

We assumed that a ≺ b. From this and the definition of a time point a 6∈ t1.
But, since b ∈ t1, a must be in such t0 that t0 < t1.

We have: t0 < t1 and t1 < t2. Hence, from the transitivity of “<”: t0 < t2.

Therefore: BEF (a, c).

Similarly for PMON↑.

Proposition 3. BEF0 is ↑ENTAIL↓.

Proof. We need to show, that for any model M, for any two sentences p, q such that

p⇒ q, BEF preserves (or changes the direction of) entailment.

For ↑ENTAIL Assume: BEF (p, r) and [[p⇒ q]]T (M) = 1. To show: BEF (q, r).

BEF (p, r) means: ∃t1[p(t1) ∧ ∀t2(r(t2)→ (t1 < t2))].

Note that for all t if p(t), then q(t). In particular, since we have p(t1), also q(t1) holds.

Therefore BEF (q, r).

For ENTAIL↓ assume: (1) BEF (p, r) and (2) [[q ⇒ r]]T (M) = 1. To show: BEF (p, q).

From (2), we have for all t: if q(t), then r(t).

Suppose q(t′). Then, r(t′).

But then, from (1), there is t1 and p(t1) and, since r(t′), t1 < t′.
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Hence, for all such t′ in which q(t′), there is t1 such that t1 < t′, and p(t1).

Therefore BEF (p, q).

Proposition 4. BEF1 is ↑EMON↑.

Proof. For ↑EMON we need to show that if a v b, then BEF (a, c)→ BEF (b, c).

This is similar to the same case for BEF0, i.e. Proposition 1.

For EMON↑ we need to show that if b v c, then BEF (a, b)→ BEF (a, c).

Assume b v c, and BEF (a, b). To show: BEF (a, c).

BEF (a, b) means: ∃t1[a ∈ t1 ∧ ∃t2((b ∈ t2) ∧ (t1 < t2))].

Take such a and t1. To show: ∃t2((c ∈ t2) ∧ (t1 < t2)).

From b @ c, and the definition of subevent, we have ∀e(e© b→ e© c).

Therefore, if b is in some t, so is c. Particularly, c ∈ t2.
From the assumption t1 < t2, therefore BEF (a, c).

Proposition 5. BEF1 is ↓PMON↑.

Proof. For ↓PMON we have to show: if a ≺ b, then BEF (b, c)→ BEF (a, c).

Assume a ≺ b and BEF (b, c). To show: BEF (a, c).

From the definition, BEF (b, c) ≡ ∃t1[b ∈ t1 ∧ ∃t2((c ∈ t2) ∧ (t1 < t2))].

Take t2 and c as above. We have to show that there is t1, in which a is, and t1 < t2.

This follows in the same manner as in the proof of Proposition 2.

For PMON↑ we have to show: if b ≺ c, then BEF (a, b)→ BEF (a, c).

Assume b ≺ c and BEF (a, b). To show: BEF (a, c).

From BEF (a, b) we have: ∃t1[a ∈ t1 ∧ ∃t2((b ∈ t2) ∧ (t1 < t2))].

Take such a and t1. We have to show: ∃t((c ∈ t) ∧ (t1 < t))].

From the assumption that b ≺ c, we can infer that c is in t such that t2 < t.

Note that < is transitive, so t1 < t. Therefore, BEF (a, c).

Proposition 6. BEF1 is ↑ENTAIL↑.

Proof. The proof is similar to the proof of Proposition 3.
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Until

Proposition 7. UNT1 is (-)PMON(-).

Proof. For (-)PMON it is sufficient to show that, it is neither ↑PMON, nor ↓PMON.

Counterexamples to each of these statements are shown below.

Take the structure described in section 2.2 (under A Working Example).

Let E = {a, b, c, d, e, f, g, h} be set of events, such that:

• a ≺ c, c ≺ e, d ≺ f, f ≺ g

• a v b, b v a, g v h, h v g

• c© d, d© e, e© f

We can generate points out of these events. Let I = {t1, t2, t3, t4, t5} be a set of points

(where: t1 = {a, b}, t2 = {c, d}, t3 = {d, e}, t4 = {e, f}, t5 = {g, h}). It is easy to see

that: t1 < t2 < t3 < t4 < t5.

For ↑PMON assume a′ ≺ b′ and UNT1(a
′, c′). To show: ¬UNT1(b′, c′).

Let a′ = c, b′ = e, c′ = d. Then, trivially: c ≺ e. Note c ∈ t2 and d ∈ t2 and d ∈ t3,
and that there is no t in between t2 and t3. Therefore UNT1(c, d) is vacuously satisfied.

However, UNT1(e, d) is not satisfied, because there is no such t which would contain e

and would precede some t containing d.

For ↓PMON assume a′ ≺ b′ and UNT1(b
′, c′). To show: ¬UNT1(a′, c′).

Let a′ = a, b′ = e, c′ = f . Since a ≺ c, c ≺ e, and ≺ is transitive, also a ≺ e.
Similarly as above, UNT1(e, f) holds. But UNT1(a, f) does not, because a is not in

every t in between t1 and some t containing f . E.g. it is not in t2.

Similarly, for PMON(-) we have to show, that it is neither PMON↑ nor PMON↓. We

are going to use the same structure as above.

For PMON↑ assume b′ ≺ c′ and UNT1(a
′, b′). To show: ¬UNT1(a′, c′).

Let a′ = c, b′ = d, c′ = f . Obviously, we have: d ≺ f .

UNT1(c, d) follows, as shown before. However, UNT1(c, f) does not, because there is a

time point which does not contain c, and is in between every time point that contain c

or f . Namely, such time point is t3.

For PMON↓ assume b′ ≺ c′ and UNT1(a
′, c′). To show: ¬UNT1(a′, b′).

Let a′ = e, b′ = d, c′ = f . Then d ≺ f as previously.
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UNT1(e, f) is vacuously satisfied, similarly as in the counterexample for PMON↑.
The same counterexample explains why UNT1(e, d) is not satisfied.

Proposition 8. UNT1 is ↑EMON↑.

Proof. Let a, b, c ∈ E.

For ↑EMON assume: a v b and UNT1(a, c). To show: UNT1(b, c).

UNT1(a, c) i.e. ∃t1∃t3 > t1[(a ∈ t1) ∧ (c ∈ t3) ∧ ∀t2(t1 < t2 < t3 → a ∈ t2)].
Take such t1 and t3. Since a v b, there is t such that, both a, b ∈ t.
Let this t = t1. Hence. UNT1(b, c).

