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Abstract

Inspired by Astala, Iwaniec, Prause and Saksman’s partial result of Morrey’s problem regarding
rank-one convex and quasiconvex functions on the functionals from Burkholder’s martingale theory,
we discuss and relate several open problems in different fields of mathematics. In particular, we
discuss the theory of Calderón and Zygmund regarding the Lp-boundedness of the Beurling-Ahlfors
transform B for 1 < p <∞ to formulate Iwaniec’s conjecture regarding the precise operator norms
of B. Moreover, we discuss its consequences in the theory of quasiconformal mappings. Finally,
we discuss the notions of rank-one convexity and quasiconvexity, motivated by their role in the
theory of calculus of variations, and show how a positive answer to Morrey’s conjecture implies
quasiconvexity of the Burkholder functional, which, in turn, is shown to imply Iwaniec’s conjecture.
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Introduction

It was in a seminar on complex analysis in 1949 at the University of Uppsala where Arne Beurling
introduced a two-dimensional analogue of the Hilbert transform, which we now call the Beurling-
Ahlfors transform, and proved that it extends to an isometry of L2 as a generalization of Hilbert’s
result for the Hilbert transform, see [Be, p. 460]. In 1955, this operator found its way into the
theory of quasiconformal mappings when it was used by Lars Ahlfors to establish the existence of
solutions to certain partial differential equations known as Beltrami equations, see [Al]. Notably, the
mathematician Ilia Vekua had done work in this area earlier in the same year in [Ve]. Ahlfors was
unaware of this fact and the results he found were independent of Vekua’s results. It was Vekua’s
student Bogdan Bojarski who combined their efforts in 1957 in the seminal paper Generalized
Solutions of a System of First Order Differential Equations of Elliptic Type with Discontinuous
Coefficients, see [Bo].

Bojarski used the newly developed theory of Calderón and Zygmund on singular integral opera-
tors to the Beurling-Ahlfors transform to establish Lp estimates of solutions to Beltrami equations.
Having these integrability results in mind, in 1982 the Polish mathematician Tadeusz Iwaniec pub-
lished the article Extremal Inequalities In Sobolev Spaces and Quasiconformal Mappings, see [Iw],
in which he conjectures precise values of the operator norm in Lp of the the Beurling-Ahlfors trans-
form. In the same year, Donald Burkholder was independently working on his martingale theory
which happened to feature the same values from Iwaniec’s conjecture, see [Bu]. While Iwaniec’s
conjecture has yet to be settled, it has been through Burkholder’s estimates that the most progress
has been made. The study of the functionals obtained through Burkholder’s theory relates back to
notions of convexity introduced in the setting of calculus of variations in 1952 by Charles Morrey,
see [Mo], in which there is an outstanding open problem, known as Morrey’s conjecture, on relating
the notions of quasiconvexity and rank-one convexity.

As a culmination of these ideas, Astala, Iwaniec, Prause and Saksman obtain a partial result
with respect to Morrey’s conjecture in 2010 in the article Burkholder Integrals, Morrey’s Problem
and Quasiconformal Mappings, see [AIPS]. We let this result inspire us to delve into the theory
and to explore its history.

Goal and outline

The goal of this thesis is not to prove any new results, but to give an overview of the theory and ideas
necessary to understand Iwaniec’s conjecture and several related conjectures due to Burkholder’s
estimates.

The main text of the thesis is split into four sections. In Section 1 we provide some preliminary
notions and results regarding Lp-spaces.

In Section 2 we first establish Lp-boundedness of the Hilbert transform and we establish its
precise Lp-norms. Then we use Calderón and Zygmund’s Method of Rotations to establish Lp-
boundedness of the Riesz transforms and the Beurling-Ahlfors transform. We also establish a lower
bound of the Lp-norms of the Beurling-Ahlfors transform.

In Section 3 we give an introduction into the theory of quasiconformal mappings. Moreover, we
explain Iwaniec’s reasoning on how he came to his conjecture.

In the last section, Section 4, we first describe how one of Burkholder’s estimates can be used to
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deduce results regarding the operator norm of the Beurling-Ahlfors transform and we explain how
this is related to the study of the Burkholder functional. We then give an introduction into the
theory of calculus of variations and the related notions of quasiconvexity and rank-one convexity.
This leads us to Morrey’s conjecture on the equivalence of these convexity notions in two dimensions
and to conjectures related to the quasiconvexity of the Burkholder functional. We conclude the
section by giving an overview of the conjectures.
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1 Preliminaries: Lp-Spaces

This section deals with some preliminary facts we will be using on Lp-spaces and some conventions
we will be working with. Whenever we speak of a function we mean a map whose codomain is the
field C of complex numbers. Naturally, all our function spaces will be vector spaces over C. When
we are working with functions defined on R2, we will use the standard identification C ∼= R2. We
will usually denote the coordinates on C by z = x + iy. In an attempt to make our notation less
cumbersome we will sometimes consider z, x, and y to be functions, where one might interpret
z as the identity function on C and x and y as taking the respective real and imaginary parts
of a complex number. It should be implied by the context when these letters refer to functions
rather than values and vice-versa. When working in the Fourier domain we will usually denote the
coordinates by ζ = ξ + iη, working under similar conventions. Sometimes we will step away from
these conventions when we wish to generalize to a setting on Rn for n ∈ N. In this case we will
denote the coordinates by x = (x1, . . . , xn) or sometimes y = (y1, . . . , yn). In the 1-dimensional
case we will also sometimes use t.

When (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are normed (both real or both complex) vector spaces, then we
define the (extended) operator norm by

‖ · ‖L(X,Y ) : {L : X → Y | L linear} → [0,∞], ‖L ‖L(X,Y ) = sup
x∈X
‖x‖X=1

‖L x‖Y ,

and set
L(X,Y ) = {L : X → Y | L linear, ‖L ‖L(X,Y ) <∞}.

We will also write L(X) := L(X,X).
Throughout this section we let U be a non-empty open subset of Rn. We denote by L0(U)

the space of equivalence classes of Lebesgue measurable functions on U , where two functions are
deemed equivalent if they are equal almost everywhere. We will commit the usual abuse of notation
where we identify functions with their equivalence class, e.g., we will write f ∈ L0(U) for a function
f rather than its corresponding equivalence class. For p ∈ [1,∞] we define the (extended) norms

‖ · ‖p : L0(U)→ [0,∞], ‖f‖p :=


(∫

U
|f(x)|p dx

) 1
p

if p ∈ [1,∞[

ess sup
x∈U

|f(x)| if p =∞,

where dx means integration with respect to the Lebesgue measure (where x represents the coordi-
nates we are using) and where

ess sup
x∈U

f(x) = inf{c ∈ R | f(x) ≤ c for a.e. x ∈ U}.

for real-valued f ∈ L0(U). We then set

Lp(U) := {f ∈ L0(U) | ‖f‖p <∞},

which are Banach spaces when equipped with their respective norms.
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Let p ∈]1,∞[. We then call p′ := p/(p − 1) the (Hölder) conjugate exponent of p. The map
q 7→ q/(q − 1) gives a bijection from ]1, 2] to [2,∞[ and vice-versa. If f, g : U → C are measurable
functions so that fg is integrable, then we write

〈f, g〉 :=

∫
U
f(x)g(x) dx.

The pairing 〈·, ·〉 restricts to the dual pairing Lp(U)×Lp′(U)→ C, which is well-defined by Hölder’s
inequality. Then the maps

Lp(U)→ (Lp
′
(U))∗, f 7→ 〈f, ·〉

Lp
′
(U)→ (Lp(U))∗, g 7→ 〈·, g〉

are isometric linear isomorphisms.
Since the inclusion ι : C∞c (U) ↪→ Lp

′
(U) is continuous with dense range, see Appendix A, we

find that the restriction map

(Lp
′
(U))∗ → D′(U), u 7→ u|C∞c (U) = u ◦ ι

is a continuous injection. This allows us to give an alternative description of Lp(U) by defining

‖ · ‖p : D′(U)→ [0,∞], ‖u‖p = sup
φ∈C∞c (U)
‖φ‖p′=1

|u(φ)|

and setting
Lp(U) =

{
u ∈ D′(U)

∣∣‖u‖p <∞} .
The first definition of Lp(U) yields a space that is isometrically isomorphic to this new space
through the map

f 7→ 〈f, ·〉|C∞c (U).

To see why this map is an isometry we will state a general lemma which will be used several times
later on.

1.1 Lemma. Let E be a normed vector space and F a Banach space. Suppose V ⊆ E is a dense
subspace, equipped with the restricted norm of E. Then the restriction map ρ : L(E,F )→ L(V, F ),
ρ(L ) := L |V is an isometric linear isomorphism.

