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Abstract

In this thesis, we consider a gametheoretical model of income taxation. We take a closer

look at the strategy of the central authority with respect to the audit probability of

tax returns, given the fact that taxpayers may underdeclare their income. Different

cut-off rules are compared to investigate which one optimizes the net tax revenue of the

central authority. We conclude by giving the optimal strategy, depending on specific

conditions, and apply this result to the Ukrainian and Dutch taxation systems.
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1 Introduction

Income tax evasion is a subject on which much research has been done. Allingham and

Sandmo (1972) provided one of the first models, analyzing the decision of an individual

taxpayer whether to avoid taxes by underreporting [1]. Their model, however, does not

take into account the strategy of the central authority, whose net tax revenue is formed by

the paid income taxes. The central authority is able to determine a strategy, depending

on several factors. First, the taxation system that they handle can be proportional, which

means that every taxpayer pays the same proportion on taxes, independent of their income.

On the other hand, the proportion that should be paid on taxes could increase or decrease

by an increasing income, characterizing a respectively progressive or regressive system. The

fourth option covers a system in which every taxpayer pays the same constant amount to the

central authority, independent of their income. Around the same time that Allingham and

Sandmo published their model, Srinivasan (1973) wrote a model that does take into account

the possibility for the central authority to choose a tax system [8]. He showed that, given a

fixed income distribution, a proportional tax system that yields the same net tex revenue as

a progressive tax system if every taxpayer declares his true income, will yield a higher net

tax revenue in the presence of tax evasion.

Besides the nature of a tax system, central authorities often choose to organize audits to check

if taxpayers underdeclared their income. If a taxpayer gets gaught for tax evasion, there is a

corresponding fine. Of course, there is no time and money to check every taxpayer. There-

fore, in determining their strategy, the central authority picks an audit probability. This

probability could be constant, as in the model of Srinivasan (1973) and Singh (1973) [8][7].

Also, Singh (1973) shows that if the central autority wants to optimize the net tax revenue

of a progressive tax system, the audit probability should be greater than 1/3, independent

of the level of income.

On the other hand, arguments can be formulated that advocate an audit probability depen-

ding on the declared income. Reinganum and Wilde (1985) were the first one to intoduce

a 1-step cut-off rule, where taxpayers with a declared income below a specific threshold get

audited with probability p0, while taxpayers with a declared income above this threshold

encounter an audit probability p1. They claim that the optimal policy for a central author-

ity reduces to the form where p0 = 1 and p1 = 0 and that this strategy dominates random

audits [5]. Vasin and Panova (2000) showed also that the optimal strategy is a 1-step cut-off

rule, but then with p0 = p̂, where p̂ is the audit probability such that taxpayers declare
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their true income [10]. Both articles assume decreasing audit probabilities as the income

increases, which seems to coincide with the findings of Yitzhaki (1974) and Dzhumashev and

Gahramanov (2011). They found that there is a positive relationship between tax rate and

tax evasion [11][3]. Assuming that this relationship also holds for due tax and tax evasion,

taxpayers with a higher income are less inclined to evade tax, which leads to the optimal au-

dit policy to be decreasing. On the other hand, Levaggi and Menoncin (2013) found evidence

that the mentioned relationship is under specific conditions negative instead of positive [4].

In this thesis, we will follow the line of reasoning of Vasin and Panova (2000). They pro-

vide a tax model in which both the due tax and the penalty have a proportional structure,

and in which the audit probability depends on the declared income [10]. The purpose of

this thesis is to investigate the optimal audit probability, such that the net tax revenue of

the central authority is optimized. First, we will explain the general model and the corre-

sponding strategies of the taxpayer and the central authority. Here, we will also introduce

the mathematical framework of a cut-off rule with respect to the audit probability. After

that, we will focus on the proportionate tax and fine structure. We will compute the audit

probability such that there is no tax evasion and proof a theorem which gives us the net tax

revenue optimizing strategy of a centeral authority.
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2 The model

In this thesis, we consider a game theoretical tax evasion model with two players, namely

the individual taxpayer and the central authority that collects tax. We assume that the

group of taxpayers has a distribution of income I ≥ 0 which is given by an arbitrary density

v(I). The declared income Id represents the behaviour of the taxpayer and depends on the

true income I and the auditing probability. The central authority determines this auditing

probabilities P (·), where an audit always reveales the true income. If a taxpayer gets caught

cheating, the due penalty is determined by the function F (I, Id), which includes the unpaid

tax.

2.1 Strategies of players

First, consider the strategy of an individual taxpayer. The taxpayer can choose between

declaring his true income I, or declaring a lower income Id. Depending on if he gets caught

by the central authority, this leads to the following two possible revenues:

a) If the taxpayer gets caught cheating, his revenue equals I − T (Id)− F (I, Id).

b) If a taxpayer doesn’t get caught, his revenue is equal to I − T (Id). Note that this could

either mean that he cheated, but didn’t get audited, or that he declared his true income.

