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Abstract

We consider a fluid flow model of network behavior (as in the
papers of Johari [1] and Massoulié [2]) to investigate how congestion
control can achieve efficient use of network resources. The aim of the
project is to find criteria for local stability for simple resource-user
networks in the presence of communication delays. Both a continuous
model and a discrete model are discussed. In order to determine the
stability of a more complex continuous model, we make use of the
direct method of Lyapunov-Kraskovski.
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1 Introduction

The problem of congestion is known among travelers in the form of congested
roads. The same problem exists for other networks, such as the Internet.
Congestions cause a lot of delays which annoys the users of the network. It is
therefore important to investigate how these congestions can be reduced, and
investigate how local stability can be achieved. Stability is very important
for keeping delays as small as possible during changes in the network.

Internet traffic includes end-users, resources, connections between these
two and packages which are send between all of the devices in the network.
These end-users are for instance the computers used for surfing the Web and
resources includes places where sites and files are stored. Congestion occurs
when the number of packages at a node in the network (in this network
nodes are end-users and resources) is larger than its capacity. The end-users
experience these congestions as a communication delay.

The communication delay of the Internet consists of two elements: prop-
agation delay and queuing delay. The propagation delay is the physical delay
in transmission of data along a length of fiber or through space. The queuing
delay is caused by data waiting to be processed at resources. Kelly [3] argues
that queuing delays are small in comparison with propagation delays, while
speeding up the stream of packages and multiplexing streams decreases queu-
ing delays. Propagation delays, on the other hand, are fixed by the distance
between nodes in a network and by the speed of light. While the transmis-
sion speed is bounded by the speed of light. Therefore we assume queuing
delays are very small and focus only at propagation delays.

We consider a fluid flow model for the behavior of packages at the Internet.
This means that packages flow along the route of the lowest resistance. In
our model, this resistance is caused by queuing delays at recourses. By
using a fluid flow approximation queuing delays will be very small, all new
packages rather flow through other routes instead of waiting at the resource.
As discussed above we assumed that queuing delays are really small, so with
a fluid flow approximation we can apply this into our model.

To find a solution for the delays on the Internet, we could look at a
solution from a central point of view. The only problem is the large size of
the Internet which needs to be covered, while it is growing every day. So we
need a solution at a decentral level. This can be done by efficient decision
making from end- users about the quantities of packages send on the Internet
at a certain moment in time. For this, we need information about current
delays at the network. Ping-messages are our solution. These are very small
messages send almost constantly between every device using the Internet,
to check for their existence. We will use these messages to determine the
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transmission time and delay between devices.
Let the set of resources be represented by J and route r be a nonempty

subset of J . We denote the set of all routes by R. For our model, we give
every route a number which corresponds with a specific user, thus set R is
both a family of subsets of J and a set of users. During this thesis, users and
routes will both be used to refer to the set R. In order to make an efficient
decision of quantities send on the Internet by a user, we apply the following
model with strictly positive parameter κr:

ẋr(t) = κr[wr − xr(t)
∑
l∈r

fl(
∑
s:l∈s

xs(t))], r ∈ R (1)

In this model, xr(t) is the amount of packages user r sends on the Internet
at time t. The increase of these packages is a factor κr of the scaled costs of
the route r. Here, wr denotes the costs user r is prepared to pay for sending
all of his packages over his route and fl(y) denotes a real cost function for
sending one package through recourse l with a total flow of y through this
resource.

Note that (1) does not have any delays in it’s equation, while these are
very important for our investigation. Therefore we introduce a round trip

delay Dr and divide it into two parts: a forward delay
−→
D l,r from user r to

recourse l and a backward delay
←−
D l,r from the recourse l back to user r. The

model with communication delay is shown by:

ẋr(t) = κr[wr − xr(t−Dr) ·
∑
l∈r

fl(
∑
s:l∈s

(xs(t−
←−
D l,r −

−→
D l,s)))], r ∈ R (2)

In this thesis, we are interested in pursuing conditions which each individ-
ual user must satisfy to ensure the stability of the system. We will consider
conditions of the following form:

κrDr < route-dependent constant, r ∈ R (3)

Note that such a condition is only dependent of the user, so we can choose
a κr satisfying the stability condition to determine the amount of packages
that is a solution of (2) for each user.

In this introduction, we only discussed the continuous model of network
behavior. In order to discuss the discrete model, we discuss in Chapter 2
how we may convert these two models into each other. Furthermore, we will
show in Chapter 3 the criteria for which a simple discrete model and a more
complex discrete model are stable. These criteria will also be proven in this
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thesis. For the continuous models we show and proof the stability criteria
in Chapter 4. Only for the more complex model we use the direct method
of Lyapunov Kraskovski. This method is discussed further in Chapter 4
together with the usage of the method for the complex discrete model. At last
the basics of determining stability for differential equations will be discussed
in the appendix.
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2 Continuous v.s. discrete model

As discussed in the introduction, model (2) (also showed below) is used.

ẋr(t) = κr[wr − xr(t−Dr) ·
∑
l∈r

fl(
∑
s:l∈s

(xs(t−
←−
D l,r −

−→
D l,s)))], r ∈ R

Notice that this is a continuous model. When sending messages with high
speed and within a small time period, this model is remarkably easy rewritten
into a discrete model on the condition that the time periods are small enough.

In order to have a discrete model, we need to rewrite some of the variables
in (2). At first we approximate ẋr(t) with the Taylor expansion, which yields:

xr(t+h) = xr(t)+hκr[wr−xr(t−Dr)·
∑
l∈r

fl(
∑
s:l∈s

(xs(t−
←−
D l,r−

−→
D l,s)))]+R(h), r ∈ R

where R(h) is an error R(h) = h
2
ẍr(ξ) with t < ξ < t+ h.