For EMON↑ assume: b v c and UNT1(a, b). To show: UNT1(a, c).

UNT1(a, b) i.e. ∃t1∃t3 > t1[(a ∈ t1) ∧ (b ∈ t3) ∧ ∀t2(t1 < t2 < t3 → a ∈ t2)].
Take such t1 and t3. Since b v c, from the definition of subevent, ∀e(e© b → e© c).

Therefore, if b is in some t, so is c. Note that we assumed: UNT1(a, b).

Hence, UNT1(a, c).

Proposition 9. UNT1 is ↑ENTAIL↑.

Proof. Let M = 〈E,<,©,A1,A2〉 be a model of our event structure and T (M) be

instant structure over such model. Let a, b ∈ E and let p, q be sentences.

For ↑ENTAIL assume [[p→ q]]T (M) = 1, UNT1(p, r). To show: UNT1(q, r).

From [[p→ q]]T (M) = 1 follows [[p→ q]]T (M),t1 = 1.

And since [[p]]T (M),t1 = 1, so [[q]]T (M),t1 = 1. Hence, UNT1(q, r).

Similarly for ENTAIL↑.

We shall now prove the properties of UNT0 and UNT2. Only some proofs will be shown,

since most of them is similar to the respective proofs for UNT1.

Proposition 10. UNT0 is ↑EMON↑.

Proof. Similar to the proof of Proposition 8.

Proposition 11. UNT0 is ↑PMON↓.

Proof. For ↑PMON we have to show: if a ≺ b, then UNT0(a, c)→ UNT0(b, c).

Assume a ≺ b and UNT0(a, c). To show: UNT0(b, c).
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From the definition, UNT0(a, c) ≡ ∃t1∃t3[(a ∈ t1)∧(c ∈ t3)∧∀t2(t1 < t2 < t3 → a ∈ t2)].
Take t3 and c as above. We have to show ∃t(b ∈ t ∧ ∀t′(t < t′ < t3 → b ∈ t′)].
There are four possibilities. Either c ≺ b, or relation between b and c is not given, or

b© c, or b ≺ c.

If c ≺ b, or the relation between them is not given, then there is no such t′ which would

be in between t and t3, and UNT (b, c) is vacuously satisfied.

If b© c, then either b ∈ t3 and UNT (b, c) is also vacuously satisfied, or it is in some t′′.

If t′′ < t3, then UNT (b, c) holds for the reason given below.

If t3 < t′′, then UNT (b, c) holds for the reason given above.

If b ≺ c, then, from the assumption, it has to be between a and c.

In such case, recall that UNT (a, c). Hence, also UNT (b, c).

For PMON↓ we have to show: if b ≺ c, then UNT (a, c)→ UNT (a, b).

Assume b ≺ c and UNT (a, c). To show: UNT (a, b).

This is shown similarly as in the previous case.

Proposition 12. UNT0 is ↑ENTAIL↑

Proof. Similar to the proof of Proposition 9.

Proposition 13. UNT2 is ↑EMON(-)

Proof. ↑EMON follows in the same way as was presented in the proof of Proposition 8.

For EMON(-), we have to show that it is neither EMON↑, nor EMON↓.
As before, this will be done using the structure from the proof of Proposition 7.

For EMON↑ assume a′ v b′ and UNT (c′, a′). To show: ¬UNT (c′, b′).

Let a′ = f, b′ = e and c′ = d. It can be easily seen that f v e.
UNT (d, f) holds, but UNT (d, e) does not, because d ∈ t3 and e ∈ t3.

For EMON↓ assume a′ v b′ and UNT (c′, b′). To show: ¬UNT (c′, a′).

Let a′ = f, b′ = e and c′ = c. Again f v e.
It is easy to check that UNT (c, e) is satisfied.

Note that c ∈ t2, f ∈ t4, and crucially c 6∈ t3.
Hence, UNT (c, f) is not satisfied, which concludes the proof.

Proposition 14. UNT2 is (-)PMON(-)

Proof. Similar to the proof of Proposition 7.
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Proposition 15. UNT2 is ↑ENTAIL↑

Proof. Similar to the proof of Proposition 9.



Chapter 3

Experimental Study

3.1 Introduction

In this part I will talk about an experiment I’ve conducted, in order to check which of

the definitions render correctly the use of temporal operators in natural language. First

I will state the motivations behind the experiment and what other work influenced the

experiment. Then, I will move to the proper report of the experiment.

3.1.1 Motivation

As we have already seen there is no consensus among the linguists and the logicians

what is the proper logical representation for the temporal operators before and until.

Many (if not most) of the arguments against (or pro) some of these definitions are

arguments appealing to the intuitions from natural language. This seems fair: since we

want to account for all proper uses of some expression, the fact that a definition renders

some of the seemingly correct uses incorrect (or some incorrect uses correct), is a strong

argument against that definition.

However, linguists’ intuitions can often be mistaken. There is a reason why natural

language is called natural. If one spends most of the time investigating a certain phe-

nomenon, this phenomenon stops being obvious and natural to her at some point. This

is also the case with natural language, and this makes reasonable asking ordinary folk

for their intuitions on certain natural language phenomena.

This might seem a good enough reason. Still, there is more to that than just checking

to what extent the intuition of the laypeople accord with the intuitions of the linguists.

At least since the beginning of the XXI century a growing body of experimental work

27
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appeared, that shows important differences between logical and contextualised interpre-

tation of many natural language expressions.1 This movement stems particularly from

theoretical work of H.P. Grice (e.g. Grice [1989]) but also, to some extent, from the

earlier works done in the philosophy of language which emphasised use of language in

opposition to pure logical meaning (e.g. Austin [1962], Wittgenstein [1953]). It uses

tools from psycholinguistics to show how people reason in language and how different

cognitive capacities are employed in language use. This is closely connected to the re-

search in such prominent areas as “embodied cognition”, “ecological rationality”, and

similar.

The aforementioned, is another important motivation for the experiment described be-

low. The monotonicity of an expression (see Chapter 1 and Section 2.3.2 from Chapter

2) is an important linguistic property, but to my current knowledge no one ever tested

monotonicity of particular operators in an experimental setting.2 From the cognitive

point of view, the ability to recognise the proper inferential properties of an expression

has important consequences. The subject might not be fully aware of such recognition

but its effects are there. Below some of them will be presented.