Proof. Note that ρ is linear. First we will show that ρ is isometric. Thus, we need to show that
for any L ∈ L(E,F ) we have

‖L ‖L(E,F ) = ‖L |V ‖L(V,F ). (1.1)

The inequality
‖L |V ‖L(V,F ) = sup

x∈V
‖x‖E=1

‖L x‖F ≤ ‖L ‖L(E,F )

is clear. For the converse inequality, note that any x ∈ E with ‖x‖E = 1 can be approximated by
a sequence (xj)j∈N in V such that ‖xj‖E = 1 for all j ∈ N. Then

‖L x‖F = lim
j→∞

‖L xj‖F ≤ ‖L |V ‖L(V,F ).
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Hence, ‖L ‖L(E,F ) ≤ ‖L |V ‖L(V,F ). This proves (1.1).
It remains to show that ρ is surjective. Let M ∈ L(V, F ). Then we have

‖Mx′‖F ≤ ‖M ‖L(V,F )‖x′‖E for all x′ ∈ V . (1.2)

Let x ∈ E. Then there is a sequence (xj)j∈N in V that converges to x in E. Then this sequence
is a Cauchy sequence in E. Hence, by taking x′ = xj − xk in (1.2) for j, k ∈ N, we see that the
sequence (Mxj)j∈N is a Cauchy sequence in F . Since F is complete, this means that there is some
y ∈ F so that (Mxj)j∈N converges to y. Note that if (x′j)j∈N is any other sequence in V that
converges to x in E, then (Mx′j)j∈N is again convergent. By taking x′ = x′j − xj in (1.2) it follows
that (Mx′j)j∈N must also converge to y.

Now we can define a map L : E → F by setting L x := y. This map is linear, and coincides
with M on V . By another approximation argument using (1.2), it follows that L is bounded. We
conclude that L ∈ L(E,F ) and ρ(L ) = M . The assertion follows.

To emphasize, a particular consequence of Lemma 1.1 is that

‖g‖p′ = ‖〈·, g〉‖L(Lp(Rn),C) = sup
φ∈C∞c (R)
‖φ‖p=1

|〈φ, g〉| for all g ∈ Lp′(Rn). (1.3)

Sometimes we will tacitly use the second definition of Lp(Rn), which should be clear from the
context.

We will be using the following basic result:

1.2 Lemma. Let L ∈ L(Lp(U)). Then there is a unique dual operator L ∗ ∈ L(Lp
′
(U)) satisfying

〈L f, g〉 = 〈f,L ∗g〉

for all f ∈ Lp(U) and g ∈ Lp′(U). Moreover, this operator satisfies

‖L ∗‖L(Lp′ (U)) = ‖L ‖L(Lp(U)).

Proof. For any g ∈ Lp′(U) the map Lp(U)→ C, f 7→ 〈L f, g〉 lies in (Lp(U))∗. Hence, there is a
unique element h ∈ Lp′(U) so that 〈L f, g〉 = 〈f, h〉 for all f ∈ Lp(U). Setting L ∗g := h yields a
linear operator L ∗ : Lp

′
(U)→ Lp

′
(U) satisfying

‖L ∗‖L(Lp′ (U)) = sup
f∈Lp(U), g∈Lp′ (U)
‖f‖p=‖g‖p′=1

|〈L f, g〉| = ‖L ‖L(Lp(U)).

The assertion follows.

While we won’t make much use of the additional Hilbert space structure of L2(U), we do want
to remark the following:

5



1.3 Remark. The inner product on L2(U) is defined by (f, g)2 := 〈f, g〉. More generally, for
p ∈]1,∞[ we can define (f, g) := 〈f, g〉 for f ∈ Lp(U), g ∈ Lp′(U). One then finds that for every
L ∈ L(Lp(U)) there is a unique conjugate transpose operator L † ∈ L(Lp

′
(U)) so that

(L f, g) = (f,L †g)

for all f ∈ Lp(U), g ∈ Lp
′
(U). This relates to the dual operator of L through the formula

L ∗f = L †f and therefore also satisfies

‖L †‖L(Lp′ (U)) = ‖L ‖L(Lp(U)).

To illustrate the differences between the notion of the dual operator and the conjugate transpose
operator we note that the Fourier transform F viewed as an operator in L(L2(Rn)) now satisfies
F ∗ = F , while F † = F−1. ♦

We say that an open set V ⊆ U is relatively compact in U , if V ⊆ U and V is compact. For
p ∈ [1,∞] we define the local Lp-spaces

Lploc(U) = {f ∈ L0(U) | f |V ∈ Lp(V ) for all relatively compact V ⊆ U}.

We note that Hölder’s inequality implies that Lploc(U) ⊆ L1
loc(U) for all p ∈ [1,∞].

1.4 Lemma. Let p ∈ [1,∞] and f ∈ L0(U). Then f ∈ Lploc(U) if and only if φf ∈ Lp(U) for all
φ ∈ C∞c (U).

Proof. We consider the cases where p ∈ [1,∞[. The case p =∞ is similar.
If f ∈ Lploc(U) and φ ∈ C∞c (U), then we can pick a relatively compact set V ⊆ U so that

suppφ ⊆ V . Then∫
U
|φ(x)f(x)|p dx =

∫
V
|φ(x)f(x)|p dx ≤ ‖φ‖p∞

∫
V
|f(x)|p dx <∞,

as desired.
For the converse, suppose f ∈ L0(U) satisfies φf ∈ Lploc(U) for all φ ∈ C∞c (U). Let V ⊆ U be

relatively compact and pick a cutoff function χ ∈ C∞c (U) so that χ|V = 1. Then∫
V
|f(x)|p dx =

∫
V
|χ(x)f(x)|p dx ≤

∫
U
|χ(x)f(x)|p dx <∞.

The assertion follows.

In Section 3 we will be working in the Sobolev spaces

W 1,p(U) := {f ∈ D′(U) | f, ∂jf ∈ Lp(U) for j ∈ {1, . . . , n}}
W 1,p
loc (U) := {f ∈ D′(U) | f, ∂jf ∈ Lploc(U) for j ∈ {1, . . . , n}}

for p ∈ [1,∞]. The norm ‖f‖W 1,p(U) := ‖f‖p +
∑n

j=1 ‖∂jf‖p turns W 1,p(U) into a Banach space.
We denote by R+ the strictly positive real numbers.
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1.5 Theorem. Let p ∈ [1∞[. Then the space C∞c (Rn) is dense in W 1,p(Rn).

Proof. We denote by W 1,p
c (Rn) the space of those elements of W 1,p(Rn) that have compact sup-

port. The proof will be in two steps. First we will show that W 1,p
c (Rn) lies in C∞c (Rn), where the

bar denotes taking the closure in W 1,p(Rn). Then we will show that W 1,p
c (Rn) = W 1,p(Rn).

For the first step, let (φε)ε∈R+ in C∞c (Rn) denote the standard mollifier, see Definition A.10.

Let ε ∈ R+ and pick any f ∈W 1,p
c (Rn). Then it follows from Lemma A.13 that f ∗ φε, ∂jf ∗ φε ∈

C∞c (Rn) for all j ∈ {1, . . . , n}. Moreover, since Lp(Rn) ⊆ S ′(Rn) and C∞c (Rn) ⊆ S(Rn) it follows
from Proposition B.41 that ∂j(f ∗φε) = ∂jf ∗φ for all j ∈ {1, . . . , n}. It follows from Theorem A.7
that, taking limits in Lp(Rn), we have

lim
ε↓0

f ∗ φε = f, lim
ε↓0

∂jf ∗ φε = ∂jf for all j ∈ {1, . . . , n}.

This implies that f ∗ φε → f in W 1,p(Rn) as ε ↓ 0, proving that W 1,p
c (Rn) ⊆ C∞c (Rn), as desired.

For the second step, we let f ∈ W 1,p(Rn) be arbitrary. Pick a cutoff function χ ∈ C∞c (Rn)
satisfying χ(Rn) ⊆ [0, 1], χ(x) = 1 when |x| < 1. Then, for each k ∈ N, we define χk ∈ C∞c (Rn)
by χk(x) := χ(x/k). Then χkf ∈ Lp(Rn) and, by the Leibniz rule for differentiation of the product
of a smooth function and a distribution, see Lemma B.14, we have

∂j(χkf) = (∂jχk)f + χk∂jf ∈ Lp(Rn) (1.4)

for all j ∈ {1, . . . , n} so that χkf ∈W 1,p
c (Rn) for all k ∈ N.