The rule of divide and conquer [6] tells us the following:

E(B) = E(B|D)P (D) + E(B|DC)P (DC). (1)

Because the chance of getting caught equals P (·), we get:

E(A) = E(A|caught)P (caught) + E(A|not caught)P (not caught)

=
[
I − T (Id)− F (I, Id)

]
P (·) +

[
I − T (Id)

](
1− P (·)

)
= I − T (Id)− P (·)F (I, Id). (2)

The optimal strategy of a taxpayer is choosing a Id ∈ [0, I] such that his expected revenue

and thus (2) is maximized. Id is therefore determined by the solution to the problem:

Id
(
I, P (·)

)
→ max

{
I − T (Id)− P (·)F (I, Id)

}
. (3)

The central authority, on the other hand, chooses its strategy by picking an audit probability

P (·) under a specific tax and fine structure. If c equals the cost of an audit, the net tax
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revenue R of the central authority, depending on the choice of P (·), is given by:

R
(
P (Id)

)
=

∫
I

{
T
(
Id(I, P (Id))

)
+ P (Id)

[
F
(
I, Id(I, P (Id))

)
− c
]}

dv(I). (4)

The central authority wants to find the P (·) such that (4) is maximized. In this thesis, we

focus on this problem.

2.2 Cut-off rule

The central authority could handle a specific audit policy, based on the idea of a cut-off rule.

As we saw in the introduction, a cut-off rule gives a prescription which audit probability

to handle in which case, depending on the income. Given a 1-step cut-off rule, the audit

probability equals p0 if the income is below a specific threshold I ′, and is equal to p1 if

the income is larger or equal than I ′. In other words, a general 1-step cut-off rule looks as

follows:

P (I ′) =

p0 if Id < I ′,

p1 if Id ≥ I ′.
(5)

This idea can be generalized to a k-step cut-off rule:

P (I1, ..., Ik) =


p0 if Id < I1,

pl if Il ≤ Id < Il+1,

pk if Id ≥ Ik,

l = 1, ..., k − 1. (6)

In this thesis, we focus on decreasing audit probabilities. In other words, we assume that

p0 ≥ ... ≥ pk.
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3 Proportionate tax and fine structure

We will consider the following proportionate tax and fine structure:

T (Id) = tId, F (I, Id) = (f + t)(I − Id), (7)

with t, f ∈ R+. This leads to the following expected revenue of a taxpayer after tax and

fines:

E(A) = I − tId − P (·)(f + t)(I − Id). (8)

Given (7), the net tax revenue for the central authority equals:

R
(
P (·)

)
=

∫
I

{
tId + P (·)

[
(f + t)(I − Id)− c

]}
dv(I). (9)

3.1 No tax evasion

The central authority could strive after different goals. One possibility is to make sure that

there is no tax evasion. The following proposition determines the minimum audit probabil-

ity, such that every taxpayer declares his true income.

Proposition 1. If P (·) ≥ t

f + t
for any Id < I, then Id

(
I, P (·)

)
= I.

Proof. Let’s take a look at the expected revenue E(A) of a taxpayer after taxes and fines,

which is given by (8). If a taxpayer declares his true income, then Id = I and (8) equals

I(1 − t). If, however, a taxpayer underdeclares his income by declaring Id, his expected

income after taxes and fines equals I− tId−P (·)(f + t)(I−Id). Making sure that a taxpayer

declares his true income is therefore achieved by satisfying the following inequality:

I(1− t) ≥ I − tId − P (·)(f + t)(I − Id). (10)

Rewriting this condition gives us P (·)(f + t)(I − Id) ≥ t(I − Id) and so:

P (·) ≥ t

f + t
. (11)

Therefore, if P (·) ≥ t

f + t
for any Id < I, then Id

(
I, p(·)

)
= I.

�

Let us denote the given threshold probability by p̂ :=
t

f + t
. Then, for any P (·) ≥ p̂,
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taxpayers declare their true income. Because every audit brings costs c, the central authority

wants to choose an audit probability as small as possible. Therefore, if the goal is to prevent

tax evasion, the optimal strategy is P (p̂), where every taxpayer gets audited with chance p̂.

3.2 Optimizing the net tax revenue

Of course, the absence of tax evasion seems like a good target for the central authority.