Geurts [2003] and Geurts and van Der Slik [2005] are concerned with the effects mono-

tonicity of quantifiers has on the difficulty of reasoning. In the second paper, beside

their main task, they give couple arguments why monotonicity is important. For exam-

ple, a nice argument which might show that monotonicity is relevant to the psychology

of language production and comprehension is this: the fact that NPIs (see Chapter 1)

occur only in monotone decreasing environments, is as much a fact about language, as

it is a fact about speakers. Probably no competent speaker will ever utter a sentence

containing e.g. a word any in an environment of a positive polarity. Geurts and van

Der Slik, (p. 101) suggest that this is so, because the speakers “routinely compute the

monotonicity properties of incoming and outgoing utterances.” Moreover, it seems that

we learn such distributional constraints of NPIs quite early. Studies show (see O’Leary

and Crain [1994] and Musolino et al. [2000] for an overview) that children by the age

of four already refrain from using words such as anything in the contexts of positive

polarity.

Another interesting phenomenon connected with monotonicity and reasoning is a partic-

ular property of preserving validity of inferences, even in cognitively vague environments.

This has to do with so-called donkey sentences. Consider a sentence:

1For example: Noveck [2001], Bott and Noveck [2004], Huang and Snedeker [2009], Chemla [2008],
Chevallier et al. [2008], and many others.

2However, there were some experiments which concerned monotonicity in general. See papers by
Geurts, and Geurts and van Der Slik referenced in the same paragraph. The latter is especially worth
reading. The following paragraphs are based on Section 3 from this paper.
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(3.1) Every farmer who owns a donkey beats it.

It is not very clear how this should be interpreted. I.e. suppose there is a farmer who

owns two donkeys but beats only one. Is 3.1 true in this situation? Or does every farmer

is needed to beat every donkey they own, for this sentence to be true? Even though

speakers intuitions tend to differ, surprisingly, as suggested by Kanazawa [1994] and

Geurts [2002], speakers seem to agree on certain inferences involving such sentences. An

example from Geurts and van Der Slik, (p. 102) is:

(3.2) Every farmer who owns a male donkey beats it. (entailed by 3.1)

(3.3) Every farmer who owns a donkey beats it with a stick. (entails 3.1)

The inferences above are preserved due to monotonicity properties of every. As the

authors conclude (p. 103):

Apparently, monotonicity inferences may go through even if the interpreta-

tion of a sentence remains underdetermined or unclear in certain respects.

Beside these well described effects of monotonicity properties, we might hypothesise that

there are other aspects in which they influence the way people communicate. For exam-

ple an utterance of an expression with a given monotonicity turns the hearer attention

more toward certain aspects of the utterance than the other. Take the umbrella sentence

from the very beginning of the paper (Chapter 1):

(3.4) I don’t have an umbrella.

It seems pointless to ask, whether the speaker has a red umbrella, or an umbrella of any

other colour. However, it would not be, if the speaker would utter a sentence:

(3.5) I have an umbrella.

This is because each of these sentences trigger different presuppositions, and allows

the hearer to draw different immediate conclusions. Quite possibly this is connected

to different monotonicity properties of each of these sentences.3 If this is indeed so,

3Of course the sentence 3.4 is an explicit negation of the sentence 3.5. This makes our example
difficult to generalise, because some of these phenomena might be connected closer to negation than to
monotonicity. However, it is worth noting, that these two go hand in hand. For an excellent study of
negation see Horn [1989].
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then any study concerning monotonicity brings a lot into our understanding of natural

language.

Given all this, the motivation behind the experiment should be clear. I want to check how

certain temporal expressions function within the natural language setting and how well

monotonicity properties account for natural language inferences. The experiment should

also add something to the work on the distinction between semantics and pragmatics.

3.1.2 Inspiration, experimental paradigms and problems

The most straightforward way of testing monotonicity properties is to ask subjects to

infer consequences from certain assumptions, using a given expression. There are many

problems with such a task though.

Even simple deductive reasoning can be very demanding when put as an abstract prob-

lem.4 This suggest, that such an experiment, has to have a carefully chosen, natural

setting. Also, ideally, we would want the subjects to be careful about the use of a par-

ticular expression, and not necessarily about the reasoning itself. Therefore, we want to

stress the use of the expression and make the reasoning as natural as possible. Finally,

since we are testing the logical properties of certain expressions, we want to be sure that

the subjects get the literal reading, not contaminated by any pragmatic features.

In order to show how one can overcome such problems, below I present short reviews of

a few experiments the design of which was the most inspirational and helpful.

Bott and Chemla on Free Choice

In a series of beautifully designed experiments, E. Chemla and L. Bott investigated the

so called free choice inferences (Chemla and Bott [2014]). These are inferences, in which

a disjunctive sentence can be interpreted as a conjunction.

The experimental paradigm used, was a variation on the seminal paradigm devised by

Bott and Noveck [2004]. The main idea behind it was that, for some items, every an-

swer the subjects provided had exactly one interpretation. They used underinformative

sentences such as:

(3.6) Some elephants are mammals.

4Perfect example is Wason’s selection task (Wason [1968]).
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Whether the subject decides to agree or disagree depends on whether they draw the

pragmatic inference. Some carries a scalar implicature which could be interpreted by

the participants as “some and not all”. Therefore, a “no” answer means that the subject

draws this inference and does not agree with the fact that there are elephants which are

not mammals. Answering “yes” on the other hand, means that the subject interprets

the sentence in harmony with its logical reading, and agrees with the fact that some

does not exclude all.

Chemla and Bott changed the original setting in a way which allowed for the manip-

ulation by the introduced context, and reduced the link to the background knowledge.

The subjects were given a story in which earth was facing a global catastrophe. Cer-

tain people were allowed to save certain types of items. If a person was a zoologist she

was allowed to save a living creature, if she was an engineer she was allowed to save

an artificial object. Once again, target sentences were constructed in such a way, that

answering “yes” could be connected to only one of the two possible readings (similarly

with “no” answer). For example, when subject read a sentence:

(3.7) Derek-the-engineer is allowed to save a hammer or a lion.

and answered “yes”, it meant that they interpreted the sentence in a literal way (engi-

neers were allowed to save hammers). A “no” answer meant that the subject derived

the free choice inference (since engineers were not allowed to save lions). It is worth

noticing, how the change they provided makes the paradigm suitable for testing many

different phenomena.

