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Abstract

Dependently typed programming languages provide a powerful tool for prov-
ing code correct. However, these languages are complex, and programming in
them is often difficult. Certain features, such as pattern matching or inferring
values using metavariables, rely on a unification procedure performed during
type-checking. When this process fails, the error messages provided are often
confusing, and do not accurately indicate which programmer error caused the
failure.

For functional languages with simple typing, error messages have been im-
proved by expressing type-checking as a constraint-solving problem, performing
global analysis on a constraint-graph. While these attempts have been suc-
cessful, there are a number of differences between dependent and simple types.
Parametric polymorphism is expressed using implicit parameters, rather than
polymorphic types. Moreover, since there is no distinction between types and
terms, typechecking may require code to be evaluated. This means that the ex-
isting techniques for error generation do not directly apply to dependent-types.

This thesis presents background information on dependent-type checking,
functional error-message reporting, constraint-based typechecking, and higher-
order unification. We frame some of the challenges for adapting existing tech-
niques to more advanced languages.

In an initial attempt to improve error messages, this thesis proposes a
dependently-typed system with replay-graphs, for combining higher-order unifi-
cation with type graphs. Additionally, a system of counter-factual constraint-
solving is proposed, which finds multiple solutions for various subsets of unifi-
cation constraints.

The results of implementing these techniques is presented, with examples
both of where they produce improved error messages on type-incorrect pro-
grams, and where they produce poor messages.
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Chapter 1

Background and Related
Work

1.1 Dependently-Typed Languages

We refer the reader to any introductory text for a summary of the untyped,
simply typed, and Hindley-Milner varieties of the Lambda Calculus.

1.1.1 Dependent Functions and Products

Dependent types, as we will use them, differ from the Simply-Typed Lambda
Calculus in two ways.

First, terms and types are no longer distinct: types can be passed as pa-
rameters, and returned by functions. The relation x : T is a relation between
two values. For our purposes, we consider a special value Set, where if x : T ,
then T : Set, and Set : Set. This makes our type system inconsistent, but the
measures taken to avoid this are beyond the scope of this thesis.

Secondly, instead of the function type S → T ′, we use the type Π S T . Here,
T must be of the form λx. T ′. We enforce the following typing rules:

Γ, x : S ` e : T ′

Γ ` (λx. e) : Π S (λx. T ′)

Γ ` f : Π S T Γ ` x : S

Γ ` (f x) : (T x)

That is, when a function is applied to an argument, the type of the value
returned can depend on the argument given.

A similar type, Σ S T , can also be used, in place of the pair type (S, T ′).
Again, T is a function here. We define projection functions fst and snd, with
the following typing rules.

Γ ` s : S Γ ` t : T s
Γ ` (s, t) : Σ S T

Γ ` p : Σ S T

Γ ` fst p : S

Γ ` p : Σ S T

Γ ` snd p : T (fst p)
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These types act as pairs, where the type of the second element can depend
on the value of the first.

As a convenience, we will often write (x : S)→ T ′ to mean Π S (λx. T ′),
The Curry-Howard Correspondence provides a connection between logic and

programming, where types correspond to theorems and terms correspond to
proofs of their types. In this correspondence, simple functions correspond to
implication, pairs correspond to the logical and operator ∧, and disjoint unions
correspond to the or operator ∨. Adding dependent functions and products
extends the correspondence from propositional to first-order logic. The type
Π S (λx. T ′) corresponds to ∀(x : S). T ′, and Σ S (λx. T ′) corresponds to
∃(x : S). T ′.

Real-world dependently typed languages implement many features beyond
this, but are based on this same principle. Popular modern dependently typed
languages include Coq [2], Agda [1], Idris [4], and F* [3]. However, these lan-
guages too large and complex for our purposes. Instead, we shall focus on a
simpler dependently typed language, LambdaPi [24].

1.1.2 LambdaPi: A Basic Dependently-Typed Language

LambdaPi was introduced to provide a tutorial on type-checking in a dependently-
typed language [24]. In addition to dependent functions, it contains a few fea-
tures, which we highlight here.

Data and Eliminators

It is difficult (though not impossible) to leverage the full power of dependent
types using only Π and Σ types. In order to be practical, a few custom data
types can be added to the language, along with special eliminator functions
for decomposing them. In LambdaPi, the datatypes Nat,Vec,Eq,Fin have been
added added.

For example, consider natural numbers. We have new values:

Nat : Set

Zero : Nat

Succ : Nat→ Nat

Every number is either zero, or the successor of some other natural number.
In place of general recursion, we provide the eliminator:

natElim : (m : Nat→ Set)

→ m Zero

→ ((l : Nat)→ m l→ m (Succl))

→ (k : Nat)

→ m k
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Semantically, natElim m mz ms k takes a function m mapping numbers to
types. It applies the function ms to mz exactly k times, resulting in a value
of type m k. The concept is similar for other types. Fin n is the type of finite
natural numbers no larger than n, with a similar eliminator.

We can see the dependently-typed features more clearly with the Vec and its
eliminator. Vec a n is a type of vectors of length n of elements of type a, whose
eliminator corresponds to iterating over the elements. The eliminator vecElim
has the following type:

(a : Set)

→ (m : (k : Nat)→ (Vec a k)→ Set)

→ m Zero (Nil a)

→ ((l : Nat)→ (x : a)→ (xs : Vec a l)→ (m l xs)→ (m (Succ l) (Cons a l x xs)))

→ (k : Nat)→ (xs : Vec a k)→ m k xs

As we can see, we take a function providing a return type for each number k
and k-length vector with elements of a. We take a base-case value for an empty
vector, and a function that transforms results from a length n vector into those
of a length Succ n vector. Finally, we give a number k and a vector of that
length.

Eq a x y is the type of proofs that x and y are equal values of type a, whose
eliminator captures the idea that you can substitute x for y when they are equal.

These eliminators allow us to express a large number of programs, without
adding pattern matching or recursion to our language.

Bidirectional Type Checking

The typechecking algorithm for LambdaPi is fairly strightforward. Expressions
are divided into two categories: inferred expressions, whose type we can deter-
mine from examining the expressions, and checked expressions, that must be
annotated with their types. For example, functions must be annotated with
their types. Two mutually recursive type-checking functions are defined: an in-
ference procedure, which, given a context and an expression, returns a type, and
a checking procedure, which compares an expression with its type, and raises
an exception if it is not well typed.

The checking procedure is similar to Hindley-Milner, with a few main differ-
ences:

• Since types and values are not distinct, when checking that e : t, we may
need to evaluate t to normal form.

• All polymorphism is explicit: the Hindley-Milner scheme ∀a. (T a) is re-
placed with the ordinary dependent type (a : Set) → T a. For example,
∀a. a→ a becomes (A : Set)→ A→ A.
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• When checking the application of a function of type Π S T to a value
x : S, we need to evaluate (T x) to normal form to assign a type to the
result.

• Lambda values must be annotated with their type. To typecheck λx. e :
Π S T , we create a fresh dummy value L, and check that e[x/L] has type
T L in the context Γ[L : S]. This is necessary because the return type of
the function depends on its input parameter. While LambdaPi does not
feature Σ types, a similar procedure could be used for dependent pairs.

Notably absent from this presentation, when compared to Hindley-Milner,
is any concept of unification. Since there is no implicit polymorphism, and
functions are always annotated with their types, there is never a time when we
assign a value a variable type which is resolved later. As we shall see below,
unification will be necessary when pattern matching and implicit polymorphism
are introduced.

1.2 Dependently Typed Unification

1.2.1 Spines

It is useful first to have a concept of spine-form [7] for representing λ-terms.
Consider the application f x1 x2 · · · xn, where f is a variable. Implicit

in this representation is the following parenthesization: (· · · ((f x1) x2) · · · xn).
Notice that, if we were to represent this as a tree, f would be the leftmost-leaf,
and we would need to traverse all levels to find it.

In spine form, the above would be represented as f · [x1, x2, . . . , xn]. Here f
is referred to as the head of the application, and the xi’s as the spine. In a tree
representation, the head is now the root of the expression.

Since, in unification problems, we often want to unify an application of a
function with many arguments against some term, it is useful to think of function
applications as being in spine-form. Storing them this way internally increases
the performance of unification, allowing easy access to the head. Similarly, this
allows us to restrict where unification variables will appear: often we will allow
them as spine heads, but not as arguments.

1.2.2 Higher Order Unification

In general, we define the higher-order unification problem for a programming
language. Given:

• A set V = {α1, . . . , αn} of metavariables,

• a set P of problems, of the form ∀x1, . . . , xk. X ≡ Y , where X and Y are
expressions, such that FV (X), FV (Y ) ⊆ V ∪ {x1, . . . , xk}, and for each
xi, xi 6∈ V .
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The goal of higher-order unification is to find an assignment of closed terms
e1, . . . , en, such that for each problem ∀x1, . . . , xk. X ≡ Y in P , we have
X[α1/e1] . . . [αn/en] =βη Y [α1/e1] . . . [αn/en].

That is, we look for a value for each metavariable such that, when we substi-
tute those values for each metavariable, the left hand side and right hand side
of each problem are equal.

Higher-order unification is in general undecidable, and for many instances
there is no unique solution which generalizes all other solutions. However, Miller
[25] identified a sub-problem which is decidable and admits most-general uni-
fiers: the pattern fragment, where metavariables can only be applied to distinct
bound variables [6].

1.2.3 Unification in Pattern Matching

Unification for pattern matching is described at length by Norell [27]. To instan-
tiate variables defined in a pattern match on a particular constructor, we must
unify the type of the value being matched upon with the return type specified
by the particular constructor, and unify the types of the argument constructor
with the types of the matched variables. Essentially, the constructor you match
upon may refine which types the variables matched upon will have. For exam-
ple, when you match a value of type Vec a n with Cons x y, we unify Vec a n
with Vec b (Succ m).

Unification variables correspond to the inaccessible patterns in the input pat-
tern: patterns whose values or shapes are inferred from the other constructors.
In Agda, these are denoted using dot-patterns, which maintain the linearity of
the patterns matched upon.

1.2.4 Unification in Implicit Resolution

A second application of unification in dependently-typed languages, on which
we focus, arises when we allow the programmer direct access to metavariables.
Metavariables can be used in place of expressions, when there is only one possible
value the expression can have in order to typecheck correctly.

In Agda and Idris, metavariables are denoted with the underscore character
. We will use this notation in our example programs.

Every metavariable in the program code corresponds to a metavariable used
in unification. Type-checking rules are rephrased as constraint-generation rules,
a procedure which we will describe in detail in Chapter 3.

For example, consider the following code with labelled metavariables:

appendZero : (m : Nat) -> (xs : Vec Nat m) -> Vec Nat (Succ m)
appendZero _1 xs = Cons _2 _3 Zero xs

Since we have the type signature
Cons : (A : Set) -> (n : Nat) -> A -> Vec A n -> Vec A (Succ n),
we generate the constraint that A ≡ Nat, 2 ≡ A, 1 = m, 3 = 1, and n = 3.
We can solve these to find that 2 ≡ Nat, and 1 ≡ 3 ≡ m.
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This idea can easily be extended to implicit arguments: a call to a function
with an implicit argument is replaced by applying that function to a metavari-
able. This transformation can be carried out purely syntactically.

1.2.5 Algorithms for Higher-order Unification

There are several algorithms for higher-order unification. Miller identified the
pattern fragment, the decidable subset of higher-order unification, as well as an
algorithm deciding this subproblem[25]. In this form, any time a metavariable
is the head of a spine, it is applied only to distinct program variables. So solving
for α x y ≡ β x is always possible, but solving α x x ≡ β x is not, because the
arguments to α are not distinct. Likewise, solving α β x ≡ β x is not always
possible, since a metavariable β is an argument to α.

