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Abstract

We consider inflation in a universe with cosmological constant and a nonminimally
coupled scalar field with a mass term inspired by previous work [1]. First the tools will
be derived to make a good analysis. Then the model will be analysed. The slow roll
parameter converges to 3/4 for a mass term m2 > 0. The spectral index ns peaks for
m = 0. The rate of quantum tunneling is highest for small m. However because it is
given in units of Hubble time, when we look at a great amout of Hubble volumes it
can be possible that for larger m somewhere in the universe the field tunnels. Which
is sufficient for inflation to start. . We conclude that for a mass term to be included in
this model there must be some kind of phase transition where m2 turns from positive
to negative.
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1 Introduction

One of the most pressing questions of cosmologists of all times is, how did the universe
arise? And although we will never know for sure, we can can build models upon
theories and test them with our measurements and observations. In this paper we
will first explain the concepts of cosmic inflation, describing very early stages of our
universe, and why it is important. Then we will present a model realised within a
tensor-scalar theory and discuss how to analyse it in the Einstein frame. Furthermore
we will derive and provide the tools to test the model by explaining the slow roll
approximation, the spectra of scalar and tensor perturbations and the concepts of
quantum tunneling. Eventually we will compare our calculated results to observations
and discuss the probability of our model being viable.

2 Inflation

2.1 Three Cosmological Problems

In the standard Hot Big Bang model, in which the universe was initially very hot
and dense and since then has been expanding and cooling, there are three underlying
problems [4]. The first is the “ flatness problem”. The results of measurement and
observations tells us that the spatial curvature of the prsent universe is nearly flat and
was even flatter in the past. However there is no reason for it to be flat. It could just
have been strongly curved without violating any laws of physics. We could however
just state that the initial conditions just happened to be so that by coincidence they
produced a spatially flat universe. However this becomes extremely far fetched when
you extrapolate the density parameter for the curvature back in to the past [4]. And
thus it would be far more satisfactory to find a physical mechanism for flattening the
universe instead of assuming highly far fetched initial conditions.
The second second problem is the “horizon problem”. It states that our observations
tell us that that the universe in homogenous and isotropic on very large scales. As
convenient as this may be, there is no reason that this should be the case. Consider
two antipodal points separated by 180◦ as seen by an observer on earth. According
to the Benchmark model the current proper distance to the last scattering surface is
dp(t0) = 0.98dhor(t0) [4], where dhor(t0) is the current horizon distance. So distance
between these two points would be 1.96dhor(t0) and thus would not be in causal contact
with each other and in particular would not have had time to come in to thermal
equilibrium with each other. Nevertheless these two points have the same temperature
to within one part in 105. Why should regions that were out of causal contact with
each other have such identical properties? Again assuming coincidence would seem
extremely farfetched.
The third problem is the “monopole problem”. Grand Unified Theories predict that
in the very early universe the universe underwent a phase transition in which magnetic
monopoles were created. These magnetic monopoles would have been so massive and
abundant that they would have dominated the energy density of the universe when
the temperature had fallen below T ∼ 1018 [4]. The universe however is definitely not
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dominated by magnetic monopoles and even more there isn’t any strong evidence they
exist at all. Every north pole we can find is accompanied by a south pole and vice
versa.

2.2 Solution

In the late seventies in the Soviet Union the idea of an exponentially expanding uni-
verse existed. Alexei Starobinsky proposed a model where the universe went through
an inflationary era which resolved the horizon and flatness problem. Alan Guth then
first coined the term inflation in 1981 to explain the nonexistence of monopoles. To-
gether they recieved the Kavli Prize in Astrophysics for pioneering the theory of cosmic
inflation. Now this theory of inflation is widely accepted because it solves the three
cosmological problems at once.

It can be defined as the hypothesis that there was a period in the early universe
when the expansion was accelerating outward. Thus this epoch was characterised by
ä > 0, where a is the cosmological scale factor. The acceleration equation is:

ä

a
= −4πG

3
(ε+ 3P ), (1)

where ε is the energy density and P is the pressure. Both are functions of time. For
substances of cosmological importance the equation of state can be written in the
simple linear from:

P = wε, (2)

where w is a dimensionless number which characterises which cosmological substance
dominates. Some values of w are of special interest. For w = 0 the universe will be
dominated by non-relativistic matter. For w = 1

3 the universe wil be dominated by
relativistic matter. And for w < −1

3 the universe will be dominated by dark energy.
One form of dark energy is the cosmological constant, for which w = −1. When we
look at Eq. (1) and (2) we see that for w < −1

