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Abstract

Equipping a category with a model structure, or with the structure of a category of
fibrant objects, allows one to perform homotopy theoretic arguments in the given cat-
egory. In this thesis the classical Kan-Quillen model structure on simplicial sets is
generalized to (pre-)sheaves of simplicial sets on a site, following the work of Jardine.
This structure has an important application, for it can used to describe sheaf cohomol-
ogy in homotopy theoretic terms.
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1 Model Categories

Historically, the notion of homotopy was used to study maps between topological spaces.
Beside that, homotopies occurred in the context of simplicial sets, cubical sets and chain
complexes. In the book [14], Quillen first introduced a more abstract approach to homotopy
in order to capture the similarities between these forms of homotopy. He formulated axioms
for general categories that give criteria for a class of arrows to behave like the class of
homotopy equivalences for the known examples. In fact, he used three classes of morphisms
to formulate these axioms, which are called fibrations, cofibrations and weak equivalences.
A category that satisfies these axioms for these fixed classes of morphisms is called a model
category.

A few years after the publication of this book, Brown wrote his P.h.D. thesis [1] under the
supervision of Quillen on a more flexible structure on categories, namely that of a category
of fibrant object. This structure involves only two classes of maps; fibrations and weak
equivalences. Both Brown’s and Quillen’s structure admit homotopy categories. These are
obtained by formally inverting weak equivalences.

This chapter roughly follows Chapter 7 of [5] and Part I and II of [1]. We will review the
basics of model structures and categories of fibrant objects. We will see that every model
structure induces a category of fibrant objects. Moreover, we will show that both structures
have an well-behaved induced homotopy category. Finally, we discuss a very useful tool to
induce a model structure onto another category along an adjunction. This technique is known
as a transference of model structure.

1.1 Categorical Axioms

Definition 1.1.1. A model category is a category E together with a choice of three classes
of morphisms in E called fibrations, cofibrations and weak equivalences. These classes must
satisfy:

M1) The category E has all small limits and colimits.

M2) If two out of three morhpisms f : X → Y , g : Y → Z and gf : X → Z are weak
equivalences, then so is the third.

M3) The classes of fibrations, cofibrations and weak equivalences are closed under re-
tracts.

M4) For any commutative square

A X

B Y

i f (1)

where i is a cofibration and f a fibration, and at least one of them is also a weak
equivalence, there exists a lift l : B → Y making the diagram commute.
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M5) Any morphism f : X → Y can be factored as a composition of p : Z → Y after
i : X → Z where i is a cofibration and a weak equivalence and p is a fibration, or
alternatively, where i is a cofibration and p is a fibration and a weak equivalence.

If a category E satisfies these axioms for some choice fibrations, cofibrations and weak
equivalences, we say that E admits a model structure or simply that E is a model category.

Remark 1.1.2. Axiom M3) refers to retracts in the arrow category of E . Explicitly,
f : X → Y is a retract of g : Z → W , if there exists a commutative diagram

X Z X

Y W Y

f g f (2)

such that the composites of the upper and lower horizontal arrows are the identities on X
and Y , respectively.

We adopt the convention that a morphism is called a trivial fibration if it is a fibration
as well as a weak equivalence. Likewise, we say a morphism is a trivial cofibration if it is a
cofibration as well as a weak equivalence. Some authors refer to these as acyclic fibrations
and cofibrations.

Sometimes it is convenient to formulate axiom M4) in terms of lifting properties. We say
that a map f : X → Y has the right lifting property with respect to a class of morphisms C
if for any commutative diagram of the form (1) with i ∈ C, there exists a lift. In the same
fashion, we say that an arrow i : A→ B has the left lifting property with respect to a class
of morphisms C ′, if for every commutative diagram (1) with f ∈ C ′, there exists a lift.

Remark 1.1.3. For a model category E axiom M4) describes a necessary condition for a
map to be a (trivial) fibration or (trivial) cofibration. Actually, a retract argument shows
that this condition is also sufficient. Indeed, suppose that f : X → Z has the right lifting
property with respect to all trivial cofibrations. Then factor f as a trivial cofibration j
followed by a fibration p. By assumption, there exists a lift

X X

Y Z.

id

j f

p

l (3)

Using l, we see that f is a retract of p.

X Y X

Z Z Z

j

f

l

p f

id id

(4)

This shows that f is indeed a fibration. To prove that trivial fibrations are stable under
pullback involves showing that these maps have the right lifting property with respect to
cofibrations and then constructing a similar retract. The proof for (trivial) cofibrations is
dual.
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There are many examples of model structures. A few of the classical examples are given
below. In further chapters we consider other categories that admits a model structure, where
we will verify the axioms.

Example 1.1.4. 1. The category of topological spaces admits a model structure. A map
f : X → Y is a called a Serre fibration if every commutative diagram of the form

Dn X

Dn × I Y

(id,0) f (5)

admits a lift. In this setting, a map f : X → Y is a weak equivalence if it induces an
isomorphism on the homotopy groups. That is, f∗ : π0(X)→ π0(Y ) is an isomorphism
and for every choice of base point x ∈ X, the induced maps f∗ : πn(X, x)→ πn(Y, f(y))
are isomorphisms. The cofibrations are retracts of cellular extensions.

2. The category of simplicial sets admits the so-called Kan-Quillen model structure. A
map f : X → Y is called a Kan fibration if every diagram of the form∧n

k X

∆n Y

f (6)

with 0 ≤ k ≤ n, admits a lift. A map is called a weak equivalence if it induces an
isomorphism on the simplicial homotopy groups. The class of cofibrations is exactly
the class of monomorphisms.

3. If E is a category that is equipped with a model structure, then we get more examples
of model categories by considering slice categories E/Z for objects Z ∈ E . Say that a
morphism

X Y

Z

f

(7)

in the slice category is a fibration, cofibration or weak equivalence, if f is a fibration,
cofibration or weak equivalence, respectively, in E . It is relatively straight forward to
check that the axioms from Definition 1.1.1 are satisfied in this case.

△

Proposition 1.1.5. In any model category fibrations and trivial fibrations are stable under
pullback. Dually, cofibrations and trivial cofibrations are stable under pushout.

Proof. Let f : X → Y be a fibration and g : Z → Y be any map. To show that the pullback
of f along g is again a fibration, we will show that it has the right lifting property w.r.t. the
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class of trivial cofibrations. Then the result follows from Remark 1.1.3. Therefore, consider
the commutative diagram

A Z ×Y X X

B Z Y

i f

g

(8)

where i is a trivial cofibration. Applying axiom M4) to the outer square gives us a lift
B → X. By the universal property of the pullback, we obtain a lift B → Z ×Y X.

Definition 1.1.6. An object X in a model category E is said to be fibrant, if the unique
map X → 1 from X to the terminal object is a fibration. Dually, X is said to be cofibrant,
if the unique map 0→ X from the initial object to X is a cofibration.

The factorization axiom M5) provides a way to produce fibrant and cofibrant objects.
For any X ∈ E consider the factorizations

X → Xf → 1

0→ Xc → X

where the former is a trivial fibration followed by a cofibration and the latter is a cofibration
followed by a trivial fibration. We say that Xf is a fibrant replacement for X and Xc a
cofibrant replacement for X. This shows that every object is fibrant and cofibrant, up to
weak equivalence.

Beside model categories, we also are also interested in categories of fibrant objects.

Definition 1.1.7. A category of fibrant objects is a category E together with a choice of
two classes of morphisms in E called fibrations and weak equivalences. These classes must
satisfy:

N1) If two out of three of the morphisms f : X → Y , g : Y → Z and gf : X → Z are
weak equivalences, then so is the third.

N2) Fibrations are closed under composition and any isomorphism is a fibration.

N3) If f : X → Y is a fibration or trivial fibration, then for any map B → Y the
pullback

B ×Y X X

B Y

f∗ f (9)

exists and f ∗ is again a (trivial) fibration.

N4) Every object X ∈ E admits a path object. That is, for any X there exists a
commutative diagram

X XI

X ×X

s

∆
(d0,d1) (10)

where ∆ denotes the diagonal map, s is a weak equivalence and (d0, d1) is a fibration.
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N5) Every object is fibrant, i.e. every map X → 1 is a fibration.

Remark 1.1.8. Categories of fibrant objects are in many ways a generalization of model
categories. Namely, categories of fibrant objects do not have a class of cofibrations and
therefore lack the lifting property M5). Concretely, given a model category E , then the
classes of fibrations and weak equivalences satisfy N1) to N4). However, not every object
in a model category needs to be fibrant. We conclude that every model category contains a
largest subcategory that naturally has the structure of a category of fibrant objects, for the
inherited classes of fibrations and weak equivalences. This subcategory consists of the fibrant
objects of E , which explains the name.

Lemma 1.1.9 (Brown’s Lemma). Let E be a category of fibrant objects and let f : X → Y
be a map in E. Then f can be factored as a composite f = gi, where g is a fibration, i is
split monic and its left inverse is a trivial fibration.

Proof. Let (Y I , s, d0, d1) be a path object of Y . Consider the pullback square

Z Y I

X Y.

p1

p0 d0

f

(11)

Define i : X → Z as the unique map with components (idX , sf) and define g : Z → Y as the
composite d1p1. Indeed, this makes i a split monomorphism with right inverse p0. As p0 is
the pullback of a trivial fibration, it is a trivial fibration as well. To see that g is a fibration,
consider the diagram

X ×Y Y I Y I

X × Y Y × Y

X × Y X

Y 1.

p1

(p0,d1p1) (d0,d1)

f×id

id
(12)

The vertical composite X ×Y Y I → Y is the map g. Moreover, both squares are pullbacks.
Hence the remark that the maps on the right are fibrations, concludes the proof.

Corollary 1.1.10. Let F : E → E ′ be a functor between categories of fibrant objects and
suppose that F preserves trivial fibrations. Then F also preserves weak equivalences.

Proof. Let f : X → Y be a weak equivalence in E . Then Brown’s Lemma (1.1.9) provides
a factorization f = gi where g is a local fibration and i is a right inverse to a trivial local
fibration. It follows that g is a trivial local fibration by the two-out-of-three property of weak
equivalences. Therefore, F (i) and F (g) are weak equivalences as well, showing that F (f) is
a weak equivalence.
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1.2 General Homotopy Categories

In the classical example of topological spaces, one first defines homotopies between maps of
topological spaces and after that the homotopy equivalences. In the context of a category
of fibrant objects E , we will reverse this order. That is, we start with a class of maps
that are supposed to be homotopy equivalences, namely the class of weak equivalences.
Using weak equivalences as a foundation, we will define an abstract notion of homotopy.
Likewise, homotopy categories will be defined using these weak equivalences. The main
result of this section is stated as Theorem 1.2.11. This theorem gives a description of the
homotopy category that involves a quotient by a certain homotopy relation. It is this result
that validates the name “homotopy category”, for without such a characterization it would
be more appropriate to simply refer to it as the localization of E with respect to weak
equivalences.

Definition 1.2.1. Let E be a category and let W ⊆ E1 be a class of arrows. Then the
localization of the category E with respect to the class W is a category E [W−1] together with
a functor η : E → E [W−1] such that η sends arrows in W to isomorphisms and η is universal
with respect to this property. Explicitly, for any functor F : E → D that sends arrows in W
to isomorphisms in D, there exists a functor G : E [W−1]→ D that is unique (up to natural
isomorphism) such that Gη and F are naturally isomorphic.

Informally, the localization of a category E is the smallest extension that makes arrows
in W invertible.

Remark 1.2.2. Using the results from [3], any class W ⊆ E admits a localization, given
that E is locally small. They are constructed as follows. Let G be the graph having vertices
corresponding to the objects of E . The set of edges of G is given by E1 ∪ W−1 where
W−1 denotes the set of formal inverses to arrows in W . Let P (E ,W ) be the path category
associated to G. Then the localization category E [W−1] is defined as the quotient category
obtained from P (E ,W ) with respect to the relations generated by:

� ⟨⟩X ∼ ⟨idX⟩ for every X ∈ E ,

� ⟨g, f⟩ ∼ ⟨gf⟩ for every pair of morphisms f : X → Y, g : Y → Z in P (E ,W ),

� ⟨⟩X ∼ ⟨w−1, w⟩ and ⟨⟩Y ∼ ⟨w,w−1⟩ for every arrow w : X → Y in W .

However, there is no guaranty that E [W−1] is locally small.

This allows us to define the homotopy category.

Definition 1.2.3. Let E be a model category or a category of fibrant objects, then the
homotopy category Ho(E) of E is defined as the localization of E with respect to the class
of weak equivalences. Depending on the context, the homotopy category is sometimes called
the derived category.

In many cases, the construction given in 1.2.2 is impractical to work with. Therefore,
we will discuss other descriptions of the homotopy category. Depending on whether E is a
model category or a category of fibrant objects, we obtain different descriptions of Ho(E).
From now on we assume E to be a category of fibrant objects.
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Definition 1.2.4. Two arrows f, g ∈ HomE(X, Y ) are said to be homotopic if there exists a
commutative diagram of the form

Y I

X Y × Y

(d0,d1)
h

(f,g)

(13)

where Y I is a path object of Y . Furthermore, h is said to be a homotopy from f to g, which
we denote as f ∼ g.

Proposition 1.2.5. The homotopy relation on HomE(X, Y ) defined above is an equivalence
relation.

Proof. Reflexivity and symmetry are trivial. For transitivity, let f1, f2, f3 ∈ HomE(X, Y ) be
arrows and suppose there exists a homotopy h from f1 to f2 for a path object (Y I , s, d0, d1)
and there exists a homotopy h′ from f2 to f3 for a path object (Y I′ , s′, d′0, d

′
1). Form the

pullback

Y I′′ Y I′

Y I Y

e1

e0 d′0

d1

(14)

and observe that every arrow in the diagram is a trivial fibration. Then we obtain a new
path object for Y given by

Y I′′

Y Y × Y

(d1e0,e1d′0)
s′′

∆

(15)

where s′′ is the unique map such that s = e0s
′′ and s′ = e1s

′′. Let h′′ be the unique map
such that h = e0h

′′ and h′ = e1h
′′, then h′′ is a homotopy from f1 to f3 for the path object

(Y I′′ , s′′, d1e0, e1d
′
0).

Although the homotopy relation is an equivalence relation, the category obtained from
E by quotienting out by this relation is not in general well-defined. Namely, a homotopy
between maps f, g : X → Y does not induce a homotopy nf ∼ ng for arbitrary maps
n : Y → Z. To remedy this, we will consider a different relation. First, we need some
technical results.

Lemma 1.2.6. Let n : Y → Z be an arrow, (Y I , s, d0, d1) be a path object for Y and let
(ZI , s′, d′0, d

′
1) be a path object for Z. Then there exists another path object (Y I′′ , s′′, d′′0, d

′′
1)

for Y , a trivial fibration t : Y I′′ → Y I and a map n̄ : Y I′′ → ZI making the following diagram
commute:

Y Z

Y I Y I′′ ZI

Y × Y Z × Z.

s
s′′

n

s′

(d0,d1)
(d′′0 ,d

′′
1 )

t n̄

(d′0,d
′
1)

n×n

(16)
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Proof. Consider the commutative square

Y ZI

Y I Z × Z.

s′u

s (d′0,d
′
1)

(nd0,nd1)

(17)

Let W be the pullback of the span Y I → Z × Z ← ZI . Then there exists a unique map
Y → W making triangles commute, to which we apply Brown’s Lemma 1.1.9. Consequently,
we obtain a diagram of the form

Y

Y I′′

W ZI

Y I Z × Z.

s′u

s

s′′

t′

g

(d′0,d
′
1)

(nd0,nd1)

(18)

We define:

� t as the composite Y I′′ t′−→ Y
s−→ Y I ,

� n̄ as the composite Y I′′ g−→ W → ZI ,

� (d′′0, d
′′
1) as the composite Y I′′ t−→ Y

(d0,d1)−−−−→ Y × Y .

This construction does make the diagram in the statement of this Lemma commute and it
is straightforward to check that Y I′′ together with these maps give a path object of Y and
that n̄ is indeed a trivial fibration.

Lemma 1.2.7. Given a diagram of the form Y
n−→ Z

t←− X, then for any path object
(ZI , s, d0, d1) of Z the projection Y ×ZZI×ZX → Y is a fibration. If t is a weak equivalence,
then so is the projection.

Proof. The projection Y ×Z ZI ×Z X → Y is obtained from ZI ×Z X → Z as the pullback
along n : Y → Z. The argument summarized in diagram (12) from the proof of Lemma 1.1.9
may also be used here to prove that ZI ×Z X → Z is a fibration. If t is a weak equivalence,
the second result follows from a chase in the pullback diagram for Y ×Z ZI ×Z X.

Proposition 1.2.8. a) Given any diagram of the form Y → Z
t←− X where t is a weak

equivalence, there exists an extension

W X

Y Z

t′ t (19)

where t′ is a weak equivalence, making the diagram commute up to homotopy.
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b) Given a diagram of the form

W X Y Zt′
f

g

t (20)

with t a weak equivalence such that there exists a homotopy tf ≃ tg, there exists a weak
equivalence t′ : W → X such that ft′ ≃ gt′.

Proof. For part a), choose W = Y ×Z ZI ×Z X together with the canonical projections to Y
and X. Then the result follows from Lemma 1.2.7.

For part b), let h : X → ZI be a homotopy tf ≃ tg for a path object (ZI , s, d0, d1) of Z.
Consider the pullback square

X

Y ×Z ZI ×Z Y ZI

Y × Y Z × Z.

h

(f,g)

(f,h,g)

l

(d0,d1)

t×t

(21)

and let (f, h, g) : X → Y×ZZI×ZY be the unique map making the diagram commute. Apply-

ing Lemma 1.2.7 to the span Y
t−→ Z

t←− Y tells us that both projections Y ×Z ZI ×Z Y → Y
are trivial fibrations. Therefore the map (id, st, id) : Y → Y ×Z ZI ×Z Y is a weak equiva-

lence. We may factorize this map using Brown’s Lemma 1.1.9 into Y
s′−→ Y I n−→ Y ×Z ZI×Z Y

as a weak equivalence followed by a trivial fibration. This makes (Y I , s′, d0ln, d1ln) into a
path object of Y . Let us denote A = Y ×Z ZI ×Z Y , then the pullback

X ×A Y I Y I

X A,

pr

t′ n

(f,h,g)

(22)

defines t′. By construction t′ is a trivial fibration. Moreover, pr : X ×A Y I → Y I is a
homotopy from ft′ to gt′.

This allows us to define the category πE as a quotient category of E . For any pair
f, g ∈ HomE(X, Y ) we say that f and g are equivalent and write f ∼ g, if there exists a weak
equivalence t : W → X together with a homotopy ft ≃ gt.

Proposition 1.2.9. The quotient category πE is well-defined.

Proof. Clearly the relation ∼ is reflexive and symmetric. For transitivity, suppose that
f1, f2, f3 : X → Y are arrows and t : W → X and s : W ′ → X are both weak equivalences
admitting homotopies f1t ≃ f2t and f2s ≃ f3s. Then Proposition 1.2.8.a) applied to the span

W
t−→ X

s←− W ′ gives weak equivalences s′ : W ′′ → W and t′ : W ′′ → W ′ such that ts′ = st′.
This reduces the proof to the transitivity of the homotopy relation, which is a consequence
of Proposition 1.2.5.
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Additionally, we need to verify that the relation is well-behaved with respect to compo-
sition of maps. Suppose that f, g : X → Y are maps, t : W → X is a weak equivalence such
that ft ≃ gt, and m : W ′ → X is any map. Applying Proposition 1.2.5.a), we obtain a weak
equivalence t′ : W ′′ → W ′ such that fmt′ ≃ gmt′ and thus fm ∼ gm.

Let f, g and t be as before, and let n : Y → Z be arbitrary. Let h : X → Y I be the given

homotopy, then we use Lemma 1.2.6 to obtain diagram (16). Then X ×Y I Y I′′ → Y
′′ n̄−→ is a

homotopy nft ≃ ngt, showing that nf ∼ ng.

Although πE does not inherit the structure of a category of fibrant objects from E , it
does inherit a class of weak equivalences W . Namely, if f ∼ g then f is a weak equivalence
if and only if g is a weak equivalence. Therefore, it makes sense to speak of the localization
πE [W−1].

Lemma 1.2.10. The categories E [W−1] and πE [W−1] are canonically isomorphic.

Proof. Let η : E → E [W−1] and η′ : πE → πE [W−1] denote the localization functors and
let q : E → πE denote the quotient functor. Define γ : πE → E [W−1] as the functor that
is the identity on objects and sends the equivalence class [f ] to the path ⟨f⟩ of length one.
This is a well-defined functor. Indeed, let f, g : X → Y be equivalent, then there is a weak
equivalence t : W → X and a homotopy h : X → Y I from ft to gt. As ⟨d0⟩ = ⟨s−1⟩ = ⟨d1⟩,
we get

γ([f ]) ◦ γ([t]) = γ([ft])

= ⟨f, t⟩
= ⟨d0, h, t⟩
= ⟨d1, h, t⟩
= ⟨g, t⟩
= γ([gt])

= γ([g]) ◦ γ([t]).