Since χk(x) = χ(x/k) → χ(0) = 1 as k → ∞ for all x ∈ Rn, we conclude from Lebesgue’s
Dominated Convergence Theorem that χkf → f in Lp(Rn) as k →∞. Moreover, since ∂jχk(x) = 0
for |x| < k, a similar argument shows, using (1.4), that also ∂j(χkf) → ∂jf in Lp(Rn) as k → ∞
for all j ∈ {1, . . . , n}. We conclude that χkf → f in W 1,p(Rn) as k → ∞. This proves that

W 1,p
c (Rn) = W 1,p(Rn), as desired.

Finally, we observe that we have shown that

W 1,p(Rn) = W 1,p
c (Rn) ⊆ C∞c (Rn) ⊆W 1,p(Rn).

This proves the result.

The following lemma characterizes local Sobolev spaces.

1.6 Lemma. Let p ∈ [1,∞] and let f ∈ D′(U). Then f ∈ W 1,p
loc (U) if and only if φf ∈ W 1,p(U)

for all φ ∈ C∞c (U).

Proof. Suppose f ∈ W 1,p
loc (U). Let φ ∈ C∞c (U) and j ∈ {1, . . . , n}. Since ∂jf ∈ Lploc(U) and

∂jφ ∈ C∞c (U), Lemma 1.4 and the Leibniz rule for differentiation of the product of a smooth
function and a distribution, see Lemma B.14, tell us that

∂j(φf) = (∂jφ)f + φ(∂jf) ∈ Lp(U), φf ∈ Lp(U).

We conclude that φf ∈W 1,p(U).
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For the converse, suppose f ∈ D′(U) satisfies φf ∈ W 1,p(U) for all φ ∈ C∞c (U). Then, in
particular, φf ∈ Lp(U) for all φ ∈ C∞c (U) so that f ∈ Lploc(U) by Lemma 1.4. Moreover, for
j ∈ {1, . . . , n} we have

φ∂jf = ∂j(φf)− (∂jφ)f ∈ Lp(U)

for all φ ∈ C∞c (U). By another application of Lemma 1.4, we conclude that also ∂jf ∈ Lploc(U).

Hence, f ∈W 1,p
loc (U), as asserted.
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2 The Beurling-Ahlfors Transform

2.1 Motivation

Singular integral operators arise naturally in the study of certain partial differential equations.
While this might not directly be clear for the Hilbert transform which we will define in the succeed-
ing subsection, this will be the direct motivation for studying the Beurling-Ahlfors transform and
its relation to quasiconformal mappings which are defined as certain solutions to a certain partial
differential equation. One can check that the distribution PV 1/z2 defines a tempered distribution
in C. Then we can define the Beurling-Ahlfors transform B as the convolution operator

Bφ(w) := − 1

π
PV

1

z2
∗ φ(w) = − 1

π
lim
ε↓0

∫
|w−z|≥ε

φ(z)

(w − z)2
dz

and try to deduce properties from this formula. However, the choice of our operator may now seem
rather arbitrary. To facilitate a more natural approach we will therefore, in a sense, work in a
backwards manner, in particular when compared to the more direct approach we will take for the
Hilbert transform in Subsection 2.2.

When working in C and, especially when working with results from complex analysis, the partial
differential operators ∂x and ∂y obtained from the natural coordinates of R2 are not always the
natural choice. We define the so-called Wirtinger derivatives as the linear differential operators

∂z :=
1

2
(∂x − i∂y), ∂z :=

1

2
(∂x + i∂y).

In many ways these operators behave like differentiation in R. See also Appendix C and in particular
Proposition C.1.

We start with a rather simple example which captures the general idea. Suppose a function
f ∈ L2(C) satisfies ∂zf ∈ L2(C). One can then ask if it must also be true that ∂zf ∈ L2(C), and,
if yes, if its L2-norm can be estimated by that of ∂zf . A way to solve this problem is by finding an
operator L ∈ L(L2(C)) that satisfies

L (∂zf) = ∂zf.

By taking the Fourier transform we obtain

πiζFf = F (∂zf) = FL (∂zf) = FL F−1(πiζFf).

This equation is certainly satisfied if we define our operator so that FL F−1 is the operator that
multiplies a function by ζ/ζ. Since |ζ/ζ| = 1, this operator is an isometry of L2(C). This positively
answers both our questions, with

‖∂zf‖2 = ‖L (∂zf)‖2 = ‖∂zf‖2.

Another way of looking at this, is that, since ∂x = ∂z +∂z, ∂y = i(∂z−∂z), we have shown that the
domain of the unbounded operator ∂z in L2(C) is precisely the Sobolev space W 1,2(C) with the
norm ‖f‖2 + ‖∂zf‖2, which is equivalent to the usual norm on W 1,2(C). One might view this as a
form of elliptic regularity of the elliptic partial differential operator ∂z in C. Of course, throughout
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this example one could switch the roles of ∂z and ∂z to deduce an analogous result for the operator
∂z.

We needed the fact that the Fourier transform is a unitary isomorphism of L2(C) for this
particular argument to work. The operator L we found in this example is actually equal to
the extension to L2(C) of the Beurling-Ahlfors transform B. As we will show in Subsection 2.3,
the Beurling-Ahlfors transform has extensions to Lp(C) for p ∈]1,∞[, the proof of which will be
facilitated by an analogous result for the Hilbert transform. This result can be used to positively
answer the question if for all p ∈]1,∞[ there exist constants cp ∈ R+ so that

‖∂zf‖p ≤ cp‖∂zf‖p,

for all f ∈ Lp(C) satisfying ∂zf ∈ Lp(C). By density of C∞c (C) in the Sobolev space W 1,p(C), it is
actually equivalent to ask if such an inequality holds in the more classical sense where f ∈ C∞c (C).

Finding the optimal constants cp however, which are given by ‖B‖L(Lp(C)), turns out to be quite
problematic. For p ∈]1,∞[ we write p∗ := max(p, p′). Then we do have the following conjecture:

2.1 Conjecture. For all p ∈]1,∞[ we have

1

p∗ − 1
‖∂zφ‖p ≤ ‖∂zφ‖p ≤ (p∗ − 1)‖∂zφ‖p for all φ ∈ C∞c (C). (2.1)

The case p = 2 has been shown in our example above. What we do know so far is that if (2.1) is
true, then the constants are optimal. Conjecture 2.1 is actually equivalent to Iwaniec’s Conjecture:

2.2 Conjecture (Iwaniec). Let p ∈]1,∞[. Then

‖B‖L(Lp(C)) = p∗ − 1 =


p− 1 if p ∈ [2,∞[

1

p− 1
if p ∈]1, 2].

The estimate ‖B‖L(Lp(C)) ≥ p∗ − 1 was already known to Iwaniec and is shown in Proposition
2.45 below. Thus, the conjecture is the upper bound ‖B‖L(Lp(C)) ≤ p∗ − 1. In Section 3 we
will go into Iwaniec’ motivation for this conjecture. We will use Subsection 2.2 to not only prove
Lp-boundedness of the Hilbert transform, but also to specifically determine its operator norms, as
this is a deep result of similar type to Iwaniec’ Conjecture. We will use Subsection 2.3 to obtain
preliminary results, including Lp-boundedness, for the Beurling-Ahlfors transform.

2.2 The Hilbert Transform

The goal of this subsection is to study the Hilbert transform, which shares several properties with
the Beurling-Ahlfors transform. Mainly, both operators are integral operators with a comparable
singular integration kernel. They are both Fourier multipliers, from which it can easily be seen how
they extend to an isometry of L2(R) and L2(C) respectively. However, instead of using Fourier
analysis we will initially use complex analysis to work out several methods of extending the Hilbert
transform to a bounded operator on Lp(R) for p ∈]1,∞[ in order to give a fresh presentation on the
Hilbert transform, and to see which role it plays in the theory of complex analysis. Additionally,
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a method due to Calderón and Zygmund called the method of rotations will be used to establish
that the Beurling-Ahlfors transform extends to a bounded operator on Lp(C) for p ∈]1,∞[ as a
direct consequence of the corresponding property of the Hilbert transform.

We define the Hilbert transform H : C∞c (Rn)→ L0(Rn) as the linear operator

H φ(x) :=
1

π
PV

1

t
∗ φ(x) :=

1

π
lim
ε↓0

∫
|x−t|≥ε

φ(t)

x− t
dt.

By the Mean Value Theorem we have∣∣∣∣φ(x− t)− φ(x+ t)

t

∣∣∣∣ = 2

∣∣∣∣φ(x− t)− φ(x+ t)

x− t− (x+ t)

∣∣∣∣ ≤ 2‖φ′‖∞ <∞. (2.2)

Thus, compactness of the support of φ justifies writing

H φ(x) = lim
ε↓0

1

π

(∫ x−ε

−∞

φ(t)

x− t
dt+

∫ ∞
x+ε

φ(t)

x− t
dt

)
= lim

ε↓0

1

π

∫ ∞
ε

φ(x− t)− φ(x+ t)

t
dt

=
1

π

∫
R+

φ(x− t)− φ(x+ t)

t
dt.

