
Universiteit Utrecht

Bachelor’s Thesis Artificial Intelligence

(7.5 ECTS)

Inserting Symbolic Knowledge
to Improve Learning in Neural

Networks
Two Test Cases

Cornelis Bouter

First supervisor:
dr. ir. Jan Broersen

Second supervisor:
prof. dr. Daniel Cohnitz

August 25, 2016

Contents

1 Introduction 2
1.1 Datasets . 3
1.2 Structure . 4

2 Background 5
2.1 Artificial Neural Networks . 5

2.1.1 Perceptron . 6
2.1.2 Backpropagation with momentum 7

2.2 Modal Logic . 9
2.2.1 Modal Logic Programs 10
2.2.2 Immediate Consequence Operator 11

3 CILP translation algorithm 13
3.1 Intuitive definition . 13
3.2 Formal definition . 14
3.3 Proof of correctness . 16
3.4 Adapting the network for the learning problem 17

4 Implementation and tests 19
4.1 Implementation . 19
4.2 Datasets . 19

4.2.1 Muddy Children . 19
4.2.2 Titanic . 21

4.3 Testsetting . 22
4.4 Testresults . 24

5 Discussion and further research 25
5.1 Further research . 26

1

Chapter 1

Introduction

The symbolic and subsymbolic approaches to Artificial Intelligence have of-
ten been seen as complementary. On the one hand, symbolic systems present
us formal reasoning and human readability. On the other hand, subsymbolic
systems, especially Artificial Neural Networks (ANN), have the capability to
learn from data and are very resistant to noise. Therefore, we will try to
combine the strengths of both to improve their performance on binary clas-
sification problems, compared to the performance of standard subsymbolic
systems. Binary classification is the problem to, given an example contain-
ing n input values, determine whether this example has a certain property
or does not. We expect that the performance of ANNs will indeed increase
by adding background knowledge.
The symbolic background knowledge about the problem will be in form of
a logic program. So, it is a set of clauses “if A1, ..., An, then B”, where
A1, ..., An and B represent some property. The human readability is nec-
essary for human experts to write their background knowledge as a logic
program.
The subsymbolic model of computation we will use is an Artifical Neural Net-
work. It is a model designed for n-ary classification, in our case binary, so it
gives us the learning capability, typical of subsymbolic systems. The precise
learning algorithm will be presented in section 2.1. For now it is sufficient
to say that after obtaining a set of input values and incorrectly classfying
it, the network can adjust its structure to be more likely to classify the next
example correctly.
Usually, an ANN is initiated randomly. We take another approach. We
will initiate the ANN by inserting background knowledge into the network.
To perform the translation of logic program to neural network, we use the
Connectionist Inductive Learning and Logic Programming (CILP) transla-
tion algorithm [5]. This way, we aim to combine a subsymbolic system with

2

symbolic background knowledge.
The theoretical part of this thesis will use the Immediate Consequence Op-
erator (ICO) as a tool to prove that a translation of logic program to ANN is
theoretically possible. Any logic program has a unique ICO associated with
it, so if an ANN is functionally equivalent to the ICO, we believe the ANN
has learned the logic program. Firstly, we will show that the operator has the
properties needed for an ANN to be able to approximate it. Then, we will
give a sketch of the proof that the CILP translation algorithm does indeed
produce an ANN that approximates the Immediate Consequence Operator
of the inserted logic program.
To conclude this thesis we will perform some experiments to test our hy-
pothesis that inserting symbolic background knowledge into an ANN will
improve its performance on a binary classification problem. We will present
experimental results for both a network constructed with background knowl-
edge and a randomly initiated neural network. For this task we selected two
classification problems.

1.1 Datasets

Firstly, we got the problem commonly known as the Muddy Children puzzle.
Imagine a situation where a particular number of children has played outside
and may have gotten dirty. For some reason a child cannot know if he or she
is muddy, but the child can see whether another child is muddy. Let us just
assume their hair is muddy. We observe the situation with three children.
When they get home, a parent or guardian makes the public announcement
that at least one of them is muddy. He also tells them to step forward if
he or she knows whether he or she is muddy. If no child steps forward, the
parent announces that one more child is muddy. How does a child reason to
learn whether he or she is muddy?
Let m of the n children be muddy. Then, immediatly after the mth an-
nouncement the muddy children will know that they are muddy [15]. Take
for example the situation with only child 1 being muddy. It can see that the
other children are clean. So, it only has to hear the initial announcement to
deduce that he must be muddy. The other children learn that the first public
announcement was enough for child 1 to learn whether it is muddy. With
the information available to child 1 he cannot have learned to be clean, so
the other children can infer that child 1 has learned that he or she is indeed
muddy. So children 2 and 3 learn they are clean. By seeing the muddiness of
each child as a binary variable, we can construct a binary list for each state
of the puzzle.

