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Abstract

A 2-continued fraction expansion is a generalisation of the regular continued
fraction expansion, where the digits 1 in the numerators are replaced by the
natural number 2. Each real number has uncountably many expansions of this
form. In this thesis we consider a random algorithm that generates all such
expansions. This is done by viewing the random system as a dynamical system,
and then using tools in ergodic theory to analyse these expansions. In particular,
we use a recent Theorem of Inoue (2012) to prove the existence of an invariant
measure of product type whose marginal in the second coordinate is absolutely
continuous with respect to Lebesgue measure on the unit interval. Also some
dynamical properties of the system are shown and the asymptotic behaviour of
such expansions is investigated. Furthermore, we show that the theory can be
extended to the 3-random continued fraction expansion.
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Chapter 1

Introduction

In 2008 Burger, Gell-Redman, Kravitz, Walton, and Yates [2008] introduced the
N -continued fraction expansion. Given a x ∈ R and a N ∈ Z Burger et al. [2008]
showed that x can be represented in the following way:

x = d0 +
N

d1 +
N

d2 +
N

. . .

, (1.0.1)

where the digits di ∈ N. Anselm and Weintraub [2011] showed that every x ∈ R
has in fact infinitely many such expansions. Dajani, Kraaikamp, and van der
Wekken [2013] obtained the N -continued fraction expansions from transforma-
tions of the form

T : (0, N ]→ (0, N ], TN,i(x) =
N

x
−
⌊
N

x

⌋
+ i, (1.0.2)

where N ∈ N and i ∈ {0, 1, · · · , N − 1}. Approaching the N -continued fraction
expansions as a dynamical system Dajani et al. [2013] showed that the result
obtained by Anselm and Weintraub [2011] is immediate. They also obtained
invariant measures for the transformations TN,i(x).

In this thesis we will consider the N -continued fraction expansions by a ran-
dom dynamical system. A random dynamical system consists of a family of
transformations on a state space and a probability distribution on the family of
transformations. Then for each iterate a transformation of the family is chosen
according to the probability distribution. In this thesis the family of transfor-
mations {TN,i, i ∈ {0, 1, · · · , N − 1}} where TN,i are given by 1.0.2. The main
question is whether we can find an invariant measure for this random transfor-
mation. The existence of invariant measures for random systems is frequently
studied over the past decades. In this thesis we will use a recent theorem of
Inoue [2012] to obtain an invariant measure.

Random dynamical systems can be used to obtain expansions similar to 1.0.1.
Defining the dynamical system as a skew product, results from ergodic theory can
be used to gain information about the asymptotic behaviour of the expansions.
This is done in Kalle, Kempton, and Verbitskiy [2015]. In Dajani and de Vries
[2005] more invariant measures for random β-expansions are obtained by con-
structing an isomorphism between the skew product for the random β-expansion
and the digit sequences it induces.
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CHAPTER 1. INTRODUCTION

In this thesis we will prove the existence of an invariant measure for the
random transformation generating 2- and 3-continued fraction expansions, so
expansions of the form 1.0.1 where N = 2 and subsequently N = 3. We will use
the approach of Kalle et al. [2015] to show that the obtained measure is equivalent
with the Lebesgue measure. We will write the random dynamical system as a skew
product to obtain asymptotic properties of expansions like 1.0.1. Constructing
an isomorphism between the digit sequences obtained by the random dynamical
system and the skew product we will show the existence of invariant measures
which are singular to the Lebesgue measure.

This thesis is organized as follows. In chapter 2 the general theory that will
be used in the thesis will be stated. In chapter 3 we define the random N -
continued fraction transformation. Subsequently we shortly discuss the article of
Inoue [2012], we state the formal definition of a random transformation as used
in the paper and give the existence theorem of invariant measures for random
transformations. At the end of chapter 3 we show how we can apply the existence
theorem of Inoue to an induced transformation of the 2-random continued fraction
transformation. In chapter 4 we will introduce the notion of a skew product
and define the 2-random continued fraction transformation as a skew product.
Subsequently we introduce a skew product for the induced system and show that
there exists an invariant product measure for this skew product which can be
lifted to an invariant measure for 2-random continued fraction transformation.
The rest of chapter 4 shows how we use the skew products and their invariant
measures to show several ergodic properties of the 2 random-continued fraction
transformation as well as the entropy of the skew product. In chapter 5 we
construct an isomorphism to obtain more invariant measures. In chapter 6 we
show how the theory developed in chapters 3 and 4 can be generalized to the
3-random continued fraction transformation. Finally in chapter 7 we summarize
the obtained results and state some questions for further research to N -random
continued fractions.
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Chapter 2

The Toolbox

2.1 A very short introduction to ergodic theory

Given a probability space X endowed with a σ-algebra F and a measure µ on F ,
we define a measurable transformation T ,

T : X → X. (2.1.1)

Ergodic theory investigates sequences x, Tx, T 2x, T 3x, · · · , so we investigate the
orbits {T ix}i∈N of a point x ∈ X. In ergodic theory we like to find invariant
measures i.e. µ(T−1A) = µ(A) for all A ∈ F . The following theorem gives some
sufficient condition, to show that a measure is invariant:

Theorem 2.1.1. Let (X,F , µ) be a probability space and let T : X → X a
measurable transformation. Let P be a generating π-system, i.e. P is a family
of subsets of X such that if A,B ∈ P, then A ∩B ∈ P and σ(P) = F . If for all
A ∈ P we have µ(A) = µ(T−1(A)), then µ is T -invariant.

The same theorem holds by replacing the π-system P by a generating semi-
algebra S, see Dajani [2014] p 9 and Boyarski and Góra [1997] p 29. If µ is an
invariant measure for T , we say that T is stationary with respect to µ.

The system (X,F , µ, T ) is called a dynamical system. We say an dynami-
cal system is ergodic if for all A ∈ F such that T−1(A) = A we have µ(A) = 0
or 1. One of the main theorems in ergodic theory is the Pointwise Ergodic Theo-
rem, also called Birkhoffs Ergodic Theorem. Let L1(µ) to denote all µ-integrable
functions.

Theorem 2.1.2. Let (X,F , µ) be a probability space and T : X → X a measure
preserving transformation. Then, for any f in L1(µ),

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) = f∗(x) (2.1.2)

exists a.e., is T -invariant and
∫
X fdµ =

∫
X f
∗dµ. If moreover T is ergodic, then

f∗ is a constant a.e. and f∗ =
∫
X fdµ.

For a proof see Dajani [2014] p35 or Boyarski and Góra [1997] p40. Suppose
µ is an invariant measure and f = 1E for E ⊂ X, then by the Birkhoff ergodic
theorem the number of times the orbit of x is in E, equals the measure of E. So
the Birkhoff ergodic theorem tells us that time-average value of f(T i(x)) equals
the spacial average of f(x) over X. From the Birkhoff ergodic theorem we can
derive an equivalent definition of ergodicity:

3
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Proposition 2.1.3. Let (X,F , µ) be a probability space, and set S a generating
semi-algebra of F . Let T : X → X be a measure preserving transformation.
Then, T is ergodic if and only if for all A,B ∈ S, one has:

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B). (2.1.3)

For a proof we again refer to Dajani [2014] p.43. Instead of a generating
semi-algebra F it is enough to know that 2.1.3 holds for a collection G ⊂ F , such
that for all B ∈ F and for all ε there exists a A ∈ G such that µ(A∆B) < ε. Here
A∆B denotes the symmetric difference, i.e. A∆B = A\B ∪B\A.

Based on this definition of ergodicity we can define even stronger properties
than ergodicity. Hence we say:

Definition 2.1.4. Let (X,F , µ) be a probability space, and T : X → X a
measure preserving transformation. Then,

• T is weakly mixing if for all A,B ∈ F , one has

lim
n→∞

1

n

n−1∑
i=0

∣∣µ(T−iA ∩B)− µ(A)µ(B)
∣∣ = 0. (2.1.4)

• T is strongly mixing or mixing if for all A,B ∈ F , one has

lim
n→∞

µ(T−iA ∩B) = µ(A)µ(B). (2.1.5)

♦

Note that strongly mixing implies weakly mixing and weakly mixing implies
ergodicity.

Furthermore in this thesis we will use the notion of expanding.

Definition 2.1.5. Given an dynamical system ([a, b],B, µ, T ), [a, b] ⊂ R an in-
terval and B the Borel-σ-algebra, we say that T is expanding if T is C1 and
|T ′(x)| > 1. ♦

2.1.1 Induced system

Let (X,F , µ, T ) be a dynamical system on a probability space. Let A ∈ F be a
set of positive measure. We define the return time τ as follows

τ : A→ N (2.1.6)

τ(x) = inf{n ∈ N : Tn(x) ∈ A}. (2.1.7)

The Poincarré Recurrence Theorem, tells us that if µ(A) > 0, then
τ(x) <∞ µ− a.e.. We can define

TA : A→ A (2.1.8)

TA(x) = T τ(x)(x). (2.1.9)

This transformation is called the induced transformation. Note that TA
is measurable. We endow A with the sigma-algebra F ∩ A and define the
measure µA(B) = µ(B)

µ(A) , for B ∈ A ∩ F . Hence we find the induced system

(A,A ∩ F , µA, TA). We have the following theorems:

4



2.1. A VERY SHORT INTRODUCTION TO ERGODIC THEORY

Theorem 2.1.6. If µ is an invariant measure for T , then µA is an invariant
measure for TA.

Theorem 2.1.7. If T is ergodic on (X,F , µ) then TA is ergodic on (A,F , µ).

For both proofs we refer to Dajani [2014] p18, p25.
Let T be a transformation on (X,F) and let TA, be the induced transforma-

tion on A ∈ F . Suppose µA is an invariant measure for TA. Can we find an
invariant measure for transformation T? The answer is yes and it is given by the
measure ν.

Proposition 2.1.8. Let T be a transformation on (X,F). Let A ∈ F and
suppose the induced transformation TA has an invariant measure µ(A). Then the
measure ν defined by:

ν(E) = 1∫
A τ(x)dµA(x)

∑∞
n=0 µA({x ∈ A; τ(x) > n} ∩ T−n(E)) (2.1.10)

is an invariant measure for the transformation T .

Proof. We check that ν is indeed a T -invariant measure:

ν(T−1E) =
1∫

A τ(x)dµA

∞∑
n=0

µA({x ∈ A; τ(x) > n} ∩ T−n+1(E))

=
1∫

A τ(x)dµA(x)

∞∑
n=0

µA({x ∈ A; τ(x) = n+ 1} ∩ T−n+1(E))

+
∞∑
n=0

µA({x ∈ A; τ(x) > n+ 1} ∩ T−n+1(E))

=
1∫

A τ(x)dµA

∞∑
n=0

µA({x ∈ A; τ(x) = n+ 1} ∩ T−1
A (E ∩A))

+

∞∑
n=0

µA({x ∈ A; τ(x) > n+ 1} ∩ T−n+1(E))

=
1∫

A τ(x)dµA
µA(T−1

A (E ∩A))

+
∞∑
n=1

µA({x ∈ A; τ(x) > n} ∩ T−n(E))

=
1∫

A τ(x)dµA

∞∑
n=0

µA({x ∈ A; τ(x) > n} ∩ T−n(E))

=ν(E).

In the second equation we have used that if x ∈ {x ∈ A : τ(x) = n, Tn(x) ∈ E}
then Tn(x) = TA(x) and TA(x) ∈ E ∩A.

Now suppose that the measure µA is ergodic with respect to TA. Then we
can use the following theorem, a proof can be found in Boyarski and Góra [1997].

Theorem 2.1.9. Let (X,F , µ, T ) be a dynamical system and let A ∈ F be a set
such that µ(A) > 0. Then if (A,A∩F , µA, TA) is ergodic and if µ(

⋃∞
n=0 T

−nA) = 1,
then also T is ergodic with respect to µ.

5
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2.1.2 Isomorphism

What does it mean for two dynamical systems (X,F , µ, T ) and (Y,G, ν, S) to be
the same? The answer yields there exists an isomorphism ψ : X → Y . Such an
isomorphism has the following properties.

• There exist sets M ⊂ X and N ⊂ Y such that µ(M) = ν(N) = 1 and
ψ : M → N is one-to-one and onto. So there exists an inverse ψ−1.

• ψ is measurable, so ψ−1G ∈ F for all G ∈ G. And also ψ−1 is measurable.

• The function ψ preserves measure. This means µ ◦ ψ−1(A) = ν(A) for all
A ∈ G and ν ◦ ψ(B) = ν(B) for all B ∈ F .

• The function ψ preserves the transformations. This means that ψ◦T = S◦ψ
for all x ∈M and vice versa.

The last property can be shown in a commuting diagram:

M
T−−−−→ Myψ yψ

N
S−−−−→ N

2.1.3 Entropy

This section is based on Dajani [2014]. Most proofs of the theorems below can
be found there.

The notion of entropy is used to determine the amount of randomness in a
system. In ergodic theory we can interpret this notion as follows. Let (X,F , µ, T )
be a dynamical system and let α be a partition of X. Suppose we know x ∈ A for
A ∈ α. Can we say something about in which B ∈ α Tx ends up? The random-
ness about where Tx ends up is determined by the entropy h(T ). The entropy
is defined such that it is non-negative and it is independent of the partition we
use. Moreover higher entropy corresponds to higher randomness. We first define
the entropy of a partition.

Definition 2.1.10. Let (X,F , µ, T ) be a dynamical system on a probability
space. Let α be a partition of X. By convention we say 0 log 0 = 0. We define
the entropy of a partition by:

H(α) = −
∑
A∈α

µ(A) log(µ(A)). (2.1.11)

♦

Since we work with probability measures, H(α) will always be non-negative.
The value log(A) for A ∈ α can be interpreted as the amount of information
contained in A. Given a partition α we introduce the partition

∨n−1
i=0 T

−iα. This
is the partition with elements Ai0∩T−1Ai1∩· · ·∩T−1Ain , for Aij ∈ α, 0 ≤ j ≤ n.
The entropy of T with respect to a partition α will be defined as follows:

Definition 2.1.11. The entropy of the measure preserving transforma-
tion T with respect to the partition α is given by:

h(α, T ) = hµ(α, T ) := lim
n→∞

1

n
H(

n−1∨
i=0

T−iα),

6



2.1. A VERY SHORT INTRODUCTION TO ERGODIC THEORY

where

lim
n→∞

1

n
H(

n−1∨
i=0

T−iα) = − 1

n

∑
D∈

∨n−1
i=0 T−iα

µ(D) log(D).

♦

Finally we define entropy.

Definition 2.1.12. The entropy of the transformation T is given by

h(T ) = hµ(T ) = sup
α
h(α, T )

where the supremum is taken over all finite or countable partitions α of X. ♦

Related to entropy is the information function which is defined as follows.

Definition 2.1.13. Given a dynamical system (X,F , µ, T ) and α a finite or
countable partition of X. We define the information function with respect to α
by:

Iα : X → R (2.1.12)

Iα(x) =
∑
A∈α

1A(x) log(µp(A)). (2.1.13)

♦

It is in general not easy to compute the entropy from the definition. Hence
we will use the following theorems to compute entropy. A partition α is called a
generator with respect to the transformation T if σ(

∨∞
i=0 T ) = F .

Theorem 2.1.14 (Kolmogorov, Sinai 1958). If α is a generator with respect to
T and H(α) <∞, then h(T ) = h(α, T ).

An other important theorem for calculating the entropy is the Shannon-
MCMillan-Breiman Theorem which states:

Theorem 2.1.15. Suppose T is an ergodic measure preserving transformation on
a probability space(X,F , µ), and let α be a countable partition with H(α) < ∞.
Then:

lim
n→∞

1

n+ 1
I∨n

i=0 T
−iα(x) = h(α, T ) a.e. (2.1.14)

We also have the following theorem.

Theorem 2.1.16. Entropy is isomorphism invariant.

Finally we state Abrahamov’s formula for the relation between the entropy
of a system and its induced system. The proof of Abrahamov’s formula can be
found in Petersen [1983].

Theorem 2.1.17. Let T : X → X be a measure preserving transformation on a
probability space (X,F , µ) and E ∈ F a set of positive measure. Let TE : E → E
denote the induced transformation. Then

h(TE) =
h(T )

µ(E)
.

7
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2.1.4 Maximal entropy

From a probabilistic point of view we can define the entropy of discrete probability
distribution by

h(p) = −
∑
i≥1

pi log(pi).

Then h(p) tells us something about the amount of information carried in the
distribution p. Also here higher entropy means less information. Suppose we are
looking for a probability distribution satisfying certain constraints, for example
a certain mean or a certain variation. Then it turns out that maximizing the
entropy gives us the most probable probability distribution. So it gives us the
probability distribution that does not assume any information we do not know.
In the article of Conrad the principle of maximum entropy is explained in detail
and he derives some properties of the maximal entropy. The theorem we will use
is the following:

Theorem 2.1.18. On {k, k + 1, k + 2, · · · }, for k ∈ N the unique probability
distribution with a given mean and maximum entropy is the geometric distribution
with that mean.

2.2 The regular continued fraction transformation

This section discusses the regular continued fraction transformation. It is the
“basis” of the N -random-continued fraction transformation. Also it serves as an
example of a dynamical system as introduced in section 2.1.

The regular continued fraction expansion is generated by the following trans-
formation:

T : (0, 1]→ (0, 1], (2.2.1)

T (x) =
1

x
−
⌊

1

x

⌋
. (2.2.2)

We define digits an by:

a1(x) = k if x ∈ (
1

k + 1
,

1

k
], k ∈ N, (2.2.3)

an(x) = a1(Tn−1(x)). (2.2.4)

Partitioning [0, 1] in intervals ( 1
k ,

1
k+1 ], the digit an tells us where x ends up after

n− 1 times applying the transformation T . Using these digits we can write:

T (x) =
1

x
− a1. (2.2.5)

And hence x = 1
a1+T (x) . Applying the transformation T on T (x) we obtain

T (x) =
1

a1 +
1

a2 + T 2(x)

. Continuing this way we obtain after n iterations of T

x =
1

a1 +
1

a2 +
1

. . . +
1

an + Tn(x)

. (2.2.6)

8



2.2. THE REGULAR CONTINUED FRACTION TRANSFORMATION

We define the n’th partial fractions pn
qn

by:

pn
qn

=
1

a1 +
1

a2 +
1

. . . +
1

an

. (2.2.7)

Now we will show limn→∞
pn
qn

= x, so we can expand x in the following way

x =
1

a1 +
1

a2 +
1

. . .

. (2.2.8)

Let Ai be the matrix

Ai =

[
0 1
1 ai

]
. (2.2.9)

We define the matrix Mn by Mn = A1A2 · · ·An. We will use the Moebius
transformation to obtain the partial fractions pn

qn
. The Moebius transforma-

tion is the transformation:

Mn : C∗ → C∗ (2.2.10)

Mn(z) =

[
rn pn
sn qn

]
(z) =

rnz + pn
snz + qn

. (2.2.11)

Hence M1(0) = A1(0) = 1
a1

= pn
qn

and M2(0) = A2 · A1(0) =
1

a2 +
1

a1

= p2

q2
.

Continuing this way we see

Mn(0) =A1A2A3 · · ·An(0) =

[
rn pn
sn qn

]
(0) =

pn
qn
, (2.2.12)

where pn
qn

is of the form 2.2.7. In the same way we see Mn(Tn(x)) gives an
expression of x in the from of 2.2.6. Note that from the associativity of matrix
multiplication it follows that the Moebius transformation is associative.

To show x can be expressed in the form of 2.2.6 we investigate recurrence
relations induced by the Mobius transformation. Note

Mn = Mn−1An (2.2.13)[
rn pn
sn qn

]
=

[
rn−1 pn−1

sn−1 qn−1

] [
0 1
1 an

]
(2.2.14)[

rn pn
sn qn

]
=

[
pn−1 rn−1 + anpn−1

qn−1 sn−1 + anqn−1

]
. (2.2.15)

We obtain the following recurrence relations:

p−1 = 1 p0 = 0 pn = pn−2 + anpn−1 (2.2.16)

q−1 = 0 q0 = 1 qn = qn−2 + anqn−1. (2.2.17)

9
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Hence

x = Mn−1An(Tnω (x)) =

[
pn−2 pn−1

qn−2 qn−1

] [
0 1
1 an

]
(Tnω (x)) (2.2.18)

=

[
pn−2 pn−1

qn−2 qn−1

](
1

an + Tnω (x)

)
(2.2.19)

=
pn−2 + pn−1kn + pn−1T

n
ω (x)

qn−2 + qn−1kn + qn−1Tnω (x)
(2.2.20)

=
pn + pn−1T

n
ω (x)

qn + qn−1Tnω (x)
. (2.2.21)

It follows that

|x− pn
qn
| =

∣∣∣∣pn + pn−1T
n
ω (x)

qn + qn−1Tnω (x)
− pn
qn

∣∣∣∣ =
∣∣∣ (pn−1qn−pnqn−1)Tnω (x)

(qn+qn−1Tnω (x))qn

∣∣∣ (2.2.22)

=
∣∣∣ detMnTnω (x)

(qn+qn−1Tnω (x))qn

∣∣∣ . (2.2.23)

Note that detAi = det

[
0 1
1 ai

]
= −1, so detMn = (−1)n and therefore:

|x− pn
qn
| =

∣∣∣∣ (−1)nTnω (x)

(qn + qn−1Tnω (x)) qn

∣∣∣∣ . (2.2.24)

By the recurrence relations of qn we find that qn > 0 for all n ∈ N, qn is
integer valued and qn > qn−1. Hence limn→∞ qn = ∞. Therefore it follows that
limn→∞ |x− pn

qn
| ≤ limn→∞

1
q2
n

= 0.

Endowing [0, 1] with the Borel-σ-algebra, it turns out that the Gauss-measure,
which is given by:

µ(A) =
1

log(2)

∫
A

1

x+ 1
dλ (2.2.25)

is an invariant measure for the continued fraction transformation. One can also
show that the continued fraction transformation T is ergodic with respect to the
above measure µ. For more properties of the regular continued fractions and
proofs we refer to Dajani [2014], p69.

2.3 Functions of bounded variation

This section is based on Chapter 2.3 in Boyarski and Góra [1997]. We refer the
reader to this book for the proofs of the theorems we state in this section. Let
[a, b] ⊂ R be a non-empty inverval. The variation of a function f : [a, b] → R
over [a, b] is a measure of the fluctuation f . Let α be a finite partition of [a, b],
so α = {(xi, xi+1] : i ∈ N, x0 = a, xn = b, xi ≤ xi+1}. Then we associate a
set of endpoints P = {x0, · · · , xn} with α. Let P denote the collection of sets
P associated with a partitions α of [a, b]. Then the variation of f is defined as
follows.

Definition 2.3.1. Let f : [a, b]→ R. Then the variation of f on [a, b] is defined
as: ∨

[a,b]

f(x) = sup
P

n∑
k=1

|f(xk)− f(xk−1)| (2.3.1)

We say that f is of bounded variation if there exists an M ∈ R such that∨
[a,b] f < M . ♦

10
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We give a few theorems about functions of bounded variation.

Theorem 2.3.2. Let f : [a, b]→ R be of bounded variation and assume c ∈ (a, b).
Then f is of bounded variation on [a, c] and on [c, d] and we have:∨

[a,b]

f =
∨
[a,c]

f +
∨
[c,d]

f. (2.3.2)

Theorem 2.3.3. Let f and g be functions of bounded variation on [a, b]. Then
so are their sum, difference and product. Also, we have:∨

[a,b]

(f ± g) ≤
∨
[a,b]

f +
∨
[a,b]

g (2.3.3)

and ∨
[a,b]

(f · g) ≤ A
∨
[a,b]

f +B
∨
[a,b]

g, (2.3.4)

where A = sup{|g(x)| : x ∈ [a, b]}, B = sup{|f(x)| : x ∈ [a, b]}.

Corollary 2.3.4. Let f1, · · · , fn, fi : [a, b]→ R be a family of functions which is
bounded by C, i.e. sup{|fi(x)| : x ∈ [a, b]} ≤ C for all 1 ≤ i ≤ n. Then

∨
[a,b]

n∏
i=1

fn ≤ Cn−1
N∑
i=1

∨
fi.

Proof. Suppose n = 1, so we have 1 function f : [a, b] → R then clearly the
statement holds. Now suppose the statement holds for all n ≤ N . Then by
theorem 2.3.3 we obtain:

∨
[a,b]

N+1∏
i=1

fi ≤ C
∨ N∏

i=1

fi + CN−1
∨
[a,b]

fN+1 (2.3.5)

≤ CN
N∑
i=1

∨
[a,b]

fi + CN
∨
[a,b]

fN+1 = CN
N+1∑
i=1

∨
[a,b]

fi. (2.3.6)

Remark 2.3.5. If f : [a, b]→ R is a monotone function then∨
[a,b]

f = |f(b)− f(a)|.

♦

We obtain also the following lemma, see Lasota and Mackey [1994] chapter 6:

Lemma 2.3.6. Let f : [c, d] → R and g : [a, b] → [c, d]. Suppose that g is a
monotone function and the image of g, Im(g) = [c, d], then

∨
[a,b] f ◦g ≤

∨
[c,d] f .

11
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Proof. Assume w.l.o.g. that g is increasing. Suppose we have a partition
x0 < x1 < · · · < xn of [a, b], then g(x0) < g(x1) < · · · < g(xn) is a partition of

[c, d]. By the definition of variation we have

n∑
k=1

|f(g(xk))− f(g(xk−1))| ≤
∨
[c,d]

f.

This holds for all partitions x0 < x1 < · · · < xn of [a, b] and hence we conclude∨
[a,b]

f ◦ g ≤
∨
[c,d]

f.

Finally the space of functions of bounded variation can be made to a Banach
space as follows. We define the space of functions of bounded variation on [a, b]
by

BV ([a, b]) = {f ∈ L1 : inf
f1=f a.e.

∨
[a,b]

f1 < +∞}.

Let ||f ||1 =
∫

[a,b] |f |dλ be the norm on L1(λ). We define a norm on BV by

||f ||BV = ||f ||1 + inf{f1=f a.e.}
∨

[a,b] f1.

2.4 Lower semi-continuity

An important property of a function of bounded variation is that we can modify
it on a countable number of points to obtain a lower semi-continuous function.
In this section we will introduce lower semi-continuity, give some properties of
it and state the theorem mentioned above. The statements in this section are
based on Kurdila and Zabarankin [2005] chapter 7 and Boyarski and Góra [1997]
chapter 8.

Definition 2.4.1. Let (X, τ) be a topological space and let f : X → R. Then f
is lower semi-continuous at x0 if the inverse image of every half-open set of the
form (r,∞), with f(x0) ∈ (r,∞) contains an open set U ⊂ X that contains x0.
That is,

f(x0) ∈ (r,∞) =⇒ ∃U ∈ τ : x0 ∈ U ⊂ f−1(r,∞). (2.4.1)

We say a function f is lower semi-continuous on a topological space X if it is
lower semi-continuous at each point in X. ♦

Using this definition we get the following equivalent definition for metric
spaces.

Proposition 2.4.2. Let (X, d) be a metric space. A function f : X → R is lower
semi-continuous at a point x0 ∈ X if

f(x0) ≤ lim inf
x→x0

f(x).

Proof. See Kurdila and Zabarankin [2005].

12
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By proposition 2.4.2 we can get some intuition what lower semi-continuity
means. Since the lim infx→x0 f(x) = limx→x0 f(x) if the limit on the right hand
side exists, we see that each continuous function is lower semi-continuous. The
definition of lower semi-continuity allows a function f : X → R to make a jump
at x0 from a to b for a, b ∈ R. The only restriction is that f(x0) is always the
lower point of the jump so f(x0) = min{a, b}. This is illustrated in figure 2.1

(a) (b)

Figure 2.1 – (a) a lower semi-continuous function, (b) a non lower semi-continuous
function.1

We have the following lemma and theorem.

Theorem 2.4.3. If f is a lower semi-continuous function on I = [a, b] ⊂ R,
then it is bounded from below and assumes its minimum value. For any a ∈ R
the set {x : f(x) > a} is open.

Lemma 2.4.4. If f is of bounded variation on I, then it can be redefined on a
countable set to become a lower continuous function.