(2.3)

Our main theorem of this section is the following:

2.3 Theorem. Let p ∈]1,∞[. Then the Hilbert transform extends to a bounded operator H :
Lp(R)→ Lp(R) with norm

‖H ‖L(Lp(R)) =


cot

π

2p
if p ∈ [2,∞[

tan
π

2p
if p ∈]1, 2].

(2.4)

Note that such extensions must be unique, since C∞c (R) is dense in Lp(R) for all p ∈]1,∞[, see
Theorem A.11.

As it turns out, the Hilbert transform gives a relation between the real and the imaginary part of
certain functions which we will use to establish the lower bounds of the operator norms in Theorem
2.3. The main tools we will be using to study this are Cauchy integrals. We denote by R+ the
(strictly) positive real numbers, and by H the upper half plane of C, i.e., H := {z = x+ iy ∈ C |
y ∈ R+}. The following theorem states our relation precisely:

2.4 Theorem. Let p ∈]1,∞[ and g ∈ Lp(R). Suppose f : H → C is a holomorphic function so
that

lim
y↓0

f(x+ iy) = g(x) (2.5)

for a.e x ∈ R. If there exist R, c ∈ R+ so that for z ∈ H we have

|f(z)| ≤ c

|z|
if |z| ≥ R, (2.6)

then
H (Re g) = Im g.

11



The proof of this remarkable theorem will follow naturally through the course of this section
and is given below. First we will discuss some details concerning Theorem 2.3.

If for p, q ∈]1,∞[ we denote the extensions of the Hilbert transform to Lp(R) and Lq(R)
by Hp and Hq respectively, then one would wish that whenever f ∈ Lp(R) ∩ Lq(R), we have
Hpf = Hqf . The following lemma asserts that this must indeed be the case, which means that we
can unambiguously denote both operators by H .

2.5 Lemma. Let n ∈ N and p, q ∈]1,∞[. Suppose a linear operator L : C∞c (Rn) → L0(Rn) has
extensions Lp ∈ L(Lp(Rn)) and Lq ∈ L(Lq(Rn)). If f ∈ Lp(R) ∩ Lq(R), then Lpf = Lqf .

Proof. First suppose f has compact support. Let (φε)ε∈R+ be the standard mollifier, see Definition
A.10. Then the sequence (fj)j∈N in C∞c (Rn) defined by fj := φ1/j ∗f has the property that fj → f
as j → ∞ in both Lp(Rn) and Lq(Rn) by Theorem A.7. But then, since (Lpfj)j∈N converges in
Lp(Rn), there is an a.e. convergent subsequence (Lpfjk)k∈N with limit Lpf . Moreover, since
(Lqfjk)k∈N converges in Lq(Rn), there is an a.e. convergent subsequence (Lqfjkl )l∈N with limit
Lqf . Thus, taking a.e. limits, we obtain

Lpf = lim
l→∞

Lpfjkl = lim
l→∞

Lqfjkl = Lqf,

since Lp and Lq coincide on C∞c (Rn).
Now suppose f ∈ Lp(Rn) ∩ Lq(Rn) is arbitrary. For each j ∈ N we denote by χj the indicator

function of the ball of radius j in Rn. If we set fj := χjf , then it follows from Lebesgue’s Dominated
Convergence Theorem that fj → f as j → ∞ in both Lp(Rn) and Lq(Rn). Since fj has compact
support for all j ∈ N, we may conclude from our previous result, and by using an analogous
subsubsequence argument, that Lpf = Lqf . This proves the desired result.

The following proposition uses some basic functional analysis to prepare us for the proof of
Theorem 2.3.

2.6 Proposition. Let p ∈]1,∞[ and let p′ = p/(p − 1) ∈]1,∞[ denote the conjugate exponent of
p. Suppose H extends to an operator H ∈ L(Lp(R)). Then H also extends to an operator in
L(Lp

′
(R)), where the extension is given through the dual operator by −H ∗. Moreover, if we have

established (2.4) for p, then it also holds for p′.

Proof. Let ε ∈ R+ and φ, ψ ∈ C∞c (R). Then,∫ ∞
ε

∫
R

φ(x− t)− φ(x+ t)

t
ψ(x) dx dt =

∫ ∞
ε

∫
R

φ(x− t)ψ(x)

t
dx dt−

∫ ∞
ε

∫
R

φ(x+ t)ψ(x)

t
dx dt

=

∫ ∞
ε

∫
R

φ(y)ψ(y + t)

t
dy dt−

∫ ∞
ε

∫
R

φ(y)ψ(y − t)
t

dy dt

= −
∫ ∞
ε

∫
R

ψ(y − t)− ψ(y + t)

t
φ(y) dy dt.

As both φ and ψ have compact support we are justified in letting ε ↓ 0 to conclude from (2.3) and
Fubini’s Theorem that

〈φ,H ∗ψ〉 = 〈H φ, ψ〉 = 〈φ,−H ψ〉. (2.7)

12



Since, by Lemma 1.1, we have

sup
φ,ψ∈C∞c (R)
‖φ‖p=‖ψ‖p′=1

|〈φ,−H ψ〉| = sup
φ,ψ∈C∞c (R)
‖φ‖p=‖ψ‖p′=1

|〈φ,H ∗ψ〉| = ‖H ∗‖L(Lp′ (R)) <∞,

it now follows that H has an extension in L(Lp
′
(R)) and, by (2.7), −H ∗|C∞c (R) = H .

Since
‖ −H ∗‖L(Lp′ (R)) = ‖H ‖L(Lp(R)),

and by noting that for conjugate exponents q, q′ ∈]1,∞[ one has

cot
π

2q
= cot

(
π

2

(
1− 1

q′

))
= tan

π

2q′
,

the assertion follows.

From this proposition we may conclude that it suffices to establish Theorem 2.3 for the cases
where p ∈]1, 2] or p ∈ [2,∞[, since the map p 7→ p/(p− 1) gives a bijection from ]1, 2] to [2,∞[ and
vice versa.

2.7 Definition. Let f ∈ L0(R) so that t 7→ f(t)/(t − z) is in L1(R) for all z ∈ H. Then the
function Cf : H→ C defined by

Cf(z) :=
1

πi

∫
R

f(t)

t− z
dt

is called the Cauchy integral of f . ♦

2.8 Lemma. Let p ∈ [1,∞[ and f ∈ Lp(R). Then Cf is well-defined. Moreover, there is a
continuous map cp : R+ → R+, depending only on p ∈ [1,∞[, so that

|Cf(z)| ≤ cp(y)‖f‖p

for all z = x+ iy ∈ H.

Proof. Let f ∈ Lp(R) for p ∈ [1,∞[ and z = x+ iy ∈ H. Then, noting that |t− z|2 = (t−x)2 +y2

majorizes both y2 and (t− x)2 for all t ∈ R, we find, if p > 1,∫
R

|f(t)|
|t− z|

dt ≤
∫
|x−t|≤1

|f(t)|
y

dt+

∫
|x−t|≥1

|f(t)|
|t− x|

dt

≤ 2
1
p′ ‖f‖p
y

+ ‖f‖p
∫
|t|≥1
|t|−p′ dt

=

(
2

1
p′

y
+

2

p′ − 1

)
‖f‖p,
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by Hölders inequality, and ∫
R

|f(t)|
|t− z|

dt ≤ ‖f‖1
y

if p = 1. This means that Cf is well-defined. By setting

cp(y) :=
2

1− 1
p

πy
+

2

π
(p− 1),

the assertion follows.

By the above lemma we may use Lebesgue’s Dominated Convergence Theorem to take limits under
the integral sign to conclude that Cf is continuous. As a matter of fact, we have the following:

2.9 Lemma. Let p ∈ [1,∞[ and f ∈ Lp(R). Then Cf is holomorphic in H.

Proof. For each t ∈ R one notes that the map z 7→ f(t)/(t − z) is holomorphic in H. Then it
follows from Cauchy’s Integral Theorem that for any closed contour Γ ⊆ H and all t ∈ R we have∮

Γ

f(t)

t− z
dz = 0.

By Lemma 2.8 we are justified in applying Fubini’s Theorem to find that∮
Γ
Cf(z) dz =

1

πi

∫
R

∮
Γ

f(t)

t− z
dz dt = 0

for any closed contour Γ ⊆ H. The result now follows from Morera’s Theorem, see Theorem
C.23.