3

The other dataset we use is of passengers on board the Titanic. The data
is readily available online through the data science website kaggle.com. It
is well suited to our problem, as it only has one binary output variable:
survival. The dataset presents for each person his or her name, age, ticket
price, place of embarkment and more. We need to reason about the relation
between these properties and survival. Maybe women and children survive,
but not if they were third class passengers. However, contrary to the Muddy
Children problem, the clauses we may derive for the Titanic problem will
not be deterministic. A rule only tells us that certain properties increase the
likelihood of survival. This is a major difference between the Titanic and the
Muddy Children problem, but this is intentionally. We want to investigate
whether we can increase the performance of ANNs with both kinds of back-
ground knowledge.
Our research is primarily based on [5] and [7]. It is an expansion of Knowledge
Based Artificial Neural Networks [14]. The authors have already obtained
significant results on the Muddy Children problem. First of all, we want
to reproduce those results. Secondly, we want to apply the method to the
Titanic problem where we reason about likelihoods, to see if the method
increases the performance of ANNs in both situations.

1.2 Structure

We structure our thesis as follows. Firstly, to conduct our research we need
to define some background concepts: feedforward neural networks trained
with backpropagation, logic programs and the immediate consequence oper-
ator. In the next part we describe the combination of those three concepts:
the Connectionist Inductive Learning and Logic Programming translation
algorithm. We also present an outline of its proof. In chapter 4 we state
our testing conditions and present the results. To conclude, we explain the
relevance for general AI research and give suggestions for further research.

4

Chapter 2

Background

2.1 Artificial Neural Networks

The Artificial Neural Network (ANN) is the model of computation we use
for our learning problem. It is inspired by the structure of a brain. Just as a
brain consists of interconnected neurons, an ANN consists of several layers of
interconnected so-called perceptrons. The earliest mention of the brain as a
computational model occured in the 1940s with the McCulloch-Pitts neuron.
The perceptron model, wich will be described in the next paragraph, was
first proposed in the 1960s. It took another twenty years until a network
of perceptrons was proposed [8]. With the advent of Deep Learning, ANNs
have recently become a state-of-the-art AI-technique again. For my purposes,
however, it is enough to describe the feedforward backpropagation ANNs of
the early 1990s. With feedforward we mean the absence of loops in the
network. Backpropagation refers to the learning algorithm.

ϕ′1

...
...

x1

ϕ1

ω
1

x2

ϕ2

ω
2

x3

ϕ3 ω3

xn

ϕn
ωn

Figure 2.1: The structure of a neural network.

5

2.1.1 Perceptron

As the figure shows, an ANN consists of three layers: an input layer, a
hidden layer and an output layer. Both the hidden- and the output layer
consist of perceptrons. Each input unit simply outputs a value (for example
the greyness of a pixel or the truthvalue of a propositional variable) to every
perceptron in the hidden layer. The behavior of a perceptron is a different.

Figure 2.2: A perceptron [12].

An individual perceptron takes values x0,...,xn, where n is the number of
inputs. The perceptron computes its net input value by taking the inproduct
of the input vector and the weight vector: netj = ~wj •~ij. So, we take the sum
over all inputs, where each input value is multiplied by its associated weight.
The netto input minus the threshold is the input of the perceptron’s output
function: oj = ϕ(netj − θj). Still, we need to decide on the exact output
function to use. The function originally proposed is the sign-function.

sgn(x) =

{
1 if x > 0

−1 otherwise

The sign-operation, however, can only output either 1 or -1, so the per-
ceptron can only learn a linear classifier [11]. Even several linked linear
classifiers can still only produce another linear classifier [2]. With ANNs we
aim to learn a more flexible classifier. Enter the sigmoid unit. The only
difference between the perceptron and the sigmoid unit is the latter’s output
function. To be precise, the output function of a sigmoid unit is:

o(~w,~i) = σ(~w ·~i)
where

σ(x) = 1
1+e−x

As the image shows the sigmoid function gives a smooth increase in the
range (0,1).

6

Figure 2.3: The curve of a sigmoid function.

2.1.2 Backpropagation with momentum

Having constructed a network, we can, given an input vector, compute an
output value. Both the Muddy Children and the Titanic problem are super-
vised, so we know the ideal output. If the network output differs from the
ideal output, we need to change the weights of the network. The backpropa-
gation algorithm is very efficient for this task and not difficult. It computes
the error at the output level. The error is then propagated backwards through
the network to adjust the weights of all connections. The complete algorithm
is presented in the following table [11].

7

Data: trainingExamples is a list of tuples < ~x,~t > where ~x is the
input and ~t is the desired output; ni is the number of input
values; nh is the number of perceptrons in the hidden layer; no
is the number of output values; η is the learn factor, ξ is the
momentum factor

Result: A trained ANN
1 Create a feedforward network with ni input units, nh hidden units and

no output units;
2 Initialise all weights with small random values (e.g. between 0.05 and

-0.05);
3 while termination condition not met do

4 for < ~x,~t > in trainingExamples do
5 Forward: ;
6 Compute output op of each perceptron p for this particular

training example; ;

7 Backward: ;
8 Compute error for each output node k ;
9 do ⇐ ok(1− ok)(tk − ok) ;

10 Compute error for each hidden node h ;
11 dh ⇐ oh(1− oh)

∑
o∈outputnodes

wohdo;

12 Update weights ;
13 for weight wji in network do
14 wji ← wji + ηdjxji + ξ∆wji(n− 1);
15 where xji is the output from unit j to unit i;