Proof. A function of bounded variation has at most countably many disconti-
nuities y0, y1, · · · . So intuitively at each discontinuity we define f(yi) to be the
“lowest” point of the jump. For a formal proof see Boyarski and Góra [1997]
chapter 8.

2.5 Perron Frobenius Operator

We recall a few definitions from measure theory.

Definition 2.5.1. Let µ, ν be two normalized measures defined on (X,B). We
say that µ is absolutely continuous with respect to ν, if for all set A ∈ B such
that ν(A) = 0 we have µ(A) = 0. We writ µ << ν. ♦

Definition 2.5.2. Let µ, ν two normalized measures defined on (X,B). We say
that µ is equivalent with to ν if µ << ν and ν << µ. ♦

Theorem 2.5.3. Let (X,B) be a measure space and let ν and µ be two normalized
measures on (X,B). If µ << ν, then there exists an a.e-unique f ∈ L1(X,B, µ)
such that for every A ∈ B we have,

µ(A) =

∫
A
fdν. (2.5.1)

f is called the Randon-Nikodym derivative and it is denoted by dν
dµ

1figure from https://en.wikipedia.org/wiki/Semi-continuity
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Let ([0, 1],B[0, 1], µ) be a probability space, where µ is absolutely continuous
with the Lebesgue measure, so µ has a density f such that µ(A) =

∫
A fdλ, for

A ∈ B[0, 1]. Suppose T is a transformation on ([0, 1],B[0, 1], µ). How should the
density function f be changed after applying the transformation T? Therefore
we are looking for a density ψ such that

∫
T−1A fdλ =

∫
A φdλ. To find such a

density we introduce the notion of a non-singular transformation.

Definition 2.5.4. Let (X,B, µ) be a normalized measure space. Then T : X → X
is said to be nonsingular if and only if for any A ∈ B such that µ(A) = 0, we
have µ(T−1A) = 0. ♦

Intuitively we can describe a non-singular transformation as a transforma-
tion that does not send mass to a null-set.

Suppose the transformation T on ([0, 1],B[0, 1], µ) is non-singular. Then for
all sets A ∈ B[0, 1] such that λ(A) = 0, we have µ(A) = 0 and since T is non-
singular µ(T−1(A)) = 0. Hence we see that the measure given by

∫
T−1(A) fdλ

is absolutely continuous with respect to λ and hence by theorem 2.5.3 we find
a unique density φ such that

∫
T−1A fdλ =

∫
A φdλ. Let PT : L1 → L1 be the

operator that sends f → φ, where φ is the density we find by theorem 2.5.3. We
call this operator the Perron-Frobenius-operator.

Definition 2.5.5. Let I = [a, b], B the Borel-σ-algebra restricted to I and λ the
normalized Lebesgue measure on I. Let T : I → I be a non-singular transforma-
tion. We define the Perron-Frobenius operator PT : L1 → L1 as follows. For
any f ∈ L1, PT f is the unique (up to a.e. equivalence) function in L1 such that:∫

A
PT fdλ =

∫
T−1(A)

fdλ (2.5.2)

for any A ∈ B ♦

Notice that the Perron-Frobenius operator tells us in some sense whether a
measure µ is T invariant.

Proposition 2.5.6. Let T : I → I be nonsingular. Then PT f = f − a.e. if and
only if the measure µ = f · λ, defined by µ(A) =

∫
A fdλ, is T -invariant measure.

Proof. Suppose µ is an invariant measure. Then µ(A) = µ(T−1A) for all sets
A ∈ B, so

∫
A fdλ =

∫
T−1(A)) fdλ and hence

∫
A fdλ =

∫
A PT fdλ for all A ∈ B.

We conclude PT f = f − a.e.. On the other hand if PT f = f we have:

µ(T−1(A)) =

∫
T−1(A)

fdλ

=

∫
A
PT fdλ

=

∫
A
fdλ

= µ(A).

Therefore we conclude that µ is an T -invariant measure if and only if PT f = f a.e.

Proposition 2.5.7. PT : L1 → L1 is a linear operator,

PT (αf + βg) = αPT f + βPT g.

14
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Proposition 2.5.8. PT : L1 → L1 is a contraction, ||PT f ||1 ≤ ||f ||1.

Proposition 2.5.9.
∫
I PT fdλ =

∫
I fdλ.

Proof. If T is a non-singular transformation then:∫
I
PT fdλ =

∫
T−1I

fdλ =

∫
I
fdλ.

Let L∞ denote all almost everywhere bounded functions. The norm on L∞

is defined by ||f ||∞ = inf{M : µ({x : f(x > M)}) = 0}.

Proposition 2.5.10. PT (f ◦ T · g) = f · PT g a.e. for f ∈ L1 and g ∈ L∞.

Proof. To prove this we use standard machinery. Let A be an arbitrary set in B.
Suppose f = 1B for B ∈ B,then we obtain:∫

A
PT (1B(T (x)) · g)dλ =

∫
T−1A

1T−1B(x)g(x)dλ

=

∫
T−1(A∩B)

g(x)dλ

=

∫
A∩B

PT gdλ

=

∫
A

1BPT gdλ.

Where in the first equality we just use that the definition of the Perron-Frobenius
operator. By linearity of the Perron-Frobenius operator and the integral, we
obtain the same result for simple functions, f =

∑n
i=1 bi1Bi . Using dominated

convergence, this holds for all positive integrable functions f . Hence it holds for
all integrable functions f .

Proposition 2.5.11. PT◦T = PT (PT f).

Proposition 2.5.12. PT : L1 → L1 sends the space of functions of bounded
variation over the interval to the space of functions of bounded variation.

The proof of the last proposition can be found in Hofbauer and Keller [1982].

2.5.1 Construction of the Perron Frobenius operator

For a piecewise expanding, C1 monotone transformation on an interval I ⊂ R we
can construct the Perron-Frobenius operator explicitly:

Definition 2.5.13. Let I = [a, b]. The transformation T : I → I is called
piecewise monotonic if there exists a partition of I, a = a0 < a1 < · · · < aq = b,
and a number r ≥ 1 such that:

• T |(ai−1,ai) is a Cr function, i = 1, · · · , q which can be extended to a Cr

function on [ai−1, ai], i = 1, · · · , q,

• |T ′(x)| > 0 on (ai−1, ai), i = 1, · · · , q.

♦

15
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We show how to construct the Perron-Frobenius operator explicitly for piece-
wise monotone functions. We know by definition

∫
A Ptfdλ =

∫
T−1(A) fdλ for

an arbitrary set A ∈ B. Let Bi = T ([ai−1, ai]) for 1 ≤ i ≤ q, then we can
write A =

⋃q
i=1Bi ∩ A. Let Ti(x) = T (x)1[ai−1,ai] denote the restriction of T

to [ai−1, ai], so Ti is monotone and C1 on [ai−1, ai]. Then we define for each Ti
an inverse function φi : Bi → I. Using the definition of the Perron-Frobenius
operator and the change of variable formula we write:∫

A
PT fdλ =

q∑
i=1

∫
(A∩Bi)

PT fdλ

=

q∑
i=1

∫
φi(A∩Bi)

f(y)dλ

=

q∑
i=1

∫
(A∩Bi)

f(φ(x))|φ′(x)|dλ

=

∫
A

q∑
i=1

f(T−1
i (x))

T ′i (Ti(x))
dλ.

Since A is an arbitrary set we conclude that PT f =
∑q

i=1
f(T−1

i (x))

T ′i (Ti(x))
a.e.. Therefore

we have found an explicit formula for the Perron-Frobenius operator.
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Chapter 3

N-random continued fraction
expansions and a quest for an
invariant measure

3.1 The N-random continued fraction transfromation

In this section we introduce the N-continued random fraction transformation.
To do so, we first introduce the non-random N -continued fraction transforma-
tions. The N -continued fraction transformations are natural generalizations of
the regular continued fraction transformation and are defined as follows.

Definition 3.1.1. Let N ∈ N, we define for 1 ≤ i ≤ N , the transformations Ti:

Ti : [0, N ]→ [0, N ],

Ti(x) =


N
x −

⌊
N
x

⌋
+ i if x ∈ (0, N

i+1 ],
N
x −

⌊
N
x

⌋
if x ∈ ( N

i+1 , N ],

0 if x = 0.

♦

We depicted the case N = 5 in figure 3.1. Note that in the case N = 1 we ob-
tain the regular continued fraction. The transformation T0(x) is called the greedy
transformation and the transformation TN−1 is called the lazy transformation.
To each transformation Ti we associate digits dn,i(x) which are defined by:

d1,i(x) =


k − i if x ∈ ( N

k+1 ,
N
k ], k ≥ i+ 1

k if x ∈ ( N
k+1 ,

N
K ], k ≤ i

∞ if x = 0,

dn,i(x) = d1,i(T
n−1
i x).

Using these digits we can write

Ti(x) =

{
1
x − d1,i(x) if x ∈ (0, N ]

0 if x = 0.
(3.1.1)

In the same way as we did in the case N = 1 we use the transformations Ti
to obtain an expansion for x ∈ [0.N ]. Since we use only the transformation Ti so
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AND A QUEST FOR AN INVARIANT MEASURE

1
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8

Figure 3.1 – The 5 random continued fraction transformation, violet, blue, green,
yellow and orange illustrate the maps T0, T1, T2, T3, T4 respectively
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the i is fixed we set d1 = d1,i, d2 = d2,i. Then

x =
N

d1 +
N

d2 +
N

. . .

. (3.1.2)

In the article of Anselm and Weintraub [2011] is shown that this expansion con-
verges indeed to x. The article of Dajani et al. [2013] tells us that if we endow
[0, N ] with the Borel-σ-algebra each transformation Ti has an invariant measure.

We extend these N -continued fractions to a random transformation. Let
{0, 1, 2, · · · , N − 1} be our parameter space, so it is the space where we choose
from to decide which transformation we will use. Let (p0, p1, · · · , pN−1) be a
probability vector on the parameter space, with probability pj we choose i equal

to j and
∑N−1

i=0 pi = 1. Let {T0, T1, · · · , TN−1} be our family of transformations,
as defined above. Each Ti : [0, N ]→ [0, N ], and hence we define [0, N ] to be our
state space. So loosely saying the state space, is the space where the evolution
of x, x, Tx, T 2x, · · · lives in. Now each time we apply the transformation we
choose according to our probability vector an i and apply transformation Ti.
Applying Ti we obtain a digit dn,i(x) as defined above. Using these digits we
expand x like:

x =
N

d1,i +
N

d2,i +
N

. . .

(3.1.3)

and also this expansion converges to x by Anselm and Weintraub [2011]. Since
each time we choose an i in our parameter space, the i is no longer fixed. Note that
we can choose our transformations in infinitely many ways, by choosing infinitely
many different sequences of i’s. Hence we get infinitely many expansions for each
irrational x ∈ [0, N ].

Example 3.1.2. We give an example of a 2-random continued fraction trans-
formation. We use the parameter space {0, 1} with probability density vector
{1

2 ,
1
2}. We define the transformations T0, T1 as follows: T0, T1 : [0, 2]→ [0, 2].

T0 =
2

x
−
⌊

2

x

⌋
,

T1 =

{
2
x −

(⌊
2
x

⌋
− 1
)

if x ∈ [0, 1]
2
x −

⌊
2
x

⌋
if x ∈ (1, 2].

So our family of transformations is {T0, T1}. We depicted the transformations in
figure 3.2. We will refer to T0 as the lower map and to T1 as the upper map.
Define digits bi(x) by:

d1,i(x) =


1 x ∈ ( 2

1+1 ,
2
1 ]

k − i x ∈ ( 2
k+1 ,

2
k ]

∞ x = 0.

(3.1.4)

Now we like to expand x ∈ [0, 2]. Each time we iterate, we have to choose
which transformation we use according to our probability distribution. This
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Figure 3.2 – The 2-continued fraction transformation. The map T0 in green and
T1 in red

can be seen as throwing a fair coin each time we apply the transformation. If
we throw tails we use the lower transformation and if we throw heads we use
the upper transformation. In fact, if x ∈ [1, 2], then we do not need to throw
the coin, since in this area the upper and lower transformation coincide. Let
x ∈ [0, 1] and suppose we throw tails. Then we get a digit d1,0(x) and can write
x = 2

d1,0+T1(x) . To obtain an expansion of length two we need another digit. So

we throw again our coin to see which transformation we use and obtain a new
digit d1,i(Ti(x)) = d2,i(x). Suppose we had thrown heads the first time, then
we see from the figure that we enter the region [1, 2], where T0 and T1 coincide.
Therefore we do not have to throw the coin and d2,i(x) = 1. Continuing this way
we will obtain an expression for x given by:

x =
2

d1,i +
2

d2,i +
2

. . .

. (3.1.5)

That we indeed can expand x this way will be explicitly proved in chapter 4 4

The question is whether we can find an invariant measure for the N -random
continued fraction transformation. If we go back to the definition of an invariant
measure, this tells us that µ(A) = µ(T−1(A)). However using the random trans-
formation Ti could be different each time we apply the transformation. Therefore
we will introduce the following definition of an invariant measure for a ran-
dom transformation
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3.2 Random transformations and the theorem of Inoue

3.2.1 Random transformations

In this section we will state the theory of random transformations as stated in
the article of Inoue [2012].

Definition 3.2.1. Let (W,B, ν) be a σ-finite measure space, i.e. there exists an
sequence {Aj}j∈N ⊂ B, such that Aj ⊂ Aj+1,

⋃
j∈NAj = W and ν(Aj) < ∞

for all j ∈ N. We will use W as our parameter space. Let (X,A, µ) be a σ-
finite space, X will be our state space. Let {Tt : X → X, t ∈ W} be a family
of non-singular transformations such that for fixed x, Tt(x) is a B-measurable
function. Let p : W ×X → [0,∞) be probability density function for t ∈ W , so∫
W p(t, x)dν = 1 for all x ∈ X. Then we define the random map T = {Tt, pt(x)}

as the Markov process with transition function P (x,A) =
∫
W p(t, x)1A(Tt(x))

where A ∈ A. ♦

3.2.2 Invariant measures for random transformations

Using the definition of a random transformation we can extend the definition of
an invariant measure to random transformations. In the deterministic case we
say that µ is an invariant measure for T if µ(A) = µ(T−1(A)) =

∫
X 1A(Tx)dµ.

We can interpret µ(T−1(A)) as the probability that x ends up in A after applying
T . An invariant measure says then that the probability that x ∈ A equals the
probability that T (x) ∈ A. The Markov transition function

P (x,A) =

∫
W
p(t, x)1A(Tt(x))

see definition 3.2.1, tells us the probability that x ends up in A after applying
the random transformation T . Hence we can define the operator P∗ on measures
µ on X by:

P∗µ(A) =

∫
X
P (x,A)dµ (3.2.1)

=

∫
X

∫
W
p(t, x)1A(Tt(x))dνdµ. (3.2.2)

Note that by the above interpretation P∗µ(A) = µ(T−1A) for the random trans-
formation T . Therefore we obtain the following definition of an invariant measure
for random transformations.

Definition 3.2.2. If P∗µ = µ, then we say that µ is an invariant measure for
the random transformation T . ♦

Example 3.2.3. Lets apply the above definition to the N -random continued
fraction transformation. In that case W = {0, 1, · · · , N − 1} is our parame-
ter space, endowed with a probability vector (p0, p1, · · · , pN−1). In this case pi
does not depend on x. We have the family {Ti : [0, N ] → [0, N ], i ∈ W} of
measurable non-singular transformations on the state space [0, N ]. Hence we
say that the measure µ is invariant with respect to the random transformation
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T = {Ti(x), pi, i ∈W} if

µ(A) = P∗µ(A) (3.2.3)

=

∫
X

∫
W
pt1A(Tt(x))dνdµ (3.2.4)

=
N−1∑
i=0

piµ(T−1
i (A)). (3.2.5)

4

3.2.3 The random Perron-Frobenius operator

Let again (W,B, ν) be our parameter space, (X,A, µ) be our state space and
T = {Tt(x), p(t, x)} a random transformation. Suppose that µ is an invariant
measure for the random transformation T and that µ admits a density f with
respect to the Lebesgue measure λ. Since the maps Tt are non-singular we have
for A ∈ A that if λ(A) = 0 then µ(A) = 0 and hence µ(T−1

t (A)) = 0. Since the
integral over a null-set is zero we obtain∫

X
1A(Tt(x))p(t, x)dµ = 0

and therefore ∫
W

∫
X

1A(Tt(x))p(t, x)dµdν = 0.

Hence by Fubini’s theorem
∫
X

∫
W 1A(Tt(x))p(t, x)dνdµ = 0 and therefore by

theorem 2.5.3 P∗µ admits a density. Denoting this density by PT f we can write:

P∗µ(A) =

∫
A
PT fdλ (3.2.6)

=

∫
X

∫
W
p(t, x)1A(Tt(x))f(x)dνdλ. (3.2.7)

Suppose W consist of only one element, then P∗µ(A) =
∫
T−1(A) fdλ, so PT f is

the Perron-Frobenius operator. Therefore 3.2.7 gives us a natural generalisation
of the random Perron-Frobenius operator. Let PTt denote the Perron-Frobenius
operator with respect to the transformation Tt. Using Fubini’s theorem on the last
equation of 3.2.7 we see that the random Perron-Frobenius operator PT : L1 → L1

is given by:

PT f =

∫
W
PTtf(x)pt(x)dν. (3.2.8)

3.2.4 Piecewise monotone random transformations on an inter-
val

Let (W,B, ν) be a parameter space and (X,A, µ) a state space. From now on let
X be the interval [0, 1] ⊂ R, A the Borel-σ-algebra and µ the Lebesgue measure.
Let T = {Tt, p(t, x)} be a random transformation, thus Tt : [0, 1] → [0, 1], and
p(t, x) : W × [0, 1] → [0,∞). We define for each transformation Tt a countable
partition of [0, 1]. Let Λ be a countable set of indices and let Λt ⊂ Λ for each
t ∈ W . For each t let {Ii,t}i∈Λt be such that µ([0, 1]\

⋃
i∈Λt

Ii,t) = 1 and for
i, j ∈

⋃
Λt

, i 6= j Ii,t ∩ Ij,t = ∅. For notational reasons we define Ii,t = ∅ if
i ∈ Λ\Λt and define ∅ to be closed. Let int(Ii,t) denote the interior of Ii,t. We
assume two conditions for the random map {Tt, p(t, x), {It,x}, t ∈W}:
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1. The restriction of Tt to int(Ii,t) is C1 and monotone for each i ∈ Λ and
t ∈W .

2. Let Tt,i be the restriction of Tt to int(It,i) for each t ∈W and i ∈ Λ. Put

φt,i(x) =

{
T−1
t,i (x) if x ∈ Tt,i(int(It,i))

0 if x ∈ [0, 1]\Tt,i(int(It,i))
(3.2.9)

for each t ∈ W and i ∈ Λ. Note that φt,i(x) = 0 if i ∈ Λ\Λt. We assume
that for each x ∈ X and i ∈ Λ, wx,i(t) := φt,i(x) is a measurable function
of t.

If {Tt, p(t, x), {It,x}, t ∈W} satisfies 1 and 2 then we call {Tt, p(t, x), {It,x}, t ∈W}
a piecewise monotonic random transformation. Like we did in the determinis-
tic case, we can construct the random-Perron-Frobenius operator explicitly. Let
φ∗(x) = φ′(x)1Tt,i(int(It,i))(x) Using change of variables formula and Fubini’s the-
orem we can write for A ∈ A:

P∗µ(A) =

∫
A
PT f(x)dλ (3.2.10)

=

∫
W

∫
X
p(t, x)1A(Tt(x))f(x)dλdν (3.2.11)

=

∫
W

∫
A

∑
i∈Λ

p(t, φt,i(x))f(φt,i(x))|φ∗t,i(x)|dλdν. (3.2.12)

Applying Fubini’s theorem once more we obtain:

PT f(x) =

∫
W

∑
i∈Λ

p(t, φt,i(x))f(φt,i(x))|φ′t,i(x)|1Tt(intIi,t)(x)dν. (3.2.13)

In the article of Inoue [2012], the following properties of the random Perron-
Frobenius operator are stated:

Lemma 3.2.4. Let T = {Tt, p(t, x) : t ∈W} be a random map defined in section
3.2.1, let PT : L1(λ) → L1(λ) the corresponding Perron-Frobenius operator, and
let f ∈ L1(λ). Then

1. PT is linear,

2. PT f ≥ 0 if f ≥ 0,

3.
∫
X PT fdλ =

∫
X fdλ,

4. ||PT f ||1 ≤ ||f ||1,

5. PTn = PnT .

Like the “deterministic” Perron-Frobenius-operator, also the random Perron-
Frobenius-operator gives us a tool to find an invariant measure.

Lemma 3.2.5. Let T = {Tt, p(t, x) : t ∈ W} be a random map as defined
in section 3.2.1. Let PT : L1(λ)→ L1(λ) be the corresponding Perron-Frobenius
operator and let f be a probability density function on the measure space (X,A, λ).
Set µ(A) =

∫
A f(x)dλ(x) for A ∈ A. Then PT f = f λ− a.e. if an only if µ is an

invariant probability measure for T.
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3.2.5 Existence theorem of Inoue

Now we are ready to state the theorem of Inoue [2012].

Theorem 3.2.6. Let T = {Tt, p(t, x), {Ii,t}i∈Λ : t ∈ W} be a random transfor-
mation as defined in 3.2.4. For t ∈W and x ∈ [0, 1] , put

g(t, x) =

{
p(t,x)
|T ′t (x)| , if x ∈

⋃
i int(It,i)

0, if x ∈ [0, 1]\
⋃
i int(It,i).

(3.2.14)

Assume the following conditions hold:

1. supx∈[0,1]

∫
W g(t, x)ν(dt) < α < 1, i.e. the functions Ti are expanding on

average.

2. There exists a constant M such that
∨

[0,1] g(t, ·) < M for almost all t ∈W ,

that is, there exists a ν-measurable set W0 ⊂W such that
∫
W0

p(t, x)ν(dt) = 1
and

∨
[0,1] g(t, ·) < M for all t ∈W0.

Then T has an invariant probability measure µp which is absolutely continuous
with respect to the Lebesgue measure. Moreover µp admits a probability density
function hp which is of bounded variation and satisfies for all A ∈ A:

µp(A) =

∫
X

∫
W
p(t, x)1A(Tt(x))hp(x)dνdλ. (3.2.15)

3.3 Applying Inoue to the N-continued fraction trans-
formation

Let us see whether we can apply the theorem 3.2.6 to the N -random continued
fraction transformation. Unluckily we can not directly apply the theorem to the
N -random continued fraction transformation, because this transformation is de-
fined from [0, N ] → [0, N ], instead of from [0, 1] → [0, 1]. Another problem is
that the N -random continued fraction transformation is not on average expand-
ing. For each Ti(x) we find T ′i (x) = −N

x2 . Therefore on the area [
√
N,N ] we

obtain
∑N

i=1 g(i, x) ≥ 1.

The question arises if we can solve these problems? It turns out we can at
least for the case N = 2 as explained in the next chapter. For the moment
we turn back to example 3.1.2, to see how we modify the 2-random continued
fraction transformation such that it satisfies the conditions of theorem 3.2.6.

3.4 The accelerated 2-random continued fraction trans-
formation

In this section we show how the 2-random continued fraction transformation can
be modified in order to satisfy the conditions of theorem 3.2.6 First we reduce
the 2-continued random fraction transformation which is defined [0, 2]→ [0, 2] to
a transformation [0, 1] → [0, 1]. Recall in this case we have two transformations
defined by:
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S0, S1 :[0, 2]→ [0, 2]

S0 =
2

x
−
⌊

2

x

⌋
S1 =

{
2
x −

(⌊
2
x

⌋
− 1
)

if x ∈ [0, 1]
2
x −

⌊
2
x

⌋
if x ∈ (1, 2]

.

Note S0 = T0 from example 3.1.2 and S1 = T1, so S0 is the lower transformation
and S1 the upper transformation. Let p ∈ (0, 1) and set p0 = p = 1− p1 then we
can define the random transformation S = {Si, pi, i ∈ {0, 1}}. Looking at figure
3.2 we see that for each point x ∈ [0, 1], S1(x) ∈ [1, 2]. On the other hand if
x ∈ [1, 2] then S0(x) ∈ [0, 1] but also S1(x) ∈ [0, 1] since S0 and S1 coincide on
[0, 1]. This is illustrated in figure 3.3.

0

1

1

2

21
2

2
3

2
5

(a)

0

1

1

2

21
2

2
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2
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(b)

Figure 3.3 – (a) x after one iteration by S, (b) x after two times applying S

Let x ∈ [0, 1] and suppose we have to start with the upper transformation,
then applying the random transformation once more we always end up in [0, 1].
So if we have to start with the upper transformation we can force our random
transformation to the area [0, 1] by applying S one more time. This suggests to
redefine our transformation S0, S1 as follows:

T0, T1 : [0, 1]→ [0, 1]

T0(x) =S0(x) =
2

x
−
⌊

2

x

⌋
T1(x) =S1 ◦ S1(x) = S1 ◦ S0 =

2
2
x −

⌊
2
x

⌋ − 1.

Let p ∈ (0, 1), then we use transformation T0 with probability p, so p0 = p
and we use T1 with probability 1− p, so p1 = 1− p. Hence we obtain the random
transformation T = {Ti, pi, i ∈ {0, 1}}. Endow [0, 1] with the Borel-σ-algebra.
Let us see if we can find an invariant measure by theorem 3.2.6. Notice the
theorem 3.2.6 takes in this case the following form.

Theorem 3.4.1. Given two non-singular maps T0, T1 : [0, 1] → [0, 1]. Let
p ∈ [0, 1] and set p0 = p and p1 = (1− p). For i ∈ {0, 1} let {Ii,k} be a countable
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partition of [0, 1] into intervals and use int(Ii,k) to denote the interior of these
intervals. Let g(i, x) be functions satisfying:

g(i, x) =
pi

|T ′i (x)|
(3.4.1)

on
⋃
k int(Ii,k). Assume that the following conditions are satisfied:

1. The restriction of Ti to each interval int(Ii,k) are C1 and monotone.

2. The weighted average expansion of Ti is uniformly positive for all x, i.e.,

sup
x∈[0,1]

(g(0, x) + g(1, x)) < 1.

3. For each i ∈ {0, 1} the functions g(i, x) : [0, 1] → R are of bounded varia-
tion.

Then there exists a probability measure µp on [0, 1] which is absolutely continuous
with respect to the Lebesgue measure λ with density function hp that is of bounded
variation. Moreover, µp has the property that

µp(A) = pµp(T
−1
0 A) + (1− p)µp(T−1

1 A)

for each Borel measurable set A ⊂ [0, 1].

We check whether our random transformation satisfies 3.4.1.

Proposition 3.4.2. The maps T0, T1 with p0 = p = 1− p1, for p ∈ [0, 1] satisfy
the conditions of theorem 3.4.1 and therefore we find an invariant density µp with
the above properties.

Proof. We set {I0,k} = {I1,k} =
{(

2
k+1 ,

2
k

]
, k ∈ N

}
. The derivatives of T0, T1 are

given by:

T ′0(x) =
−2

x2
(3.4.2)

T ′1(x) =
4

(2− (k − 1)x)2
for x ∈

(
2

k + 1
,

2

k

]
. (3.4.3)

Therefore the restriction of T0 to ( 2
k+1 ,

2
k ] is a continuous monotone decreasing

function and the restriction of T1 to ( 2
k+1 ,

2
k ] is a continuous monotone increasing

function, so condition 1 is satisfied. For condition 2 we compute g(0, x) and
g(1, x):

g(0, x) =
p0
2
x2

=
p

2
x2, (3.4.4)

g(1, x) =
p1
4

(2−x(k−1))2

=
1− p

4
(2− x(k − 1))2 for x ∈

(
2

k + 1
,

2

k

]
. (3.4.5)

Suppose that x = 0, then g(0, 0) + g(1, 0) = 1 − p < 1. If x ∈ (0, 1] we have
g(0, x) < p

2 . Therefore it is enough to show that g(1, x) ≤ (1 − p
2) for x ∈ [0, 1).