3 , ä > 0. And so let us first assume
that the energy density would be dominated by the cosmological constant. Then the
Friedmann equation would read: ( ȧ

a

)2
= H2 =

Λi
3

(3)

And so the Hubble parameter would be constant during inflation Hi =
√

Λi
3 . Integrat-

ing gives:
a(t) ∝ eHit (4)

And so if the duration of inflation would be large compared to the Hubble time during
inflation, H−1

i , then the scale factor would grow enormously. The number of e-folds
would be N = Hi(te − ti), where te and ti are respectively the end and beginning of
inflation. For example if N = 60 then the growth in scale factor dring inflaiton was

a(te)

a(ti)
= e60 ≈ 1026 (5)
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Such a growth would flatten any universe which was not perfectly flat in the beginning.
It would also increase the horizon distance in a postinflationary universe by a factor
eN and thus bringing the entire universe easily in causal contact. Furthermore it would
make a magnetic monopole extremely rare to come across even if they were created
according to the GUT.
Now that we understand the concept and the importance of inflation, we will apply
our model.

3 Model of inflation

3.1 Model

The model we are considering in this paper is a scalar-tensor theory of gravity with
a scalar field which has a mass part and a part that couples directly to the curva-
ture scalar. The mechanism driving inflation is not just the cosmological constant as
discussed above, but also a scalar field φ(t) which depends only on time (we assume
a homogeneous field). The action can be written as a sum of the coupled scalar-
gravitational piece, the pure scalar piece and a cosmological constant piece:

S = SFR + Sφ + SΛ (6)

where

SFR =

∫
dx4√−gF (φ)R

2
(7)

Sφ =

∫
dx4√−g

(−1

2
∂µφ∂νφ− V (φ)

)
, (8)

and

SΛ =

∫
dx4 −

√
−gM2

PΛ (9)

These actions and functions are presented in the Jordan frame and from now on we
will subscript elements in the Jordan frame with a J . So when we put them together
we obtain the total action in the Jordan frame:

SJ =

∫
d4x
√
−gJ

[1
2
F (φJ)RJ −M2

PΛ− 1

2
gµνJ ∂µφJ∂νφJ − VJ(φJ)

]
, (10)

where g =det[gµν ] and Λ is the comsological constant. We assume the following forms
for the functions F (φ) and V (φ):

F (φJ) = M2
P − ξ2φ

2
J − ξ4

φ4
J

M2
P

, VJ(φJ) = m2φ2
J , (11)

where M2
P = 1

8πGN
, GN is Newtons grsvitational constant. The parameters ξ2 and ξ4

are the nonminimal coupling parameters and m is the mass term. In our conventions
conformal coupling corresponds to ξ2 = 1/6, ξ4 = 0 and we work with natural units in
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which ~ = c = 1. However we will be studying the model in which ξ2 = 0, ξ4 < 0 and
m > 0. For the metric we choose a spatially flat, expanding background:

gJµν =


−1 0 0 0
0 a2

J(t) 0 0
0 0 a2

J(t) 0
0 0 0 a2

J(t),

 (12)

where aJ(t) is the scale factor a time t.

3.2 Jordan-Einstein transformation

As mentioned before the model as presented above is in the so called Jordan-frame.
However for the analyses in this paper an Einstein-frame is more useful. So we will
proceed to make the frame transformation.

To obtain the Einstein-frame one ought perform the following frame transformation:

gEµν =
F (φJ)

M2
P

gJµν , (13)

In appendix G [2] it is shown that under the transformation g̃µν = ω2(x)gµν , the Ricci
scalar transforms as follows:

R̃ = ω−2R− 2(n− 1)gαβω−3(∇α∇βω)− (n− 1)(n− 4)gαβω−4(∇βω)(∇αω), (14)

where n is the number of dimensions. In our case n = 4. So when we rewrite Eq.(14)
and fill in the transformed metric we get:

R = ω2R̃+ 6gαβω−1(∇α∇βω)

=
F (φJ)

M2
P

R̃+ 6

√
F (φJ)

M2
P

g̃αβ
(
∇α∇β

√
F (φJ)

M2
P

)

=
F (φJ)

M2
P

R̃+ 6

√
F (φJ)

M2
P

g̃αβ∇α

(
1

2

(
F (φJ)

M2
P

)− 1
2
(

d

dφJ

F (φJ)

M2
P

)
(∂βφJ)

)