16 end

17 end

18 end

The only part of the algorithm that needs some clarification is the third
line. The termination condition of an ANN is not trivial at all. Terminating
too soon may cause suboptimal results because of too little training. Termi-
nating too late may also cause inferior results caused by overfitting [11]. The
termination condition we use will be described per case in the result section.
Also, the backpropagation algorithm does not necessarily end in the global
minimum, as the search space may contain several local minima. Therefore,
we have implemented momentum in line 14: ηδjxji + ξ∆wji(n − 1), with
0 ≤ ξ ≤ 1. The first term of the sum is just the backpropagation algorithm.
The second part is the momentum. It adds the weight update of the previous

8

iteration to the current. Intuitively, it is just like a ball descending along a
slope. Its movement does not suddenly stop in a local minimum, but rather
it ascends a little along the next slope.
In the rest of the thesis we will use neural networks with backpropagation and
momentum. The number of input and output neurons will decided by the
number of propositional variables in logic program. It is the number of hid-
den neurons, the thresholds and the weights that we will set to approximate
the immediate consequence operator.

2.2 Modal Logic

Formal logic was originally developed to reason about knowledge and argu-
ments. While natural language contains lots of ambiguities, logic aims to
present a formal approach to define the truth and falseness of statements. In
this case, we want to formally describe the knowledge of an agent. How do
we say that a child knows it is muddy, when it sees the other two children
being clean?
The most simple form of logic is propositional logic, which deals only with
truth and falsehood. Propositional logic, however, is not a sufficient tool to
reason about the Muddy Children problem. We need to discriminate be-
tween different states of knowledge. For example, each agent only knows the
muddiness of the other agents. Therefore, we use another logic: modal logic.
This logic introduces different states of knowledge. Each state is connected
to every other state thats indistinguishable from it for a particular agent.
For example, given that all children are muddy, and that the parent has an-
nounced that at least one child is muddy, each child cannot distinguish the
actual situation from the situation where he himself would be clean.
We provide an inductive definition for the minimal set of syntactically legal
modal logic formulas:

Definition 1. Syntax of modal logic (FOR)

1. pi ∈ FOR for all i ∈ N

2. ⊥ ∈ FOR

3. If A ∈ FOR then ¬A,�A, �A ∈ FOR

4. If A,B ∈ FOR then (A ∧B), (A→ B) ∈ FOR1

1We omitted some commonly used connectives, as those don’t increase representational
power. The implication does not either, but we kept it because it is relevant for section
1.3.

9

For an agent to know �φ means, he is certain φ is the case. So, in every
world visible for the agent, φ is the case. For an agent to know �φ means he
thinks it is possible φ is the case. This means the current world is connected
to at least one world where φ is the case. The state of the world is repre-
sented in a frame.

Definition 2. Kripke Frame. A Kripke frame is a tuple < W,R >, where W
is a set of worlds (ie. nodes) and R ⊆ (W ×W), the accessability relation,
is a binary relation on W [10].

When valuations are added to the nodes of the frame, it is called a Kripke
model.

Definition 3. A Kripke model is an extension of a Kripke frame with a
valuation: < W,R, V >, where < W,R > is a Kripke frame. V is a function
V : W → P(var), where var is the set of atoms in the model. A proposition
p is true in world w ∈ W if p ∈ V (w) and false if p /∈ V (w) [10].

To conclude, we give the semantics of modal logic.

Definition 4. The truth of a formula φ in a given model M =< W,R, V >
is defined as follows, with w ∈ W :

• M,w � p iff p ∈ V (w)

• M,w � ⊥ iff 1 = 0

• M,w � ¬A iff not M,w � A

• M,w � (A ∧B) iff M,w � A and M,w � B

• M,w � (A→ B) iff (not M,w � A) or M,w � B

• �φ is true in world w iff for all v ∈ W with wRv it holds that M, v � φ.

• �φ is true in world w iff there exists a v ∈ W with wRv such that
M, v � φ.

2.2.1 Modal Logic Programs

When we combine the knowledge of an agent to a set of rules A0 ← A1, ..., An
with A and A1, ..., An atoms, we obtain a definite logic program. It is defi-
nite, because no classical negations (¬A) are allowed. We do, however, allow
default negation (A). For ¬A to be true, we have to explicitly know that A

10

is not the case, whereas for A to be true it is enough to have no knowledge
whether A is true. Although the difference is an interesting topic on its own,
it is beyond the scope of this thesis.
For each rule, A0 is called the head (or consequent) and the possibly empty
set of rules A1, ..., An is called the body (or antecedent). If A0, ..., An may
be modal atoms (ie. of the form MA with M ∈ �, �) it is called a modal
program. When every rule is of the form wi : A0 → A1, ..., An, where wi
designates a world in the frame, it is called an extended logic program [13].
Take for example the following modal program P ′. It is a part of the modal
logic program for the muddy children problem (three children) for child 1:

1. �p1 ← �q3

2. �q3

Propositional variable pi is interpreted as “child i is muddy”. Variable qi
means that at least i children are muddy. So, the first rule says that if an
agent knows at least three children are muddy, then it knows itself to be
muddy. Note that the second rule is syntactically correct, since the body
may be empty.
To give meaning to a logic program we need to interpret it. We can give it a
Herbrand interpretation, for example. A Herbrand interpretation is nothing
more than a set of atoms: possibly ∅ or {p1, q3}. These atoms are interpreted
as true variables and the other atoms are interpreted as false. An interpreta-
tion of P is also a model of P if every formula in P is true. An interpretation
is supported if every atom exists as a head in one of the rules of P and if for
each of these rules the body is true [13]. So, for example interpretation ∅ is
neither a model, nor stable, because q3 is true in the model. Model {p1, q3}
is a supported model.