For x ∈
(

2
k+1 ,

2
k

]
we find:

1− p
4

(
2− 2

k
(k − 1)

)2

<
1− p

4
(2− x(k − 1))2 <

1− p
4

(
2− 2

k + 1
(k − 1)

)2

,

1− p
4

4

k2
<

1− p
4

(2− x(k − 1))2 <
1− p

4

16

(k + 1)2
<

4

9
(1− p).
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In the last inequality we used that k ≥ 2. It follows that:

sup
x∈[0,1]

(g(0, x) + g(1, x)) < 1 (3.4.6)

and condition 2 is satisfied.
Finally we show that the functions g(i, x) : [0, 1] → R are of bounded vari-

ation. Note g(0, x) = 1
2px

2 and therefore
∨

[0,1] g(0, x) = p
2 . Since g(1, x) is a

monotone continuous function on ( 2
k+1 ,

2
k ] for each k ≥ 2, k ∈ N we find:

∨
[0,1]

g(1, x) =
1− p

4

∑
k

16

(k + 1)2
− 4

k2
<∞.

Therefore all conditions of theorem 3.4.1 are satisfied. We conclude that there
exists a probability measure µp on [0, 1] which is absolutely continuous with
respect to the Lebesgue measure λ and has a density function hp that is of
bounded variation. Moreover, µp has the property that

µp(A) = pµp(T
−1
0 A) + (1− p)µp(T−1

1 A)

for each Borel measurable set A ⊂ [0, 1].
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Chapter 4

The 2-random continued
fraction expansion

In section 3.4 we found an invariant measure µp for the transformation {T0, T1, p0, p1}
where T0 : (0, 1]→ [0, 1] and T1 : (0, 1]→ [0, 1] are defined by:

T0(x) =
2

x
−
⌊

2

x

⌋
, (4.0.1)

T1(x) =
2

2
x −

(⌊
2
x

⌋
− 1
) − 1, (4.0.2)

and p0 = p = 1 − p1 for p ∈ (0, 1). In this chapter we show how we can
use this accelerated 2-random continued fraction transformation to find an in-
variant measure for the 2-random-continued-fraction transformation. Using this
invariant measure we derive properties about the asymptotic behaviour of the
expansions induced by the 2-random continued fraction transformation and its
entropy. In particular we like to apply the theorems from section 2.1. However
all these theorems require deterministic transformations, but we have a random
transformation. There is a general solution to de-randomize a random transfor-
mation and it is called the skew product. Therefore we start this chapter with
introducing the 2-random continued fraction transformation as a skew product.

4.1 The 2-random continued fraction transformation
as skew product

Definition 4.1.1. Let {Ω, C, ν, σ} be a dynamical system on a probability space
and suppose that {Tω, ω ∈ Ω} is a family of measure preserving transformations
on another probability space (X,F , µ). Assume that Tω(x) is C ×F measurable.
Then a transformation of the form T (ω, x) : Ω×X → Ω×X defined by

T (ω, x) = (σ(ω), Tω(x)).

is called a skew product ♦

The transformation σ serves as a function that picks “at random” an ω ∈ Ω.
Such a transformation can be defined as follows.
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Definition 4.1.2. Let Ω = {0, 1}N, the left shift σ is the function that shifts
all coordinates of ω one place to the left. Hence σ is defined by:

σ : Ω→ Ω, (4.1.1)

σ(ω1, ω2, ω3, · · · )→ (ω2, ω3, · · · ). (4.1.2)

Or equivalently let ωi denotes the i’th coordinate of ω then σ(ωi) = ωi+1. ♦

We define the 2-random continued fraction transformation as a skew product.
Let σ : {0, 1}N → {0, 1}N be the left shift and set Ω = {0, 1}N. Let

S0, S1 : Ω× [0, 2]→ Ω× [0, 2],

S0 =
2

x
− b2

x
c

S1 =

{
2
x −

(
b 2
xc − 1

)
if x ∈ [0, 1]

2
x − b

2
xc if x ∈ (1, 2].

We define the transformation R(ω, x) : Ω× [0, 2]→ Ω× [0, 2] by:

R(ω, x) =


(ω, S1x = S0x) x ∈ (1, 2]

(σ(ω), Sω1(x)) x ∈ [0, 1]

(σ(ω), 0) x = 0.

(4.1.3)

Define the digits of R by:

b1(ω, x) =


1 x ∈ ( 2

1+1 ,
2
1 ]

k x ∈ ( 2
k+1 ,

2
k ], ω1 = 0

k − 1 x ∈ ( 2
k+1 ,

2
k ], ω1 = 1

∞ x = 0

(4.1.4)

and set bn(ω, x) = b1(Rn−1(ω, x)). Let π2 denote the projection on the second
coördinate, then we can write

π2(R(ω, x)) =
2

x
− b1(ω, x). (4.1.5)

Let bi = bi(ω, x) then we can write:

x =
2

b1 + π2(R(ω, x))
=

2

b1 + 2
b2+π2(R2(ω,x))

= · · · =
2

b1 +
2

b2 +
1

. . . +
2

bn + π2(Rn(ω, x))

.

Now the question is whether we can expand x like

x =
2

b1 +
2

b2 +
1

. . . +
2

bn +
.. .

. (4.1.6)

The answer is yes and we prove it explicitly in the next section.
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4.1.1 Convergence of the 2-continued fraction expansion

Again let bi = bi(ω, x) as defined in 4.1.4. Like we did in section 2.2 for the regular
continued fractions, we can define matrices Mn and Bn for the transformation
R(ω, x) such that

Bn(ω, x) = Bn =

[
0 2
1 bn

]
and Mn(ω, x) = Mn = B1 ·B2 · · ·Bn.

Using the Moebius transformation, see section 2.2 we obtain

B1(0) =
2

b1
, B2 ·B1(0) =

2

b1 +
2

b2

.

Therefore the partial fractions pn
qn

are given by:

Mn(0) = B1 ·B2 · · ·Bn(0) =
2

b1 +
2

b2 +
1

. . . +
2

bn

=
pn
qn
.

We use Mn and Bn to derive recurrence relations for the partial fractions.

Mn = Mn−1Bn (4.1.7)[
rn pn
sn qn

]
=

[
rn−1 pn−1

sn−1 qn−1

] [
0 2
1 bn

]
(4.1.8)[

rn pn
sn qn

]
=

[
pn−1 2rn−1 + bnpn−1

qn−1 2sn−1 + bnqn−1

]
. (4.1.9)

Hence we obtain we obtain the following recurrence relations:

p−1 = 1 p0 = 0 pn = 2pn−2 + bnpn−1, (4.1.10)

q−1 = 0 q0 = 1 qn = 2qn−2 + bnqn−1. (4.1.11)

Using Mn we can also derive an expression for x:

x = Mn−1Bn(π2(R(ω, x))) =

[
pn−2 pn−1

qn−2 qn−1

] [
0 2
1 bn

]
(π2(Rn(ω, x))) (4.1.12)

=

[
pn−2 pn−1

qn−2 qn−1

](
2

bn + π2(Rn(ω, x)

)
(4.1.13)

=
2pn−2 + pn−1bn + pn−1π2(Rn(ω, x)

2qn−2 + qn−1bn + qn−1π2(Rn(ω, x))
(4.1.14)

=
pn + pn−1(π2(Rn(ω, x)))

qn + qn−1(π2(Rn(ω, x)))
. (4.1.15)

To show that we can expand x in the form of 4.1.6, we have to show that
limn→∞ |x− pn

qn
| = 0. Note that detBi = (−2) fo i ∈ N and hence detMn = (−2)n.
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Therefore we write∣∣∣∣x− pn
qn

∣∣∣∣ =

∣∣∣∣(pn−1qn − pnqn−1)π2(Rn(ω, x))

(qn + qn−1Rn(ω, x)) qn

∣∣∣∣ (4.1.16)

=

∣∣∣∣ detMn ·Rn(ω, x)

(qn + qn−1Rn(ω, x)) qn

∣∣∣∣ (4.1.17)

≤ 2n+1

q2
n

. (4.1.18)

We used in the last equation that for x ∈ [0, 2] we have π2(Rn(ω, x)) ∈ [0, 2] for
all n ∈ N. Now we need some estimate of qn.

Proposition 4.1.3. Define qn and pn as above, then qn ≥ 2n−1 and pn ≥ 2n−1

∀n ∈ N.

Proof. We prove only qn ≥ 2n−1 since the proof of pn ≥ 2n−1 follows in the same
way. We use induction. Since q1 = b1 ≥ 1 = 20 the base step is proved. Suppose
the result holds ∀n ≤ N . Using the induction hypothesis and noting bN+1 ∈ N
we write:

qN+1 = 2qN−1 + bN+1qN ≥ 2 · 2N−2 + 2N−1 = 2N .

Hence qN+1 ≥ 2N which concludes the proof.

Proposition 4.1.4. If x ∈ [0, 1] then limn→∞

∣∣∣x− pn
qn

∣∣∣ = 0.

Proof. By equation 4.1.18 and proposition 4.1.1 it immediately follows that

lim
n→∞

∣∣∣∣x− pn
qn

∣∣∣∣ = 0.

Finally we show a relation between the numerator pn and the denominator
qn of the partial fractions.

Proposition 4.1.5. Let pn
qn

= pn(ω,x)
qn(ω,x) denote the partial fractions. Then

pn(ω, x) = 2qn−1(R(ω, x))

for all n ∈ N.

Proof. We use induction to prove the statement. Note that p1(ω, x) = 2 and
q0(R(ω, x)) = 1. Suppose the result holds true for all n ≤ N then

pN+1(ω, x) =2pN−1(ω, x) + bN+1(ω, x)pN (ω, x) (4.1.19)

=4qN−2(R(ω, x)) + bN (R(ω, x)) · 2 · qN−1(R(ω, x)) (4.1.20)

=2qN (R(ω, x)). (4.1.21)
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4.2 The accelerated 2-random continued fraction trans-
formation as skew product

In this section we will define a skew product for the accelerated 2-random con-
tinued fraction transformation. We will show this skew product is an induced
transformation of R(ω, x) as defined in section 4.1.1.

Recall that the accelerated 2-random continued fraction transformation was
given by {T0, T1, p0, p1} where T0 : (0, 1] → [0, 1] and T1 : (0, 1] → [0, 1] are
defined by:

T0(x) =
2

x
−
⌊

2

x

⌋
, (4.2.1)

T1(x) =
2

2
x −

(⌊
2
x

⌋
− 1
) − 1. (4.2.2)

Let Ω : {0, 1}N and let σ : Ω → Ω denote the left shift. We define the skew
product K for the 2-random continued fraction transformation by

K(ω, x) : Ω× [0, 1]→ Ω× [0, 1], (4.2.3)

K(ω, x) =

{
(σ(ω), Tω1x) if x ∈ (0, 1]

(σ(ω), 0) if x = 0.
(4.2.4)

Notice that

K(ω, x) =(σ(ω), Tω1(x)) (4.2.5)

=

{
R(ω, x) if ω1 = 0, x ∈ [0, 1]

R2(ω, x) if ω1 = 1, x ∈ [0, 1].
(4.2.6)

Let τ be the first return time defined by:

τ : Ω× [0, 1]→ N (4.2.7)

τ(ω, x) = inf {n ≥ 1 : Rn(ω, x) ∈ Ω× [0, 1]} (4.2.8)

=

{
1 if ω1 = 0

2 if ω1 = 1.
(4.2.9)

Then

K(ω, x) = Rτ(ω,x)(ω, x) (4.2.10)

and we see that K is indeed the induced transformation of R. Notice that for
x ∈

(
2

k+1 ,
2
k

]
, k ∈ N, k ≥ 2 we can write:

T0(x) =
2

x
− k, (4.2.11)

T1(x) =
2

2
x − (k − 1)

− 1. (4.2.12)

Therefore given (ω, x) we can write x as follows:

x =



2

k + T0(x)
if ω1 = 0 and x ∈

(
2

k+1 ,
2
k

]
2

(k − 1) +
2

1 + T1(x)

if ω1 = 1 and x ∈
(

2
k+1 ,

2
k

]
.

(4.2.13)
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We define digits ai as follows:

a1(ω, x) =


k if x ∈

(
2

k+1 ,
2
k

]
and ω1 = 0

(k − 1, 1) if x ∈
(

2
k+1 ,

2
k

]
and ω1 = 1

∞ x = 0

(4.2.14)

ai = a1

(
Ki−1(ω, x)

)
. (4.2.15)

From 4.2.13 we see that the expansion of x induced by using K(ω, x) is in
fact the same as the expansion induced R(ω, x). The only difference is that if
ω1 = 1 and we use K we obtain the same expansions as using R(ω, x) twice. To
relate the expansions obtained by K and R we introduce the variable ñ:

ñ : N× Ω× [0, 1]→ N (4.2.16)

ñ(n, ω, x) =

n∑
i=1

1{ωi=0}(ω, x) + 1{ωi=1}(ω, x) =

n−1∑
i=0

τ(Ki(ω, x)). (4.2.17)

So applying K n times is the same expansion as applying R ñ times. Therefore
the partial fraction pn

qn
obtained by applying K(ω, x) n times equals the partial

fraction pñ
qñ

obtained by applying R(ω, x) ñ times. Hence the partial fractions pn
qn

for K are just an subsequence of the partial fractions pñ
qñ

for R.

Proposition 4.2.1. Let x ∈ [0, 1] and let pn
qn

be the partial fractions of K, then

limn→∞ |x− pn
qn
| = 0.

Proof. Since the partial fraction pn
qn

for K are a subsequence of those of R, the
result is consequence of proposition 4.1.4.

4.2.1 Length of the fundamental interval

A nice property of the transformation K is that given a block of digits a1, · · · , an
where ai ∈ {k, (k − 1, 1) : k ≥ 2} we can find corresponding ω ∈ Ω. We set

ωi =

{
0 if ai = k for some k ≥ 2

1 if ai = (k − 1, 1) for some k ≥ 2.
(4.2.18)

We denote this corresponding sequence ω1 · · ·ωn, by [ω]n. Define

∆(a1, · · · , an) = {x ∈ [0, 1] : ∀ω ∈ [ω]n, d1(ω, x) = a1, · · · , dn(ω, x) = an} .

We will show that ∆(a1, · · · , an) is an interval of length 2ñ

qñ(qñ+qñ−1) .

Proposition 4.2.2. X = {x ∈ [0, 1] : (ω, x) ∈ ∆(a1, · · · , an)} is an interval of

length 2ñ

qñ(qñ+qñ−1) , where ñ =
∑n

1 1{ωn=0} + 2 · 1{ωn=1} =
∑n−1

i=0 τ(Ki(ω, x)).

Proof. Note that we can write π2(Kn(ω, x)) = Tω(x), where the ω stresses that
the transformation we take depends on ω. Suppose x ∈ ∆(a1, · · · , an), so the first
n digits of x are a1 · · · an. Since each ai ∈ {ki, (ki−1, 1)}, ki ∈ N, ki ≥ 2 it follows
x ∈ ( 2

k1+1 ,
2
k1

], Tωx ∈ ( 2
k2+1 ,

2
k2

], · · · , Tn−1
ω x ∈ ( 2

kn+1 ,
2
kn

]. From 4.1.15 we have

x =
pñ+pñ−1T

n
ω (x)

qñ+qñ−1Tnω (x) . We will show this is a monotone function in Tnω (x). Define

f : [0, 1] → [0, 1], by f(y) =
pñ+pñ−1y
qñ+qñ−1y

, so df(y)
dy =

pñ−1qñ−qñ−1pñ
(qñ+qñ−1y)2 = (−2)ñ

(qñ+qñ−1y)2 .
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Therefore f(y)
∣∣
[0,1]

is a continuous monotone function which is increasing for

even ñ and decreasing for odd ñ. Since Tnω (x) takes values in [0, 1) if ωn = 0 and

Tnω (x) ∈ (0, 1] for ωn = 1 it follows that x ∈
[
pñ
qñ
,
pñ+pñ−1

qñ+qñ−1

)
for ñ even and ωn = 0

and x ∈
(
pñ+pñ−1

qñ+qñ−1
, pñqñ

]
for ñ odd and ωn = 0. In the case ωn = 1 we find similar

results, only the open and closed boundaries of the interval are interchanged.

Now we show by induction that if z ∈
[
pñ
qñ
,
pñ+pñ−1

qñ+qñ−1

)
, then (ω, z) has digits

∆(a1, · · · , an) if ω ∈ [ω]n. First we take N = 1. We have two cases, a1 is of
the form k1 and a1 is of the form (k1 − 1, 1). Suppose a1 = k1, so ω1 = 0 and

z ∈
(
p1̃+p0̃
q1̃+q0̃

,
p1̃
q1̃

]
. Therefore:

2

k1 + 1
< z ≤

2

k1
. (4.2.19)

We see a1(ω, z) = k1. Now suppose a1 = (k1 − 1, 1), so ω1 = 1. In this case

z ∈
(
p2̃
q2̃
,
p2̃+p1̃
q2̃+q1̃

]
. Therefore:

2

(k1 − 1) +
2

1

< z ≤
2

(k1 − 1) +
2

1 + 1

(4.2.20)

2

(k1 + 1
< z ≤

2

k1
. (4.2.21)

We see that the a1(ω, z) = (k− 1, 1). So we see that the result holds true for
N = 1. Suppose we have that the result holds for all n ≤ N . We consider the

case n = N + 1. In this case we have z ∈
[
pñ
qñ
,
pñ+pñ−1

qñ+qñ−1

)
where ñ = ñ(ω, n) and ñ

is even. Suppose that ω1 = 0 and ωn+1 = 0. Then we can write

2

k1 +
2

k2 +
.. . +

2

kn+1

≤ z <
2

k1 +
2

k2 +
.. . +

2

kn+1 + 1

. (4.2.22)

Note that
2

k2 +
.. . +

2

kn+1

∈ [0, 1], see lemma 4.2.3. If
2

k2 +
.. . +

2

kn+1

equals 0

or 1, then there is an m ≤ n+1 such that km =∞ and the interval
[
pñ
qñ
,
pñ+pñ−1

qñ+qñ−1

)
becomes empty, since T i(Tm(x)) = 0 ∀i ∈ N. Therefore we can assume:

2

k2 +
.. . +

2

kn+1

∈ (0, 1),

2

k2 +
.. . +

2

kn+1 + 1

∈ (0, 1),

so a1 = k1 and

2

k2 +
.. . +

2

kn

≥ Tω(z) >
2

k2 +
.. . +

2

kn + 1

. (4.2.23)
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Applying the induction hypothesis on Tω(x) gives digits a2, · · · , an for z and the
result holds. The other cases follow in a similar way.

Finally note that λ
([

pñ
qñ
,
pñ+pñ−1

qñ+qñ−1

))
= 2ñ

qñ(qñ+qñ−1) .

Lemma 4.2.3. Let pn
qn

denote the partial fractions induced by K, then

pn
qn

=
2

k1 +
2

k2 +
. . . +

2

kn

∈ [0, 1]

for all x ∈ [0, 1].

Proof. We use induction. For the case ω1 = 0 we have p1

q1
= 2

k1
∈ [0, 1], since

k1 ≥ 2. If ω1 = 1 then p1

q1
=

2

(k1 − 1) +
2

1

=
2

k1 + 1
∈ [0, 1] since k1 ≥ 2. Suppose

the result holds for n ≤ N then for N + 1 we see in the case ω1 = 0 that

pN+1

qN+1
=

2

k1 +
2

k2 +
.. . +

2

kn

=
2

k1 + pN (Tω(x))
qN (Tω(x))

∈ [0, 1].

Where we used that Tω(x) ∈ [0, 1]. The case ω1 = 1 follows the same lines.

Remark 4.2.4. Notice that for a sequence of digits induced by R the above
strategy does not work. Suppose we are given the digit block (1), then we could
not find a corresponding ω. For (ω, x) ∈ [1]× (2

3 , 1] as well for (ω, x) ∈ [0]× [1, 2]
we obtain the digit 1. That it is so easy for K is a consequence of the definition
of the digits. We will further study the digit sequences induced by R in chapter
5. ♦

4.3 Invariant measures for R and K

In this section we use the invariant measure for the accelerated 2-random contin-
ued fraction expansion, see section 3.4 to define an invariant measure for the skew
product K(ω, x). Using the obtained measure we derive an invariant measure for
R(ω, x).

We set Ω = {0, 1}N and endow Ω × [0, 1] with σ(Ω × [0, 1]) = σ(C × B[0, 1]),
where C is the σ-algebra generated by the cylinders on {0, 1}N and B[0, 1] the
Borel σ-algebra restricted to [0, 1]. Let mp be the product measure on C and
µp the invariant measure obtained in section 3.4 for the accelerated 2-random
continued fraction transformation. Then we can prove the following proposition:

Proposition 4.3.1. The measure mp × µp is an invariant measure for the map
K(ω, x).

Proof. Let A ∈ σ(Ω× [0, 1]), such that A = B × [a, b], where

B = {ω ∈ Ω : ω1 = i1, · · · , ωn = in, i1, · · · in ∈ {0, 1}}
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is a cylinder set. Hence A is in the set of generators of C × B[0, 1]. It follows by
theorem 3.4.1:

mp × µp(K−1A) =mp × µp ({(x, ω) : K(ω, x) ∈ A})
=mp × µp ({(x, ω) : σ(ω) ∈ B, Tω1(x) ∈ [a, b]})
=mp × µp ({(x, ω) : ω1 = 0, ω2 = i1, · · · , ωn+1 = in, T0(x) ∈ [a, b]})

+mp × µp ({(x, ω) : ω1 = 1, ω2 = i1, · · · , ωn+1 = in, T1(x) ∈ [a, b]})
=mp ({ω : ω1 = 1, ω2 = i1, · · · , ωn+1 = in}) · µp

(
T−1

0 ([a, b])
)

+mp ({ω : ω1 = 1, ω2 = i1, · · · , ωn = in+1}) · µp
(
T−1

1 ([a, b])
)

=pmp(B)µp
(
T−1

0 ([a, b])
)

+ (1− p)mp(B)µp
(
T−1

1 ([a, b])
)

=mp × µp(A).

Since K is an induced measure of R we use proposition 2.1.8 to construct the
invariant measure ρ for R. Let E ∈ σ(C × B[0, 2]) then

ρ(E) =
1∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)

∞∑
n=0

mp × µp({(ω, x) ∈ Ω× [0, 1]; τ(ω, x) > n} ∩R−n(E))

=
1

2− p
[mp × µp(Ω× [0, 1] ∩ E) +mp × µp([1]× [0, 1] ∩R−1(E))].

We can integrate with respect to ρ in the following way:

∫
Ω×[0,2]

f(ω, x)dρ =
1

2− p

[∫
Ω×[0,1]

f(ω, x)dmp × µp +

∫
[1]×[0,1]

f(R(ω, x))dmp × µp

]
.

This is seen as follows. Let A be a measurable set in σ(Ω × [0, 2]) then we
can write:∫

Ω×[0,2]
1A(ω, x)dρ =

1

2− p
[mp × µp(Ω× [0, 1] ∩A)

+mp × µp([1]× [0, 1] ∩R−1(A))]

=
1

2− p
[

∫
Ω×[0,1]

1A(ω, x)dmp × dµp

+

∫
[1]×[0,1]

1R−1A(ω, x)dmp × dµp]

=
1

2− p

∫
Ω×[0,1]

1A(ω, x)dmp × dµp

+

∫
[1]×[0,1]

1{(ω,x):R(ω,x)∈A}(ω, x)dmp × dµp

=
1

2− p

∫
Ω×[0,1]

1A(ω, x)dmp × dµp

+

∫
[1]×[0,1]

1AR(ω, x)dmp × dµp

By linearity of the integral we obtain for finite simple functions fn,∫
Ω×[0,2]

fndρ =
1

2− p

∫
Ω×[0,1]

fndmp × dµp +

∫
[1]×[0,1]

fn(R(ω, x))dmp × dµp
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Let f ∈ L1 and write f = f+ − f− where f+ and f− are positive func-
tions. We can find a sequence of positive finite simple functions {fn} such that
limn→∞ fn = f+ ρ-a.e. If ρ(E) = 0 for E ∈ σ(C × B[0, 3]) then by the defini-
tion of ρ mp × µp(E ∩ Ω × [0, 1]) = 0 and mp × µp(R−1(E) ∩ [1] × [0, 1]) = 0.
limn→∞ fn = f+ ρ− a.e. means there exists a set Y ∈ C × B[0, 3] such that for
all x ∈ Y we have limn→∞ fn(x) = f+ and ρ(Ω× [0, 3]\Y ) = 0. Then

mp × µp((Ω× [0, 3]\Y ) ∩ Ω× [0, 1]) = 0

and
mp × µp(R−1(Ω× [0, 3]\Y ) ∩ [1]× [0, 1]) = 0.

Hence
lim
n→∞

fn(x) = f+(x)

for all x ∈ Y ∩ Ω× [0, 1] and we conclude limn→∞ fn = f+ mp × µp − a.e.. Note
that

lim
n→∞

fn(R(ω, x)) = f+(R(ω, x))

for all R(ω, x) ∈ Y , so (ω, x) ∈ R−1Y and in particular for all

(ω, x) ∈ R−1Y ∩ [1]× [0, 1].

Hence

lim
n→∞

fn(R(ω, x))1[1]×[0,1](ω, x) = f+(R(ω, x))1[1]×[0,1](ω, x) mp × µp − a.e.

Using monotone convergence it follows that

ρ(f+) = lim
n→∞

∫
Ω×[0,2]

fndρ

= lim
n→∞

1

2− p

∫
Ω×[0,1]

fn(ω, x)dmp × dµ+

∫
[1]×[0,1]

fn(R(ω, x))dmp × dµ

=
1

2− p

∫
Ω×[0,1]

f+(ω, x)dmp × dµ+

∫
[1]×[0,1]

f+(R(ω, x))dmp × dµ.

In the same way we find

ρ(f−) =
1

2− p

∫
Ω×[0,1]

f−(ω, x)dmp × dµ+

∫
[1]×[0,1]

f−(R(ω, x))dmp × dµ.

We conclude that we can indeed integrate f ∈ L1(ρ) by∫
Ω×[0,2]

f(ω, x)dρ =
1

2− p

[∫
Ω×[0,1]

f(x, ω)dmp × µp +

∫
[1]×[0,1]

f(R(ω, x))dmp × µp

]
.

4.4 More about the invariant measure

In this section we show the measure µp, the marginal of the invariant measure
for K, is equivalent with the Lebesgue measure λ. The method we use here is
the same as the one used in the article Kalle et al. [2015].

Proposition 4.4.1. Let I ⊂ [0, 1] be a non-trivial interval. Then ∀ω ∈ Ω, there
is a n ≥ 1, n ∈ N such that (0, 1) ⊂ (Tωn ◦ · · · ◦ Tω1) I ⊂ [0, 1].
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Proof. Let J ⊂ [0, 1] be a non-trivial open interval, then we can write J = (c, d).
First assume ∃k ∈ N such that 1

k ∈ J . Notice T0( 2
k ) = 0, so T0(J) = (b, 1)∪ [0, c)

for some b, c ∈ (0, 1). Then ∃k ∈ N such that ( 2
k+1 ,

2
k ] ⊂ [0, c) and hence

(0, 1) ⊂ Tω2 (Tω1 (J)) ⊂ [0, 1]. If ω1 = 1, then T1(J) = (b, 1] ∪ (0, c) for some
b, c ∈ (0, 1), since T1( 2

k ) = 1. Hence (0, 1) ⊂ Tω2(Tω1(J)) ⊂ [0, 1].

Suppose J ⊂
(

2
k+1 ,

2
k

]
for some k ∈ N, k ≥ 2. Then for the lower transfor-

mation it follows

λ (T0J) =
2

c
− k −

(
2

d
− k
)

=
2

c
− 2

d
=

2(d− c)
cd

> d− c = λ(c, d).