However, it is not said that this strategy will maximize their net tax revenue. As we saw in

section 2.2, another strategy is using a specific cut-off rule. Consider the following class of

1-step cut-off rules:

P̃ (I ′) =

p̂ if Id < I ′,

0 if Id ≥ I ′,
(12)

with p̂ as defined in section 3.1. The following theorem shows us that the optimal strategy

of the central authority always belongs to this class of 1-step cut-off rules. In other words,

the theorem shows that any k-step strategy of the form (6) is dominated by a 1-step strategy

(12).

Theorem. If ∫
I≥I′

{
t(I − I ′)− p̂c

}
dv(I) ≥ 0 (13)

for any I ′, then the strategy P (p̂) is optimal for the central authority. If (13) doesn’t hold,

then the optimal strategy is a 1-step cut-off rule of the form (12).

Proof. Consider the k-step cut-off rule, given by (6), with Ik+1 = ∞. We assume that

pi ≤ p̂ for i = 0, ..., k and thus p̂ ≥ p0 ≥ ... ≥ pk. For l = 1, ..., k− 1, we define Īl as the true

income value, such that the expected income of a taxpayer after taxes and fines is the same

whether he declares Il or Il+1. Therfore, looking at (8),

tIl + pl(f + t)(Īl − Il) = tIl+1 + pl+1(f + t)(Īl − Il+1). (14)

Rewriting this to get an expression for Īl, we get:

Īl
[
pl(f + t)− pl+1(f + t)

]
= tIl+1 − tIl + pl(f + t)Il − pl+1(f + t)Il+1,
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and so

Īl =
tIl+1 − tIl + pl(f + t)Il − pl+1(f + t)Il+1

(pl − pl+1)(f + t)

= p̂
Il+1 − Il
pl − pl+1

+
plIl − pl+1Il+1

pl − pl+1

. (15)

Note that Īl > Il, because

Īl =
tIl+1 − tIl + pl(f + t)Il − pl+1(f + t)Il+1

(pl − pl+1)(f + t)

=
Il
[
(f + t)pl − t

]
− Il+1

[
(f + t)pl+1 − t

]
(pl − pl+1)(f + t)

>
Il
[
(f + t)pl − t

]
+ Il+1t

(pl − pl+1)(f + t)

>
Il
[
(f + t)(pl − pl+1)− t

]
+ Ilt

(pl − pl+1)(f + t)

=
Il(pl − pl+1)(f + t)

(pl − pl+1)(f + t)

= Il. (16)

Let Ī1 < Ī2 < ... < Īk−1 and Īk =∞. Given Īl, we would like to variate the audit probabilities

and see which values of pi optimize the net tax revenue for the central authority. Therefore,

we determine a variation d = (d0, ..., dk) such that Īl stays the same for any k-step strategy

Px(I1, ..., Ik) =

p0(x) if Id < I1,

pl(x) if Il ≤ Id < Il+1,

l = 1, ..., k, (17)

with pi(x) = pi + xdi. Assume that p0(x) ≥ ... ≥ pk(x) ≥ 0.

Filling in this strategy in the expression for Īl gives us the following equation:

Īl = p̂
Il+1 − Il

pl + xdl − (pl+1 + xdl+1)
+

(pl + xdl)Il − (pl+1 + xdl+1)Il+1

pl + xdl − (pl+1 + xdl+1)
. (18)

Rewriting this in terms of pl gives us:

pl = p̂
Il+1 − Il
Īl − Il

+ pl+1
Īl − Il+1

Īl − Il
+ x

dl+1(Īl − Il+1)− dl(Īl − Il)
Īl − Il

. (19)

Because Īl has to remain the same for any x, so does (19). This only holds if the term
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multiplied by x equals zero. Therefore,

pl = p̂
Il+1 − Il
Īl − Il

+ pl+1
Īl − Il+1

Īl − Il
(20)

and

dl = dl+1
Il+1 − Īl
Il − Īl

, (21)

with l = 1, ..., k − 1. For these values of l, we get the following expression for pl(x):

pl(x) = pl + xdl

= p̂
Il+1 − Il
Īl − Il

+ pl+1
Īl − Il+1

Īl − Il
+ xdl+1

Il+1 − Īl
Il − Īl

= p̂
Il+1 − Il
Īl − Il

+ pl+1(x)
Īl − Il+1

Īl − Il
. (22)

To take a look at the net tax revenue of the central authority under strategy Px(I1, ..., Ik),

we first have to determine the behaviour of a taxpayer under this strategy:

Id
(
Px(I1, ..., Ik)

)
=


I

(0)
d if I < I1,

I
(1)
d if I1 ≤ I < Ī1,

I
(l+1)
d if Īl ≤ I < Īl+1,

l = 1, ..., k − 1. (23)

For the central authority, this yields the following net tax revenue:

R
(
Px(I1, ..., Ik)

)
=

∫ I1

0

{tI(0)
d + (p0 + xd0)

[
(f + t)(I − I(0)

d )− c
]
} dv(I)

+

∫ Ī1

I1

{tI(1)
d + (p1 + xd1)

[
(f + t)(I − I(1)

d )− c
]
} dv(I)

+

∫ Ī2

Ī1

{tI(2)
d + (p2 + xd2)

[
(f + t)(I − I(2)

d )− c
]
} dv(I) + ...