Introducing the following four variables,

τ = t
h

Λr = Dr

h

κ̃r = hκr x̃r(t) = xr(ht)

the equation will be as follows:

x̃r(τ+1) = x̃r(τ)+κ̃r[wr−x̃r(τ−Λr)·
∑
l∈r

fl(
∑
s:l∈s

(x̃s(τ−
←−
Λ l,r−

−→
Λ l,s)))]+R(h), r ∈ R

Note that in order to make a good approximation with Taylor, h needs to
be very small. From this requirement follows that we also need that τ � t,
Λr � Dr and κ̃r � κr.

From now on the discrete system will be presented as:

x[t+ 1] = x[t] + κr[wr − xr[t−Dr] ·
∑
l∈r

fl(
∑
s:l∈s

(xs[t−
←−
D l,r −

−→
D l,s]))], r ∈ R

For this system it still applies that the delay is greater then the delay of the
continuous model, and the κr is smaller then its continuous counterpart.

Notice that the discreet model is a system of difference equations, while it
is discreet. The continuous model we use, is a system of differential equations.
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3 Stability of discrete models

The first kind of models we will discuss are the discrete models. The general
discrete model looks like:

x[t+1] = x[t]+κr[wr−xr[t−Dr]·
∑
l∈r

fl(
∑
s:l∈s

(xs[t−
←−
D l,r−

−→
D l,s]))], r ∈ R (4)

For this model we first discuss the simple case of one resource and one user,
later we also discuss the case of multiple users and resources.

3.1 One user and one resource

To begin, we consider a simple network of one user and one resource. The
difference equation of the system is:

x[t+ 1] = x[t] + κ(w − x[t−D]f(x[t−D])) (5)

We will linearize (5) to determine the stability. Let the stable point be x,
and p = f(x) with w = xp. We assume that f is increasing, nonnegative,
not identically zero and differentiable at the stable point with derivative
f ′(x) = p′. Linearizing with x[t] = x+ y[t] shows us the following linearized
system,

y[t+ 1] = y[t]− κ(p+ xp′)y[t−D]

when neglecting higher order terms. Now we try a solution of the form
y[t] = eµt, this gives us the characteristic equation:

eµ(D+1) − eµD + κ(p+ xp′) = 0 (6)

To determine the stability, we are interested in the roots of the characteristic
equation. Make sure that the system is stable if and only if all roots of (6)
have real parts smaller than zero. For more information and an explanation
see the appendix.

Before discussing the stability criterion for this system, we will first show
that the maximum real part of the roots of equation (6) is continuous in κ.
Secondly, we will show that the same equation has only negative real parts
of all roots for κ near the origin. Finally, we will look at the smallest κ such
that (6) has a root of zero real part.

Lemma 3.1. Let p(µ, κ) be a polynomial in eµ, with coefficients which are
continuous functions of κ (where κ may be a vector). Then the maximum
real part of the roots µ of p(µ, κ) = 0 is continuous in κ.
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Proof. It is known that the roots of any polynomial are continuous functions
of the coefficients [5]. If the coefficients are continuous functions of κ, then
the roots eµ are continuous in κ, and so are the real parts of the roots µ.

Lemma 3.2. All roots of equation (6) has negative real parts if κ is suffi-
ciently small.

To prove Lemma 3.2 we use the Implicit Function Theorem.

Definition 3.3 (Implicit Function Theorem). This theorem is for a function
f : A→ Rn with A an open subset of Rn+k, which we can write into f(x, y)
with x ∈ Rk and y ∈ Rn.
Let (a, b) be a point in A such that f(a, b) = 0. If the determinant with
elements of the derivative of f with respect to y is not equal to zero, then
there exists a neighborhood B of a ∈ Rk and a function g : B → Rn, such
that g(a) = b and f(x, g(x)) = 0 for x ∈ B.

Proof. Define a polynomial p(µ, κ) by:

p(µ, κ) = eµ(D+1) − eµD + κa

where a = p+ xp′ is strictly positive. Then the characteristic equation (6) is
the same as p(µ, κ) = 0. In the case that κ = 0, the root is µ = 0. From the
following derivative,

∂

∂µ
p(µ, κ) = (D + 1)eµD −Deµ(D−1)

we see that the derivative is nonzero for µ = 0, κ = 0. With the Implicit
Function Theorem we can find an open interval (−ε, ε) and a differentiable
complex-valued function g(κ) such that g(0) = 0 and g(κ) = µ satisfies
p(µ, κ) = 0 for −ε < κ < ε. Differentiating p(µ, κ) = 0 with respect to κ, for
κ within the interval, we have:

d

dκ
p(g(κ), κ) = (D + 1)eg(κ)Dg′(κ)−Deg(κ)(D−1)g′(κ) + a = 0

Make sure that g′(0) = −a when we evaluate the derivative through κ = 0.
Now we use the Taylor expansion of g(κ) around κ = 0. This shows us the
following:

g(κ) = −κa+O(κ)

From this result, we can conclude that if κ increases away from zero towards
the positive boundary of the interval, the real parts of the roots decrease from
zero. Hence, for sufficiently small κ all roots have negative real parts.

8



Since we have proven the Lemma’s, we will discuss the main theorem for
the discrete model of one resource and one user.

Theorem 3.4. System (5) is locally stable if:

κ(p+ xp′) < 2 sin(
π

2(2D + 1)
)

Proof. This result is easy to check for D = 0, in that case we get the following
equation:

y[t+ 1] = (1− κ(p+ xp′))y[t]

We see that if κ(p + xp′) < 2 the modulus of the right-hand side term in
front of y[t] is smaller than 1, so the system is stable.