Abel and Pientka present an algorithm that extended Miller’s algorithm to
a calculus with both Π and Σ types [6]. Gundry and Mcbride further refine
the algorithm, and present a tutorial implementation using Haskell [16]. This
is expanded upon in Gundry’s PhD. Thesis [15].

A more advanced unifcation algorithm, aimed at Coq, is presented by Ziliani
and Sozeau [31]. This algorithm supports more advanced dependent type fea-
tures, such as universe polymorphism. Additionally, it is able to solve a greater
number of unification problems through the use of heuristics. Even in a situation
where there is no most general unifier, the algorithm will prioritize structural
unification. For example, when unifying f [x1; . . . xn] with g [y1; . . . yn], it will
first attempt to unify f with g, and each xi with yi, even if f and g are func-
tions whose values we could substitute. This first-order approximation allows
for the solutions programmers are likely to expect, when there are many possible
solutions.

More recently, a totally different approach to unification in Agda has been
proposed [9]. In this system, generating a solution (unifier) also generates a
proof of correctness for that solution. The algorithm helps to formalize may
previously ad-hoc restrictions which were present in Agda’s unification.

Gundry McBride (GM) Unification

As a base, this thesis will use the unification algorithm presented by Gundry
and McBride [16, 15]. Because it is written as a tutorial, it was particularly well
suited for the scope of this thesis. We refer to it throughout as GM unification.

The algorithm is focused on the manipulation of metacontexts, which store
types for metavariables, as well as unification problems. Typing rules are ex-
pressed in such a way that expressions are always in normal form. A series of
rewrite rules are repeatedly, non-deterministically applied to the metacontext
until a solution is found, though the authors describe how this process can be
made deterministic.

The algorithm can handle Σ types. Moreover, it is dynamic: In the case
where some problems are not in the pattern fragment initially, but become
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solveable once the substitutions from previous applications are applied, the al-
gorithm can still find a solution.

The algorithm is too complex to describe in its entirety here. We give a
description of the features relevant to us in Section 2.3

1.3 Strategies for Improving Error Messages

1.3.1 Guiding Principles

Yang, Michaelson, Trinder and Wells present a manifesto for type error report-
ing [28], with the following main principles:

1. Correctness: errors should be reported if and only if programs are not
typeable, and a location is reported only if it contributes to the conflict.

2. Precision: Messages should refer to the smallest relevant portion of the
original source code.

3. Succinctness: messages should be short, containing only the most useful
information.

4. Amechanicity: artifacts of type inference, such as intermediate variables,
should not be presented in the message.

5. Source-based: details of compiler internals or intermediate languages should
not leak into error messages.

6. Unbiasedness: when multiple sites contribute to an error, the one which
is chosen as an error should be determined by its likelihood of being the
cause, not other factors (such as ordering of clauses within the source
code).

7. Comprehensiveness: each source site that contributes to the conflict should
be reported, and the user should not be required to examine other parts
of the source code in order to diagnose the error.

While these are generally desirable goals, sometimes with dependent types it
is useful to deviate from them in a few cases. For example, while it is undesirable
for details of compiler internals to leak into error messages, there are many cases
where unification fails because the problem presented is too sophisticated for the
compiler’s unification algorithm. Currently, little to no insight is given as to the
cause of the unification failure, particularly when a variable’s value is unresolved.
In situations like this, it may be beneficial to provide some information about the
unification algorithm, when it is necessary to guide the programmer to finding
a solution.
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1.3.2 Error Locations and Slices

As identified in the manifesto, error reporting should reference a minimal but
complete set of source locations contributing to the error. A naive approach,
such as Algorithm W [11], provides no location for an error, and even more
sophisticated approaches only supply the location of the expression that the
type-checker was examining when an error was seen.

Haack and Wells introduce the concept of an error slice [17]: a set of one or
more program points which contribute to the error. An error slice is complete if
the relationship between its points guarantees the program will contain a type
error, and it is minimal if each contained point is relevant to the error.

The motivation for error slices is that the true location of a fix depends
on the desired semantics of a program. Many different changes can cause the
program to typecheck, but not all will result in the desired program behavior.

The system they present uses a constraint-based system for type-checking,
and attempts to find a minimal set of unsatisfiable constraints. Unification is
run multiple times on smaller and smaller sets of constraints, eliminating those
which do not contribute to the error until a minimal set is found. Since the
number of minimal slices grows exponentially with program size, in practice
this procedure is run under a time limit, returning the best result found before
time expires.

1.3.3 Counter-Factual Typing

The idea of presenting multiple locations is extended by Chen and Erwig through
a technique known as counter-factual typing [8]. Like error slicing, it accounts
for all possible contributing error locations.

In counter-factual typing, the checker examines atomic expressions and de-
termines what type the expression would need to have in order for the program
to typecheck.

The system is based on variational typing and a binary choice-calculus, in
which a number of different programs (or, in this case, types) can be represented
compactly as a single program, where some sub-expressions contain a choice
between two other expressions. A relevant detail is the idea of error-tolerant
typing, where ill-typed expressions are explicitly assigned the error type ⊥,
allowing typechecking to continue even when an error is encountered.

Type inference proceeds as in a normal HM system, but when a type φ is
inferred for an expression e, instead of assigning its type, we assign its type to
be a choice between φ and a fresh unification variable α. Information about the
use of e can then flow into the variable α, giving information about its use, even
if it does not match φ.

Enumerating all possible choice combinations shows all possible program
changes which will lead to well-typedness. Taking the first type in all cases
yields the original (possibly failing) typing.
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1.3.4 Helium and Constraint-Based Checking

Helium [20] was an alternate Haskell compiler, which aimed to improve the qual-
ity of error messages, particularly for beginners. At its core was a type-inference
algorithm based on the concept of constraint-generation. Where Milner’s Al-
gorithm W [26] would unify two variables α, β, Helium emits a constraint of
the form α ≡ β. When expressing that a variable α unifies with an instance of
scheme σ, the constraint α < σ is emitted.

There are multiple techniques for solving the system of constraints. Algo-
rithm W [26] and Algorithm M [23] were respectively shown to be equivalent
to the top-down and bottom-up approaches [19]. Helium could also attempt to
reorder constraints using heuristics, then solve them using unification in a way
that reduced bias.

For almost completely bias-free analysis, Helium allowed for constraint so-
lution through the construction of a constraint graph [21]. This allowed for
constraint solving at the level of the binding-group [18]: to solve a constraint
set, we can look at more than one constraint at a given time. In this system,
type constructors (possibly taking 0 arguments) and unification variables are
represented as a node in a graph. Unification edges between nodes α, β are
added in this graph whenever the constraint α ≡ β is emitted.

For composite types, such as function types, special edges are added from
the type constructor (such as →) to the member types. With composite types,
derived edges are added to the graph for constraints on their inner types. For
example, t1 → t2 ≡ t3 → t4 adds derived edges t1 ≡ t3 and t2 ≡ t4. Adding
derived edges may connect nodes, which may trigger the addition of further
derived edges.

Typechecking then becomes a simple matter of checking if any two non-equal
type-constructors are in the same connected component of the graph, looking
only at unification edges.

A comprehensive overview of bias and principles of Haskell error generation
can be found in Bastiaan Heeren’s PhD. thesis [22]. We will address bias again
in Section 1.4.1.

1.3.5 SHErrLoc

Basic HM Inference

An alternate approach to the constraint-based system of Helium is is imple-
mented in the tool known as SHErrLoc [29, 5]. Constraints are expressed
through an (arbitrary) partial order ≤, which are generic enough to describe
Hindley Milner typing, as well as security-information flow constraints and
dataflow analysis.

In the Hindley-Milner case, a constraint graph is formed with types of ex-
pressions as nodes, and two kinds of edges. Edges labeled LEQ denote that the
subtype relation must hold between two types (though usually two of these are
inserted to stipulate equality). A constructor edge, marked with a constructor
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c and index i, when present from u to v, denotes that the type v is the ith value
in u, which is built with the given constructor.

Unlike in Helium, where type-checking can be expressed in terms of graph
reachability (with derived edges), the form of constructor edges here require that
it be expressed in terms of context-free reachability, a modified graph problem
searching for a path whose labels are in a given context-free langauge. The
process of adding new edges to the graph from this procedure is known as graph
saturation.

In order to accommodate more complex constraints, some constraints have
the form C ` C ′. LEQ edges are marked with hypotheses C, which can be
assumed when trying to verify the constraint C ′ holds. Once again, the con-
clusions that can be drawn from a hypothesis can be tested using context-free
reachability. For entailments of the form H ` E1 ≤ E2, the constraint graph of
H, called the hypothesis graph, is constructed to check if it is satisfiable. If it
is saturated, then we check if E1 and E2 are connected by a LEQ edge in the
saturated hypothesis graph.

In order to concisely diagnose which program point is the source of an error,
a simple Bayesian heuristic is used, which assumes that a program is mostly
correct, and that program points on many unsatisfiable paths are more likely
to be a cause of errors than those on many satisfiable paths.

Advanced Type Features

The above system was extended to accommodate more advanced constraints,
such as GADTs and Type Families [30]. Here, axioms may be of the form
∀a.C =⇒ C ′, and type class and type family instances to be expressed using
constraints. In order to accommodate non-injective type families, a separate
type of node fun is introduced in addition to constructor nodes. Typeclasses and
type-level functions are encoded into constraints, which are treated as axioms
when constructing the constraint graph.

To deal with the more complex constraints, additional nodes and edges are
selectively added to the constraint graph, so that all necessary relationships can
be inferred though context-free reachability. Specifically, when LEQ(E,E′) is
in the original graph, then for every occurrence of E within a constructor node,
we ensure a node with E′ in its place is present, doing the reverse for constructor
nodes with E′. The graph is saturated with all edges that can be added this
way. Extra measures are taken here to ensure halting, detailed in the paper.

Each LEQ edge in the graph corresponds to an entailment of the form H `
E1 ≤ E2. To prove this, a hypothesis graph is formed, with all nodes of the
saturated graph. Once the hypothesis graph is formed, it is saturated. During
saturation, if an axiom ∀C. I has all constraints of C already in the partially
saturated hypothesis graph, then I is added, and will contribute to saturation.

To determine if H ` E1 ≤ E2 is satisfiable, a search for a substitution θ, in
which θ(E1) and θ(E2) have an LEQ edge in the saturated hypothesis graph, is
performed.
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While this system supports some type-level computation, it treats the ax-
ioms from type-level functions as pre-existing, and does not check type-family
instances. It is not powerful enough to deal with dependent types, where the
functions applied at type level themselves need to be typechecked.

1.4 The State of Dependently Typed Messages

1.4.1 Causes of Unsatisfactory Error Messages

When a type-error message is given, there is at least one error : a section of
incorrectly written code, which must be changed in order for the program to
typecheck.

The goal of error messages is twofold. First, it tries to identify the section
of the code which contains the error, a process known as error location.

Secondly, it tries to identify the cause of the error, succinctly informing the
programmer as to the cause of the error, provide a hint towards a solution. This
process is known as error classification.

1.4.2 Left-to-right Bias

Depending on the order a program is traversed in a type-inference algorithm,
bias can be introduced. Unification variables are generated for various expres-
sions, and may be assigned a type as the algorithm progresses. If another type
is assigned to the same variable, that type will be marked as incorrect. The
order in which the AST is traversed determines which type is assigned to the
expression, and which type is viewed as incorrect.

This kind of bias interferes with the goals of error message generation, since
both the assignment of an error location, and the reported error cause, depend
on the order in which unifications are performed, as opposed to the actual
location or cause.