2.10 Definition. We define the Poisson kernel (Py)y∈R+ and the associated Poisson kernel
(Qy)y∈R+ by

Py(x) := P (x, y) = Re− 1

πiz
=

1

π

y

x2 + y2
,

Qy(x) := Q(x, y) = Im− 1

πiz
=

1

π

x

x2 + y2
,

where z = x+ iy ∈ H. ♦

As P and Q are respectively the real and the imaginary part of a holomorphic function, they are
associated harmonic functions in H. Now let u ∈ C∞c (R) be a fixed real-valued function. Then we
can write

Cu(z) = (Py ∗ u)(x) + i(Qy ∗ u)(x) (z ∈ H), (2.8)

where the real and imaginary parts are given by

(Py ∗ u)(x) =
1

π

∫
R
u(t)

y

(x− t)2 + y2
dt,

(Qy ∗ u)(x) =
1

π

∫
R
u(t)

x− t
(x− t)2 + y2

dt (z ∈ H).

The following lemma shows that the function u+ iH u gives the boundary values of Cu along the
real axis.
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2.11 Lemma. Let p ∈ [1,∞[ and f ∈ Lp(R). Then

lim
y↓0

Py ∗ f = f, (2.9)

with limit in Lp(R). For any f ∈ C0(R) the limit (2.9) holds in L∞(R). Furthermore, for any
φ ∈ C∞c (R) we have

lim
y↓0

Qy ∗ φ = H φ,

where the limit is in L∞(R).

Proof. We set P := P1. Then∫
Rn

P (x) dx =
1

π

∫
R

1

x1 + 1
dx =

1

π
[arctan(x)]∞−∞ = 1.

Since Py(x) = y−1P (x/y) for all x ∈ R, y ∈ R+, it follows from Proposition A.8 that the family
(Py)y∈R+ is an approximate identity. The assertions about Py then follow from Theorem A.7.

Fix x ∈ R. For the assertion about Qy, we will rewrite Qy ∗ φ as

(Qy ∗ φ)(x) =
1

π

∫
R
φ(x− t) t

t2 + y2
dt =

1

π

∫
R+

(φ(x− t)− φ(x+ t))
t

t2 + y2
dt. (2.10)

By combining (2.10) and (2.3) we obtain, by (2.2) and by noting that −∂t arctan y/t = y/(t2 + y2),

|(Qy ∗ φ)(x)−H φ(x)| ≤ 2

π
‖φ′‖∞

∫
R+

∣∣∣∣ t2

t2 + y2
− 1

∣∣∣∣ dt

=
2y

π
‖φ′‖∞

∫
R+

y

t2 + y2
dt

= y‖φ′‖∞.

Hence, since x was arbitrary,

‖Qy ∗ φ−H φ‖L∞(R) ≤ y‖φ′‖∞ → 0 as y ↓ 0,

proving the assertion.

By (2.8) and Lemma 2.11, we may conclude that for any u ∈ C∞c (R) we have

lim
y↓0

Cu(x+ iy) = u(x) + i(H u)(x), (2.11)

uniformly in x ∈ R. This limit will allow us to use complex contour integration to establish Lp

bounds for the Hilbert transform, which establishes the first assertion of Theorem 2.3.

2.12 Proposition. Let p ∈]1,∞[. Then the Hilbert transform extends to a bounded operator
H : Lp(R)→ Lp(R). Furthermore, the extension to L2(R) is isometric.

An important tool we will use for the proof is the Riesz-Thorin Interpolation Theorem. We will
use the following version of this theorem:
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2.13 Theorem (Riesz-Thorin). Let p, q ∈ [1,∞], p ≤ q. Suppose a non-zero linear operator
L : C∞c (Rn) → L0(Rn) has extensions Lp ∈ L(Lp(Rn)) and Lq ∈ L(Lq(Rn)). Then, for each
r ∈ [p, q] there is an extension Lr ∈ L(Lr(Rn)) of L . Moreover, the function[

1

q
,

1

p

]
→ R, t 7→ log ‖Lt−1‖L(Lt−1 (Rn))

is convex.

This version of the theorem is a consequence of the general result as can, for example, be
found in [Gr, Theorem 1.3.4], together with Lemma 2.5. With the notation as in the theorem, the
convexity condition is usually stated as

‖Lr‖L(Lr(Rn)) ≤ ‖Lp‖1−tL(Lp(Rn))‖Lq‖tL(Lq(Rn))

where t ∈ [0, 1] and r is given through

1

r
=

(1− t)
p

+
t

q
.

As is common for arguments involving complex contour integrals, we will need to establish the
behavior of Cu at infinity.

2.14 Lemma. Let u ∈ C∞c (R). There exist R, c ∈ R+ so that for all z ∈ H with |z| ≥ R we have

|Cu(z)| ≤ c

|z|
.

Proof. We note that ∣∣∣∣ z

t− z

∣∣∣∣ =

∣∣∣∣ 1
t
z − 1

∣∣∣∣→ 1 as |z| → ∞,

uniformly for t ∈ suppu. Hence,

lim
|z|→∞

|zCu(z)| = lim
|z|→∞

∣∣∣∣ 1

πi

∫
R
u(t)

z

t− z
dt

∣∣∣∣ =
1

π

∣∣∣∣∫
R
u(t) dt

∣∣∣∣ =: c′.

Setting c := c′+1 ∈ R+, the existence of R ∈ R+ is a consequence of the definition of the limit.

2.15 Lemma. Let u ∈ C∞c (R) and let R, c ∈ R+ be as in Lemma 2.14. Then for all x ∈ R with
|x| ≥ R we have

|u(x) + i(H u)(x)| ≤ c

|x|
.

Proof. Suppose x ∈ R satisfies |x| ≥ R and let ε ∈ R+. Then, by (2.11), we can choose y ∈ R+

small enough so that
|u(x) + i(H u)(x)− Cu(x+ iy)| < ε. (2.12)

Moreover, we have |x+ iy| > |x| ≥ R. Hence,

|Cu(x+ iy)| ≤ c

|x+ iy|
<

c

|x|
. (2.13)

16



Thus, by (2.12) and (2.13),

|u(x) + i(H u)(x)| ≤ |u(x) + i(H u)(x)− Cu(x+ iy)|+ |Cu(x+ iy)| < ε+
c

|x|
.

The assertion follows by letting ε ↓ 0.

Proof of Proposition 2.12. By Proposition 2.6 it suffices to check the cases where p ∈ [2,∞[. By
the Riesz-Thorin Interpolation Theorem it is then sufficient to find an increasing sequence (pk)k∈N
with p1 = 2 and pk →∞ as k →∞ for which the extensions exist. For our proof we will consider
the cases where p = 2k, for k ∈ N.

Fix k ∈ N and let ε, r ∈ R+. Denote by Γ(ε, r) the closed contour in H given by the union of
line segment

L(ε, r) := {x+ iε ∈ H |x ∈ [−r, r]}

and the semicircle

C(ε, r) :=

{
re2πit + iε

∣∣∣∣ t ∈ [0, 1

2

]}
,

oriented as in the figure below.

r

x

y

L(ε, r)

C(ε, r)

ε

Let u ∈ C∞c (R) be real-valued. Then (Cu)2k is analytic in H, so it follows from Cauchy’s Theorem
that ∮

Γ(ε,r)
Cu(z)2k dz = 0.

We will show that ∫
R
(u(x) + iH u(x))2k dx = lim

r→∞
lim
ε↓0

∮
Γ(ε,r)

Cu(z)2k dz = 0. (2.14)

First we will have to show that (u(x) + iH u(x))2k ∈ L1(R). Let R, c ∈ R+ be as in Lemma 2.14.
Then it suffices to note that, by Lemma 2.15, we have∫

R
|u(x) + iH u(x)|2k dx ≤

∫
|x|≤R

|u(x) + iH u(x)|2k dx+

∫
|x|>R

c2k

|x|2k

=

∫
|x|≤R

|u(x) + iH u(x)|2k dx+
2c2k

2k − 1

1

R2k−1
<∞.
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Next, letting r ≥ R, we note that R ≤ r = |re2πit| ≤ |re2πit + iε| for all ε ∈ R+ and t ∈ [0, 1/2].
This allows us to estimate

|Cu(re2πit + iε)|2k|re2πit| ≤ rc2k

|re2πit + iε|2k
≤ c2k

r2k−1
,

which, on account of Lebesgue’s Dominated Convergence Theorem, allows us to conclude both the
estimate and the existence of the limit in

lim
ε↓0

∣∣∣∣∣
∫
C(ε,r)

Cu(z)2k dz

∣∣∣∣∣ ≤ 2π lim
ε↓0

∫ 1
2

0
|Cu(re2πit + iε)|2k|re2πit|dt ≤ πc2k

r2k−1
.