Now we assume that D ≥ 1. By Lemma 3.1, the maximum real part of
the roots varies continuously with κ. We also know that the system is locally
stable for small κ from Lemma 3.2. Therefore, it is sufficient to find the
smallest κ such that equation (6) has a root with zero real part. So presume
that the root is of the form µ = 2iθ, then our characteristic equation can be
rewritten as:

κ(p+ xp′) = −(e2iθ(D+1) − e2iθD)

= (−2i)
eiθ − e−iθ

2i
ei(2D+1)θ

= e−
1
2
π 2 sin(θ) ei(2D+1)θ

When a = κ(p+ xp′) the equation of above will result into the following
equation:

2 sin(θ) ei((2D+1)θ− 1
2
π) = a (7)

Hence, we conclude that:

2| sin θ| = a and it can be verified that θ =
π

2(2D + 1)
+

2πn

2D + 1

where n is an integer. Since we are looking for the smallest positive a
such that µ has an real negative part, we take n = 0. This means that
2| sin( π

2(2D+1)
)| = a. We may notice that there are no solutions of n such that

θ is a solution of 2| sin θ| = a if a < 2 sin( π
2(2D+1)

). So the smallest a such that

equation (6) has a root with zero real part is a = 2 sin( π
2(2D+1)

), from which

we can find the smallest κ. Make sure that the left-hand side of (7) decreases
if <(µ) < 0, meaning that the system is stable if a < 2 sin( π

2(2D+1)
).
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It can been shown that the system of (5) is unstable if κ satisfies κ(p +
xp′) > 2 sin( π

2(2D+1)
). This means that the criterion of Theorem 3.4 is strong.

The proof of instability may be found in the article of R. Johari and D. Tan
[1, Theorem 3], it is however not discussed in this thesis.

Notice that we have found a criterion such that the user of the network
is able to choose a κ which makes the system stable. The choice is only
dependent on x, p, p′ and D which are known parameters of the user.

3.2 Multiple users and resources

For a more complex network, we will use a similar way of determining the
criterion in which the system is stable. At first, we will show the system
for three users and two resources. Make sure that two resources corresponds
with three unique possible routes, which is similar to three users. For that
system we determine the characteristic equation.

Let the set of users be R = {1, 2, 3}, the set of resources J = {a, b} and
Ajr = 0 if resource j does not lie on route r, and Ajr = 1 if j does. Then the
system looks like:

xr[t+ 1] = xr[t] + κr(wr − xr[t−Dr] · [ fa(
∑

s∈{1,2,3}

Aas(xs[t−
←−
Da,r −

−→
Da,s]))

+fb(
∑

s∈{1,2,3}

Abs(xs[t−
←−
D b,r −

−→
D b,s])) ] ), r ∈ R

(8)

when neglecting higher order terms. Similar to the linearization of the system
with one user and one resource, we linearize system (8) about the stable point
x = (xr, r ∈ R). Let us define pj = fj(

∑
j∈s xs) for all resources j ∈ J and

assume that pj has a derivative p′j = f ′j(
∑

j∈s xs). For the linearization, let

us take yr[t] = xr[t]−xr√
κrxr

and make sure that
∑

j∈J Ajrpj = wrx
−1
r just as in

the more simple case before. All of this results in the following linearized
system:

yr[t+ 1] = yr[t]− κrwrx−1
r yr[t−Dr]

−
∑

s∈{1,2,3}

Aar
√
κrxrAas

√
κsxsp

′
ays[t−

←−
Da,r −

−→
Da,s]

−
∑

s∈{1,2,3}

Abr
√
κrxrAbs

√
κsxsp

′
bys[t−

←−
D b,r −

−→
D b,s]

, r ∈ R

(9)
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Now we are interested if there exists a (possibly complex) vector α = (αr, r ∈
R) such that yr[t] = αeµt for fixed µ ∈ C is a solution of system (9). Remem-

ber that Dr =
←−
D j,r +

−→
D j,r for all j ∈ J . Then by substituting our solution

yr[t] into (9) and multiplying by eµ(Dr−t), we get the following system of
equations:

αre
µ(Dr+1) − αreµDr + κrwrx

−1
r αr

+
∑

s∈{1,2,3}

Aar
√
κrxre

µ(
←−
Da,r)Aas

√
κsxse

µ(−
←−
Da,s)p′aαs

+
∑

s∈{1,2,3}

Abr
√
κrxre

µ(
←−
Db,r)Abs

√
κsxse

µ(−
←−
Db,s)p′bαs

= 0, r ∈ R

(10)

The system of above may be rewritten into a system of matrices. In order
to do so, we define some diagonal matrices κ,W,X and P ′ with diagonal
coefficients of respectively κr, wr, xr and p′j for r ∈ R and j ∈ J . Let also

A(µ) be a matrix with coefficients Ajre
←−
Dj,r for j ∈ J and r ∈ R and let β

refer to the diagonal matrix of κWX
−1

. Then we may express the system
into:

(diag(eµ(Dr+1)− eµDr , r ∈ R) + β+κ
1
2X

1
2A(−µ)TP ′A(µ)X

1
2κ

1
2 )α = 0, r ∈ R

In order to satisfy the equation above, it is necessary for the determinant of
the matrix premultiplied by α, to be zero. So the following equation holds:

det(diag(eµ(Dr+1)−eµDr , r ∈ R)+β+κ
1
2X

1
2A(−µ)TP ′A(µ)X

1
2κ

1
2 ) = 0, r ∈ R

(11)
The original system (8) is stable if and only if the real parts of all roots of
the characteristic equation (11) are negative. To make it ourself easier, we

define C(µ, κ) = β + κ
1
2X

1
2A(−µ)TP ′A(µ)X

1
2κ

1
2 ) and we will refer to the

left-hand side of (11) by p(µ, κ) such that:

p(µ, κ) = det(diag(eµ(Dr+1) − eµDr , r ∈ R) + C(µ, κ)) = 0, r ∈ R

is the characteristic equation we would like to be satisfied.
Below we have the theorem in which the stability criteria for the system

is given for the case of Dr = D for all r ∈ R.

Theorem 3.5. When Dr = D for all r ∈ R. The system of (8) is locally
stable if for all r ∈ R:

κr(
∑
j∈r

pj +
∑
j∈r

p′j
∑
s:j∈s

xs) < 2 sin(
π

2(2D + 1)
) (12)
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In order to proof this theorem we first need some definitions about ma-
trices.

Definition 3.6 (Hermitian Matrix). A matrix A is Hermitian if A = A
T

, this
means that the matrix stays the same after taking the conjugate transpose
of itself.