2.2.2 Immediate Consequence Operator

Given an interpretation we want to find the added knowledge (or conse-
quences) of that interpretation. In program P ′, for example, if we know {q3}
to be true, we can add p1 to our knowledge. Similarly, if we know ∅ to be
true, we can q3 to our interpretation. It is the immediate consequence of
what we already regard as true. So, the immediate consequence operator Tp
is a mapping of subsets of atoms to subsets of atoms.

11

Tp : P (atoms(P))→ P (atoms(P))
where P is the power set notation,

and P is a logic program.

Definition 5. Let P be a definite logic program and I a Herbrand interpre-
tation (ie. a set of ground atoms) of P .
Tp(I) = {α ∈ atoms(P)|α← B1, ..., Bm(m ≥ 0) is an instance of a clause

in P and {B1, ..., Bm} ⊆ I}

So, what is significant about this function? When the output of Tp equals
its input (ie. at a fixed point, f(x) = x), then I is a model of P . If an
x ∈ I would not be true in P , then x would not be an element of Tp(I). If
some truths of the model would not be captured in I, then Tp(I) would not
be equal to I. So, the operator can express the same statements the logic
program can.
Also, Tp is a continuous function [13]. This roughly means that it has no
gaps or jumps. More importantly, though, this means an ANN can in theory
approximate Tp arbitrarily well [3]. How we do this in practice will be the
subject of the following section.

12

Chapter 3

CILP translation algorithm

In this section we present the Connectionist Inductive Learning and Logic
Programming (CILP) translation algorithm. It takes an (extended) logic
program and outputs an artificial neural network that computes its immedi-
ate consequence operator. The algorithm is described based on [5] and [4].
The only difference is that our implementation can translate extended logic
programs, while our sources split this explanation in two parts. We will de-
scribe the algorithm both intuitively and formally. We will not provide a
complete proof of its correctness, but we present only the idea and refer to
the formal proof.

3.1 Intuitive definition

Firsly, we need to create the appropriate structure of the neural network.
That means we need to set the amount of nodes in the input, hidden and
output layer. An input node is created for each unique literal in the body
of a rule, where we regard �p and �p as different literals than p. For each
clause a hidden node is constructed and each literal in its body is connected
to the hidden node. If the literal in the body is negative (negation as failure)
the connection will have a negative weight. An output node is created for
each unique literal in the head of a rule. Each hidden node is connected to
the output node that represents its head. Each connection just prescribed
will receive weight W , or −W for negative literals. The exact value of W
will be defined in a moment. All other connections will be initialised with 0
as their weight, so the network will be fully connected.
Given this structure, we need to set the value W and each threshold value
such that the network is equivalent to the original logic program. Therefore,

13

we need to implement two conditions.

1. A hidden neuron may not fire unless all its connected positive neurons
fire and none of its connected negative neurons fire.

2. An output neuron may not fire unless at least one of its connected
hidden neurons fires.

3.2 Formal definition

To provide a formal definition of the algorithm we need to define several
variables. Let:

• q denote the number of clauses in P ,

• v denote the number of literals in P ,

• Amin denote the minium value for a neuron to be active. In the equiv-
alent logic program it means the literal is true. Amin ∈ (0, 1),

• Amax = −Amin denote the maximum value for a neuron to be inactive.
In the equivalent logic program it means the literal is false. Amax ∈
(0,−1),

• h(x) = 2
1+ε−βx

− 1, where β is the steepness factor,

• g(x) = x, the standard linear activation function,

• W and −W denote the weights of connections associated with positive
and negative literals, respectively,

• θl denote the threshold of hidden neuron Nl, associated with clause rl,

• θA denote the threshold of the output neuron A,

• kl denote the number of literals in the body of clause rl,

• pl denote the number of positive literals in the body of clause rl,

• nl denote the number of negative literals in the body of clause rl,

• µl denote the number of clauses in P with the same atom in the head,
including itself,

• MAXrl(kl, µl) denote the maximum element of kl and µl for clause rl,
and

14

• MAXP (k1, ..., kq, µ1, ..., µl) denotes the maximum element of any ki and
µi for the whole logic program.

For example, let P be the logic program {A ← B,C;A ← D,E;D ←
E;E}. So, q = 4, v = 5, k1 = 2, k2 = 2, k3 = 1, k4 = 0, pi = ki and ni = 0
for all 1 ≤ i ≤ 4, µ1 = 2, µ2 = 2, µ3 = 1, µ4 = 1, MAXr1 = 2, MAXr2 = 2,
MAXr3 = 1, MAXr4 = 1 and MAXP = 2. So the translation gives us the
following network. Note that the network is fully connected, but connections
with weight value 0 are not shown.