+

∫ ∞
Īk−1

{tI(k)
d + (pk + xdk)

[
(f + t)(I − I(k)

d )− c
]
} dv(I). (24)

We will compute the derivative of this revenue with respect to x.

dR
(
Px(I1, ..., Ik)

)
dx

=

∫ I1

0

d0

[
(f + t)(I − I(0)

d )− c
]

dv(I)

+

∫ Ī1

I1

d1

[
(f + t)(I − I(1)

d )− c
]

dv(I)
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+

∫ Ī2

Ī1

d2

[
(f + t)(I − I(2)

d )− c
]

dv(I) + ...

+

∫ ∞
Īk−1

dk
[
(f + t)(I − I(k)

d )− c
]

dv(I). (25)

This derivative is independent of x, and therefore R
(
Px(I1, ..., Ik)

)
is maximized at one of

the boundaries of x, which is xmax or xmin. Let’s determine the strategies of the central

authority at those boundaries.

By definition, pi(x) = pi + xdi for i = 0, ..., k. Because all the di are multiplied by the same

factor x, we may divide them by dk and absorb this in the factor x. This allows us to take

dk = 1 without loss of generality, giving us pk(x) = pk + x. We will first determine the value

of pk(x) in the boundaries of x, which will lead us to the values of pi(x) in this boundaries

for i = 0, ..., k − 1.

Because of the assumption that p0(x) ≥ ... ≥ pk−1(x) ≥ pk(x) ≥ 0, the value of xmax makes

the inequality pk−1(x) ≥ pk(x) an equality. Rewriting (22) gives us:

p̂ =
Īl − Il
Il+1 − Il

pl(x) +
Il+1 − Īl
Il+1 − Il

pl+1(x)

= λpl(x) + (1− λ)pl+1(x), (26)

with λ =
Īl − Il
Il+1 − Il

. Picking l = k−1 and x = xmax, (26) gives us pk(xmax) = pk−1(xmax) = p̂.

By backwards induction with base case k, we will show that pl(xmax) = p̂ for l = 0, ..., k.

Suppose that pl+1(xmax) = p̂. Then,

pl(xmax) = p̂
Il+1 − Il
Īl − Il

+ p̂
Īl − Il+1

Īl − Il
= p̂, (27)

for l = 0, ..., k. Therefore, if R
(
Px(I1, ..., Ik) is maximized at boundary xmax, it is maximized

by strategy P (p̂).

Because pk(x) ≥ 0, the minimum value of x corresponds to pk(xmin) = 0. The following

lemma gives us the value for any pl(x), corresponding to xmin.

12



Lemma 1. In a k-step strategy, given that αl =
Il+1 − Il
Īl − Il

, we have:

pl(xmin) = p̂βl, (28)

with

βl =
k−1∑
i=l

αi −
k−1∑
i,j=l
i 6=j

αiαj +
k−1∑

i,j,m=l
i 6=j 6=m

αiαjαm − ...+ (−1)k+1−lαl...αk−1. (29)

Notice that βk = 0. Without loss of generality, we may take β0 = 1 and absorb this value

in the βl. Therefore, if R
(
Px(I1, ..., Ik)

)
is maximized at boundary xmin, it is maximized by

strategy

Pβ(I1, ..., Ik) =


p̂ if Id < I1,

βlp̂ if Il ≤ Id < Il+1,

0 if Id ≥ Ik,

l = 1, ..., k − 1. (30)

Let’s take a look at the behaviour of a taxpayer under strategy Pβ(I1, ..., Ik). We seperate 4

cases.

a) Suppose I ∈ [0, I1). Because the audit probability is equal to p̂ for a declared income in

this interval, a taxpayer declares his true income by proposition 1.

b) Suppose I ∈ [I1, Ī1), so the income is between I1 and the true income for which it doesn’t

matter if a taxpayer declares I1 or I2. In this case, the taxpayer will pick a declared

income Id = I1. Because of (30), this corresponds to an audit probability of β1p̂.

c) Suppose I ∈ (Īl, Īl+1) for l = 0, ..., k − 1. Because I > Īl, it is better for a taxpayer to

declare Il+1 than Il. Because I < Īl+1, it is also better for him to declare Il+1 than Il+1.