It follows that γ([f ]) = γ([g]), since γ([t]) is an isomorphism.
Consider the diagram

E πE

E [W−1] πE [W−1] E [W−1].

q

η
γ

η′

L R

(23)

The composite η′q sends weak equivalences in E to isomorphisms, so by the universal property
of localization we obtain a functor L : E [W−1]→ πE [W−1] making the left square commute
(up to natural isomorphism). Likewise, γ sends weak equivalences in πE to isomorphisms in
E [W−1], so there exists a functor R : πE [W−1]→ E [W−1] making the right triangle commute
(up to natural isomorphism). The uniqueness part of the universal property for η gives a
natural isomorphism RL ∼= idE[w−1]. Observe that Lγq ∼= Lη ∼= η′q. Since q is surjective on
objects and full, we have Lγ ∼= η′. Consequently, we may use the uniqueness property for η′

to conclude that the exists a natural transformation LR ∼= idπE[w−1].
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As a direct consequence of Proposition 1.2.8, the category πE admits a calculus of right
fractions. This gives us an explicit description of the localization category πE [W−1], and
thus a description of E [W−1].

Theorem 1.2.11. Let E be a category of fibrant objects. Then the homotopy category Ho(E)
is a category that has the same objects as E. A morphism in Ho(E) from X to Y is given by

an equivalence class of roofs in πE, i.e. an equivalence class of diagrams X
t←− W

f−→ Y with
t and f morphisms in πE and t a weak equivalence. Two roofs (t−1, f) and (s−1, g) are said
to be equivalent if there exists a commutative diagram of the form

W ′′

W W ′

X Y

hu

t
s

g

f

(24)

where u is a weak equivalence. The composition of roofs (t−1, f) : X → Y and (s−1, g) : Y → Z
consists of a choice of a roof (u−1, h) : W → W ′ such that

W ′′

W W ′

X Y Z

hu

t

f s

g
(25)

commutes. We denote the compostion by ((tu)−1, gh) : X → Z.

Proof. See [3].

1.3 Homotopy Categories for Model Categories

The definition for homotopy category of a category of fibrant objects also makes sense for
model categories. Indeed, let E be a model category. Then we define the homotopy category
of E , which we also denote by Ho(E), as the localization of E with respect to the class of
weak equivalences. Let Ef ⊆ E denote the full subcategory on fibrant objects. Recall that
every object X ∈ E is connected by a weak equivalence to a fibrant object Xf , using fibrant
replacements. Considering the diagram

Ef E

Ho(Ef ) Ho(E),

(26)

we can therefore conclude that the functor Ho(Ef ) → Ho(E) is essentially surjective, in
addition to being an inclusion of a subcategory. This makes the functor into an equivalence
of categories. As Theorem 1.2.11 gives an explicit definition of Ho(Ef ), this description of
the homotopy category is also accurate for Ho(E).

As it stands, this would be a natural end to the section. However, the consideration above
did not fully use the extra structure that a model category has over a category of fibrant
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objects. For this reason, we will give yet another description of the homotopy category, this
time under the assumption that E is a model category. This description will be considerably
shorter than the one given in Theorem 1.2.11 in addition to being convenient later on.

Definition 1.3.1. A cylinder object for A ∈ E is a commutative diagram of the form

Cyl(A)

A⨿ A A

ε
(i0,i1)

▽

(27)

where ▽ is the canonical map induced by the identity on A, (i0, i1) is a cofibration and ε is
a trivial fibration.

In the context of model categories, path objects are defined as the dual version of cylinder
objects. That is, a path object for X ∈ E is a commutative diagram of the form

XI

X X ×X

(d0,d1)
s

△

(28)

where △ is the diagonal map for X, s is a trivial cofibration and (d0, d1) is a fibration.
Sometimes we will use the term cylinder object or path object and mean the actual object

Cyl(A) or P I and leave the rest of the diagram implicit. If ε or s are just weak equivalences,
instead of a trivial fibration or trivial cofibration, we call these diagrams weak cylinder objects
or weak path objects, respectively.

Note that it directly follows from the two-out-of-three property that the maps i0, i1, d0
and d1 are weak equivalences. Moreover, every object in E admits a cylinder object as well
as a path object by the factorization axiom.

Definition 1.3.2. A left homotopy from f : A→ X to g : A→ X is a map h : Cyl(A)→ X
for some weak cylinder object Cyl(A) for A such that hi0 = f and hi1 = g. Dually, a right
homotopy from f to g is a map h : A → P I for some weak path object P I for P such that
d0h = f and d1h = g. We denote the corresponding relations by f ≃L g and f ≃R g and say
that f is left, respectively right, homotopic to g.

Proposition 1.3.3. Let f, g : A → X be maps with A cofibrant and X fibrant. Then the
following statements hold:

i) The existence of a left homotopy h : Cyl(A) → X from f to g does not depend on the
choice of a weak cylinder Cyl(A). A similar statement holds for right homotopy.

ii) We have f ≃L g if and only f ≃R g.

iii) The relations ≃L and ≃R on the set HomE(A,X) are equivalence relations.
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Proof. For i), we only consider the case of left homotopies, the argument for right homotopies
is dual. Let h : Cyl(A)→ X be a left homotopy for a weak cylinder object

A⨿ A (i0,i1)−−−→ Cyl(A)
ε−→ A.

There exists a factorization of ε as a trivial cofibration followed by a trivial fibration, which

we denote as Cyl(A)
j−→ C̃yl(A)

ε′−→ A. Then A ⨿ A (ji0,ji1)−−−−→ C̃yl(A)
ε′−→ A is a cylinder object

for A. Moreover, the left homotopy h induces a left homotopy

Cyl(A) X

C̃yl(A) 1

h

j
h′ (29)

h′ from f to g for the cylinder object C̃yl(A). Therefore, we may assume without loss
of generality that left homotopies originate from cylinder objects instead of weak cylinder
objects.

Now suppose that Cyl(A) and C̃yl(A) are two different cylinder objects for A. Then the
commutative square

A⨿ A Cyl(A)

C̃yl(A) A

(30)

as well as its transpose admit a lift. Hence there exists a left homotopy from f to g originating
from Cyl(A) if and only if there exists one originating from C̃yl(A).

For ii), again suppose that h : Cyl(A)→ X is a left homotopy from f to g. The canonical
inclusions ι0, ι1 : A → A ⨿ A are cofibrations, since they are pushouts of the cofibration
0 → A. Therefore, i0 = (i0, i1) ◦ ι0 : A → Cyl(A) is a cofibration and so is i1. This shows
that i0 and i1 are in fact trivial fibrations. To construct a right homotopy from f to g, let

X
c−→ XI (d0,d1)−−−−→ X ×X be a path object for X and define l as the lift:

A XI

Cyl(A) X ×X.

cf

i0 (d0,d1)

(fε,h)

l (31)

Then li1 : A → XI is a right homotopy from f to g. Indeed, d0li1 = fεi1 = f and
d1li1 = hi1 = g. The other implication is dual.

The proof of Proposition 1.2.5 also tells us that ≃R is an equivalence relation. Therefore,
iii) follows from this remark and statement ii).

As a consequence of this proposition, it makes sense to consider the set [A,X] of maps
A → X modulo homotopy, given that A is cofibrant and X fibrant. We will use these
homotopy classes of maps to form another description of the homotopy category. That is,
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define H̃o(E) as the category whose objects are fibrant and cofibrant objects of E and has

morphism sets given by HomH̃o(E)(X, Y ) := [X, Y ] for X, Y ∈ H̃o(E).
This definition comes with a functor η : E → H̃o(E). For every X ∈ E , choose a fibrant

replacement iX : X → Xf such that iX = id if X is fibrant and a cofibrant replacement
pX : Xc → X such that pX = idX if X is cofibrant. For objects, we define η(X) = (Xf )c.
Let α : X → Y be an arrow in E . Then there exist lifts

X Y Yf

Xf 1,

α

iX

iY

αf

0 (Yf )c

(Xf )c Xf Yf .

pYf
(αf )c

pXf αf

(32)

This allows us to define η(α) = [(αf )c]. To show that η is a functor, it suffices to show that
the lifts above are unique up to homotopy. In fact, any lift obtained from axiom M4) is
unique up to left or right homotopy. First consider a diagram

A X

B Y

u

i p

v

k,l (33)

with i a trivial cofibration and p a fibration, that admits two possible lifts k and l. Then the
lift h from

A XI

B X ×X

su

i (d0,d1)

(k,l)

h (34)

gives a right homotopy from k to l. For the case where i is a cofibration and p a trivial
fibration, we can use a similar diagram to obtain a left homotopy from k to l. This shows
that [((idX)f )c] = [idX ] for each X ∈ E and [(βf )c ◦ (αf )c] = [((βα)f )c] for every pair of

arrows X
α−→ Y

β−→ Z.
Before we proof that H̃o(E) describes Ho(E), we need an intermediate result.

Proposition 1.3.4. Let A,B be cofibrant objects and X, Y be fibrant objects. Then any
trivial fibration i : A → B and trivial cofibration p : X → Y induce a commutative diagram
of bijections

[B,X] [B, Y ]

[A,X] [A, Y ].

i∗

p∗

i∗

p∗

(35)

Proof. Let f, g : B → X be left homotopic maps. Then we can postcompose the homotopy
h : Cyl(B)→ X with p to obtain a homotopy pf ≃L pg. This shows that p∗ : [B,X]→ [B, Y ]
is well-defined on equivalence classes. For injectivity of p∗ : [B,X] → [B, Y ], suppose that
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f, g : B → X are such that pf ≃L pg by a homotopy h : Cyl(B) → Y . Then the lift h′ for
the diagram

B ⨿B X

Cyl(B) Y

(f,g)

(i0,i1) p

h

h′ (36)

witnesses f ≃L g. Surjectivity of p∗ : [B,X]→ [B, Y ] follows from lifting:

0 X

B Y.

p (37)

These arguments also directly apply to p∗ : [A,X]→ [A, Y ]. The cases for i∗ are dual.

Theorem 1.3.5. The functor η : E → H̃o(E) is the localization of E with respect to the class
of weak equivalences.

Proof. First we need to show that η sends weak equivalences to isomorphisms. Let α : A→ B
be a weak equivalence. Then η(α) = (αf )c is a weak equivalence as well, by using the two-
out-of-three property in diagrams (32). We may factorize η(α) into a trivial cofibration after

a trivial fibration η(X)
i−→ Z

p−→ η(Y ) and we show that both [i] and [p] are isomorphisms

in H̃o(E). It follows directly that Z is fibrant and cofibrant. Therefore, Proposition 1.3.4
tells us i∗ : [Z, η(X)] → [η(X), η(X)] and i∗ : [Z,Z] → [η(X), Z] are bijections. The first
bijection implies that there exists a map j : Z → η(X) such that ji ≃ idη(X). It follows that
i∗(ij) = iji ≃ i = i∗(idZ) as maps η(X)→ Z. Thus the second bijection gives ij ≃ idZ .

For the universality property, consider a functor F : E → D that sends weak equiva-
lences to isomorphisms in D. Then we need to construct a functor G : H̃o(E) → D. Let
G(X) = F (X) for every fibrant and cofibrant object X and let G([α]) = F (α) for morphisms
α. This definition does not depend on the choice of representing morphism. Namely, if
α, α′ : X → Y are maps such that there exists a homotopy h : X → Y I between them, then
F (α) = F (d0h) = F (d1h) = F (α′) as a consequence of F (d0) = F (s)−1 = F (d1).

Furthermore, we need to provide an natural isomorphism σ : F ⇒ Gη. For every X ∈ E
we have fixed a diagram X

iX−→ Xf

pXf←−− η(X) in E . Applying F to this diagram makes pXf
invertible, so we obtain the isomorphism

σX := F (qXf )
−1 ◦ F (iX) : F (X)→ F (η(X)) = G(η(X)).

Note that σ is natural in X. Now suppose that G′ : H̃o(E)→ D is some functor such that F
and G′η are naturally isomorphic. The remarks above give a procedure to associate a functor
H̃o(E)→ D to any functor E → D. However, following this procedure for G′η precisely gives
us G′ as the associated functor. Hence the natural isomorphism between F and G′η descends
to a natural isomorphism between G and G′. This proves the universality.
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1.4 Transfer of Model Structure

In subsequent chapters, we will equip various categories with a model structure. As it turns
out, there are model categories that can transfer their model structure to other categories
along a given adjunction. The main theorem of this section gives sufficient conditions for
such a transference to occur. Checking these conditions makes proving axioms M1) to M5)
considerably quicker, because it does not involve a so-called small object argument.

Definition 1.4.1. Let E be a cocomplete category. A class W of morphisms is called satu-
rated if it:

� contains all isomorphisms,

� is closed under retracts,

� is closed under pushouts,

� is closed under composition and

� is closed under transfinite composition.

To clarify the term transfinite composition, let γ be an infinite ordinal viewed as a poset
category and let F : γ → E be a continuous functor. That is, for every limit ordinal β < γ
we have

F (β) = lim
α<β

F (α). (38)

Then the canonical map F (0) → lim−→F is said to be the transfinite composition of the
morphisms in the image of F .

It is a good exercise to check that a class of arrows in E having the left lifting property
with respect to any class W ⊆ E1, is saturated. In particular, the classes of cofibrations and
trivial cofibrations in a model category are always saturated.

If E is small, then any class W of morphisms in E admits a smallest class of morphisms in
E that is saturated and contains W . This is proven by transfinite induction. Unsurprisingly,
we call this class the saturation of W denoted by sat(W ).

Definition 1.4.2. A model category E is said to be cofibrantly generated if there exist sets
I and J of arrows in E such that sat(I) and sat(J) are the classes of cofibrations and trivial
cofibrations, respectively.

Example 1.4.3. The first and second example of 1.1.4 are both cofibrantly generated
model categories. Cofibrations in the category of topological spaces are generated by maps
∂Dn ↪→ Dn and trivial cofibrations by maps (id, 0) : Dn ↪→ Dn × I. Similarly for simplicial
sets, cofibrations are generated by boundary inclusions ∂∆n ↪→ ∆n and trivial cofibrations
by horn inclusions

∧n
k ↪→ ∆n. △

Theorem 1.4.4. Let E be a locally small model category that is cofibrantly generated and let

E D
L

R

⊥ (39)
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be an adjunction. Assume that D has all small colimits and limits. We say X → Y in D
is a fibration or weak equivalence, if RX → RY is a fibration or weak equivalence in E,
respectively. Then D admits a cofibrantly generated model structure using these classes of
fibrations and weak equivalences, under these conditions:

i) Any pushout of a morphism Li in D is a weak equivalence, if i : A→ B is a generating
trivial cofibration in E.

ii) Transfinite compositions of pushout morphisms as in i) are weak equivalences.

iii) There exists a regular cardinal β such that for every transfinite composition of maps
(Zα → Zα′)α<α′<β in D indexed by β, and every map LA→ Zβ where A is the domain
of a generating (trivial) cofibration in E, there exists a decomposition LA→ Zα → Zβ
for some α < β.

Proof. Let I and J denote the sets of generating cofibrations and trivial cofibrations in E ,
respectively. Then we define the class of cofibrations of D as the saturation of set containing
the images of generating cofibrations i ∈ I under L, i.e. as sat(L(I)). Clearly, M1), M2)
and M3) are satisfied.

For the factorization axiom M5), we will use a classical approach referred to as a small
object argument. Let f : X → Y be an arrow in D. In order to factor f as a trivial

cofibration j followed by a fibration p, let us recursively define composites X
jα−→ Zα

pα−→ Y
for α smaller than the fixed cardinal β. Choose j0 = idX and p0 = f . Now suppose that jα
and pα have been defined for all α < γ for some fixed 0 < γ ≤ β. Then define Sα to be the
set of commutative diagrams S

LA Zα

LB Y

Lj pα (40)

in D where j : A → B is a generating trivial cofibration. The assumption that E is locally
small ensures that there are no size issues. First suppose that γ is a successor ordinal, i.e.
γ = α + 1 for a fixed α. Define Zα+1 as the pushout∐

S∈Sα
LA Zα

∐
S∈Sα

LB Zα+1.

∐
Lj (41)

As
∐
Lj is in the saturation of L(J), it follows that Zα → Zα+1 is a cofibartion. Using as-

sumptions i) and ii), we conclude that Zα → Zα+1 is in fact a trivial cofibration. Specifically,
we use that pα is an element of a subset of the saturation of L(J) obtained by only closing the
set L(I) under pushouts and (transfinite) compositions. Reorganizing the colimits involved,
Zα → Zα+1 may in fact be written as a (transfinite) composition of pushouts of arrows in

L(J). Define jα+1 as the composite X
jα−→ Zα → Zα+1 and pα+1 : Zα+1 → Y as the map
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obtained from the universal property of the pushout (41). If γ is a limit ordinal, define jγ as
the transfinite composition of jα with α < γ and pγ as the induced map Zγ → Y .

By construction, jβ : X → Zβ is a trivial cofibration. We want to show that pβ : Zβ → Y
is a fibration. By adjunction, it suffices to show that pβ has the right lifting property with
respect to all maps Lj : LA→ LB with i ∈ J . Such lifting problem has the form

LA Zβ

LB Y.

Lj pβ (42)

Then by assumption iii), there exists an ordinal α < β for which there is a decomposition
LA→ Zα → Zβ of the top map. By definition of Zα+1 we have a commutative diagram

LA
∐
S∈Sα

LAS Zα Zβ

LB
∐
S∈Sα

LBS Zα+1

Lj (43)

which provides the required lift. For the factorization of f : X → Y into a cofibration
followed by a trivial fibration, we use the same argument where we use the set of generating
cofibrations I instead of the set J . This case is slightly easier, in the sense that we do not
need the assumptions i) and ii).

For axiom M4), consider a commutative diagram in D of the form

A X

B Y

i p (44)

and suppose that i is a cofibration and p a trivial fibration. Every morphism in L(I) has the
left lifting property with respect to trivial fibrations in D, so every i ∈ sat(L(I)) also has
this lifting property.

Now suppose that i is a trivial cofibration and p a fibration. As we have already proven
the factorization axiom M5) for D, we may factorize i as a trivial cofibration j : A → C
followed by a fibration f : C → B. By M3), f is a trivial fibration, and therefore has the
right lifting property with respect to cofibrations. Consider the lift

A C

B B.

i

j

f

id

r (45)

We constructed j in such a way that it has the left lifting property with respect to all
fibrations in D. As i is a retract of j, witnessed by the diagram

A A A

B B B,

i

id

j

id

i

r f

(46)
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i also has the right lifting property with respect to all fibrations. In particular, i has the left
lifting property with respect to p.
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2 Simplicial Presheaves

In the previous chapter we have developed the necessary framework to generalize homotopy
theory to categories. In this chapter we follow a paper of Jardine [8] to review the category
of simplicial presheaves. As the term suggests, this involves working with sheaves as well as
the theory of simplicial sets. Readers unfamiliar with these subjects may want to consult a
standard reference that explains them. For instance Chapters 2 and 3 of [11] cover sheaves
and Section 1.1 of [12] covers simplicial sets.

Throughout this chapter, C denotes a small Grothendieck site, i.e. a small category
equipped with a Grothendieck topology. The category of simplicial presheaves on C is defined
as the functor category Fun(Cop, sSets) and we will denote this category by Pre(C, sSets)
from now on. Alternatively, simplicial presheaves on C can be thought of as objects in the
category Fun(Cop ×∆op, Sets) where ∆ denotes the simplex category, or simplicial objects
in the category of presheaves Pre(C) = Pre(C, Sets). Usually we will refer to objects X ∈
Pre(C, sSets) as simplicial presheaves and leave the site C implicit.

2.1 The local structure

In this section we want equip (a subcategory of) Pre(C, sSets) with the structure of a category
of fibrant objects. The most naive approach to this problem would be to perform a transfer
argument, starting from the category of simplicial sets equipped with the Kan-Quillen model
structure, and then considering the induced subcategory of fibrant objects. Indeed, the
evaluation functor evU : Pre(C, sSets)→ sSets for U ∈ C, does admit a left adjoint:

sSets Pre(C, sSets)

(−)U

evU

⊥ (1)

where (−)U is the functor sending a simplicial set A to the simplicial presheaf defined by

AU(V ) =
∐

φ:V→U

A. (2)

At this point we run into several problems. Firstly, even if the conditions for transfer are met
for this adjunction, the induced model structure on Pre(C, sSets) would involve the choice of
an object U ∈ C and is therefore not canonical. Secondly, the induced model structure would
not depend on the given Grothendieck topology on C.

Jardine suggested a more subtle approach to this problem. He proposed a definition for
fibrations in Pre(C, sSets) that does use the notion of Kan fibration from simplicial sets, but
does not come from a transfer argument. In case that the site C is a set of opens on a
topological space, the idea is to state that a map f : X → Y of simplicial presheaves is a
local fibration if and only if every induced map fx : Xx → Yx of stalks is a Kan fibration. In
order to extend this definition to arbitrary sites, we require a bit more setup.
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Definition 2.1.1. Let i : A → B be a map of simplicial sets and p : X → Y be a map of
simplicial presheaves. Then a diagram

A X(U)

B Y (U)

α

i pU

β

(3)

admits a local lift, if there exists a covering sieve R ⊆ HomC(−, U) such that for every
φ : V → U in R, there exists a map l : B → X(V ) making

A X(U) X(V )

B Y (U) Y (V )

α

i

φ∗

pV

β

l

φ∗

(4)

commute.