Variable B

Variable C

Variable D

Variable E

r1

r2

r3

r4

Output A

Output D

Output E

W
W

W
W
W

W
W

W

W

Hidden
layer

Input
layer

Output
layer

Figure 3.1: The structure of the translated logic program.

These definitions allow us to define the algorithm which takes a logic
program P as its input and returns a neural network N .

1. Calculate Amin and W such that the following are satisfied:
W ≥ 2

β
. ln(1+Amin)−ln(1−Amin)
MAXP (~k,~µ)(Amin−1)+Amin+1

Amin >
MAXP (~k,~µ)−1
MAXP (~k,~µ)+1

2. For each rule rl of P as A← L1, ..., Lk with k ≥ 0:

(a) Create input neurons L1, ..., Lk and an output neuron A in N ,
unless such a neuron already exists.

(b) Add a neuron Nl to the hidden layer of N .

(c) Connect each neuron Li (0 ≤ i ≤ k) to neuron Nl in the hidden
layer. Assign weight W to the connection if Li is a positive literal,
otherwise set the connection weight to −W .

15

(d) Connect Nl to output neuron A and set the connection weight to
W .

(e) Define the threshold of Nl:

θl = (1+Amin)(kl−1)
2

W .

(f) Define the threshold of the output neuron A as:

θA = (1+Amin)(1−µl)
2

W .

3. Set h(x), the bipolar semilinear function, as the activation function of
all nodes in the hidden layer and in the output layer.

4. Set g(x), the linear function, as the activation function of all nodes in
the input layer.

5. Set the weight of all other connections to zero.

3.3 Proof of correctness

Theorem 1. For each propositional general logic program P , there exists
a feedforward artificial neural network N with exactly one hidden layer and
semilinear neurons such that N computes the fixed-point operator TP of P .

We only show the idea, but the complete proof can be found in [5] or [4].
We need to show that, given an input vector i, output neuron A is active (ie.
its output is greater than or equal to Amin) if and only if there exists a clause
A→ L1, ..., Lk such that all Li with 1 ≤ i ≤ k are satisfied by interpretation
i. The converse direction states that the output of neuron A is less than
−Amin, if the clause is not satisfied. The proof consists of two directions:

’←’ To proof:If the body L1, ..., Lk of rule h is satisfied by i, then o(A) ≥
Amin.
Proof: Starting with the hidden layer, we want to compute the minimal
possible activation value for hidden node Nh, given that its associated
rule is satisfied. As the activation function is monotonically increasing,
for all higher activation values the output will be greater than Amin
and for all lower values the output will be less than Amin. The minimal
activation value is reached when all connected positive literals output
Amin and all negative literals output −Amin.1 So, at that point the
input potential of Nh equals phWAmin + nh(−W)(−Amin) − θh. So,

1Not when the output is -1. The weight of the connection is −W and −1 ∗ −W is
greater than −Amin ∗ −W .

16

the equation h(phWAmin + nh(−W)(−Amin) − θh) ≥ Amin has to be
satisfied.
We compute the same minimal input potential for the output neuron A,
tiven that A is true. Then, only one connected hidden neuron should
be active. The other connected neurons (numbering µ − 1) have to
be inactive. So, the minmial input potential equals WAmin + −1(µ −
1)W − θh. So, for the output layer, the equation h(WAmin + −1(µ −
1)W − θh) ≥ Amin has to be satisfied.

’→’ To proof: If the body L1, ..., Lk of rule h is not satisfied by i, then
o(A) ≤ −Amin. Proof: The converse direction uses the same idea. This
time, we compute the maximal possible input potential when the body
is not satisfied. So, either one of the neurons that should be active is
inactive, or one of the neurons that should be inactive is active. Either
way, the maximum possible input potential equals (k−1)W−AminW−
θh. The neuron in the hidden layer should output no higher value than
o((k− 1)W −AminW − θh). The same way, we can find that neuron A
should output no higher value than o(µ(−Amin)W − θh).
Finally, we need to solve all four inequalities and will find that both
directions result in the same two constraints for respectively the hidden
neuron and for the output neuron. These constraints, however, differ
for every rule, as different clauses may have different values for k and
p. We want to obtain a unique value for W and for Amin, so with the
MAXP -function we find the highest k or p value. Then, we apply the
strictest constraint to the whole network.

3.4 Adapting the network for the learning

problem

This result allows us to easily simulate the immediate consequence operator.
Let (-1,-1,-1,-1) be the input vector for our example network. This means
we believe atoms B, C, D and E to be false. After computing the output,
we will find that only the output value of the neuron associated with atom
E has an output value higher than Amin. Intuitively, this is correct, as our
original logic program states E as a fact. In the next iteration we can insert
(-1,-1,-1,1) as input vector and will find the output of the neuron associated
with D to be higher than Amin. And so on until we reach a fixed point.
The proof also gives us reason to believe that we have correctly inserted the
logic program into the network and that we have retained the knowledge it
represented. The complete dataset, however, may contain several properties

17

that were not present in the background knowledge. For example, in the
Titanic problem we have may knowledge of the relation between sex and
survival, but not about the relation between family size and survival. So, we
need to expand the network. Afterall, the translated logic program will only
be part of the whole neural network. In the same way, background knowledge
is only part of the learning process.
To prepare the generated network for a learning process, we need to perform
three steps [5].