=
F (φJ)

M2
P

R̃+ 6

√
F (φJ)

M2
P

g̃αβ

[
−1

4

(
F (φJ)

M2
P

)− 3
2
(

d

dφJ

F (φJ)

M2
P

)2

(∂βφJ)(∂αφJ)

+
1

2

(
F (φJ)

M2
P

)− 1
2

∇α

((
d

dφJ

F (φJ)

M2
P

)
(∂βφJ)

)]
,

(15)

where the last term is a surface term so it drops out. Leaving us with:

RJ =
F (φJ)

M2
P

RE −
3

2

(
F (φJ)

M2
P

)−1

gµνE

((
d

dφJ

F (φJ)

M2
P

)2

(∂µφJ)(∂νφJ)

)
(16)
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Now when we plug this back in to Eq.(10)(and keeping in mind that gµνJ = F (φJ )
M2

P
gµνE )

we get:

SE =

∫
d4x
√
−gEM2

p

[1
2
RE−

1

2F 2(φJ)

(
F (φ)J)+

3

2

(
dF (φJ)

dφJ

)2)
gµνE ∂µφJ∂νφJ−

M6
PΛ +M4

Pm
2φ2

J

F 2(φJ)

]
(17)

To complete the transformation we make the following substituion:

dφE =
Mp

F (φJ)

√
F (φJ) +

3

2

(
dF (φJ)

dφJ

)2

dφJ (18)

This way we obtain:

∂µφE∂νφE =

(
dφE
dφJ

)2

∂µφJ∂νφJ

=
M2
P

2F 2(φJ)

(
F (φ)J) +

3

2

(
dF (φJ)

dφJ

)2)
∂µφJ∂νφJ

(19)

And so we arrive in the Einstein frame with the following action:

SE =

∫
d4x
√
−gE

[M2
P

2
RE −

1

2
gµνE ∂µφE∂νφE −

M6
PΛ +M4

Pm
2φ2

J(φE)

F 2((φJ(φE))

]
(20)

With this new action we define an effective potential

Ve(φE) =
M4
P (M2

PΛ +m2φJ(φE)2)

F 2(φE)
(21)

Which as you can see couples the scalar field to the cosmological constant.

3.3 Slow Roll

The state of the universe before inflation is unclear. It seems rather safe to say that
it was expanding, it was in a chaotic state and that the energy-momentum tensor was
dominated by field fluctuations. This state can be approximated by the the relativistic
matter dominated equation of state, w ≈ 1/3. In this state the nonminimal couplings
do not play a significant role[1]. However as the universe expands the corresponding
energy density and pressure will decrease. Eventually they will reach a point when
the dark energy(in the form of the cosmological constant and the scalar field) will
become dominant. This is when the universe enters inflation. The field will feel a
hilltop-like (effective) potential (21) and start rolling down slowly. As it rolls down
down the number of e-folds increases and the fluctuations will redshift rapidly. And
so the inflation loosens our initial conditions (similar to how the flatness problem is
resolved). This is called the slow roll approximation. For this approximation to hold,
the slow roll conditions must be satisfied. These are

ε << 1 η << 1, (22)
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where

ε =
M2
P

2

(V ′
V

)2
η = M2

P

V ′′

V
. (23)

For small field values, φJ ' φE << MP the potential (21) can be approximated by,

V (φ) 'M2
PΛ +m2φ2

E (24)

For large field values φE >> MP , φE (18) gives,

dφE =
MP

M2
P − ξ4

φ4J
M2

P

√
M2
P − ξ4

φ4
J

M2
P

+
3

2

(
M2
P − 4ξ4

φ3
J

M2
P

)2
dφJ

' MP

−ξ4
φ4J
M2

P

√
3

2

(
− 4ξ4

φ3
J

M2
P

)2
dφJ

= 4

√
3

2
MP

dφJ
φJ

(25)

Which gives,

φJ = exp
(√2

3

φE
4MP

)
. (26)

And also,

dφE =
MP

M2
P − ξ4

φ4J
M2

P

√
M2
P − ξ4

φ4
J

M2
P

+
3

2

(
M2
P − 4ξ4

φ3
J

M2
P

)2
dφJ

' MP

M2
P − ξ4

φ4J
M2

P

√
3

2

(
M2
P − 4ξ4

φ3
J

M2
P

)2
dφJ

=
MP

F (φJ)

√
3

2

dF (φJ)

dφJ

= MP

√
3

2

d

dφJ
ln
(
F (φJ

)
dφJ .