Definition 3.7 (Unitary Matrix). A matrix U is Unitary if U
T

= U−1, this
means that the conjugate transpose of U is equal to the inverse matrix of U .

Note that a Hermitian matrix with only real values is the same as a real
symmetric matrix. A Hermitian matrix has some known properties, one of
them is the following [6, Chapter 7]:

Property 3.8. A Hermitian matrix is unitary diagonalizable. This means
that for any Hermitian matrix A, there exists an unitary matrix U such that

U
T
AU = D where D is a complex diagonal matrix.

Furthermore, we define the absolute row sum by:

Definition 3.9 (Absolute row sum). The absolute row sum of matrix A of
row i is given by:

n∑
j=1

|aij|

where aij is the element of A at row i and column j, with j = 1, .., n.

Since we defined all important terms which we use for the proof, we start
with proving Theorem 3.5.

Proof. For this proof we will give an overview of the 5 steps discussed in the
proof of Theorem 9 in paper [1].

Step 1. For 0 < a < 2 sin( π
2(2D+1)

) the equation eµ(D+1)− eµD + a = 0 has
no roots with real parts equal to zero.

This conclusion follows directly from Theorem 3.4.

Step 2. The maximum real value of the roots µ of p(µ, κ) = 0 is continuous
in κ.

This statement follows from Lemma 3.1. Remark that p(µ, κ) is not in-
stantly a polynomial equation, while it contains terms which are powers of
e−µ. Still this is easily corrected by multiplying by a large enough power of eµ.

Step 3. Any κ which satisfies the hypothesis of Theorem 3.5, ensures that
p(µ, κ) has no roots with real parts equal to zero.
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To show this we let κ satisfy the condition. Then we compute the absolute
row sum of c(µ, κ) = β + κA(−µ)TP ′A(µ)X. Suppose that there exist a
root µ = iθ with 0 ≤ θ ≤ 2π for p(µ, κ). In that case we may find that
κr(
∑

j∈r pj +
∑

j∈r p
′
j

∑
s:j∈s xs) is greater than the absolute row sum of C.

Since κ satisfies the condition of Theorem 3.5, 2 sin( π
2(2D+1)

) is an upper
bound for the absolute row sum.

According to Horn and Johnson [5, Chapter 8] the maximum absolute
eigenvalue of any square matrix is bounded by its maximum absolute row
sum. So the maximum absolute eigenvalue of C(µ, κ) is also bounded by
2 sin( π

2(2D+1)
).

We have the following characteristic equation if Dr = D:

det((eµ(D+1) − eµD)I + C(µ, κ)) = 0 (13)

Furthermore, if µ = iθ then the matrix C(µ, κ) is a Hermitian matrix. From
Property 3.8 we know that this matrix is unitary diagonalizable.

Therefore we may write C(µ, κ) = ΓΦΓ
T

where Γ is unitary and Φ is the
diagonal matrix of eigenvalues of C(µ, κ). The eigenvalues are strictly posi-
tive and the determinant of matrix C is nonzero, as C(µ, κ) has nonnegative
values. Since we found the upper bound of the maximum absolute eigenval-
ues, we know for the eigenvalues φr that φr < 2 sin( π

2(2D+1)
) for all r ∈ R.

Because Γ is unitary, the determinant of C is equal to the determinant of Φ,
this yields:

det((eµ(D+1) − eµD + φr, r ∈ R)) = 0 (14)

Remark that we take the determinant of a diagonal matrix, thus we must
obtain:

eµ(D+1) − eµD + φr = 0

for an r ∈ R with 0 < φr < 2 sin( π
2(2D+1)

). This contradicts with Step 1, so
Step 3 is proven.

Step 4. There exists a κ satisfying the hypothesis of the theorem, such
that all roots µ of p(µ, κ) = 0 have real parts less then zero.

We will proof the existence of such a κ by induction of the users. Let
R = {1, 2, ...N} and we define Rn = {1, 2, ...., n}. Then we denote the
characteristic equation on the subset of routes Rn by pn(µ, κ).

For n = 1 we have already proven the existence of such a κ for p1(µ, κ) = 0
by Theorem 3.4.

For n ≥ 1 let there be a κ as above for pn−1(µ, κ). Then we may write
pn(µ, k) into the following with k = (κ1, ..., κn−1, 0)

pn(µ, k) = (eµ(D+1) − eµD)pn−1(µ, κ)

13



This follows from decomposing the determinant inside pn. Make sure that
pn−1 has all roots with negative parts less then zero and from eµ(D+1)−eµD =
eµD(eµ − 1) we see that pn has a root of µ = 0 with multiplicity 1. Now we
need to show that the root µ = 0 of pn will decrease if the nth- element of
k increases from zero to κn, from which we can conclude that all roots of
pn(µ, κ) = 0 have negative real parts.

Furthermore we may write pn into the following form:

pn(µ, κ) = (eµ(D+1) − eµD)pn−1(µ, κ) + κnqn−1(µ, κ)

For this function we use the Implicit Function Theorem. By means of this
theorem we can write µ as a function of κ, as h(κ) = µ. Moreover we may
find the derivative of the function h at κ = 0 by computing the derivative of
p(g(κ), κ) with respect to κ. That is h′(0) = −qn−1(0, κ)/pn−1(0, κ) = −an
with an > 0. Taking the Taylor expansion of this derivative through zero
yields:

h′(0) = −κnan +O(κn)

From this we see that if κ increases from zero that µ is decreasing from zero.
So for any n, pn(µ, κ) = 0 with all elements of κ small and greater then zero,
has roots with negative real parts. This also applies for n = N such that
pn = p, thus Step 4 is proven.