For example, consider the following Haskell code:

let test1 c = if c then "abc" else [True]

-- Couldn’t match expected type ’Char’ with actual type ’Bool’
-- In the expression: True
-- In the expression: [True]

let test2 c = if c then [True] else "abc"

-- Couldn’t match type ’Char’ with ’Bool’
-- Expected type: [Bool]
-- Actual type: [Char]
-- In the expression: "abc"
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-- In the expression: if c then [True] else "abc"
-- In an equation for ’test’: test c = if c then [True] else "abc"

The ”expected” versus ”actual” errors switch places, depending on which
values are provided in the true or false branches.

Since the original publications for Helium [20], GHC error messages have
improved: if a type signature is given, this resolves the bias and the return type
in the signature is listed as the expected type.

In a simple dependently-typed language, this type of bias is impossible:
the requirement that functions are annotated with their types means that the
programmer always expresses the intended type of a function.

However, when implicit arguments are introduced and values are inferred, it
is once again possible for bias to arise. Consider the following Agda code, with
corresponding errors:

1 myZipWith
2 : {A B : Set}
3 -> ((A × A) -> B)
4 -> List A
5 -> List A
6 -> List B
7 myZipWith f l1 l2 = Data.List.map f (Data.List.zip l1 l2)
8

9 myVal1 = myZipWith proj1 (1 :: 2 :: 3 :: []) ( true :: false :: [] )
10 -- badFoldFn_tex.agda:9,44-48
11 -- Bool !=< .Data.Nat.Base.N of type Set
12 -- when checking that the expression true has type .Data.Nat.Base.N
13

14 myVal2 = myZipWith proj1 (true :: false :: [] ) ( 1 :: 2 :: 3 :: [])
15 -- badFoldFn_tex.agda:14,48-49
16 -- .Data.Nat.Base.N !=< Bool of type Set
17 -- when checking that the expression 1 has type Bool

What’s more, the reported errors do not change if type annotations are
added.

We can see a similar bias in Idris:

1 myZipWith
2 : {A, B : Type} -> ((A, A) -> B)
3 -> List A -> List A -> List B
4 myZipWith f l1 l2 = map f (zip l1 l2)
5

6 n : Nat
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7 n = 22
8

9 myVal1 : Nat
10 myVal1 =
11 Prelude.List.length (myZipWith fst [n,n,n] [ True , False])
12 --at line 11, character 47
13 --When checking right hand side of myVal1 with expected type Nat
14 --When checking an application of constructor Prelude.List.:::
15 --Type mismatch between Bool (Type of True) and Nat (Expected type)
16

17 myVal2 : Nat
18 myVal2 =
19 Prelude.List.length (myZipWith fst [True, False] [ n ,n,n] )
20 --at line 19, character 53
21 --When checking right hand side of myVal2 with expected type Nat
22 --When checking an application of constructor Prelude.List.:::
23 --Type mismatch between Nat (Type of n) and Bool (Expected type)

1.4.3 Amechanicity and Source-Basedness

Another goal we would like with type error messages is amechanicity, [28]: we
want the messages reported to avoid leaking internal details of the compiler,
and to be rooted in the actual source code provided.

For instance, many Agda error messages will refer to intermediate metavari-
ables generated by the unification algorithm.

For example, the following code includes metavariable names, which never
appear in its source code, in the error message.

1 myPlus : (N × N) -> N
2 myPlus (x , y) = x + y
3

4

5 myVal : N
6 myVal = foldr myPlus 0 [ 1 ]
7

8 {-
9 badPlus.agda:6,15-21

10 N !=< (_B_8 → _B_8) of type Set
11 when checking that the expression myPlus has type
12 N × N → _B_8 → _B_8
13 -}

Even in cases where dependently-typed error messages do not leak compiler
internals, they give little useful information about the root cause of the error,
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requiring the programmer to understand internal processes such as unification
in order to diagnose their type error.

A goal of this project is to produce error messages which are precise, indicat-
ing the cause of the problem and potential fixes, without requiring the program-
mer to fully understand the unification algorithm which solves for metavariables.

1.4.4 Uninformative Messages

Unsolved Metavariables

When a code snippet contains a metavariable which does not have a unique
solution, the messages given by Agda contain almost no information.

1 natElim
2 : (m : N -> Set)
3 -> (mz : m 0)
4 -> (ms : (l : N )
5 -> (m l) -> m (suc l))
6 -> (k : N)
7 -> (m k)
8 natElim m mz ms zero = mz
9 natElim m mz ms (suc l) = ms l (natElim m mz ms l)

10

11 alwaysZero = natElim ( zero ) (\ x y -> zero )
12

13 {-
14 _9 : N → Set [ at NatElim.agda:11,22-23 ]
15 _10 : _9 0 [ at NatElim.agda:11,25-29 ]
16 _11 : _9 0 [ at NatElim.agda:11,25-29 ]
17 _12 : _9 (suc x) [ at NatElim.agda:11,42-46 ]
18 _13 : _9 (suc x) [ at NatElim.agda:11,42-46 ]
19 -}

Idris reports a similar message, though a type mismatch is reported, as
opposed to an unsolved meta error:

1 natElim
2 : (m : Nat -> Type)
3 -> (mz : m 0)
4 -> (ms : (l : Nat ) -> (m l) -> m (S l))
5 -> (k : Nat)
6 -> (m k)
7 natElim m mz ms Z = mz
8 natElim m mz ms (S l) = ms l (natElim m mz ms l)
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9

10 alwaysZ : Nat -> Nat
11 alwaysZ = natElim _ (Z) (\ x, y => Z)
12

13

14 {-
15 NatElim.idr:11:19:
16 When checking right hand side of alwaysZ with expected type
17 Nat -> Nat
18

19 When checking argument ms to function Main.natElim:
20 Type mismatch between
21 Nat (Type of 0)
22 and
23 m (S x) (Expected type)
24 Holes: Main.alwaysZ
25 -}

Pattern Matching

When a pattern match is invalid, the compiler gives very little indication of
the actual cause of the error. For instance, in the following snippet, the error
informs us that x != y, but never tells us why it is expected that the variables
be equal, except perhaps by indicating that refl is the error location.

1 mysym : (A : Set) -> (x y : A) -> x ≡ y -> y ≡ x
2 mysym A x y refl = ?
3

4 {-
5 BadPatMatch1.agda:2,13-17
6 x != y of type A
7 when checking that the pattern refl has type x ≡ y
8 -}

The Idris equivalent faces a similar problem, which is made worse by a poor
choice of error location:

1 mysym : (A : Type) -> (x : A) -> (y : A) -> x = y -> y = x
2 mysym A x y Refl = Refl
3

4 {-
5 at line 2, character 1
6 When checking left hand side of mysym:
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7 When checking an application of Main.mysym:
8 Type mismatch between y = y (Type of Refl) and x = y (Expected type)
9 Specifically: Type mismatch between y and x

10 -}

1.4.5 Vaguely Located Errors

In the following poorly-typed code, because of the rewrite clause, the program-
mer is given very little information as to where true source of the error.

1 postulate
2 sub2 : (xs : List Bool) → xs ≡ xs ++ []
3

4 test2 : (xs : List Bool) → length xs ≡ length (xs ++ [])
5 test2 xs

6 rewrite sub2 xs = refl
7

8 {-
9 Contrib3.agda:5,1-6,25

10 w != w ++ [] of type List Bool
11 when checking that the pattern refl has type w ≡ w ++ []
12 -}

Interestingly, similar code does not cause an error in Idris, likely due to
different behaviour of the rewrite tactic.

1 postulate sub2 : (xs : List Bool) -> xs = xs ++ []
2

3 test2 : (xs : List Bool) -> length xs = length (xs ++ [])
4 test2 xs =
5 rewrite (sub2 xs) in Refl
6

7 --Compiles without error

The following snippet contains almost no information locating the error.
Moreover, it gives us very little information as to the cause of the error, that
is, that the goodPlus expects a natural number, and a boolean is given. This
cause is muddied by the fact that this constraint is carried through the unifica-
tion variables, induced by the implicit arguments of foldr.

1 goodPlus : N × N -> N -> N
2 goodPlus (x , y) z = z * (x + y)
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3

4 id : {A : Set} -> A -> A
5 id x = x
6

7 myVal : N
8 myVal =
9 foldr

10 goodPlus
11 0
12 (Data.List.zip (Data.List.map id [] )

13 (Data.List.map id [ true ]) )
14

15 {-
16 badPlusArg.agda:12,6-13,32
17 Bool !=< N of type Set
18 when checking that the expression
19 Data.List.zip (Data.List.map id []) (Data.List.map id [ true ]) has
20 type List (N × N)
21 -}
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Chapter 2

The Base Language and
Type System

Here, we present our staring point: the language and type system which we will
augment with type-graphs and counter-factual solving in an attempt to improve
error messages.

In short, we add dependent pairs and metavariables to LambdaPi. We omit
some of the details, particularly around the datatypes of Eq, Vec and Fin, along
with their eliminators.

2.1 The Term and Value Languages

2.1.1 Terms

Our underlying language is a modified version of LambdaPi [24], augmented
with existential types, metavariables, and finite numbers (which were in the
original implementation, but not the paper). Our source language is described
in Figure 2.1:

We allow the programmer to write to represent metavariables, assuming
that each occurence of is replaced with a metavariable βi through the process
described in Section 2.2.1.

We have written eliminators as a separate syntactic construct, in spine form,
but for the sake of readability, we will often write f [App t; elim1 . . . elimn] as
(f t) [elim1; . . . ; elimk], using the usual notation for function application.

We store eliminators as a single list (rather than nested eliminator expres-
sions), so that when we are defining values, we can easily restrict that chains
of eliminators are only applied single variables. For example, fst (f x) is repre-
sented as x [App f ; fst].

As is convention, we write S → T as shorthand for Π S (λx. T ) where x
does not occur in T . For the sake of readability, we will write Π S (λx. T ) as
(x : S)→ T in longer type signatures.
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t ::= x (Variables)

| α (Typechecking metavariables)

| β (Source metavariables)

| Set (The type of types)

| t [elim1; . . . ; elimk] (Eliminating values)

| Π t1 t2 (Dependent Function types)

| Σ t1 t2 (Dependent pair types)

| λx. t (Functions)

| (t1, t2) (Pairs)

| Nat (Type of natural numbers)

| Zero (Natural number zero)

| Succ tn (Natural number successor)

| ⊥ (Error Value)

elim ::= App targ (Function Application)

| natElim tm tz ts (Recursion on natural numbers)

| fst (First projection on pairs)

| snd (Second projection on pairs)

Figure 2.1: The Term Language
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h ::= x (Variable head)

| α (Metavariable head)

t ::= h [elim1; . . . ; elimk] Neutral term in spine form

Figure 2.2: Eliminator forms for values

2.1.2 Values

The set of values is very similar to the set of terms, with the restriction that
eliminators (including function application) must only be applied to variables
or metavariables. We replace the rule: t := t [elim1; . . . ; elimk] with the rules
in Figure 2.2:

Intuitively, a value is a term on which no evaluation can be performed. As
is typical, this forbids values of the form (λx. t) s, but also expressions such as
fst (s, t) and natElim m z s (Succ (Succ Zero)).

2.1.3 Semantics

We denote the normal-form of a term t as JtK, denoting t after all possible
evaluation steps have been applied to t or its subterms. Since all computations
terminate in this language, it should be clear that the normal form of any
expression is a value.