(27)

And so, for large field values,

φE = MP

√
3

2
ln

[
F (φJ)

M2
P

]
(28)

Combining (26) and (28) gives the following apporximation for the potential for large
field values,

V (φE) =
M4
P (M2

P (Λ +m2φ2
E)

F 2(φE)

=
M6
PΛ +M4

Pm
2
(

exp
(√

2
3
φE

4MP

))2

(
M2
P exp(

√
2
3
φE
MP

)
)2

= M2
PΛ exp

(
−
√

8

3

φE
MP

)
+m2 exp

(
− 3

2

√
2

3

φE
MP

)
(29)
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A plot of the effective potential for different values of m has been given in Figure (1).

Figure 1: A plot of the effective potential VE in the Einstein frame as a function of the field value φE in
the Einstein frame. We have chosen a fixed ξ4 = −0.01. We have chosen three values for m2, rescaled by
m2/Λ: 0.01 (Blue), 0.1 (Red Dashing) and 0.2 (Green, Dashing).

One can see that that the slow roll approximation conditions are easily held for
small field values (24). For which the parameters are approximated as,

ε =
M2
P

2

(V ′
V

)2
=
M2
P

2

( 2m2φE
M2
PΛ +m2φ2

E

)2
(30)

And as the field rolls down and the values become large ε approaches unity and so
eventually exiting inflation. However if we take the limit for large field values of the
slow roll parameter, we see that

ε =
M2
P

2

(V ′
V

)2

=
M2
P

2

(−√8
3M

5
PΛ exp

(
−
√

8
3
φE
MP

)
−
√

3
2
m2

MP
exp

(
−
√

3
2
φE
MP

)
M6
PΛ exp

(
−
√

8
3
φE
MP

)
+m2 exp

(
−
√

3
2
φE
MP

) )2

→ 3

4
, for |m| > 0

(31)

But if we want to see what happens along the way we will have to derive an exact
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function for ε. We name G(φ) = M2
PΛ +m2φ2, and derive ε as follows,

ε(φJ) = −
M2
P

2

(G′F 2 − 2GFF ′

F 4

F 2

G

dφJ
dφE

)2

=
M2
P

2

(G′F 2 − 2GFF ′

GF 2

F

MP

√
F + 3

2F
′2

)2

=
(G′F − 2GF ′)2

2G2(F + 3
2F
′2)

(32)

Now we will derive the equations governing this system. Varying the action (20)
gives

d

dt

(√
−gdφE

dt

)
= −
√
−gdV (φE)

φE
d

dt

(
a3dφE

dt

)
= −a3V ′(φE)

a3d
2φE
dt2

+ 3ȧa2dφE
dt

= −a3V ′(φE)

And because ȧ/a = H, the equation of motion is

φ̈E + 3Hφ̇E + V ′ = 0. (33)

By definition the energy density is given by the 00 component of the stress energy
tensor, given by

ρφ = ∂0φ∂0φ− g00L (34)

=
1

2
φ̇2
E + V (35)

We can in turn use this in the Friedmann equation for universe dominated by this
density.

H2 =
1

3M2
P

(1

2
φ̇2
E + V (φE)

)
(36)

Now, when we differentiate equation (36),

2HḢ =
1

3M2
P

(φ̇Eφ̈E + V ′(φE)φ̇E)

=
φ̇E
M2
P

(φ̈E + V ′)

and use equation (33), we get

Ḣ = −
φ̇2
E

2M2
P

(37)

Now the equation (33), (36) and (37) are the equations that govern the inflation diy-
namics and the background geometry. In the slow-roll approximation we can neglect
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the kinetic term in equation (36) in comparison to the potential. We also neglect the
first term (φ̈) in equation (33) because we assume the field rolls slowly down the po-
tential.
Furthermore, in the slow roll approximation, equation (33) can be written as φ̇ =
−V ′/(3H). Thus,

φ̇E
H

=
−V ′

3H2

= −M2
P

V ′

V
.

(38)

We measure the number of e-folds from the end of inflation, φ(te) = φe, and as discussed
before the initial conditions from before inflation can be neglected. So with this in mind
and rewriting equation (38) as,

1

H

dφE
dt

= −M2
P

V ′

V

Hdt = − V

M2
PV
′dφE

= − V

M2
PV
′

√
F + 3

2F
′2

F
dφJ

we can define the number of e-folds as,

N(φJ) =

∫ te

t
HE(t̃)dt̃

'
∫ φEe

φE

dφE
−V
M2
PV
′

=

∫ φJe

φJ

dφJ

[ −V
M2
PV
′

F

M2
P

√
F + 3

2F
′2

]

=

∫ φJe

φJ

dφJ

[G(F + 3
2F
′2)

2GF ′ −G′F

]
.