Cognitive load and pragmatic/semantic distinction

There is a substantial amount of work devoted to showing differences in processing the

semantic part of an expression and its pragmatic counterpart. This was inspired by two

competing theories on the derivation of implicature.5

Many of these experiments try to increase the cognitive load the subjects have to deal

with, in order to show that one of the reading is cognitively easier. The trailblazers

in the field were Bott and Noveck who have shown, that when the time to answer

is limited, subjects tend to prefer logical reading over scalar implicature. This was

replicated in many different experiments, e.g. De Neys and Schaeken [2007] used a

dual task paradigm to find a similar result, Breheny et al. [2006] arrived at the same

5The default view and the relevance theory. E.g. Levinson [2000] and Sperber and Wilson [1986]
respectively.
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conclusion using a self-paced reading setting, etc. Apparently varying the cognitive load

can help in distinguishing the pragmatic interpretation from the semantics.

3.2 Experiment

The experiment design was based on a paradigm devised by Chemla and Bott. Because of

the particular, exploratory, character of the experiment, I wanted to distinguish between

pragmatic and semantic inferences. This was done by adding a time limit.

To review the motivation for the experiment: what are the relations hidden behind

the natural language use of before and until? What inferences are licensed by these

operators?

3.2.1 Experimental setting

There is only a small set of possible monotonicity patterns for the investigated operators.

This is because (as mentioned before), a function denoted by an operator usually has

two arguments, and in each of the arguments it can be either monotone increasing,

monotone decreasing or non-monotone. Therefore, there are at most six possibilities.

By testing each case we can constructively decide which pattern is the most robust. So,

a trivial hypothesis is: inferential patterns licensed by the operators before and until will

be correctly described by one of the proposed definitions. Since our definitions describe

all the most probable cases, this hypothesis shall turn out to be true. We may try to

refine the hypothesis a bit. This can be done by recalling the already discussed accounts.

Beaver and Condoravdi [2003] are mostly concerned with the veridicality properties of

before, so with respect to inferential properties, their definition closely resembles the

one given by Anscombe [1964]. This points to the definition BEF0. The definition

given by Heinämäki [1972] is a bit different when it comes to monotonicity properties.

In fact it suggest, the proper definition should be BEF1. Mainly because before is a

presupposition trigger Anscombe’s resolution seems more convincing. Therefore, in case

of before the refined hypothesis is: BEF0 will give correct predictions with respect to

monotonicity properties of the operator.

The case of until is much easier, since the widely accepted (e.g. De Swart [1996])

definition is the one given originally by Kamp in Kamp [1968]. This suggest that, until

should behave in accordance with the definition UNT1.
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Variables and Materials

The experiment was conducted in Polish. Before was rendered using a word przed, and

until using the construction aż do. This decision was discussed with Polish linguists but

it was still arbitrary to some degree. In Polish there are at least three different ways of

expressing before and until , so it had to be such. Hopefully the best possible choice was

made.

Below an exemplary target item will be shown, and each variable will be described with

the use of this item. An item consists of three entities:

E1 Timetable

E2 Assumption (“A sentence”)

E3 Consequence (“B sentence”)

A timetable consists of statements presenting quantified information about events in

time within certain environment. The cover story for the experiment was “a day in the

kindergarden”, so the timetable was an excerpt from the class schedule from a made-up

kindergarden. An example follows.

• 10.00 - 11.00 Second Breakfast

• 11.00 - 14.00 Fun and games, including: 13.00 - 14.00 Games in groups

• 14.00 - 15.00 Lunch

An assumption is a sentence which provides some information about a fact concerning

a child’s day in the kindergarden. It gives a name of a child, an activity, and what is

a temporal relation between this activity and the timetable. The assumption uses the

target operator. The target sentences were all of the form:

X [activity ] [temporal operator ] [timetable item]

where X is the name of the child with the indication of a group to which it belongs

(it was only one word in Polish), an activity was a verb phrase, describing something

a child could do during the day in the kindergarden (it was never an item from the

timetable, see the list of activities in the appendix), a temporal operator was either the

target operator (before, until) or a filler operator (these were after, while, or a sentence

without an operator i.e. a control sentence), and a timetable item was an item from the

timetable. Examples:
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• Jacob - from the small group was drinking water before games in groups.

• Suzy - from the middle group was playing tag before music.

Finally, a consequence was a sentence having the same form as the assumption, but it

differed in the temporal clause. What the difference was exactly depended on which

inference the item was supposed to test. If it was PMON↑, the item from the timetable

in the assumption, would be earlier in the timetable than the respective item in the

consequence. If it was EMON↓, then the item in the assumption would temporally

contain the item in the consequence (temporal containment was additionally marked on

the timetable with the word “including”), and if it was ENTAIL↑, then the temporal

clause in the assumption would entail the temporal clause in the consequence. The other

types would differ in the direction of the respective inference.

For each item, the task of the participant was to judge whether the consequence is true

or false in the light of the evidence given by the information from the timetable and the

assumption. This presents most of the variables of which the experiment consisted. The

independent variables were: the temporal operator, the monotonicity of the reasoning,

and the time to answer. How the first two were manipulated should be obvious by now,

the manipulation of the third one was performed by introducing two groups with different

amount of time to answer (see below for details). This was done to introduce time

pressure which could help to distinguish between the literal reading and the pragmatic

reading, similarly as in previously discussed experiments. The dependent variable was

the validity of the sentence.

Method

There were two experimental groups which differed in the amount of time the subjects

had for providing the answer. In each group there were two values of the dependent

variable, TRUE and FALSE. This was operationalised with a question (“Is the B sentence

true?”), which had two possible answers (“Yes” and “No”). Most TRUE judgments for

a given item would mean, that the item is of a given monotonicity, and most FALSE

answers would mean that it is not, respectively.

All possible independent variable levels were: two target temporal operators, two filler

temporal operators, three predicted monotonicity patterns for each target operator, and

two time frames. In theory, each temporal operator has two arguments, and in each

argument it can be either monotone increasing, decreasing, or non-monotone (see Table

3.1). If one would want to test each of these patterns, one would need four measurements
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per monotonicity pattern. Since there are three patterns, this gives twelve measurements

for each operator.

Definition EMON PMON ENTAIL

BEF0 ↑EMON↓ ↓PMON↑ ↑ENTAIL↓
BEF1 ↑EMON↑ ↓PMON↑ ↑ENTAIL↑
UNT0 ↑EMON↑ ↑PMON↓ ↑ENTAIL↑
UNT1 ↑EMON↑ (-)PMON(-) ↑ENTAIL↑
UNT2 ↑EMON(-) (-)PMON(-) ↑ENTAIL↑

Table 3.1: Comparison of different monotonicity properties.