Therefore, the declared income equals Id = Il+1. By (30), this corresponds to an audit

probability βl+1p̂. Note that βk = 0.

d) If I = Īl, it doesn’t matter if the taxpayer declares Il or Il+1. We assume that he declares

the value closest to the actual income:

Id =

Il if |I − Il| ≤ |I − Il+1|,

Il+1 if |I − Il| > |I − Il+1|.
(31)
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Next, we can compute the net tax revenue under stategy Pβ(I1, ..., Ik) := Pβ.

R(Pβ) =

∫ I1

0

{
tI − p̂c

}
dv(I) +

∫ Ī1

I1

{
tI1 + β1p̂

[
(f + t)(I − I1)− c

]}
dv(I)

+

∫ Ī2

Ī1

{
tI2 + β2p̂

[
(f + t)(I − I2)− c

]}
dv(I) + ...

+

∫ Īk−1

Īk−2

{
tIk−1 + βk−1p̂

[
(f + t)(I − Ik−1)− c

]}
dv(I) +

∫ ∞
Īk−1

tIk dv(I)

=

∫ I1

0

{
tI − p̂c

}
dv(I) +

∫ Ī1

I1

{
(1− β1)tI1 + β1(tI − p̂c)

}
dv(I)

+

∫ Ī2

Ī1

{
(1− β2)tI2 + β2(tI − p̂c)

}
dv(I) + ...

+

∫ Īk−1

Īk−2

{
(1− βk−1)tIk−1 + βk−1(tI − p̂c)

}
dv(I) +

∫ ∞
Īk−1

tIk dv(I). (32)

To continue the rewriting, we will make use of the following lemma.

Lemma 2. For l = 1, ..., k,

(1− βl)tIl + βl(tI − p̂c) = (1− β1)tI1 + (β1 − β2)tĪ1 + ...

+ (βl−1 − βl)tĪl−1 + βl(tI − p̂c). (33)

We will rewrite (32) using lemma 2. Because βk = 0, we see:

R(Pβ) =

∫ I1

0

{
tI − p̂c

}
dv(I) +

∫ Ī1

I1

{
(1− β1)tI1 + β1(tI − p̂c)

}
dv(I)

+

∫ Ī2

Ī1

{
(1− β1)tI1 + (β1 − β2)tĪ1 + (β2 − β3)tĪ2 + β2(tI − p̂c)

}
dv(I) + ...

+

∫ Īk−1

Īk−2

{
(1− β1)tI1 + (β1 − β2)tĪ1 + ...+ (βk−2 − βk−1)tĪk−2

+ βk−1(tI − p̂c)
}

dv(I) +

∫ ∞
Īk−1

tIk dv(I)

= (1− β1 + β1 − β2 + β2 − ...+ βk−1)

∫ I1

0

{
tI − p̂c

}
dv(I)
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+ (1− β1)

∫ Īk−1

I1

tI1 dv(I) + (β1 − β2)

∫ Īk−1

Ī1

tĪ1 dv(I) + ...

+ (βk−2 − βk−1)

∫ Īk−1

Īk−2

tĪk−2 dv(I)

+

∫ Ī1

I1

(β1 − β2 + β2 − ...− βk−1 + βk−1)(tI − p̂c) dv(I)

+

∫ Ī2

Ī1

(β2 − β3 + β3 − ...− βk−1 + βk−1)(tI − p̂c) dv(I) + ...

+

∫ Īk−1

Īk−2

βk−1(tI − p̂c) dv(I) +

∫ ∞
Īk−1

tIk dv(I)

= (1− β1)
[ ∫ I1

0

{
tI − p̂c

}
dv(I) +

∫ Īk−1

I1

tI1 dv(I)
]

+ (β1 − β2)
[ ∫ Ī1

0

{
tI − p̂c

}
dv(I) +

∫ Īk−1

Ī1

tĪ1 dv(I)
]

+ ...

+ (βk−2 − βk−1)
[ ∫ Īk−2

0

{
tI − p̂c

}
dv(I) +

∫ Īk−1

Īk−2

tĪk−2 dv(I)
]

+ βk−1

∫ Īk−1

0

{
tI − p̂c

}
dv(I) +

∫ ∞
Īk−1

tIk dv(I). (34)

By lemma 2 for l = k, with βk = 0, we know:

tIk = (1− β1)tI1 + (β1 − β2)tĪ1 + ...+ (βk−2 − βk−1)tĪk−2 + βk−1tĪk−1. (35)

Therefore, we continue rewriting (34) as follows:

R(Pβ) = (1− β1)
[ ∫ I1

0

{
tI − p̂c

}
dv(I) +

∫ ∞
I1

tI1 dv(I)
]

+ (β1 − β2)
[ ∫ Ī1

0

{
tI − p̂c

}
dv(I) +

∫ ∞
Ī1

tĪ1 dv(I)
]

+ ...