For the upper map we get

λ (T1J) =
2

2
d − (k − 1)

− 1−

(
2

2
c − (k − 1)

− 1

)
=

2
2
d − (k − 1)

−

(
2

2
c − (k − 1)

)

=
2
(

2
c − (k − 1)

)
− 2

(
2
d − (k − 1)

)(
2
c − (k − 1)

) (
2
d − (k − 1)

) =
4
c −

4
d(

2
c − (k − 1)

) (
2
d − (k − 1)

)
=

4(d− c)
cd
(

2
c − (k − 1)

) (
2
d − (k − 1)

) > 4(d− c)
4cd

=
d− c
cd

> d− c = λ(c, d).

Where we use that 2
c − (k − 1), 2

d − (k − 1) ∈ [1, 2). Set J1 = Tω1(c, d) = (c1, d1)

and Ji = Tωi(ci−1, di−1). We claim λ (Ji) ≥
(

1
1−(d−c)

)n
(d−c).We already proved

the base step, the case i = 1 since c ≤ 1− (d− c) and therefore cd ≤ 1− (d− c).
Suppose the result holds for all n ≤ N . Then

λ (JN+1) = λ (TωN (cN , dN )) >
dN − cN
cNdN

>
1

1− (dN − cN )

(
1

1− (d− c)

)N
(d− c) >

(
1

1− (d− c)

)N+1

(d− c),

since dN − cN > d− c implies 1− (dN − cN ) < 1− (d− c). Therefore there exists
a n ∈ N such that 2

k ∈ Jn.
Notice that we only proved the statement for J open. However suppose K is
a closed or half-closed interval then there exists an open interval J such that
J ⊂ K. Hence Tω1(J) ⊂ Tω1(K) and the statement holds for each non-trivial
interval J ⊂ [0, 1].

Lemma 2.4.4 tells us that if f is a function of bounded variation on I, then it
can be redefined on a countable set to become a lower semi-continuous function.
Theorem 2.4.3 tells us that if f is lower semicontinuous on I = [a, b] ⊂ R, then it is
bounded from below and assumes its minimum value. Using this two statements
we can proof the following proposition.

Proposition 4.4.2. Let hp be the probability density function from Theorem 3.2.
Then hp > 0 for all x ∈ (0, 1).

Proof. We can redefine hp on a countable number of points to get a lower-semi-
continuous function. From now on assume that hp is lower-semi-continuous.
Lemma 3.2.5 tells us that hp is a fixed point of the random Perron Frobenius
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operator as defined in subsection 3.2.3. In our case the Perron Frobenius opera-
tor is given by:

PT f(y) =
∑
k∈N

pf
(
T−1

(0,k)(y)
) ∣∣∣∣∣ 1

T ′0,k(T
−1
0,k (y))

∣∣∣∣∣ 1T0(int( 2
k+1

, 2
k

])

+(1− p)f
(
T−1

(1,k)(y)
) ∣∣∣∣∣ 1

T ′1,k(T
−1
1,k (y))

∣∣∣∣∣ 1T1(int( 2
k+1

, 2
k

]).

Since hp is a probability density function of bounded variation and PThp = hp,
we know ∃I ⊂ [0, 1] non-trivial interval and α > 0 such that hp1I > α, see lemma
4.4.3. Therefore

hp(y) = PThp(y)

> αPT 1I(y)

= α
∑
k∈N

p1I

(
T−1

(0,k)(y)
) ∣∣∣∣∣ 1

T ′0,k(T
−1
0,k (y))

∣∣∣∣∣ 1T0(int( 2
k+1

, 2
k

])(y)

+ (1− p)1I
(
T−1

(1,k)(y)
) ∣∣∣∣∣ 1

T ′1,k(T
−1
1,k (y))

∣∣∣∣∣ 1T1(int( 2
k+1

, 2
k

])(y)

= α
∑

(ω1)∈Ω

∑
x∈T−1

ω1
{y}

pω11I(x)

∣∣∣∣ 1

T ′ω1
(x)

∣∣∣∣ .

In the article of Inoue Inoue [2012] is proved that PT◦S = PT ◦PS so therefore
also PTn = PT ◦ · · · ◦ PT︸ ︷︷ ︸

n−times

, see 3.2.4 . Since hp = PThp we have hp = PTnhp. Using

this we can write the above as:

hp(y) = PTnhp(y) > α
∑

(ω1,··· ,ωn)∈Ω

∑
x∈(Tω1◦···◦Tωn)

−1{y}

1I(x)

∣∣∣∣ pω1 · · · pωn
(Tω1 ◦ · · · ◦ Tωn)′ (x)

∣∣∣∣ .
By proposition 4.4.1 we know there exists a n such that Tωn ◦ · · · ◦ Tωn(I) = (0, 1)
and therefore there exists a x ∈ I such that Tω1 ◦ · · · ◦ Tωn(x) = y. We conclude

hp(y) > 0 for all y ∈ (0, 1).

Lemma 4.4.3. If f is a probability density function with respect to the Lebesgue
measure, which is of bounded variation on [0, 1], then there exists a non-trivial
interval I and an α ∈ (0, 1) such that f1I > α.

Proof. Assume the contrary, that there is not such an I. So for all I ⊂ [0, 1]
exists a x ∈ I such that f(x) < α. Let r ∈ (α, 1), we show there are at least
countably many y ∈ [0, 1] such that f(y) > r. To see this, suppose there are only
finitely many such y then∫ 1

0
f(x)dx =

∫
{f>r}

f(x)dλ+

∫
f(x)≤r

f(x)dλ

≤
∑

{y:f(y)>r}

f(y)dλ(y) +

∫ 1

0
rdλ

=r < 1.
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This is a contradiction with the fact that f is a probability density function on
[0, 1]. We conclude there are at least countable many y such that f(y) > r.

Since we assumed there does not exist a non-trivial interval I ⊂ [0, 1] such
that f(x) > α for all x ∈ I, we can find for each I ∈ [0, 1] a x such that f(x) < α.
Therefore we can make partitions with countable many atoms, which endpoints
alternate between x such that f(x) < α and y such that f(y) > r. Hence we
find

∨
f > M(r − α) for all M ∈ N and we conclude that f is not of bounded

variation which is a contradiction.

Proposition 4.4.4. The density function hp is bounded from above and from
below.

Proof. Since [0, 1] is a closed and bounded subset in R and hp is of bounded
variation, hp is bounded from above. We can redefine hp on a countable set to get
a lower semi-continuous function. A lower semi-continuous functions attains its
minimum on [0,1]. By proposition 4.4.2 we see that hp > 0 on (0, 1). Therefore we
are left to show that hp(1) > 0 and hp(0) > 0. Let ε > 0 and look at T−1

0 (1−ε, 1).
Note that for k ≥ 2, k ∈ N

(
2

1 + k
,

2

1− ε+ k
) ⊂ T−1

0 (1− ε, 1)

and

λ

(
(

2

1 + k
,

2

1− ε+ k
)

)
=

2ε

(1 + k)(1− ε+ k)
.

Hence

k2

2
λ

(
(

2

1 + k
,

2

1− ε+ k
)

)
< λ((1− ε, 1)) <

(k + 1)2

2
λ

(
(

2

1 + k
,

2

1− ε+ k
)

)
.

Therefore

lim
x↑1

hp(x) = lim
ε→0

1

λ((1− ε, 1))

∫ 1

1−ε
hp(x)dx

= lim
ε→0

µp((1− ε, 1))

λ((1− ε, 1))

= lim
ε→0

pµp(T
−1
0 (1− ε, 1)) + (1− p)µp(T−1

1 (1− ε, 1))

λ((1− ε, 1))

≥ lim
ε→0

pµp((
2

1+k ,
2

1−ε+k ))

(k+1)2

2 λ
(

( 2
1+k ,

2
1−ε+k )

)
≥ lim

ε→0

2p

(k + 1)2
inf

x∈( 2
k+1

, 2
1−ε+k )

hp(x)

=
2p

(k + 1)2
hp

(
2

k + 1

)
> 0.

The case hp(0) > 0 follows in the same way, choosing (0, ε) as starting interval
and taking limx↓0.

Corollary 4.4.5. The measure µp is equivalent to the Lebesgue measure and
there exists a c ∈ R such that for all B ∈ B we have cλ(B) < µp(B) < 1

cλ(B).
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4.5 Ergodic properties

In this section will show the measure mp × µp is mixing with respect to K. We
choose a suitable partition of Ω × [0, 1]. Let P be a countable partition of [0, 1]
with atoms Dm. We define the diameter of an atom Dm by

diamDm = max
x,y∈Dm

|x− y|.

The diameter of a partition P is given by

diamP = max
n∈N

Dm.

Theorem 4.5.1. Let {Pn}n be a sequence of countable partitions, which is di-
ameter reducing i.e. limn→∞ diam{Pn}n = 0, then the atoms {Dn,m} of the
partitions in the sequence generate the Borel-σ-algebra B.

Proof. Let D denote the collection of atoms {Dn,m} of the sequence of partitions
{Pn}n. Since ∀X ∈ D we haveX ∈ B it follows σ(D) ⊂ B. We know that the open
intervals of the form (a, b), a < b a, b ∈ R generate B and hence it is enough to
show that (a, b) ∈ σ(D) for all a, b ∈ [0, 1]. We can write (a, b) =

⋃
k∈N[a+ 1

k , b−
1
k ]

and show that for all a, b ∈ R, k ∈ N there exists at most countable Ai ∈ Dn,m

such that [a + 1
k , b −

1
k ] ⊂

⋃
Ai ⊂ (a, b). limn→∞ diam{Pn}n = 0 implies for all

ε > 0 there exists a N ∈ N such that diam{PN} < ε. Let ε = 1
2k , so we find a

N ∈ N such that {DN,m} < 1
2k for all m ∈ N. Take all elements Ai from {DN,m}

such that DN,m ∩ [a+ 1
k , b−

1
k ] 6= ∅. This are at most countable many Ai, since

{DN,m} is a countable set. Now [a+ 1
k , b−

1
k ] ⊂

⋃
Ai ⊂ (a, b) and

⋃
Ai ∈ σ(D).

Doing so for all k ∈ N we can write (a, b) =
⋃
k∈N

⋃
Ai,k, which is a countable

union of elements in D. We conclude (a, b) ∈ σ(D).

The function K is defined on {0, 1}N× [0, 1] endowed with σ(C ×B[0, 1]), the
product sigma algebra of the cylinders on {0, 1}N, denoted C and the Borel-σ-
algebra restricted to [0, 1], B[0, 1]. Consider the cylinders

[ω̄]n ×∆na =[ω̄1, · · · , ω̄n]×∆(a1, · · · , an)ω̄1,··· ,ω̄n

= {(ω, x) : ω1 = ω̄1, · · · , ωn = ω̄n, d1(ω, x) = a1, · · · , dn(ω, x) = a1}

={(ω, x) : ω1 = ω̄1, · · · , ωn = ω̄n, x ∈
n⋂
i=1

(Tωi−1 ◦ · · · ◦ Tω1)−1(
2

ki + 1
,

2

ki
]}.

Here were the ki’s in the last line are the ki associated with ai, i.e. if ai = ki or

ai = (ki− 1, 1) we use in both cases the interval
(

2
ki+1 ,

2
ki

]
. Clearly the cylinders

[ω̄1, · · · , ω̄n] generate C. For each ω ∈ Ω we have that ∆(a1, · · · , an)ω1,··· ,ωn
gives a partition {Pn}n such that limn→∞ diam{Pn} = 0, see section 4.2.1.
Hence for each ω ∈ Ω, B[0, 1] is generated in the second coordinate. Note that
|{PN}| = |NN | = |N|. Hence we conclude that the cylinders generate σ(C×B[0, 1]).

Let A4B = A\B ∪B\A denote the symmetric difference. Recall that

µ(A4B) ≤ µ(A\B) + µ(B\A),

A4B = Ac4Bc,

and that symmetric difference is associative i.e.

(A4B)4C = A4(B4C).

Hence A4C = (A4B)4(B4C).
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Lemma 4.5.2. Let A = {
⋃n
i=1[ω̄m(i)]×∆m(i)a, n ∈ N}, so A are all finite unions

of cylinders. Then for each ε > 0 and X ∈ σ(C × B), we have that ∃A ∈ A such
that mp × µp(X4A) < ε.

Proof. Let D = {B ∈ σ(C × B) s.t. ∃C ∈ A,mp × µp(B4A) < ε}.
First we show that Ω× [0, 1] ∈ D. We can write

Ω× [0, 1] =
⋃

k∈N,k>2

[0]× (
2

k + 1
,

2

k
] ∪ [1]× (

2

k + 1
,

2

k
].

Therefore Ω× [0, 1] is a disjoint union and

mp × µp(X4
n⋃
k=1

[0]× (
2

k + 1
,

2

k
] ∪ [1]× (

2

k + 1
,

2

k
])

≤ mp × µp(X\
n⋃
k=1

[0]× (
2

k + 1
,

2

k
] ∪ [1]× (

2

k + 1
,

2

k
])

= mp × µp[0]× [0,
2

n+ 1
] ∪ [1]× [0,

2

n+ 1
]

≤ Cλ[0,
2

n+ 1
]

≤ 2C

n+ 1
,

where we used that µp ≤ Cλ. Choosing n large enough it follows that for all ε > 0
we find an B ∈ A such that mp × µ((Ω× [0, 1])4B) < ε. To prove that for each
(An)n ⊂ D there exists a C ∈ D such that mp × µp(

⋃
nAn4C) < ε we refer to

Dajani [2014], p9. Finally suppose A ∈ D, we show that Ac ∈ D. Ac4Bc = A4B,
hence we like to show that Bc ∈ D. We know B =

⋃n
i=1[ω̄]m(i) ×∆m(i)a, for

n ∈ N. Therefore Bc =
⋂n
i=1([ω̄m(i)] × ∆m(i)a)c, so we can not immediately

conclude that Bc ∈ D. However the set of cylinders of length n+1 is a refinement
of the cylinders of length n. So taking N = max{m(i), 1 ≤ i ≤ n}, we can express
the complement Bc in terms of [ω̄]N ×∆N (a). Hence we get a union over all 2N

possible [ω̄N ]. For each [ω̄N ] we have a union consisting of at most a countable
number of elements of A, which gives us just a countable union of elements of
A. Therefore we can find a C ∈ A such that mp × µp(C4Bc) ≤ ε

2 . Using
Ac4C = (Ac4Bc)4(Bc4C) it follows that mp × µp(A4C) ≤ ε. Hence D is a
σ-algebra containing all cylinders. We conclude D = σ(C × B).

We will use the set A as defined in lemma 4.5.2 to show that K is mix-
ing. Recall a dynamical system (X,F , µ, T ) is called mixing if for all A,B ∈ F
limn→∞ µ(T−iA ∪B) = µ(A)µ(B).

Proposition 4.5.3. If it holds for all cylinders that

lim
l→∞

(mp × µp)(K−l([w]n ×∆n(a)) ∩ [v]m ×∆m(b))

= (mp × µp)([w]n ×∆n(a)(mp × µp)([v]m ×∆m(b)

then K is mixing.

Proof. By double induction we show that the statement holds for a finite union
of cylinders. The case (n,m) = (1, 1) is already in the statement. Note that given
the union of two cylinders A,B we have either the union is disjoint or A ⊂ B or
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B ⊂ A. Now suppose that the result holds for a unions of (n,m) cylinders n ≤ N
and m ≤ M and let

⋃N+1
i=1 [w]n(i) ×∆n(i)(ai) be a union of N + 1 cylinders then

we consider

lim
l→∞

mp × µp[K−l(
N+1⋃
i=1

[w]i,n(i) ×∆n(i)(ai)) ∩
M⋃
j=1

[v]j,m(j) ×∆(bj)m(j)]− (4.5.1)

mp × µp(
N+1⋃
i=1

[w]i,n(i) ×∆n(i)(ai))mp × µp(
M⋃
j=1

[v]j,m(j) ×∆(bj)m(j)). (4.5.2)

(4.5.3)

We assume that the N + 1’th cylinder is the “most refined” cylinder, so

N + 1(i) = max{n(i), 1 ≤ i ≤ N + 1}.

If this is not the case we can just rewrite the union in this way. If

[w]N+1,n(N+1) ×∆(aN+1) ⊂
N⋃
i=1

[w]i,n(i) ×∆(ai)n(i))

then the result follows from the induction hypothesis. Therefore suppose

[w]N+1,n(N+1) ×∆(aN+1) 6⊂
N+1⋃
i=1

[ω]i,n(i) ×∆(ai)n(i)),

so we have a disjoint union. Therefore we write:

lim
n→∞

mp × µp[K−n(
N⋃
i=1

[w]i,n(i) ×∆(ai)n(i)) ∩
M⋃
j=1

[v]j,m(j) ×∆(bj)m(j)]

(4.5.4)

+mp × µp(K−n([w]N+1,n(N+1))×∆(aN+1) ∩
M⋃
j=1

[v]j,m(j) ×∆(bj)m(j))−

(4.5.5)

mp × µp(
N⋃
i=1

[w]i,n(i) ×∆(ai)n(i))mp × µp(
M⋃
j=1

[v]j,m(j) ×∆(bj)m(j))−

(4.5.6)

mp × µp([w]N+1,n(N+1) ×∆(aN+1))mp × µp(
M⋃
j=1

[v]j,m(j) ×∆(bj)m(j)) = 0.

(4.5.7)

The last equality follows from the induction hypothesis. In the same way we
obtain the result (N+1,M+1) and we conclude that the result holds for all finite
unions of cylinders. By a standard argument, see for example Dajani [2014], we
can show that the result holds for arbitrary sets in our σ-algebra.

So we are left to show that

lim
l→∞

(mp × µp)(K−l([w]n ×∆n(a)) ∩ [v]m ×∆m(b))

= (mp × µp)([w]n ×∆n(a)(mp × µp)([v]m ×∆m(b),
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for all cylinders. To do this we use the result of Aimino, Nicol, and Vaienti [2015]
Recall L∞ denote all almost everywhere bounded functions and the norm on L∞

is defined by ||f ||∞ = inf{M : µ({x : f(x > M)}) = 0}. Further for a function of
bounded variation f on [0, 1], ||f ||BV = ||f ||1 + inf{f1=f a.e.}

∨
[0,1] f1

Proposition 4.5.4. (See Aimino et al. [2015] proposition 3.1) There exist con-
stants C ≥ 0 and ρ < 1 such that for all functions f of bounded variation and all
g ∈ L∞(λ),

lim
n→∞

∣∣∣∣∣
∫

[0,1]
PTnf · gdµp −

∫
[0,1]

fdµp

∫
[0,1]

gdµp

∣∣∣∣∣ ≤ Cρn||f ||BV ||g||∞.

Here PT f is the random Perron-Frobenius operator as defined in section 3.2.3.
Note that in our case we have by equation 3.2.8

PT f = pPT0 + (1− p)PT1 .

Since PTn = PnT we obtain So we can write:

PTnf =
∑

(ω1,··· ,ωn)∈Ωn

mp([ω1, · · · , ωn])PTωn◦···◦Tωnf.

Theorem 4.5.5. The map K is mixing with respect to mp × µp.

Proof. By proposition 4.5.3 it is enough to show that for the cylinder sets it holds
that

lim
l→∞

(mp × µp)(K−l([w]n ×∆n(a)) ∩ [v]m ×∆m(b)) =

(mp × µp)([w]n ×∆n(a)(mp × µp)([v]m ×∆m(b)).

Let Ωl = {0, 1}l and set Ωl−m = {0, 1}l−m, then

K−l([w]n ×∆n(a)) ∩ ([v]m ×∆m(b))

= {(ω, x) : Kn(ω, x) ∈ [w]n ×∆n(a)} ∩ ([v]m ×∆m(b))

= {(ω, x) : (σnω, Tωn ◦ · · · ◦ Tω1(x)) ∈ [w]n ×∆n(a)} ∩ ([v]m ×∆m(b))

=
⋃

(ω1,··· ,ωl)∈Ωl

({(ω, x) : (σnω, Tωl ◦ · · · ◦ Tω1(x)) ∈ [w]n ×∆n(a)} ∩ ([v]m ×∆m(b))

=
⋃

(ωm+1,··· ,ωl)∈Ωl−m

[v1, · · · , vm, ωm+1, · · · , ωl, w1, · · · , wn]

× (Tωn ◦ · · · ◦ Tωm+1 ◦ Tvm ◦ · · · ◦ Tv1)−1∆n(a) ∩∆m(b).
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Note that the unions are disjoint. Therefore:

lim
l→∞

(mp × µp)(K−l([w]n ×∆n(a)) ∩ [v]m ×∆m(b))

= lim
l→∞

mp × µp(
⋃

(ωm,··· ,ωl)∈Ωl−m

[v1, · · · , vm, ωm+1, · · · , ωl, w1, · · · , wn]

× (Tωn ◦ · · · ◦ Tωm+1 ◦ Tvm ◦ · · · ◦ Tv1)−1∆n(a) ∩∆m(b))

= lim
l→∞

∑
(ωm+1,··· ,ωl)∈Ωl−m

mp[vm]mp[wn]mp[ωm+1, · · · , ωl]

µp((Tωn ◦ · · · ◦ Tωm+1 ◦ Tvm ◦ · · · ◦ Tv1)−1∆n(a) ∩∆m(b))

= lim
l→∞

mp[vm]mp[wn]
∑

(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]∫
[0,1]

1(Tωn◦···◦Tωm+1◦Tvm◦···◦Tv1 )−1∆n(a)(x)1∆m(b)(x)dµp

= lim
l→∞

mp[vm]mp[wn]
∑

(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]∫
[0,1]

1(Tωn◦···◦Tωm+1 )−1∆n(a)(Tvm ◦ · · · ◦ Tv1(x))1∆m(b)(x)dµp.

We use that
∫

[0,1] PT fdµp =
∫

[0,1] fdµp, see proposition 2.5.9 and subsequently

that PT (f ◦ T · g) = f · PT gµp − a.e. for f ∈ L1 and g ∈ L∞, see proposition
2.5.10. Hence we can write:

lim
l→∞

mp[vm]mp[wn]
∑

(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]∫
[0,1]

1(Tωn◦···◦Tωm+1 )−1∆n(a)(Tvm ◦ · · · ◦ Tv1(x))1∆m(b)(x)dµp

= lim
l→∞

mp[vm]mp[wn]
∑

(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]∫
[0,1]

PTvm◦···◦Tv1 (1(Tωn◦···◦Tωm+1 )−1∆n(a)(Tvm ◦ · · · ◦ Tv1(x))1∆m(b)(x))dµp

= lim
l→∞

mp[vm]mp[wn]
∑

(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]∫
[0,1]

1(Tωn◦···◦Tωm+1 )−1∆n(a)(x) · PTvm◦···◦Tv1 (1∆m(b)(x))dµp.

Using the random Perron Frobenius operator we write:

lim
l→∞

mp[vm]mp[wn]
∑

(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]∫
[0,1]

1(Tωn◦···◦Tωm+1 )−1∆n(a)(x) · PTvm◦···◦Tv1 (1∆m(b)(x))dµp

= lim
l→∞

mp[vm]mp[wn]

∫
(Tωn◦···◦Tωm+1 )−1∆n(a)

∑
(ωm+1,··· ,ωl)∈Ωl−m

mp[ωm+1, · · · , ωl]

· PTvm◦···◦Tv1 (1∆m(b)(x))dµp

= lim
l→∞

mp[vm]mp[wn]

∫
∆n(a)

PT l−m(PTvm◦···◦Tv1 (1∆m(b)(x)))dµp.
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1
N LOGQN

By 2.5.12 the Perron Frobenius operator sends the space of functions of bounded
variation to itself. Since 1∆bn is of bounded variation we have that PTvm◦···◦Tv1 (1∆bn(x))
is of bounded variation. Therefore by proposition 4.5.4

lim
l→∞

(mp × µp)(K−l([w]n ×∆n(a)) ∩ [v]m ×∆m(b))−

(mp × µp)(([w]n ×∆n(a))mp × µp([v]m ×∆m(b))

= lim
l→∞

mp[vm]mp[wn]

∫
∆an

PT l−m(PTvm◦···◦Tv1 (1∆m(b)(x)))dµp

−mp[wn]mp[vn]µp(∆n(a))µp(∆m(b))

= lim
l→∞

mp[vm]mp[wn]

(

∫
∆n(a)

PT l−m(PTvm◦···◦Tv1 (1∆m(b)(x)))dµp −
∫

[0,1]
1∆n(a)dµp

∫
[0,1]

1∆m(b)dµp)

= lim
l→∞

mp[vm]mp[wn]

(

∫
∆n(a)

PT l−m(PTvm◦···◦Tv1 (1∆m(b)(x)))dµp −
∫

[0,1]
1∆m(b)dµp

∫
[0,1]

PTvm◦···◦Tv1 1∆n(a)dµp)

= 0.

It follows that K is mixing.

Using 2.1.9 we can show that ρ is ergodic.

Proposition 4.5.6. The measure ρ is ergodic with respect to the transformation
R.

Proof.

R−1(Ω× [0, 1]) ={(ω, x) : R(ω, x) ∈ Ω× [0, 1]}
={(ω, x) : (ω, x) ∈ [0]× [0, 1] ∪ Ω× [1, 2]}
=[0]× [0, 1] ∪ Ω× [1, 2]

HenceR−1(Ω×[0, 1])∪Ω×[0, 1] = Ω×[0, 2] so indeed we have ρ
(⋃

k≥0R
−k(Ω× [0, 1])

)
= 1

and by 2.1.9 we conclude that R(ω, x) is ergodic.

4.6 Existence of limn→∞
1
n log qn

In this section we investigate the asymptotic behaviour of the expansions induced
by R and K.

Proposition 4.6.1. limn→∞
1
n log qn exists for the function R.

Proof. By the recurrence relations and 4.1.19 for any irrational x ∈ [0, 1) one has

1

qn(ω, x)
=

1

qn(ω, x)

pn(ω, x))

qn−1(R(ω, x))

pn−1(R(ω, x))

qn−2(R2(ω, x))
· · ·

p2(Rn−2(ω, x))

q1(Rn−1(ω, x)

p1(Rn−1(ω, x))

q0(Rn(ω, x)
·

(
1

2

)n−1

=
pn(ω, x)

qn(ω, x)

pn−1(R(ω, x))

qn−1(R(ω, x))
· · ·

p1(Rn−1(ω, x))

q1(Rn−1(ω, x))
·

(
1

2

)n−1

.
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Taking logarithm yields

− log qn(ω, x) = log
pn(ω, x)

qn(ω, x)
+ log

pn−1(R(ω, x))

qn−1(R(ω, x))
+ · · ·

+ log
p1(Rn−1(ω, x))

q1(Rn−1(ω, x))
+ (n− 1) log

1

2
.

We know that pn(ω,x)
qn(ω,x) is a number close to x and therefore we can write:

− log qn(ω, x) = log x+ log(π2R(ω, x)) + · · ·+ log(π2(Rn−1(ω, x)) + r(n, ω, x),

where π2 is the projection on the second coordinate and r(n, ω, x) is the rest
term:

r(n, ω, x) = log
pn(ω, x)

qn(ω, x)
− log x+ log

pn−1(R(ω, x))

qn−1(R(ω, x))
− log(π2(R(ω, x))) + · · ·

+ log
p1(Rn−1(ω, x))

q1(Rn−1(ω, x))
− log(π2(Rn−1(ω, x))) + (n− 1) log

1

2
.

In case n is even we can find by the mean value theorem we a ξ ∈ (x, pnqn ) such
that:

0 <

(
log x− log

pn(ω, x)

qn(ω, x)

)
=

(
x− pn(ω, x)

qn(ω, x)

)
1

ξ
≤ 2n

q2
n

qn
pn

=
2n

pn

1

qn
≤ 2

qn
.

In the case n is odd we obtain in the same way:

0 >

(
log x− log

pn(ω, x)

qn(ω, x)

)
=

(
x− pn(ω, x)

qn(ω, x)

)
1

ξ
≥ −2n

q2
n

qn
pn
≥ − 2

qn
.

Let F1,F2,F3, · · · denote the Fibonacci sequence. From the recursion relations
it follows that 1

qn
≤ 1

Fn
. Since

∑∞
i=1

1
Fi

= C < ∞ we can estimate the rest term
r(n, ω, x) by

|r(n, ω, x)| ≤ 2
n∑
i=1

1

Fi
+ (n− 1) log

1

2
≤ C + (n− 1) log

1

2
.