1. We need to add input nodes for each property represented in the
dataset. Also, we may need to add output nodes.

2. We need to add hidden nodes for the network to learn new rules. The
background knowledge is only part of the complete solution, after all.
Needless to say, we add weights so the network stays fully connected.

3. We need to perturb the weights. We add to each weight a Gaussian
value with mean 0 and standard deviation 0.1. The learning ability
of a neural network is negatively influenced by symmetry, so we make
sure the network is not symmetric.

18

Chapter 4

Implementation and tests

Having defined the translation algorithm in the previous chapter, we can
at last test whether it does indeed improve the performance of a neural
network. Therefore, this section will open with a short explanation of our
Java implementation. Secondly, we will describe the datasets in detail and
define our test parameters. For both learning problems we construct two
neural networks: one with background knowledge and one without. Finally,
we present our results.

4.1 Implementation

We originally wanted to program a complete framework that could take as
its input a logic program and a data set. Then it would output a trained
neural network with accuracy scores. This project, however, turned out to
be too time consuming. Therefore we chose to simply construct a neural
network per test case. For the networks we used the Neuroph framework [1].
It provided us with sufficient classes to represent the connections, neurons
and layers the network consists of. It also provided Java-interfaces that we
implemented to write our own activation function and evaluation class.

4.2 Datasets

4.2.1 Muddy Children

To present the Muddy Children as a learning problem we need to format it
as a set of numerical input vectors with a corresponding output value. The
following four rules describe the a priori knowledge of agent 1 in the puzzle

19

with three agents. The atoms pi and qi represent that agent i is muddy and
that at least i agents are muddy, respectively.

1. When the agent knows the other two agents are not muddy and at least
one person is muddy, then it knows itself to be muddy:
�p1 ← �q1 ∧�¬p2 ∧�¬p2

2. When at least two other agents are muddy and another agent is clean,
the agent knows he is muddy:
�p1 ← �q2 ∧�¬p2

3. Same as above:
�p1 ← �q1 ∧�¬p3

4. When the agent knows that at least three agents are muddy, then it
must be muddy itself:
�p1 ← �q3

So, we end up with nine different input variables: “�qi”, “�pi” and “�¬pi
for all 0 ≤ i ≤ 3. From these inputs we construct the dataset for agent 1.
We do not permit contradictions in the dataset. Clearly, both �p2 and �¬p2
cannot be true at the same time. Also, since we construct the dataset for
agent 1, “�1¬p1” and “�1p1 are false. This leaves us five binary variables, so
the dataset consists of 25 = 32 entries. The output variable represents �p1.
We consider two slightly different versions, as we think the data is not un-
ambiguously defined in [5]. We presume that data set contains only four
rows that should output the value 1. Namely, exactly the four scenario’s
enumerated in the previous alinea. We call this the strict approach. Another
option would be that an entry should output 1, whenever all atoms of any of
the four clauses are true. This, however, may lead to situations that cannot
occur in the original Muddy Children puzzle. For example, the child may
know that at least two other children are muddy, but it does not know that
at least one other child is muddy. Because of the fourth clause, any data
set entry where “Kq3” is true, would output 1. This we will call the soft
approach.
The background knowledge we want to insert is the first rule of above the
enumeration: �p1 ← �q1�¬p2 ∧ �¬p3. This means the network will be
structured as shown in figure 4.1. Note that connections with weight 0 are
not shown. When not inserting background knowledge, all connections will
be iniated with weight value 0.

20

Variable K¬p1

Variable K¬p2

Variable K¬p3

Variable Kp1

Variable Kp2

Variable Kp3

Variable Kq1

Variable Kq2

Variable Kq3

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

Output Kp1

W
W
W

W

Hidden
layer

Input
layer

Output
layer

Figure 4.1: The structure of the Muddy Children network.

4.2.2 Titanic

For 892 passengers the dataset gives, among others, his or her name, age,
place of embarkment, family and ticket price. The survival for the other
passengers is not publicly available on the site, so we use only these 892
passengers for our tests. We discarded the variable representing the place of
embarkment, as it does not have an ordering. Also, the ticket price variable
seems to give incorrect values for some passengers, so we disregard it. We
split the numerical “family size” variable in two binary variables: “Singleton”
for passengers travelling alone, and “LargeFamily” for members of a family
larger than five persons. Also, several age values are missing, so we insert
likely substitutes [12]. We end up with the following attributes for each
dataset entry:

1. Pclass: a discrete variable that represents the class the person travelled
in. It has possible values -1, 0, and 1 for respectively first, second and

21

third class.

2. Sex: a binary variable with value 1 for men and value -1 for women.

3. Age: a continuous variable with value -1 representing a child just born
and value 1 representing someone of a hundred years old. The variable
increases linearly with the person’s age.