Definition 2.1.2. Let i : A → B be a map of simplicial sets and p : X → Y be a map of
simplicial presheaves. Then we say p has the right lifting property with respect to i (or i has
the left lifting property with respect to p) if for every U ∈ C, every commutative diagram

A X(U)

B Y (U)

α

i pU

β

(5)

admits a local lift.
We say that a map of simplicial presheaves p has the right local lifting property with

respect to a class W of morphisms of simplicial sets, if p has the local right lifting property
with respect to each i ∈ W . Similarly, i has the left local lifting property with respect to
a class M of morphisms of simplicial presheaves, if i has the local left lifting property with
respect to each p ∈M .

Definition 2.1.3. Let p : X → Y be a map of simplicial presheaves. Then f is called a
local fibration if it has the local right lifting property with respect to every constant map of
simplicial presheaves of the form

∧n
k → ∆n for 0 ≤ k ≤ n and n ≥ 1.

This property of the map p may also be described as p having the local right lifting
property with respect to horn inclusions.

Definition 2.1.4. A simplicial presheafX is called locally fibrant if the unique mapX → ∗ is
a local fibration. Here ∗ denotes the terminal object of Pre(C, sSets), i.e. the constant functor
on the simplicial set ∆0. We write Pre(C, sSets)f ⊆ Pre(C, sSets) for the full subcategory on
locally fibrant simplicial presheaves.
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Now that we introduced the right notion of fibrations, we will have to work yet again in
order to arrive at the definition of weak equivalence in Pre(C, sSets)f . Moreover, we will show
that local fibrations defined in 2.1.3 coincide with stalkwise Kan fibrations, given a certain
condition on C.

The way to proceed is to investigate the properties of the class of arrows in sSets having
the local left lifting property with respect to local fibrations.

Definition 2.1.5. A class W of arrows in sSets is said to be sparsely saturated, if it:

� contains all isomorphisms,

� is closed under pushouts,

� is closed under retracts,

� is closed under finite composition and

� is closed under finite direct sums.

Lemma 2.1.6. LetM be a set consisting of maps of simplicial presheaves. Then the classW ,
containing exactly those arrows in sSets that have the local left lifting property with respect
to maps in M , is sparsely saturated.

Proof. The arguments for isomorphisms, pushouts and retracts are trivial. For composition,

suppose that the maps A
i−→ B

j−→ C are both in W , let p : X → Y in M be arbitrary and
consider a commutative square

A X(U)

C Y (U)

α

ji pU

β

(6)

of simplicial maps. As i has the local left lifting property with respect to p, there exists a
covering sieve R ⊆ HomC(−, U) such that for each φ : V → U , there exists a lift

A X(U) X(V )

B Y (U) Y (V ).

α

i

φ∗

pV

βj

l

φ∗

(7)

Now we use the assumption that j has the local left lifting property with respect to p, which
means that there exists a covering sieve Sφ ⊆ HomC(−, V ) such that for every ψ : W → V
in Sφ, there exists a lift

B X(V ) X(W )

C Y (V ) Y (W ).

l

j

ψ∗

pW

β

k

ψ∗

(8)
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Let R ◦ S∗ ⊆ HomC(−, U) be the sieve on U consisting of those composites W
ψ−→ V

φ−→ U
with φ ∈ R and ψ ∈ Sφ. Then R ◦ S∗ is a covering sieve. We call R ◦ S∗ a refinement of R.
Moreover, for every choice of a morphism R ◦ S∗, the map k is a local lift of diagram (6).
Thus we have ji ∈ W .

For closure under direct sums, suppose that i : A → B and j : A′ → B′ are in W and
p : X → Y in M . Then the local lifting problem for

A⨿ A′ X(U)

B ⨿B′ Y (U)

(α,α′)

i⨿j pU

(β,β′)

(9)

decomposes into two local lifting problems for the squares expressing pU ◦ α = β ◦ i and
pU◦α′ = β′◦j. These separate squares admit local lifts for covering sieves S,R ⊆ HomC(−, U).
Hence (9) has a local lift for the covering sieve R ∩ S.

Definition 2.1.7. A morphism i : A→ B in sSets is called a sparsely anodyne extension if it
is contained in the smallest sparsely saturated class containing all horn inclusions

∧n
k ↪→ ∆n.

Consequently, local fibrations have the local right lifting property with respect to sparsely
anodyne extensions.

Lemma 2.1.8. Suppose that A→ B is a sparsely anodyne extension and C → D a monomor-
phism between finite simplicial sets. Then the induced map

(A×D) ∪ (B × C)→ B ×D (10)

is also a sparsely anodyne extension.

The proof of the lemma involves the skeletal filtration of the map (10). This will reduce
the proof to showing that the inclusion

(
∧n
k ×∆1) ∪ (∆n × {0})→ ∆n ×∆1, (11)

is a sparsely anodyne extension, which can be checked by hand. For the complete proof,
we refer the reader to Proposition 3.1.2.8 from [12]. This is essentially the same statement,
except that Lemma 2.1.8 is the version for finite simplicial sets.

Definition 2.1.9. Let K be a simplicial set and X a simplicial presheaf. Then the define
the simplicial presheaf XK by

XK(U) = X(U)K , (12)

using the exponentiation in simplicial sets. Any morphism V → U in C induces a section
map X(U) → X(V ) in sSets, which in turn defines a map XK(U) → XK(V ) by naturality
of the exponentiation, making XK into a functor Cop → sSets.

Corollary 2.1.10. Let p : X → Y be a local fibration and i : L → K an inclusion of
simplicial sets with K finite. Then the canonical map XK → XL ×Y L Y K is also a local
fibration.
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Proof. Consider the local lifting problem∧n
k XK(U)

∆n XL ×Y L Y K(U).

(i∗,p∗) (13)

This square transposes to

(
∧n
k ×K) ∪ (∆n × L) X(U)

∆n ×K Y (U),

pU (14)

so the result follows from Lemma 2.1.8.

Loosely formulated, the weak equivalences in Pre(C, sSets)f will be those maps that induce
isomorphisms on homotopy groups for each n ≥ 0. Just like regular homotopy groups of
topological spaces, we want homotopy groups of locally fibrant simplicial presheaves to consist
of homotopy classes of maps from disks into the object in question, sending the boundary to
a chosen base point. In order to formalize this, we first need to introduce the relevant notion
of homotopy between maps.

Definition 2.1.11. Let K be a simplicial set and X a simplicial presheaf and consider two
maps f, g : K → X(U) of simplicial sets. Then f and g are called locally homotopic if there
exists a covering sieve R ⊆ Hom(−, U) such that for every φ : V → U in R there exists a
commutative diagram

K X(U)

K ×∆1 X(V )

K X(U)

f

i0 φ∗

hφ

g

i1 φ∗

(15)

where i0 and i1 denote the maps induced by the inclusions of the first and last vertex into
∆1, respectively. We denote this relation by f ≃loc g or [f ]loc = [g]loc. If there exists a
subcomplex L ⊆ K such that for every φ in R the restriction hφ|L×∆1 : L × ∆1 → X(V )
factors through the projection L×∆1 → L (i.e. hφ is constant on L), then we say that the
local homotopy is relative to L.

Lemma 2.1.12. Let K be a finite simplicial set and X a locally fibrant simplicial presheaf,
then the (local) homotopy relation on maps K → X(U) is an equivalence relation.

Proof. First consider the case K = ∆0. Reflexivity follows immediately. For symmetry,
suppose that x, y : ∆0 → X(U) are vertices such that x ≃loc y. Then there exists a covering
sieve R ⊆ HomC(−, U) such that for every φ : V → U in R there is a local homotopy



2 SIMPLICIAL PRESHEAVES 25

hφ : ∆1 → X(V ). As X is locally fibrant, there exists a covering sieve Sφ ⊆ HomC(−, V )
such that for each ψ : W → V in Sφ there exists a lift∧2

2 X(V ) X(W )

∆2 ∆0 ∆0

(hφ,φ∗xd1,−) ψ∗

lφ,ψ (16)

where d1 : ∆
1 → ∆0 denotes the face map projecting to the last vertex. Then for every map

φ ◦ ψ in the covering sieve R ◦ S∗ ⊆ HomC(−, U) the local homotopy ∆1 s2−→ ∆2 lφ,ψ−−→ X(W )
witnesses y ≃loc x.

For transitivity, suppose that x, y, z : ∆0 → X(U) are vertices such that x ≃loc y and
y ≃loc z. Then there exist covering sieves R,R′ ⊆ HomC(−, U) such that for each φ : V → U
in R and φ′ : V ′ → U in R, there are local homotopies hφ : ∆1 → X(V ) and h′φ′ : ∆1 →
X(V ′). Like before, for each φ : V → U in R ∩R′, there exists a covering sieve Sφ such that
for each ψ : W → V in Sφ there exists a lift

∧2
1 X(V ) X(W )

∆2 ∆0 ∆0

(h′
φ′ ,−,hφ) ψ∗

lφ,ψ (17)

Then for every map φ◦ψ in the covering sieve (R∩R′)◦S∗ ⊆ HomC(−, U) the local homotopy

∆1 s1−→ ∆2 lφ,ψ−−→ X(W ) witnesses x ≃loc z.
Finally, we will show that local homotopy is an equivalence relation on the set of maps

K → X(U) for general finite simplicial sets K. Consider the restriction X|U of X to the
slice category C/U . The slice category inherits the Grothendieck topology from X, i.e. we
say that a set of arrows (Vi → V )i∈I over U is covering if and only if the set (Vi → V )i∈I
is covering in C. Observe that X|U being a locally fibrant simplicial presheaf over C/U is a
weaker condition than X being locally fibrant over C, the former only requires local lifts of
horn inclusions at objects V for which there exists a map V → U . Therefore X|U is locally
fibrant.

Let f, g : K → X(U) be maps such that f |L = g|L for some subcomplex i : L→ K. Then
form the pullback

(X|U)K/L (X|U)K

∗ (X|U)L.

i∗

fi

(18)

Then i∗ is a local fibration by Corollary 2.1.10, so (X|U)K/L is locally fibrant. Note that
(X|U)K/L is constructed in such a way that it has vertices corresponding to f and g. More-
over, f is locally homotopic to g relative to L if and only if the vertices of (X|U)K/L
corresponding to f and g are locally homotopic.

At this point we have the required machinery to construct homotopy groups in simplicial
presheaves, which allows us to define the class of weak equivalences. Suppose that C has a



2 SIMPLICIAL PRESHEAVES 26

terminal object t. Then we choose a vertex xt ∈ X(t)0 referred to as the base point of X at t.
This choice induces a base point for X(U) for every U ∈ C. Namely, there is a unique natural
transformation x : ∗ → X from the terminal simplicial presheaf to X with the property that
x(t) = xt : ∆

0 → X(t). Explicitly, the induced base point xU ∈ X(U)0 is the restriction of
xt along the unique map U → t. Let n ≥ 1, then

[(∆n, ∂∆n), (X(U), xU)]loc (19)

denotes equivalences classes of maps ∆n → X(U) that send ∂∆n to the base point xU , where
the relation is given by local homotopy relative to ∂∆n. This gives rise to a presheaf

πpn(X, x)(U) := {[(∆n, ∂∆n), (X(U), xU)]loc}. (20)

For any α : V → U in C, the map πpn(X, x)(α) sends the equivalence class represented by an
element f : ∆n → X(U) to the class represented by the composite

∆n f−→ X(U)
X(α)−−−→ X(V ). (21)

The exercise that this construction produces a well-defined simplicial presheaf is left to the
reader. For reasons that will be become clear in the next section, we want to work with the
sheafification πn(X, x) of πpn(X, x), instead of working with πpn(X, x) itself. When working
with the homotopy groups πn(X, x), it is good to know that they are obtained from πpn(X, x)
by applying the plus-construction once instead of twice, because πpn(X, x) is separated. In
order to show this, we need the following lemma:

Lemma 2.1.13. Let i : A → B be a sparsely anodyne extension and X be a locally fibrant
presheaf and f, f ′ : A→ X(U) be a maps of simplicial sets such that f ≃loc f ′. Then for any
choice of local lifts

A X(U)

B X(V )

f

i φ∗

lφ

A X(U)

B X(V ′)

f ′

i (φ′)∗

kφ′

(22)

corresponding to maps φ : V → U in a covering sieve R ⊆ HomC(−, U) and maps φ′ : V ′ → U
in a covering sieve R′ ⊆ HomC(−, U), we have l ≃loc k.

Proof. As f ≃loc f ′, there exists a covering sieve R̄ ⊆ HomC(−, U) such that for every
φ̄ : V̄ → U in R̄ there exists a local homotopy hφ̄ : A ×∆1 → X(V̄ ). By considering their
intersection, we may assume that R = R′ = R̄. By Corollary 2.1.8 the map (A×∆1)∪ (B ×
∂∆n)→ B×∆n is sparsely anodyne. Therefore, for every φ ∈ R there exists a covering sieve
Sφ ⊆ HomC(−, V ) such that for each ψ : W → V in Sφ there exists a commutative diagram

(A×∆1) ∪ (B × ∂∆1) X(V )

B ×∆1 X(W ).

hφ∪(lφ⨿kφ)

ψ∗

Lφ,ψ

(23)

This map Lφ,ψ is the required local homotopy showing lφ ≃loc kφ.
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Proposition 2.1.14. The presheaf πpn(X, x) for n ≥ 1 is separated.

Proof. Let f, g : ∆n → X(U) represent classes in πpn(X, x)(U) and suppose that there
exists a covering sieve R ⊆ HomC(−, U) such that for each φ : V → U in R we have
πpn(X, x)(φ)([f ]loc) = πpn(X, x)(φ)([g]loc). Unpacking the definitions, we get that for every
such φ, there exists a covering sieve Sφ ⊆ HomC(−, V ) such that for every ψ : W → V in Sφ
there exists a commutative diagram

∆n X(U) X(V )

∆n ×∆1 X(W )

∆n X(U) X(V )

f

i0

φ∗

ψ∗

hφ,ψ

g

i1

φ∗

ψ∗

(24)

where the local homotopy hφ,ψ sends ∂∆n × ∆1 to the base point xW . Then this diagram
expresses that f ≃loc g relative to ∂∆n for the refinement R ◦ S∗ ⊆ HomC(−, U) of R. Hence
πpn(X, x) is separated.

Explicitly, this proposition implies that πn(X, x)(U) consists of equivalences classes of
compatible families of πpn(X, x) at U , where two such families are considered equivalent if
the sieve on which they agree is covering. If n = 0, we define πp0(X)(U) to be the set of
equivalence classes of vertices of X(U), where two vertices are related if they are locally
homotopic. The proof of Proposition 2.1.14 can be slightly altered to show that πp0(X) is a
separated simplicial presheaf and write π0(X) for its sheafification.

The simplicial presheaf πpn(X, x) naturally comes with the structure of a group. We
define the multiplication as follows. Let f, g : ∆n → X(U) be maps representing elements of
πpn(X, x), then there exists a covering sieve R ⊆ HomC(−, U) such that for every φ : V → U
in R there exists a commutative diagram

∧n+1
n X(U)

∆n+1 X(V )

(xU ,...,xU ,f,−,g)

φ∗

wφ

(25)

using that X is locally fibrant. Moreover, f and g are n-simplices of X(U) that are con-
stant on the boundary, making the map on top well-defined. Thus we have an element
{[dnwφ]loc}φ∈R ∈ πn(X, x)(U). Note that for any other choice f ′, g′ : ∆n → X(U) of repre-
sentatives of [f ], [g] ∈ πpn(X, x)(U), the relations f ≃loc f ′ and g ≃loc g′ induce a local relative
homotopy (xU , . . . , xU , f,−, g) ≃loc (xU , . . . , xU , f ′,−, g′) as maps

∧n+1
n → X(U). There is a

generalization of Lemma 2.1.13 that considers the relative version of local homotopy. This
implies that the construction above does not depend on the choices we made and as of such
we have a well-defined map

mp : πpn(X, x)× πpn(X, x)→ πn(X, x). (26)
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As mp maps into a sheaf, the universal property of sheafification provides a canonical map

m : πn(X, x)× πn(X, x)→ πn(X, x) (27)

of sheaves. Here we also used that sheafification preserves finite products.

Proposition 2.1.15. For n ≥ 1, πn(X, x) is a group object in Shv(C, sSets) and for n ≥ 2
it is an abelian group object.

Proof. We want to show thatm has the properties of group multiplication on πn(X, x), where
we choose the compatible family [xV : ∆n → X(V )]loc for the maximal sieve HomC(−, U)
as identity element of πn(X, x)(U). Suppose that n ≥ 1. We will work towards an inverse
map with respect to the multiplication. Let the compatible family of maps {fφ : ∆n →
X(V )}φ:V→U∈R for some covering sieve R ⊆ HomC(−, U) represent an arbitrary element of
πn(X, x)(U). Then for every φ : V → U in R there exists a covering sieve Sφ ⊆ HomC(−, V )
such that for each ψ : W → V in Sφ there exists a diagram

∧n+1
n+1 X(V )

∆n+1 X(W ).

(xV ,...,xV ,fφ,xV ,−)

ψ∗

lψ,φ

(28)

The class {[f−1
φψ

]loc}φ◦ψ∈S∗◦R := {[dn+1lψ,φ]loc}ψ◦φ∈S∗◦R in πn(X, x)(U) acts as a left inverse to

the family {[fφ]loc}φ∈R. After refining, we may assume that the original family as well as
the constructed left inverse are defined for the same covering sieve, for which we write R by
abuse of notation. This construction, ignoring locality, for n = 1 corresponds to the filling
the horn

1

0 2.

f−1f

id

(29)

It is useful to have these kind of pictures in mind. Now we need to show that this family
of maps also acts as a right inverse, which involves a local lift along a horn inclusion of
dimension n + 2. Formally, we accomplish this by observing that for every φ : U → V in R
there exists a covering sieve Sφ ⊆ HomC(−, V ) such that for every ψ : W → V in Sφ there
exists diagram ∧n+2

n−1 X(V )

∆n+2 X(W )

(xV ,...,xV ,−,σ,σ′,σ′′)

ψ∗

Lψ,φ

(30)
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where

σ = ∆n+1 dn+1−−−→ ∆n fφ−→ X(V ),

σ′ = ∆n+1 dn−1−−−→ ∆n fφ−→ X(V ),

σ′′ = ∆n+1 lφ−→ X(V )

and l∗ refers to the lift obtained in diagram (28). Then {dn−1Lψ,φ}ψφ∈S∗◦R witnesses that
{[f−1

ψφ ]loc}ψφ∈S∗◦R is the right inverse to {[fψφ]loc}ψφ∈S∗◦R. The intuition behind the proof may

be summarized in a picture, this time of
∧3

0:

2

1

0 3

f

id

f−1

f

f

id (31)

where we choose the first and second face degenerate and the third face as the simplex
described in diagram (29). Here the 0-th face obtained by filling the horn tells us that f−1

is a right inverse to f .
Associativity and symmetry of m follow by similar arguments. First try to find a horn

lifting that establishes the result in low dimension for simplicial homotopy groups. Then
generalize this to higher n and improve it by introducing gruesome notation for the argument
that does use locality.

Recall that in the setting of topological spaces a path from one base point to another
induces an isomorphism on their corresponding homotopy groups. A similar result holds for
homotopy groups of locally fibrant simplicial presheaves.

Lemma 2.1.16. Let X be a locally fibrant simplicial presheaf on a site C Suppose that C has
a terminal object t and let x, x′ ∈ X(t)0 be two choices of base points. If x ≃loc x′, then there
is an induced isomorphism of sheaves πn(X, x)→ πn(X, x

′).

Proof. By assumption there exists a covering sieve R ⊆ HomC(−, t) such that for every U → t
in R, there exists a local homotopy hU : ∆1 → X(U) from xU to x′U . Let f : ∆n → X(U)
represent an element πpn(X, x). We can form local lift as follows, for every U → t in R there
exists a covering sieve S ⊆ HomC(−, U) such that for every φ : V → U in S there is a
diagram

(∆n ×∆0) ∪ (∂∆n ×∆1) X(U)

∆n ×∆1 X(V ).

f∪(hU◦pr1)

φ∗

Hφ

(32)
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This makes {[Hφ ◦ s1]loc}φ∈S into an S-compatible family of πpn(X, x
′)(U), which represents

an element of πn(X, x
′)(U). Suppose that f ′ : ∆n → X(U) represents the same element

of πpn(X, x)(U) as f , then there exists a local homotopy f ≃loc f ′ which induces a local
homotopy f ∪hU ≃loc f ′∪hU as maps (∆n×∆0)∪ (∂∆n×∆1)→ X(U). Then Lemma 2.1.13
tells us that there is an induced local homotopy between the obtained compatible families
Hφ. Hence this construction gives a well-defined map Hp

∗ : πpn(X, x) → πn(X, x
′), which

induces a map of simplicial sheaves H∗ : πn(X, x)→ πn(X, x
′).