Hence for each x such that

lim
n→∞

1

n

(
log x+ log(π2(R(ω, x))) + log(π2(R2(ω, x))) + · · ·+ log(π2(Rn−1(ω, x)))

)
exists, we have that − limn→∞

qn(ω,x)
n exists and equals the above limit up to a

term log 1
2 . If we can show that

∫
Ω×[0,2] log(π2(ω, x))dρ <∞, then we can use the

Birkhoff ergodic theorem 2.1.2 to obtain

lim
n→∞

1

n

n−1∑
i=0

log(π2(Ri(ω, x))) =

∫
Ω×[0,2]

log(π2(ω, x))dρ.
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1
N LOGQN

Note that log(π2(ω, x)) = log x and compute the integral:∫
Ω×[0,2]

log(π2(ω, x))dρ =

∫
Ω×[0,1]

log(π2(ω, x))dmp × µp+∫
[1]×[0,1]

log(π2(R(ω, x)))dmp × µp

=

∫
[0,1]

∫
Ω

log(π2(ω, x))dmpdµp+∫
[0,1]

∫
[1]

log(π2(R(ω, x)))dmpdµp

=

∫
[0,1]

log(x)dµ+ p

∫
[0,1]

log(S1x)dµp

=

∫
[0,1]

log(x)dµ+ p

∫
[0,1]

log(
2

x
−
⌊

2

x

⌋
+ 1)dµp.

We know µ is equivalent to the Lebesgue measure, so we can estimate the integral.
For the first term we get:

−c = c

∫
[0,1]

log(x)dλ >

∫
[0,1]

log(x)dµ > C

∫
[0,1]

log(x)dλ = −C. (4.6.1)

For the second term note 1 ≤ 2
x − b

2
xc+ 1 < 2. Therefore we can write

0 <

∫
[0,1]

p log(
2

x
−
⌊

2

x

⌋
+ 1)dµ < C

∫
[0,1]

p log(2)dλ. (4.6.2)

We conclude by the sqeeze-theorem that the sum converges and

lim
n→∞

log qn
n

<∞.

Using proposition 4.6.1 we can prove that the limn→∞
log qn
n for the transfor-

mation K(ω, x).

Proposition 4.6.2. limn→∞
1
n log qn exists for the transformation K(ω, x).

Proof. Define ñ =
∑n

i=1 τ(Ki(ω, x)) see in section 4.2.1. Then

qn(K(ω, x)) = qñ(R(ω, x)).

Therefore

lim
n→∞

log qn(K(ω, x))

n
= lim
n→∞

log q∑n
i=1 τ(Ki(ω,x))(R(ω, x))

n
(4.6.3)

= lim
n→∞

log q∑n
i=1 τ(Ki(ω,x))∑n

i=1 τ(Ki(ω, x))

∑n
i=1 τ(Ki(ω, x))

n
. (4.6.4)

We know by proposition 4.6.1 that limn→∞
log q∑n

i=1
τ(Ki(ω,x))∑n

i=1 τ(Ki(ω,x))
exists. The existence

of limn→∞
∑n
i=1 τ(Ki(ω,x))

n is shown by the Birkhoff ergodic theorem 2.1.2 since τ
is an integrable function, so

lim
n→∞

∑n
i=1 τ(Ki(ω, x))

n
=

∫
Ω×[0,1]

τ(ω, x)dmp × µp = (2− p). (4.6.5)

Hence we conclude that limn→∞
1
n log qn exists and is smaller than ∞.
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Let IC be the information function, as defined in 2.1.13, with respect to the
cylinder C as defined in section 4.5. Then IC assigns to (ω, x) the log of the
measure of the cylinder to which (ω, x) belongs. Hence we can write

IC = log(mp × µp([ω]n ×∆n(an)(ω, x)),

where [ω]n ×∆n(an)(ω, x) denotes the cylinder set to which (ω, x) belongs. Now
we are able to calculate the limn→∞

1
n log(mp × µp([ω]n ×∆n(an))(ω, x)).

Proposition 4.6.3. limn→∞
1
n log(mp×µp([ω]n×∆n(an))) exists and is finite.

Proof.

lim
n→∞

1

n
log(mp × µp([ω]n ×∆n(an))) = lim

n→∞

1

n
log(mp([ω]n)(ω) · µp(∆an)(x))

= lim
n→∞

1

n
log(mp([ω]n(ω))) + lim

n→∞

1

n
log(µp(∆an)(x)).

Calculating the first limit we obtain the following:

lim
n→∞

1

n
log(mp([ω]n(ω))) = lim

n→∞

1

n
log(p

∑n
i=1 1{ωi=0}(ω)(1− p)n−

∑n
i=1 1{ωi=0}(ω))

= lim
n→∞

1

n
log(

n∏
i=1

p1{ω1=0}(σ
i(ω))(1− p)1{ω1=0}(σ

i(ω)))

= lim
n→∞

1

n

n∑
i=1

log(p1{ω1=0}(σ
i(ω))) + log((1− p)1{ω1=0}(σ

i(ω)))

=

∫
Ω

1{ω1=0}(ω) log(p) + 1{ω1=1}(ω) log((1− p))dmp

=p log p+ (1− p) log(1− p).

The last step follows by applying the Birkhoff Ergodic theorem, which can be
done since σ(ω), the left shift is ergodic with respect to mp.

For the second limit we use cλ(∆an) < µp(∆an) < Cλ(∆an), and therefore

lim
n→∞

1

n
log(µp(∆an)(x)) = lim

n→∞

1

n
log(λ(∆an)) = lim

n→∞

1

n
log(

2ñ

qn(qn + qn−1)
).

So we can write:

lim
n→∞

1

n
log

(
2ñ

2q2
n

)
< lim

n→∞

1

n
log

(
2ñ

qn(qn + qn−1)

)
< lim

n→∞

1

n
log

(
2ñ

q2
n

)
lim
n→∞

1

n
(log(2ñ−1)− log

(
q2
n

)
) < lim

n→∞

1

n
log

(
2ñ

qn(qn + qn−1)

)
<

lim
n→∞

1

n
(log(2ñ)− log

(
q2
n

)
).

Note that by the Birkhoff ergodic theorem we get:

lim
n→∞

1

n
log(2ñ) = lim

n→∞

ñ

n
log(2) = lim

n→∞

∑n
i=1 τ(Ki(ω, x))

n
log(2) = (2− p) log 2.

We conclude that

lim
n→∞

1

n
log(µp(∆an)(x) = (2− p) log 2 + lim

n→∞

1

n+ 1
2 log(qn) = 2α <∞,

where we used proposition 4.6.2 in the last step.
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4.7. ENTROPY

4.7 Entropy

In order to calculate the entropy we will use the Shannon-McMillan-Breiman
Theorem, see section 2.1.4. If α is generating partition we can use proposition
2.1.14 to strengthen the conclusion to h(α) a.e.. We prove the following theorem.

Theorem 4.7.1. The function K(ω, x) has finite entropy.

Proof. Let α = {[ωi]1 × ∆1(ai), ωi ∈ {0, 1}, ai ∈ {ki, (ki − 1, 1) : ki ∈ N}}.
Denote an atom of α, so a cylinder of length 1 as defined in chapter 4.5, by
[ω]1,i ×∆1(ai). First we note that the cylinders of the form [ω]1 ×∆n(an) form
a generating partition. Denoting by kn the first coördinate of ai we can write:

[ωi0 ]1 ×∆1(ai0) ∩K−1([ωi1 ]1 ×∆1(ai1)) ∩ · · · ∩K−n([ωin ]1 ×∆1(ain))

= {(ω, x) ∈ Ω× [0, 1] :

ω1 = ωi0 , x ∈ (
2

ki0
,

2

ki0 + 1
], ω2 = ωi1 , Tω0x ∈ (

2

ki1 + 1
,

2

ki1
],

· · ·ωn+1ωin , Tωin−1
◦ · · · ◦ Tωi1 (x) ∈ (

2

kin + 1
,

2

kin
]}

= [ω]n ×∆n(an).

In section 4.5 we proved that cylinders of the form [ω]n × ∆n(an) generate the
σ(C × [0, 1]), α is a generating partition. To apply the Schannon-McMillan-
Breiman theorem we have to check that H(α) <∞:

H(α) = −
∑

[ω]1×∆1(a),ω∈{0,1},a∈N

mp × µ([ω]1 ×∆1(a)) log(mp × µ([ω]1 ×∆1(a)))

= −
∑

[ω]1×∆1(a),ω∈{0,1},a∈N

mp([ω]1)µp(∆1(a)) log(mp([ω]1)µp(∆1(a)))

= −p log p− (1− p) log(1− p)−
∑
a∈N

µp(∆a) log(µp(∆a))

<∞.

The convergence of the sum can be seen as follows. First note that

cλ(∆a) logµp(∆a) < µp(∆a) logµp(∆a) < Cλ(∆a) logµp(∆a)

cλ(∆a) log(cλ(∆a)) < µp(∆a) logµp(∆a) < Cλ(∆a) log(Cλ(∆a))

and

n∑
k=1

Cλ(∆a) log(Cλ(∆a)) =
n∑
k=1

C(
2

k(k + 1)
) log(

2C

k(k + 1)
)

=2C
n∑
k=1

1

k(k + 1)
(log(2C)− log(k)− log(k + 1)).

The first term converges since
∑

k∈N
1
k2 converges. The convergence of the

second term can be seen as follows:
∫∞

1
log(x)
x(x+1)dλ is finite, lim

k→∞
log(k)
k(k+1) = 0 by

l’Hopital and log(k)
k(k+1) > 0 ∀k ∈ N. Moreover computing the derivative:

d

dx

log x

x(x+ 1)
=

(x+ 1)− (2x+ 1) log(x)

(x(x+ 1))2
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we see that log(k)
k(k+1) is decreasing from a certain point onwards. Therefore from

a certain k on we can estimate the sum by its integral and hence it converges.
The same strategy could be used to show convergence for the third term. We
conclude that α has finite entropy and therefore we can apply the Shannon-
McMillan-Breiman Theorem. We calculate limn→∞

1
n+1I

∨n
i=0 T

−iα(x):

lim
n→∞

1

n+ 1
I∨n

i=0 T
−iα(x) = lim

n→∞

−1

n+ 1
log(mp × µp(

n∨
i=0

T−iα(ω, x)))

= lim
n→∞

−1

n+ 1
log(mp([ω]n)(ω) · µp(∆an)(x))

= lim
n→∞

−1

n+ 1
log(mp([ω]n(ω)))

+ lim
n→∞

−1

n+ 1
log(µp(∆an)(x))

<∞.

Where the convergence follows from proposition 4.6.3. Therefore we conclude
that h(K(ω, x)) = β <∞, for some β ∈ R.

Now we know the entropy for K we can find the entropy of R.

Proposition 4.7.2. The transformation R has finite entropy.

Proof. This is a direct consequence of theorem 2.1.17.

4.8 Convergence of the digits

In this section we will proof some properties of the digits bi induced by the
function R(ω, x).

Proposition 4.8.1. Let bi be the digits induced by R as defined in 4.1.1, then
for ρ− a.e.(ω, x) ∈ Ω× [0, 1], we have

1 < lim
n→∞

(b1(x, ω), · · · , bn(x, ω))
1
n <∞

and

lim
n→∞

∑n
i=1 bi(x, ω)

n
=∞.

Proof. We start with the first inequality.
If we can show that

lim
n→∞

1

n

n∑
i=1

log(bi) <∞,

then also
lim
n→∞

e
1
n

∑n
i=1 log(bi) = (b1 · · · bn)

1
n <∞.

By the Birkhoff ergodic theorem we obtain.

lim
n→∞

1

n

n∑
i=1

log(bi) = lim
n→∞

1

n

n∑
i=1

log(b1(Ri−1(ω, x))) =

∫
Ω×[0,1]

log(b1(ω, x))dρ.
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Calculating the integral gives:∫
Ω×[0,2]

log(b1(ω, x))dρ =

∫
Ω×[0,1]

log(b1(ω, x))dmp × µp +

∫
[1]×[0,1]

log(b1(R(ω, x)))dmp × µp

=

∫ 1

0
p log(b(0ω, x)) + (1− p) log(b(1ω, x))dµp +

∫
[1]×[0,1]

log(1)dmp × µp

=

∫ 1

0

∑
k≥2,k∈N

p log(k)1( 2
k+1

, 2
k

] + (1− p) log(k − 1)1( 2
k+1

, 2
k

]dµp.

We estimate the integral by:

c

∫ 1

0

∑
k≥2,k∈N

p log(k)1( 2
k+1

, 2
k

] + (1− p) log(k − 1)1( 2
k+1

, 2
k

]dλ

<

∫ 1

0

∑
k≥2,k∈N

p log(k)1( 2
k+1

, 2
k

] + (1− p) log(k − 1)1( 2
k+1

, 2
k

]dµp

< C

∫ 1

0

∑
k≥2,k∈N

p log(k)1( 2
k+1

, 2
k

] + (1− p) log(k − 1)1( 2
k+1

, 2
k

]dλ.

By monotone convergence we can switch the integral and sum and we obtain:∫ 1

0

∑
k≥2,k∈N

p log(k)1( 2
k+1

, 2
k

] + (1− p) log(k − 1)1( 2
k+1

, 2
k

]dλ

=
∑

k≥2,k∈N
p log(k)

2

k(k + 1)
+ (1− p) log(k − 1)

2

k(k + 1)
<∞.

Where convergence of the sum is in the same way as in theorem 4.7.1.

We continue with limn→∞
∑n
i=1 bi(x,ω)

n =∞ which we also can write as

limn→∞
∑n
i=1 b1(Ki(x,ω))

n . Let bN (ω, x) = b1(ω, x)1( 2
N+1

,1]. Then bN is bounded

and therefore it is in L1, so integrable. We apply the Birkhoff ergodic theorem:

lim
n→∞

∑n
i=1 bN (Ri(x, ω))

n
=

∫
Ω×[0,1]

bN (ω, x)dρ

=

∫
Ω×[0,1]

bN (ω, x)dmp × µp +

∫
[1]×[0,1]

bN (R(ω, x))dmp × µp

=

∫
Ω×[0,1]

bN (ω, x)dmp × µp +

∫
[1]×[0,1]

1( 2
N+1

,1]dmp × µp.

Note that bN (ω, x) ≥ 2
x − 2 > 0 for (ω, x) ∈ Ω× ( 2

N+1 , 1], therefore:∫
Ω×[0,1]

bN (ω, x)dmp × dµp >
∫

Ω×[0,1]
(
2

x
− 2)1( 2

N+1
,1]dmp × dµp

>c

∫
[0,1]

(
2

x
− 2)1( 2

N+1
,1]dλ

= [2 log x− 2x]1 2
N+1

=− 2− 2 log(
2

N + 1
)− 4

N + 1
.
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Since limN→∞ bN (ω, x) = b1(ω, x) and bN is an increasing sequence of functions
we can write:

lim inf
n→∞

∑n
i=1 bi(x, ω)

n
≥ lim inf

n→∞

∑n
i=1 bN (Ri(x, ω))

n
. (4.8.1)

The above result holds true for all N and hence:

lim inf
n→∞

∑n
i=1 bi(x, ω)

n
≥ sup

N
lim inf
n→∞

∑n
i=1 bN (Ri(x, ω))

n

= lim
N→∞

lim inf
n→∞

∑n
i=1 bN (Ri(x, ω))

n

= lim
N→∞

∫
Ω×[0,1]

bN (ω, x)dmp × dµp

= lim
N→∞

−2− 2 log(
2

N + 1
)− 4

N + 1
=∞.

What does this proposition tells us about the digits induced by the trans-
formation K? The digits of K are almost the same as the digits of R. The
only difference is that for K we take “two digits together” if we use the up-
per transformation, so we put brackets. Therefore we could not formulate a
proposition as we did for R since 1 < limn→∞(a1(x, ω), · · · , an(x, ω))

1
n < ∞

and limn→∞
∑n
i=1 ai(x,ω)

n = ∞ would not make sense if some ai are of the form
(k − 1, 1) and some of the form k. However the expansion K induces is exactly
the expansion R induces. Hence looking at expansion induced by K, we find an
exactly equal proposition.
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Chapter 5

More invariant measures

In chapter 4 we obtained results for the 2-continued fraction transformation.
A lot of these results where only existence results, since we do not know the
explicit form of the invariant measure. Moreover the results concerning digits
and entropy were mp × µp almost everywhere. So we do not know anything
about the behaviour of the 2-random continued fraction transformation on the
mp×µp null-sets. Therefore it is interesting to look for other invariant measures
for the dynamical system (Ω × [0, 1], σ(C × B[0, 1]), T ). We do this in the next
section by constructing a commuting diagram between our space Ω×[0, 2] and NN,
the space where the digits sequences induced by R live. Constructing invariant
measures on NN will give us an invariant measure on Ω× [0, 2].

5.1 Commuting diagram

In this section we want to approach the function R by the digit sequences that
it induces. Therefore we would like to find an isomorphism such that

ψ : Ω× [0, 2]→ (N ∪ {∞})N (5.1.1)

ψ(ω, x) = (b1(ω, x), b2(ω, x), · · · ). (5.1.2)

Notice that for some values in Ω × [0, 2], for example ((0, 0, · · · ), 2
k ) we get only

a finite digit sequence and ψ((0, 0, · · · ), 2
k ) /∈ (N ∪ {∞})N. Therefore we will use

the following subsets of full measure. Let

M ⊂ Ω× [0, 2], M = {(ω, x) : π2(Rn(ω, x)) 6= 0 ∀n ∈ N}

and

N ⊂ (N ∪ {∞})N, N = NN.

We will show that φ is indeed an isomorphism.

In order to do this we like to make a commuting diagram:

M
R−−−−→ Myψ yψ

N
σ−−−−→ N

Here σ denotes the left shift. We show that ψ is indeed a bijection. To do
this, we first prove the following proposition:
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Proposition 5.1.1. Let x ∈ M and let x =
2

b1 +
2

b2 +
. . .

with bi ∈ N. Then

there exists an ω ∈ Ω such that bi = di(ω, x).

To prove the above proposition we will first prove a helpful lemma.

Lemma 5.1.2. For all k ∈ N let Ik denote the interval ( 2
k+1 ,

2
k ]. Then:

1. If x ∈ I1 we have b1 = 1.

2. If x ∈ Ik for k ≥ 2 we have b1 ∈ {k − 1, k}.

Proof. Since b1 ∈ N we have that if x =
2

b1 +
2

b2 +
.. .

then, 0 < x < 2
b1
≤ 2, so

x ∈ (0, 2). For case 1 suppose x ∈ I1 = (1, 2] and b1 > 1. Then it follows that

x ≤
2

2 +
2

b2 +
.. .

< 2
2 = 1, which is a contradiction. We conclude that b1 = 1.

For case 2 we assume first that x ∈ Ik and b1 < k − 1. Then it follows that

x ≥
2

k − 2 +
2

b2 +
.. .

>
2

k − 2 + 2
=

2

k
. So x /∈ Ik and hence b1 ≥ k − 1. Now

suppose b1 > k, then x ≤
2

k + 1 +
2

b2 +
.. .

<
2

k + 1
, so x /∈ Ik. We conclude

b1 ≤ k and therefore b1 ∈ {k − 1, k}.

Now we will prove proposition 5.1.1.

Proof. Denote by xn =
2

bn +
2

bn+1 +
.. .

. Let ln(x) be a variable which counts the

number of times xi ∈ [0, 1] for 1 ≤ i ≤ n. We will show by induction that for

each x =
2

b1 +
2

b2 +
.. .

we can find ω ∈ Ω such that di(ω, x) = bi for all i ∈ N.

For the base step, note the following:

1. If x ∈ I1 = (1, 2] then by lemma 5.1.2 we have b1 = d1(x, ω) = 1 for all
ω ∈ Ω. Since x ∈ (1, 2], l1(x) = 0 and [ω]l1 = Ω.

2. If x ∈ Ik, for k ≥ 2 then we have by lemma 5.1.2 that b1 ∈ {k − 1, k}.

• If b1 = k, then we have d1(ω, x) = k for all ω ∈ [0], so we set ω1 = 0,
l1(x) = 1, since x ∈ [0, 1] and [ω]l1 = [0].
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• If b1 = k − 1, then for all ω ∈ [1] we have d1(ω, x) = k − 1, hence we
set ω1 = 1. Again l1(x) = 1, since x ∈ [0, 1], but [ω]l1 = [1].

Therefore we have found an cylinder [ω]l1 such that ∀ω ∈ [ω]l1 , d1(ω, x) = b1,
where the cylinder [ω]0 = Ω. Suppose we have found a cylinder [ω]ln such that
∀ω ∈ [ω]ln we have

(d1(ω, x), d2(ω, x), · · · , dn(ω, x)) = (b1, b2, · · · , bn).

Consider xn+1 and note that bn+1 is b1 for xn+1. If xn+1 ∈ [0, 1] we find by the
above procedure an cylinder [ω]ln+1 , such that [ω]ln+1 ⊂ [ω]ln and

(d1(ω, x), d2(ω, x), · · · , dn(ω, x), dn+1(ω, x)) = (b1, b2, · · · , bn, bn+1).

If xn+1 ∈ (1, 2], then ln+1 = ln so [ω]ln = [ω]ln+1 and we do not refine the cylinder.
Notice each time xn ∈ (1, 2] we know that xn+1 ∈ [0, 1], so ln ≥ n

2 . Therefore if
n → ∞, then ln → ∞ and [ω]ln+1 ⊂ [ω]ln . Finally we have that

⋂
n[ω]ln = {ω},

for some ω ∈ Ω. This concludes the lemma.

Remark 5.1.3. The proof of proposition 5.1.1 shows that for any continued
fraction expansion (b1, b2, · · · , bn) of x there exists an unique ω ∈ Ω, such that

(d1(ω, x), d2(ω, x), · · · ) = (b1, b2, · · · ).

♦

Now we are able to show that ψ : (Ω× [0, 2], σ(Ω× [0, 2]), µ,R)→ (NN, C, ν, σ)
is indeed an isomorphism. Recall from section 4.5 that σ(Ω× [0, 2]) is the product
σ-algebra generated by cylinder sets of the form [ω]n×∆an, which where defined
in terms of the digits induced by the transformation K. The same kind of cylinder
sets we define for the transformation R. We start with the partition:

P = {Ω× I1, [0]× Ik, [1]× Ik, k ∈ N},

which we call the time-0-partition. Let

Pn = P ∨R−1P ∨ · · · ∨R−(n−1)P

be the time-n-partition, an element of C ∈ Pn is then of the form

C = A1 ∨R−1A2 ∨ · · · ∨R−n−1An

for Ai ∈ P. For each (ω, x) ∈ C, the value ln(ω, x) =
∑n−1

i=0 1(Ω×[0,1])(R
i(ω, x))

is the same, as well as (ω1, ω2, · · · , ωln) and the first n digits in the expansion.
The elements of P are the cylinders of length 1 and the elements of Pn are the
cylinders of length n.

In contrast to the cylinders we have defined for the transformation K, we do
not work here with digits bi. This is because for each digit induced by the function
K we know precisely which ω is used. For the function R we do not know this.
For example a digit b1 = k, k ≥ 2 could be induced by R if (ω, x) ∈ [0]× ( 2

k+1 ,
2
k ]

or if (ω, x) ∈ [1]× ( 2
k+2 ,

2
k+1 ]. Clearly the cylinder sets for R induce for each ω a

partition on [0, 2] and the size of an atom of this partition goes to 0 if n → ∞,
therefore they generate σ(C × B).

We want to investigate R by its digits sequences. In order to do this we define
µ = ν ◦ ψ, where ν is a product measure on the cylinder-σ-algebra in NN. Later
in this section we will treat different measures ν.
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Proposition 5.1.4. Let M be the subset defined in the begin of this section. The
function

ψ : (M,σ(Ω× [0, 2]), µ,R)→ (NN, C, ν, σ) (5.1.3)

ψ(ω, x) = (d1(ω, x), d2(ω, x), · · · ) (5.1.4)

is an isomorphism.

Proof. To show that ψ is an isomorphism we have to prove the following proper-
ties:

1. ψ is one-to-one and onto a.e.,

2. ψ and ψ−1 are measurable,

3. ψ preserves the measures,

4. ψ preserves the dynamics of T and S.

Recall M ⊂ Ω×[0, 2], M = {(ω, x) : Rn(ω, x) 6= 0, ∀n ∈ N} and N ⊂ (N ∪ {∞})N,
N = NN. First we show that ψ is one-to-one and onto from M to N . For all
measures we treat later on, we shall show that ν(N) = µ(M) = 1. By proposition
5.1.1 we have that ψ is onto. Now we construct ψ′ : NN → Ω × [0, 2]. Given a
sequence (b1, b2, · · · ) we can show that we only have one possible value of (ω, x).

Note that given (b1, b2, · · · ) we can write rn =
2

b1 +
2

b2 +
.. . +

2

bn

. Using the

Moebius transformation we see that rn = A1 · A2 · · ·An(0), where Ai =

[
0 2
1 bi

]
and therefore rn = pn

qn
. Hence

rn =
n∑
i=1

pn
qn
− pn−1

qn−1
=

n∑
i=1

−(−2)n

qnqn−1
(5.1.5)

and limn→∞ rn =
∑∞

i=1
−(−2)n

qnqn−1
. Since |(−2)n|

qnqn−1
decreases monotonically, see section

4.1.1, we have by the alternating series test that the series 5.1.5 converges. We
conclude that for each series (b1, b2, · · · ) there exists a x such that x = limn→∞ rn.
On the other hand we have already proved in proposition 5.1.1 that there exists

an unique ω, such that x =
2

b1 +
2

b2 +
.. .

.

To show that we have constructed an inverse of ψ we have to show that

ψ ◦ ψ′ = ψ′ ◦ ψ = id,

where id denotes the identity function. Consider

ψ ◦ ψ′(b1, b2, · · · ) = ψ(ω,
2

b1 +
2

b2 +
.. .

) = (b1, b2, · · · ),
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where the last equation follows just by construction of ω and the fact that bi =
di(ω, x)
On the other hand

ψ′ ◦ ψ(ω, x) = ψ′(d1(ω, x), d2(ω, x), · · · ) = (ω,
2

d1 +
2

d2 +
.. .

).

Since ω is the unique element in Ω generating the digit sequence (d1(ω, x), d2(ω, x) · · · ),
we have ψ′ ◦ ψ(ω, x) = (ω, x)

We prove that ψ is a measurable bijection. First we proof that ψ : Ω× [0, 1]→∞
is measurable. To see this notice the following:

• If b1 6= 1 then

ψ−1([b1]) = {(ω, x) : d1(ω, x) = b1} (5.1.6)

=((
2

b1 + 1
,

2

b1
]× [0] ∪ (

2

b1 + 2
,

2

b1 + 1
]× [1]) ∩M, (5.1.7)

so ψ−1([b1]) ∈ σ(C × B).

• If b1 = 1 then

ψ−1([1]) = {(ω, x) : d1(ω, x) = 1} (5.1.8)

= ((2
3 , 1]× [1] ∪ (1, 2]× Ω) ∩M, (5.1.9)

so ψ−1([1]) ∈ σ(C × B).

By induction we show that the function is measurable. So suppose that the result
holds for cylinders of length n. Then we obtain:

ψ−1[b1, b2, · · · , bn, bn+1]

= {(ω, x) : d1(ω, x) = b1, d2(ω, x) = b2, · · · , dn(ω, x) = bn, dn+1(ω, x) = bn+1}
= {(ω, x) : d1(ω, x) = b1, d2(ω, x) = b2, · · · , dn(ω, x) = bn} ∩ {(x, ω) : dn+1(ω, x) = bn+1}
= {(x, ω) : d1(ω, x) = b1, d2(ω, x) = b2, · · · , dn(ω, x) = bn} ∩ {(x, ω) : d1(Rn(ω, x)) = b1}
=ψ−1[b1, b2, · · · , bn] ∪R−n(ψ−1[b1]) ∩M.

The last line is measurable since R is a measurable function.
Now we show that ψ−1 = ψ′ is a measurable function. Let A ∈ σ(C × B),

then since ψ is a bijection it follows.