However, it can be easily noticed that, there is no need to test the left argument of any of

the operators. This is because, such a test does not give us any information which could

not be gathered by testing the right argument. So, we can cut the number of needed

measurements in half. Then, again, one measurement for each of the cases does not seem

enough. There is always a danger that, the chosen item has some inherent properties

which could distort the results. Therefore additional measurement was introduced for

each item. Since, there are two target operators, there were twenty four target items.

It is considered good practice to hide target items within at least the same amount of

filler items.

This was done by adding sixteen items which resembled closely the target items, but

they were constructed using different temporal operators (the aforementioned while and

after). The eight remaining items were control sentences. These were checking the basic

comprehension of the timetable. The assumption gave a name of a child, a group to

which it belonged, and what time it was. The consequence stated simple fact, which

either was in accord with the information in the timetable, or was against it. By adding

twenty four filler items, we arrive at the forty eight items per group, and this was the

final amount of items in the experiment.

The test for monotonicity in natural language is, to check whether a given proposition

entails certain other proposition. Given this, we interpret the truth judgments provided

by the participants in the experiment, as if it was given (more or less) by one person. In

order to facilitate the interpretation of the answers, the reader will find a table (Table

3.2) comparing all the possibilities below.

Participants and Procedure

In total seventy four participants took part in the experiment. They were volunteers,

mainly gathered through various web-based social services. Some of them were passers-

by found in the public libraries. The latter were rewarded with a small candy for taking
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Definition EMON↑ EMON↓ PMON↑ PMON↓ ENTAIL↑ ENTAIL↓
BEF0 No Yes Yes No No Yes
BEF1 Yes No Yes No Yes No
UNT0 Yes No No Yes Yes No
UNT1 Yes No No No Yes No
UNT2 No No No No Yes No

Table 3.2: Interpreting the results.

part in the experiment. None of the subjects were excluded from the final analysis (see

below).

The experiment was conducted in Polish using a free internet service called IBEX. First

a participant read the instructions and was asked to provide some basic personal in-

formation. Then there was a four item practice session. The procedure in the practice

session was the same as in the proper experiment, but it concerned a different subject.

Subjects were asked to judge the truth of sentences about the height of certain people.

Immediately before the items, the subject was presented with a long version of a

timetable. In the practice session the table concerned height of a group of people.

In the main experiment it was a timetable of a two groups from a kindergarden. The

participant was asked to get acquainted with the table and proceed whenever she felt

she was ready. Then the first item was shown.

In every item the subject was first shown the shortened version of the appropriate

timetable and a short horizontal line indicating where the assumption will appear. The

assumption (marked with “A”) was presented after pressing the space-bar key. The

sentence remained underlined until the subject pressed the space-bar again. Then, the

underlined consequence (marked with “B”) appeared beneath the assumption, and the

assumption ceased to be underlined. Both sentences remained on screen for a spec-

ified amount of time, which was either 4000 ms (short lag) or 10000 ms (long lag).

Then, the sentences and the timetable disappeared, and the question (“Is the sentence

B true?”) appeared. Under the question there were two, horizontally placed, words:

“Yes” and “No”. The subject could provide the answer either by clicking the word, or

by a keystroke. After giving the answer, subject proceeded to another item.

During the whole time of the experiment a progress bar was shown on screen. Before

the first and the second space-bar press, a sentence with different graphic properties was

shown in the lower part of the screen, which reminded that, the subject should press
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the space-bar. Also, to remind the subjects what the task is, a question (written in a

smaller typeface) was displayed beneath the timetable.

Subject were assigned to the different time groups in a random manner, and they were

not aware to which group they were assigned, or even, that there were two groups. The

order of the items was also random, but every target item was followed by a filler item

(there was no distinction between a filler and a control, so there was a possibility of a

sequence of eight target items with eight control items between them).

3.2.2 Results

Subjects

Seventy four participant were mainly women (n = 54 = 73%) and only few men (n =

20 = 17%). The oldest participant was sixty seven years old, the youngest was nineteen

(mean = 31.8, median = 27). Most of the subjects had higher education (n = 61 =

82%), the others finished high school (n = 13 = 18%). Only one participant declared

nationality other than polish (french), and two declared that their mother tongue was

english or french. Usually subjects spoke at least two foreign languages (min = 0, max

= 7, median = 2).

Two subjects who declared mother tongue other than polish were excluded from the

data. No other subjects were excluded. This might seem wrong when compared with

the results of control questions. There were two participants who answered four (=

50%) control questions incorrectly (i.e. not in accordance with the intention of the

experimenter), nobody did more. However, a lot of participants answered at least some

of the controls incorrectly (n = 24 = 33%). This definitely shows that there was a

certain problem with the control item (and maybe in general with the design of the

experiment), but this also makes indicating a particular number, over which a subject

should be excluded, difficult. Therefore, I decided to keep all the subjects despite their

sometimes poor performance in the control questions. This will be discussed in detail

in section 3.3.2.

Since there were much more women than men, I’ve tested how significant was the differ-

ence in answers with respect to the declared gender. This was done using a χ2 test. The

results: p = 0.140, χ2 = 2.180, show that the difference was not significant. However, the

sample of the answers provided by men might be too small to be absolutely convinced.
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Experimental Data

Thirty two out of seventy two subjects (=44%) were assigned to the long lag group. This

resulted in 768 answers to target items in the long lag and 960 answers in the short lag.

First, we tested whether there was a significant difference between the answers provided

in each of the group per target operator. The results were quite surprising. In case of

before there was no significant difference: p = 0.634, χ2 = 0.226. The answers for until,

on the other hand, were significantly different: p = 0.011, χ2 = 6.525. The summarised

results from both time groups are presented below.

Before Until

EMON↑
EMON↓
PMON↑
PMON↓
ENTAIL↑
ENTAIL↓

Yes % No %

26 74
83 17
83 17
17 83
82 18
47 53

Yes % No %

19 81
26 74
10 90
19 81
78 22
31 69

Table 3.3: Summarised results for before and until

Before

Even though no significant difference was found globally, the results in the long lag and

the short lag were different. This is shown in the Table 3.4 (* marks value that exceeds

100% due to rounding).