It follows that

lim
r→∞

lim
ε↓0

∫
C(ε,r)

Cu(z)2k dz = 0. (2.15)

Next, we note that for any r ∈ R+ we have

lim
ε↓0

∫
L(ε,r)

Cu(z)2k dz = lim
ε↓0

∫
|x|≤r

Cu(x+ iε)2k dx =

∫
|x|≤r

(u(x) + iH u(x))2k dx,

where the interchange of the order of the limit and integration is justified by the uniform convergence
in (2.11). Then, since (u+ iH u)2k ∈ L1(R), we may conclude that

lim
r→∞

lim
ε↓0

∫
L(ε,r)

Cu(z)2k dz =

∫
R
(u(x) + iH u(x))2k dx. (2.16)

Combining (2.15) and (2.16) yields (2.14).
Now set k = 1. Then, by taking the real part of (2.14), we find that∫

R
(u(x)2 −H u(x)2) dx = 0

This proves that for any real-valued u ∈ C∞c (R) we have ‖H u‖2 = ‖u‖2. Now let φ ∈ C∞c (R) be
arbitrary. Then, since H maps real-valued functions to real-valued functions, we have

‖H φ‖22 =

∫
R

H (Reφ)(x)2 dx+

∫
R

H (Imφ)(x)2 dx

=

∫
R
((Reφ(x))2 + (Imφ(x))2) dx = ‖φ‖22.

Then, by Lemma 1.1, the Hilbert transform extends to L2(R). Moreover, we may conclude that
this extension is isometric.

Now suppose k > 1. By the Binomial Theorem, taking the real part of (2.14) yields∫
R

k∑
j=0

(
2k

2j

)
(−1)ju(x)2k−2jH u(x)2j dx = 0.
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Hence, ∫
R
|H u(x)|2k dx ≤

∫
R
|u(x)|2k dx+

∫
R

k−1∑
j=1

(
2k

2j

)
|u(x)|2k−2j |H u(x)|2j dx. (2.17)

Now let j ∈ {1, . . . ,m− 1} and ε ∈ R+ a number smaller than
∑k−1

j=1

(
2k
2j

)
. If we set p = k/(k− j),

then p′ = p/(p− 1) = k/j. Young’s inequality asserts that for all a, b ∈ R≥0 we have

ab ≤ ap

p
+
bp
′

p′
.

By applying this to a = (εp′)−1/p′ |u(x)|2k−2j , b = (εp′)1/p′ |H u(x)|2j for x ∈ R, we find that there
is some constant c(ε, j) ∈ R+ so that

|u(x)|2k−2j |H u(x)|2j ≤ c(ε, j)|u(x)|2k + ε|H u(x)|2k.

Thus, by (2.17), we have

∫
R
|H u(x)|2k dx ≤

1 +
k−1∑
j=1

(
2k

2j

)
c(ε, j)

∫
R
|u(x)|2k dx+ ε

k−1∑
j=1

(
2k

2j

)∫
R
|H u(x)|2k dx.

This proves that there is some c ∈ R+ so that ‖H u‖2k2k ≤ c‖u‖2k2k.
Now let φ ∈ C∞c (R) be arbitrary. Another similar application of the Binomial Theorem and

Young’s inequality shows that there is some c′ ∈ R+ so that for all a, b ∈ R≥0 we have (a+ b)k ≤
c′(ak + bk). Hence, we have

‖H φ‖2k2k =

∫
R
(H (Reφ)(x)2 + H (Imφ)(x)2)k dx

≤ c′c
∫
R
((Reφ)(x)2k + (Imφ)(x)2k) dx

≤ c′c
∫
R
((Reφ)(x)2 + (Imφ)(x)2)k dx = cc′‖φ‖2k2k.

The conclusion now follows from Lemma 1.1.

To obtain a more precise bound on the norm of the Hilbert transform, we will prove a result
that will allow us to compute the Hilbert transform of certain functions.

2.16 Lemma. Suppose f : H→ C is a holomorphic function so that

g(x) := lim
y↓0

f(x+ iy)

exists for a.e. x ∈ R. If there exist R, c ∈ R+ so that for z ∈ H we have

|f(z)| ≤ c

|z|
if |z| ≥ R, (2.18)
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and ∫
|x|≤R

|g(x)|
|x− w|

dx <∞ for all w ∈ H, (2.19)

then x 7→ g(x)/(x− w) is in L1(R) for all w ∈ H and

f(z) =
1

2
Cg(z) (2.20)

for all z ∈ H.

Note that (2.19) is automatically satisfied if g is continuous, or, by Lemma 2.8, if g ∈ Lp(R)
for some p ∈ [1,∞[.

Proof. For ε, r ∈ R+, let Γ(ε, r) = C(ε, r) ∪ L(ε, r) be the closed contour from the proof of
Proposition 2.12. By Cauchy’s Integral Formula we find that for all w in the interior of Γ(ε, r) we
have

f(w) =
1

2πi

∮
Γ(ε,r)

f(z)

z − w
dz. (2.21)

The strategy will be to justify letting ε ↓ 0 and r →∞ to obtain (2.20).
Fix w ∈ H. Choosing ε ∈ R+ small enough and r ≥ R large enough, ensures that w lies in the

interior of Γ(ε, r). Note that R ≤ r = |re2πit| ≤ |re2πit + iε| for all ε ∈ R+ and t ∈ [0, 1/2]. Any
z ∈ C(ε, r) is of the form z = re2πit + iε for some t ∈ [0, 1/2], while any w in the interior of Γ(ε, r)
is of the form ρe2πit′ + iε for some ρ ∈]0, r[ and t′ ∈]0, 1/2[. This implies, by the reverse triangle
inequality, that

|z − w| = |re2πit − ρe2πit′ | ≥ r − ρ > 0

for all z ∈ C(ε, r). Hence, by (2.18),

|f(z)|
|z − w|

≤ c

r

1

r − ρ

for all z ∈ C(ε, r). Then, as a consequence of Lebesgue’s Dominated Convergence Theorem, this
allows us to conclude both the estimate and the existence of the limit in

lim
ε↓0

∣∣∣∣∣
∫
C(ε,r)

f(z)

z − w
dz

∣∣∣∣∣ ≤ πc

r − ρ
.

Hence,

lim
r→∞

lim
ε↓0

∫
C(ε,r)

f(t)

z − w
dz = 0. (2.22)

Next, we make the observation that we can assume that R > |w|. Indeed, if it were the case
that R ≤ |w|, then one notes that by (2.18) the function x 7→ g(x)/(x − w) is bounded on the
annulus R ≤ |x| ≤ |w|+ 1, hence the condition (2.19) will still hold if we replace R by |w|+ 1. As
this change will also not affect (2.18), we can indeed assume that R > |w|.

If we assume that r ≥ R, then, for all x ∈ R with |x| > r, we have

|x− w| ≥ |x| − |w| = (|x|
1
2 + |w|

1
2 )(|x|

1
2 − |w|

1
2 ) > |x|

1
2 (r

1
2 − |w|

1
2 ) > 0
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Moreover, we have

|g(x)| ≤ c

|x|
for a.e. x ∈ R satisfying |x| ≥ R.

Hence, one shows that x 7→ g(x)/(x− w) is in L1(R) by the estimate∫
R

|g(x)|
|x− w|

dx ≤
∫
|x|≤R

|g(x)|
|x− w|

dx+

∫
|x|>R

c

|x|
3
2 (R

1
2 − |w|

1
2 )

dx

=

∫
|x|≤R

|g(x)|
|x− w|

dx+
4c

R
1
2 (R

1
2 − |w|

1
2 )
<∞,

where we used (2.19). Then, by a similar computation, we can conclude that∣∣∣∣∣
∫
|x|>r

g(x)

x− w
dx

∣∣∣∣∣ ≤ 4c

r
1
2 (r

1
2 − |w|

1
2 )
→ 0 as R ≤ r →∞.

Also noting that for r ∈ R+ we have

lim
ε↓0

∫
L(ε,r)

f(z)

z − w
dz = lim

ε↓0

∫
|x|≤r

f(x+ iε)

x+ iε− w
dx =

∫
|x|≤r

g(x)

x− w
dx

by Lebesgue’s Dominated Convergence Theorem, we may conclude that

lim
r→∞

lim
ε↓0

∫
L(ε,r)

f(z)

z − w
dz = lim

r→∞

∫
|x|≤r

g(x)

x− w
dx =

∫
R

g(x)

x− w
dx. (2.23)

Combining (2.21), (2.22), and (2.23) yields

f(w) =
1

2πi

∫
R

g(x)

x− w
dx =

1

2
Cg(w).

The assertion follows.

As an application of this result, we will prove a remarkable identity known as Cotlar’s Identity.