(39)

The functions derived in this subsection can be plotted and used to test the model in
consideration. This will be done in section 4.

3.4 Perturbations

Although the universe is homogenous and isotropic on large scales there are some small
perturbation in temperature (order ∼ 10−5). These cosmological perturbations are cre-
ated by the amplification of quantum fluctuations of matter and metric perturbations
during inflation. In our model matter consist only of a scalar field. The spectrum
of these perturbations can be calculated as well as measured. So we shall proceed in
calculating the power spectra of the scalar (matter) and tensor (metric) perturbations.
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We assumed that the field was approximately homogenous with respect to a space-like
hypersurface. So it can be decomposed into its condensate and small perturbations:

φ(x) = φ0(t) + ϕ(t, ~x) (40)

Similarly, the metric tensor can be written as,

gµν = ḡµν(t) + δĝµν(~x), (41)

where ḡµν(t) = diag
(
− 1, a2(t), a2(t), a2(t)

)
. Now, because these perturbations

are due to quantum fluctuations, the obvious step would be to canonically quantise
these perturbations. We will restrict ourselves to scalar perturbations as derivation for
the tensor perturbations are similar. Even more as you will see they are connected.
First we promote the perturbations to operators, ϕ → ϕ̂, and then impose canonical
relations, [

ϕ̂(t, ~x), π̂ϕ(~x′, t)
]

= iδ3(~x− ~x′), (42)

where π̂ϕ = a2dϕ̂/dt denotes the canonical momentum of ϕ̂. This can be achieved by
decomposing the perturbations in Fourier modes,

ϕ̂(t, ~x) =

∫
d3k

(2π)3
ei
~k·~x[ϕ(t, k)â(~k) + ϕ∗(t, k)â†(−~k)

]
(43)

where ~k is the comoving momentum of the mode, k = ||~k||, â(~k) and â†(~k) are the
annihilation and creation operators for scalar perturbations, which depend on ~k and
satisfy the following commutation relations,

[â~k, â
†
~k′

] = (2π)3δ3(~k − ~k′)

[â~k, â~k′ ] = 0

[â†~k
, â†~k′

] = 0.

(44)

The mode functions ϕ and ϕ∗ are two linearly independent solutions to the mode
function equation, which only depend on the magnitude of ~k and not the direction.
The mode function equation can be derived by rescaling for aϕ̂ and then inserting the
decomposed perturbations in to the equation of motion (33)[6],( d2

dt2
+ 3H

d

dt
+

k

a2
+
d2V

dφ2
0

)
ϕ(t, k) = 0 (45)

From this one can derive two general linearly independent mode functions. These
functions however must also obey the Wronskian normalisation condition,

W [ϕ,ϕ∗] = ϕk

( d
dt

)
ϕ∗k −

( d
dt
ϕk

)
ϕ∗k = i. (46)

They must also obey the matching conditions at the end of inflation/beginning of
radtion,

ϕk

∣∣∣
t=−H−1

I

= ϕradk

∣∣∣
t=−H−1

I

dϕk
dt

∣∣∣
t=−H−1

I

=
dϕradk

dt

∣∣∣
t=−H−1

I

.

(47)
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With all these conditions we can determine the exact mode functions, ϕ and ϕ∗. Once
they are determined we can define the power spectrum ∆2

s(t, k) as follows [5],

〈0|φ̂(~x, t)2|o〉 =
1

a2

∫
d3k

(2π)3
|ϕk|2 ≡

∫
dk

k
∆2
s(t, k) (48)

It can also be shown that during inflation the scalar and tensor perturbations can be
calculated in terms of the mode functions,

∆2
s(t, k) =

k3

8π2εM2
P

|ϕ(t, k)|2 (49)

And that the tensor spectrum relates to the scalar spectrum as follows,

∆2
t (t, k) = 16ε∆2

s. (50)

Now, in the slow roll approximation, the mode functions on super-Hubble scales can
be approximated by[5],

|ϕ(t, k)|2 ' H2
∗

(2k3)

( k

aH∗

)ns−1
. (51)