Evaluation occurs when an eliminator is applied to anything other than a
variable. We give some example reduction steps in Figure 2.3. We do not give a
complete small-step semantics, as all expressions terminate in our language and
order of evaluation is not relevant for our purposes. Instead, we give some ex-
ample reductions, giving a flavour of how the eliminators behave. In particular,
structural rules are omitted.

Note that while the semantics are recursively defined, it is not possible to
directly write a recursive function.

Function application simply triggers substitution, and the fst and snd elimi-
nators are simply pair projections. We can see natElim represents induction on
natural numbers,

2.2 The Type System

2.2.1 Type-checking as Constraint Generation

While Gundry and McBride [15, 16] give an algorithm to solve a set of unifica-
tion problems, it gives no indication for how to generate unification constraints
from a program containing meta-variables. Norell provides an algorithm [27],
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(λx. b) t [x/t]b

fst (s, t) s

snd (s, t) t

natElim m mz ms Zero mz

natElim m mz ms (Succ n) ms n (natElim m mz ms n)

Figure 2.3: Example Reduction Steps

ensuring type-safety through guarded constants. We instead follow the Gundry-
McBride, validating our solutions after-the-fact using definitional equality.

In this section we present the type rules for our language, rephrased to
be in a constraint-based form: instead of relying on implicit syntactic pattern-
matching in the type rules, we leave types as open variables, expressing separate
constraints on them. This allows for the case where the type being checked is a
metavariable whose value has not yet been determined.

Our contexts Γ are standard, ordered mappings of variable names to their
types.

As in LambdaPi [24], we use bidirectional typing, distinguishing type-inference
judgements :↑ from type-checking judgements :↓. We use judgments of the form
e : T & C, meaning that value e has type T when constraint set C is satisfied,
with similar judgements for the :↑ and :↓ relations. In a judgement e : T & C,
we require that T be a value, thought e may be any term.

Constraint Language

Our typechecking rules will generate a collection of declarations and constraints.
These constraints and declarations will be used as context during the unification
procedure. They can take any of the following forms:

C ::= α : T (Metavariable declaration)

| t1 : T1 ≡ t2 T2 (Definitional Equality)

| ∀Γ. t1 : T1 ≡ t2 T2 (Quantified Equality)

It is no conincidence that these forms are exactly those of context entries in
GM unification [15].

For example, when checking that a function has type T , we may generate a
constraint T ≡ Π α1 α2, to ensure that the function has a function type.
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If α := fresh(Γ, T ) & C, where:

Γ = (x1 : T1), (x2 : T2), . . . , (xk : Tk)

α′ = a fresh metavariable

Then we define our outputs α,C as

α = (α′ x1 x2 . . . xk)

C = (α′ : JT1 → T2 . . .→ Tk → T K)

Figure 2.4: Defining Fresh Typed Metavariables

Metavariable Definition

When solving for an implicit variable inside of an expression, its solution may
refer to a variable which was bound in an outer scope. For example, in the (toy)
function λa. λx.Refl : (a : Set)→ (x : a)→ Eq a x x , the values to substitute
for the underscores are a and x respectively, but these are both bound variables,
and we want our solutions to be closed values.

We rectify this by replacing each underscore with a new metavariable, ap-
plied to all variables in the current environment. In the above example, we
transform the function into λa. λx.Refl (β1 a x)(β2 a x) with the solutions be-
ing β1 = λa. λx. a and β2 = λa. λx. x, which, when substituted into our original
program, give the desired results. Examples such as this further motivate the
need for higher-order unification, since nearly every metavariable solution will,
in fact, be a lambda-value, abstracted over the context.

We generalize the process in Figure 2.4, where we treat α and C as an output:

Inference Rules

In these rules, when we have a conclusion of the form Γ ` e :↑ T & C, we consider
T and C to be outputs of the inference procedure. Note that the returned T may
be a concrete type, or a newly generated metavariable, constrained by members
of C.

Γ ` Set :↑ Set & ∅
(Set of sets)

α := fresh(Γ,Set) & C

Γ ` β :↑ α & C
(Source metavariables)

Γ ` S :↓ Set & C1 Γ ` s :↓ JSK & C2

Γ ` (s :: S) :↑ JSK & C1 ∪ C2
(Annotated expressions)
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Γ ` S : Set & C1 x 6∈ Γ Γ, x : JSK ` T x :↓ Set & C2

Γ ` Π S T :↑ Set & C1 ∪ C2

(Universal quantification)

Γ ` S :↓ Set & C1 x 6∈ Γ Γ, x : JSK ` T x :↓ Set & C2

Γ ` ΣST :↑ Set & C1 ∪ C2

(Existential quantification)

Γ ` t :↑ T1 & C1 α1 := fresh(Γ,Set) & C2 α2 := fresh(Γ, α1 → Set) & C3

Γ ` fst t :↑ α1 & C1 ∪ C2 ∪ C3 ∪ {∀Γ. T1 : Set ≡ Σ α1 α2}
(Pair first projection)

Γ ` t :↑ T1 & C1 α1 := fresh(Γ,Set) & C2 α2 := fresh(Γ, α1 → Set) & C3

Γ ` snd t :↑ α2 (fst t) & C1 ∪ C2 ∪ C3 ∪ {∀Γ. T1 : Set ≡ Σ α1 α2}
(Pair second projection)

Γ(x) = T

Γ ` x :↑ T & ∅
(Variable lookup)

α1 := fresh(Γ,Set) & C1 α2 := fresh(Γ, α1 → Set) & C2

Γ ` f :↑ T & C3 Γ ` t :↓ α1 & C4

Γ ` f t : (α2 JtK) & C1 ∪ C2 ∪ C3 ∪ C4 ∪ {∀Γ. T : Set ≡ Π α1 α2 : Set}
(Function application)

Γ ` Nat :↑ Set & ∅
(Natural numbers)

Checking Rules

Notice that in each of the following rules, we never constrain or pattern-match
on the form of the type T of the expression we are checking. This allows for the
possibility that T is a metavariable, whose value must be determined through
constraint solving. Instead, constraints on T are generated.

In order to ensure termination, the rule labeled INF is only applied when no
other rules match: otherwise, we could infinitely alternate between that rule and
the annotation-checking inference rule. LambdaPi deals with this by internally
treating inferred and checked expressions as separate data types.

Γ ` t :↑ T & C1

Γ ` t :↓ T & C1 ∪ {∀Γ. T : Set ≡ T2 : Set}
(INF: Checking an inferred value)
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α1 := fresh(Γ,Set) & C1 α2 := fresh(Γ, α1 → Set) & C2 xfree 6∈ Γ
α3 := fresh((Γ, xfree : α1),Set) & C3 Γ, xfree : α1 ` [x/xfree]t :↓ α3 & C4

Γ ` (λx. t) :↓ T
& C1 ∪ C2 ∪ C3 ∪ C4∪

{∀Γ. T : Set ≡ Π α1 α2,∀(Γ, x : α1). α3 : Set ≡ α2 x : Set}
(Lambda Abstraction)

α1 := fresh(Γ,Set) & C1 α2 := fresh(Γ, α1 → Set) & C2

s :↓ α1 & C3 t :↓ α2 s & C4

Γ ` (s, t) :↓ T & C1 ∪ C2 ∪ C3 ∪ C4 ∪ {∀Γ. T : Set ≡ Σ α1 α2 : Set}
(Forming Existential Pairs)

Γ ` Zero :↓ T & {∀Γ. T : Set ≡ Nat : Set}
(Natural Zero)

Γ ` n :↓ Nat & C1

Γ ` Succ n :↓ T & C1 {∀Γ. T : Set ≡ Nat : Set}
(Natural Successor)

2.3 Gundry-McBride Unification

The main contribution of this thesis is a modification of the higher-order unifi-
cation algorithm created by Adam Gundry and Connor McBride [16, 15]. The
algorithm itself requires a whole paper to describe. Here, we attempt to high-
light the intuition behind it, as well as the parts of it which we will modify later
on.

2.3.1 Broad Overview

The unification algorithm keeps a linear (meta)context, the types of metavari-
ables, unification problems and their states, and substitutions from solved prob-
lems. At any time, a problem’s state can be active, failed, pending on a solution
to another problem, or blocked (because it is not in the pattern fragment).

The treatment of blocked problems is what makes the unification algorithm
dynamic: even if a problem is not initially in the pattern fragment, it may be in
the pattern fragment after other variables are solved and substitutions applied.

Throughout the progress of the algorithm, we will “move” through the con-
text. We keep a cursor marking our location in the context, with the invariant
that there are no unapplied substitutions to the left of the cursor, and that
problems are always to the right of the declaration of any metavariables they
contain.

After collecting constraints and declarations in our typechecking procedure,
we begin by placing those constraints to the right of the cursor. The algorithm
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moves constraints from right to left, finding solutions to problems as we en-
counter them. During solving, we may generate more context entries, which we
can push to the left or right of the cursor.

There are a number of steps which the algorithm uses to solve problems,
which will modify problem state, move the cursor, generate new problems, and
so on. When we assign a value for the variable, we move left in the context to
its declaration, then move right, applying its new value to problems and trying
to solve them, if they are not already solved.

We do not focus on the exact ordering and dependencies of these steps, as
it is rather complicated.

2.3.2 Solver Steps

Eta-expansion

When trying to solve s : S ≡ t : T , if S = Π U U ′ and T = Π V V ′, then we
can η-expand the problem into ∀x. s x : U ′ x ≡ t x : V ′ x. A similar expansion
happens with Σ types. (The actual procedure used is more complicated, rely-
ing on a technique of twin-variables to preserve well-typedness, but this is not
directly relevant to our work.)

Rigid-rigid Decomposition

We have a rigid-rigid matching when unifying two terms, neither of which is a
spine with metavariable head.

Rigidly matching two expressions involves checking if their constructors are
equal. If they are, equations equalizing their arguments are generated, inserted
to the right of the cursor in the context.

For example, Vec α n : Set ≡ Vec β n : Set is decomposed into
{α : Set ≡ β : Set, n : Nat ≡ n : Nat}.

The original GM algorithm performs this step only one level deep, but for
our purposes, we assume that we decompose all equations rigidly as deeply down
as we can. This will results in simpler constraint graphs being generated later.

In the case where two rigid equations mismatch (i.e. different constructors),
an error is thrown, causing the problem to be marked as failed.

Solving a Problem: Inversion and Intersection

A flex-rigid equation is one where one side of the equation is a spine-form term
with a metavariable head. (Note that the spine may be empty, in the case of
α ≡ t. Similarly, a flex-flex equation is one where both sides of the equation are
spine-form terms with a metavariable head.

To solve a flex-rigid equation α [t1; . . . ; tn] ≡ t, we move our cursor left in
the context until we find the declaration for α.

If the problem is in the pattern fragment, we generate a solution α :=
λx1 . . . xn. t, pushing this to the left, and pushing the substitution to the right.
This process is known as inversion.
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If the problem is not in the pattern fragment, we mark it as blocked, pushing
it to the right.

Flex-flex decomposition works much the same way. A special case, however,
occurs when our problem is α[x1; . . . ;xn] ≡ α[y1; . . . ; yn], that is, both equations
have the same metavariable head. Here we instead solve by intersection: a fresh
metavariable β is generated (with its type pushed left), and we push right the
substitution α := λx1 . . . xn. βz1 . . . zk, where {z1, . . . , zk} = {xi | xi = yi}. In
this case, we can see that α is defined as a function which ignores all arguments
on which xi and yi disagree.

Occurs Check

When solving a flex-rigid or flex-flex equation, we must ensure there are no
places where α occurs in t, not as an argument to a variable or metavariable. If
such an occurrence exists, then there is no solution, and we fail.

For example, there is no finite solution to α ≡ Π α β, and our occurs check
would fail in this case.