In order to show that H∗ is monic, let R ⊆ HomC(−, U) be a covering sieve such that for
all φ : V → U in R there exist compatible families fφ : ∆n → X(V ) and f ′

φ : ∆n → X(V )
representing two elements of πn(X, x)(U). We can always intersect covering sieves, so that the
compatible families are defined on the same covering sieve. Suppose that H∗(([fφ]loc)φ∈R) =
H∗(([f

′
φ]loc)φ∈R). Then fφ ≃loc f ′

φ for each φ ∈ R. After refining, this means that for every
φ ∈ R there exists a local homotopy hφ : ∆n × ∆1 → X(V ) from fφ to f ′

φ. For each φ we
have a map (∆n ×∆1) ∪ (∆n ×∆1) ∪ (∆n ×∆1)→ X(V ) given by

∆n

∆1 ∆1 ∆1

hφHφ(fφ) Hφ(f
′
φ)

(33)

where leftmost vertical map is fφ : ∆n → X(V ) and the rightmost vertical map is f ′
φ : ∆n →

X(V ). It is clear from the picture that forming a local lift twice yields a homotopy fφ ≃loc f ′
φ,

proving that the two compatible families represented the same element in πn(X, x)(U).
To show that H∗ is epic, recall that the local homotopy relation on vertices is an equiva-

lence relation for locally fibrant X. Therefore, there exists a covering sieve R ⊆ HomC(−, U)
such that for each φ : V → U there is a local homotopy h̄φ : ∆1 → X(V ) from x′V to xV . Fol-
lowing the same procedure as before, we obtain an induced map H̄∗ : πn(X, x

′)→ πn(X, x).
After refining, we have a map (∆n ×∆1) ∪ (∆n ×∆1)→ X(V ) given by

∆n

∆1 ∆1

H̄φ(Hφ(fφ))Hφ(fφ)
(34)

After one local lift, this diagram provides a local homotopy from fφ to H̄∗(H∗(f)), proving
that H∗ is epic.

In order to define a base point for a simplicial presheaf X, we assumed that the site has
a terminal object. One way to work around this assumption, is to consider the sites C/U
which has the identity morphism on U as terminal object. This gives rise to the definition
of local weak equivalence.
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Definition 2.1.17. Let f : X → Y be a map between locally fibrant simplicial presheaves,
then f is a local weak equivalence if

f∗ : π0(X)→ π0(Y ) (35)

f∗ : πn(X|U , x)→ πn(Y |U , y) (36)

are isomorphisms of simplicial sheaves for every choice of U ∈ C and base points x ∈
X|U(idU)0 and y ∈ Y |U(idU)0.

Corollary 2.1.18. Local weak equivalences have the two-out-of-three property.

Proof. Consider maps X
f−→ Y

g−→ Z in Pre(C, sSets) and suppose that f and gf are local
weak equivalences, then we will show that g is a local weak equivalence. The other cases
are trivial. It follows immediately that g induces an isomorphism g∗ : π0(Y ) → π0(Z) of
local path components. Choose objects U ∈ C, (φ : V → U) ∈ C/U and a base point
y ∈ Y |U(idU)0. Then we have check that g induces a bijection g∗ : πn(Y |U , y)(φ : V →
U) → πn(Z|U , gy)(φ : V → U). As f∗ : π0(X) → π0(Y ) is surjective, there exists a vertex
x ∈ X(V )0 such that fx ≃loc y. By Lemma 2.1.16 it suffices to show that g∗ : πn(Y |U , fx)(φ :
V → U)→ πn(Z|U , gfx)(φ : V → U) is a bijection. We have a commutative diagram of sets

πn(X|U , x)(φ : V → U) πn(Y |U , fx)(φ : V → U)

πn(Z|U , gfx)(φ : V → U).

f∗

(gf)∗
g∗

(37)
where f∗ and (gf)∗ are bijections by assumption, hence g∗ is a bijection as well.

Thus far we have just been concerned with constructions in the category of simplicial
presheaves on C and their immediate properties. Now we will see that the chosen definitions
for local fibrations and local weak equivalences lead to a class of trivial local fibrations that
admits a very nice characterization in terms of a local lifting property.

Theorem 2.1.19. A map p : X → Y in Pre(C, sSets) between locally fibrant simplicial
presheaves is a local fibration and a local weak equivalence if and only if it has the local right
lifting property with respect to every inclusion of finite simplicial sets.

Proof. Using Lemma 2.1.6, this statement is equivalent to saying that the class of trivial
local fibrations is the class of maps having the right lifting property with respect to the local
saturation of the class of finite inclusions of simplicial sets. It is a general fact that the
class of monomorphisms in simplicial sets is the saturation of the set of boundary inclusions
∂∆n ↪→ ∆n for n ≥ 0. Consequently, the class of inclusions of finite simplicial sets is the local
saturation of the set on boundary inclusions. Therefore, it suffices to check that p : X → Y
is a trivial local fibration if and only if it has the local right lifting property with respect to
all maps ∂∆n ↪→ ∆n for n ≥ 0.
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Observe that f : ∆n → Y (V ) represents the unit of the group πn(Y |U , px)(φ : V → U) if
and only if there exists a covering sieve S ⊆ HomC(−, V ) such that for all ψ : W → V in S
there exists a commutative diagram

∂∆n+1 Y (W )

∆n+1.

(xW ,...,xW ,ψ∗f)

wψ (38)

Indeed, any local homotopy f ≃loc xW induces such diagram and conversely such diagram
expresses that the multiplication in πn(X|U , x)(φ : V → U) of the unit with the class of f is
again equal to the unit.

Suppose that p : X → Y has the local right lifting property with respect to all maps
∂∆n ↪→ ∆n for n ≥ 0. Then local lifts with respect to ∅ → ∆0 imply that p∗ : π0(X) →
π0(Y ) is surjective, while local lifts with respect to ∂∆1 ↪→ ∆1 give injectivity. Let n ≥ 1,
let x ∈ X|U(idU)0 be a base point and φ : V → U be an object of C/U . Then for any
f : ∆n → Y (V ) representing an element of πn(Y |U , px)(φ : V → U) there exists a covering
sieve S ⊆ HomC(−, V ) such that for all ψ : W → V in S there exists a commutative diagram

∂∆n X(W )

∆n Y (W ).

(xW ,...,xW )

pW

ψ∗f

lψ (39)

This shows p∗ : πn(X|U , x)(φ : V → U) → πn(Y |U , px)(φ : V → U) is surjective. For
injectivity, let f : ∆n → X(V ) represent an element of πn(X|U , x)(φ : V → U) such that
p∗([f ]loc) is the unit of πn(Y |U , px)(φ : V → U). Using the map wφ from diagram (38), we
form a local lift. Thus there exists a covering sieve S ′ ⊆ HomC(−,W ) such that for every
χ : T → W in S ′ there exists a diagram

∂∆n+1 X(T )

∆n+1 Y (T ).

(xT ,...,xT ,χ
∗ψ∗f)

pT

χ∗wψ

kχ (40)

This shows that f represents the unit of πn(X|U , x)(φ : V → U) and hence that p∗ has a
trivial kernel. Hence p is a local weak equivalence.

As horn inclusions are contained the in the local saturation of the maps ∂∆n ↪→ ∆n, it
follows directly that p is a local fibration.

For the converse suppose that p is a local weak equivalence and a local fibration. Consider
a commutative diagram

∂∆n X(U)

∆n Y (U)

f

pU

g

(41)
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with n ≥ 1 that we will abbreviate as D(f, g, U). Then we want to show that D(f, g, U)
admits a local lift, i.e. that there exists a covering sieve R ⊆ HomC(−, U) such that for every
φ : V → U in R there is a diagram

∂∆n X(V )

∆n Y (V ).

φ∗f

pV

φ∗g

lφ (42)

We claim that if two diagrams D(f, g, U) and D(f ′, g′, U) are locally homotopic, then the
former admits a local lift if and only if the latter admits one. To elaborate on this terminology,
we say that to diagrams D(f, g, U) and D(f ′, g′, U) are locally homotopic if there exists a
covering sieve R ⊆ HomC(−, U) such that for every φ : V → U in R there exist diagrams

∂∆n × ∂∆1 X(U)

∂∆n ×∆1 X(V ),

(f,f ′)

φ∗

hφ

∆n × ∂∆1 Y (U)

∆n ×∆1 Y (V )

(g,g′)

φ∗

h′φ

(43)

such that pV ◦hφ = h′φ ◦ i where i : ∂∆n×∆1 → ∆n×∆1 denotes the inclusion. Towards the
proof of this claim, suppose D(f, g, U) and D(f ′, g′, U) are locally homotopic and D(f, g, U)
admits a local lift such as described in diagram (42). Then there exists a covering sieve
S ⊆ HomC(−, V ) such that for every ψ : W → V in S there is a diagram

(∆n × {0}) ∪ (∂∆n ×∆1) X(W )

∆n ×∆1 Y (W ).

ψ∗lφ∪ψ∗hφ

pW

ψ∗h′φ

Lφ,ψ (44)

Then the maps Lφ,ψ ◦ d0 : ∆n → X(W ) for φ ◦ ψ ∈ R ◦ S∗ witness that D(f ′, g′, U) admits a
local lift, proving the claim.

Returning to diagram D(f, g, U), where p is a trivial local fibration, we will show that it
admits a local lift by providing a locally homotopic diagram that admits a local lift. First, we
homotope f to be constant on all but one face of ∂∆n. That is, for all φ ∈ R some covering
sieve R ⊆ HomC(−, U) the diagram D(φ∗f, φ∗g, V ) is locally homotopic to

∂∆n X(V )

∆n Y (V )

(xV ,...,xV ,fφ)

pV

φ∗g

(45)

where xV is the map ∆n−1 → X(V ) whose image is the last vertex of φ∗f : ∆n → X(V ).
This local homotopy of diagrams is induced by the retraction of

∧n
n ⊆ ∆n onto the last

vertex. This shows that pV fφ represents the unit of πn−1(Y |V , pxV )(idV ). As p is a local
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weak equivalence, fφ is the unit of πn−1(X|V , xV )(idV ). Hence we may refine further for
maps ψ : W → V to obtain a local homotopy between diagrams D(ψ∗φ∗f, ψ∗φ∗g,W ) and

∂∆n X(W )

∆n Y (W ).

xW

pW

ψ∗φ∗g

(46)

Finally, we use that p∗ : πn(X|W , xW ) → πn(Y |W , pxW ) is an epimorphism of sheaves to
conclude that this diagram admits a local lift. Local lifts for vertices of Y follow from the
isomorphism p∗ : π0(X)→ π0(Y ).

Theorem 2.1.20. The classes of local fibrations and local weak equivalences equip the full
subcategory Pre(C, sSets)f ⊆ Pre(C, sSets) of locally fibrant simplicial presheaves on C with
the structure of a category of fibrant objects.

Proof. AxiomN1) was proofed in Corollary 2.1.18. AxiomN2) is an immediate consequence
of the definition of local fibrations. For N3), consider a pullback diagram

X ×Z Y Y

X Z

g

f

(47)

in Pre(C, sSets) for locally fibrant simplicial presheaves X, Y and Z. If g is a (trivial) local
fibration, then Theorem 2.1.19 tells us that g has a the right local lifting property with
respect to maps

∧n
k → ∆n (respectively to maps ∂∆n → ∆n). Then X ×Z Y → X also has

this right local lifting property and thus is a (trivial) local fibration. This also implies that
X ×Z Y is indeed locally fibrant.

Axiom N4) describes the existence of path objects. Exponentiation of the diagram

∆1

∂∆1 ∆0

i (48)

induces a diagram

X∆1

X∆0
X∂∆1

i∗ (49)

for any locally fibrant simplicial presheaf X. There are isomorphisms X∆0 ∼= X and X∂∆1 ∼=
X ×X. Therefore we may write the exponential transpose of i as (d∗0, d

∗
1) : X

∆1 → X ×X.
Using adjunction, Lemma 2.1.8 shows that d∗0 : X

∆n → X has the right local lifting property
with respect to every finite inclusion of simplicial sets. Therefore it is a trivial local fibration
by Theorem 2.1.19. By two-out-of-three X → X∆1

is also a local weak equivalence. As X
is locally fibrant, so is X ×X. Finally, as d∗0 : X

∆1 → X is a local fibration, X∆1
is locally

fibrant and this shows that diagram (49) is a construction for path objects in Pre(C, sSets)f .
Axiom N5) is clear.



2 SIMPLICIAL PRESHEAVES 35

2.2 The global structure

In this section we will show that the category of simplicial presheaves on a Grothendieck site C
admits a cofibrantly generated model structure, which we will refer to as the global structure.
The cofibrations and weak equivalences for the global structure are easy to describe. The
majority of work involves finding a description of the induced class of fibrations.

A map of simplicial presheaves is called a cofibration if it is a (pointwise) monomorphism.
For any simplicial presheaf X, object U ∈ C, base point x ∈ X(U)0 and n > 0, define the
sheaf πtopn (X|U , x) as the sheafification of the presheaf

(C ↓ U)op → Sets : (φ : V → U) 7→ πn(|X(V )|, xV ). (50)

Here |X(V )| denotes the geometric realization of the simplicial set X(V ) and πn(|X(V )|, xV )
stands for the topological n-th homotopy group. For n = 0, we define πtop0 (X) as the sheafi-
fication of the presheaf

Cop → Sets : U 7→ π0(|X(U)|) (51)

where π0(|X(U)|) is the set of path components of |X(U)|. We say that a map f : X → Y
of simplicial presheaves is a topological weak equivalence if the induced maps

f∗ : π
top
n (X|U , x)→ πtopn (Y |U , fx)

f∗ : π
top
0 (X)→ πtop0 (Y )

(52)

are isomorphisms. A map of simplicial presheaves is called a global fibration if it has the
right lifting property with respect to all trivial cofibrations.

As a first step, we will investigate the relation between topological weak equivalences
and simplicial homotopy groups. For a Kan complex A with a chosen base point a ∈ A0,
the simplicial homotopy groups πsimpn (A, a) consist of equivalence classes of pointed maps
(∆n, ∂∆n)→ (A, a) where the equivalence relation is given by simplicial homotopy [10]. Let
Ct be a site with a terminal object t. Suppose X is a simplicial presheaf of Kan complexes on
Ct (meaning X : Copt → sSets has the property that each X(U) is a Kan complex) and choose
a base point x ∈ X(t)0. The procedure of taking pointwise simplicial homotopy groups
of (X(U), xU) is natural in U and therefore defines a functor Copt → Sets. We will denote
the sheafification of this functor by πsimpn (X, x). The simplicial sheaf πsimp0 (X) is defined
similarly.

Recall that the geometric realization | − | : sSets → Top functor is defined as the left
adjoint of singular complex functor Sing : Top → sSets, see [5] Section 8.6. Also note that
any simplicial set of the form Sing(Y ) for Y ∈ Top is a Kan complex. Using the adjunction
| − | ⊣ Sing, we conclude that there is a canonical isomorphism

πtopn (X|U , x) ∼= πsimpn (Sing(|X|)|U , x) (53)

where Sing(|X|)|U is defined on objects (φ : V → U) ∈ C ↓ U as Sing(|X(V )|). We have
proved:

Remark 2.2.1. Every map f : X → Y of simplicial presheaves is topological weak equiva-
lence if and only if Sing(|f |) : Sing(|X|)→ Sing(|Y |) is a combinatorial weak equivalence.
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Hence, we conclude:

Corollary 2.2.2. The class of topological weak equivalences satisfies the two-out-of-three
property.

This Corollary is part of the main result that we are working towards.

Theorem 2.2.3. The classes of cofibrations, global fibrations and topological weak equiva-
lences form a cofibrantly generated model structure on the category of simplicial presheaves.

Proof. Axioms M1) and M3) are easy to verify and axiom M2) is Lemma 2.2.2. Moreover,
Axiom M4) is a formal consequence of M5) in this setting. Indeed, consider a commutative
diagram

A X

B Y

i f (54)

in Pre(C, sSets) where i is a cofibration and f is a trivial global fibration. (Lifts in such
diagrams where i is a trivial cofibration and f a global fibration exist by definition of global
fibrations.) We can construct the diagram

A X X

Z

B B ∪A X Y.

i

ji∗

i∗

idX

f

p

l

q

j

(55)

Here the left square is a pushout diagram, q is the map induced by the pushout, which is
factored as a cofibration j followed by a trivial global fibration p. Note that monomorphisms
of simplicial sets are closed under pushout and pushouts in Pre(C, sSets) are formed pointwise.
This means in particular that i∗ is a pointwise monomorphism and thus a cofibration. Using
the two-out-of-three property of topological weak equivalences, it follows that ji∗ is a trivial
cofibration. Hence there exists a lift l : Z → X, solving the lifting property. Therefore,
we only need to prove the factorization axiom M5). We will do this by providing a set I
of cofibrations and J of trivial cofibrations such that sat(I) and sat(J) are the collection of
cofibrations, respectively trivial cofibrations. This allows us to use a small object argument.
Before we arrive at this part of the proof, we need some results that the class of cofibrations
(resp. trivial cofibrations) is indeed of the form sat(I) (resp. sat(J)).

Let α be an infinite regular cardinal greater than the cardinality of the power set of the
set of all morphisms in C. We say that a simplicial presheaf is α-bounded if for every U ∈ C
and n ≥ 0 the cardinality of the set Xn(U) is strictly smaller than α. A cofibration i : A→ B
of simplicial presheaves is called α-bounded if B is α-bounded.

Lemma 2.2.4. A map f : X → Y of simplicial presheaves is a global fibration if it has the
right lifting property with respect to all α-bounded trivial cofibrations i : A→ B.
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Proof. Let i : A → B be a trivial cofibration and j : C → B be a subobject such that C
is α-bounded. As a first step towards the proof, we will show that there exists a pullback
diagram

Cω ∩ A A

Cω B

i′ i (56)

where Cω ⊆ B is a subobject containing C such that Cω is α-bounded and i′ is a trivial
cofibration. For every U ∈ C and x ∈ A(U)0 there is a long exact sequence of relative
homotopy groups

. . . πtopn (A|U(idU), x) πtopn (B|U(idU), x) πtopn (B|U(idU), A|U(idU), x)

πtopn−1(A|U(idU), x) πtopn−1(B|U(idU), x) πtopn−1(B|U(idU), A|U(idU), x)

πtopn−2(A|U(idU), x) . . .

i∗

i∗

i∗

(57)
where πtopn (B|U(idU), A|U(idU), x) denotes the sheaf associated to the presheaf

(C ↓ U)op → sSets : (φ : V → U) 7→ πn(|B(U)|, |A(U)|, x), (58)

evaluated at idU . As i is a topological weak equivalence, every i∗ in the long exact sequence
is an isomorphism. This means in particular that for every γ ∈ πn(|C(U)|, |C ∩ A(U)|, x)
there exists a covering sieve R ⊆ C(−, U) such that for every φ : V → U in R, the element
φ∗j∗γ ∈ πn(|B(U)|, |A(U)|, x) is trivial. We know that A is a filtered colimit of its α-bounded
subobjects. Moreover, the cardinality of R is strictly less than α. Therefore, there exists an
α-bounded subobject Cγ ⊆ B containing C with the property that the composite

πn(|C(U)|, |C ∩ A(U)|, x)
incl∗−−→ πn(|Cγ(U)|, |Cγ ∩ A(U)|, x)

φ∗
−→ πn(|Cγ(V )|, |Cγ ∩ A(V )|, xV )

(59)
is the zero map, for every φ : V → U in R. Let C1 =

⋃
Cγ the colimit ranges over every

γ ∈ πn(|C(U)|, |C ∩ A(U)|, x) for every object U ∈ C, base point x ∈ C ∩ A(U)0 and
n ≥ 0. We proceed by recursion and define Cω =

⋃
n≥1Cn. Then Cω still is α-bounded.

By a compactness argument it follows that each γ ∈ πn(|Cω(U)|, |Cω ∩ A(U)|, x) becomes
trivial after restriction along some covering sieve, showing that i′ : Cω ∩ A→ Cω is a trivial
cofibration.

Having proved this technicality, consider a commutative diagram in Pre(C, sSets)

A X

B Y

i f (60)
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where i is a trivial cofibration and p has the right lifting property with respect to all α-
bounded trivial cofibrations. Let L be a set of commutative diagrams

A X

C

B Y

i′′

i
f

θ

k

(61)

where i′′ is a trivial cofibration, k is monic and A ̸= C. We equip L with a partial order
where a diagram containing θ : C → X is less or equal to a diagram containing θ′ : C ′ → X
if and only if A ⊆ C ⊆ C ′ ⊆ B as subobjects of B and θ′|C = θ. In order to show that L
is non-empty, let C ′ → B be an α-bounded subobject of B that is not contained in A. (If
there are no such subobjects, then i is an isomorphism, so f immediately has the right lifting
property with respect to i.) Let C ′

ω → B be the subobject corresponding to C ′ obtained
from the construction from diagram (56). Then form the diagram

C ′
ω ∩ A A

C ′
ω C

B

i′′ i′

(62)

where the outer square is a pullback and the inner square is a pushout. Then i′′ is a trivial
cofibration by construction. Then Proposition 2.2.5, which we have yet to prove, implies that
i′ is a trivial cofibration as well. It is not hard to confirm that L satisfies the condition for
Zorn’s Lemma. Hence L has a maximal element. Maximal elements of L correspond to lifts
diagram (60). Hence f is indeed a global fibration.

Proposition 2.2.5. Trivial cofibrations in Pre(C, sSets) are stable under pushout.