+ (βk−2 − βk−1)
[ ∫ Īk−2

0

{
tI − p̂c

}
dv(I) +

∫ ∞
Īk−2

tĪk−2 dv(I)
]

+ βk−1

[ ∫ Īk−1

0

{
tI − p̂c

}
+

∫ ∞
Īk−1

tĪk−1 dv(I)

= (1− β1)R
(
P̃ (I1)

)
+

k−1∑
l=1

(βl − βl+1)R
(
P̃ (Īl)

)
. (36)

We notice that R(Pβ) is a convex combination of 1-step strategies of the form (12). If we
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define:

R
(
P̃ (I∗)

)
= max

{
R
(
P̃ (I1)

)
, R
(
P̃ (Ī1)

)
, ... , R

(
P̃ (Īk−1)

)}
, (37)

then:

R(Pβ) ≤ (1− β1)R
(
P̃ (I∗)

)
+

k−1∑
l=1

(βl − βl+1)R
(
P̃ (I∗)

)
= R

(
P̃ (I∗)

)
. (38)

We see that strategy Pβ is dominated by the 1-step strategy P̃ (I∗). Therefore, the net tax

revenue is either optimized by P (p̂) (for boundary xmax) or P̃ (I∗) (for boundary xmin). Let’s

take a look at the difference of the revenues of these strategies.

R
(
P (p̂)

)
−R

(
P̃ (I∗)

)
=

∫ ∞
0

{
tI − p̂c

}
dv(I)

−
[ ∫ I∗

0

{
tI − p̂c

}
dv(I) +

∫ ∞
I∗

tI∗ dv(I)
]

=

∫ ∞
I∗

{
t(I − I∗)− p̂c

}
dv(I). (39)

If (13) holds, then (39) ≥ 0 and strategy P (p̂) yields the highest net tax revenue of all

possible k-step strategies. If, however, (13) doesn’t hold, then (39) < 0 and strategy P̃ (I∗)

is the optimal strategy of all possible k-step strategies. This completes the proof of the

theorem.

�

Now that we have proven the theorem, we will prove the lemmas used to prove it.

Proof of lemma 1. We will prove the lemma by backwards induction. From the lemma,

we notice directly that pk(xmin) = 0, which equals the value that we found ourselves. Also,

pk−1(xmin) = p̂αk−1 which equals the value that we find computing pk−1(xmin) using equation

(22). Next, assume that (28) holds for pl+1(xmin). Then, because of (22),

pl(xmin) = p̂αl + pl+1(xmin)(1− αl)
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= p̂αl + (1− αl)p̂

 k−1∑
i=l+1

αi −
k−1∑

i,j=l+1
i 6=j

αiαj +
k−1∑

i,j,m=l+1
i 6=j 6=m

αiαjαm − ...

+ (−1)k−lαl+1...αk−1



= p̂

k−1∑
i=l

αi −
k−1∑

i,j=l+1
i 6=j

αiαj +
k−1∑

i,j,m=l+1
i 6=j 6=m

αiαjαm − ...+ (−1)k−lαl+1...αk−1



− p̂

 k−1∑
i=l+1

αlαi −
k−1∑

i,j=l+1
i 6=j

αlαiαj +
k−1∑

i,j,m=l+1
i 6=j 6=m

αlαiαjαm − ...

+ (−1)k+1−lαlαl+1...αk−1



= p̂

k−1∑
i=l

αi −
k−1∑
i,j=l
i 6=j

αiαj +
k−1∑

i,j,m=l
i 6=j 6=m

αiαjαm − ...+ (−1)k+1−lαl...αk−1

 , (40)

which equals (28). This finishes the proof of lemma 1.

�

Proof of lemma 2. We will prove lemma 2 by induction. We see directly that the claim

holds for the base case l = 1. Suppose that (33) holds for l = i. Then,

(1− βi)tIi = (1− β1)tI1 + (β1 − β2)tĪ1 + ...+ (βi−1 − βi)tĪi−1. (41)

Note that, by lemma 1,

βi = αi + (1− αi)βi+1, (42)

with αi =
Ii+1 − Ii
Īi − Ii

. We will use this to show that (33) holds for l = i+ 1.

(1− βi+1)tIi+1 = (1− βi+1)t(Ii+1 − Ii) + (1− βi+1)tIi

= αi(1− βi+1)t(Īi − Ii) + tIi − βi+1tIi

17



= (αi + βi+1 − αiβi+1)t(Īi − Ii)− βi+1t(Īi − Ii) + tIi − βi+1tIi

= βit(Īi − Ii)− βi+1tĪi + tIi

= (1− βi)tIi + (βi − βi+1)tĪi

= (1− β1)tI1 + (β1 − β2)tĪ1 + ...