Step 5. Completion of the proof
Suppose there exists a κ satisfying the hypothesis of the theorem for

which the equation p(µ, κ) = 0 has at least one root with real part greater
then zero. Consider the path κ(t) = tκ∗ + (1− t)κ for 0 ≤ t ≤ 1 with κ∗ the
κ of p in Step 4. While κ(1) = κ∗ we know that p(µ, κ(1)) = 0 has only roots
of negative real parts. From Step 2 we know that the maximum real value of
the roots are continuous, so there must exist a t such that p(µ, κ(t)) = 0 has
a root with real part equal to zero. Since κ(t) is a convex combination of κ∗

and κ, which both satisfies the hypothesis, κ(t) also satisfies the hypothesis.
From Step 3 we conclude that κ(t) may not have any roots with real part
equal to zero, this is a contradiction to the result of Step 2, so the theorem
is proven.

With proving Theorem 3.5, we have found a solution for how all users of
the network how may choose their quantity of packages in order to retain the
stability of the system. Their quantity of packages depends on the decision
for κr which must satisfy:

κr < 2 sin(
π

2(2D + 1)
)

1

(
∑

j∈r pj +
∑

j∈r p
′
j

∑
s:j∈s xs)

14



Make sure that the decision making only depends on known parameters, so
any user is able to make an efficient choice.
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4 Stability of continuous models

Previously we discussed two different cases of the discrete model. We con-
tinue by discussing the same two cases for the continuous model. The general
continuous model is:

ẋr(t) = κr[wr − xr(t−Dr) ·
∑
l∈r

fl(
∑
s:l∈s

(xs(t−
←−
D l,r −

−→
D l,s)))], r ∈ R (15)

4.1 One user and one resource

We start again with the simple case of one user and one resource. This gives
us the following equation out of equation (15):

ẋ(t) = κ[w − x(t−D)f(x(t−D))] (16)

To determine the stability of this system, we will need a linear equation. So
we linearize around the equilibrium point x through

y(t) =
x(t)− x√

κx
.

Taking p = f(x) and p′ = f ′(x), with the assumption that f is increasing,
nonnegative and not equal to zero. We obtain the following linearization by
neglecting higher order terms:

ẏ(t) = −κ(p+ xp′)y(t−D)) (17)

We find the characteristic equations by substituting y(t) = eλt into (17):

λ = −κ(p+ xp′)e−λD (18)

Finally, when the substitution µ = λD we find the following reduced equa-
tion:

−κ(p+ xp′)D − µeµ = 0 (19)

Hayes discussed in paper [7] the following interesting Lemma, which we
use for determining the stability of the system.

Lemma 4.1. The roots s of f(s) = ces − s have all <(s) ≥ K if and only if
K < 1 and Ke−K < c < e−K

√
V 2 +K2 where V = V (K) is the unique root

of K tan(v) = v for 0 < v < π.
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Proof. We can see that for K ≥ 1 not all of the roots have <(s) ≥ K, since
for c < 0 there exist a root ε1 < 0. For 0 < c < e−1 we can find a real
root ε2 with 0 < ε2 ≤ 1. Furthermore, for e−1 < c there are complex roots.
Let us consider the complex roots in the upper half plane only. By writing
s = reiθ = u+ iv we see that r = ceu and θ = v, and from the angle θ of the
complex number, we know that tan(θ) = v

u
. Therefore, the roots for e−1 < c

lie on the line of u tan(v) = v with 0 < v < π and u ≤ 1. Thus K is not
greater or equal to 1.

First we consider the greatest value of c such that the complex roots with
−π < v < π satisfy <(s) ≥ K. Suppose that these roots lie on the line
<(s) = K. Then these roots are K ± iV with K tan(V ) = V . We take
V =

√
c2e2K −K2 such that c = e−K

√
V 2 +K2. For c smaller than this

value, we know that the roots are on the right side of <(s) = K.

If K < 0 we still need a c such that the roots lie on the right side of
<(s) = K. For that, the negative real root ε1 must have real value greater
than K, since all other roots lie on the right side of the root ε1. It is easy to
see that s ≤ ces if s ≤ ε1, while ε1 is a root. Now we conclude that in order
to have K < ε1 we need K < ceK , which is the same as Ke−K < c.

Finally, V is a unique root of K tan(v) = v since the function g(v) =
v

tan(v)
has the derivative d

dv
g(v) = cos(v) sin(v)−v

sin2(v)
which is smaller then zero for

0 < v < π, thus is decreasing for that interval. Furthermore g(0) = 1 and
g(π) =∞, so there is one unique solution V for g(v) = K for the interval.

From this we can deduce the following result of Hayes, taken from Bellman
and Cooke [8, Theorem 13.8].

Lemma 4.2. All the roots of peµ + q − µeµ = 0 with p and q real numbers,
have negative real parts if and only if:

(a) p < 1, and

(b) p < −q <
√
a2

1 + p2,

Here a1 is the root of a = p tan(a) such that 0 < a < π. If p = 0, we take
a1 = π

2
.

Proof. This follows directly from Lemma 4.1. If we take q = −cep and
µ = p− λ we have the equation:

(−λe−λ + c)ep = 0

17



which is the same as ceλ − λ = 0, while ep is nonzero. Remark that this is
the same form as in Lemma 4.1. Take K = p and c = −qe−p, then we use
the previous lemma. Make sure that <(µ) < 0 when <(λ) > p. For p = 0 we

take a1 = π
2

while 0 < π
2
< π and

1
2
π

tan( 1
2
π)

= 0.

Theorem 4.3. System (16) is locally stable if:

κ(p+ xp′) <
π

2D
(20)

Proof. This is a direct application of Lemma 4.2 to equation (19) by taking
p = 0, q = −κ(p+xp′)D and a1 = π

2
. From the basics of stability (Appendix)

we know that if all roots of an equation have real negative parts, the given
system is stable. So the criteria for stability is 0 < κ(p+xp′)D < π

2
for which

we already knew that 0 < κ(p+ xp′)D while κ, x, p, p′, D > 0.

Remark that criteria (20) could be rewritten into:

κD <
π

2(p+ xp′)
(21)

For which the right hand-side is constant for the one and only user in this
case. So for the most simple case of one user and one resource we have found
the condition with the form we wanted and which has been shown in the
introduction.