Proof. Consider a pushout diagram

A E

B F

j

i (63)

in Pre(C, sSets) where i is a trivial cofibration. Using the Kan-Quillen model structure on
sSets, there are pointwise factorizations of this diagram of the form:

A(U) C(U) E(U)

B(U) D(U) F (U).

k

i

p

i′

j′ p′

(64)
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Here k is monic and p is a trivial Kan fibration. As monomorphisms are stable under pushout
in sSets, i′ is monic. Moreover, the Kan-Quillen model structure is left proper, which implies
that p′ is a weak equivalence. The factorization above is natural in U and pointwise weak
equivalences are weak equivalences in Pre(C, sSets). Therefore, we reduced the proof to
showing that

A C

B D

k

i i′ (65)

i′ is a trivial cofibration if k is a cofibration. We will do this by showing that for every
diagram

|∂∆n| |C(U)|

|∆n| |D(U)|

α

|i′|

β

(66)

of topological spaces, there exists a covering sieve R ⊆ HomC(−, U) such that for every
φ : V → U in R there are diagrams

|∂∆n| |∂∆n| × |∆1| |C(V )|

|∆n| |∆n| × |∆1| |D(V )|

d0 cφ

|i′|

d0 hφ

(67)

|∂∆n| |C(V )|

|∆n| |D(V )|

|φ∗|α

|i′|
θφ

hφd1

(68)

where cφ : |∂∆n| × |∆1| → |C(V )| is the constant homotopy on |φ∗|α and hφd
0 = |φ∗|β.

Note that β is a singular n-simplex the CW-complex |D(U)|, obtained as a pushout of
CW-complexes. Therefore, there exists a subdivision |L| ∼= |∆n| together with a homotopy
h : |L| × |∆1| → |D(U)| such that hd1 : |L| → |D(U)| sends any simplex of L to a simplex
completely contained in the image of |C(U)| or to a simplex contained in the image of |B(U)|.
Let K ⊆ L be the induced subdivision of ∂∆n ⊆ ∆n. Then there exists a finite sequence

K = K0 ⊆ K1 ⊆ . . . ⊆ Km = L (69)

where every inclusion corresponds to adjoining a single simplex. Suppose that the diagram

|K| |C(U)|

|Ki| |D(U)|

α′

|i′|
β′
i

(70)
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admits the required local lift up to homotopy. That is, there exists a covering sieve R ⊆
HomC(−, U) such that for every φ : V → U in R, there exist diagrams

|K| |K| × |∆1| |C(V )|

|Ki| |Ki| × |∆1| |D(V )|

d0 c′φ

|i′|

d0 hφ

(71)

|K| |C(V )|

|Ki| |D(V )|

|φ∗|α′

|i′|
θφ

hφd1

(72)

where c′φ : |K| × |∆1| → |C(V )| is the constant homotopy on |φ∗|α′ and hφd
0 = |φ∗|β′

i, such
that for every simplex σ of Ki we have

� β′
i(|σ|) ⊆ |C(U)| implies that hφ is constant on |σ|,

� β′
i(|σ|) ⊆ |B(U)| implies that hφ(|σ| × |∆1|) ⊆ |B(V )|.

Now consider the unique p-simplex σ of Ki+1 that is not in Ki. If β
′
i(|σ|) ⊆ |C(U)|, then hφ

admits an extension h′φ : |Ki+1| × |∆1| → |D(V )| that is constant on |σ|. If β′
i(|σ|) ⊆ |B(U)|,

then we use a retract map |∆p × ∆1| → |(∂∆p × ∆1) ∪ (∆p × ∆0)| to extend hφ to a map
h′φ : |Ki+1| × |∆1| → |D(V )| such that h′φ(|σ| × |∆1|) ⊆ B(V ). As i : A → B is a trivial
cofibration, there exist covering sieves Sφ ⊆ HomC(−, V ) such that for every ψ : W → V
there are diagrams

|Ki| |Ki| × |∆1| |C(W )|

|Ki+1| |Ki+1| × |∆1| |D(W )|

d0 c′φ,ψ

|i′|

d0 hφ,ψ

(73)

|Ki| |C(W )|

|Ki+1| |D(W )|

|ψ∗|θφ

|i′|
θφ,ψ

hφ,ψd
1

(74)

where c′φ,ψ : |Ki| × |∆1| → |C(W )| is the constant homotopy on |ψ∗|θφ and hφ,ϕd
0 = |ψ∗|h′φ.

This finishes the construction of the lift in diagram (68), showing that i′ is indeed a trivial
cofibration.

Continuation of the proof of Theorem 2.2.3. Let J be the set of all α-bounded trivial cofi-
brations i : A → B. In order to prove axiom M5), let f : X → Y be a map of simplicial
presheaves. We use a small object argument, as was demonstrated in the proof of Theorem
1.4.4, to obtain a factorization

X
jα−→ Zα

pα−→ Y (75)
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of f where jα is contained in the saturation of J . In order to verify that pα has the right
lifting property with respect to morphisms in J , let i : A→ B be an arrow in J and consider
a diagram

A Zα

B Y

i pα (76)

in Pre(C, sSets). As i is α-bounded, so is A. This means that the set of all simplexes of A(U),
where U ranges over all objects of C, contains strictly less than α elements. By regularity of
α, the map A → Zα factors through Zα′ → Zα for some α′ < α. The existence of a lift in
diagram (76) is now a formal consequence of the construction of pα.

Clearly jα is a trivial cofibration and Lemma 2.2.4 ensures that pα is a global fibration.
The factorization of f : X → Y into a cofibration followed by a trivial global fibration is

also constructed by a small object argument. Consider the adjunction

sSets Pre(C, sSets)

(−)U

evU

⊥ (77)

mentioned at the introduction of Section 2.1. Let I be the set of subobjects of ∆n
U for any

choice of U ∈ C and n ≥ 0. Like before, there exists a factorization

X
iα−→ Zα

qα−→ Y (78)

such that iα is in the saturation of I, and thus a cofibration, and qα has the right lifting
property with respect to every arrow in I. An argument involving Zorn’s Lemma in the way
it was used for Lemma 2.2.4 shows that maps having the right lifting property with respect
I, also has the right lifting property with respect to all cofibrations. This means that qα
is a fibration. Moreover, qα has the right lifting property with respect to every inclusion
∂∆n

U ⊆ ∆n
U . It follows from the adjunction that every qα(U) : Zα(U) → Y (U) is a trivial

Kan fibration. Hence qα is a pointwise weak equivalence and in particular a topological weak
equivalence. This completes axiom M5).

In order to show that the model structure on Pre(C, sSets) is cofibrantly generated, it
suffices to see that sat(I) (resp. sat(J)) forms the collection of all cofibrations (resp. trivial
cofibrations). The argument given at the last paragraph of the proof of Theorem 1.4.4
provides a way to write any cofibration (resp. trivial cofibration) as a retract of a morphism
in sat(I) (resp. sat(J)), showing that I and J are indeed the generating sets.

2.3 Simplicial sheaves

The full subcategory Shv(C, sSets)f ⊆ Pre(C, sSets)f on locally fibrant simplicial sheaves
inherits the notions of local fibration and combinatorial weak equivalence from the local
structure on Pre(C, sSets)f . As for the global structure on Pre(C, sSets), we say that a map
of simplicial sheaves is a cofibration (or topological weak equivalence) if it is a cofibration (or
topological weak equivalence) as a map of simplicial presheaves. We define global fibrations
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of simplicial sheaves to be the maps having the right lifting property with respect to all maps
of simplicial sheaves that are topological weak equivalences as well as cofibrations. In this
section we will see that these definitions give Shv(C, sSets)f the structure of a category of
fibrant objects and Shv(C, sSets) the structure of a model category. Finally, we will work
towards the following result that relates these structures.

Theorem 2.3.1. The inclusions of full subcategories

Shv(C, sSets)f Pre(C, sSets)f

Shv(C, sSets) Pre(C, sSets)

(79)

induce equivalences of categories

Ho(Shv(C, sSets)f ) Ho(Pre(C, sSets)f )

Ho(Shv(C, sSets)) Ho(Pre(C, sSets))

(80)

on the respective homotopy categories.

Let us first recall some terminology about sheafification. Let X be a simplicial presheaf
and U ∈ C. Then for any covering sieve R ⊆ HomC(−, U) we define

X(U)R = lim←−
(φ:V→U)∈R

X(V ) (81)

and denote the induced map from X(U) into the limit by τR : X(U) → X(U)R. The set of
covering sieves on U , write J(U), is a poset ordered by inclusion. We form the colimit

L(X)(U) = lim−→
R∈J(U)

X(U)R. (82)

Note that this construction is functorial in U , and as of such provides a functor L : Pre(C, sSets)→
Pre(C, sSets). This functor comes with a canonical natural transformation η : X → LX. We
denote X̃ = L(LX), which is the sheafification of X or the sheaf associated to X.

With these notational conventions out of the way, we will investigate the relation between
local fibrations of simplicial presheaves and sheafification.

Lemma 2.3.2. Let X be a simplicial presheaf, then the canonical map X → X̃ is a trivial
local fibration.

Proof. We will show that η : X → LX is a trivial local fibration. Let U ∈ C and consider
the commutative diagram

∂∆n X(U)

∆n LX(U)

η (83)
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of simplicial sets. As LX(U) is formed as a colimit of simplicial sets, there exists a covering
sieve R ⊆ HomC(−, U) such that ∆n → LX(U) factors through the canonical map X(U)R →
LX(U). This reduces the proof to a local lifting problem of the form:

∂∆n X(U)

∆n X(U)R.

τR (84)

Observe that for each φ : V → U in R there exists a commutative diagram

X(U) X(V )

X(U)R X(V )φ∗R

φ∗

τR τφ∗R

φ∗

(85)

expressing the naturality of τ . As φ∗R is the full covering sieve on V , it follows that τφ∗R :
X(V )→ X(V )φ∗R is an isomorphism. This gives the required local lift.

Corollary 2.3.3. The functor L : Pre(C, sSets)→ Pre(C, sSets) preserves local fibrations.

Proof. Let f : X → Y be a local fibration of simplicial presheaves. For U ∈ C consider a
commutative diagram of the form ∧n

k LX(U)

∆n LY (U).

L(f) (86)

As ∅ ↪→
∧n
k is an inclusion of finite simplicial sets and ηU : X(U)→ LX(U) is a trivial local

fibration by Lemma 2.3.2, there exists a covering sieve R ⊆ HomC(−, U) such that for any
φ : V → U in R, there is a lift lφ :

∧n
k → X(V ) making

∅ X(U) X(V )

∧n
k LX(U) LX(V )

∆n LY (U) LY (V )

φ∗

η
lφ

φ∗

L(f) L(f)

φ∗

(87)

commute. Note that L(f) ◦ η = η ◦ f : X → LY , by naturality of η. Hence L(f) ◦ η is a local
fibration. Therefore we obtain local lifts of the form∧n

k X(V ) X(W )

∆n LY (U) LY (V ) LY (W ).

lφ ψ∗

L(f)◦η

φ∗ ψ∗

(88)

In particular, these local lifts are a solution to the initial lifting problem from diagram 86.
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In particular, it follows from this corollary that the sheaf associated to a locally fibrant
simplicial presheaf, is locally fibrant as well.

Proposition 2.3.4. The category Shv(C, sSets)f together with the classes of local fibra-
tions and combinatorial weak equivalences has the structure of a category of fibrant objects.
Moreover, the inclusion functor induces an equivalence of categories Ho(Shv(C, sSets)f ) ∼=
Ho(Pre(C, sSets)f ) on homotopy categories.

Proof. Finite limits in Shv(C, sSets)f coincide with with finite limits in Pre(C, sSets)f . There-
fore, the only non-trivial axiom to check is N4). If X is a simplicial sheaf and K a finite
simplicial set, then XK is also a simplicial sheaf. Hence the existence of path objects in
Pre(C, sSets)f directly provides the existence of path objects in Shv(C, sSets)f .

Towards proving the second statement, observe that it suffices to show that the sheafifi-
cation functor L2 preserves weak equivalences. Indeed, consider the diagram

Pre(C, sSets)f Shv(C, sSets)f

Ho(Pre(C, sSets)f ) Ho(Shv(C, sSets)f )

L2

i
incl

⊥

j (89)

The composite i ◦ incl : Shv(C, sSets)f → Ho(Pre(C, sSets)f ) sends weak equivalences to
isomorphisms, so there is an induced functor Ho(Shv(C, sSets)f ) → Ho(Pre(C, sSets)f ). Un-
der the assumption that L2 preserves weak equivalences, j ◦ L2 sends weak equivalences to
isomorphisms, which provides the functor Ho(Pre(C, sSets)f )→ Ho(Shv(C, sSets)f ). Lemma
2.3.2 implies that these functors are pseudo-inverses to each other.

Corollary 1.1.10 reduces the proof to showing that L2 preserves trivial local fibrations.
Let f : X → Y be map of locally fibrant simplicial presheaves. As a consequence of Theorem
2.1.19 and an argument using adjunction, it follows that f is a trivial local fibration if and
only if the induced map

X∆n → X∂∆n ×Y ∂∆n Y ∆n (90)

is a degree-wise local epimorphism, i.e. has the local right lifting property with respect to
every map ∅ → ∆m with m ≥ 0. As η : X → LX is a degree-wise local epimorphism, we
conclude that f being a trivial local fibration implies that the induced map

L2(X∆n)→ L2(X∂∆n ×Y ∂∆n Y ∆n) (91)

is a degree-wise local epimorphism. Thus so is

X̃∆n → X̃∂∆n ×Ỹ ∂∆n Ỹ
∆n , (92)

since sheafification commutes with taking finite limits. Therefore, f̃ : X̃ → Ỹ is a trivial
local fibration.
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Let us now focus defining the global model structure on Shv(C, sSets).

Lemma 2.3.5. Let X be a simplicial presheaf, then the canonical map X → X̃ is a topological
weak equivalence.

Proof. We will show that η : X → LX is a topological weak equivalence for any simplicial
presheaf X. For n ≥ 1, U ∈ C and x ∈ X(U)0 we want to show that the induced map

η∗ : π
top
n (X|U , x)→ πtopn (LX|U , ηx) (93)

is an isomorphism. Let σ : |∆n| → |LX(U)| represent an element of πn(|LX(U)|, ηx). We
have

|LX(U)| = | lim−→
R∈J(U)

X(U)R| ∼= lim−→
R∈J(U)

|X(U)R|, (94)

which shows that |LX(U)| is a filtered colimit of CW-complexes. Since |∆n| is a compact
topological space, the image of σ is contained in finitely many cells of |LX(U)|. Therefore,
there exists a finite subset J ′(U) ⊆ J(U) such that σ factors through lim−→

R∈J ′(U)

|X(U)R|. In

particular, σ factors through |X(U)R′ | where R′ =
⋂
J ′(U). This shows that singular n-

simplices of |LX(U)| correspond to singular n-simplices of |X(U)R| for some R ∈ J(U).
Elements of πn(|X(U)R|, x) locally lift along the covering sieve R. This gives the surjectivity
of η∗.

For injectivity, suppose that σ : |∆n| → |X(U)| represents an element of πn(|X(U)|, x)
that vanishes in πn(|LX(U)|, x). Then there exists a homotopy

|∆n ×∆1| → |LX(U)| (95)

from the map induced by σ to the constant map ηx. By a similar compactness argument,
there exists a R ∈ J(U) such that the homotopy factors through |X(U)R|. As before, the
map |∆n × ∆1| → |X(U)R| locally lifts to a map into |X(U)|, along the covering sieve R.
Hence σ represents the trivial element of πtopn (X|U , x). The case for n = 0 is similar.

Proposition 2.3.6. The category Shv(C, sSets) together with the classes of cofibrations, weak
equivalences and global fibrations of simplicial sheaves defined at the introduction of this
section, has the structure of a model category.

Proof. The first three axioms M1), M2) and M3) are easy to verify. For axiom M5) we
will make use of the factorization axiom from Pre(C, sSets). Indeed, let f : X → Y be a map
of simplicial sheaves. By transfinite recursion, we will define factorizations

X
iβ−→ Z̃β

pβ−→ Y (96)

for every ordinal β ≤ α. Let i0 = idX and p0 = f . For any ordinal β consider the following
construction:

Z̃β Z̃β+1 Y

Zβ+1.

jβ

pβ+1

η qβ+1
(97)
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Here qβ+1 ◦ jβ is a factorization of f into a trivial cofibration followed by a fibration, viewed
as simplicial presheaves. Moreover, η is the canonical map from Zβ+1 to its associated sheaf
and pβ+1 is the induced map making the triangle commute. Now suppose β is a limit ordinal,
then define Z̃β = lim−→γ<β

Z̃γ.

By Lemma 2.3.5 every map Z̃β → Z̃β+1 is a trivial cofibration. Hence iα : X → Z̃α is a
trivial cofibration as well. By construction, pα : Z̃α → Y has the right lifting property with
respect to all α-bounded trivial cofibrations. Therefore pα is a fibration. Factorizations of
maps into a cofibration followed by a trivial fibration are constructed by a similar argument.

One half of the lifting axiomM4) is immediate, by definition of fibrations in Shv(C, sSets).
The other part follows from the trick described in diagram (55).

In order prove Theorem 2.3.1, we will need to find inverses to the maps shown in diagram
(80). There is one obvious choice for the inverses to the horizontal maps, these will be the
functors induced by sheafification. For the vertical maps, we will make use of the Kan’s Ex∞

functor.

Remark 2.3.7. The functor Ex∞ : sSets→ sSets has the following properties [4]:

� For any simplicial set A, Ex∞A is a Kan complex.

� There exists a natural transformation ν : A→ Ex∞A that is a weak equivalence in the
Kan-Quillen model structure.

Besides Kan’s Ex∞ functor, we need a result on presheaves on Kan complexes. Recall
that the n-th simplicial homotopy group on a Kan complex A with base point a ∈ A0 is the
set consisting of equivalence classes of pairs of maps (∆n, ∂∆n) → (A, a), where two such
pairs are equivalent if there exists a simplicial homotopy between them, respecting the base
point. The assumption that A is a Kan complex ensures that this relation is an equivalence
relation, which is not true for general simplicial sets. Simplicial homotopy groups extend
naturally to presheaves of Kan complexes. That is, let X be a simplicial presheaf, U ∈ C and
x ∈ X(U)0 a base point, then πsimpn (X|U , x) is the functor

(C ↓ U)op → Sets : (φ : V → U) 7→ [(∆n, ∂∆n), (X(V ), xV )] (98)

where the square brackets indicate an equivalences class with respect to relative simplicial
homotopy.

Lemma 2.3.8. Let X be a presheaf of Kan complexes, then there is a canonical isomorphism
between the sheaf associated to πsimpn (X|U , x) and πn(X|U , x) for any choice of U ∈ C and
base point x ∈ X(U)0.

Proof. Let α, β : (∆n, ∂∆n)→ (X(U), x) represent two elements of πsimpn (X|U , x)(idU). These
elements become equal after applying

ηU : πsimpn (X|U , x)(idU)→ Lπsimpn (X|U , x)(idU), (99)
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if and only if they are locally homotopic relative to the boundary. Therefore, there exists a
factorization

πsimpn (X|U , x) Lπsimpn (X|U , x)

πpn(X|U , x).

η

(100)

After sheafification of this diagram, every arrow becomes an isomorphism.

Proof of Theorem 2.3.1. First and foremost, a map between locally fibrant simplicial presheaves
is a combinatorial weak equivalence if and only if it is a topological weak equivalence. Ob-
serve that this claim follows immediately from Remark 2.2.1 once we have shown that for any
locally fibrant simplicial presheaf X, the canonical map X → Sing(|X|) is a combinatorial
weak equivalence. Consider the commutative square:

X Ex∞X

Sing(|X|) Sing(|Ex∞X|).

(101)

top map is a combinatorial weak equivalence by Proposition 1.17 from [8]. Moreover, ev-
ery map in this diagram induces an isomorphism on path components. Thus Sing(|X|) →
Sing(|Ex∞X|) is a combinatorial weak equivalence if and only if for every n ≥ 1, every U ∈ C
and x ∈ X(U)0 the induced map

πsimpn (Sing(|X|)|U , x)→ πsimpn (Sing(|Ex∞X|)|U , x) (102)

is an isomorphism, by Lemma 2.3.8. Hence it is sufficient to show that

Sing(|X(U)|)→ Sing(|Ex∞X(U)|) (103)

is a weak equivalence of simplicial sets, for each U ∈ C. Using the Quillen equivalence from
Theorem 8.65 from [5] and Remark 2.3.7, this map is indeed a weak equivalence. Also note
that Ex∞X → Sing(|Ex∞X|) is a pointwise weak equivalence and therefore a combinatorial
weak equivalence. This proves the claim.

Consequently, the vertical maps in diagram (80) are well-defined. Proposition 2.3.4
states that Ho(Shv(C, sSets)f )→ Ho(Pre(C, sSets)f ) is an equivalence of categories. Lemma
2.3.5 ensures that Ho(Pre(C, sSets)) → Ho(Shv(C, sSets)) induced by sheafification is a
pseudo-inverse to functor induced by the inclusion of sheaves into presheaves. Observe that
Sing(|X|)→ Sing(|Ex∞X|) being a combinatorial weak equivalence in particular means that
X → Ex∞X is a topological weak equivalence. Hence Ex∞ : Pre(C, sSets) → Pre(C, sSets)f
induces a pseudo-inverse to Ho(Pre(C, sSets)f )→ Ho(Pre(C, sSets)).
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3 Sheaf Cohomology

Sheaf cohomology is an invariant that is associated to a topological space. Unlike singular
cohomology which requires a choice of an abelian group as coefficients, sheaf cohomology is
defined by choosing a system of abelian groups. To arrive at the definition of sheaf coho-
mology, we first need to introduce the setting for these arguments. This involves answering
questions such as: what properties must a category have in order to formulate a sensible
criterium for exactness of a sequence?