2.17 Proposition (Cotlar’s Identity). For any φ ∈ C∞c (R) we have

(H φ)2 = φ2 + 2H (φH φ). (2.24)

Note that H φ ∈ C∞(R) by differentiation under the integral sign. Hence, φH φ ∈ C∞c (R),
meaning that the expression H (φH φ) in (2.24) makes sense.

Proof. Let u ∈ C∞c (R) be real-valued. Then the function f := i(Cu)2 is analytic in H. For x ∈ R,
it follows from (2.11) that this function takes boundary values

g(x) := lim
y↓0

f(x+ iy) = i(u(x) + iH u(x))2 = −2u(x)H u(x) + i(u(x)2 − (H u(x))2).

It now suffices to show that H (Re g) = Im g, which yields (2.24) for the real-valued case.
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Since Cu satisfies (2.18) by Lemma 2.14, so does f . Hence, by Lemma 2.16, we have

2f(x+ iy) = (Py ∗ g)(x) + i(Qy ∗ g)(x)

= (Py ∗ Re g)(x)− (Qy ∗ Im g)(x) + i((Py ∗ Im g)(x) + (Qy ∗ Re g)(x)).
(2.25)

Since Re g ∈ C∞c (R), we find, by Lemma 2.11, that (Qy ∗ Re g)(x) → H (Re g)(x) as y ↓ 0 for all
x ∈ R. Moreover, since u ∈ C∞c (R) ⊆ L2(R), we also have H u ∈ L2(R) by Proposition 2.12.
Hence, u ±H u ∈ L2(R) so that Im g = (u + H u)(u −H u) ∈ L1(R). Thus, it follows from
Lemma 2.11 that Py ∗ Im g → Im g in L1(R). This implies that the sequence (P1/j ∗ Im g)j∈N has
an a.e. convergent subsequence with limit Im g. By taking the imaginary part of (2.25) we may
pass to this a.e. convergent subsequence to conclude that

2 Im g = Im g + H (Re g)

and hence
H (Re g) = Im g,

as desired. This proves (2.24) for real-valued φ = u ∈ C∞c (R).
To obtain the complex valued case, we let φ ∈ C∞c (R) be arbitrary. Now fix x ∈ R and define

the (real) symmetric bilinear forms α, β by

α(u, v) = H u(x)H v(x), β(u, v) = u(x)v(x) + H (uH v)(x) + H (vH u)(x)

for real-valued u, v ∈ C∞c (R). We have shown that α(w,w) = β(w,w) for all real-valued w ∈
C∞c (R). But then, by the (real) polarization identity, we obtain

α(u, v) =
1

4
α(u+ v, u+ v)− 1

4
α(u− v, u− v)

=
1

4
β(u+ v, u+ v)− 1

4
β(u− v, u− v)

= β(u, v).

For u := Reφ, v := Imφ, this gives

H φ(x)2 = α(u, u) + 2iα(u, v)− α(v, v)

= β(u, u) + 2iβ(u, v)− β(v, v)

= φ(x)2 + 2H (φH φ)(x).

The assertion follows.

Cotlar’s identity actually holds for any φ ∈ S(R). For a proof, see Proposition 2.23 below.
Using an inductive argument, Cotlar’s identity allows us to give an upper bound of ‖H ‖L(Lp(R))

for p of the form 2k for k ∈ Z≥0. We have already established that ‖H ‖L(L2(R)) = 1 = cot(π/4)
in Proposition 2.12. For p ∈ [2,∞[ we write cp := cot(π/(2p)). Now suppose we have established
that cp is an upper bound of ‖H ‖L(Lp(R)) for p = 2k for some k ∈ Z≥0. Let φ ∈ C∞c (R) satisfy
‖φ‖2p = 1. Then, by Cotlar’s identity, we have

‖H φ‖22p = ‖(H φ)2‖p ≤ ‖φ2‖p + 2‖H (φH φ)‖p
≤ 1 + 2cp‖φH φ‖p ≤ 1 + 2cp‖H φ‖2p,
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where the last step uses the Cauchy-Schwarz inequality. As the polynomial t 7→ t2 − 2cpt − 1 has
zeroes t± = cp ± (1 + c2

p)
1/2, we conclude from

(‖H φ‖2p − t+)(‖H φ‖2p − t−) = ‖H φ‖22p − 2cp‖H φ‖2p − 1 ≤ 0

that
‖H φ‖2p ≤ t+ = cp + (1 + c2

p)
1
2 = c2p,

where we have used the trigonometric identity

cotx = cot 2x+ (1 + (cot 2x)2)
1
2

valid for x ∈]0, π/4[. We conclude that ‖H ‖L(L2p(R)) ≤ c2p. Since 2p = 2k+1, this concludes the
inductive step.

As a matter of fact, if we can use other means, such as the Fourier transform, see Corollary 2.21
below, to show that the Hilbert transform extends to an isometry of L2(R), this yields another
proof of Proposition 2.12. Note that this does not give a circular argument, since the proof we
gave of Cotlar’s Identity only used the fact that H extends to L2(R). So far we have solely rested
on the theory of complex analysis and we have not used the Fourier transform at all. However,
the Fourier transform can be used to help us to sharpen the results we have established so far,
which is why we will be working in the distributional setting from now on. See also Appendix B.
This emphasizes but one of the many examples of interplay between Fourier analysis and complex
analysis, more of which we will encounter in the succeeding sections.

The Hilbert transform is given by convolution with the distribution PV 1/t = PV t/|t|2. As
it turns out, this is actually a tempered distribution. Temporarily generalizing to Rn, for j ∈
{1, . . . , n} we define PV xj/|x|n+1 by〈

PV
xj
|x|n+1

, φ

〉
:= lim

ε↓0

∫
|x|≥ε

xj
|x|n+1

φ(x) dx

for φ ∈ S(Rn). In the following lemma we will show that this is well-defined.

2.18 Lemma. For all j ∈ {1, . . . , n} we have PV xj/|x|n+1 ∈ S ′(Rn).

Proof. We fix j ∈ {1, . . . , n} and denote by (Sn−1, σ) the unit sphere in Rn with its usual surface
measure. Then we observe that ∫

Sn−1

ωj dσ(ω) = 0 (2.26)

by symmetry. Now let ε ∈]0, 1[. Then, by employing polar coordinates, it follows that∫
ε≤|x|≤1

xj
|x|n+1

dx =

∫ 1

ε

1

r

∫
Sn−1

ωj dσ(ω) dr = 0.

Hence, if φ ∈ S(Rn), we have∫
ε≤|x|≤1

xj
|x|n+1

φ(x) dx =

∫
ε≤|x|≤1

xj
|x|n+1

(φ(x)− φ(0)) dx. (2.27)
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Recall that the seminorms (νj,k)j,k∈Z≥0
on S(Rn) defined by

νj,k(ψ) = sup
x∈Rn, |α|≤k

(1 + |x|)j |∂αψ(x)|,

for j, k ∈ Z≥0, ψ ∈ S(Rn), generate the topology on S(Rn). Since

|φ(x)− φ(0)| ≤
∫ 1

0
|∂tφ(t·)(x)| dt ≤

∫ 1

0

n∑
j=1

|∂jφ(tx)xj |dt ≤ n
1
2 |x|ν0,1(φ)

for all x ∈ Rn, we find that∫
|x|≤1

|xj |
|x|n+1

|φ(x)− φ(0)|dx ≤ n
1
2 ν0,1(φ)

∫
|x|≤1

|xj |
|x|n

dx

= n
1
2 ν0,1(φ)

∫ 1

0
rn−1r−(n−1)

∫
Sn−1

|ωj | dσ(ω) dr

= n
1
2 ν0,1(φ)

∫
Sn−1

|ωj | dσ(ω) <∞.

Hence, by (2.27) we may conclude that∣∣∣∣∣limε↓0
∫
ε≤|x|≤1

xj
|x|n+1

φ(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
|x|≤1

xj
|x|n+1

(φ(x)− φ(0)) dx

∣∣∣∣∣ ≤ cν0,1(φ) (2.28)

for some c ∈ R+.
Finally, note that∫
|x|≥1

|xj |
|x|n+1

|φ(x)| dx ≤ ν1,0(φ)

∫
|x|≥1

|xj |
|x|n+2

dx = ν1,0(φ)

∫ ∞
1
r−2

∫
Sn−1

|ωj | dσ(ω) dr

= ν1,0(φ)

∫
Sn−1

|ωj |dσ(ω).

(2.29)

Thus, by combining (2.28) and (2.29) we have now shown that the limit 〈PV xj/|x|n+1, φ〉 exists
and that there exist c, c′ ∈ R+ so that∣∣∣∣〈PV

xj
|x|n+1

, φ

〉∣∣∣∣ ≤ cν0,1(φ) + c′ν1,0(φ).