Long lag Short lag

EMON↑
EMON↓
PMON↑
PMON↓
ENTAIL↑
ENTAIL↓

Yes % No %

23 77
83 17
81 19
16 84
84 16
45 55

Yes % No %

29 71
83 18*
84 16
19 81
80 20
49 51

Table 3.4: Differences for before in the short lag and the long lag

To be completely sure that there is no significant difference in neither of the conditions,

we tested those that were different, for significance. The results show no significant

differences. EMON↑ long lag vs short lag: p = 0.472, χ2 = 0.517, ENTAIL↑ long lag vs

short lag: p = 0.498, χ2 = 0.460.
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To facilitate the interpretation of the results, they are visualised in a bar graph in the

Figure 3.1.
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Figure 3.1: Summarised results for before
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Until

In the case of until there were some important differences noted between the short lag

and the long lag. These are compared in the Table 3.5.

Long lag Short lag

EMON↑
EMON↓
PMON↑
PMON↓
ENTAIL↑
ENTAIL↓

Yes % No %

17 83
19 81
2 98
19 81
75 25
27 73

Yes % No %

21 79
33 68*
16 84
20 80
81 19
35 65

Table 3.5: Differences for until in the short lag and the long lag

Once again we tested the significance of the differences within different conditions (pre-

sented from the most significant to the least significant).

type p - value χ2

PMON↑ 0.003 8.739
EMON↓ 0.063 3.461
ENTAIL↓ 0.278 1.178
ENTAIL↑ 0.364 0.822
EMON↑ 0.541 0.375
PMON↓ 0.851 0.035

Table 3.6: Significance of the differences between the short lag and the long lag.

Since the changes between the long lag and the short lag were only positive (i.e. in every

condition more participants were accepting the consequence in the short lag than in the

long lag), the most effective way of visualising the changes between the time groups,

would be to present the differences between the proportion of “Yes” answers in each

condition. This is presented in the Figure 3.2.

3.3 Discussion

The discussion is divided into two parts. First I present the interpretation of the results

for both prepositions. Than I discuss possible confounds.
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Figure 3.2: Change in the proportion of the positive answers for until.

3.3.1 Results interpretation

Before

The results for before are quite straightforward. In almost all conditions there is a huge

disproportion between “Yes” and “No” answers. This allows to interpret them in a

simple manner. Before seems to be treated as not EMON↑, as EMON↓, as PMON↑,
not as PMON↓, and as ENTAIL↑. There is a problem with ENTAIL↓. When we feed

this data into the format similar to the Table 3.2, we obtain such a line:

Definition EMON↑ EMON↓ PMON↑ PMON↓ ENTAIL↑ ENTAIL↓
BEFexp No Yes Yes No Yes ??
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EMON and PMON properties are in accordance with the definition BEF0 but ENTAIL

differs. I believe, that this (almost) validates this particular definition as a proper

definition for a natural language before, but we need to explain why this difference is

present.

There are two more things to notice before giving the explanation. First concerns the

change in answers between the time lags. It was not as uniform in the case of before as

it was in the case of until. I.e. for some conditions, there were more negative answers

in the short lag, than in the long lag (e.g. EMON↓ or ENTAIL↑). Since these changes

are very small, it doesn’t seem to be anything more than noise.

The second one is a consequence of lack of differences between the time lags. This means,

that either there weren’t any pragmatic inferences triggered by before, or that, the ones

present couldn’t be eliminated by enlarging the processing load. The former is false. It

can be easily observed, that before is a presupposition trigger in the temporal clause,

and that the items used in measuring the ENTAIL properties carried a presupposition.

The fact, that there weren’t any differences between the time groups, might suggest

that processing presupposition doesn’t carry any additional cognitive cost. A tentative

argument follows.

The results from EMON and PMON conditions show, that before does not behave in

accordance with the definition BEF1. Let’s assume, that BEF0 is the correct definition.

Consider an ENTAIL↓ item:

(1A) Tom from the middle group was drawing before going home.

(1B) Tom from the middle group was drawing before going home and playing football.

I believe that the sentence (B) presupposes, that there was a time in which Tom was

playing football. Now, if processing presupposition would carry an additional cost, then

at least some of the subject shouldn’t process the presupposition in the short lag. For

these subjects the (B) sentence would have different truth conditions in each time group.

In the long lag these would be:

(i) there was a time t1 in which Tom was drawing,

(ii) there was a time t2 in which Tom went home and in which Tom was playing

football,

(iii) for all such times t2, t1 < t2.



Chapter 3. Experimental Study 43

In the short lag (ii) wouldn’t hold. Knowing, that something is the case for all possibil-

ities, but not knowing whether there exists a single instance of such possibility, is very

different from knowing that something is the case for all possibilities, and there is an

actual instance of such a possibility. This should have an impact on answers. The fact

that it does not, indicates that the subjects do process presupposition in both time lags.

The argument above might not be very convincing, since there might be many other

reasons why no difference is noted. But it goes along the way, which I think may

explain the unexpected answering patterns in the ENTAIL conditions. It has to do

with tacit presuppositions that are put forward in the experiment. Before is indeed a

downward entailing operator which is best seen in the EMON conditions. Within those,

the subjects were almost uniformly accepting the DE inference. In a sense, it would

have been strange if they weren’t. Consider another item:

(2A) Alex from the small group was laughing before fun and games.

(2B) Alex from the small group was laughing before games in groups.

The timetable explicitly states, that “games in groups” were a part of fun and games.

Therefore, there existed such an event as “games in groups” and it was later than fun

and games. Since the subject is informed about this, the only way of not accepting the

inference is, by interpreting before as intransitive - which, as we can see, is rarely the

case.

Because of the particular experimental setting, subjects are being accustomed to the fact,

that all information have to be somehow confirmed by the timetable. With ENTAIL

items this wasn’t the case (compare 1A, B). However, in ENTAIL↑ the subjects were first

reading a statement asserting an existence of two given events in the temporal clause.

This made accepting the B sentence almost automatic - there was no reason to doubt

the connection between the two events, which was needed to reject the inference.

In ENTAIL↓ the situation was different. The subject had to validate the existence of

the presupposed event by herself (or himself). Since nothing in the setting told her/him

that there was a second event, the subjects were hesitant to accept the consequence.

The fact, that “Yes” and “No” answers are distributed almost equally shows, that even

in a setting in which the subjects were discouraged to assume the existence of a given

event, they were reluctant to reject the reasoning. Probably in a different setting the

ENTAIL↓ property would be much more visible.