4. RareTitle: most of the passengers are just called ”Mr.” or ”Ms.”, but
there are some with a special title, like ”Jonkheer”. This indicates a
rich person, so we do not want to lose this information. A value of 1
indicates that this person has some special title.

5. Singleton: a binary variable to indicate whether a person travelled
alone.

6. LargeFamily: a binary variable to indicate whether a person was mem-
ber of a family consisting of five or more persons.

7. Adult: a binary variable indicating whether the person is older than
eighteen.

8. Mother: a binary variable indicating whether the person is a mother.

9. Survived: the binary output variable which indicates whether the per-
son survived the Titanic disaster.

We want to insert two clauses of background knowledge: Survived← ˜Pclass∧
˜Sex and Survived← RareTitle. So, the network will look as shown in figure
4.2.

4.3 Testsetting

For learning both datasets we aimed to use as much the same settings as
possible. Also, we want to use the parameters of [5] to check whether we ob-
tain the same results on the Muddy Children data set. All neural networks
used backpropagation with momentum as their learning rule. We set the
learn factor η at 0.2 and momentum factor ξ at 0.1. We train a single neural
network until either the complete train set has passed through the network
for 10.000 iterations, or the mean squared error of the output nodes is less
than or equal to 0.01.
We evaluate the performance of the Muddy Children networks with k-fold
crossvalidation, where k = 8. So, we divide the dataset in k subsets of equal

22

Variable Pclass

Variable Sex

Variable Age

Variable RareTitle

Variable Singleton

Variable LargeFamily

Variable Adult

Variable Mother

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

Output Survived-W
-W

W

W
W

Hidden
layer

Input
layer

Output
layer

Figure 4.2: The structure of the Titanic network.

size. For each division we train a network on the k − 1 data sets and test
it on the remaining data set. In the end, the results are averaged over the
networks [2]. This method is indispensible for small datasets, like the Muddy
Children dataset. If we were to use several Muddy Children entries exclu-
sively for testing, we might miss some important features during training.
The Titanic data set, however, consists of almost 900 entries. Therefore, it
is not necessary to use cross validation. Still, for the sake of retaining our
test conditions, we do use five-fold cross validation on the Titanic data set.

23

4.4 Testresults

For the Muddy Children problem we trained 32 networks, being four times
eight-fold cross validation. For the Titanic problem we trained 20 networks,
being four times five-fold cross validation. Our results present the average
accuracy, where accuracy equals the number correct divided by the size of
the test set. Figure 4.3 presents our test results.

Data set With background Without
Muddy Children (soft) 0.999 0.999
Muddy Children (strict) 0.664 0.633
Titanic 0.745 0.767

Figure 4.3: Testresults

24

Chapter 5

Discussion and further research

Sadly, we were not able to produce a significant increase in performance by
inserting background knowledge into the neural network. In some cases we
even obtained inferior results. This is a very peculiar outcome indeed, and we
are left to wonder the exact cause. Therefore, our most important suggestion
is to explain the difference in our test results and those published in [5]. We
do have some suggestions.

1. Realistically speaking, our program may be at fault. We do not think
the CILP algorithm was implemented incorrectly, but rather that the
backpropagation algorithm in the Neuroph library was different from
the implementation used by the authors of [5]. In that case, our as-
sumptions about the framework would have been incorrect. Also, we
want to advise other researchers to try to use a different framework.
Encog is an alternative in Java, but an implementations in Python is
another option.

2. The problem may also lay in the parts of the algorithm that are de-
pendent on the data set. For example, we need to add as much hidden
neurons as neccesary for the convergence of the network [5]. Maybe
our number of hidden numbers was not correct. However, a small test
of training with 50 hidden neurons did not give a significant increase
within 10000 epochs.

3. Maybe our experiment differs on one of more points from the exper-
iment in [5]. In the previous section we already stated that, in our
opinion, the authors have not defined Muddy Children data set clearly.
We did inquire with the authors, and it turns out they used the soft
approach. Also, the authors published the average accuracy over eight
networks, while the data set may be divided in a lot more ways. Maybe

25

the accuracy is very dependent on the folds. Thirdly, we are not sure
when the authors classify a train example as correct. The translation
algorithm guarantees the output to be higher than Amin or lower than
−Amin, but the expanded network does not. So, is a test example that
should output 1, correctly classified when the network output 0, 001?

Despite these issues, we still think the research is very relevant for general
Artificial Intelligence research, as it combines two major paradigms. Also,
the theoretical result of having a neural network approximate the knowledge
represented by a logic program, gives us reason to believe that we should,
theoretically, be able to improve the performance of neural networks. Also,
even if we are be able to reproduce the results published in [5], still more
research has to be conducted.