Astronomers usually parametrise the observed spectra as follows,

∆2
s(k) = ∆2

s(k∗)
( k
k∗

)ns−1

∆2
t (k) = ∆2

t (k∗)
( k
k∗

)nt
(52)

where the * denotes the time when the perturbation crosses the Hubble radius and thus
becoming super-Hubble during inflation. So ∆2

s(k∗) and ∆2
t (k∗) are the amplitudes of

the spectra evaluated at k = k∗ = aH∗. Thus,

∆2
s∗(k) =

H2
∗

8π2εM2
P

∆2
t∗(k) =

2H2
∗

M2
P

(53)

Furthermore ns and nt are the spectral indices, which can be determined by variation
of ∆2

s and ∆2
t with respect to k at k∗ as follows[1]:

ns = 1 + lim
k→k∗

ln[∆2
s(k)/∆2

s(k∗)

ln[k/k∗]

= 1 + lim
k→k∗

ln[∆2
s(k)]− ln[∆2

s(k∗)

ln[k]− ln[k∗]

= 1 + lim
k→k∗

d ln[∆2
s(k)]

d ln[k]

=
dt

d ln(Ha)

d ln[∆2
s(k∗)]

dt

' 1− 2ε− η

(54)
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nt = lim
k→k∗

ln[∆2
t (k)/∆2

t (k∗)

ln[k/k∗]

=
dt

d ln(Ha)

d ln[∆2
t (k∗)]

dt

' −2ε

(55)

Now we have derived functions for the spectral indices which we can plot against
the the parameters m and ξ4 for different numbers of e-folds. The spectral indices
are measurable quantities and thus this way the model can be compared with our
observations. This is done in section 4.

3.5 Quantum tunneling

As you can see in Figure (1) the effective potential VE(φE) has a local minimum for
φE = 0 and a local maximum for some φE > 0, when we choose ξ2 = 0, ξ4 < 0 and
m > 0. This means that the field will not start rolling downhill from φE = 0 simply
because it has to go uphill first. In this case a phenomenon called quantum tunneling
may occur. Quantum tunneling occurs when a particle (or in our case: field) tran-
sitions through a classically forbidden energy state. The field then tunnels from the
local minimum at φE = 0 through the energy barrier to the other side. At this point
the field feels the hill-top-like potential and starts rolling down and entering inflation
as discussed before. The state of the field at the local minimum is called false vacuum,
where the state of the field at a lower energy is called true vacuum. The quantum tun-
neling happens in a way where bubbles of true vacuum nucleate in the false vacuum.
These bubbles then start to grow to eventually fill the universe. We will now derive a
way to find the probability that quantum tunneling may occur.

First let us take a look at the potential VE (21). The field will be able to “roll down the
hill” and enter inflation when it has somehow passed over the maximum

(
Figure (1)

)
.

Let us denote φEc as the value for φE where the the potential has this local maximum.
Then let us consider the quantum mechanical wave function ψ(φE(~x)) for the field.
The rate of tunneling of the field to a potential where φE > φEc or −φE < −φEc (due
to symmetry), and be able to enter inflation is,

P =

∫ −φEc

−∞
dφE ψ(φE) +

∫ ∞
φEc

dφE ψ(φE)

= 2

∫ ∞
φEc

dφE ψ(φE).

(56)

Which is given in units of Hubble time. In general the wave function ψ(φE(~x)) is
complicated. However, we are interested in the infrared sector of the the theory. For
the infrared sector we can approximate the wave function by that of the zero mode of
the decomposed field, ϕ(t, 0), which is spatially homogenous. The wave function of the
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zero mode can be approximated by a Gaussian. The gaussian wave function looks like,

ψ(φ) = A exp
[−φ2

E

2σ

]
, (57)

where A is the normalisation constant and σ is the width of the Gaussian wave function.
Integrating (57) from −∞ to ∞, gives

√
2σπ (for Re(σ) > 0). Thus,

A =
1√
2σπ

(58)

In quantum field theory the general propagator is the probability amplitude of a particle
traveling from one space time point to another. This propagator is defined by [7],

ι∆(~x; ~x′) =
HD−2

(4π)D/2
Γ(D−1

2 + νD)Γ(D−1
2 − νD)

Γ(D2 )
2F1

(
D − 1

2
+νD,

D − 1

2
−νD;

D

2
; 1−y(~x; ~x′)

4

)
(59)

where D = 4 is the number of dimensions, 2F1 is the hypergeometric function,

νD =
√

(D−1
2 )2 − m2

H2 and

y(x;x′) = a(η)a(η′)H2[−(|η − η′| − iδ)2 + ||~x− ~x′||]. (60)