The version of sheaf cohomology given below is the standard one, but there are other
forms of cohomology as well that are closely related to this one. For example, all of the
below still works when abelian groups are replaced by R-modules for a commutative ring R.
One could also make another adaptation by replacing the category of opens on a topological
space X by the category Et(X) of étale morphisms from any scheme into a fixed scheme X.
This leads to the definition of étale cohomology, which is an important concept in algebraic
geometry. In the upcoming sections we follow the approach from Chapter 4 of [13].

3.1 Abelian Categories

In this section we will introduce a concept that gives a precise meaning to a category behaving
like the category of abelian groups or the category of modules over a commutative ring.
Observe that in case of the category of abelian groups, the set of arrows HomAb(A,B) has
the structure of an abelian group itself by pointwise addition. Moreover, any arrow f : A→ B
in Ab has a kernel and a cokernel. These are the properties that we want to generalize.

Definition 3.1.1. A linear category L is a category that is enriched over the category of
abelian groups. That is, every set HomL(A,B) has the structure of an abelian group such
that every composition map

◦ : HomL(B,C)× HomL(A,B)→ HomL(A,C) (1)

is bilinear. We will use additive notation for the group multiplication on the Hom-sets.

Definition 3.1.2. Let C be a category. Then an object 0 ∈ C is a called a zero object if it
is both initial and terminal.

Remark 3.1.3. If a linear category L has a zero object, then for any two objects A,B ∈ L
there exists a zero map 0A,B : A → B. This map is defined as the unique composite
A→ 0→ B. It follows directly from the bilinearity of the composition that the zero map is
the unit of the group HomL(A,B). Usually, we will just write 0 for the zero map and it will
be clear from the context whether it refers to the object in L or to a morphism.

Definition 3.1.4. A linear category A is a called additive if it has a zero object and finite
products (and therefore also has finite coproducts by the proposition below). A functor
F : A → B between linear categories is said to be additive if for every pair A,A′ ∈ A the
induced map HomA(A,A

′)→ HomB(F (A), F (A
′)) is a group homomorphism.

Proposition 3.1.5. In an additive category A finite products and coproducts coincide.
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Proof. Let A,B ∈ A. We will show that idA⨿B admits a canonical factorization through
A×B. Consider the (non-commutative) diagram

A⨿B

A B

A×B

A B

A⨿B.

(id,0) (0,id)

(id,0)

id

(0,id)

id

pA pB

iA iB

(2)

First observe that the two triangles in the diagram do commute. This follows from the Yoneda
lemma. Indeed, let α : P → A be any map in A, then pA ◦ (id, 0) ◦ α = pA ◦ (α, 0) = α and
thus pA ◦ (id, 0) = idA. Define σ : A⨿B → A×B as the sum (id, 0) ◦ (id, 0) + (0, id) ◦ (0, id)
and σ′ : A× B → A⨿ B as the sum iA ◦ pA + iB ◦ pB. Using bilinearity of composition and
the commutativity of the triangles, we obtain

σ′ ◦ σ =(iA ◦ pA + iB ◦ pB) ◦ ((id, 0) ◦ (id, 0) + (0, id) ◦ (0, id)) (3)

=iA ◦ pA ◦ (id, 0) ◦ (id, 0) + iB ◦ pB ◦ (0, id) ◦ (0, id) (4)

=iA ◦ (id, 0) + iB ◦ (0, id). (5)

We proceed by using the dual version of the Yoneda lemma. Consider an arbitrary map
(α, β) : A⨿B → P in A. Then

(α, β) ◦ (iA ◦ (id, 0) + iB ◦ (0, id)) =(α, β) ◦ iA ◦ (id, 0) + (α, β) ◦ iB ◦ (0, id) (6)

=α ◦ (id, 0) + β ◦ (0, id) (7)

=(α, 0) + (0, β) (8)

=(α + 0, β + 0), (9)

and by Remark 3.1.3 the zero map is the unit of HomL(A⨿B,P ). This shows that σ′ ◦ σ =
idA⨿B. The argument for σ ◦ σ′ = idA×B is dual.

Within an additive category, kernels and cokernels arise as specific limits and colimits,
respectively.

Definition 3.1.6. Let f : A→ B be a morphism in an additive category A, then the kernel
i : ker(f)→ A of f is defined by the pullback diagram:

ker(f) 0

A B.

i

f

(10)
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Dually, the cokernel p : B → coker(f) of f is defined by the pushout diagram:

A 0

B coker(f).

f

p

(11)

Remark 3.1.7. Beware that in general kernels and cokernels do not need to exist. We
only assumed additive categories to have products (and coproducts) and did not require the
existence of all finite limits and colimits.

On that note, if a morphism f does have a kernel, then the canonical map i : ker(f)→ A
is monic. To show this, let α, β : A′ → ker(f) be arrows with the property that iα = iβ.
Consider the cone

A′

ker(f) 0

A B,

0

iα=iβ
i

f

(12)

then both choices α and β for the dashed arrow make the obvious triangles commute. Hence
the uniqueness part of the universal property of the pullback gives α = β. A dual argument
shows that p : B → coker(f) is epic, if it exists.

Remark 3.1.8. Any map f : A → B in a linear category L induces exact sequences of
abelian groups

0→ HomL(T, ker(f))
i∗−→HomL(T,A)

f∗−→ HomL(T,B), (13)

0→ HomL(coker(f), T )
j∗−→HomL(B, T )

f∗−→ HomL(A, T ). (14)

The reader is encouraged to check exactness at each position for him- or herself.

Definition 3.1.9. An additive category A is said to abelian if the following conditions hold:

i) A has all finite limits and colimits.

ii) If f : A → B is monic, then the kernel of the cokernel of f is f itself. That is, if f is
monic, then the pushout diagram (10) is also a pullback.

iii) If f : A → B is epic, then the cokernel of the kernel of f is f itself. That is, if f is
epic, then the pullback diagram (11) is also a pushout.

For arbitrary morphisms f : A→ B we construct

A 0

B coker(f)

ker(p) 0

f

p

i

(15)
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where the top square is a pushout and the bottom square a pullback.

Definition 3.1.10. The image of a morphism f : A→ B in an abelian category A is defined
as the object ker(p) from the diagram above and we denote it by im(f). Moreover, there
exists a canonical map e : A → im(f) such that f = ie by the universal property of the
pullback.

Proposition 3.1.11. For every morphism f : A→ B in an abelian category A, the factor-

ization A
e−→ im(f)

i−→ B is a canonical way to factorize f into an epimorphism followed by
a monomorphism.

Proof. It follows from Remark 3.1.7 that i is monic. To show that e is epic, let α, β : im(f)→
T be two maps such that αe = βe. Then αe−βe = (α−β)e = 0. Let k : ker(α−β)→ im(f)
be the kernel of α − β. Because (α − β)e = 0, there exists a map w : A → ker(α − β) such
that kw = e. Hence we obtain a commutative diagram

A ker(α− β) 0

im(f) B coker(ik).

w

e ik

i

(16)

As k and i are both kernels, they are monic by Remark 3.1.7 and thus ik is monic. By
condition ii) of Definition 3.1.9, the rightmost square of the diagram above is a pullback in
addition to being a pushout. Therefore, there exists a map v : im(f)→ ker(α− β) such that
ikv = i. As i is monic, this implies that kv = idim(f). Hence α−β factors through ker(α−β),
showing that α− β = 0 and consequently α = β.

Now that we have defined kernels, cokernels and images in A, we are able to formulate
what it means for a sequence A• of maps

. . .→ An−1
dn−→ An

dn+1−−−→ An+1 → . . . (17)

to be exact. We say this sequence is exact at n if im(dn) = ker(dn+1). The sequence is said
to be exact if it is exact at every position.

If the sequence A• is a chain complex, that is d◦d = 0, then we define its n-th cohomology
group as the quotient ker(dn+1)/ im(dn) and denote it by Hn(A•). That is, the condition
dn+1 ◦dn = 0 imposes a canonical map im(dn)→ ker(dn+1) and the quotient is defined as the
cokernel of this map.

Lemma 3.1.12. Let A
f−→ B

g−→ C be an sequence in an abelian category A. If for every
object T ∈ A the sequence

HomA(C, T )
g∗−→ HomA(B, T )

f∗−→ HomA(A, T ) (18)

is an exact sequence of abelian groups, then A
f−→ B

g−→ C is exact in A.
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Proof. First consider the case where T = C. Then f ∗g∗ = 0, so in particular f ∗g∗(idC) =
gf = 0. Decomposing f = ie as in Proposition 3.1.11, we have gie = 0 and thus gi : im(f)→
C is the zero map, using that e is epic. Therefore, there exists a map v : im(f)→ ker(g) such
that i = jv, where j : ker(g)→ B the inclusion of the kernel. This shows that im(f) ⊆ ker(g)
as subobjects of B.

Now consider the case T = coker(f), then we have an exact sequence

HomA(C, coker(f))
g∗−→ HomA(B, coker(f))

f∗−→ HomA(A, coker(f)). (19)

Let p : B → coker(f) denote the cokernel of f . Then we have 0 = pf = f ∗(p). Using
exactness, we conclude that p ∈ ker(f ∗) = im(g∗). Hence there exists a morphism w : C →
coker(f) such that p = gw. This implies that ker(p) ⊆ ker(g) as subobjects of B and recall
that ker(p) = im(f), which completes the proof.

Proposition 3.1.13. Let L : A → B and R : B → A be additive functors between abelian
categories that form an adjunction L ⊣ R. Then L is a right exact functor and R a left exact
functor.

Proof. We will prove that R is left exact, the right exactness of L then follows from duality.
Let

0→ B′ f−→ B
g−→ B′′ → 0 (20)

be a short exact sequence in B. Then for any A ∈ A the adjunction induces a commutative
diagram

HomB(L(A), B
′) HomB(L(A), B) HomB(L(A), B

′′)

HomA(A,R(B
′)) HomA(A,R(B)) HomA(A,R(B

′′)).

f∗ g∗

R(f∗) R(g∗)

(21)

The top row is exact by Remark 3.1.8. As the vertical maps are bijections, the bottom row

is also exact. Hence Lemma 3.1.12 tells us that R(B′)
R(f)−−→ R(B)

R(g)−−→ R(B′′) is exact. The
same argument applied to the sequence 0→ B′ → B proves exactness at R(B′).

3.2 Right Derived Functors

Say that F : A → X is an additive functor between abelian categories and suppose that F
is left exact. Then any short exact sequence 0→ A→ B → C → 0 in A is sent to an exact
sequence

0→ F (A)→ F (B)→ F (C) (22)

in X . For such a fixed functor F , one can wonder to what extent F fails to be an exact
functor. One way to investigate this, is by asking whether there exists a long exact sequence
in X which starts with (22). As we will see in this section, given some condition on the
category A, it is possible to functorially construct such a long exact sequence with the help
of right derived functors. In what follows we will first discuss this condition, that of A having
enough injectives. Then we will construct right derived functors, after which we will provide
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a list of their most important properties, one of them involving this long exact sequence.
As a side note, everything in this section can be dualized. This will give the notion of left
derived functors, that exist if A has enough projectives. However, we do not need left derived
functors to define sheaf cohomology and we will therefore pay not further attention to them.

Recall that the category of modules over a fixed ring admits a notion of injective mod-
ules. The most common definition is already stated in terms of objects and morphisms and
therefore generalizes well to arbitrary categories.

Definition 3.2.1. An object I in a category C is called injective if for every diagram of the
form

B

A I

g
i

f

(23)

where i is monic, there exists an extension g : B → I such that gi = f . Moreover, C is said
to have enough injectives if for every C ∈ C there exists a monomorphism C → I into an
injective object I.

Similar to the case of modules over a ring, we can make sense of injective resolutions.

Definition 3.2.2. An injective resolution of an object A of an abelian category A is an exact
sequence

0→ A
d0−→ I0

d1−→ I1
d2−→ . . . (24)

such that the In for n ≥ 0 are injective objects. We will often abbreviate the exact sequence
as 0→ A→ I•.

Remark 3.2.3. Every module over a ring admits an injective resolution and this resolution
is unique up to chain homotopy (see [13] Section 1.10). Provided that an abelian category
A has enough injectives, every step of the proof of the existence and uniqueness of injective
resolutions can easily be reformulated as an argument withinA. As of such, A has (essentially
unique) injective resolutions. Likewise, we can prove the statement that every map f : A→ B
in A with chosen injective resolutions 0→ A→ I• and 0→ B → J• extends uniquely (up to
chain homotopy) to a map of chain complexes f∗ : I• → J•, by simply translating the proof
for abelian groups to arbitrary abelian categories.

Definition 3.2.4. Let F : A → X be an additive functor between abelian categories that
is left exact and suppose that A has enough injectives. Let A ∈ A and fix an injective
resolution 0→ A→ I•. Then we define the right derived functors Ri(F ) : A → X for i ≥ 0
on objects by

Ri(F )(A) = H i(F (I•)). (25)

Let 0 → A → I• and 0 → B → J• be injective resolutions of A and B, respectively, and
consider an arrow f : A→ B in A. We define the right derived functors on arrows by

Ri(F )(f) = H i(F (f∗)) (26)

where f∗ : I• → J• is the induced chain map.
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By Remark 3.2.3 any two choices of injective resolutions 0 → A → I• and 0 → A → J•
for an object A ∈ A induce a chain homotopy equivalence between I• and J•, which in turn
induces an isomorphism on the level of cohomology. Therefore, the definition of Ri(F )(A) is
independent of the choice of a injective resolution. Furthermore, Remark 3.2.3 ensures that
Ri(F )(idA) is (canonically isomorphic to) the identity on H i(F (I•)). This shows the right
derived functors of F are well-defined.

Proposition 3.2.6 discusses the key properties of right derived functors. For the proof
of that proposition, we first need a rather technical result about an extension of injective
resolutions using a short exact sequence.

Proposition 3.2.5. For any short exact sequence

0→ A
f−→ B

g−→ C → 0 (27)

in an abelian category A together with two chosen injective resolution 0 → A
d−→ I• and

0→ C
l−→ K•, there exists an injective resolution 0→ B

e−→ J• for B and chain maps f∗ and
g∗ extending f and g, respectively, such that

0→ I•
f∗−→ J•

g∗−→ K• → 0 (28)

is a split exact sequence at every degree.

Proof. As I0 is injective and f monic, there exists a map α : B → I0 such that d = αf .
Choose J0 = I0 ⊕ K0, where ⊕ denotes the product (and therefore also the coproduct by
Proposition 3.1.5). Consider the diagram

0 A B C 0

0 I0 I0 ⊕K0 K0 0

f

d

g

eα
l

i

qp

j

(29)

where i and j are the inclusion maps and p and q the projection maps. We define e : B → I0 ⊕K0

as the unique map with components (α, lg). Then we have

ef =(idJ0)ef = (ip+ jq)ef = ipef + jqef

=iαf + jlgf = iαf = id.
(30)

In order to check that e is monic, suppose a map h : E → B has the property that eh = 0.
Then qeh = 0, so by commutativity lgh = 0. As l is monic, this yields gh = 0. Now we use
exactness of the top row of diagram (29) to conclude that there exists an arrow y : E → A
such that h = fy. It follows that 0 = eh = efy = idy and i and d are both monic. Therefore
y = 0, which shows h = 0.

Consider the diagram

0 I0 I0 ⊕K0 K0 0

0 coker(d) coker(e) coker(l) 0

0 I1 I1 ⊕K1 K1 0.

i

p1

q

p2 p3

i′

d′

q′

e′ l′

i q

(31)
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Here p1, p2 and p3 are the cokernels of d, e and l, respectively. Then i′ and q′ are the maps
induced by i, respectively q, between the cokernels. Moreover, it follows from the exactness

of the injective resolutions 0 → A
d−→ I• and 0 → C

l−→ K• that the maps I0 → I1 and
K0 → K1 admit a factorization d′p1, respectively, l

′p3 for some maps d′ : coker(d)→ I1 and
l′ : coker(l)→ K1.

We want show that the middle row of diagram (31) is exact. As q and p3 are epic, so
is q′. The exactness at coker(d) involves another diagram chase. Note that d′p1ief = 0.
From the exactness of the top row of diagram (29), there exists a map γ : C → I1 such that
γg = d′p1ie. As l is monic and I1 injective, there exists an extension β : K0 → I1 such that
γ = βl. We define ϕ : I0⊕K0 → I1 by ϕ = d′p1p− βq. Using the definition of ϕ, β and γ, we
derive

ϕe = d′p1pe− βqe = d′p1pe− βlg = d′p1pe− γg = 0. (32)

Consequently, there exists an arrow ψ : coker(e) → I1 such that ψp2 = ϕ. It follows that
ψi′p1 = ψp2i = ϕi = d′p1. As p1 is epic, this implies ψi′ = d′. As d is monic, Proposition
3.1.11 tells us that d′p1 is an epi-mono factorization of the map I0 → I1. Now d′ = ψi′ being
monic implies that i′ is monic.

Exactness at coker(e) comes down to providing two inclusions. Note that q′i′p1 = q′p2i =
p3qi = 0 and p1 is epic, so q′i′ = 0. This yields im(i′) ⊆ ker(q). For the other inclusion,
let h = (h0, h1) ∈ I0 ⊕ K0 be an element such that p2(h) ∈ ker(q′). (Strictly speaking we
should use maps h : X → I0 ⊕ K0 for elements, but the notation h ∈ I0 ⊕ K0 is easier to
work with and the argument still holds for the general case.) Since q′p2(h) = 0, we also have
p3q(h) = p3(h1) = 0 by commutativity. Therefore, h1 ∈ ker(p3) = im(l). For notational
convenience, we view B, respectively C, as a subobject of I0 ⊕ K0, respectively K0. Thus
h1 ∈ C. As g is surjective, there exists an x ∈ B such that g(x) = h1. It follows that
q(h− x) = 0, which implies that h− x = i(h0). From this we conclude that

p2(h) = p2(i(h0)) = i′(p1(h0)) (33)

showing that p2(h) ∈ im(i′).
The rest of the construction follows by defining Jn = In⊕Kn and inductively constructing

morphisms e′ analogous to e. Then 0→ B → J• is an injective resolution of B and each row

In
i−→ Jn

q−→ Kn is split exact.

Proposition 3.2.6. Let F : A → X and A be as in Definition 3.2.4. Then we have:

i) There is a natural isomorphism R0(F ) ∼= F .

ii) Any short exact sequence

0→ A
f−→ B

g−→ C → 0 (34)

in A induces a long exact sequence

0→ R0(F )(A)
f∗−→ R0(F )(B)

g∗−→ R0(F )(C)
δ−→ R1(F )(A)

f∗−→ . . . (35)

in X .

iii) If A ∈ A is injective, then Ri(F )(A) = 0 for all i > 0.
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Proof. For i), consider an injective resolution 0 → A → I•. Then 0 → F (A) → F (I0) →
F (I1) is an exact sequence in X , because F is left exact by assumption. This gives an
isomorphism F (A) ∼= ker(F (d1)), which is isomorphic to H0(F )(A) = R0(F )(A). The last
part of Remark 3.2.3 shows this isomorphism is natural in A.

For ii), choose injective resolutions for A and C. Then we use Proposition 3.2.6 to obtain

a diagram 0→ I•
f∗−→ J•

g∗−→ K• → 0 of which the columns are chain complexes and the rows
are split exact sequences. As F is additive, it preserves chain complexes as well as split exact
sequences. Therefore, the image of the diagram under F induces a long exact sequence in
cohomology by a standard diagram chase.

For iii), it suffices to note that

0→ A
id−→ A→ 0→ . . . (36)

is an injective resolution for A, if A is injective.

3.3 Sheaf Cohomology

Classical singular cohomology of a topological space requires a choice of an abelian group
for the coefficients. For some applications, it is convenient to have a more flexible notion
of cohomology which requires a system of local coefficients. That is, instead of choosing a
single abelian group for a topological space X, we associate to every open U ⊆ X an abelian
group and associate a group homomorphism to every inclusion V ⊆ U of opens in X. These
associations are required to satisfy some compatibility conditions that can best be described
using presheaves.

Definition 3.3.1. Let X be a topological space. Then a system of local coefficients for X
is a functor A : O(X)op → Ab on X. Here O(X) denotes the poset category on opens of
X, ordered by inclusion. We also refer to A as an abelian presheaf. We denote the functor
category of all abelian presheaves on a space X by Pre(O(X),Ab) or just Pre(X,Ab). Given
an abelian presheaf A on X, an inclusion V ⊆ U of opens in X and an element x ∈ A(U),
we will write x|V for the element A(V ⊆ U)(x).

We say that an abelian presheaf A : O(X)op → Ab is an abelian sheaf if A becomes a sheaf
after postcomposing with the forgetful functor Ab → Sets. Let Shv(X,Ab) ⊆ Pre(X,Ab)
denote the full subcategory on abelian presheaves. Define the global section functor

Γ : Shv(X,Ab)→ Ab : A 7→ A(X) (37)

as the evaluation of abelian sheaves at the largest open X. It is this functor that will define
sheaf cohomology.