Pruning

Before solving a flex-rigid or flex-flex equation, we prune the equations. Similar
to the occurs check, when solving ∀Γ. α [e1; . . . , ek] ≡ t, we need to ensure all
variables in t (which are bound by the ∀Γ) also occur in the spine e1, . . . , ek.

If any are not in the spine, but are arguments to a metavariable within t, we
can block, since future solutions may make these disappear. In any other case,
there can be no solution.

Verification

In order to ensure safety, after all substitutions have been applied, we verify
each equation in the context. Note that the typechecking here is a standard
checking algorithm, as in the original LambdaPi, not the constraint-based one
used to check whole programs.

We check that, for a metavariable α : T that T : Set, and if the metavariable
has a definition α := t : T , we check that t : T . For equations ∀Γ. s : S ≡ t : T ,
we check that s : S and t : T , and also that the two sides of the equation are,
in fact, identical terms with identical types.

Note that termination does not imply that all metavariables have been de-
fined to values. Rather, it implies that every constraint has been made reflexive.
Some metavariables may have no definition, implying that their constraints hold
for any value of the proper type. These are reported to the user as errors, since
they imply that not enough information is present to infer values omitted in
their code.
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Chapter 3

Unification for Improved
Error Reporting

Here we present the main contribution of this thesis: a modified version of the
Gundry-McBride unification algorithm that allows for improved error messages.
There are three main part to this:

• An adaptation of Helium’s type graphs, which provides a framework for
using heuristics to analyse a constraint set simultaneously and identify
likely causes of errors and probable fixes.

• Error tolerance, which allows unification to proceed even when errors have
been encountered.

• Counter-factual unification, which reduces the bias introduced by the or-
der in which constraints are solved, and provides insight into possible error
repairs.

3.1 Type Graphs

In this section, we introduce a graphical representation of unification constraint
sets, called type graphs. We describe methods for generating them from con-
straints, as well as for analyzing them in order to diagnose the likely cause of
errors.

Type graphs provide an incremental step towards bias-free unification, by
using existing type-checking and unification algorithms, referring only to the
type graphs for error message generation. They are biased in the sense that the
order in which unification problems are solved can still affect the error message
output.
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Figure 3.1: A type graph encoding {A ≡ List Int,A ≡ List Bool}. The dotted
edges are derived, and the red edge represents a possible diagnosis of the error.

3.1.1 Replay Graphs

In Hindley-Milner systems, we can solve a unification problem solely using
the type graph. However, this relies heavily on the injective nature of type-
constructors: for constructors C,D and terms s1, . . . sk, t1, . . . , tk, C s1 · · · sk ≡
D t1 · · · tk implies that C = D and si ≡ ti for each 1 ≤ i ≤ k.

This assumption fails to hold in a higher order setting, because not all
functions are injective. For example, it would be extremely foolish to assume
that, because (λx. λy.Zero) Zero Zero ≡ (λx. λy. x) Zero (Succ Zero). that
(λx. λy.Zero) ≡ (λx. λy. x), or that Succ Zero ≡ Zero.

Some steps of the unification algorithm transform problems in order to allow
for solving. For example, η-expansion transforms unification on functions into
unification on their bodies, and decomposes constraints on existential pairs to
constraints on their components.

In order to account for this, we decompose our problem into a number of
first-order unification problems by running GM unification and recording the
sub-problems and solutions that are generated. When an error is found and
a message needs to be generated, the type graph is analyzed to diagnose the
cause of the error. Thus, the graph is not used in finding a solution, but instead
provides a replay of the unification algorithm.

3.1.2 Graph Structure

Our graph structure is very similar to Helium [18, 22], though enriched to allow
for a unified type-term language.

Nodes

Nodes represent one of the following:

• A metavariable
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• A constructor or constant (such as Nat or Vec)

• A constructor-application, with a left edge to either a constructor or an-
other application, and a right edge to an argument.

• A unique program variable. We treat these the same as constructors, and
any edge between two non-equal variables denotes a type error.

• A term node, which represents any higher-order term that cannot be en-
coded purely using constructors and applications. Lambdas, eliminators,
and ⊥ fall into this category.

Edges

Our edges come in two varieties:

• Directed structure edges, written (u, v,D), where D ∈ {L,R}, denot-
ing a left or right edge. These are used to build up complex terms
from constructors, variables and metavariables. For example, the edges
(v, v1, L), (v,Zero, R), (v1,Vec, L), (v1,Nat, R) denotes that v represents the
term Vec Nat Zero.

• Undirected equality edges, written [u, v], denoting that the terms defined
by two nodes are definitionally equal. These edges may be explicit, or
implied based on equalities of constructor-application nodes.

Graphs and Conversions

As is standard, a graph is a pair (V,E) containing a vertex set V and an edge
set E. The graph union G1 ∪G2 simply denotes (V1 ∪ V2, E1 ∪ E2).

There is a conversion function JtKg = (G, v) which produces G, a type graph,
and v, the node in G whose value is t. We omit the definition, but it is straight-
forward, simply copying the term’s structure into the node-edge format de-
scribed above.

The constraint graph for a constraint C = (s : S ≡ t : T ), denoted JCKC ,
is defined as G1 ∪ G2 ∪ ({v1, v2} , {[v1, v2]}), where JsKg = (G1, v1) and JtKg =
(G2, v2).

The connected components of our graph are called equivalence groups: any
two terms in an equivalence group should be equal after the appropriate substi-
tutions for metavariables are made.

Derived Edges

As in Helium, we use derived edges to enforce equality between substructures.
It should come as no surprise that the derived edges which are added based
on complex term equalities are exactly those which are generated by rigid-rigid
decomposition in GM unification: we check that the constructors are equal, and
unify the arguments in order.
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If there is an undirected edge between two constructor application nodes,
we add an undirected edge between their constructors (left children), and an
undirected edge between their arguments (right children).

We assume that constructors are syntactic constructs with fixed numbers of
arguments, which are not curried. Currying happens by wrapping the construc-
tor expressions in lambdas. For example, when Vec appears in source code, it is
actually a name referring to λx. λy.Vec x y, not the Vec constructor internal to
our language. Because of this, we need not worry about comparing the number
of arguments given to constructors, as any partially applied constructors will
appear as unapplied lambdas during typechecking.

3.1.3 Constraint Collecting During Solving

Any time our ambulando automaton moves right in the context and encounters
a constraint C which has not yet been added to our graph, we add JCKC to a
global type graph. Simiarly, any time a definition α := t is added to the context,
we add an edge [α, JtKg] to our graph.

However, this is not sufficient to express all equalities, since we cannot graph-
ically reason about term nodes. For example, we may have an edge [α, λx.Zero],
and another edge [α y, Succ Zero], but cannot deduce the type error that arises
from applying alpha. Thus, whenever a value for a metavariable is defined, any
term-nodes containing that metavariable are given an edge to their new value
when substituting in the metavariable’s definition. In the above example, after
defining α := λx.Zero, we would add an edge [α y,Zero], properly introducing
an error path.

In order to facilitate message generation, we also keep a dependency-graph
of generated constraints. The sub-constraints of some rigid-rigid unification or
η-expansion C are dependent on C, and the definition α := t from solving a
flex-rigid or flex-flex problem C is dependent on C. Updates are dependent on
their definitions (which in turn are dependent on other problems). Thus, when
an edge E is diagnosed as the source of the error, we can trace it back to the
original source-code constraint, locating it in the source code. Essentially, all
edges which do not come from the initial constraint set are treated as derived
edges.

Universal Variables

When adding a constraint of the form ∀Γ. C to our graph, we replace each
variable with a name unique to problem C. These names are shared within all
instances of C, but not between problems.

For example, consider the constraints ∀x. α x ≡ β x, and ∀x. α x ≡ Nat, that
we will refer to as C1 and C2 respectively. We will add C1 with the substitution
[x/x1] and C2 with [x/x2], with the variables being distinct, because they are
in separate problems.

However, if at some point we define α := λy. y, when updating C1 with
our new value for α, we generate an edge x1 ≡ β x1, and an edge x2 ≡ Nat
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A \ x y -> x + y
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initial

A 3 4

8initial

7

update

Figure 3.2: The replay graph for {A x y ≡ x+ y,A 3 4 ≡ 8}. The red edges
represent a possible diagnosis: an edge on the path from 7 to 8, and the initial
edge that induced it.

(which will fail). This way, we can share variables when reasoning within a
problem, but will face no naming conflicts when reasoning between problems,
since variables are never quantified across more than one problem.

Essentially, each variable is treated as a unique constructor. This is intu-
itively valid: no two variables are equal, since ∀x∀y. x ≡ y will never hold.
Likewise, if a metavariable is defined to be equal to some variable, and also
some constructor or value, this will fail, since ∀x. x ≡ t is never true.

3.1.4 Constraint Graph Analysis and Heuristics

When the unification solving is complete, we have a final type graph G. A
constraint set is unsatisfiable if two unequal constructor or program variable
nodes are connected by a path of undirected unification edges. We call any
such path an unsatisfiable path. (A path from any metavariable to a ⊥ node
also denotes an unsatisfiable constraint set. However, we do not consider these
when diagnosing the type graph, opting first to find any mismatch errors we
can from the graph.)

A diagnosis for an unsatisfiable path is a set of edges which, when removed,
causes the two nodes in the path to be in separate connected components. In
order to deal with the crowdedness of our graph from the generated constraints,
we implicitly remove all edges from constraints dependent on C when we re-
move C, as well as following Helium’s approach and removing derived edges
caused by C. This prevents error messages from containing information about
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intermediate constraints which are not directly found in the source.
There are, of course, many possible disagnoses for an unsatisfiable path.

As in Helium, we use heuristics for deciding which edges to blame. These
heuristics are in one of two forms: avoid heuristics, which mark certain edges
unfit for removal, and voting heuritics, which assign votes to each edge. The
edge which, after running all heuristics, has the most votes and is not marked
unfit, will be removed. This process is repeated until the two conflicting nodes
are disconnected.

Unlike Helium, the richer term structure of dependently typed langauges can
be used in heuristics. In particular, any eliminators are completely ignored when
creating derived edges. However, there is no reason potential heuristics cannot
examine eliminators, perform evaluation, or use other higher order techniques.

Edge Information and Inserting Messages

Each edge, when generated, is paired with information about its creation, lo-
cation in the source code, etc. This can be accessed by the heuristics, allowing
them to use this information when diagnosing the probable cause of the error.
The edge information is also accessed during error message generation, so that
the printed messages can be as detailed as possible.

When a heuristic is examining an edge, it also can modify the stored infor-
mation for that edge. Through this mechanism, we can suggest fixes or provide
other information which was obtained during the global analysis of the type
graph, enriching the textual errors presented to the user.

Specific Heuristics

Not all of the Helium heuristics are applicable to dependent types. We outline
here the main heuristics from Helium which are well suited to dependent types,
as well as some variants of them. In particular, the isomorphism and application
heuristics were implemented for our system.

• Participation-ratio heuristic: edges which are on multiple error paths are
more likely to be the true cause of an error.

• First-come first-blamed: when all else is equal, ties are broken arbitrarily.

• Trust-factor heuristic: certain constraints, such as those brought about
by type annotations, are viewed as more trustworthy, and are therefore
avoided when diagnosing errors.

• Permutation heuristic: if swapping two arguments to a function can repair
the type graph, the application edge is blamed and the swap is recom-
mended as a fix. We also adapt a version of this heuristic to examine the
ordering of type indices, for example to swap Eq a x y for Eq a y x.

• Tuple heuristic: a specialization of the permutation heuristic to existential
pairs.
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• Application heuristic: the expected number of arguments for a function is
determined from a type graph. Too many are given if an an argument is
given to a value without a Π type, and too few when a value non-Π type
is expected. Adding or removing arguments is suggested as a possible fix.