The width of the the wave function σ is given by the propagator at coincedence, i.e.
when ~x = ~x′ and y(~x; ~x′) = 0. This gives,

ι∆(~x; ~x) =
HD−2

(4π)D/2
Γ(D−1

2 + νD)Γ(D−1
2 − νD)

Γ(D2 )
2F1

(
D − 1

2
+ νD,

D − 1

2
− νD;

D

2
; 1

)

=
HD−2

(4π)D/2
Γ(1− 1

2)Γ(D−1
2 + νD)Γ(D−1

2 − νD)

Γ(1
2 − νD)Γ(1

2 + νD)

(61)

However, the function (61) is divergent for D = 4. And because m2 � H2, we can

expand this function in powers of m2

H2 . Which gives [7],

σ = ι∆(~x; ~x) =
HD−2Γ(D−1

2

(4π)D/2

[
ψ
(D

2
− ψ(D − 1)− ψ(1−D)− ψ

(
1− D

2

)
− γE +

1

D − 1

]

+
Γ(D+1

2 )

2π(D+1)/2

HD

m2
+O

(m2

H2

)
,

(62)

where the first part is again divergent for D = 4. We use the second term, assuming
that this is the physical part. So we have,

σ =
Γ(5

2)

2π(5)/2

H4

m2

=
3

8π2

H4

m2

=
Λ2

24π2m2

(63)
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and

A =

√
12πm2

Λ2
. (64)

Now we calculate the value of φEc,

V ′(φE) =
G′F − 2GF ′

F 3
= 0

⇒ G′F − 2GF ′ = 0

2m2φE(1− ξ4
φ4
E

M4
P

)− 2(ΛM2
P +m2φ2

E)(−4ξ4
φ3
E

M4
P

) = 0

2m2 + 8Λξ4
φ2
E

M2
P

+ 6m2ξ4
φ4
E

M2
P

= 0

(65)

→ φ2
Ec =

−8 Λξ4
M2

P
+
√

64Λ2ξ2
4/M

4
P − 48m4ξ4/M2

P

12m2ξ4/M4
P

= M2
P

√( 2Λ

3m2

)2
− 1

3ξ4
− 2

3

ΛM2
P

m2
.

(66)

And so,

φ2
Ec

σ
=
M2
P

√(
2Λ

3m2

)2
− 1

3ξ4
− 2

3
ΛM2

P
m2

Λ2

24π2m2

= 16π2M
2
P

Λ

√
1− 3m4

4ξ4Λ2
− 1

' 16π2M
2
P

Λ

(
− 3m4

8ξ4Λ2

)
, for

∣∣∣ 3m4

4ξ4Λ2

∣∣∣ < 1

(67)

Thus,

ψ(φE) =

√
12πm2

Λ2
exp

[3π2M2
Pm

4

Λ3ξ4

( φE
φEc

)2]
. (68)

Which gives,

P = 2

√
12πm2

Λ2

∫ ∞
φEc

exp
[3π2M2

Pm
4

Λ3ξ4

( φE
φEc

)2]
. (69)

This resembles the rate of tunneling in units of the Hubble constant and thus can be
interpreted as the probability that the field tunnels in Hubble time. As a consequence
this tunneling rate does not have to be very large. The field just has to tunnel at least
once anywhere in the universe and inflation will start. For example, if you look at 105

Hubble volumes, then even if P = 10−5 it will tunnel on average once per Hubble time
somewhere in the universe. Then inflation will start, can last 65 e-foldings and we can
be in that part of the universe.
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4 Results

Now that we have derived all the tools that we need to test our model we will present
the results. First let us take a look at the slow roll parameter εE . We use (32) to plot
εE in Figure 2.

Figure 2: A plot of εE as a function of the field value φJ for fixed ξ4 = −0.1. Because the dependence on
ξ4 is minimal. Green: m2 = 0, Blue: m2 = 0.04, Red: m2 = 0.16. Als the three black horizontal lines are at
respectively, 3/4, 1, 4/3.

Here we see that the for m2 = 0, εE converges to 4/3. As for when m2 > 0, εE will
converge to 3/4 as calculated before. When m2 is large εE will never cross 1 and thus
inflation will never end. However if m2 > 0 is small enough it will end inflation but
eventually the universe will enter an epoch where εE = 3/4. Which is not a satisfying
outcome.
When we use equation (39), we can plot εE as a function of the number of e-folds, as
is done in the figures 3 and 4.