The analysis of entailment given above implicitly uses the notion of so called Strawson

Entailment (Von Fintel [1999]). This is based on the notion of Strawson-Validity :
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SE 1 (Strawson-Validity). An inference p1, p2, p3, . . . pn |= q is Strawson-Valid iff

the inference p1, p2, p3, . . . pn, S |= q is (classically) valid, where S is a premise stating

that the presuppositions of all the statements involved are satisfied.

Von Fintel derives this notion from Strawson’s proposal on how to make a classical

inference, from Every S is P to Some S is P valid, within the framework of modern

logic. As Von Fintel writes, Strawson’s idea was to assume, that every natural language

quantifier carried a (semantic) presupposition of existence with respect to their domain.

So a Strawson Downward Entailment could be defined as:

SE 2 (Strawson Downward Entailment). A function F is Strawson-DE iff

for all p, q such that p⇒ q and F(p) is defined: F(q)⇒ F(p).

Given the experimental setting which drawn particular attention to the presuppositions,

and the definitions above, I believe that assuming, that before in ENTAIL conditions is

Strawson-DE explains the data obtained in these conditions.

Until

The results for until are much more interesting. This is mainly because of the observed

differences between the time lags. We shall start by reflecting on the summarised results.

Until seems to be not EMON↑, not EMON↓, not PMON↑, not PMON↓, probably not

ENTAIL↓, but it is ENTAIL↑. Comparing these results with the Table 3.2 we obtain:

Definition EMON↑ EMON↓ PMON↑ PMON↓ ENTAIL↑ ENTAIL↓
UNTexp No No No No Yes No

These are exactly the conditions satisfied by the definition UNT2. Note that this is not

the widely assumed definition of until , but rather the one with the end point encoded

in the semantics.

This very clean image is immediately shattered at the moment in which we move our

attention to the results in the different time lags. The differences in PMON↑ and EMON↓
are clearly not accidental (see Table 3.6 for a remainder). The differences are in favour

of “Yes” answer in the short lag. Such a result can be interpreted as indicating that

“No” answer was more costly. As written before, it was repeatedly shown, that such a

cost is connected to the pragmatic inferences such as scalar implicature (compare e.g.

De Neys and Schaeken, Bott and Noveck). Given all this, we should interpret differences

between the lags in PMON↑ and EMON↓ conditions as indicating that some sort of a

pragmatic inference is playing a part.
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Pragmatic meaning of an expression is triggered by its use and is not a part of its

semantics. Therefore we should investigate what the proper semantics for until could

be, assuming that the results in question are a consequence of pragmatic phenomena of

some sort.

Unfortunately, simply treating the results, as if the proper definition for until would be

EMON↓ and PMON↑ will not work, because there is no definition with such properties.

Also note, that PMON properties in the definitions UNT1 and UNT2 follow from the

constraints put on the temporal order of event arguments. If we do not want to alter

the definition of until completely, we have to stick to either non-PMON or PMON↓-
PMON↑ is of course neither. Similar remarks can be made about EMON properties.

Therefore, we should begin the analysis by examining the items from the crucial con-

ditions (a relevant timetable is the one presented in Section 3.2.1 under “Variables and

Materials”).

PMON↑

(3A) Alex from the small group was jumping until games in groups.

(3B) Alex from the small group was jumping until lunch.

EMON↓

(4A) Sophie from the small group was telling stories until fun and games.

(4B) Sophie from the small group was telling stories until games in groups.

Obviously there is a similarity between those two items. In both cases, sentence A in the

temporal clause refers to an event which precedes the relevant event from the sentence

B. There is also another similarity: in both items the events mentioned in the temporal

clause are co-temporal. In the case of PMON↑ the event “games in groups” ends exactly

when the next event begins. In the case of EMON↓ the second event is a part of the

first event.

This having said, one obvious interpretation appears. Until does not have an end point

encoded in its semantics. However, such an end point almost always appears as an impli-

cature which until triggers. So, when a subject encountered one of the aforementioned

items in the long lag, she interpreted until as until and no longer. The differences in the

short lag show, that sometimes the derivation of the upper bound was too difficult, and
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subjects were forced into literal reading, in which there is no end point, so the subjects

couldn’t decide, until what time exactly the event in question took place.

It is worth noting, that such a treatment of until is in line with the quite common

interpretation of numeral modifier up to, which bears close resemblance to until (see e.g.

Nouwen [2008], Blok [2015]). All this seems a strong argument in favour of the definition

UNT1.

However, there is one problem if we chose UNT1 as the proper definition of until . This

definition is EMON↑, but the subjects did not treat until as such. Why is that? Again,

consider an EMON↑ item:6

(5A) Jacob from the small group was drawing until games in groups.

(5B) Jacob from the small group was drawing until fun and games.

Since 5A is true, we know that it means (see Intuitions 1.4):

(a) there is a time t1 at which Jacob is drawing,

(b) there is a time t3, at which games in groups takes place,

(c) t3 succeeds t1,

(d) for all such times t2 which are in between t1 and t3, Jacob is also drawing in t2

This might seem odd at first, but none of the conditions (a) - (d) ensures that 5B must

be true when 5A is. Recall that fun and games are earlier than games in groups. We

only know that Jacob started drawing at some point which was earlier than games in

groups, but this does not necessarily means that it was earlier than fun and games.

He might have started drawing during fun and games. This is particularly strange,

since we’ve shown that UNT1 is EMON↑. It seems that our logic can not express such

counterexample.7

Supposedly the same applies to PMON↓. Such a result is quite interesting, since it

shows that the logical analysis presented above is too coarse grained to account for all

the features of the discussed operators. We shall now proceed to the last part of the

discussion.

6This explanation was suggested to me by Rick Nouwen during the presentation at the ROSE seminar.
7For instance, take the structure described under A working example in Section 2.2. Note that

f v e is similar to our case of games in groups being a subevent of fun and games. But neither
UNT1(e, f) → UNT1(e, e) nor UNT1(f, f) → UNT1(f, e) aren’t counterexamples.
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3.3.2 Possible confounds

Most of the confounds were discussed above as a part of the interpretation. The most

serious ones concern the particular design of the experiment.

First, the way the schedule was presented (via the timetables), inflicted a very specific

temporal ontology on the subjects. The events were of a discrete nature, and they

had a clear start and end points. One might argue, that time is dense and temporal

prepositions we use, somehow reflect this. Since the setting in the experiment clearly

isn’t dense, the use of the temporal operators might be distorted. However, even if

this had any real influence on the results, it didn’t affect what we wanted to measure.

Inferential properties shouldn’t be susceptible to any of the factors mentioned above.