ψ′−1A ={(b1, b2, · · · ) : ψ′(b1, b2, · · · ) ∈ A}

=
⋃
y∈A
{(b1, b2, · · · ) : ψ′(b1, b2, · · · ) ∈ {y}}

=
⋃
y∈A
{(b1, b2, · · · ) : ψ′(b1, b2, · · · ) = y}

=
⋃
y∈A
{(b1, b2, · · · ) : (b1, b2, · · · ) = ψ(y)}

=Imψ(A).

Hence to show the measurability of ψ′ it is enough to check that Im(ψ[ω]ln × ( 3
k+1

3
k ])

is in the σ-algebra generated by the cylinder sets on N. Define
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Ay,i =
⋃
n≥2[y, 1, · · · , 1︸ ︷︷ ︸

2i+1 times

, n] andAi =
⋃
n≥2[ 1, · · · , 1︸ ︷︷ ︸

2i+1 times

, n], By,i =
⋃
n≥2[y, 1, · · · , 1︸ ︷︷ ︸

2i times

, n]

and Cy,1 = (y, 1, 1, 1, · · ·︸ ︷︷ ︸
infinitely many 1’s

). Then

ψ′−1([ω]l1 ×∆k1) =ψ([ω]l1 × (
2

k1 + 1
,

2

k1
]) (5.1.10)

=


⋃
i∈N0

Bk1,i ∪ Cy,1 if k1 ≥ 2, [ω]l1 = [0]⋃
i∈NAk1−1,i ∪ Cy,1 if k1 ≥ 2, [ω]l1 = [1]⋃
i∈NAi ∪ Cy,1 if k1 = 1.

(5.1.11)

Hence ψ′−1([ω]l1 ×∆k1) ∈ C. Now suppose the result holds for sets of length n
so ψ′−1([ω]ln ×∆kn) ∈ C, we show that ψ′−1([ω]ln+1 ×∆kn+1) ∈ C. First define:

An,y,i =
⋃

(b1,··· ,bn)∈Nn

⋃
m≥2

[b1, · · · bn, y, 1, · · · , 1︸ ︷︷ ︸
2i+1 times

,m] (5.1.12)

An,i =
⋃

(b1,··· ,bn)∈Nn

⋃
m≥2

[b1, · · · bn, 1, · · · , 1︸ ︷︷ ︸
2i+1 times

,m] (5.1.13)

Bn,y,i =
⋃

(b1,··· ,bn)∈Nn

⋃
m≥2

[b1, · · · bn, y, 1, · · · , 1︸ ︷︷ ︸
2i times

,m] (5.1.14)

Cn,y,1 =
⋃

(b1,··· ,bn)

(b1, · · · , bn, y, 1, 1, 1, · · ·︸ ︷︷ ︸
infinitely many 1’s

). (5.1.15)

So we can write,

ψ′−1([ω]ln+1 ×∆kn+1) = ψ′−1([ω]ln ×∆kn) ∩ ψ′−1({(x, ω) : Rn(x, ω) ∈ [ωln+1 ]× (
2

kn
,

2

kn+1
]})

= ψ([ω]ln ×∆kn) ∩ ψ({(x, ω) : Rn(x, ω) ∈ [ωln+1 ]× (
2

kn
,

2

kn+1
]})

=


C ∩ (

⋃
i∈N0

Bkn,i ∪ Cn,y,1) if kn ≥ 2, [ωln ] = [0]

C ∩ (
⋃
i∈NAkn−1,i ∪ Cn,y,1) if kn ≥ 2, [ωln ] = [1]

C ∩ (
⋃
i∈NAn,i ∪ Cn,y,1) if kn = 1,

where C ∈ C is the element ψ′−1([ω]ln ×∆kn). We conclude that ψ′ is indeed a
measurable function.
The fact that ψ preserves measure is immediately since we defined µ = ν ◦ ψ.
Finally we have to show that σ ◦ψ is the same operation as ψ ◦R. Since σ is the
left shift we have

σ ◦ ψ(ω, x) = σ(d1(ω, x), d2(ω, x), †3(ω, x), · · · ) = (d2(ω, x), d3(ω, x), · · · )

On the other hand

ψ ◦R(ω, x) = (d1(R(ω, x)), d2(R(ω, x)), · · · ) = (d2(ω, x), d3(ω, x), · · · )

so indeed σ ◦ ψ = ψ ◦R. We conclude that ψ is indeed an isomorphism.

Now we can define measures on Ω × [0, 2] by defining measures on NN, with
the property that ν{∞} = 0, so ν(NN = 1). Such measures can be constructed by
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using some probability vector (p0, p1, · · · ) on N and by defining ν on the cylinder
sets as a product measure. So for all b1, b2, · · · , bn ∈ N,

νp({(y1, y2, · · · ) ∈ NN : y1 = b1, · · · , yn = bn}) = pb1pb2 · · · pbn .

By theorem of Caratheodory, see for example Schilling [2005] we can extend this
measure uniquely to a measure on C. Examples of probability-measures we can
choose on N to construct the product measure ν are:

• pi = 1
i(i+1) ,

• pi = e−λλi

i! , Poisson distribution,

• pi = ri, Geometric Distribution.

Since each product measure on the cylinder sets in NN is ergodic with respect
to the left shift, the above probability distributions induce an ergodic measure
ν. Therefore the measure µ = ν ◦ ψ on Ω × [0, 2] is also ergodic. However since
all the measures ν are different it follows from a standard theorem in ergodic
theory that they are singular with respect to each other. Also the measure ρ,
that we find with the help of the article of Inoue is singular with respect to these
measures. This is seen since the mean of the digits with respect to ρ is infinite
and the mean of the digits with respect to the measures ν constructed by the
above probability distributions are all finite. In general we see thus that a finite
arithmetic mean, seems to be a generic behaviour on ρ-null sets. Considering
the entropy, we see that for measures ν which give finite mean digit sequences,
the geometric measure with this mean is the measure of maximal entropy, see
subsection 2.1.4. Whether the product measure mp × µp has maximum entropy
is not known.
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Chapter 6

Case N = 3

6.1 The 3-random continued fraction transformation

We will show that the theory developed in chapter 4 can be extend to 3-random
continued fractions. We define three functions:

S0, S1, S2 :(0, 3]→ (0, 3] (6.1.1)

S0 :x→ 3

x
−
⌊

3

x

⌋
(6.1.2)

S1 :x→

{
3
x − b

3
xc+ 1 if x ∈ (0, 11

2 ]
3
x − b

3
xc if x ∈ (11

2 , 3]
(6.1.3)

S2 :x→

{
3
x − b

3
xc+ 2 if x ∈ (0, 1]

3
x − b

3
xc if x ∈ (1, 3].

(6.1.4)

We will refer to S0 as the lower map, to S1 as the middle map and S2 as the
upper map. Let Ω = {0, 1, 2}N and define the function R as follows:

R : Ω× [0, 3]→ Ω× [0, 3], (6.1.5)

R(ω, x) =


(σω, Sω1(x)) if x ∈ (0, 11

2 ]

(ω, Sω1(x)) if x ∈ (11
2 , 3]

(σω, 0) if x = 0.

(6.1.6)

Figure 6.1 illustrates the transformationR. NoticeR does not shift ω, if x ∈ (11
2 , 3].

In the area (11
2 , 3] the three maps S0, S1 and S2 coincide and therefore we do not

have to choose which map we use. Like we did in the caseN = 2, we will define the
transformation K : Ω× [0, 1]→ Ω× [0, 1] as the induced function RΩ×[0,1](ω, x).
In order to do this we introduce the return time

τ : Ω× [0, 1]→ N,
(ω, x)→ inf{n ∈ N : Rn(ω, x) ∈ Ω× [0, 1]}.

First let us have a look at the function R. The return time τ will be treated
in the next section. As before denote the digits of R by:

b1(ω, x) =



1 x ∈ (11
2 , 3]

k x ∈ ( 3
k+1 ,

3
k ] ω1 = 0, k ∈ N , k ≥ 2

k − 1 x ∈ ( 3
k+1 ,

3
k ] ω1 = 1, k ∈ N, k ≥ 2

k − 2 x ∈ ( 3
k+1 ,

3
k ] ω1 = 2, k ∈ N, k ≥ 3

2 x ∈ (1, 11
2 ] ω1 = 2

(6.1.7)
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0

1

1

2

2 33
2

3
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3
5

3
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3
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3
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τ = 2

τ = 1

τ = 2

τ = 3

τ = 4

Figure 6.1 – Map T0 in green, T1 in red and T2 in blue.
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And we define bn(ω, x) = b1(Rn−1(ω, x)). We will show that we can use R to
expand x in the following way.

x =
3

b1 +
3

b2 +
3

b3 +
3

. . .

(6.1.8)

Let π2 denote the projection on the second coordinate, then we can write

π2(R(ω, x)) =
3

x
− b1(ω, x). (6.1.9)

Hence,

x =
3

b1 + π2(R(ω, x))
. (6.1.10)

Continuing this way we find

x =
3

b1 +
3

b2 +
3

b3 +
3

. . . +
3

bn + π2(Rn(ω, x))

.

Let pn
qn

denote the partial quotients of x, so

pn
qn

=
3

b1 +
3

b2 +
3

b3 +
3

. . . +
3

bn

.

Like we did for K, we can define matrices Mn and Bn for the transformation
R(ω, x).

Let Bn =

[
0 3
1 bn

]
and Mn = B1 ·B2 · · ·Bn. So

Mn = Mn−1Bn (6.1.11)[
rn pn
sn qn

]
=

[
rn−1 pn−1

sn−1 qn−1

] [
0 3
1 bn

]
(6.1.12)[

rn pn
sn qn

]
=

[
pn−1 3rn−1 + bnpn−1

qn−1 3sn−1 + bnqn−1

]
. (6.1.13)

We obtain the following recurrence relations:

p−1 = 1 p0 = 0 pn = 3pn−2 + bnpn−1, (6.1.14)

q−1 = 0 q0 = 1 qn = 3qn−2 + bnqn−1. (6.1.15)

Using the recursion relation we can derive some estimates for pn and qn.
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Proposition 6.1.1. Let pn and qn be defined as above. If n = 2k + 1 for k ∈ N,
k ≥ 2 then pn ≥ 4k and qn ≥ 4k. If n = 2k then pn ≥ 4k and qn ≥ 4k.

Proof. We prove this statement by induction. Note p1 = 3, p2 ≥ 3, p3 ≥ 12 and
p4 ≥ 21 and q1 = 1 ≥ 1, q2 ≥ 4, q3 ≥ 7 and q4 ≥ 19. Hence we have the basestep.
Now suppose the result holds true for all n ≤ N and let N be odd. Then:

pN+1 = p2k ≥3p2(k−1) + p2(k−1)+1

=3 · 4k−1 + 4k−1

=4 · 4k−1 = 4k.

In the case N is even we obtain:

pN+1 = p2k+1 ≥3p2(k−1)+1 + p2k

=3 · 4k−1 + 4k

≥4k.

We conclude that pn ≥ 4n for all n ∈ N. The proof for qn follows in the same
way.

Proposition 6.1.2. limn→∞ |x− pn
qn
| = 0.

Proof. Like we did in the case N = 2 we can use the Moebius transformations to
express x as follows,

x = Mn(π2(Rn(ω, x)))

=
pn + pn−1(π2(Rn(ω, x)))

qn + qn−1(π2(Rn(ω, x)))
.

Notice that detBn = −3 and hence detMn = (−3)n. Using this and proposition
6.1.1 we obtain: ∣∣∣∣x− pn

qn

∣∣∣∣ =

∣∣∣∣ detMn ·Rn(ω, x)

qn(qn + qn−1(π2(Rn(ω, x))))

∣∣∣∣ (6.1.16)

≤ 3n+1

q2
n

(6.1.17)

≤ 27 · (3

4
)n−2. (6.1.18)

Hence we see that limn→∞

∣∣∣x− pn
qn

∣∣∣ = 0 and we can expand x like equation

6.1.8.

Finally we prove a proposition about the relation between pn and qn.

Proposition 6.1.3. Let pn and qn be defined as above, then pn(ω, x) = 3qn−1(R(ω, x))
for n ∈ N, n ≥ 2.

Proof. Note

p1(ω, x) = 3p−1(ω, x) + b1(ω, x)p0 = 3

and

q0(R(ω, x)) = 1.
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Furthermore

p2(ω, x) = 3p0(ω, x) + b2(ω, x)p1(ω, x) = 3b2(ω, x).

Now

q1(R(ω, x)) = 3q−1(R(ω, x)) + b1(R(ω, x))q0(R(ω, x)) = b1(R(ω, x)) = b2(ω, x)

so the induction step is fine. Suppose the result holds for n ≤ N then we find:

pN+1(ω, x) =3pN−1(ω, x) + pN (ω, x)bN+1(ω, x) (6.1.19)

=3qN−2(R(ω, x)) + qN−1(R(ω, x))bN (R(ω, x)) (6.1.20)

=qN (R(ω, x)) (6.1.21)

and therefore the proposition is proved.

6.1.1 The return time

To derive an explicit expression for the induced function K : Ω× [0, 1]→ Ω× [0, 1]
we need an explicit expression for the return time τ . Recall

τ : Ω× [0, 1]→ N,
(ω, x)→ inf{n ∈ N : Rn(ω, x) ∈ Ω× [0, 1]}.

Looking at figure 6.1 we see for points in [0, 1] that if we use the lower transfor-
mation we end up in [0, 1]. If we use the upper transformation we end up in [2, 3].
But from figure 6.1 it is also clear that S0[2, 3] = S1[2, 3] = S2[2, 3] = [0, 1

2 ]. So
starting with the upper transformation on Ω× [0, 1] we will be back in Ω× [0, 1]
in two steps. We obtain:

τ(ω, x) =

{
1 if ω1 = 0

2 if ω1 = 2.
(6.1.22)

For ω1 = 1, we start with the middle transformation and τ(ω, x) = n for some
n ∈ N, n ≥ 2. Note that when (ω, x) enters the region (1, 11

2), it can stay there
for a very long time if we use only the middle transformation S1, i.e. ωi = 1 for
1 ≤ i ≤ n, n ∈ N large. We can get an idea how long a point (ω, x) will stay in
(1, 11

2). Suppose (ω, x) ∈ Ω× (1, 11
2), then there are two ways for (ω, x) to leave

Ω × (1, 11
2). The first way is using the upper or lower transformation instead of

the middle transformation. Let ωn+1 be the smallest coordinate of ω such that
ωn+1 6= 1, so π1(Rn(ω, x)) = ωn+1 6= 1. Then

Rn+1(ω, x) = (σ(π1R
n(ω, x), S0(π2R

n(ω, x))) = (σ(π1R
n(ω, x), S2(π2R

n(ω, x))).

Since S0(0, 3] = (0, 1] and S2(1, 3] = (0, 1] it follows that Rn+1(ω, x) ∈ Ω× [0, 1].
Recall we assumed that π2(Rn(ω, x)) ∈ (1, 11

2) for all 0 ≤ i ≤ n, hence we
see τ(ω, x) = n + 1 For the second option notice that S1(1, 11

2 ] = (1, 2] and
Si[1

1
2 , 2] ⊂ [0, 1] for i ∈ {0, 1, 2}. Hence if Rn(ω, x) = (σn(ω), Sn1 (x)) it could

occur that Si1(ω, x) ∈ Ω × [1, 11
2 ] for 1 ≤ i ≤ n − 1, Sn1 (x) ∈ [11

2 , 2]. Then
Rn+1(ω, x) ∈ Ω × [0, 1]. Note that the transformation S1 has one fixed point

in (1, 11
2 ], namely x = −1

2 + 1
2

√
13. Also note that |dS1(x)

dx | =
3
x2 ∈ (11

3 , 3) if
x ∈ (11

2 , 2], so S1(x) is expanding. Therefore intuitively for each

x ∈ (11
2 , 2]\{−1

2 + 1
2

√
13} there exists a n ∈ N such that Sn1 (x) ∈ [11

2 , 2] and
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hence Sn+1
1 (x) ∈ [0, 1].

From the above discussion we see that the function τ has the following properties:

τ(ω, x) =



1 if ω1 = 0, x ∈ [0, 1]

2 if ω1 = 2, x ∈ [0, 1]

n+ 1 if (ω1, ω2, · · · , ωn−1, ωn, ωn+1) ∈ {(1, 1, . . . , 1︸ ︷︷ ︸
n times

, 0), (1, 1, . . . , 1︸ ︷︷ ︸
n times

, 2)}

and x ∈ ∩ni=1S
−i
1 (1, 11

2) ∩ [0, 1]

n+ 1 if (ω1, ω2, · · · , ωn−1, ωn) = (1, 1, . . . , 1)︸ ︷︷ ︸
n times

and x ∈ ∩n−1
i=1 S

−i
1 (1, 11

2) ∩ S−n1 (11
2 , 2] ∩ [0, 1]

Now we like to know what the sets

∩ni=1S
−i
1 (1, 1

1

2
) ∩ [0, 1] (6.1.23)

and

∩n−1
i=1 S

−i
1 (1, 1

1

2
) ∩ S−n1 (1

1

2
, 2] ∩ [0, 1] (6.1.24)

look like. Like we did in section 4.1.1, we can write

x =
pn + pn−1S

n
1 (x)

qn + qn−1Sn1 (x)
.

Recall that
pn + pn−1S

n
1 (x)

qn + qn−1Sn1 (x)

is a monotone function in Sn1 (x). Since Sn1 (x) ∈ (1, 11
2) if x ∈ ∩ni=1S

−i
1 (1, 11

2) ∩ [0, 1],
it follows that x is in an interval with endpoints

pn + pn−1

qn + qn−1
and

pn + 11
2pn−1

qn + 11
2qn−1

.

If n is odd this is the interval(
pn + 11

2pn−1

qn + 11
2qn−1

,
pn + pn−1

qn + qn−1

)

and if n is even we find (
pn + pn−1

qn + qn−1
,
pn + 11

2pn−1

qn + 11
2qn−1

)
.

On the other hand when x is in such an interval, then x has digits

(b1, b2, · · · , bn) = (k − 1, 1, · · · , 1)

if we only us the middle transformation S1. Hence we can use the recursion
relations to find the intervals 6.1.23 and 6.1.24. First we write:

∩ni=1S
−i
1 (1, 1

1

2
) = S−1

1 (∩n−1
i=0 S

−i
1 (1, 1

1

2
)) = S−1

1 In,
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where In = (∩n−1
i=0 S

−i
1 (1, 11

2)). By the discussion above we know for some
pn, pn−1, qn, qn−1 which satisfy the recursion relations,

In =

(
pn−1 + 11

2pn−2

qn−1 + 11
2qn−2

,
pn−1 + pn−2

qn−1 + qn−2

)

if n− 1 is odd, so n even and

In =

(
pn−1 + pn−2

qn−1 + qn−2
,
pn−1 + 11

2pn−2

qn−1 + 11
2qn−2

)

if n is odd. Therefore if x ∈ In, then x, S1(x), · · · , Sn−1
1 (x) are all in (1, 11

2). If
(ω, x) ∈ [1, · · · , 1︸ ︷︷ ︸

n times

]× S−1
1 In, then τ(ω, x) > n. Suppose

(ω, x) ∈ [ 1, · · · , 1︸ ︷︷ ︸
n+1 times

]× S−1
1 (In\In+1),

then Sn+1
1 (ω, x) ∈ (11

2 , 2) and hence τ(ω, x) = n+ 2. Let Jn denote the interval
Jn = In\In+1. Then S−1

1 Jn = S−1
1 (In\In+1) and

Jn =

(
pn−1 + 11

2pn−2

qn−1 + 11
2qn−2

,
pn−1 + pn−2

qn−1 + qn−2

)∖(
pn + pn−1

qn + qn−1
,
pn + 11

2pn−1

qn + 11
2qn−1

)

when n is even and

Jn =

(
pn−1 + pn−2

qn−1 + qn−2
,
pn−1 + 11

2pn−2

qn−1 + 11
2qn−2

)∖(
pn + 11

2pn−1

qn + 11
2qn−1

,
pn + pn−1

qn + qn−1

)

when n is odd. If x ∈ In×[1, · · · , 1]︸ ︷︷ ︸
n times

then (b1, b2, · · · , bn) = (1, 1, · · · , 1). Therefore

the recursion relations satisfy

pn + pn−1 = 3pn−2 + 2pn−1 = 2(pn−1 + 1
1

2
pn−2)

and in the same way

qn + qn−1 = 2(qn−1 + 1
1

2
qn−2).

Hence
pn + pn−1

qn + qn−1
=
pn−1 + 11

2pn−2

qn−1 + 11
2qn−2

.

so

Jn =

(
pn−1 + pn−2

qn−1 + qn−2
,
pn + 11

2pn−1

qn + 11
2qn−1

]
for n is odd and

Jn =

[
pn + 11

2pn−1

qn + 11
2qn−1

,
pn−1 + pn−2

qn−1 + qn−2

)
for n is even. For example
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n pn qn In Jn
-1 1 0 - -
0 0 1 - [11

2 , 2]
1 3 1 (1, 11

2) (1, 6
5 ]

2 3 4 (6
5 ,

3
2) [15

11 ,
3
2)

3 12 7 (6
5 ,

15
11) (6

5 ,
33
26 ]

4 21 19 (33
26 ,

15
11) (78

59 ,
15
11 ]

Hence for (ω, x) ∈ [1]× (S−1
1 Jn ∩ [0, 1]) we have that

τ(ω, x) = min{n+ 2, inf{i : ωi 6= 1}}.

So determining S−1
1 Jn ∩ [0, 1] we know τ(ω, x) exactly for each x ∈ Ω × [0, 1].

Note that if x ∈ ( 3
k+1 ,

3
k ] then S1(x) = 3

x − (k − 1) and hence for n is even:

S−1
1 (Jn) ∩

(
3

k + 1
,

3

k

]
=

{
x ∈

(
3

k + 1
,

3

k

]
:

3

x
− (k − 1) ∈ Jn

}
pn + 11

2pn−1

qn + 11
2qn−1

<
3

x
− k + 1 <

pn−1 + pn−2

qn−1 + qn−2

pn + 11
2pn−1 + (k − 1)(qn + 11

2qn−1)

qn + 11
2qn−1

<
3

x
<
pn−1 + pn−2 + (k − 1)(qn−1 + qn−2)

qn−1 + qn−2

3(qn + 11
2qn−1)

pn + 11
2pn−1 + (k − 1)(qn + 11

2qn−1)
>x >

3(qn−1 + qn−2)

pn−1 + pn−2 + (k − 1)(qn−1 + qn−2)

3
pn+1 1

2
pn−1

qn+1 1
2
qn−1

+ (k − 1)
>x >

3
pn−1+pn−2

qn−1+qn−2
+ (k − 1)

pn + pn−1

qn + qn−1
<x <

pn+1 + 11
2pn

qn+1 + 11
2qn

From this we see each interval ( 3
k+1 ,

3
k ] contains exactly one sub-interval with

return time τ = n + 2 when ω = ( 1, · · · , 1︸ ︷︷ ︸
n−1 times

, · · · ), i.e. when we only use the

middle transformation S1. Notice that for each x ∈ [0, 1], x ∈ S−1
1 Ji for some i.

Therefore the intervals S−1
1 Ji∩( 3

k+1 ,
3
k ] give a partition of [0, 1]. Moreover we have

some more structure. Consider the intervals S−1
1 In, they contain the x ∈ [0, 1]

for which at least S1(x), · · · , Si1(x) ∈ [1, 11
2 ]. So by definition of S−1

1 (In) we see

S1(S−1
1 (In)) = S−1

1 In−1,

S2
1(S−1

1 (In)) = S−1
1 (S−1

1 (In−1)) = S−1
1 (In−2)

and so on. In the same way we see S1(Jn) = Jn−1 and in general Sk1 (Jn) = Jn−l
for 1 ≤ l ≤ n. Notice that on S−1

1 Jn ∩ ( 3
k+1 ,

3
k ] we have that S1 is monotone

on S−1
1 Jn ∩ ( 3

k+1 ,
3
k ] for all n ∈ Nn≥0. Hence also Sl1 for l ≤ n is monotone on

S−1
1 Jn ∩ ( 3

k+1 ,
3
k ], since a composition of monotone functions is monotone. The

same holds for Sl1 on the intervals In, l ≤ n.

6.1.2 The induced transformation

Let K(ω, x) be the induced function of R, so we define K : Ω× [0, 1]→ Ω× [0, 1]
by (ω, x) → Rτ(ω,x)(ω, x). Let us see what K(ω, x) looks like. If ω1 = 0 then
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τ(ω, x) = 1 and hence K(ω, x) = (σ(ω), S0(x)). If ω1 = 2 then τ(ω, x) = 2 and
therefore K(ω, x) = (σ(ω), S0 ◦ S2(x)). In fact in this case we have

S0 ◦ S2(x) = S1 ◦ S2(x) = S2
2(x)

and hence we shift ω only once. When ω1 = 1 the situation becomes more difficult.
In order to give an explicit formula for K(ω, x) we will first define functions Ti.

Ti : [0, 1]→ [0, 1]

T0(x) =S0(x) =
3

x
−
⌊

3

x

⌋
T1(x) =S0 ◦ S2(x) =

3
3
x −

⌊
3
x

⌋
+ 2
− 1

T(2,i)(x) =

{
S0 ◦ Si+1

1 (x) if x ∈ S−1
1 Ji for i ∈ N ∪ {0}

2x otherwise

T(3,i)(x) =

{
S0 ◦ Si1(x) if x ∈ S−1

1 Ii for i ∈ N
2x otherwise

Note that
S0 ◦ S2(x) = S1 ◦ S2(x) = S2 ◦ S2(x),

S0 ◦ Si+1
1 (x) = S1 ◦ Si+1

1 (x) = S2 ◦ Si+1
1 (x)

if x ∈ S−1
1 Ji for i ∈ N ∪ {0} and

S0 ◦ Si1(x) = S2 ◦ Si1(x)

if x ∈ S−1
1 Ii for i ∈ N. We let 2x occur in both T(2,i) and T3,i with probability 0.

So this transformation 2x will in fact never occur, but it just helpful to satisfy
the conditions of Inoue’s theorem, see section 3.2. Note that we can write for the
last two transformations:

T(2,i)(x) =


3

Si+1
1 (x)

− 1 if x ∈ S−1
1 Ji

2x otherwise

T(3,i)(x) =


3

Si1(x)
− 2 if x ∈ S−1

1 Ii

2x otherwise

Given a probability vector (p0, p1, p2) on{0, 1, 2} we define a probability vector
for the transformations T0, T1, T(2,i), T(3,i), i ∈ N. We set:

P(T0) =p0 (6.1.25)

P(T1) =p2 (6.1.26)

P(T(2,i))(x) =pi+1
1 1S−1

1 Ji
(x) (6.1.27)

P(T(3,i))(x) =pi1(1− p1)1S−1
1 Ii

(x) (6.1.28)

Now let x ∈ Ji, so x ∈ Ik for 1 ≤ k ≤ i. Then it follows that

p0 + p2 + pi+1
1 + (1− p1)

i∑
j=1

pj1 = p0 + p2 + pi+1
1 + p1 − pi+1

1 = 1.
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Hence we see that for each x ∈ [0, 1] we get a well defined probability vector.
Now we can give an explicit expression for the transformation K.