+ (βi−1 − βi)tĪi−1 + (βi − βi+1)tĪi, (43)

which equals (33) for l = i+ 1. This completes the proof of lemma 2.

�
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4 Application of the theorem

We will look at the consequences of the theorem that we proved in the previous section, by

applying it to two taxation systems: the Ukrainian and the Dutch system.

4.1 Ukrainian taxation system

In this section, we will show the influence of the theorem on the optimal taxation system

in Ukraine. The currency in Ukraine is the Ukrainian hryvnia and the average income is

41.000 UAH per year. A proportionate taxation system is used with a taxation rate of

t = 0.2 [9]. Because the fine rate f is unknown, we assume f = 0.5. Because p̂ =
t

f + t
, we

have p̂ =
0.2

0.7
≈ 0.29. Consider the following 2-step cut-off rule:

P (I1, I2) =


p0 if Id < I1,

p1 if I1 ≤ Id < I2,

p2 if Id ≥ I2,

with I1 = 30.000, I2 = 50.000, p1 = 0.22 and p2 = 0.15. Because of (15),

Ī1 = p̂
I2 − I1

p1 − p2

+
p1I1 − p2I2

p1 − p2

= 70.000. (44)

Therefore, under P (I1, I2), the strategy of the taxpayer is as follows:

Id =


I if I < 30.000,

30.000 if 30.000 ≤ I < 70.000,

50.000 if I ≥ 70.000.

However, because of the theorem, P (I1, I2) is either dominated by P (p̂) or P̃ (I∗), with I∗

such that R
(
P̃ (I∗)

)
= max

{
R
(
P̃ (I1)

)
, R
(
P̃ (Ī1)

)}
. If (13) holds, P (p̂) yields the highest net

tax revenue:

R
(
P (p̂)

)
=

∫ ∞
0

{0.2I − 0.29c} dv(I). (45)
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Strategy P̃ (I∗) corresponds to the following net tax revenue:

R
(
P̃ (I∗)

)
=

∫ I∗

0

{
0.2I − 0.29c

}
dv(I) +

∫ ∞
I∗

0.2I∗ dv(I). (46)

Given the income density in Ukraine and the auditing costs c, these net tax revenues can be

computed.

4.2 Dutch taxation system

Because the Ukrainian taxation system has a proportionate nature, the theorem applies

directly to it. The Dutch taxation system, on the other hand, is progressive. The possible

incomes are divided into 3 intervals [2]:

(0) If I ∈ [0, 19922.5), the due tax is 36.55% of the income.

(1) The second interval actually consists of two intervals whose tax rates are equal, for

reasons which we will not explain here. Therefore, we combine them into one interval.

If I ∈ [19922.5, 66421.5), the due tax is 40, 4% of the income that falls in this interval

plus 0.3655× 19922.5 of the income in the first interval.

(2) If I ∈ [66421.4,∞), the due tax is 52% of the income that falls in this interval plus

0.404 × 46499 of the income that falls in the second and third interval plus 0.3655 ×
19922.5 of the income in the first interval.

The penalty that an individual taxpayer has to pay, only depends on the underdeclared

income and on the intention of the taxpayer. For the conscious tax evasion that we consider

in this thesis, the fine is equal to 0.5(I − Id) [2]. In addition, of course, the taxpayer has to

pay the evaded tax.

We could interpret the Dutch taxation system as a variant on our model, with I1 = 19922.5

and I2 = 66421.5. Because the taxation rates differ for the three intervals, this gives us three

different values of p̂. First, we will determine the p̂i such that individuals with a income in

interval i = 0, 1, 2 declare their true income. In interval (0), we have the same situation as

in proposition 1, with t = t0. For that reason, p̂0 =
t0

f + t0
=

0.3655

0.5 + 0.3655
≈ 0.42. Having

an income in interval (1), gives a taxpayer two options: declaring an income in interval (0)

or (1). This gives us two different values for p̂1.

• The second option, declaring an income I ∈ [I1, I2), gives the most easy solution. The

expected revenue of a taxpayer is in this case equal to
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I− t0I1− t1(Id− I1)−P (·)(f + t1)(I− Id). The central authority makes sure taxpayers

declare their true income if the following inequality holds:

I − t0I1 − t1(Id − I1)− P (·)(f + t1)(I − Id) ≤ I − t0I1 − t1(I − I1). (47)

Rewriting this gives us:

P (·) ≥ t1
f + t1

. (48)

• Declaring, however, an income I ∈ [0, I1) gives the following inequality:

I − t0Id−P (·)
[
(f + t0)(I1 − Id) + (f + t1)(I − I1)

]
≤ I − t0I − P (·)

[
(f + t0)(I1 − I) + (f + t1)(I − I1)