4.2 Multiple users and resources

For the more complex case of multiple users and resources for the continuous
model, we use the Direct method of Lyapunov-Kraskovski. Before we apply
this method on the model, we first discuss the method itself.

4.2.1 Direct method of Lyapunov-Kraskovski

In the Appedix the stability of a simple linear differential equation is dis-
cussed. Unfortunately those equations are not always as simple and linear
as in that case. So we need another method when dealing with more difficult
differential equations. For strongly non-linear cases we will use the direct
method of Lyapunov.

Before explaining what this direct method looks like, we first consider
some important definitions about different kinds of stability first. The first
and weakest stability we discuss here is the Lyapunov Stability.

18



Definition 4.4 (Lyapunov Stability). Consider the regular system ẋ =
X(x, t), let x∗(t) be a given real or complex solution of this system. Then
x∗(t) is Lyapunov stable on t ≥ t0 if,
for any small ε > 0 there exists a δ(ε, t0) such that

‖x(t0)− x∗(t0)‖ < δ ⇒ ‖x(t)− x∗(t)‖ < ε, ∀t ≥ t0 (22)

where x(t) is any other solution.

The uniform stability is a little stronger than Lyapunov.

Definition 4.5 (Uniform Stability). A solution x∗(t) is uniform stable for
t ≥ t0 if the solution is Lyapunov stable, for which δ is independent of t0.

When a solution is uniformly stable as well as attractive, we call this
solution asymptotically stable. The exact definition is shown below.

Definition 4.6 (Asymptotic Stability). Let x∗(t) be a uniformly stable so-
lution for t ≥ t0. This solution is asymptotically stable when it is additionally
attractive, this means there exists η(t0) such that

‖x(t0)− x∗(t0)‖ < η ⇒ lim
t→∞
‖x(t)− x∗(t)‖ = 0. (23)

Furthermore we show some definitions about characteristics of functions
that are of importance of understanding the theorem of Lyanpunov we discuss
in this chapter.

First we need the definitions of a positive or negative definite and positive
or negative semidefinite function.

Definition 4.7. Function V(x) is positive (or negative) definite in a neigh-
bourhood N of the origin if V (x) > 0 (V (x) < 0) for all x 6= 0 in N , and
V(0)=0.

Definition 4.8. Function V(x) is positive (or negative) semidefinite in a
neighbourhood N of the origin if V (x) ≥ 0 (V (x) ≤ 0) for all x 6= 0 in N ,
and V(0)=0.

This means that a functions described as V (x, y) = x2 + y2 is positive
definite on the whole plane, while the function V (x, y) = −y2(x2 − 1) is
negative semidefinite on the strip x2 < 1.

Definition 4.9. A function is described as definite (or semidefinite) in case
the function is either positive or negative definite (semidefinite).

Now we end up at the direct method of Lyapunov.
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Theorem 4.10. Consider the regular system ẋ = X(x, t) and let x∗(t) = 0,
t ≥ t0 be the zero solution where X(0) = 0. Then x∗(t) is uniformly stable
for t ≥ t0 if there exists a function V (x) with the following properties in the
neigbourhood of x = 0:

(i) V (x) and its partial derivatives are continuous;

(ii) V (x) is definite;

(iii) V̇ (x) is semidefinite for the given system and is of opposite sign to
V (x).

Theorem 4.11. Consider the same system and conditions as in Theorem
4.10. Now the zero solution x∗(t) is uniformly and asymptotically stable if
there exists a function V (x) satisfying the conditions (i), (ii) and the follow-
ing condition:

(iii)∗ V̇ (x) is definite for the given system and is of opposite sign to V (x).

A function V (x) satisfying the conditions of Theorem 4.10 is called a
weak Lyapunov function. Functions satisfying all of the criteria of Theorem
4.11 are strong Lyapunov functions.

From the direct method of Lyapunov we only need to find a function V for
a given system with the properties shown above, to determine the stability of
the zero solution to the system. In order to show this, we will discuss some
examples of using Lyapunov’s theorem.

Example 4.12. Consider the differential equation:

ẍ(t) + f(x(t)) = 0 (24)

We can replace (24) by the following system through letting y = ẋ.

y(t) = ẋ(t), ẏ(t) = −f(x(t)) (25)

We will assume that

f(0) = 0, x(t)f(x(t)) > 0 for x(t) 6= 0. (26)

Multiplying (25) by ẋ(t) and integrating the whole equation to x(t), we get:

y2(t)

2
+ F (x(t)) = c (27)

where c is a constant and F (x(t)) =
∫ x(t)

0
f(x1(t)) dx1(t). Now let us define

the function:

V (x(t), y(t)) =
y2(t)

2
+ F (x(t)) (28)
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We will show that V is a Lyapunov function. First it is easy to see that
V (0, 0) = 0 and V (x(t), y(t)) > 0, so V is positive definite. Furthermore
we will need the derivative of function V for checking the third condition of
Theorem (4.10).

d

dt
V (x(t), y(t)) = y(t) ẋ(t) + Ḟ (x(t)) ẋ(t)

= −f(x(t)) ẋ(t) + f(x(t)) ẋ(t) = 0
(29)

It follows that V̇ = 0 , thus V̇ is semidefinite, and the function V (x(t), y(t))
is a (weak) Lyapunov function. As we can see, V is constant over time, so the
point (x(t), y(t)) cannot recede from the origin. A point (x(t), y(t)) starting
near the origin will remain close to the origin, this means that system (25)
is stable.

For higher dimensions it is not always possible to produce the Lyapunov
function as above. Therefore we discuss the following example.

Example 4.13. Let we have a system ẋ = Ax with matrix A. Suppose that
the solution of the system is asymptotically stable, which implies <(λi) < 0
for all n eigenvalues λi (i = 1, 2, ..., n) of matrix A. We construct a strong
Lyapunov function for the system of the quadratic form:

V (x) = xtKx (30)

for which we first determine K to make V positive definite. We also want V̇
to be negative definite. For that we need the derivative of (30).