• Unifier vertex heruistics: during checking, a fresh type variable often is
introduced to make two things equal. When there are conflicting values
for this variable, and there is no reason to prefer one over the other, both
edges to the unifier are blamed. In a language such as ours, with explicit
polymorphism, such a unifier will often be a program metavariable,. For
example, consider the element-type argument in append _ m n xs ys.
If xs and ys contain we have no way of knowing which is the intended
type of the list.

While this set of heuristics forms a solid base for diagnosis, further research is
necessary to develop refined heuristics which provide more ideal error messages.

3.2 Error-Tolerant Typing

We now describe modifications we make in order to make GM unification error-
tolerant : that is, able to continue with unificaiton even after an error has been
encountered and it is known there is no solution for a certain metavariable.
This allows us to present the most likely error causes, preventing unification
from crashing the first time it sees an unsolvable problem.

3.2.1 Rigid-rigid Unification Errors

Any time a rigid-rigid conflict is encountered (i.e. mismatched constructors),
GM unification throws an error. Instead, we simply take no action, generating
no further subproblems from the given equation.

Because rigid-rigid expansion is defined in the exact same way as derived
edges in our type graph, GM unification throws a rigid-rigid error if and only if
two disjoint constructors are connected in our final type graph.

3.2.2 An Explicit Error Value

We adapt the concept of the explicit error, presented at least as early as Counter-
Factual Typing [8].

We introduce the syntactic form ⊥, which can be used in place of values,
heads, etc. The value of any type-incorrect reduction step is defined to be
⊥. As an implementation detail, we annotate ⊥ with a string describing the
context of failure, allowing us to recover useful information during error message
generation.

Moreover, when we encounter a flex-rigid or flex-flex equation with no solu-
tions, we can assign ⊥ to the variable whose value we are trying to find, and
proceed with unification as if a value had been found.
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3.2.3 Changes from GM

We modify GM unification at the following points to increase its error tolerance:

• Rigid-rigid and spine-matching: in these cases, we throw no error, but sim-
ply continue unification, since the incorrect match will already be reflected
in our type graph.

Moreover, any value can rigidly match with ⊥, generating no new prob-
lems.

• Occurs check: if we ever have α [x1; . . . ;xn] ≡ t, where α occurs strongly-
rigidly (not as a metavariable argument) in t, then any solution for α is
infinite. For example, there is no value where α ≡ Succ α. In this case,
we define α := ⊥ and continue, giving a special error message to the user
when solving is complete.

• Pruning error: there is no solution to α[x1; . . . ;xn] ≡ t if there is a variable
y, not equal to any xi, which occurs rigidly in t, that is, not as an argument
to a metavariable. If this is the case, we generate the constraint t ≡ ⊥.

• Typecheck failing: before defining a metavariable α := t : T , we check
that t : T . However, if any sub-expression fails to type-check, instead
of failing, we replace it with ⊥. Thus, we always obtain a result from
equalizing and type checking values, though the result be ⊥, or contain ⊥
as a sub-expression.

3.3 Correctness of Type Graph and Error-Tolerance

Here, we prove that the success or failure of unification is not changed by our
type graph and error-tolerant modifications.

Lemma 3.3.1. Assume that GM unification throws an error if and only if a
constraint set is unsatisfiable. Suppose GM unification succeeds on a constraint-
set C. Then all of the following hold:

1. There are no inconsistencies in the type graph..

2. No unification errors are thrown.

3. The solutions for all metavariables do not contain ⊥ in their definitions.

4. The equivalence group of each metavariable in the type graph is equal to
the solution generated by GM unification, up to equal variables.

Proof. 1. Because GM unification encountered no errors, we know that, apart
from recording type graph details, our graph performs the exact same steps
as GM unification.

Suppose that two constructors C,D are connected by a path in our graph.

Each edge [u, v] on the path was added in one of the following situations:
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• ∀Γ. u : S ≡ v : T was encountered in the context, and [u, v] is not a
derived edge.

• [u, v] is a derived edge, and u ≡ v was emitted in GM by the con-
straint whose edge is inducing [u, v].

• [u, v] was added because v is u after substitution of the solution α := t
(or vice versa, switching u and v).

In each case, we can see that the success of GM unification implies that
u and v are definitionally equal after all substitutions found by GM uni-
fication.

By the transitivity of equality, we can see that C and D are definitionally
equal after all substitutions, and since C and D are constructors, which
contain no metavariables, C = D.

2. Every place the type graph unification throws an error, GM unification
also throws an error.

3. Any time our algorithm generates a bottom value, GM unification throws
a type error.

4. Suppose GM unification has α := t : T in its context. We show by
induction that after n updates to the definition of t, our type graph has t
in the equivalence group of α.

When α := t is initially defined, we add an edge from α to JtKg.

When we update α := t to α := t′ by substitution for some metavariables
in t, we know by our hypothesis that we have a path from α to t. Our
update adds an edge from t to t′, so we have a path from α to t.

Since we already proved our graph is consistent, we know then that we
have a solution for α, and that it is correct.

Property (4) holds only up to variables because a constraint set such as
α ≡ β could have solutions α := β or β := α, which are distinct but both
correct.

Lemma 3.3.2. Suppose GM unification fails on a constraint set C. Then at
least one of the following holds:

1. There is a path between two non-equal constructors in the global type graph.

2. A solution for some metavariable contsains ⊥.

3. An error is thrown during unification.

Proof. If GM unification throws a rigid-rigid error, then a constraint causing
the error was added to our graph, so (1) holds.
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If GM unification throws a typechecking error, pruning error, or bad occur-
rence error, then our algorithm produces a solution containing ⊥ in its place,
so (2) holds.

If GM unification throws any other error, then the algorithms performed
identical steps until the point the error was thrown, except for recording con-
straints in our graph. All other failure points in GM unification are present in
our type graph algorithm, so our algorithm throws an error as well.

These combined give the correctness of our modified algorithm:

Theorem 3.3.3. Given a constraint set C, GM unification and type graph
unification either both fail, or give identical solutions up to equal metavariables.

3.4 Counter-Factual Unification

Because, in the above sections, type graphs are used only to provide replays of
unification, they still contain some bias: the order in which we solve constraints
can affect the results.

We present counter-factual unification: a modification to unification which
seeks to reduce bias by exploring solutions arising from subsets of the initial
constraint-set. We describe choice expressions for compact representation of
multiple constraint sets, as well as the modifications to GM unification needed
for solving these. We then prove that our modified algorithm halts, and produces
equivalent results to GM unification.

3.4.1 Motivation

While there are many potential sources of bias, a particularly problematic one
is in substitutions. The order in which constraints are solved in GM unification
matters, and when a potential value is found, it is substituted in to all other
problems as the “actual” value, and future conflicting values are seen as rigid
errors.

The inability of type graphs to handle this case arises from the need to unify
arbitrary terms containing metavariables, particularly those containing function
applications.

Consider the following unsatisfiable constraint set:
{C1 = ∀x : Set. α x : Set ≡ Vec x 0 : Set,
C2 = ∀x : Set. α x : Set ≡ Nat : Set}.
In GM unification, if we solve C1 first, we define α := λx.Vec x 0. We substitute
the new value in to C2, and after η-expansion, get Vec x 0 ≡ Nat. This update
to the value of α x is recorded. However, in our type graph, our node for α will
only have an edge to λx.Vec x 0. We have a path Vec x 0 to α x to Nat, but
the node for α itself occurs on no error paths.

The opposite problem happens if we solve C2 first, exposing bias in our solv-
ing procedure. Even with type-graphs, the order in which we solve constraints
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A x

Vec x 0

Nat

A\x -> Vec A x

Figure 3.3: The biased type-graph {A x ≡ Vec x 0, A x ≡ Nat}. Notice that no
expression involving Nat is connected to the node for A.

affects the error results presented. Ideally, we want all conflicting values for α
connected to it, so that we can suggest repairs using heuristics.

As a potential solution, suppose that we decomposed the above constraint
set into the following: {C1 = ∀x : Set. α1 x : Set ≡ Vec x 0 : Set,
C2 = ∀x : Set. α2 x : Set ≡ Nat : Set,
C3 = α1 : Set → Set ≡ α2 : Set → Set}. If we solve them in that order, we
obtain an error path containing both α1 and α2.

The following sections formalize the intuition behind this procedure, and
details the technique for solving such problems. Specifically, we adapt the ideas
from counter-factual typing [8], which in turn is based on the Choice Calculus
[13]. These provide a method to counteract bias by examining solutions that
arise if we had never given a variable its definition.

3.4.2 A Choice Calculus

We augment our language of values with a form for named choice expressions:
t := ... | C〈v1, v2〉, where C is some identifier.

Evaluation of expressions involving choices is straightforward: for any elim-
inators e1 . . . en, we have C〈t1, t2〉 [e1 . . . en] = C〈t1 [e1; . . . ; en], t2 [e1; . . . ; en]〉.

For each choice identifier C, we define left and right projections CL, CR where
CL C〈t1, t2〉 = t1, and CR C〈t1, t2〉 = t2. We assume that these projections can
be applied to arbitrary terms, replacing all sub-terms containing a choice C
with the proper variant. Likewise, we assume we can apply these projections to
constraints as well, and apply them element-wise to sets of terms or constraints.

Meaning

Suppose that S is some constraint set (though we can just as easily choose a set
of terms), and that C1, . . . , Cn are the labels of all choices in sub-terms of this
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set.
Then, we say that the set represented by this choice set is Sn, where:

• S0 = S

• For 0 < k ≤ n, Sk =
⋃
s∈Sk−1

((Ck)L s ∪ (Ck)R s)

That is, a set of choice expressions represents every combination of left and
right for each choice label in that expression.

We can see that there are 2n constraints represented by a term containing
n distinct choice labels, assuming each choice has two distinct variants. The
calculation is more complicated when choice labels occur more than once, but
we can see that a potentially exponential set of values is being represented.

3.4.3 Counter-Factual Solving

The main idea of counter-factual solving is, whenever GM unification generates
a subsitution α := t, we instead generate α := 〈t, αfresh〉, so that the solver can
also proceed as if no value were ever given to α.

Unlike traditional counter-factual typing [8], we do not implement choice in
the type rules. Instead, we use choice when a value for a metavariable is defined.

Defining Metavariables

When we find a solution α := t in a problem P , two actions are taken:

• We immediately apply the substitution α := t : T to problem P in the
context.

• We add the substitution α := C〈t, α′〉 : T to our context, where C is a
fresh choice label and α′ is a fresh metavariable. α′ : T is added to the
left context.

The immediate application is needed to avoid infinite looping: otherwise, any
time we defined a variable α in problem P , we would immediately attempt the
solution α′ := t, which would generate a new metavariable, continuing forever.

Freshening: Solving Equations with Choice

An equation with a choice point in fact represents a set of separate equations,
which we would like to solve separately, without solutions to one equation af-
fecting the others.

To solve the equation C〈s, t〉 : S ≡ u : V , we decompose it as follows:

• We split u into uL = CL u and uR = CR u

• For each metavariable αi occurring in both uL and uR, we declare new
metavariables α′

i, α
′′
i , and replace αi with α′

i and α′′
i in uL and uR respec-

tively.
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• We iterate left through the context, and before each declaration αi : T ,
we add α′

i : T and α′′
i : T .