However, before we have a closer look at what properties this functor possesses, we will
first investigate how monomorphisms and epimorphisms in Shv(X,Ab) ⊆ Pre(X,Ab) behave.
Recall that monomorphisms in a category C are defined as maps f : X → Y fulfilling a
condition for every parallel pair of arrows into X. Restricting C to a subcategory C ′ ⊆ C
weakens this condition. Therefore, any map f in C ′ that is monic in C is also monic when
considered as a map in the subcategory C ′, but the reverse implication does not hold in
general. A similar argument can be made for epimorphisms.
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Definition 3.3.2. Let f : A→ B be a map of abelian presheaves on X and let U ∈ O(X),
then we say that an element b ∈ B(U) is locally in the image of f , if there exists an open cover
U =

⋃
i∈I Ui such that for every i ∈ I there exists an element ai ∈ A(Ui) with fUi(ai) = b|Ui .

Lemma 3.3.3. A morphism f : X → Y of abelian sheaves on X is monic if and only if it
is monic as a morphism of abelian presheaves. Moreover, f is epic if and only if for every
open U ∈ O(X), every element b ∈ B(U) locally lies in the image of f .

Proof. The inclusion functor Shv(X,Ab)→ Pre(X,Ab) is right adjoint to the sheafification
functor and therefore preserves limits. In particular, this means the inclusion preserves
monomorphisms.

Moreover, f is epic if and only if for every x ∈ X the induced map on stalks fx : Ax → Bx

is epic. That is, for every x ∈ X and for every b ∈ B(U) with x ∈ U , there exists an open
neighbourhood V ⊆ U of x and an element a ∈ A(V ) such that fV (a) = b|V . In other words,
for every open U ∈ O(X) and every b ∈ B(U), b locally lies in the image of f .

Theorem 3.3.4. Let X be a topological space. Then Shv(X,Ab) is an abelian category.

Proof. For i), note that for any two A,B ∈ Shv(X,Ab) the set HomShv(X,Ab)(A,B) =
HomPre(X,Ab)(A,B) and therefore inherits the group structure. Moreover, the constant abelian
presheaf on the trivial group is an abelian sheaf and this is a zero object of Shv(X,Ab). As
sheafification preserves finite products, Shv(X,Ab) has all finite products. This shows that
Shv(X,Ab) is an additive category.

We define kernels in Shv(X,Ab) pointwise. That is, let f : A → B be a map of abelian
sheaves, then we define ker(f) ∈ Pre(X,Ab) on objects by ker(f)(U) = ker(fU). For any
inclusion V ⊆ U of opens in X, consider the corresponding restriction diagram

ker(fU) A(U) B(U)

ker(fV ) A(V ) B(V ).

fU

↾V ↾V
fV

(38)

Then the universal property of the pullback provides an induced map ker(fU) → ker(fV ).
This makes ker(f) into a well-defined abelian presheaf. To check that this kernel is indeed
a sheaf, let {ai ∈ ker(fUi)}i∈I be a compatible family for an open cover U =

⋃
i∈I Ui. As A

is a sheaf, there exists a unique amalgamation a ∈ A(U) such that a|Ui = ai for every i ∈ I.
Therefore, fU(a) ∈ B(U) must be an amalgamation of the compatible family {fUi(ai) ∈
B(Ui)}i∈I . However, every fUi(ai) = 0 by assumption. As B is a sheaf, we conclude that
fU(a) = 0 by uniqueness of amalgamations in B. This shows that a ∈ ker(fU).

Cokernels in Shv(X,Ab) are not defined pointwise and require a slightly more subtle
approach. Definition 3.3.2 allows us to formulate a looser condition on families than them
being compatible. We say that a family {bi ∈ B(Ui)}i∈I is locally f -compatible, if for every
two i, j ∈ I the element bi|Ui∩Uj − bj|Ui∩Uj is locally in the image of f .

Define coker(f) for f : A → B in Shv(X,Ab) on an object U ∈ O(X) as a set of
equivalences classes of pairs ({Ui}, {bi})i∈I where the Ui ∈ O(X) form an open cover of U
and the bi ∈ B(Ui) are a locally f -compatible family. Two pairs ({Ui}, {bi})i∈I , ({Vj}, {cj})j∈J
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are considered to be equivalent if for every i ∈ I and j ∈ J the element bi|Ui∩Vj − cj|Ui∩Vj is
locally in the image of f . We equip coker(f)(U) with a group structure by imposing

[({Ui}, {bi})] + [({Vj}, {cj})] = [({Ui ∩ Vj}, {bi|Ui∩Vj + cj|Ui∩Vj})], (39)

suppressing the index sets. This is well-defined, because the set of elements b ∈ B(U) that
are locally in the image of f , is closed under addition. Any inclusion V ⊆ U of opens induces
a restriction map

coker(f)(U)→ coker(f)(V ) : [({Ui}, {bi})] 7→ [({Ui ∩ V }, {bi|Ui∩V })]. (40)

Therefore coker(f) is an abelian presheaf.
To check that coker(f) is a sheaf, let U ∈ O(X) and let bi ∈ coker(f)(Ui) form a com-

patible family for an open cover U =
⋃
i∈I Ui. Then for each i ∈ I we can write each

bi = [({Uij}, {bij})j∈Ji ] for some index set Ji depending on i. Consider the element b =
[({Uij}, {bij})(i,j)∈∐I Ji

] of coker(f)(U). This element is well-defined, because
⋃

(i,j)∈
∐
I Ji

Uij =

U and for every two (i, j), (i′, j′) ∈
∐

I Ji the element bij|Uij∩Ui′j′ − bi′j′|Uij∩Ui′j′ is locally in
the image of f . The latter is a direct consequence of the compatibility assumption of the bi.
Finally, note that restricting b along Ui ⊆ U yields bi again. This shows that b is the required
amalgamation.

This construction comes with a map q : B → coker(f) given by qU : B(U)→ coker(f)(U) :
b 7→ ({U}, {b}). We will now check that this definition does indeed give the cokernel in
Shv(X,Ab). It suffices to check that

A(U) 0

B(U) coker(f)(U)

fU

qU

(41)

is a pushout square of abelian groups for each U ∈ O(X). For any a ∈ A(U), we have
qU(fU(a)) = [({U}, {fU(a)})] = [({U}, {0})], because fU(a) is (locally) in the image of f .
Hence the square commutes. Now suppose that b ∈ B(U) has the property that qU(b) = 0.
Then b is locally in the image of f . This is equivalent to the existence of an open cover⋃
i∈I Ui = U such that for every i ∈ I there exists an ai ∈ A(Ui) with b|Ui = f(ai). As

A is a sheaf, there exists an amalgamation a ∈ A(U) of the ai. Note f(a) and b are both
amalgamations of the bi, so we must have f(a) = b, as B is a sheaf, showing that the square
is indeed a pushout.

Having proved the existence of kernels and cokernels, we still have to check that monomor-
phisms arise as kernels and epimorphisms arise as cokernels. For the former, suppose
f : A → B in Shv(X,Ab) is monic. The kernel of the canonical map q : B → coker(f)
is constructed pointwise. Hence elements of ker(q)(U) correspond one-to-one with elements
b ∈ B(U) such that qU(b) = [({U}, {b})] = [({U}, {0})]. That is, elements b ∈ B(U) that are
locally in the image of f . Any such b determines an a ∈ A(U) such that fU(a) = b, because
A is a sheaf. Also, this a is unique by the assumption that f is monic and Lemma 3.3.3.
This gives the required isomorphism ker(q) ∼= A.

Now suppose that f : A→ B is epic. Let ι : ker(f)→ A denote the canonical inclusion.
An element of coker(ι)(U) is represented by a pair ({Ui}, {ai})i∈I where the Ui form an
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open cover of U and the ai ∈ A(Ui) form an ι-compatible family. This compatibility means
that for any i, j ∈ I, we have f(ai|Ui∩Uj − aj|Ui∩Uj) = 0. Hence the f(ai) ∈ B(Ui) form a
compatible family with a unique amalgamation b ∈ B(U). This element b does not depend
on the choice of representative. That is, any two elements ({Ui}, {ai})i∈I , ({Vj}, {a′j})j∈J
representing the same element of coker(ι)(U) admit a common refinement {Ui ∩ Vj}(i,j)∈I×J
such that ai|Ui∩Vj − a|Ui∩Vj ∈ ker(f)(Ui ∩ Vj) for each (i, j) ∈ I × J . Therefore, both families
yield the same b ∈ B(U). This determines a map coker(ι)→ B. Now suppose we start with
an element b ∈ B(U). Using Lemma 3.3.3, b locally lies in the image. Therefore, there exists
an element ({Ui}, {ai})i∈I ∈ coker(ι)(U) such that f(ai) = b|Ui for each i ∈ I. The choices
of these elements for each b ∈ B(U) together form a map B → coker(ι). It is easy to check
that the constructed maps are inverses to each other and therefore give the isomorphism
B ∼= coker(ι).

As an immediate consequence of the explicit constructions in the proof of Theorem 3.3.4,
we conclude:

Corollary 3.3.5. For every open U ⊆ X of a topological space X, the induced evaluation
functor evU : Shv(X,Ab)→ Ab : A 7→ A(U) is additive and left exact.

Recall that Γ : Shv(X,Ab) → Ab admits right derived functors, which define sheaf
cohomology, if Γ is a left exact functor between abelian categories and Shv(X,Ab) has enough
injectives. The first part follows from Theorem 3.3.4 and Corollary 3.3.5 and last part
remains.

Proposition 3.3.6. The category Shv(X,Ab) has enough injectives.

Proof. We will construct an adjunction

Shv(X,Ab)
∏

x∈X Ab

Stalk

G

⊥ (42)

to eventually conclude that Shv(X,Ab) has enough injectives. For each X ∈ X let Stalkx :
Shv(X,Ab) → Ab denote the functor that takes the stalk of abelian sheaves at x. These
functors together form Stalk : Shv(X,Ab)→

∏
x∈X Ab. Define G :

∏
x∈X Ab→ Shv(X,Ab)

on objects by G({Ax}x∈X)(U) =
∏

x∈U Ax. The restriction maps G({Ax}x∈X)(V ⊆ U) are
given by projections

∏
x∈U Ax →

∏
x∈V Ax.

First we have to check that G does take values in abelian sheaves. Fix an object∏
x∈X Ax ∈

∏
x∈X Ab. Consider an open cover {Ui}i∈I of an open U ∈ O(X) and let

ai ∈ G(
∏

x∈X Ax)(Ui) be a compatible compatible family at U . Then each ai has the form∏
x∈Ui a

i
x with aix ∈ Ax. Define a :=

∏
x∈X ax ∈ G(

∏
x∈X Ax)(U) where ax = aix for some

i ∈ I. This does not depend on the choice of i, because of the compatibility and therefore
defines an amalgamation.

For the adjunction, let A ∈ Shv(X,Ab) and B ∈
∏

x∈X Ab with components Bx. A
morphism Stalk(A)→ B consists of a collection of maps Ax → Bx of abelian groups indexed
by X. For every U ∈ O(X) precomposition with the canonical map τU,x : A(U)→ Ax yields
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a collection of maps that can be organized as a single map into a product, thus a map of the
form A(U)→

∏
x∈U Bx. This gives the pointwise construction for a map A→ G(B).

Now suppose we start with a map A → G(B) of sheaves. After application of the stalk
functor, we obtain maps Ax → G(B)x. Note that G(B)x = lim−→

∏
y∈U By where the colimit

ranges over the poset Ox(X) of all opens U containing x. For every such open there is a
map

∏
y∈U By → Bx that is simply given by projection. Together these maps form a cocone

over the diagram G(B)(−) : Ox(X) → Ab. This induces a map G(X)x → Bx, which we use
to form maps Ax → G(B)x → Bx. These two construction are inverse to each other and
therefore give the required adjunction.

For any commutative ring R, the category of R-modules has enough injectives [2]. In
particular, this means that the category of abelian groups has enough injectives. Therefore,∏

x∈X Ab also has enough injectives. Let A ∈ Shv(X,Ab). Then there exists a monomor-
phism f : Stalk(A) → I in

∏
x∈X Ab such that I is injective. As the stalk functor is exact,

it preserves monomorphisms. Using the adjunction and preservation of monomorphisms, we
can directly check that G(I) is injective. Therefore, we only have to check that the transpose
map f̄ : A → G(I) is monic. It suffices to show that f̄ is pointwise monic. Let U ∈ O(X)
and a ∈ A(U) and suppose that f̄U(a) = 0. This implies that for every x ∈ U the composite

A(U)
τU,x−−→ Ax

fx−→ Ix,

where fx denotes a component of f , sends a to 0. As fx is monic, we must have τU,x(a) = 0.
Hence there exists an open cover {Vx}x∈X of U such that a|Vx = 0 for each Vx. As A is a
sheaf, we conclude that a = 0.

In conclusion, Shv(X,Ab) is an abelian category with enough injectives and the global
section functor is additive and left exact. Therefore, Γ admits right derived functors Rn(Γ) :
Shv(X,Ab)→ Ab.

Definition 3.3.7. Let X be a topological space and B ∈ Shv(X,Ab) be an abelian sheaf.
Then the n-th sheaf cohomology group of X with coefficients in B is defined as

Hn(X;B) = Rn(Γ)(B). (43)
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4 Sheaf Cohomology with Fibrant Replacements

So far, we have studied simplicial presheaves and simplicial sheaves on a site C. These
categories come with the structure of a model category and consequently admit a derived
category. In this chapter, we will study presheaves that take values in simplicial abelian
groups, non-negatively graded chain complexes and Z-graded chain complexes. We will see
that the model structure on these categories allows us to give a characterization of sheaf
cohomology that involves fibrant replacements instead of injective resolutions. This allows
us to use all the tool from homotopy theory, specifically the ones for model categories, when
studying sheaf cohomology.

In comparison to other chapters, this chapter relies more on references to other works.
The interested reader can use these to investigate some of the steps in detail. In the sections
below we follow the approach of Jardine from Chapter 2 of [9].

4.1 Simplicial abelian presheaves

In order to describe sheaf cohomology using homotopy theory, we will first discuss a model
structure on the category Pre(X, sAb) of simplicial abelian presheaves. This category is
defined as the functor category Fun(O(X)op, sAb), where sAb = Fun(∆op,Ab). Once we
established this model structure, we will equip Pre(X,Ch+) with the induced model structure.
At the end of the section, we will give a characterization of the weak equivalences in this
setting.

Consider the forgetful-free adjunction

Sets Ab

Z

F

⊥ (1)

between sets and abelian groups. This induces an adjunction between siplicial sets and
simplicial abelian groups, which in turn induces an adjunction between simplicial presheaves
and simplicial abelian presheaves.

Theorem 4.1.1. The adjunction

Pre(X, sSets) Pre(X, sAb)

Z

F

⊥ (2)

satisfies the conditions of transfer. Therefore, the global structure on Pre(X, sSets) induces
a model structure on Pre(X, sAb).

Proof. For condition iii) of Theorem 1.4.4, let A ∈ Pre(X, sSets) be the domain of a gener-
ating cofibration or trivial cofibration as described in Theorem 2.2.3. Then A is in particular
α-bounded and thus so is F (ZA). It follows by regularity of α that for any transfinite compo-
sition (Zγ)γ<α in Pre(X, sAb) and map ZA→ Zα, there exists a factorization through some
Zγ with γ < α.
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Note that Z : Pre(X, sSets) → Pre(X, sAb) preserves monomorphisms. Therefore, con-
ditions i) and ii) are fulfilled once we have shown that Z also preserves weak equivalences.
Suppose that A → B is a weak equivalence in Pre(X, sSets). Then Ex∞A → Ex∞B is a
combinatorial weak equivalence by Theorem 2.3.1. Hence (Ex∞A)x → (Ex∞B)x is a weak
equivalence of simplicial sets for each x ∈ X. As Z commutes with taking stalks, it follows
from Proposition 2.14 from [4] that F (ZEx∞A)x → F (ZEx∞B)x is a weak equivalence
of simplicial sets for each x ∈ X. The fact that F ◦ Z commutes with colimits and with
Ex : sSets→ sSets implies that the maps Ex∞(FZA)x → Ex∞(FZB)x are weak equivalences
of simplicial sets. Therefore, Ex∞(FZA)→ Ex∞(FZB) is a combinatorial weak equivalence
in Pre(X, sSets)f , showing that FZA→ FZB is a topological weak equivalence.

Given a simplicial abelian group A, letMA denote the chain complex whereMAn consists
of the n-simplices of A and whose differential is given by

∂ :MAn →MAn−1 : x 7→
n∑
i=0

(−1)idix. (3)

This construction determines a functor M : sAb → Ch+ called the Moore complex functor.
Each Moore complex MA contains a certain subcomplex NA ⊆ MA called the normalized
chain complex corresponding to A. The inclusionNA→MA is a chain homotopy equivalence
(Theorem II.2.4 from [4]). There is a classical result that states that the normalized chain
complex functor admits a pseudo-inverse,

sAb Ch+

N

Γ

(4)

called the Dold-Kan correspondence (Theorem II.2.3 from [4]). This equivalence of cate-
gories induces an equivalence of categories on the level of presheaves, that is, Pre(X, sAb) ∼=
Pre(X,Ch+). Therefore, we can directly conclude that:

Corollary 4.1.2. The category Pre(X,Ch+) admits a model structure by imposing that
f : A→ B in Pre(X,Ch+) is a fibration, weak equivalence or cofibration if and only if Γf is
one in Pre(X, sAb).

The weak equivalences of presheaves of chain complexes admit a useful characterization.
Indeed, suppose that A is a presheaf of chain complexes. Then we can form its n-th homology
presheaf HnA by

HnA(U) := ker(∂n : An(U)→ An−1(U))/ im(∂n+1 : An+1(U)→ An(U)) (5)

where we adopt the convention A−1(U) = 0 for the moment. We define the n-th homology
sheaf of A to be the sheafification of HnA. Suppose that f : A → B is a map of presheaves
of chain complexes, then we say that f is a quasi-isomorphism if f induces an isomorphism
on all homology sheaves.

Proposition 4.1.3. A map in Pre(X,Ch+) is a weak equivalence if and only if it is a quasi-
isomorphism.
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Proof. Theorem 2.3.1 shows that each simplicial presheaf is weakly equivalent to a locally
fibrant simplicial presheaf. Whether a map of locally fibrant simplicial presheaves is a weak
equivalence can be checked stalkwise. Hence the result follows from Corollary II.2.5 from [4].

In the model structures that we defined on presheaf categories, we chose the classes
of cofibrations and weak equivalences. We did not impose any conditions of the class of
fibrations, other than the one stating that fibrations are maps having the right lifting property
with respect to the chosen class of trivial cofibrations. Therefore, it is difficult to give a
characterization of fibrations that avoids the use of lifting properties. In particular, this is
the case for fibrations in Pre(X,Ch+). Nevertheless, we are able to formulate a necessary
condition for a map to be a fibration.

Proposition 4.1.4. Let p : C → D be a fibration in Pre(X,Ch+). Then pn : Cn → Dn in
Pre(X,Ab) is an epimorphism, for each degree n ≥ 1.

Proof. Since p : C → D is a fibration, Γp : ΓC → ΓD is a fibration in Pre(X, sAb). Forgetting
the group structure, this means that Γp : ΓC → ΓD is a global fibration in Pre(X, sSets).
Using the adjunction (−)U ⊣ evU from Theorem 2.2.3, we conclude that p∗ : ΓC(U)→ ΓD(U)
is a Kan fibration for each U ∈ O(X). Let x : ∆n → D(U) be an n-simplex with n ≥ 1.
Because D(U) ∼= NΓD(U) by the Dold-Kan correspondence, we may assume without loss of
generality that x|∧n

n
= 0. Consider the commutative diagram∧n

n ΓC(U)

∆n ΓD(U).

0

p∗

x

(6)

This diagram admits a lift, because p∗ is a Kan fibration and thus shows that pn : Cn → Dn

is an epimorphism.

4.2 Spectra of chain complexes

Although the canonical inclusion Pre(X,Ch+) → Pre(X,Ch) of presheaves of chain com-
plexes into presheaves of Z-graded chain complexes does admit a right adjoint, a transfer
argument does not give Pre(X,Ch) a model structure that we are interested in. In particu-
lar, we want weak equivalences in Pre(X,Ch) to be the quasi-isomorphisms. In this section
we will introduce spectra (of presheaves of chain complexes) and show that this category of
spectra inherits a model structure from Pre(X,Ch+), that we refer to as the strict model
structure. The strict model structure induces a stable model structure on the category of
spectra, which can be proven by a technique called left Bousfield-localization. The stable
structure is used to solve our initial problem of finding a model structure on Pre(X,Ch) with
the expected notion of weak equivalence.

For any n ∈ Z, the shift functor (−)[n] : Pre(X,Ch)→ Pre(X,Ch+) is defined by:

A[n]p =

{
Ap+n, if p > 0,

ker(∂ : An → An−1), if p = 0.
(7)
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This also induces a functor Pre(X,Ch+) → Pre(X,Ch+) by regarding a presheaf of chain
complexes as a presheaf of Z-graded chain complexes concentrated in non-negative degrees.
By abuse of notation, we will also refer to the latter functor as the shift functor (−)[n]. Note
that for positive n, the shift functors

Pre(X,Ch+) Pre(X,Ch+)

(−)[−n]

(−)[n]

⊥ (8)

form an adjunction.

Proposition 4.2.1. The adjunction above is a Quillen adjunction.

Proof. It suffices to consider the case n = 1, because Quillen adjunctions are composable.
Clearly shift functors preserve quasi-isomorphisms. Lemma 1.9 from [9] states that (−)[−1]
preserves cofibrations.