]
, (49)

corresponding to

P (·) ≥ t0
f + t0

I − Id
I1 − Id

. (50)

To find out under which conditions the theorem of section 3.1 applies to the Dutch taxation

system, we would like p̂i to be of the same form as p̂ in that section. Therefore, we assume

that a taxpayer always declares a income in the same interval as his true income. In this

case, p̂1 =
t1

f + t1
=

0.404

0.5 + 0.404
≈ 0.45. For a true income in interval (2) and assuming that

an underdeclared income lies in the same interval, a taxpayer declares his true income if the

following inequality is satisfied:

I − t0I1−t1(I2 − I1)− t2(Id − I2)− P (·)(f + t2)(I − Id)

≤ I − t0I1 − t1(I2 − I1)− t2(I − I2). (51)

Rewriting this gives us again the condition P (·) ≥ t2
f + t2

. Therefore, p̂2 =
t2

f + t2
=

0.52

0.5 + 0.52
≈ 0.51.

Next, we define Ī1 as the income for which it doesn’t matter if a taxpayer declares I1 or

I2. If a taxpayer declares I1 with a true income Ī1, he pays an amount t0I1 on tax. The

chance of getting audited equals p1, in which case he has to pay the evased tax t1(Ī1 − I1)

and a fine f over the underdeclared amount: f(Ī1− I1). The expected revenue is in this case

equal to t0I1 + p1(f + t1)(Ī1 − I1). If, however, the taxpayer declares I2, the due tax equals

t0I1 + t1(I2 − I1). The expected revenue is equal to t0I0 + t1(I2 − I1) + p2(f + t1)(Ī1 − I2).
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Therefore, for Ī1, the following equation holds:

t0I1 + p1(f + t1)(Ī1 − I1) = t0I1 + t1(I2 − I1) + p2(f + t1)(Ī1 − I2). (52)

Rewriting this gives us an expression for Ī1:

Ī1 = p̂1
I2 − I1

p1 − p2

+
p1I1 − p2I2

p1 − p2

(53)

=
20780.40 + 19922.5p1 − 66421.5p2

p1 − p2

.

Note that the only difference between equation (53) and (15) is that p̂ is now replaced by

p̂1. However, we note that p̂0 ≤ p̂1 ≤ p̂2, which is in contradiction with our assumption of

decreasing audit probabilities. It seems like the theorem needs a modification if we want to

apply it to the Dutch taxation system.
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5 Conclusion and discussion

In this thesis, we considered a gametheoretical model of a taxation system with a propor-

tional tax and fine structure. We showed that, if (13) holds, the optimal strategy for the

central authority equals P (p̂) with p̂ =
t

f + t
. If, on the other hand, (13) doesn’t hold, then

the optimal strategy is a 1-step cut-off rule of the form (12).

First, we will take a look at the consequences of this result. For a central authority, it seems

profitable to invent a k-step cut-off rule for the audit probabilities. However, under the given

conditions, there is by the theorem no need to determine such a k-step cut-off rule, because

the revenue is either optimized by P (p̂) or P̃ (I∗). We provided formulas to compute the value

of p̂ and given the income density and auditing costs, the value of I∗ can be determined.

In the application of the Ukrainian taxation system, this is pointed out clearly because the

theorem applies directly on this system.

There are, however, a few aspects of this thesis that could be discussed. First of all, we

assumed that the audit probabilities are decreasing as the declared income increases. On the

one hand, reasoning from the idea that people with high incomes underdeclare their income

as much as possible, this seems logical. In this case, the lower the interval of declared in-

comes is, the more tax evasion the central authority will find. On the other hand, we could

argue that most people evading tax will give up a declared income in the same interval or

a lower inteval close to theirs. The reasoning behind this idea is that the central authority

has certain expectations about the income of a taxpayer, depending for example on their

job, residence and spending patterns. Because there is more money to win for individuals

with high incomes than low incomes if they evade tax, a central authority could choose to

use increasing audit probabilities. As we saw in the introduction, there is no consensus on

this topic.

Next, we assumed that the auditing probabilities are known to the taxpayer, while this is

not very usual. Taxpayers mostly don’t know the chances of getting audited, and therefore

can’t adjust their declared income to this as easily as we made it appear.

Also, we only considered a proportionate tax and fine system, while a lot of authorities han-

dle a progressive system. An example is the Dutch tax system, which divides the incomes

into three groups with increasing tax rate. As we saw, the theorem doesn’t apply directly to

this system. An idea for future research could be to investigate if the results that we found
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hold for such a progressive system.

Finally, we didn’t take into account the possibility for taxpayers to bribe an auditor. Un-

fortunately, this is a real issue in most countries. Vasin and Panova (2000) take this into

account in their model and it could be an idea to incorporate this in our model too.
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