K(ω, x) =


(σ(ω), T0(x)) if ω1 = 0

(σ2(ω), T1(x)) if ω1 = 2

(σi+1(ω), T(2,i)(x)) if ωj = 1 ∀1 ≤ j ≤ i+ 1 and x ∈ S−1
1 (Ji)

(σi+1(ω), T(3,i)(x)) if ωj = 1 ∀1 ≤ j ≤ i, ωi+1 ∈ {0, 2} and x ∈ S−1
1 In

(6.1.29)

.
We can define digits for K in a similar way we did in chapter 2, namely:

di(ω, x) =



k if ω1 = 0 and x ∈ ( 3
k+1 ,

3
k ]

(k − 2, 1) if ω1 = 2 and x ∈ ( 3
k+1 ,

3
k ]

(k − 1, 1, · · · , 1︸ ︷︷ ︸
n times

, 1) if ω ∈ [1, · · · , 1︸ ︷︷ ︸
n times

] and x ∈ ( 3
k+1 ,

3
k ] ∩ S−1

1 Jn

(k − 1, 1, · · · , 1︸ ︷︷ ︸
n−1 times

, 2) if ω ∈ [1, · · · , 1︸ ︷︷ ︸
n times

, 0] ∪ [1, · · · , 1︸ ︷︷ ︸
n times

, 2]

and x ∈ ( 3
k+1 ,

3
k ] ∩ S−1

1 In

(6.1.30)

Notice that it makes no sense to define fundamental intervals by its digit se-
quences. Suppose we have a digit (3, 1), then we do not know if this is (5− 2, 1),
so x ∈ [2] × (3

6 ,
3
5 ] or (4 − 1, 1),so x ∈ [1] × (3

5 ,
3
4 ] ∩ S−1

1 (J0). Hence we can not
deduce which ω is used. However we could define a generating partition as we
shall see in section 6.3.

6.1.3 Existence of an invariant measure

Again we will apply theorem 3.2.6 in section 3.2. We start with defining interval
partitions for each maps T0, T1, T2,i, T3,i. We set

{I0,k} = {I2,k} = {( 3

k
,

3

k + 1
], k ∈ N, k ≥ 3}

and

{I(2,i),k} = {( 3

k + 1
,

3

k
] ∩ S−1

1 Ji, (
3

k + 1
,

3

k
] ∩ (S−1

1 Ji)
c, k ∈ N, k ≥ 3},

{I(3,i),k} = {( 3

k + 1
,

3

k
] ∩ S−1

1 Ii, (
3

k + 1
,

3

k
] ∩ (S−1

1 Ii)
c, k ∈ N, k ≥ 3}.

Where ( 3
k+1 ,

3
k ] ∩ (S−1

1 Ii)
c and ( 3

k+1 ,
3
k ] ∩ (S−1

1 Ji)
c denote the intervals in the

complement of ( 3
k+1 ,

3
k ] ∩ (S−1

1 Ii) and ( 3
k+1 ,

3
k ] ∩ (S−1

1 Ji). We check whether the
functions are monotone and C1 on the intervals. To do this we compute the
derivatives of the Ti. We find:

dT0

dx
=
−3

x2

dT1

dx
=

9

(3− (k − 2)x)2

dT(2,i)

dx
=


dS0◦Si+1

1 (x)
dx = d

dx
3

Si+1
1 (x)

− 1 = −3
(Si+1

1 (x))2

dSi+1
1 (x)
dx if x ∈ S−1

1 Ji

2 otherwise

dT(3,i)

dx
=

{
dS0◦Si1(x)

dx = −3
Si1(x)2

dSi1(x)
dx if x ∈ S−1

1 Ii

2 otherwise.
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From this it immediately follows that T0 is monotone and C1 on the intervals
{I0, k}. The same holds for T1 since for each k ≥ 3, k ∈ N, we see that T ′1(x) > 0
and continuous on ( 3

k+1 ,
3
k ]. T(2,i)(x) is a composition of monotone functions on

J(2,i),k and hence monotone, see the end of section 6.1.1. The derivative is a prod-
uct of compositions of continuous function on J(2,i),k and therefore continuous.
By the same reasoning we see that the functions T(3,i) are continuously differen-
tiable and monotone on the intervals {I(3,i),k}.

For condition 2 we have to show that the functions

g(t, x) =
pt

|Tt(x)′|
,

for t ∈ {0, 1, (2, i), (3, i), i ∈ N} satisfy

sup
x∈[0,1]

∑
t

g(t, x) <∞.

Since
dT0

dx
=
−3

x2

it follows that

g(0, x) =
p0x

2

3
<
p0

3

for all x ∈ [0, 1]. For t = 1,

g(1, x) =
∞∑
k≥3

p2(3− (k − 2)x)2

9
1( 3

k+1
, 3
k

]

and hence for x ∈ ( 3
k+1 ,

3
k ) we find using the monotonicity of T2 on ( 3

k+1 ,
3
k ] :

p2(3− 3(k−2)
k )2

9
<g(1, x) <

p2(3− 3(k−2)
k+1 )2

9

p2( 6
k )2

9
<g(1, x) <

p2( 9
k+1)2

9
4p2

k2
<g(1, x) <

9p2

(k + 1)2

g(1, x) <
9

16
p2.

Where in the last equation we used that k ≥ 3 if x ∈ [0, 1].
Now we look at the functions g((2, i), x), which are given b.

g((2, i), x) =


pi+1

1

| d
dx

3

Si+1
1 (x)

−1| if x ∈ S−1
1 Ji

0 otherwise.

Note that

d

dx

3

Si+1
1 (x)

− 1 = −3
(Si+1

1 (x))2

d
dxS

i+1
1 (x) (6.1.31)

= −3
(Si+1

1 (x))2

−3
(Si1(x))2

d
dxS

i
1(x) (6.1.32)

... (6.1.33)

= −3
(Si+1

1 (x))2
· · · −3

(S1(x))2
d
dxS1(x) (6.1.34)

= −3
(Si+1

1 (x)))2
· · · −3

(S1(x))2
−3
x2 . (6.1.35)
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Hence

g((2, i), x) =
pi+1

1 (Si+1
1 (x))2 · · · (S1(x))2x2

3i+2
.

Since x ∈ S−1
1 Ji ∩ [0, 1], Sj1(x) ∈ (1, 11

2) for 1 ≤ j ≤ i and Si+1
1 ∈ (11

2 , 2) we
obtain

g((2, i), x) <
4pi+1

1 · (9
4)i

3i+2
=

4pi+1
1

9

(
3

4

)i
.

Finally we consider

g((3, i), x) =
pi1(1− p1)

| ddx
3

Si1(x)
− 2|

1Ii .

Note that
d

dx

3

Si1(x)
− 2 =

−3

(Si1(x))2
· −3

(Si−1
1 )2

· · · −3

(S1(x))2

−3

x2

and again Si1 ∈ (1, 11
2) and x ∈ [0, 1]. Hence:

g((3, i), x) =
pi1(1− p1)(Si1(x))2 · · · (S1(x))2 · x2

3i+1

<
pi1(1− p1)(9

4)i

3i+1

<
pi1(1− p1)

3

(
3

4

)i
.

Therefore we can compute supx∈[0,1]

∑
t g(t, x),

sup
x∈[0,1]

∑
t

g(t, x) = sup
x∈[0,1]

(g(0, x) + g(1, x) +
∑
i∈N

g((2, i), x)1Ji(x)

+
∑
i∈N

g((3, i), x)1Ii(x))

<
p0

3
+

9

16
p2 + sup

i≥0

4pi+1
1

9

(
3

4

)i
+ sup

i≥1

i∑
j=1

pj1(1− p1)

3

(
3

4

)j
=
p0

3
+

9

16
p2 +

4p1

9
+ sup

i≥1

1− p1

3

3p1

4

1− (3p1

4 )i

1− 3p1

4

<
p0

3
+

9

16
p2 +

4p1

9
+
p1

3

<
1

3
p0 +

9

16
p2 +

7

9
p1

<1.

Finally we have to check that the functions g(t, x) are of bounded variation
and that their variation can be bound uniformly. Since g(0, x) is monotone on
[0, 1], it is of bounded variation. For g(1, x) we already saw for x ∈ ( 3

k+1 ,
3
k ) that

4p2

k2
< g(1, x) <

9p2

(k + 1)2
(6.1.36)

Since g(1, x) is continuous and monotone on ( 3
k+1 ,

3
k ) we obtain:

∨
[0,1]

g(1, x) =

∞∑
k=3

9p2

(k + 1)2
− 4p2

k2
<∞. (6.1.37)
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Where the convergence follows from the convergence of
∑

n∈N
1
n2 .

We will proof that we can bound the variation of the functions g(2,i)(x) uni-
formly. Recall

g((2, i), x) =
pi+1

1 (Si+1
1 (x))2 · · · (S1(x))2x2

3i+1
1S−1

1 Ji
.

We will apply theorem 2.3.3 which tells us∨
[a,b]

(f · g) ≤ A
∨
[a,b]

f +B
∨
[a,b]

g (6.1.38)

where A = sup{|g(x)| : x ∈ [a, b]} and B = sup{|f(x)| : x ∈ [a, b]}. We set

f =
pi1(Si1(x))2 · · · (S1(x))2

3i+1
and let h(x) = x2,

so g((2, i), x) = f(x) · h(x). By 6.1.38 it follows that:∨
[0,1]

g(2,i)(x) =
∑
k≥2

∨
S−1

1 Ji∩( 3
k+1

, 3
k

]

g(2,i)(x) (6.1.39)

≤
∑
k≥2

A
∨

S−1
1 Ji∩( 3

k+1
, 3
k

]

f(x) +B
∨

S−1
1 Ji∩( 3

k+1
, 3
k

]

h(x) (6.1.40)

So here

A = sup

{
|x2| : x ∈ S−1

1 Ji ∩ (
3

k + 1
,

3

k
]

}
≤ 9

k2

and

B = sup

{
|f(x)| : x ∈ S−1

1 Ji ∩ (
3

k + 1
,

3

k
]

}
.

Note that (Sl1(x))2 ≤ 9
4 for 1 ≤ l ≤ i and Si+1

1 (x) ≤ 4 since we are in Ji. Therefore

sup

{∣∣∣∣pi1(Si1(x))2 · · · (S1(x))2

3i+1

∣∣∣∣ : x ∈ S−1
1 Ji ∩ (

3

k + 1
,

3

k
]

}
≤

4 · (9
4)i · pi1

3i+1
<

4

3
.

We also know ∨
S−1

1 Ji∩( 3
k+1

, 3
k

]

h(x) <
9

k2

since h(x) = x2 is monotone on S−1
1 Ji ∩ ( 3

k+1 ,
3
k ]. Hence our estimate is reduced

to ∨
S−1

1 Ji

g(2,i)(x) ≤
∑

k≥2
9
k2

∨
S−1

1 Ji∩( 3
k+1

, 3
k

]
f(x) + 4

3
9
k2 . (6.1.41)

Therefore we only have to show that we can bound
∨
S−1

1 Ji∩( 3
k+1

, 3
k

]
f(x) uni-

formly for all i. To do so we use lemma 2.3.6. S1(x) is a monotone function on

S−1
1 Ji ∩ ( 3

k+1 ,
3
k ], since it is monotone on ( 3

k+1 ,
3
k ]. We write

f(x) = f(S1(x)) =
pi+1

1 (Si1(S1(x)))2 · · · (S1(x))2

3i+2
.

75



CHAPTER 6. CASE N = 3

Let S1(x) = y then it follows that

∨
S−1Ji∩( 3

k+1
, 3
k

]

f(x) ≤
∨
Ji

f(y) =
∨
Ji

pi+1
1 (Si1(y))2 · · · (y)2

3i+2
.

Therefore we see that we can estimate
∨
S−1Ji∩( 3

k+1
, 3
k

]
f(x) independent of k.

Recall that by definition of Ji we have

S1(Ji) = Ji−1, S
2
1(Ji) = S1

1(Ji−1) = Ji−2

and so on. So Sl1(Ji) = Jn−l. S1(x) is monotone on [1, 3
2 ] and therefore Sl1(x) is

monotone on Ji, since it is a composition of continuous functions and Sl1(Ji) ⊂ [1, 3
2 ]

for all 1 ≤ l ≤ i− 1. Therefore it also follows that (Sl1(y))2 ≤ 9
4 for all y ∈ Ji and

0 ≤ l ≤ n− 1. Now we are going to use

∨ i∏
l=1

fl ≤ C
i∑
l=1

∨
fl,

for a finite family of uniformly bounded fl and C ∈ R, see lemma 2.3.4. Let

fl = (Si−1
1 (y))2

for 1 ≤ l ≤ i. We have Sl1(Ji) = Ji−l, and Sl1 is monotone and positive on Ji. Let
a, b be the endpoints of the interval Ji−l , then we obtain∨

Ji

(Sl1)2 = |a2 − b2| = |a− b||a+ b| ≤ 3λ(Ji).

Hence we need to know λ(Ji).

Lemma 6.1.4. For the intervals In as defined before we have λ(In) ≤ 3 · (3
4)n

and λ(Jn) ≤ 3 · (3
4)n−1.

Proof. Recall In is an interval with endpoints pn+pn−1

qn+qn−1
and

pn+1 1
2
pn−1

qn+1 1
2
qn−1

. Hence

λ(In) =

∣∣∣∣∣pn + pn−1

qn + qn−1
−
pn + 11

2pn−1

qn + 11
2qn−1

∣∣∣∣∣ (6.1.42)

=

∣∣∣∣∣(pn + pn−1)(qn + 11
2qn−1)− ((pn + 11

2pn−1)(qn + qn−1))

(qn + qn−1)(qn + 11
2qn−1)

∣∣∣∣∣ (6.1.43)

=

∣∣∣∣∣pn−1qn + pn11
2qn−1 − pnqn−1 − 11

2pn−1qn

(qn + qn−1)(qn + 11
2qn−1)

∣∣∣∣∣ (6.1.44)

=
1
2 |detMn|

(qn + qn−1)(qn + 11
2qn−1)

≤ 3 · 3n−1

4n−1
. (6.1.45)

Where in the last step we used that detMn = (−3)n and qn ≥ 4b
n
2
c. Hence

we conclude In ≤ 3 · (3
4)n−1. Since Jn = In\In+1 it follows immediatly that

λ(Jn) ≤ 3 · (3
4)n.
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Therefore
∨
Ji

(Si−1
1 (y)) · · · (S1(y))2y2 ≤ (9

4)i−1
∑i−1

l=1 9 · (3
4)l. We have

f =

(
pi+1

1 (Si1(y))2

3i+2

)
· ((Si−1

1 (y))2 · · · (S1(y))2y2)

and

sup
Ji

((Si−1
1 (y)) · · · (S1(y))2y2) ≤ (

9

4
)i−1

and

sup
Ji

(
pi+1

1 (Si1(y))2

3i+2

)
≤
(

4pi+1
1

3i+2

)
and by monotonicity also

∨
Ji

(
pi+1

1 (Si1(y))2

3i+2

)
≤
(

4pi+1
1

3i+2

)
.

Using 6.1.38 again we find:

∨
Ji

f ≤ 4 · p
i+1
1

3i+1
(
9

4
)i−1 + 4

pi+1
1

3i+1
(
9

4
)i−1

i−1∑
l=1

9 · (3

4
)l (6.1.46)

≤ 4 · p
i+1
1

3i+1
(
9

4
)i−1 + 4

pi+1
1

3i+1
(
9

4
)i−1 · 9

1− 3
4

. (6.1.47)

Hence if i→∞ we see that
∨
Ji
f → 0. Therefore we can bound the function

(g(2, i)) uniformly by a constant M .

In the same way we can bound the variation of the functions g(3, i) uniformly
and therefore all conditions of the Inoue theorem are satisfied. Hence we find an
invariant measure µp for K, which is absolutely continuous with respect to the
Lebesgue measure and which is of bounded variation. In the next section we will
consider this measure µp.

6.2 Properties of the invariant measure

We will show now some properties of the invariant measure in the case N = 3.
We will mostly copy the results of the case N = 2 to obtain the results for the
case N = 3.

By the article of Inoue Inoue [2012] we find an absolute continuous density
hp with respect to the Lebesque measure, so we can write,

µp(A) : =

∫
[0,1]

(p01A(T0(x)) + p21A(T1(x)) + p11S1−1J0(x)1A(T(2,0)(x))

+
∞∑
i=1

[
pi+1

1 1S−1
1 Ji

(x)1A(x)(T(2,i)(x)) + (1− p1)pi+1
1 1S−1

1 Ii
(x)1A(T(3,i)(x))

]
hpdλ

= p0µp(T
−1
0 A) + p2µp(T

−1
1 A) + p1µp(T

−1
(2,0)A ∩ S

−1
1 J0)

+

∞∑
i=1

[
pi+1

1 µp(T
−1
(2,i)A ∩ S

−1
1 Ji) + (1− p1)pi1µp(T

−1
(3,i)A ∩ S

−1
1 Ii)

]
.
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Where we have used monotone convergence to switch the sum and integral.
Let [ω1, · · · , ωn] be a cylinder in Ω and (a, b) ⊂ [0, 1] an interval. The cylinders
[ω1, · · · , ωn]× (a, b) generate σ(C × B([0, 1])). Note that

K−1([ω1, · · · , ωn]× (a, b)) =[0, ω1, · · · , ωn]× T−1
0 (a, b) ∪ [2, ω1, · · · , ωn]× T−1

1 (a, b)

∪ [1, ω1, · · · , ωn]× T−1
(2,0)(a, b) ∩ S

−1
1 J0

∪
∞⋃
i=1

[1, · · · , 1︸ ︷︷ ︸
i+1 times

, ω1, · · · , ωn]× T−1
(2,i)((a, b)) ∩ S

−1
1 Ji

∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 0, ω1, · · · , ωn]× T−1
(3,k)((a, b)) ∩ S

−1
1 Ii

∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 2, ω1, · · · , ωn]× T−1
(3,k)((a, b)) ∩ S

−1
1 Ii.

In the same way as in section 4.4 we find:

(mp × µp)
(
K−1([ω1, · · · , ωn]× (a, b))

)
= p0mp([ω1, · · · , ωn])µp(T

−1
0 (a, b)) + p2mp([ω1, · · · , ωn])µp(T

−1
1 (a, b))

+ p1mp([ω1, · · · , ωn])µp(T
−1
1 (a, b) ∩ S−1

1 J1)

+

∞∑
i=0

pi+1
1 mp([ω1, · · · , ωn])µp(T

−1
(2,i)(a, b) ∩ S

−1
1 Ji)

+
∞∑
i=0

p0p
k
1mp([ω1, · · · , ωn])µp(T

−1
(3,k)(a, b) ∩ S

−1
1 Ji)

+
∞∑
i=0

p2p
k
1mp([ω1, · · · , ωn])µp(T

−1
(3,k)(a, b) ∩ S

−1
1 Ji)

= mp([ω1, · · · , ωn])×mp((a, b)).

To obtain more properties of the measure mp × µp we construct the random
Perron Frobenius operator with respect to the random transformation T . Recall
the interval partitions we made.

{I0,k} = {I2,k} = {( 3

k
,

3

k + 1
], k ∈ N, k ≥ 3}

and

{I(2,i),k} = {( 3

k + 1
,

3

k
] ∩ S−1

1 Ji, (
3

k + 1
,

3

k
] ∩ (S−1

1 Ji)
c, k ∈ N, k ≥ 3},

{I(3,i),k} = {( 3

k + 1
,

3

k
] ∩ S−1

1 Ii, (
3

k + 1
,

3

k
] ∩ (S−1

1 Ii)
c, k ∈ N, k ≥ 3}.

Where ( 3
k+1 ,

3
k ]∩(S−1

1 Ii)
c and ( 3

k+1 ,
3
k ]∩(S−1

1 Ji)
c denote the intervals in the com-

plement. Let J(i,k) = S−1
1 Ji ∩ ( 3

k+1 ,
3
k ) and I(i,k) = S−1

1 Ii ∩ ( 3
k+1 ,

3
k ) Using these
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intervals we obtain the following Perron-Frobenius operator,

PT f(y) =
∞∑
k=3

p0f(T−1
(0,k)(y))

∣∣∣∣∣ 1

T ′(0,k)(T
−1
(0,k)(y))

∣∣∣∣∣
+ p0f(T−1

(1,k)(y))

∣∣∣∣∣ 1

T ′(1,k)(T
−1
(1,k)(y))

∣∣∣∣∣1[0, 1
2

](y)

+

∞∑
i=0

1Ji,k(T−1
((2,i),k)(y))pi+1

1 f(T−1
((2,i),k)(y))

∣∣∣∣∣ 1

T ′(1,k)(T
−1
(1,k)(y))

∣∣∣∣∣1T(2,i)(int(Ji,k))(y)

+

∞∑
i=0

1Ii,k(T−1
((3,i),k)(y))pi1(1− p1)f(T−1

((3,i),k)(y))

∣∣∣∣∣ 1

T ′(1,k)(T
−1
(1,k)(y))

∣∣∣∣∣1T(3,i)(int(Ii,k))(y).

By theory of Perron Frobenius operators we can also construct PTnf(y).
Working out PTnf(y) would be rather tedious, and in fact we do not need a
explicit construction of PTnf(y). What we need is that for a positive function f,

PTnf(y) =
∞∑
k=3

pn0f(T−n(0,k)(y))

∣∣∣∣∣ 1

Tn
′

(0,k)(T
−n
(0,k)(y))

∣∣∣∣∣+ other positive terms (6.2.1)

Let us see whether we can use the proofs of chapter 2. We change proposition
4.4.1 a little bit to obtain the following proposition.

Proposition 6.2.1. Let I ⊂ [0, 1] be a non-trivial open interval. Then there
exists an ω ∈ Ω, such that (0, 1) ⊂ (Tωn ◦ · · · ◦ Tω1)I ⊂ [0, 1].

Proof. Let J ⊂ [0, 1] be a non-trivial open interval and write J = (c, d). Suppose
∃k ∈ N, such that 1

k ∈ (c, d). Then T0(c, d) = [0, a) ∪ (b, 1) and T 2
0 (c, d) = [0, 1).

Therefore it is enough to show that for J ⊂ [0, 1] a non-trivial open interval there
exists an n ∈ N such that 1

k ∈ T
n(c, d). Notice that

λ(T0(c, d)) =
3

c
− 3

d
=

3(c− d)

cd
> λ(c, d).

Hence in the same way as in proposition 4.4.1 of chapter 4 we find an n ∈ N
such that Tn0 (c, d) = [0, 1). Therefore each ω ∈ [0, · · · , 0︸ ︷︷ ︸

n times

] can be the ω of the

proposition.

Using the properties of the Perron Frobenius operator we copy the proof of
proposition 4.4.2 in chapter 4 to obtain the following result.

Proposition 6.2.2. Let hp be the probability density function from Theorem
3.2.6, then hp > 0.

We also obtain again proposition 4.4.4.

Proposition 6.2.3. The density function hp is bounded from above and form
below.

And therefore we conclude.

Corollary 6.2.4. The measure µp is equivalent to the Lebesgue measure and
there exists a c ∈ R such that for allB ∈ B we have cλ(B) < µp(B) < 1

cλ(B).
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Figure 6.2 – Partition of Ω× [0, 3]
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kτ = 3τ = 2 τ = 5τ = 4

[1, 0]× I1 ∪ [1, 2]× I1[1]× J0

[1, 1, 0]× I2 ∪ [1, 1, 2]× I2 [1, 1]× J1

[1, 1, 1, 0]× I3 ∪ [1, 1, 1, 2]× I3[1, 1, 1]× J2

τ = 4

τ = 3

τ = 2

Figure 6.3 – A more detailed picture of the partition of [1]× [0, 1], we enlarged the
area in the blue circle

80



6.3. ERGODIC PROPERTIES IN THE CASE N = 3

6.3 Ergodic properties in the case N = 3

Let us see whether we can define fundamental intervals as we did in the case
N = 2. In case N = 2 we defined these intervals by the digits of K and we could
find ω from the digits of K. Suppose we like to do this for the case N = 3 and we
encounter an fundamental interval (3, 1). Now we never know whether we started
with (ω, x) ∈ [2]× (3

6 ,
3
5 ] or we started in (ω, x) ∈ [1]× (3

5 ,
3
4 ] ∩ S−1

1 J0. Therefore
these intervals do not give a nice generating partition of our space Ω × [0, 1].
Hence we will define another “fundamental” partition P to generate our space.
Our partition P is defined as follows,

P ={[0]× (
3

k + 1
,

3

k
], k ∈ N, k ≥ 3} ∪ {[2]× (

3

k + 1
,

3

k
], k ∈ N, k ≥ 3}

∪ {[1, 1, · · · , 1]︸ ︷︷ ︸
i+1 times

×S−1
1 Ji ∩ (

3

k + 1
,

3

k
], i ∈ Nn≥0, k ∈ N, k ≥ 3}

∪ {[1, · · · , 1︸ ︷︷ ︸
i times

, 0]× S−1
1 Ii ∩ (

3

k + 1
,

3

k
], i ∈ N, k ∈ N, k ≥ 3}

∪ {[1, · · · , 1︸ ︷︷ ︸
i times

, 2]× S−1
1 Ii ∩ (

3

k + 1
,

3

k
], i ∈ N, k ∈ N, k ≥ 3}.

This partition is shown in figure 6.2. Note that

|P| = |N|+ |N|+ |N× N|+ |N× N|+ |N× N| = N,

so we have a countable partition. Using this partition we define the cylinders as
follows. Cylinders of length one are the elements of P, the cylinders of length n
are the elements of:

n−1∨
i=0

K−1P = P ∨K−1P ∨ · · · ∨Kn−1P (6.3.1)

An element of
∨n−1
i=0 K

−1P is of the form A0∩K−1A1∩ · · ·∩Kn−1An1 , where
Ai ∈ P for 0 ≤ i ≤ n−1. Notice that on each set Ai ∈ P we have that K is mono-
tone and C1. Also τ(ω, x), takes only one value. In fact this partition just incorpo-
rates the interval partitions {I(0,k)}, {I(1,k)}, {I(2,i),k} and {I(3,i),k}. Moreover we
have that eachAi ∈ P has the form of a product set [ω]m×(a, b) for a, b ∈ [0, 1] and
m ∈ N. So m denotes the number of coordinates of [ω] that are fixed. For exam-
ple if A = [0]× ( 3

k+1 ,
3
k ] then m = 1, but if A = [1, 1, 1, 1, 1]× S−1

1 (J4) ∩ ( 3
k+1 ,

3
k ]

then m = 5. Let Bn be a set of the form A0 ∩ K−1A1 ∩ · · · ∩ K−nAn, where
each Ai ∈ P. For each (ω, x) ∈ Ai, Ai ∈ P the return time τ(ω, x) is fixed and
also τ(ω, x) digits are fixed. Suppose we know (ω, x) ∈ Bn, what do we know
about the digits of (ω, x) induced by K? Notice these are the same digits as
induced by R only with some parentheses. If for example (ω, x) ∈ [2]× ( 3

k+1 ,
3
k ],

then there are two digits “fixed”, namely d1(ω, x) = k − 2 and d2(ω, x) = 1. If
(ω, x) ∈ [2]×( 3

k1+1 ,
3
k1

)∩K−1([1, 0]×(S−1
1 I1∩( 3

k2+1 ,
3
k2

])), then d1(ω, x) = k1−2,
d2(ω, x) = 1, d3(ω, x) = k2 − 1 and d4(ω, x) = 2, so 4 digits are fixed. In general
for each (ω, x) ∈ Bn ñ(ω, x) =

∑n−1
i=0 τ(Ki(ω, x)), is fixed and hence ñ digits are

fixed. This is because each time we apply R we obtain a digit and τ(ω, x) is just
the number of times we apply R. Finally we notice that Bn is an intersection of
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unions of product sets. However since A0 is a product set and K is monotone on
A0, so we see Bn is a product set itself. Hence we can write Bn = [ω]m× (a, b) for
a, b ∈ [0, 1]. Can we say something about m? At least we know that the number
of ω fixed is more then the number of times K is applied, because K shifts at
least one time. On the other hand it is smaller then the number of times R is
applied, because R does not shift ω each time. Hence we obtain n ≤ m ≤ ñ.

6.3.1 Length of the interval

Let Bn be defined as above. If Bn = [ω]m × [a, b], can we say something about
[a, b]? We already saw that Bn fixes ñ digits. Hence using the transformation R
and the recursion relations we can see how large the interval [a, b] is with respect
to the Lebesgue measure. Since K(ω, x) ∈ [0, 1] we obtain these intervals are
intervals with endpoints pñ

qñ
and

pñ+pñ−1

qñ+qñ−1
. So the Lebesgue measure of such an

interval will be ∣∣∣∣pñqñ − pñ + pñ−1

qñ + qñ−1

∣∣∣∣ =
3ñ

qñ(qñ + qñ−1)
.

Notice

lim
ñ→∞

3ñ

qñ(qñ + qñ−1)
= 0,

since the qñ ≥ 4b
ñ
2
c sequence. Therefore the intervals associated with K will go

to zero if n→∞.