V̇ (x) = xt(AtK +KtA)x (31)

It would be convenient if:

AtK +KtA = −I (32)

because in that case V̇ is negative definite. This is easy to see when we
rewrite: V̇ (x) = xt(−I)x = −

∑n
i=1 x

2
i .

To satisfy (32) we consider the product of eA
tteAt. For the derivative we

have
d

dt
(eA

tteAt) = AteA
tteAt + eA

tteAtA. (33)

When ẋ = Ax is asymptotically stable all eigenvalues have negative real
parts. Then from Jordan [9, Section 10.5] we know that for any γ such that
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γ > max1≤i≤n(λi) there exist a constant c > 0 such that ‖eAt‖ ≤ ceγt. Since
A and At have the same eigenvalues, we can chose c such that

‖eAt‖, ‖eAtt‖ ≤ ceγt, c > 0, γ < 0. (34)

This ensures that the following integral is convergent.∫ ∞
0

d

dt
(eA

tteAt)dt = lim
R→∞

∫ R

0

d

dt
(eA

tteAt)dt = lim
R→∞

eA
tReAR − I = −I (35)

By writing out the derivative inside the integral, we have also:∫ ∞
0

d

dt
(eA

tteAt)dt = At
∫ ∞

0

(eA
tteAt)dt+

∫ ∞
0

(eA
tteAt)dt A (36)

When comparing the results of (35) and (36) with the desired result of (32)
we see that

K =

∫ ∞
0

(eA
tteAt)dt (37)

ensures that V̇ is negative definite. Further from Jordan [9, Section 10.5] we
also know that K is symmetrical because (eAt)t = eA

tt for any nonsingular
n× n-matrix A. By (30) we have

V (x) =

∫ ∞
0

(xteA
tt)(eAtx)dt

=

∫ ∞
0

(eAtx)t(eAtx)dt

which is a quadratic form. Therefore V is positive definite.

4.2.2 Lyapunov stability of the model

We are interested in the stability of system (15), shown at the beginning of
this chapter. Let the set of resources be given by J = {1, 2, ..., L}. Then
we can linearize this system like we did with other systems before, where
yr(t) = (xr(t) − xr)(

√
κrxr)

−1. The linearized system of (15) is then shown
by:

ẏr(t) = −(βryr(t−Dr) +
∑
s∈R

Msrys(t−
←−
d s −

−→
d r)), r ∈ R (38)

where βr = κrwrx
−1
r , the vector Msr is given by

Msr =
√
κr
√
xr
√
κs
√
xs
(
A1rA1sp

′
1 A2rA2sp

′
2 · · · ALrALsp

′
L

)
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and the vector ys(t−
←−
d s −

−→
d r) by:

ys(t−
←−
d s −

−→
d r) =


ys(t−

←−
D 1s −

−→
D 1r)

ys(t−
←−
D 2s −

−→
D 2r)

...

ys(t−
←−
DLs −

−→
DLr)


We will leaving out the difference in delay for all users though writing←−

D js −
−→
D jr = D for all r, s ∈ R and j ∈ J . Now we can write the system

shown above in the following form:

ẏ(t) = −(β +M)y(t−D) (39)

Where β is a diagonal matrix with diagonal elements βr, M is a symmetric
matrix with elements Msr and y(t−D) a vector of elements yr(t−D). Notice
that matrix β+M contains only positive elements, since κr, wr, xr and p′l are
strictly positive parameters.

Many stability theorems are known for delayed systems of the form ẋ(t) =
Ax(t − τ). One of them is the following theorem, presented by Buslowicz
and used by Schoen [10, Theorem 3.14]:

Theorem 4.14. The system ẋ(t) = Ax(t− τ) is asymptotically stable if and
only if for all eigenvalues λi(A) with i = {1, ..., n} of matrix A,

<(λi(A)) < 0 and τ <
arctan(<(λi(A))

=(λi(A))
)

|(λi(A))|

However, we are interested in finding the stability criterion with using
the direct method of Lyapunov-Kraskovski. Marshal Slemrod [11, Section 3]
discusses a theorem of stability, using a Lyapunov functional for the linear
system of the form:

ẋ(t) + Aẋ(t− r) +Bx(t) + Cx(t− r) = 0

This theorem is relevant for us although A and B are zero matrices in our
case.

For our system Marshal Slemrod uses a Lyapunov functional V of the
form:

V (ψ) = ψ(0)TPψ(0) +

∫ 0

−r
ψT (θ)Qψ(θ)dθ (40)
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in which ψ(t) is a function ψ(t) : [−r, 0] → Rn. Now we differentiate the
functional and since we know that ψ̇(0) = −Cψ(−r), as it satisfies the form
of the linear system with A and B zero matrices, then V̇ (ψ) is given by:

V̇ (ψ) = −ψ(−r)TCTPψ(0)− ψ(0)TPCψ(−r)
+ψ(0)TQψ(0)− ψ(−r)TQψ(−r)

(41)

We choose the matrices P and Q such that they satisfy the hypothe-
sis of the theorem 4.17. Before discussing the theorem we first give some
definitions.

Definition 4.15. A functional difference operator D is an operator D :
C([−r, 0],Rn)→ Rn with

Dφ = φ(0)−
N∑
k=1

Pkφ(−τk)

where Pk are constant n × n-matrices with k = 1, .., N and 0 < τk ≤ r for
real number τk. If N > 1 then τk/τj are rational numbers.

From now on we consider the system

d

dt
D(xt) = f(xt) for t ≥ 0 and with x0 = φ.

For this system we define also:

Definition 4.16. A subset Γ ⊆ C([−r, 0],Rn) is invariant with respect to
solutions of the system of above, if there exist a function g(φ) : (−∞,∞)→
Rn of every φ ∈ Γ, for which g0(φ) = φ and

Dgt+σ(φ) = Dgσ(φ) +

∫ t

0

f(gσ+s(φ))ds, t ≥ 0

with gσ(φ) ∈ Γ for all σ ∈ (−∞,∞).