• We push right the substitution αi := C〈α′
i, α

′′
i 〉

• We push right two new problems, s : S ≡ uL : V , and t : S ≡ uR : V

We refer to the above process as freshening, since we are creating instances
of the equation with fresh copies of variables. Essentially what we are doing
here is decomposing our problem into the two possibilities. However, we do not
want any solutions we find when solving s ≡ u to interfere with our solving of
t ≡ u or vice versa, which is why we need to generate fresh metavariables.

The splitting of u into uL and uR is needed because u itself may contain
choice expressions with label C, perhaps from a previous application of this
process. We never want to consider the left side of some C choice with the right
side of another C choice.

3.4.4 Practical Aspects

When we apply counter-factual solving, we see an exponential explosion in the
number of problems and the size of the context, in what is already a potentially
slow algorithm. Most of these will be pointless, as we will find equal values for
both sides of choice expressions.

In order to facilitate a practical solving algorithm, when we split a constraint
involving a choice, as described above, we mark newly generated equation for
the right-side of the choice as pending on the failure of the left-hand side. Thus,
if the unification problems involving the choice all succeed, we never explore the
counter-factual cases.

Likewise, in a real implementation, instead of generating two new variables
α′, α′′ for each metavariable when solving a choice constraint, we can reduce the
overall number of variables in the context by not defining α, and replacing its
occurrences with C〈α, α′′〉, never defining or using α′.

3.4.5 Correctness

Lemma 3.4.1. If GM unification fails on a given problem set S, our counter-
factual will also fail on S.

Proof. Because fresh variables are always generated when solving choice expres-
sions, equations involving the second half of a choice expression will never affect
the solutions to the first.

With this in mind, we can see for that every step GM unification performs,
a corresponding step is performed by our algorithm. Every time we define
a metavariable, the first element in its definition is the GM solution. And
every time we solve a choice expression, the first equation generated is identical
to what we would encounter in GM, except for possible variable renamings.
Thus, whenever GM unification encounters an error, we will encounter a similar
one.

41



Lemma 3.4.2. If GM unification succeeds on a given problem set S, our
counter-factual system succeeds, where the first projection of the solution to each
metavariable present in GM contains the same solution as its GM counterpart.

Proof. As we discussed in the proof of Lemma 3.4.5, when we ignore the counter-
factual parts of equations and definitions, an identical process to GM unification
is performed by our algorithm, with some possible variable renamings. Since
the newly generated equations and variables do not affect the factual case, any
solutions will be identical.

Moreover, if the constraint set is consistent (because GM unification solved
it), we can show that no counter-factual equations will fail. This is because,
when we make a new variable α′ solving α, any constraint involving α′ were
derived from constraints that originally involved α. A similar fact can be shown
when we freshen α to α′, α′′. So for any newly generated counter-factual vari-
able, there exists some factual variable for which the constraints placed on the
counter-factual variable are no more than those on the factual one. Since we
know the constraint-set is consistent with regards to factual variables, it must
also be for counter-factual ones.

In addition to this, we cannot neglect the fact that we are expanding the
context and generating new equations. Here we prove that our process will still
halt whenever GM unification halts.

Lemma 3.4.3. Counter-facutal unification halts on any initial constraint set.

Proof. Intuition for the halting proof of GM unification is given by Gundry [15].
We show why our process of generating new problems and choice definitions is
well founded.

We examine the behaviour of the algorithm by considering the set of problem
sets represented by all choices, which we call the true problem sets.

Since the algorithm behaves as GM at first, we know we will eventually
define at least one metavariable, or halt before doing so. We show by induction
that, if there are n occurrences of undefined metavariables in the true problem
set for the context, before making a definition α := C〈t, α′〉, the algorithm will
use only a finite number of steps after applying the definition.

If there is 1 variable occurrence in the true sets S, then that variable is in
the problem generating the definition. We substitute t for α immediately, and
since there are no other occurrences, we never use α′. So all variables are solved
and the algorithm halts.

Suppose there are n > 1 variables in the true problem sets S before our
definition. After our definition, we obtain a new set S′, by substituting the
definition of α. Each problem in a set in S′ will be one from a set in S, with
either t or α′ substituted in. So our true problem set can be partitioned into
S′, the problems for the factual case of α, and S′′, for the counter-factual case.

We showed in the above lemmas that the process of solving these two parti-
tions is completely independent. So if we solve them separately and halt, then
solving them together will also halt.
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We can apply our induction hypothesis to each of the two parts. Since we
removed one variable from the problem that defined α (and did not substitute
in α′), each half has less than n variable occurrences, so our hypothesis holds,
and each half can be solved in finite time. In particular, this holds because the
process of freshening metavariables does not add any variables to the true prob-
lem sets, it simply splits a choice problem into two non-choice problems. Other
operations from GM unification may increase the occurrences in the context,
but since we know GM unification halts, these operations still move us closer to
halting.

3.4.6 Counter-Factual Type-Graphs

The use of counter-factual typing helps generate potential solutions for ill-typed
metavariables. However, we still wish to take advantage of the information avail-
able to us from type graphs, and the heuristics for diagnosing error locations.

Our solution is very simple: when we generate a definition α := C〈t, α′〉, we
add a constraint-graph edge between α and α′. Similarly, when we freshen a
variable α to α′, α′′, we add edges from α to each of α′, α′′. This expresses the
constraint that, in a well typed program, the counter-factual case will produce
a result unifyable with the factual case.

Repair Heuristics

We can easily use counter-factual solving in a repair heuristic. Whenever we
define α := C〈t, α′〉, we have an edge from α to t, and one from α to α′. If we
remove the edge from α to t (as well as its dependent edges), and the new graph
has fewer inconsistencies, then we can suggest the value of α′ as a likely fix for
the value of α.
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Chapter 4

Results and Discussion

In order to evaluate our techniques, we combined the implementations of He-
lium, LambdaPi, and GM Unification. Our implementation can be found on
GitHub [12]. A few of the Helium heuristics, such as the application and per-
mutation heuristics, were transferred to our system, which allowed for the hint
suggestions showcased below.

4.1 Comparison of Error Messages

Here, we present some simple programs containing type errors, with roughly
equivalent versions presented in Agda, Idris, and our variant of LambdaPi. We
present the different error messages reported for each.

An issue with our language is that several errors are often identified, where
only one should be. For the sake of these examples, we simplify the messages
presented to a single error, in order to highligh the repair heuristics of our
system. We discuss the problems with the full errors in Section 4.2.

4.1.1 Too Many Arguments

Our compiler has modest improvements in thise case. While the Idris and Agda
messages aren’t particularly terrible, we are able to use the type graph to infer
the expected number of arguments for the given goal type.

Unfortunately, due to limitations of our version of the application heuristic,
metavariables are left in the reported expected type.

Agda

1 {-# OPTIONS --type-in-type #-}
2 module TooManyArgs where
3

4 open import AgdaPrelude
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5

6 myFun : (a : Set) -> a -> a -> a
7 myFun a x y = x
8

9 myApp = myFun _ Zero Zero Zero Zero
10

11 -- TooManyArgs.agda:9,9-26
12 -- Nat should be a function type, but it isn’t
13 -- when checking that Zero Zero are valid arguments to a function of
14 -- type Nat

Idris

1 module TooManyArgs where
2

3 open import AgdaPrelude
4

5 myFun : (a : Set) -> a -> a -> a
6 myFun a x y = x
7

8 myApp = myFun _ Zero Zero Zero Zero
9

10 -- TooManyArgs.idr:8:15:
11 -- When checking right hand side of myApp with expected type
12 -- Nat
13 -- When checking an application of function TooManyArgs.myFun:
14 -- Type mismatch between
15 -- Nat (Type of Zero)
16 -- and
17 -- _ -> _ (Is Zero applied to too many arguments?)

Our Compiler

1 let myFun = (\ a x y -> x) :: forall (a :: *) . a -> a -> a
2

3 let myApp = myFun _ 0 1 2
4

5

6 -- TooManyArgs.lp: 3,13 Mismatch in type of
7 -- myFun _ (0 :: Nat) (1 :: Nat) (2 :: Nat)
8 -- ?A_3_25__3 -> (?A_3_25__18) =/= Nat
9 -- HINT: Function expected at most 3 arguments, but you gave 4
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The reported message does not change with counter-factual solving enabled.

4.1.2 Too Few Arguments

In the case where too few arguments are given, our repair heuristics are able
to suggest both the types and positions of arguments which must be added in
order to create a well-typed function call. Agda and Idris, however, only inform
the user that the actual type of the expression is a function type, describing its
mismatch with the expected result type.

Agda

1 {-# OPTIONS --type-in-type #-}
2 module TooFewArgs where
3

4 open import AgdaPrelude
5

6 myFun : (a : Set) -> a -> a -> a
7 myFun a x y = x
8

9 myApp : Nat
10 myApp = myFun _ Zero
11

12 -- TooFewArgs.agda:10,9-21
13 -- Nat -> Nat !=< Nat of type Set
14 -- when checking that the expression myFun _ Zero has type Nat

Idris

1 module TooFewArgs
2

3 import IdrisPrelude
4

5 myFun : (a : Type) -> a -> a -> a
6 myFun a x y = x
7

8 myApp : Nat
9 myApp = myFun _ Zero

10

11 -- TooFewArgs.idr:9:7:
12 -- When checking right hand side of myApp with expected type
13 -- Nat
14 -- Type mismatch between
15 -- a -> a (Type of myFun a _)
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16 -- and
17 -- Nat (Expected type)

Our Compiler

1 let myFun = (\ x y -> x) :: Nat -> Nat -> Nat
2

3 let myApp = (myFun 0) :: Nat
4

5 -- TooFewArgs.lp: 3,14 Mismatch in type of result of application
6 -- myFun (0 :: Nat)
7 -- Nat =/= Nat -> Nat
8 -- HINT: Function expected 2 arguments, but you gave 1.
9 -- Try ("myFun") (Zero) (x2)

10 -- where
11 -- x2 :: Nat

The reported message does not change with counter-factual solving enabled.

4.1.3 Arguments in the Wrong Order

Similarly to the case with too few arguments, our repair heuristics can suggest
a permutation of the given arguments which is likely to resolve the error. Agda
and Idris, instead, report only the first ill-typed argument as an error, providing
no repair suggestions.

Agda

1 {-# OPTIONS --type-in-type #-}
2 module ArgsWrongOrder where
3

4 open import AgdaPrelude
5

6 myFun : (a : Set) -> a -> Nat -> Nat
7 myFun _ x y = y
8

9 myApp = myFun _ Zero (Nil Nat)
10

11 -- ArgsWrongOrder.agda:9,23-30
12 -- Vec Nat Zero !=< Nat of type Set
13 -- when checking that the expression Nil Nat has type Nat
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Idris

1 {-# OPTIONS --type-in-type #-}
2 module ArgsWrongOrder where
3

4 open import AgdaPrelude
5

6 myFun : (a : Set) -> a -> Nat -> Nat
7 myFun _ x y = y
8

9 myApp = myFun _ Zero (Nil Nat)
10

11 -- ArgsWrongOrder.idr:12:15:
12 -- When checking right hand side of myApp with expected type
13 -- Nat
14 -- When checking an application of function ArgsWrongOrder.myFun:
15 -- Type mismatch between
16 -- Vec a Zero (Type of [])
17 -- and
18 -- Nat (Expected type)

Our Compiler

1 let myFun = (\ _ x y -> y) :: forall (a :: *) . a -> Nat -> Nat
2

3 let myApp = (myFun _ 0 (Nil Nat))
4

5 -- ArgsWrongOrder.lp: 3,14 Mismatch in type of
6 -- myFun _ (0 :: Nat) (Nil Nat)
7 -- Nat =/= Vec Nat Zero
8 -- HINT: Function arguments in the wrong order.
9 -- Try ("myFun") _ (Nil Nat) (Zero)

When counter-factual solving is enabled, our heuristics fail in this case:

1 -- ArgsWrongOrder.lp: 3,25 Mismatch in type of result of application
2 -- Nil Nat
3 -- Vec Nat Zero =/= Nat

4.1.4 Dependent Type Error

Here we show the error from a classic, dependent-type specific error: reversing
the indices of an Eq value. The programmer uses Eq Nat (Succ x) (plus (Succ x) 0)
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in the type signature, where the type should in fact be Eq Nat (plus (Succ x) 0) (Succ x).
This example can be fixed by reversing the type signature, or using a proof of
equality’s symmetry.