As was already mentioned, suspiciously big amount of subjects answered the control

questions incorrectly. This could be because of various reasons. First of them concerns

the names used. Throughout the paper only several names (with group indicator) were

used, so the subjects could put up a mental representation of each child. This was meant

to help answer the questions, but it could have unwanted influence which might show

in answers to control questions. E.g. if one gets particular information about the Suzy

from the middle group, they might feel they now better whether she had dinner at one

o’clock.

The second reason might be connected to the tense of the sentences used in the items.

Sentences in the target items were put in past tense, in the control items this was

present tense. Possibly this could influence subjects’ readings by suggesting that these

facts differ in some aspect from the ones in past tense. Such contrast may provoke

hesitation: what happened in the past was given as a fact, what happens in the present

needed interpretation. This noise could have influenced the results, but it is difficult to

judge how much.

Another objection is rather quite a general one. Possibly no linguistic item exists without

a reason. In Polish, there are at least three ways of expressing the relations denoted by

before and until . Usually the use of these expressions is not as uniform as it was in the

experiment. Because of this, some of the items might not have been as natural, as they

would be in spoken language. This does not seem to be a very serious objection. The

results show, that we managed to get reasonable answers.

The last remark probably couldn’t have any influence on the results, but is worth stating

for some other reasons. Judging on the feedback from the participants, the experiment

was long and tiresome. One might argue, that experiments exploring human cognitive



Chapter 3. Experimental Study 48

abilities, have to be cognitively demanding. I believe, that for the sake of future research,

one should make them as easy and pleasant as possible.
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Conclusion

In the paper several things were obtained. First, I described the aim of the work and

stated motivations. Then, a logical event-framework (due to Kamp [1979]) was pre-

sented. In this framework, I reconstructed some definitions for two temporal operators

(before and until) in a uniform way. Three types of monotonicity properties for these

operators were proposed. For each of the operators, certain monotonicity properties

were shown. In turn, this allowed for stating precise experimental predictions.

I tested these predictions in a study using a paradigm similar to the one devised by

Chemla and Bott [2014]. In addition, the subjects’ use of cognitive abilities was con-

trolled by introducing two time groups. The results showed differences between the two

operators.

Before seems to be a downward entailing operator which triggers presuppositions - this

is best explained by using the notion of Strawson Entailment. Until seems to be a more

complex operator, which has a lexicalised pragmatic component. The differences within

the operators were revealed, by varying the cognitive load the subjects had to endure.

This shows, that even when using simple temporal prepositions, many different cognitive

processes are involved.
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Period Structures

Another way of obtaining instants is through an intermediate period structure. Define

equivalence relation on events in such a way, that one event is equivalent to the other

when they go on at the same time. Formally:

P 1. ≈= λeλe′.e v e′ ∧ e′ v e

So a period will be an equivalence class over events. A set of periods is a set of equivalence

classes under this relation: [E]≈. Because of this, instead of writing (e.g.): π1 = {a} we

could also write: [a]≈. Since periods are equivalence classes over events, there is quite a

natural way of creating a structure over such periods.

P 2. π1 < π2 iff ∃e ∈ π1∃e′ ∈ π2(e < e′)

One period precedes the other when an underlying event of the first period precedes an

event in the other period.

P 3. π1© π2 iff ∃e ∈ π1∃e′ ∈ π2(e© e′)

Similarly, one period overlaps the other when an underlying event of the first period

overlaps an event in the other period.

P 4. π1 v π2 iff ∃e ∈ π1∃e′ ∈ π2(e v e′)

And finally, one period is a temporal subset of the other when an underlying event from

the first period is a temporal subset of an event in the other period.

This way we have obtained a generated period structure:

P = 〈[E]≈, <,©,v, 〉

50
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.

From such structure we can get instants in a similar way to what was shown above. We

shall define quasi-filters which corresponds to instants.

A quasi-filter in E is a set F ⊆ E such that: ∀π1∀π2 ∈ F (π1© π2).

We shall constrain ourselves only to quasi-filters which are non-empty and which can

not be extended any further to a quasi-filter. These are called maximally consistent

quasi-filters. Let:

I = 〈I,<〉 where:

• I is a set of all maximally consistent quasi-filters in P

• i1 < i2 iff ∃π1 ∈ i1∃π2 ∈ i2(π1 < π2)

We could convince ourselves that this structure is quite the same (isomorphic?) as the

previous one by considering the enriched working example from the section 2:

Let E = {a, b, c, d, e, f, g, h}. Let relations between events in E be:

• Temporal precedence: a < c, c < e, d < f, f < g

• Subevent relation: a v b, b v a, g v h, h v g

• Overlap relation: c© d, d© e, e© f

Periods: π1 = {a, b}, π2 = {c}, π3 = {d}, π4 = {e}, π5 = {f}, π6 = {g, h}.
Time points: t1 = {π1}, t2 = {π2, π3}, t3 = {π3, π4}, t4 = {π4, π5}, t5 = {π6}.
Again: t1 < t2 < t3 < t4 < t5.

Note, that when using this approach the definitions for before and until have to be

altered in such a way which would take periods into account. E.g.:

BEF ′0(a, b) ≡df ∃t1[([a]≈ ∈ t1) ∧ ∀t2(([b]≈ ∈ t2)→ (t1 < t2))]
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Experimental Items

Below the way of obtaining experimental items is presented. Recall that the experiment

was conducted in Polish, below the reader may see a translated version.

Target Items and Fillers

All target items were of the form:

X [activity ] [temporal operator ] [timetable item]

Where:

• X was the name of a child with the indication to which group it belong (there

were two groups: the middles and the smalls). The following names were used:

Jacob, Sophie, Alex, Mary, Suzy, John, Tom, Peter. First four were used in the

small group, the rest in the middle group.

• Examples of activities used: drinking water, playing tag, laughing, drawing, run-

ning, playing with dolls, coughing.

• Temporal operators were either before, or until .

• For a timetable used in the small group see Section 3.2.1. The other one was

constructed in a similar manner.

Fillers were constructed in a similar way, but different temporal prepositions were used

(after, while).
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Controls

Sentences used in control items differed accordingly to whether they were used as an

assumption or as a consequence. The sentences used as assumption were all of the form:

It is [hour ]. [name] is in the [group]

The sentences used as consequence were all of the form:

[name] [group indicator ] is [doing ] [timetable item]

name, group indicator and group were the same for each control item. doing indicates

a verb used to describe that the child in question is taking part in particular activity

from the timetable. Controls were balanced for truth and falsity.
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