Now we may discuss the theorem for which the matrices P and Q of the
Lyapunov functional should satisfy the hypothesis.

Theorem 4.17. Consider the system d
dt
D(xt) = f(xt) as above. Let D be a

stable difference operator and V be a Lyapunov function on a set of Gl with
Gl = {φ ∈ C([−r, 0],Rn) : V (φ) < l}.
If there is a constant Kl such that when φ ∈ Gl that |Dφ| < Kl, then for
t → ∞ any solution xt(φ) with φ ∈ Gl, approaches Γ. For this Γ is the
largest set {φ ∈ G : V̇ (φ) ≤ 0} which is invariant to the system, where G is
the closure of G.
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The main theorem from Marshall Slemrod, we discuss, for a system of the
form ẋ(t) +Cx(t− r) = 0 with C an constant n× n-matrix, is the following:

Theorem 4.18. [11, Theorem 3.1] With 0 the n × n zero matrix, if M =(
0 C
CT 0

)
is positive definite, then the solution x(t) = 0 is asymptotically

stable.

Proof. Let we take P = I the unity matrix and Q = 0 the zero matrix. Then
it is easy to see from (41) that we have V̇ (ψ) = −[ψ(0), ψ(−r)]TM [[ψ(0), ψ(−r)].
Furthermore, Dψ = ψ(0) while ẋ(t) is the only derivative in the differential
equation, thus Dψ is a constant difference operator. We can also derive from
the form (40) and the choices for P and Q that V (ψ) = |Dψ|2 ≥ 0 and
V̇ (ψ) < −µ|ψ(0)|2 for any µ > 0.

Then by noticing that V (ψ) ≤ α2‖ψ‖2 with ‖ψ‖ = sup−r≤t≤0 |ψ(t)| for
some α > 0. We find that for any b > 0 with ‖ψ‖ < b we have |Dψ| < αb.
When we take l = α2b2 and Kl = αb we can apply Theorem 4.17. This
theorem says that any solution xt(φ) with ‖φ‖ < b approaches Γ when t goes
to infinity. In this case Γ = {0}, thus any solution will go to to zero.

From Theorem 4.18 we can conclude that system (39) is asymptotically
stable for the solution y(t) = 0, since (β+M) is positive definite. This means
that all equilibrium solutions xr of system (2) are asymptotically stable if all
kinds of round-trip delays are equal to D.
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5 Conclusion

In this thesis we discussed the stability of the equilibrium solutions of four
different models. For the discrete models we could determine the stability
almost directly from determining when all roots of the characteristic equation
have negative real parts. However, for the continuous model we used multiple
theorem, like the Direct method of Lypanuov Kraskovski.

For both difference and differential systems, the criteria of the simple
models of one resource and one user were relatively easily proven. Unfor-
tunately these models where also the most uninteresting ones of those four,
while we are interested in stability of a large network. Nevertheless we did
find that if κ satisfies

κ <
2

p+ xp′
sin(

π

2(2D + 1)
)

the equilibrium solution of the simple discreet model is stable. Likewise the
equilibrium of the simple continuous model is stable if κ satisfies:

κ <
π

2D(p+ xp′)

Notice that the κ and D of the continuous models are different of those of
the discrete models. So denote the κ and D of the discrete models again
by Λ = D

h
and κ̃ = hκ, such as in chapter 2. Then κD = κΛ, from this

we conclude that both criteria should be almost similar. This can easily be
seen if Λ (Discrete D) is very large, in that case 2 sin( π

2(2Λ+1)
) is almost equal

to π
2Λ+1

. From that if Λ is great, we see that it is almost the same as π
2Λ

.
This gives us the same criterion for the discrete model as for the continuous
model. Make sure that Λ is large, while h is very small relatively to the small
delay D.

The criteria of the more complex systems were a bit harder to find and
prove. For the complex discreet model we found a criterion similar to the
criterion of the simple discrete model. This can be rewritten as:

κr < 2 sin(
π

2(2D + 1)
)(
∑
j∈r

pj +
∑
j∈r

p′j
∑
s:j∈s

xs)
−1

in order to choose a κr for which the equilibrium solution is stable. Note
that we made the assumption that the round trip delay is constant over all
possible routes, so Dr = D for all r ∈ R. If we make the even stronger
assumption that all combinations of forward and backward delays are con-

stant such that
−→
D l,r +

←−
D l,s = D for all l ∈ J and r, s ∈ R, we find that the
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equilibrium solution of the complex continuous model is always stable. For
further research it is interesting to look for stability criteria of the complex
continuous model using Lyapunov functionals for which weaker assumptions
are necessary.
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A Appendix: Basics of stability

For simple differential equations we can determine stability as follows.
Let us take the following linear differential equation:

x′′(t) = αx′(t) + βx(t), x(t0) = x0 and x′(t0) = y0 (42)

Make sure that x(t) = 0 is a solution for this equation. We will start with
finding a characteristic equation by using the solution x(t) = eµt with µ ∈ C.
Inserting the solution into (42) and dividing by eµt we get:

µ2 = αµ+ β. (43)

Now we can solve (43) for µ so that we have two solutions for x(t). Let µ1

and µ2 be the solutions of (43) then the general solution of (42) will be like:
x(t) = Aeµ1t +Beµ2t.
Notice that for the solution x(t) = 0 holds that A = B = 0. This solution
is stable if A or B, or both, are non-zero and we still have limt→∞ x(t) =
0. Make sure that this holds when |eµt| < 1 for every µ solution of the
characteristic equation.
Now the question is for which µ we have |eµt| < 1. We know that µ ∈ C so
we can write µ = a+ bi and we know that eφi = cos(φ) + i sin(φ). So we get:

|eµt| = |ea(cos(b) + i sin(b))| = |ea| = e<(µ) < 1

From this follows that the solution x(t) = 0 is stable if <(µ) < 0 for each µ
solution of the characteristic equation of the differential equation (42).
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