6.3.2 Generating properties of the partition

In this section we will use some shorter notation for sets of our partition P.
We denote by Ii,k = S−1

1 (Ii) ∩ ( 3
k+1 ,

3
k ] and by Ji,k = S−1

1 (Ji) ∩ ( 3
k+1 ,

3
k ]. Let

C denote the cylinder sets in {0, 1, 2}N and B[0, 1] the Borel-σ-algebra restricted
to [0, 1]. Note that C × [0, 1] ⊂ σ(

∨∞
i=0K

−iP), by taking suitable unions. By
theorem 4.5.1, we also have Ω× B[0, 1] ⊂ σ(

∨∞
i=0K

−iP). Using that σ-algebra’s
are closed under taking intersections it follows that C×B ⊂ σ(

∨∞
i=0K

−iP). Since
(
∨∞
i=0K

−iP) ⊂ σ(C × B) we conclude that
∨∞
i=0K

−iP is a generating partition.
Like lemma 4.5.2, we can estimate the elements of σ(C × B) by finite unions of∨∞
i=0K

−1P. We show that X = Ω × [0, 1] can be estimated for some I,K ∈ N
by

K⋃
k≥3

[0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 2]× Ii,k.
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To see this, let ε > 0.

mp × µp(Ω× [0, 1]\
∞⋃
k≥3

[0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 2]× Ii,k)

= mp × µp(
∞⋃
k≥3

∞⋃
i=I

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 2]× Ii,k)

=
∞∑
i=I

mp × µp(
∞⋃
k≥3

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 2]× Ii,k)

≤
∞∑
i=I

pi1

Since p1 < 1 the sum
∑∞

i=1 p
i
1 converges and therefore we can choose I such that∑∞

i=I p
i
1 < ε/4. Hence

mp × µp(Ω× [0, 1]∆
∞⋃
k≥3

[0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
itimes

, 2]× Ii,k) < ε/4
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Now we can find K as desired in the following way

mp × µp(
∞⋃
k≥3

[0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1 times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 2]× Ii,k

∆

K⋃
k≥3

[0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1 times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 2]× Ii,k)

= mp × µp(
∞⋃
K

[0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1 times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 2]× Ii,k)

≤
∞∑
K

mp × µp([0]× (
3

k + 1
,

3

k
] ∪ [2]× (

3

k + 1
,

3

k
]

∪
I⋃
i=1

[1, · · · , 1, 1]︸ ︷︷ ︸
i+1 times

×Ji,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 0]× Ii,k ∪ [1, · · · , 1︸ ︷︷ ︸
i times

, 2]× Ii,k)

≤
∞∑
k=K

3µp((
3

k + 1
,

3

k
)

= 3µp[0,
3

K
].

Since the µp is equivalent to the Lebesgue measure it follows that by choosing
K large enough, we get µp[0,

3
K ] < ε/4. Finally using

mp × µp(A∆C) ≤ mp × µp(A∆B) +mp × µp(B∆C),

we see that we indeed can estimate Ω × [0, 1] by a finite union. Estimating the
same way, we can proceed the proof like we did in lemma 4.5.2.

Also lemma 4.5.3 holds true by the same proof. Hence we are left to show
that the cylinders are mixing. However the proof in case N = 2 can also be
generalized to N = 3. Since the essence of the proof is the same we state just the
result here.

Proposition 6.3.1. The map K is mixing.

6.4 Invariant measure for R

Like we did in the case N = 2 we can find an invariant measure for R in terms
of the invariant measure for K. Recall this measure is given by.

ρ(E) = 1∫
Ω×[0,1] τ(ω,x)dmp×µp(ω,x)

∑∞
n=0mp × µ({(ω, x) ∈ Ω× [0, 1]; τ(ω, x) > n} ∩R−n(E))
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We check whether this measure is well defined. Using the product property
of mp × µp and µp(J) ≤ 1 for J ∈ B[0, 1] we can write:∫

Ω×[0,1]
τ(ω, x)dmp × µp

=

∫
[0]×[0,1]

τ(ω, x)dmp × µp +

∫
[1]×[0,1]

τ(ω, x)dmp × µp

+

∫
[2]×[0,1]

τ(ω, x)dmp × µp

= p0 + 2p2 +

∫
[1]×[0,1]

τ(ω, x)dmp × µp

= p0 + 2p2 +
∞∑
n=2

n · (mp × µp(S−1
1 Jn−2 × [ 1, · · · , 1︸ ︷︷ ︸

n−1 times

])

mp × µp(S−1
1 In−1 × [ 1, · · · , 1︸ ︷︷ ︸

n−1 times

, 0]) +mp × µp(S−1
1 In−1 × [ 1, · · · , 1︸ ︷︷ ︸

n−1 times

, 2]))

= p0 + 2p2 +
∞∑
n=2

npn−1
1 µp(S

−1
1 Jn−2) + n(1− p1)pn−1

1 µp(S
−1
1 In−1)

≤ p0 + 2p2 +

∞∑
n=2

npn−1
1 + n(1− p1)pn−1

1

<∞.

Therefore ρ(E) is well defined. We will show that ρ is ergodic.

Proposition 6.4.1. The measure ρ is ergodic with respect to the transformation
R.

Proof. By theorem 2.1.9 we have to prove that ρ
(⋃

k≥0R
−k(Ω× [0, 1])

)
= 1.

Each time (ω, x) ∈ Ω × [0, 3
2 ], R shifts ω one coordinate to the left, but if

(ω, x) ∈ [3
2 , 3] R does not shift ω. When we apply R j times, the number of times

ω is shifted equals m(j) =
∑j−1

k=0 1Ω×[0, 3
2

](R
k(ω, x)). Since Rk−1(ω, x) ∈ Ω× [3

2 , 3]

implies Rk(ω, x) ∈ Ω× [0, 1] we obtain j
2 ≤ ñ(j) ≤ j.

Consider the set {ω : ∀ i ∈ N ωi 6= 0}. We have

mp({ω : ∀ i ∈ N ωi 6= 0}) ≤ (1− p0)n

for all n ∈ N, so {ω : ∀ i ∈ N ωi 6= 0} is a mp−null set.
Let (ω, x) ∈ {ω : ∀ i ∈ N ωi 6= 0}c × [0, 3], so there exists a smallest i such that
ωi = 0. Then there exists a j such that m(j) = i. Hence

Rj(ω, x) = (σi(ω), S0(π2(R(ω, x))) ∈ Ω× [0, 1],

since S0[0, 3] = [0, 1]. We conclude (ω, x) ∈
⋃
k≥0R

−k(Ω× [0, 1]) and hence

{ω : ∀ i ∈ N ωi 6= 0}c × [0, 3] ⊂
⋃
k≥0

R−k(Ω× [0, 1]).
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Now

ρ({ω : ∀ i ∈ N ωi 6= 0}c × [0, 3])

= 1− ρ({ω : ∀ i ∈ N ωi 6= 0} × [0, 3])

= 1− 1∫
Ω×[0,1] τ(ω, x)dmp × µp(ω, x)

·

∞∑
n=0

mp × µp({(ω, x) ∈ Ω× [0, 1]; τ(ω, x) > n} ∩R−n({ω : ∀ i ∈ N ωi 6= 0} × [0, 3])).

Note

R−n({ω : ∀ i ∈ N ωi 6= 0} × [0, 3]) = {(ω, x) : Rn(ω, x) ∈ {ω : ∀ i ∈ N ωi 6= 0} × [0, 3]}
= {(ω, x) : ωi 6= 0 for i > m(n), x ∈ [0, 3]}.

Hence

mp × µp(R−n({ω : ∀ i ∈ N ωi 6= 0} × [0, 3]))) = 0

and therefore by definition of ρ we see ρ({ω : ∀ i ∈ N ωi 6= 0} × [0, 3]) = 0. We

conclude that ρ
(⋃

k≥0R
−k(Ω× [0, 1])

)
= 1 and hence that ρ is ergodic with re-

spect to R.

Finally we show that we can integrate by ρ as follows:

ρ(f) =
1∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)
[

∫
Ω×[0,1]

f(x)dmp × dµp

+

∫
[1]∪[2]×[0,1]

f(R(ω, x))dmp × µp

+
∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 In

f(Rn(ω, x))dmp × dµp].

Like we did in the case N = 2 we will prove this by “standard machinary”. Let

86
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f be an indicator function then:

ρ(E) =

∫
Ω×[0,3]

1Edρ

=

∑∞
n=0mp × µp({(ω, x) ∈ Ω× [0, 1]; τ(ω, x) > n} ∩R−n(E))∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)

=
1∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)
[

∫
Ω×[0,1]

1E(x)dmp × dµp

+

∫
[1]∪[2]×[0,1]

1E(R(ω, x))dmp × dµp

+
∞∑
n=2

∫
{(ω,x):τ(ω,x)>n}

1E(Rn(ω, x))dmp × dµp]

=
1∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)
[

∫
Ω×[0,1]

1E(x)dmp × dµp

+

∫
[1]∪[2]×[0,1]

1E(R(ω, x))dmp × µp

+

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 In

1E(Rn(ω, x))dmp × dµp].

In particular the sum in the last equation is finite, since the integrals in the
sum can be dominated by pn1 . By linearity of the integral the result holds also
for finite simple functions. Now let f ∈ L1(ρ) be a positive function, then we
can find a sequence of positive finite simple functions such that fk+1 ≥ fk and
limk→∞ fk = f . Using the same strategy as in the case N = 2 we obtain by
monotone convergence:

∞ > ρ(f) = lim
k→∞

ρ(fk)

= lim
k→∞

1∫
Ω×[0,1] τ(ω, x)dmp × µp(ω, x)

[

∫
Ω×[0,1]

fk(x)dmp × dµp

+

∫
[1]∪[2]×[0,1]

fk(R(ω, x))dmp × µp

+

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 In

fk(R
n(ω, x))dmp × dµp]

=
1∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)
[

∫
Ω×[0,1]

f(x)dmp × dµp

+

∫
[1]∪[2]×[0,1]

f(R(ω, x))dmp × µp

+ lim
k→∞

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 In

fk(R
n(ω, x))dmp × dµp].
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Hence we are left to show:

lim
k→∞

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)

fk(R
n(ω, x))dmp × dµp

=
∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)

f(Rn(ω, x))dmp × dµp.

Since f → fk ρ − a.e, there exists an set Y ⊂ Ω × [0, 3] such that for all
(ω, x) ∈ Y we have limk→∞ fk(ω, x) = f(ω, x) and ρ(Y ) = 1. Note that for all
n ∈ N and for all (ω, x) ∈ R−n(Y c) we have limk→∞ fk(R(ω, x)) = f(R(ω, x)).
Since ρ is an R-invariant measure ρ(Y ) = ρ(R−nY ) = 1. Therefore
limk→∞ fk ◦Rn = f ◦Rnρ− a.e.. If ρ(Y ) = 1, then ρ(Y c) = 0 so

1∫
Ω×[0,1] τ(ω, x)dmp × µp(ω, x)

∞∑
n=0

mp×µp({(ω, x) ∈ Ω×[0, 1]; τ(ω, x) > n}∩R−n(Y c)) = 0.

Hence

mp × µp([1, · · · , 1︸ ︷︷ ︸
n times

]× S−1
1 (In) ∩R−n(Y c)) = 0

for all n ∈ N. Therefore

lim
n→∞

fk(ω, x) = f(ω, x) ρ− a.e.

implies

lim
k→∞

fk(R
n(ω, x))1[1, · · · , 1︸ ︷︷ ︸

n times

×S−1
1 (In)]

= f(Rn(ω, x))1[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In) mp × µp − a.e.

Let ν denote the counting measure. Then we can write:

lim
k→∞

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)

fk(R
n(ω, x))dmp × dµp

= lim
k→∞

∫
N

∫
Ω×[0,1]

fk(R
n(ω, x))1[1, · · · , 1︸ ︷︷ ︸

n times

]×S−1
1 (In)dmp × µpdν.

Let

Gk =

∫
Ω×[0,1]

fk(R
n(ω, x))1[1, · · · , 1︸ ︷︷ ︸

n times

]×S−1
1 (In)dmp × µp

and

G =

∫
Ω×[0,1]

f(Rn(ω, x))1[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)dmp × µp.
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Since fk ↑ f mp × µp − a.e. we have by monotone convergence that Gk ↑ G.
Applying monotone convergence once more yields

lim
k→∞

∫
N
Gk(n)dν =

∫
N
G(n)dν. (6.4.1)

Inserting the definition of G we obtain:

lim
k→∞

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)

fk(R
n(ω, x))dmp × dµp (6.4.2)

=

∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)

f(Rn(ω, x))dmp × dµp. (6.4.3)

Suppose f ∈ L1, then we can write f = f+−f−, for f+ and f− both positive
functions. By linearity of the integral we obtain the result for f . Therefore we
conclude that

ρ(f) =
1∫

Ω×[0,1] τ(ω, x)dmp × µp(ω, x)
[

∫
Ω×[0,1]

f(x)dmp × dµp

+

∫
[1]∪[2]×[0,1]

f(R(ω, x))dmp × µp

+
∞∑
n=2

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 In

f(Rn(ω, x))dmp × dµp].

6.5 Existence of the limn→∞ log qn

We show that also in the case N = 3, the limit limn→∞
log qn
n exists.

Proposition 6.5.1. Let qn be the denominators of the partial fraction pn
qn

induced

by the transformation R, see section 6.1. Then limn→∞
log qn
n < ∞ exists and is

finite.

Proof. We can proof this exactly in the same way as we did for the case N = 2,
since we have propositions 6.1.1 and 6.1.2. The only difference is that we do not
estimate the terms of the rest term r(n, ω, x) by the Fibonnacci sequence, but we
estimate them by the geometric series with common ratio 3

4 . Hence we are left
to compute the integral

∫
Ω×[0,3] log(π2(ω, x))dρ.∫

Ω×[0,3]
log(π2(ω, x))dρ =∫

Ω×[0,1]
log(π2(ω, x))dmp × dµp +

∫
[1]∪[2]×[0,1]

log(π2(R(ω, x)))dmp × dµp

+

∞∑
n=1

∫
[1, · · · , 1︸ ︷︷ ︸
n times

]×S−1
1 (In)

log(π2(Rn(ω, x)))dmp × dµp

=

∫
Ω×[0,1]

log(x)dµp +

∫
[0,1]

p1 log(S1(x)) + p2 log(S2(x))dµp

+

∞∑
n=1

∫
S−1

1 In

pn1 log(Sn1 (x))dµp.
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Notice that if x ∈ [0, 1] then S1(x) ∈ [1, 2] and S2(x) ∈ [2, 3], therefore
0 ≤ log(S1(x)) ≤ log 2 and log 2 ≤ log(S2(x)) ≤ log 3. If x ∈ In then Sn1 (x) ∈ [1, 11

2 ]
and therefore 0 ≤ log(Sn1 (x)) ≤ log 11

2 . Using this and cλ < µp < Cλ, we see:

−C ≤
∫

Ω×[0,3]
log(π(ω, x))dρ

≤ −c+ p1 log 2 + p2 log 3 + C
∞∑
n=1

∫
S−1

1 In

pn1 log

(
3

2

)
dλ

≤ −c+ p1 log 2 + p2 log 3 + C

∞∑
n=1

pn1 log

(
3

2

)
<∞.

Where in the last equation we used p1 < 1, thus
∑∞

n=1 p
n
1 log(3

2) converges.

Proposition 6.5.2. Let qn be the denominators of the partial fractions pn
qn

in-

duced by the transformation K, see section 6.1. Then limn→∞
log qn
n <∞.

Proof. Since
∫

Ω×[0,1] τ(ω, x)dρ converges, the proof is identically to the proof of
the case N = 2.

Let P be the partition as defined in section 6.3. We define the information
function I∨n−1

i=0 K−1P by:

I∨n−1
i=0 K−1P : Ω× [0, 1]→ R (6.5.1)

I∨n−1
i=0 K−1P(ω, x) =

∑
A∈

∨n−1
i=0 K−iP

1A(ω, x) log(mp × µp(A)). (6.5.2)

Then we can proof the following proposition:

Proposition 6.5.3. limn→∞ I∨n−1
i=0 K−1P(ω, x) exists.

Again this proof follows in the same way as the proof of 4.6.3 in the case
N = 2. We already know that an element of A ∈

∨n−1
i=0 K

−1P, can be writ-

ten as A = [ω]m × (a, b), where (a, b) is an interval of length 3ñ

qn(qn+qn−1) and

ñ = ñ(ω, x) =
∑n−1

i=0 τ(Ki(ω, x)) for (ω, x) ∈ A. Therefore we can write

lim
n→∞

I∨n−1
i=0 K−1P(ω, x) = lim

n→∞
logmp([ω]m(ω)) + log(µp(a, b)(x)). (6.5.3)

For the first term we see:

lim
n→∞

logmp([ω]m(ω)) = lim
n→∞

m

n

1

m

m∑
i=0

log(p
1(ω1=0)(σ

i(ω)

0 ) + log(p
1(ω1=1)(σ

i(ω)

1 )

+ log(p
1(ω1=2)(σ

i(ω))

2 ).

Since n ≤ m ≤ ñ we see that 1 < limn→∞
m
n < limn→∞

ñ
n . By the Birkhoff

ergodic theorem we have

ñ(ω, x)

n
=

1

n

n−1∑
i=0

τ(Ki(ω, x)) =

∫
Ω×[0,1]

τ(ω, x)d(ω, x) <∞.
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Notice that since n ≤ m ≤ ñ, we have that if n → ∞, then m → ∞. Therefore
by the Birkhoff ergodic theorem we see that

lim
m→∞

1

m

m∑
i=0

log(p
1(ω1=0)(σ

i(ω))

0 ) + log(p
1(ω1=1)(σ

i(ω))

1 ) + log(p
1(ω1=2)(σ

i(ω))

2 )

=

∫
Ω

1{ω1=0}(σ
i(ω)) log(p0) + 1{ω1=1}(σ

i(ω)) log(p1) + 1{ω1=2}(σ
i(ω)) log(p2)dmp

= p0 log(p0) + p1 log(p1) + p2 log(p2).

The proof of existence of limn→∞ log(µp(a, b)) is the same as the proof of the
case N = 2 and hence we refer to 4.6.3. Therefore we conclude that

lim
n→∞

1

n
I∨n−1

i=0 K−1P(ω, x)

exists and is finite.

6.6 Entropy

Using the Shannon-McMillan-Breiman Theorem, 2.1.15 with our generating par-
tition P, see section 6.3 and proposition 6.5.3 we can compute the entropy of
the transformation K. We already saw that the partition P is countable and
generates σ(C × B[0, 1]). Hence we have to show that H(P) <∞.

Proposition 6.6.1. Let P be defined as in section 6.1, then H(P) <∞.

Proof. Let Ii,k = S−1
1 (Ii) ∩ ( 3

k+1 ,
3
k ] and Ji,k = S−1

1 (Ji) ∩ ( 3
k+1 ,

3
k ]. Then

H(P) = −
∑

[ω]m×(a,b)∈P

mp × µp([ω]m × (a, b)) log (mp × µp([ω]m × (a, b)))

= −(
∞∑
k=1

p0µp((
3

k + 1
,

3

k
]) log(µp((

3

k + 1
,

3

k
]))

+
∞∑
k=3

p2µp((
3

k + 1
,

3

k
]) log(µp((

3

k + 1
,

3

k
]))

+
∞∑
i=0

∞∑
k=3

pi+1
1 µp(Ji,k) log(pi+1

1 µp(Ji,k))

+

∞∑
i=0

∞∑
k=3

pi1p0µp(Ii,k) log(pi1p0µp(Ii,k))

+

∞∑
i=1

∞∑
k=3

pi1p2µp(Ii,k) log(pi1p2µp(Ii,k))).

Using the equivalence of µp with the Lebesgue measure we can show

∞∑
k≥3

3p0

k(k + 1)
log(

3p0

k(k + 1)
) +

∞∑
k≥3

3p2

k(k + 1)
log(

3p2

k(k + 1)
) <∞

in the same way we did for the case N = 2, see the proof of proposition 4.7.1.
Therefore we are left to show the convergence of the last three sums. Recall that

Ji,k =

(
S−1 1Ji ∩ (

3

k + 1
,

3

k
]

)
=

 3
pn−1+pn−2

qn−1+qn−2
+ (k − 1)

,
3

pn+1 1
2
pn−1

qn+1 1
2
qn−1

+ (k − 1)
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for n even and the other way around for n odd, see section 6.1. Hence by equiv-
alence of µp with λ, we can estimate µp(Ji,k) by

C · λ

 3
pn−1+pn−2

qn−1+qn−2
+ (k − 1)

,
3

pn+1 1
2
pn−1

qn+1 1
2
qn−1

+ (k − 1)


= C ·

3(
pn+1 1

2
pn−1

qn+1 1
2
qn−1

+ (k − 1))− 3(pn−1+pn−2

qn−1+qn−2
+ (k − 1))

(
pn+1 1

2
pn−1

qn+1 1
2
qn−1

+ (k − 1))(pn−1+pn−2

qn−1+qn−2
+ (k − 1))

≤ 3C · λ(Jn)

(k − 1)2
<

3 · (3
4)n · C

(k − 1)2
.

Where in the last step we used lemma 6.1.4. Computing the third sum we obtain:

∞∑
i=0

∞∑
k=3

pi+1
1 µp(Ji,k) log(pi+1

1 µp(Ji,k))

≤ C ·
∞∑
k=2

∞∑
i=0

pi+1
1

3 · (3
4)i+1

(k − 1)2
log(pi+1

1

3 · (3
4)i+1

(k − 1)2
)

= C ·
∞∑
k=2

∞∑
i=0

pi+1
1

3 · (3
4)i+1

(k − 1)2
· [(i+ 1) log(p1) + log(3)

+ (i+ 1) log(
3

4
)− 2 log(k − 1)]

= C ·
∞∑
k=2

1

(k − 1)2

∞∑
i=0

3(i+ 1) log(p1) · (3p1

4
)i+1

+ C ·
∞∑
k=2

1

(k − 1)2

∞∑
i=0

3 log(3) · (3p1

4
)i+1

+ C ·
∞∑
k=2

1

(k − 1)2

∞∑
i=0

3(i+ 1) log(
3

4
) · (3p1

4
)i+1

+ C ·
∞∑
k=2

−2 log(k − 1)

(k − 1)2

∞∑
i=0

3 · (3p1

4
)i+1

= C ·
∞∑
k=2

D1 +D2 +D3

(k − 1)2
+
−2 log(k − 1)

(k − 1)2
<∞.

Where D1, D2, D3 are the first three sums over i in the second line. Hence we
have found convergence of the third sum. The convergence of the fourth and fifth
sum can be seen in the same way. Therefore we conclude that our partition P
has finite entropy.

Theorem 6.6.2. The transformations K and R have finite entropy.

Proof. Since H(P) < ∞ we can apply Shannon-McMillan-Breiman. Therefore
by proposition 6.5.3 we obtain that the entropy of K is finite. Using Abramov’s
formula we find the same result for the transformation R.
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6.7 Convergence of the digits

Finally we show some results about the digits induced by the transformation R.
It turns out that exactly the same results hold for the case N = 3 as for the case
N = 2.

Proposition 6.7.1. For ρ− a.e.(ω, x) ∈ Ω× [0, 1], we have

1 < lim
n→∞

(b1(x, ω), · · · , bn(x, ω))
1
n <∞

and

lim
n→∞

∑n
i=1 bi(x, ω)

n
=∞.

We start with the geometric mean. From the proof of proposition 4.8.1 we
know it is enough to show that

∫
Ω×[0,3] log(b1(ω, x))dρ < ∞. Computing the

integral gives:∫
Ω×[0,3]

log(b1(ω, x))dρ =

∫
Ω×[0,1]

log(b1(ω, x))dmp × µp

+

∫
[1]∩[2]×[0,1]

log(b1(R(ω, x)))dmp × µp

+
∞∑
n=2

∫
[1, 1, · · · , 1]︸ ︷︷ ︸

n times

×S−1
1 (In)

log(b1(Rn(ω, x)))dmp × dµp

=

∫
Ω×[0,1]

log(b1(ω, x))dmp × µp

+

∫
[1]∪[2]×[0,1]

log(b2(ω, x))dmp × µp

+
∞∑
n=2

∫
[1, 1, · · · , 1]︸ ︷︷ ︸

n times

×S−1
1 (In)

log(bn(ω, x))dmp × dµp.

For x ∈ ([1]∪ [2]× [0, 1]) we have b2(ω, x) = 1 and hence second integral becomes
zero. For x ∈ [1, 1, · · · , 1]︸ ︷︷ ︸

n times

×S−1
1 (In) we have that bi(ω, x) = 1, for 2 ≤ i ≤ n and

hence also the last sum of integrals is zero. Therefore it is enough to show the
first integral is finite.

∫
Ω×[0,3]

log(b1(ω, x))dρ =

∫
Ω×[0,1]

log(b1(ω, x))dmp × µp

=
∞∑
k=3

[p0 log(k) + p1 log(k − 1) + p2 log(k − 2)]µp((
3

k + 1
,

3

k
])

≤
∞∑
k=3

[p0 log(k) + p1 log(k − 1) + p2 log(k − 2)]
3 · C

k(k + 1)
.

We see that the geometric mean of the digits induced by R is finite. The proof

of limn→∞
∑n
i=1 bi(x,ω)

n = ∞ follows exactly the same way as in the case N = 2,
see proposition 4.8.1.
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Chapter 7

Conclusion

7.1 Conclusion

We have found an invariant measure for the 2-random continued fraction trans-
formation. The powerful tool we used to do this, was constructing an induced
transformation which satisfies the conditions of Inoue’s existence theorem for in-
variant measures. In this way we proved that there exists an invariant measure
µp for the accelerated 2-random continued fraction transformation. We also have
shown that µp is equivalent with the Lebesgue measure by applying already ex-
istent methods form literature to the accelerated 2-random continued fraction
transformations. However we did not obtain an explicit form of µp. We de-
fined the accelerated 2-random continued fractions as the skew product K on
{0, 1}N × [0, 1]. Endowing {0, 1}N with the σ-algebra generated by the cylinders
and a product measure mp, it turned out that mp × µp is an invariant product
measure for K. Having the measure mp × µp for the induced transformations,
we lifted mp × µp to an invariant measure ρ for the skew product of the original
2-random continued fraction transformation by standard ergodic theory. Having
two invariant measures in our toolbox we were able to use Birkhoffs ergodic the-
orem and the Shannon-Mc-Millan Breiman theorem. Therefore we were in the
position to mimic the proofs of several properties of the regular continued frac-
tion transformation to obtain similar results for the 2 -random continued fraction
transformation. The method turned out to be generalizable to the 3-continued
fractions and we obtained similar results.

So we obtained a lot of results, but there is also a downside. Since we only
proved the existence of an invariant measure µp and not the explicit form, we
only obtained existence results about the asymptotic properties of the 2- and
3-random fraction expansions. Also the obtained results were mp × µp almost
everywhere or ρ almost everywhere. Hence we did not get information about
the behaviour of the 2 and 3-continued fractions on the mp × µp and ρ-null sets.
However constructing a commuting diagram between the skew product for the
2-random continued fractions and the digit sequences it induces we found the
existence of many other invariant measures for the system.

7.2 Further Research

The most obvious question to ask is whether we can extend the theory for the 2-
and 3- random continued fractions to a general theory for N -random continued
fractions. Therefore there must be investigated whether it is really needed to
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find an explicit form of the return-time and of one is always able to find such an
explicit form. Then it is needed to show that these functions are expanding on
average. Of course also the other three conditions of Inoue must be satisfied in
this general N -case.

Furthermore we like to know an explicit form of the density µp. To get an
idea of this, one can do simulations of the density. An other way could be looking
to natural extensions of the random system.

Finally one can ask some adjacent question. Let Ω = {0, 1, 2, · · · , N − 1}M for
M ∈ N and Ti for i ∈ {0, 1, 2, · · · , N − 1} denote the different N -continued frac-
tions. Can one obtain an invariant measure for the transformation Tω1 ◦ · · · ◦ Tωn?
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