5.1 Further research

First of all, we can investigate the extraction of rules from a neural network.
Whereas other machine learning algorithms often are black boxes, this may
not be the case for three-layer feedforward networks. The idea is to extract
rules after training the network. This way, we can obtain a human readable
format of the rules the network has learned. These can be compared to the
originally inserted rules. The authors mention this in the last chapter of
their book as further research. Still in 2015 it is a challenge, because of the
computational complexity and the “need for compact representation” [6].
Apart from the theoretical research, we also need to compare the CILP al-
gorithm to other algorithms. The following tests come to mind:

1. Firstly, we need to compare the performance of our neural network with
various other neural networks. In other words, we need to investigate
the optimal parameters for both learning problems. The performance
of a neural network is very dependent on its learning factor η, its mo-
mentum factor ξ, the number of hidden neurons and the stopping con-
ditions. In chapter 3 we already noted the importance of the latter.
If we learn for too many epochs, we risk overfitting. If we terminate
learning too early, we have not learned all features yet. Also, in recent
years various improvements of backpropagation have been proposed.

2. Secondly, we need to compare the performance of our neural network to
the performance of various other learning algorithms. In the world of
k-Nearest Neighbours, Random Forests and Support Vector Machines,

26

a neural network constructed with the CILP algorithm is just one fish
in the sea. Another algorithm may be more suited to this particular
problem. Take for example the family size variable from the Titanic
dataset. Investigating the data shows that both people from large
families and single persons were more likely to drown. This correlation
cannot be translated to a single input neuron, so we created two input
neurons to respectively represent the binary variables single person and
large family. We may have needed to treat other input neurons the same
way. A Random Forest, for example, can learn this correlation without
special treatment.

3. To conclude, we need to apply the CILP algorithm to several other
Machine Learning problems. A co-author of Neural Symbolic Cogni-
tive Reasoning already used the algorithm for two problems of DNA
sequence analysis [4]. We even encountered a paper that proposed to
equip police officers with a digital assistant, appropriatly called Sher-
lock, programmed as a neural network that received its input as a
logic program [9]. Only this way we will understand the strenghts and
weaknesses of Neural Symbolic computing and the CILP translation
algorithm.

27

Bibliography

[1] Neuroph: Jave neural network framework. http://neuroph.

sourceforge.net.

[2] Yaser Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learn-
ing fom Data. www.amlbook.com, 2012.

[3] George Cybenco. Approximation by superposition of sigmoidal func-
tions. Mathematics of Control, Signals and Systems, 2:303–314, 1989.

[4] Artur d’ Avila Garcez and Gerson Zavaruche. The connectionist in-
ductive learning and logic programming system. Applied Intelligence,
11:59–77, 1999.

[5] Artur S. d’ Avila Garcez, Luis C. Lamb, and Dov M. Gabbay. Neural-
Symbolic Cognitive Reasoning. Springer, 2009.

[6] Artur d’Avila Garcez, Tarek Besold, Luc de Raedt, and Peter F edi-
tors. Neural-Symbolic Learning and Reasoning: Contributions and Chal-
lenges.

[7] Artur S. d’Avila Garcez, Luis C. Lamb, and Dov M. Gabbay. Neural-
Symbolic Learning Systems: Foundations and Applications. Springer-
Verlag, 2002.

[8] Gary William Flake. Computational Beauty of Nature. Bradford Book,
1998.

[9] Ekaterina Komendantskaya and Qiming Zhang. Sherlock - a neural net-
work software for automated problem solving. In Proceedings of Seventh
International Workshop on Neural-Symbolic Learning and Reasoning,
2011.

[10] Rosja Mastop. Modal logic for artificial intelligence. http://www.phil.
uu.nl/~rumberg/infolai/Modal_Logic.pdf.

28

http://neuroph.sourceforge.net
http://neuroph.sourceforge.net
www.amlbook.com
http://www.phil.uu.nl/~rumberg/infolai/Modal_Logic.pdf
http://www.phil.uu.nl/~rumberg/infolai/Modal_Logic.pdf

[11] Tom Mitchell. Machine Learning. McGraw-Hill Science.

[12] Megan Risdal. Exploring survival on the titanic. https://www.kaggle.
com/mrisdal/titanic/exploring-survival-on-the-titanic/

notebook.

[13] Mark Sergot. Minimal models and fixpoint semantics for defi-
nite logic programs. https://www.doc.ic.ac.uk/~mjs/teaching/

KnowledgeRep491/Fixpoint_Definite_461-2x1.pdf.

[14] Geoffry G. Towell and Jude W. Shavlik. Knowledge-based artificial
neural networks. Artificial Intelligence, 70:119–165, 1994.

[15] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic
Epistemic Logic. Springer.

29

https://www.kaggle.com/mrisdal/titanic/exploring-survival-on-the-titanic/notebook
https://www.kaggle.com/mrisdal/titanic/exploring-survival-on-the-titanic/notebook
https://www.kaggle.com/mrisdal/titanic/exploring-survival-on-the-titanic/notebook
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/Fixpoint_Definite_461-2x1.pdf
https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/Fixpoint_Definite_461-2x1.pdf

	Introduction
	Datasets
	Structure

	Background
	Artificial Neural Networks
	Perceptron
	Backpropagation with momentum

	Modal Logic
	Modal Logic Programs
	Immediate Consequence Operator

	CILP translation algorithm
	Intuitive definition
	Formal definition
	Proof of correctness
	Adapting the network for the learning problem

	Implementation and tests
	Implementation
	Datasets
	Muddy Children
	Titanic

	Testsetting
	Testresults

	Discussion and further research
	Further research