Figure 3: εE as a function of the number of
E-folds for fixed m√

Λ
= 0.01. Green: ξ4 = −0.1,

Red: ξ4 = −0.01 and Blue: ξ4 = −0.001.

Figure 4: Log(εE) as a function of the number
of E-foldsfor fixed m√

Λ
= 0.01. Green: ξ4 = −0.1,

Red: ξ4 = −0.01 and Blue: ξ4 = −0.001.
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Because the number of e-folds is measured from the end of inflation the plot is in
the opposite direction of figure 2. However we can see that the preferable amount of
60 e-folds can easily be met.
Using equation (32) we can define the end of inflation φEe as a function of m2 and
ξ4. Together with equations (39) and (54) we can plot the scalar power spectrum as a
function of m and ξ4 for different amounts of e-folds. This is done in Figure 5 and 6.

Figure 5: Spectral index ns as a function of m,
for fixed value ξ4 = −0.1. Red: 65 e-fols, Blue:
60 e-folds, Yellow: 55 e-folds.

Figure 6: Spectral index ns as a function of
ξ4, for fixed value m√

Λ
= 0.01. Red: 65 e-folds,

Blue: 60 e-folds, Yellow: 55 e-folds.

As you can see the spectrum peaks for m2 = 0. Which indicates that the mass
term would be very small or doesn’t exist at all. For small mass terms the plot of the
spectrum as a function of ξ4 doesn’t peak at all. We chose small m√

Λ
becasue of the

peak in Figure 5. Furthermore, the curve for 60 e-folds is smaller than the central value
for ns obtained by the Planck Collaboration [8], with about 2.2σ. Even the curve for
65 e-folds is below the central value with aobut 1.5σ. While for standard cosmologies
the number of e-folds would be at most 62 [1].

Using equation (53) and using H2 = Λ
3 , we can write,

Λ = 48π2εEM
2
P∆2

s∗, (70)

where the COBE normalisation constrains [5],

∆s∗ = (2.20± 0.08) ∗ 10−9. (71)

And we can approximate 48π2εE ∼ 1 before tunneling when the slow roll hasn’t started
yet. Applying this we can make a plot of the probability (69) as a function of m, as is
done in figure 7.
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Figure 7: A plot of the probability that the the field will tunnel as a function of m, for fixed ξ4 = −0.1.

We can see in figure 7 that the tunneling rate peaks, for small values of m. However
it is still possible for the field to tunnel for larger values of m, as the field only needs to
tunnel once to start inflation. When we zoom in (Figure 8) we see that for m√

Λ
= 0.0037

the tunneling rate decreases so much that you must look at more than 1012 Hubble
volumes.

Figure 8: A plot of the tunneling rate as a function of m√
Λ

, for fixed ξ4 = −0.1.

5 Discussion

In this thesis we analysed an inflationary model. In the model the inflation was driven
by a cosmological constant and a nonminimally coupled scalar field with a mass term.
The model was inspired by previous work [1] where the model did not contain a mass
term. The original model had some tuning problems of initial conditions. A positive
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mass term creates a local minimum of the potential and thus makes it more likely that
the field will start there. However, in this work, it shows that a positive mass term had
undesirable consequences. The spectral index decreases, hence making agreement with
the CMB data more tenuous. Even for high numbers of e-folds (N=65) the spectral
index ns is still 1.5σ below the central values, thus representing a tension. Furthermore,
after the introduction of the mass term, the slow roll parameter εE converges to 3/4
for m2 > 0 and thus enter an epoch of some strange kind. When we look at the results
for quantum tunneling, we see that the plot for the tunneling rate showed a peak for
m = 0, indicating that the smaller the mass term, the higher the tunneling rate and
the more likely it would be that the field entered slow roll inflation. However, the
field only has to tunnel once somewhere (anywhere), but as is shown in Figure 8, after
m√
Λ

= 0.004 you would need to look at a tremendous amount of Hubble volumes.

A way to still retain the mass term, would be to propose that a phase transition occurs,
in which m2 turns from positive to negative, which can either start or end inflation.
This can be achieved for example if m is not just a constant, but instead is composed
of two parts, m2 = m2

0 +ξψψ
2, where ξψ > 0 is a coupling constant and ψ is a field that

couples to φ. At early times ψ > 0, giving a positive m2, while at late times ψ = 0,
resulting in m2 ≤ 0. This way it will have the same predictions as the original model,
but will require less fine tuning. Perhaps for future work.
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