Definition 4.2.2. The category Spt(Pre(X,Ch+)) of spectra (of presheaves of chain com-
plexes) has objects A that are sequences An of presheaves of chain complexes, indexed by N,
together with maps σn : An[−1] → An+1 in Pre(X,Ch+) for each n ≥ 0. These maps are
called the bonding maps of A. A morphism of spectra f : A → B is a collection of maps
fn : An → Bn of presheaves of chain complexes, respecting the bonding maps. That is, for
every n ≥ 0 the diagram

An[−1] An+1

Bn[−1] Bn+1

σn

fn fn+1

σn

(9)

must commute.

Remark 4.2.3. Unravelling the definition above, we can think of spectra as presheaves of
diagrams of abelian groups, much like presheaves of chain complexes. That is, a spectrum
A ∈ Spt(Pre(X,Ch+)) is a commutative diagram of presheaves of abelian groups having the
form

0 A0
0 A0

1 . . .

0 A1
0 A1

1 A1
2 . . .

0 A2
0 A2

1 A2
2 A2

3 . . .

. . . . . . . . . . . . . . .

(10)

where any composition of two horizontal arrows is the zero map.
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We say that a map f : A → B of spectra is a strict weak equivalence (resp. strict
fibration) if each fn : An → Bn is a weak equivalence (resp. fibration) in Pre(X,Ch+). A
cofibration in Spt(Pre(X,Ch+)) is a map having the left lifting property with respect to every
map that is a strict weak equivalence as well as a strict fibration.

Theorem 4.2.4. The classes of cofibrations, strict fibrations and strict weak equivalences
defined above equip Spt(Pre(X,Ch+)) with the structure of a model category.

This strict model structure from the theorem above can be defined in a much more general
context. If we start with a cofibrantly generated model category D (in our case Pre(X,Ch+))
together with a left Quillen functor L : D → D (we use a shift functor), the category of spectra
on D consists of sequences (Dn)n≥0 in D together with bonding maps L(Dn)→ Dn+1, with
the obvious choice for morphisms. The definition of the strict model structure also makes
sense in the general case. The proof of the general version of Theorem 4.2.4 can is given in
Chapter 1 of [7]. In the same chapter Hovey also gives a characterization for cofibrations in
this setting.

Proposition 4.2.5. A map f : A → B of spectra is a cofibration if and only if f 0 : A0 →
B0 and the canonical maps An+1 ∪An[−1] B

n[−1] → Bn+1 for n ≥ 0 are cofibrations in
Pre(X,Ch+).

This result implies that cofibrations are in particular monomorphisms.

Corollary 4.2.6. If f : A → B is a cofibration of spectra, then each fn : An → Bn is a
cofibration of presheaves of chain complexes.

Proof. We proceed by induction. Suppose that fn : An → Bn is a cofibration of presheaves of
chain complexes. Then the induced map An[−1]→ Bn[−1] is a cofibration by Lemma 1.9 of
[9]. It is easy to see that Pre(X,Ch+) is an abelian category. Therefore, monomorphisms in
Pre(X,Ch+) are stable under pushout. Hence An+1 → An+1 ∪An[−1] B

n[−1] is a cofibration.
Then Proposition 4.2.5 ensures that fn+1 : An+1 → Bn+1 is a cofibration as well.

Now that we have discussed the strict model structure on the category of spectra, let us
investigate the relation between spectra and presheaves of Z-graded chain complexes. In par-
ticular, we will construct an adjunction between these categories. Let A ∈ Spt(Pre(X,Ch+)),
then the bonding maps of A form a sequence

Anm → An+1
m+1 → An+2

m+2 → . . . (11)

in Pre(X,Ab), using the notation from Remark 4.2.3. We denote the colimit of this sequence
by SAm−n. The boundary maps induce morphisms ∂ : SAm−n+1 → SAm−n. This makes SA
into a presheaf of chain complexes and as of such determines a functor

S : Spt(Pre(X,Ch+))→ Pre(X,Ch). (12)

There is also a functor
T : Pre(X,Ch)→ Spt(Pre(X,Ch+)) (13)
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in the other direction. This functor takes good truncations in degrees n ≤ 0 of a presheaf of
Z-graded chain complexes and organises it in a spectrum. By this we mean that a presheaf
of Z-graded chain complexes

. . .
∂−1←−− A1

∂0←− A0
∂1←− A1

∂2←− . . . (14)

is sent to the spectrum corresponding to the diagram

0 ker(∂0) A1 . . .

0 ker(∂−1) A0 A1 . . .

0 ker(∂−2) A−1 A0 A1 . . .

. . . . . . . . . . . . . . .

(15)

Note that there is a canonical isomorphism

εA : STA→ A (16)

for any presheaf of Z-graded chain complexes A and this isomorphism is natural in A. Fur-
thermore, for any spectrum B there is a map

ηB : B → TSB (17)

which is componentwise induced by the canonical maps Bn
m → SBm−n. Note that η is also

natural in B. In order to show that S is left adjoint to T , we consider the triangle identities.
For B ∈ Spt(Pre(X,Ch+)), it is straight-forward to check the diagram

SB STSB

SB

SηB

id
εSB (18)

commutes. Because ε is a natural isomorphism, it follows immediately that the dual triangle
equality also holds. Indeed, for any A ∈ Pre(X,Ch) consider the diagram:

TSTA TSTSTA

TA TSTA TSTA

TA

TSηTA

TεA
TεSTATSTεA

ηTA

TεA
TεA

(19)

Then the triangle in the back is T applied to diagram (18) for the case B = TA, and therefore
commutes. The top, bottom and right squares are naturality squares, which are commutative.
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As every arrow pointing in a downwards-left direction is an isomorphism, it follows that the
front triangle commutes. This establishes S ⊣ T .

We want to define model structures on both Spt(Pre(X,Ch+)) and Pre(X,Ch) such
that S ⊣ T becomes a Quillen equivalence. Moreover, we want the weak equivalences in
Pre(X,Ch) to be quasi-isomorphisms. As S should detect weak equivalences, this motives
the choice of a new form of weak equivalence of spectra; the stable weak equivalence. That
is, a map f : A → B of spectra is a stable weak equivalence if Sf is a quasi-isomorphism.
Observe that S sends strict weak equivalences to quasi-isomorphisms. This implies that every
strict weak equivalence is in particular a stable weak equivalence. Define stable fibrations as
the maps having the right lifting property with respect to all maps that are cofibrations as
well as stable weak equivalences. Then it follows immediately that every stable fibration is
a strict fibration.

Remark 4.2.7. As ε : ST ⇒ id is a natural isomorphism, it follows from diagram (18)
that Sη : S ⇒ STS is also a natural isomorphism. Hence, ηB : B → TSB is a stable
weak equivalence for each spectrum B. Consequently, a map f : A → B is a stable weak
equivalence if and only if the induced map TSf : TSA→ TSB is a strict weak equivalence.

There are many ways to find different model structures on a category that is already
equipped with a model structure. These techniques are referred to as localizations, which
are not to be confused with the localization used to obtain homotopy categories. One way
to equip spectra with the stable model structure using the strict structure, is to proceed
by a left Bousfield localization. This is the approach chosen in [7]. It involves showing
that the strict structure is left proper, cellular and admits functorial cofibrant replacements.
We, however, will arrive at the stable structure in a different way, by making use of the
functor TS : Spt(Pre(X,Ch+))→ Spt(Pre(X,Ch+)). Specifically, once we have checked the
conditions, we apply Theorem IX.6.1 from [4] to the pair (TS, η : id⇒ TS) to conclude:

Theorem 4.2.8. The classes of cofibrations, stable fibrations and stable weak equivalences
defined above equip Spt(Pre(X,Ch+)) with the structure of a model category.

Lemma 4.2.9 and Lemma 4.2.10 together show that the required conditions are met and
therefore form a proof of Theorem 4.2.8.

Lemma 4.2.9. The maps ηTSB, TS(ηB) : TSB → TSTSB are strict weak equivalences.

Proof. For any B ∈ Spt(Pre(X,Ch+)), diagram (18) provides a factorization of the identity
on TSB as

TSB
TSηB−−−→ TSTSB

TεSB−−−→ TSB. (20)

Alternatively, diagram (19) allows us to factorize the identity on TSB as

TSB
ηTSB−−−→ TSTSB

TεSB−−−→ TSB. (21)

By Remark 4.2.7, the map TSηB is a strict weak equivalence. Since ε is a natural isomor-
phism, it follows from the two factorizations above that ηTSB is a strict weak equivalence as
well.
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Let p : C → D be a stable fibration of spectra. Since Pre(X,Ch+) is an abelian category,
consider a factorization

Cn πn−→ En jn−→ Dn (22)

of pn as a monomorphism followed by an epimorphism. The sequence (En)n≥0 of presheaves
of chain complexes inherits bonding maps from D and thus determines a spectrum E. This
makes π and j into maps of spectra. Proposition 4.1.4 states that each map pnm : Cn

m → Dn
m

is an epimorphism for m > 0. Therefore, jnm : En
m → Dn

m is an isomorphism for each m > 0,
which implies that j is a stable weak equivalence.

Let i : K → C be the (degreewise) kernel of p. Then we obtain a short exact sequence

0→ SK
i∗−→ SC

π∗−→ SE → 0 (23)

of presheaves of Z-graded chain complexes. This in turn induces a long exact sequence of
homology sheaves

. . .→ Hn+1(SE)
∂−→ Hn(SK)

i∗−→ Hn(SC)
π∗−→ Hn(SE)

∂−→ . . . (24)

The fact that j is a stable weak equivalence means that j induces isomorphisms Hn(SE) ∼=
Hn(SD). As of such, we also have a long exact sequence

. . .→ Hn+1(SD)
∂−→ Hn(SK)

i∗−→ Hn(SC)
p∗−→ Hn(SD)

∂−→ . . . (25)

Now suppose that i : A → B is cofibration of spectra. Then Corollary 4.2.6 states that
in : An → Bn is monomorphism of presheaves of chain complexes. Let p : B → C be the
(degreewise) cokernel of i. Then there also is an induced long exact sequence of homology
sheaves

. . .→ Hn+1(SC)
∂−→ Hn(SA)

i∗−→ Hn(SB)
p∗−→ Hn(SC)

∂−→ . . . (26)

Lemma 4.2.10. Stable weak equivalences are preserved under pullback along stable fibrations.
Dually, stable weak equivalences are preserved under pushout along cofibrations.

Proof. Consider a pullback diagram

A×D C C

A D

g∗

f∗

g

f

(27)

in Spt(Pre(X,Ch+)) where f is a stable weak equivalence and g a stable fibration. Then g∗ is
a stable fibration as well. Factorize g = jp as an epimorphism followed by a monomorphism
and factorize g∗ = j′p′ similarly. Then there is a sequence of isomorphisms

ker(p) ∼= ker(g) ∼= ker(g∗) ∼= ker(p′). (28)

The map of the short exact sequences

0 ker(p′) D E ′ 0

0 ker(p) C E 0

p′

f∗

p

(29)
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determines a map between the corresponding long exact sequences of homology sheaves.
Note that Hn(S ker(p)) ∼= Hn(S ker(p′)). Furthermore, f is a stable weak equivalence by
assumption and the maps j and j′ are stable weak equivalences by the consideration above this
lemma. Hence these maps induce isomorphisms Hn(SE

′) ∼= Hn(SA) ∼= Hn(SD) ∼= Hn(SE).
It follows from the long exact sequences that f∗ induces isomorphisms Hn(SD)→ Hn(SC),
i.e. f∗ is a stable weak equivalence.

The dual statement is proven in a similar fashion. This proof is slightly shorter, because
cofibrations are monic and we thus do not need to consider epi-mono factorizations.

Now that we properly introduced the stable model structure on Spt(Pre(X,Ch+)), we
will use it to equip Pre(X,Ch) with a model structure.

Theorem 4.2.11. The stable model structure on the category of spectra induces a model
structure on Pre(X,Ch) that makes the adjunction S ⊣ T into a Quillen equivalence.

Proof. Let f be a map in Pre(X,Ch). We say that f is a fibration or weak equivalence if Tf
is a stable fibration or stable weak equivalence, respectively. Moreover, f is a cofibration if
and only if f has the left lifting property with respect to all trivial fibrations in Pre(X,Ch).

It follows that the class of weak equivalences in Pre(X,Ch) is exactly the class of quasi-
isomorphisms. Note that Tf is a stable weak equivalence if and only if TSTf is a strict weak
equivalence. As ε : id⇒ ST is a natural isomorphism, this is equivalent to Tf being a strict
weak equivalence. Moreover, Theorem IX.6.8 of [4] states that Tf is a stable fibration if and
only if Tf is a strict fibration and

TA TSTA

TB TSTB

Tf

ηTA

TSTf

ηB

(30)

is a homotopy cartesian diagram. However, ηTA and ηTB are isomorphisms, so the square
above is always a homotopy cartesian square by Lemma II.9.20.i) from [4]. Hence Tf is
a stable fibration if and only if Tf is a strict fibration. The strict model category on
Spt(Pre(X,Ch+)) is cofibrantly generated by sets I and J of cofibrations and trivial cofi-
brations, respectively. Hence we conclude f is a fibration (respectively trivial fibration) if
and only if it has the right lifting property with respect to all maps Sj for j in J (respectively
to maps Si with i in I).

One can easily check the axioms M1) to M3). The observation above allows us to
perform a small object argument to obtain factorizations. Following the proof of Theorem
1.4.4 M4) and M5) are checked the standard way.

The functor T preserves weak equivalences and fibrations by definition, so S ⊣ T is a
Quillen adjunction. Let C ∈ Spt(Pre(X,Ch+)) be cofibrant (in the stable structure) and
D ∈ Pre(X,Ch) be fibrant. Then a map f : SC → D is a quasi-isomorphism if and only
if Tf : TSC → TD is a stable weak equivalence. This is equivalent to Tf ◦ ηC : C → TD
being a stable weak equivalence and Tf ◦ ηC is the transpose of f . Hence Theorem 8.46 from
[5] ensures that S ⊣ T is a Quillen equivalence.
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4.3 Injective resolutions and fibrant replacements

Recall that the sheaf cohomology of a topological spaceX with coefficients in B ∈ Shv(X,Ab)
involves taking global sections of an injective resolution 0 → B → I• for B. Let B[0] ∈
Pre(X,Ch) denote the presheaf of chain complexes given by B concentrated in degree 0.
Then an injective resolution of B can be reorganized

. . . 0 0 B 0 . . .

. . . I−2 I−1 I0 0 . . .

(31)

as a map B[0]→ I of presheaves of Z-graded chain complexes. We can formulate the condi-
tions for a sequence 0→ B → I• to be an injective resolution in terms of the corresponding
map B[0] → I. That is, B[0] → I must be a quasi-isomorphism, I must be concentrated
in non-positive degrees and the abelian sheaves In must be injective for each n ∈ Z. As it
turns out, the latter two conditions may be substituted for a new condition that involves the
model structure on Pre(X,Ch).

Theorem 4.3.1. Let B be a sheaf of abelian groups on a topological space X. Suppose
that B[0] → J is a fibrant replacement for B[0] in Pre(X,Ch). Then there is a natural
isomorphism

Hn(X,B) ∼= Hn(Γ(J)•). (32)

This theorem tells us that sheaf cohomology can alternatively be described by taking
global sections of fibrant replacements of B[0]. In order to prove this, we need two interme-
diate results.

Proposition 4.3.2. The category Pre(X,Ch+) of presheaves of chain complexes has the
structure of a category of fibrant objects where weak equivalences are given by quasi-isomorphisms
and fibrations are maps that become epimorphic after sheafification.

Proof. With these definitions, the axioms N1), N2) and N5) are trivial. For axiom N3),
we are required to show that fibrations and trivial fibrations are preserved under pullback.
Note that sheafification commutes with taking pullbacks. Hence in the case of fibrations, it
suffices to show that epimorphisms in Shv(X,Ch+) are preserved under pullback. This is the
case, because Shv(X,Ch+) is an abelian category.

Let f : A → B be a trivial fibration and g : C → B any map in Pre(X,Ch+). Let
i : K → A be the kernel of f and j : K ′ → A×B C be the kernel of f∗ : A×B C → C. Since
sheafification commutes with pullbacks, we obtain a commutative diagram

0 K̃ ′ Ã×B̃ C̃ C̃ 0

0 K̃ Ã B̃ 0

(33)

of sheaves of chain complexes where the rows are short exact sequences. Since f is a quasi-
isomorphism, the long exact sequence of homology sheaves yields that Hn(K̃) = 0 for each
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n ≥ 0. As K ∼= K ′, we also have Hn(K̃ ′) = 0, and thus by the long exact sequence of
homology sheaves we get that f∗ : A×B C → C is a quasi-isomorphism. This proves axiom
N3).

Finally, we need to provide path objects. Let A ∈ Pre(X,Ch). Using the approach of
Hovey in Chapter 2.3 of [6], define AI ∈ Pre(X,Ch) degreewise by

AIn = An ⊕ An ⊕ An+1 (34)

and with the differential given by

∂n :An(U)⊕ An(U)⊕ An+1(U)→ An−1(U)⊕ An−1(U)⊕ An(U)
:(x, y, z) 7→ (dx, dy, x− y − dz).

This induces a factorization of the diagonal map of A by

A AI

A⊕ A

∆

s

t (35)

where s = (idA, idA, 0) and t is the projection onto the first two components. Clearly t is a
fibration. Hovey shows that s is a pointwise quasi-isomorphism of Z-graded chain complexes.
Therefore s itself is a quasi-isomorphism of presheaves of Z-graded chain complexes. Applying
the shift functor to the diagram above yields a diagram

A[0] AI [0]

A[0]⊕ A[0]

∆

s

t (36)

in Pre(X,Ch+) consisting of good truncations. The shift functor preserves quasi-isomorphisms
and fibrations. Hence this construction provides the required path objects, proving axiom
N4).

From now on we reserve the term fibration of presheaves of Z-graded chain complexes for
the fibrations obtained from Theorem 4.2.11. Unless we specifically refer to Proposition 4.3.2,
any fibration in Pre(X,Ch) will mean a fibration of presheaves of Z-graded chain complexes.

Lemma 4.3.3. Let I ∈ Shv(X,Ch) be a sheaf of Z-graded chain complexes concentrated in
non-positive degrees and suppose that I → J is a fibrant replacement of I in Pre(X,Ch).
Then for every open U ∈ O(X), the map I(U) → J(U) is a quasi-isomorphism of ordinary
Z-graded chain complexes.

Proof. For A,B ∈ Pre(X,Ch+), let π(A,B) denote the set of equivalences classes of maps
A → B where two maps are considered equivalent if they are chain homotopic. Let [A,B]
denote the set of maps A → B in Ho(Pre(X,Ch+)). As homotopic maps become equal in
the homotopy category, there is a canonical map π(A,B)→ [A,B].
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Let I → J be as in the statement of this lemma. Then there is a commutative diagram
sets

π(A, I[−n]) π(A, J [−n])

[A, I[−n]] [A, J [−n]].

(37)

Fix an open U ∈ O(X) and an integer q ≥ 0. Let A ∈ Pre(X,Ch+) be a complex given by

A(V ) =

{
Z[q] if V ⊆ U

0 if V ⊈ U,
(38)

where Z[q] denotes the complex given by Z concentrated in degree q ≥ 0. Then A is cofibrant.
Moreover, J being fibrant implies that TJ is fibrant in Spt(Pre(X,Ch+)). Therefore, J [−n] is
fibrant in Pre(X,Ch+). By Theorem 1.3.5, the right map in diagram (37) is an isomorphism.
As the shift functor preserves quasi-isomorphisms, it follows that the bottom map is an
isomorphism.

Brown gives a characterization of classes of maps in the homotopy category associated to
a category of fibrant objects, see Theorem 1 of [1]. Considering the structure on Pre(X,Ch+)
from Proposition 4.3.2, there is an isomorphism

lim−→
A′→A

π(A′, I[−n])→ [A, I[−n]] (39)

where the colimit ranges over equivalence classes of trivial fibrations into A. The isomorphism
is induced by the map sending f : A′ → I[−n] at stage φ : A′ → A to the morphism

A
φ−1

−−→ A′ f−→ I[−n] (40)

in the homotopy category. In Theorem 2.7 of [9] Jardine provides an argument involving
spectral sequences showing that the functor

Pre(X,Ch)→ Sets : A′ 7→ π(A′, I[−n]) (41)

sends weak equivalences to isomorphisms. This argument uses the assumptions that I is
concentrated in non-positive degrees and that I is a sheaf. Consequently, the colimit from
(39) is constant. Therefore, the left map of diagram (37) is an isomorphism.

Now that we have shown that π(A, I[−n]) → π(A, J [−n]) is an isomorphism, varying
q ≥ 0, it follows that each map J [−n](U) → I[−n](U) is a quasi-isomorphism of chain
complexes. Therefore, I(U)→ J(U) is a quasi-isomorphism of Z-graded chain complexes.

This lemma directly proves Theorem 4.3.1. Indeed, let B[0]→ I and B → J be as in the
statement of the theorem. Then the diagram

B[0] J

I ∗

(42)
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admits a lift, because B[0]→ I is a trivial cofibration and J is fibrant. By two-out-of-three,
the lift I → J is a weak equivalence. Hence I → J satisfies the conditions of Lemma 4.3.3,
showing that I(X)→ J(X) is a quasi-isomorphism. This establishes

Hn(X,B) ∼= Hn(Γ(J)•). (43)
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