Here, instead of an application heuristic, we are able to apply an isomorphism
heuristic, seeing that the two conflicting types are isomorphic to one another,
and prompting the user to rearrange to repair them. However, we can only do
this when counter-factual solving is enabled.

Agda

1 module BadRefl where
2

3 open import AgdaPrelude
4

5 plus =
6 natElim
7 ( \ _ -> Nat -> Nat ) -- motive
8 ( \ n -> n ) -- case for Zero
9 ( \ p rec n -> Succ (rec n) ) -- case for Succ

10

11

12 postulate pNPlus0isN : (n : Nat) -> Eq Nat (plus n Zero) n
13

14

15

16 succPlus : (n : Nat) -> Eq Nat (Succ n) (plus (Succ n) Zero)
17 succPlus =
18 (\n -> pNPlus0isN (Succ n))
19

20 -- BadRefl.agda:18,10-29
21 -- natElim
22 -- (\ _ → Nat -> Nat)
23 -- (\ n_1 -> n_1)
24 -- (\ p rec n_2 → Succ (rec n_1))
25 -- n Zero
26 -- != n of type Nat
27 -- when checking that the expression pNPlus0isN (Succ n) has type
28 -- Eq Nat (Succ n) (plus (Succ n) Zero)

Idris

1 module BadRefl
2

3 import IdrisPrelude
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4

5 plus : Nat -> Nat -> Nat
6 plus =
7 natElim
8 ( \ _ => (Nat -> Nat) ) -- motive
9 ( \ n => n ) -- case for Zero

10 ( \ p, rec, n => Succ (rec n) ) -- case for Succ
11

12

13 postulate pNPlus0isN : (n : Nat) -> Eq Nat (plus n Zero) n
14

15

16

17 succPlus : (n : Nat) -> Eq Nat (Succ n) (plus (Succ n) Zero)
18 succPlus =
19 (\n => pNPlus0isN (Succ n))
20

21 BadRefl.idr:19:21:
22 When checking right hand side of succPlus with expected type
23 (n : Nat) -> Eq Nat (Succ n) (plus (Succ n) Zero)
24

25 -- When checking argument n to BadRefl.pNPlus0isN:
26 -- Type mismatch between
27 -- Succ (natElim (\underscore => Nat -> Nat)
28 -- (\n1 => n1)
29 -- (\p => \rec => \n5 => Succ (rec n5))
30 -- n
31 -- Zero) (Inferred value)
32 -- and
33 -- Succ n (Given value)
34 --
35 -- Specifically:
36 -- Type mismatch between
37 -- natElim (\underscore => Nat -> Nat)
38 -- (\n1 => n1)
39 -- (\p => \rec => \n5 => Succ (rec n5))
40 -- n
41 -- Zero
42 -- and
43 -- n

Our Compiler

Unfortunately in this case, our heuristics falsely identify this as a wrong-arguments
error, suggesting a fix that is, in fact, identical to the original program.
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1 -- addition of natural numbers
2 let plus =
3 natElim
4 ( \ _ -> Nat -> Nat ) -- motive
5 ( \ n -> n ) -- case for Zero
6 ( \ p rec n -> Succ (rec n) ) -- case for Succ
7

8 assume pNPlus0isN
9 :: forall n :: Nat . Eq Nat (plus n 0) n

10

11 let succPlus =
12 (\n -> pNPlus0isN (Succ n))
13 :: forall n :: Nat . Eq Nat (Succ n) (plus (Succ n) 0)
14

15

16 -- ERROR: BadReflPost.lp: 12,10 Cannot solve the following constraints:
17 --
18 -- BadReflPost.lp: 12,10 Mismatch in type of result of application
19 -- pNPlus0isN (Succ [Free_ (Local 0)])
20 -- Eq Nat ((Succ (x)))
21 -- (Succ
22 -- ((natElim
23 -- (\ arg . Nat -> Nat)
24 -- (\ arg . arg)
25 -- (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero))
26 -- =/=
27 -- Eq Nat
28 -- (Succ
29 -- ((natElim
30 -- (\ arg . Nat -> Nat)
31 -- (\ arg . arg)
32 -- (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero))
33 -- ((Succ (x)))
34 -- HINT: Function arguments in the wrong order.
35 -- Try ("pNPlus0isN") (Succ (x))

Our Compiler: Counter-Factual

When we enable counter-factual solving, one of the messages contains the fol-
lowing repair hint:

1 -- BadReflPost.lp: 12,10 Mismatch in type of result of application
2 -- pNPlus0isN (Succ [Free_ (Local 0)])
3 -- Eq Nat ((Succ (x)))
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4 -- (Succ
5 -- ((natElim
6 -- (\ arg . Nat -> Nat)
7 -- (\ arg . arg)
8 -- (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero))
9 -- =/=

10 -- Eq Nat
11 -- (Succ
12 -- ((natElim
13 -- (\ arg . Nat -> Nat)
14 -- (\ arg . arg)
15 -- (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero))
16 -- ((Succ (x)))
17 -- HINT: Rearrange arguments to match
18 -- Eq Nat ((Succ (x)))
19 -- (Succ
20 -- ((natElim
21 -- (\ arg . Nat -> Nat)
22 -- (\ arg . arg)
23 -- (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero))
24 -- to
25 -- Eq Nat
26 -- (Succ
27 -- ((natElim
28 -- (\ arg . Nat -> Nat)
29 -- (\ arg . arg)
30 -- (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero))
31 -- ((Succ (x)))

As ugly as this is, if we substitute for definitions of plus, we see a more
helpful hint:

1 -- HINT: Rearrange arguments to match
2 -- Eq Nat (Succ x) (plus (Succ x) 0)
3 -- to
4 -- Eq Nat (plus (Succ x) 0) (Succ x)

4.2 Limitations

4.2.1 Error Redundancies

Because each inconsistency in the type graph is marked as an error, what is
conceptually one error is sometimes seen as two or more.

52



For example, in Subsection 4.1.2, our compiler reports the given error mes-
sage twice. Each message corresponds to a separate path from the type of
myApp to Nat → Nat in the graph, when the graph already has a path from
that node to Nat.

Further study is needed to determine whether this is simply a flaw of our cur-
rent approach or implementation, or whether this is inherent to replay graphs.
In any case, a more complete implementation could use heuristics to determine
the ideal message to present to the user, and to filter out duplicate errors.

Counter-Factual Redundancies

The redundancies identified above are made worse with counter-factual solving.
Because counter-factual solving performs every step of normal GM unification
in the factual case, many errors will cause multiple graph inconsistencies: one
for the inconsistency GM unification would cause, and one for disagreement
between the factual and counter-factual case.

Sub-Structure Redundancies

There are also some redundancies present with the building up of sub-structures.
For example, in the Eq example above, our compiler actually reports a con-

flict between Eq (plus (Succ x) 0) (Succ x), Eq (Succ x) (plus (Succ x) 0),
Eq (Succ x) (Succ x), and Eq (plus (Succ x) 0) (plus (Succ x) 0). This is
because internally, it has Eq α β, where α and β are each metavariables with
(Succ x) and (plus (Succ x) 0) as conflicting values.

4.2.2 Derived Edges in Repair Heuristics

Our compiler uses replay graphs to generate derived edges from initial con-
straints. However, many heuristics involve removing and adding edges in the
graph.

While removing the derived edges from an initial edge is simple, generating
derived edges when new edges are added is not. Re-running the unification
algorithm would likely be too costly for practical purposes.

Because of this, some of our heuristics generate “false positives”, places
where a suggestion is given that will not actually resolve the type errors, because
the derived edges cause inconsistencies that are not immediately apparent in the
graph. This is why the example without counter-factual typing fails in Section
4.1.4.

Controlling Evaluation

As we saw Section 4.1.4, the error messages our compiler generates are often
long and unwieldly. This is because Gundry and McBride’s implementation,
and hence ours, is extremely strict in its evaluations, opting to always represent
values in normal form. As a result, named functions are prematurely substituted
in for their definitions.
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For example, the following function occurs repeatedly.

1 ((natElim
2 (\ arg . Nat -> Nat)
3 (\ arg . arg)
4 (\ arg arg1 arg2 . Succ ((arg1 (arg2))))) x Zero)

This is simply the definition of plus. Controlling evaluation more carefully
could prevent plus from being expanded, resulting in a much more readable
error message.

4.3 Future Work

It goes without saying that future work can include investigating and improving
on the above limitations. However, we highlight a few more potential research
topics:

4.3.1 Improved Reporting Heuristics

We have presented a framework, which allows for the analysis of type-errors
using heuristics on type graphs. We have adapted a few Helium heuristics to
our framework. However, there is much room for development of heuristics
specifically targeted at dependent types.

Ideally, in the future, a large collection of programs written by actual be-
ginners to dependently-typed languages would be collected, as in Helium, with
ideal error locations identified by hand. Heuristics could then be tuned on these
examples, to identify the most helpful constraint in most or all cases.

Likewise, future work could examine the Baysean heuristics from SHErrLoc
[30], applying them to the our type-graph format, or creating a form of replay
graphs using the SHErrLoc graph format.

4.3.2 Performance Considerations

The unification algorithm which we adapted was, according to the authors, not
tuned for performance, with much needless iteration through the context being
performed. Future work on improving that algorithm would certainly carry over
to ours, yielding speed improvements.

Similarly, the use of counter-factual solving adds exponential slowdown to an
already slow algorithm. While we have suggested some techniques for keeping
the number of counter-factual cases low, a more sophisticated algorithm could
yield performance improvements.

Switch combinators were developed for Helium [22] to address the compu-
tational costs associated with type-graph analysis. Possible future work could
examine how these would need to be changed to be adapted to our system.
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The lack of recursion in our language keeps binding-groups small: we only
analyze one function at a time. Languages such as Idris require mutually re-
cursive functions to be declared specially [10], though Agda recently lifted this
requirement [14]. In any case, the requirement that all functions be terminating
will likely force users to keep track of their recursion carefully, possibly keeping
binding groups small.

4.3.3 Alternate Constraint Solvers

While our algorithm is based on GM unification, there are several different
higher order unification algorithms [6, 31, 9]. GM unification was ideal for the
scope of a Masters thesis, but other algorithms could be more performant, and
able to solve a wider set of problems. The concepts we introduce, such as replay-
graphs and counter-factual solving, could likely be applied to more sophisticated
constraint solvers.

4.4 Conclusion

In this thesis, we presented previously known techniques for error message im-
provement in functional languages. We identified the difficulties with adapting
these techniques to dependently-typed languages.

With replay graphs and counter-factual solving, we have provided an attempt
at improving error messages in dependently-typed languages. These techniques
were implemented in a simple language, and initial evaluation showed that help-
ful hints could be generated for simple examples.

The implementation is rough and preliminary, and our approach taken has
limitations, providing worse messages in some cases. However, we have shown
that it is possible to use more advanced error techniques with dependent types.

This thesis has identified possible approaches, as well as challenges, for de-
pendent type error generation. It is our hope that it will provide a solid base
on which future improvements can be made.
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