This proves that PV xj/|x|n+1 ∈ S ′(Rn), as desired.

One can now show that the convolution of PV xj/|x|n+1 with a function φ ∈ S(Rn) is given by
the function

PV
xj
|x|n+1

∗ φ(y) = lim
ε↓0

∫
|x−y|≥ε

yj − xj
|y − x|n+1

φ(x) dx.

Actually, it follows from Proposition B.41 that these convolution operators, including the Hilbert
transform, define continuous linear maps from S(Rn) intoOM (Rn), the space of moderately increas-
ing functions. Since we are now working with several different extension of the Hilbert transform,
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it is prudent to check that these notions all coincide. For p ∈]1,∞[, denote the extension of H to
Lp(R) by Hp. We should check that for all φ ∈ S(R) we have

Hpφ(x) =
1

π
PV

1

t
∗ φ(x) = lim

ε↓0

∫
|x−t|≥ε

φ(t)

x− t
dt

for all x ∈ R. Fixing φ ∈ S(R), we can use the density of C∞c (R) in S(R) to find a sequence
(φj)j∈N in C∞c (R) that converges in S(R) to φ. Since S(R) is continuously included in Lp(R),
this sequence also converges to φ in Lp(R). Since Hp ∈ L(Lp(R)), the sequence (Hpφj)j∈N then
converges to Hpφ in Lp(R). Since Lp(R) is continuously included in S ′(R), the sequence (Hpφj)j∈N
also converges in S ′(R) to Hpφ. On the other hand, since the convolution operator 1/πPV 1/t∗ is
a continuous map from S(R) to OM (R), the latter being continuously included in S ′(R), we find
that 1/πPV 1/t ∗ φj converges to 1/πPV 1/t ∗ φ in S ′(R). Thus, since S ′(R) is Hausdorff, we may
take limits in S ′(R) to conclude that

Hpφ = lim
j→∞

Hpφj = lim
j→∞

1

π
PV

1

t
∗ φj =

1

π
PV

1

t
∗ φ,

Since Hp|C∞c (R) = 1/πPV 1/t ∗ |C∞c (R). To clarify, we have shown that the below diagram, where
the arrow on the top represents our initial definition of the Hilbert transform, is commutative.

C∞c (R)

S(R) Lp(R)

OM (R) S ′(R)

H

1
π

PV 1
t
∗

Hp

1
π

PV 1
t
∗

2.19 Definition. Let U ⊆ Rn be open and p ∈ [1,∞]. For any f ∈ L∞(U) we define the
multiplication operator Mf : Lp(U) → Lp(U) by Mfg := fg. We use a similar definition for
Lploc(U). ♦

We note that for any f ∈ L∞(U) we have M∗f = Mf and M †f = Mf .
We normalize our Fourier transform in Rn so that for φ ∈ S(Rn) we have

Fφ(ξ) =

∫
Rn

φ(x)e−2πix·ξ dx.

The following lemma shows that in the Fourier domain, the Hilbert transform is just multiplication
by the function −i sign.

2.20 Proposition. We have
F (H f) = M−i signFf

for all f ∈ L2(R).
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Proof. By density of S(R) in L2(R) it suffices to consider functions in S(R). By Proposition B.41
we have

F (H φ) =
1

π
F

(
PV

1

t
∗ φ
)

=
1

π
F

(
PV

1

t

)
Fφ

for all φ ∈ S(R). Thus, it remains to show that

F

(
PV

1

t

)
= −πi sign . (2.30)

A direct computation shows that for all y ∈ R+ we have F (i sign e−2πy|·|) = Qy. Let φ ∈ C∞c (R)
and define Sφ ∈ C∞c (R) by Sφ(t) := φ(−t). Then, by Lemma 2.11, we have

lim
y↓0
〈Qy, φ〉 = lim

y↓0
(Qy ∗ Sφ)(0) = H (Sφ)(0) =

〈
1

π
PV

1

t
, φ

〉
.

Hence, Qy converges to 1/πPV 1/t in D′(R) as y ↓ 0. Thus, we have

1

π
PV

1

t
= lim

y↓0
Qy = lim

y↓0
F (i sign e−2πy| · |), (2.31)

in D′(R). Since i sign e−2πy| · | converges to i sign in S ′(R) as y ↓ 0, we find, by continuity of the
Fourier transform in S ′(R), that

lim
y↓0

F (i sign e−2πy| · |) = iF (sign), (2.32)

in S ′(R). But since S ′(R) is continuously included in D′(R), the limit in (2.32) also holds in D′(R).
Thus, we may conclude from (2.31), that

1

π
PV

1

t
= iF (sign).

Fourier inversion then yields (2.30), as desired.

Assuming one has not yet established L2-boundedness of the Hilbert transform, one could
formulate and prove the result of the proposition as we have for functions in S(R). Then one
obtains:

2.21 Corollary. The Hilbert transform extends to an isometry of L2(R).

Proof. For any φ ∈ S(R) we have

‖H φ‖2 = ‖FH φ‖2 = ‖M−i signFφ‖2 = ‖φ‖2.

The assertion follows.

Another consequence is the following:

2.22 Corollary. Let p ∈]1,∞[. For any f ∈ Lp(R) we have H 2f = −f . In other words, H is a
linear automorphism of Lp(R) with inverse −H .

26



Proof. Let φ ∈ S(R). Then, since H φ ∈ L2(R),

F (H 2φ) = M2
−i signFφ = F (−φ).

Thus, H 2φ = −φ. By density of S(R) in Lp(R), this result extends to all functions in Lp(R), as
desired.

We can also give another proof of Cotlar’s Identity, extending Proposition 2.17 to functions in
S(R).

2.23 Proposition (Cotlar’s Identity). For any φ ∈ S(R) we have

(H φ)2 = φ2 + 2H (φH φ).

Proof. Let φ ∈ S(R) and ξ ∈ R, ξ 6= 0. Using the fact that for ψ ∈ S(R) and u ∈ S ′(R) we have
F (ψu) = Fψ ∗Fu, we note that

F (φ2 + 2H (φH φ))(ξ) = (Fφ ∗Fφ)(ξ)− 2i sign(ξ)(Fφ ∗M−i signFφ)(ξ)

= (Fφ ∗Fφ)(ξ) + 2 sign(ξ)

∫
R

Fφ(ξ − η)Fφ(η) sign(η) dη (2.33)

= (Fφ ∗Fφ)(ξ) + 2 sign(ξ)

∫
R

Fφ(η)Fφ(ξ − η) sign(ξ − η) dη. (2.34)

Thus, by adding (2.33) and (2.34) and dividing by 2, we obtain

F (φ2 + 2H (φH φ))(ξ) =

∫
R

Fφ(η)Fφ(ξ − η)(1− sign(ξ)(sign(η)− sign(ξ − η))) dη. (2.35)

A proof by cases reveals that

1− sign(ξ)(sign(η)− sign(ξ − η)) = − sign(η) sign(ξ − η) = (−i sign(η))(−i sign(ξ − η)),

for all η ∈ R with η 6= 0 and η 6= ξ. Hence, by (2.35), we have

F (φ2 + 2H (φH φ))(ξ) =

∫
R
M−i signFφ(η)M−i signFφ(ξ − η) dη = F ((H φ)2)(ξ),

where the last equality follows from the formula F (f2) = Ff ∗Ff valid for f ∈ L∞(R) satisfying
Ff ∈ L1(R) where f = H φ. To see this, we note that indeed f̂ := Ff = M−i signFφ ∈ L1(R).

Then f = F−1f̂ ∈ L∞(R) and F−1(f̂ ∗ f̂) = (F−1f̂)2 = f2 by Theorem B.32. The assertion
follows.

Next, we will extend the result of Lemma 2.11.

2.24 Lemma. Let p ∈]1,∞[ and f ∈ Lp(R). Then

lim
y↓0

Qy ∗ f = H f,

where the limit is in Lp(R).
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Proof. Let p ∈]1,∞[. Fix y ∈ R+ and x ∈ R. For all t ∈ R and f ∈ Lp(R) we note that

|x− t|
|x− t|2 + y2

≤ 1

y2
if |x− t| ≤ 1 and

|x− t|
|x− t|2 + y2

≤ 1

|x− t|
if |x− t| ≥ 1.

Hence, ∫
R
|f(t)| |x− t|

|x− t|2 + y2
dt ≤

∫
|x−t|≤1

|f(t)|
y2

dt+

∫
|x−t|≥1

|f(t)|
|x− t|

dt

≤ 2
1
p′ ‖f‖p
y2

+ ‖f‖p
∫
|t|≥1
|t|−p′ dt

=

(
2

1
p′

y2
+

2

p′ − 1

)
‖f‖p,

by Hölders inequality. This means that Qy ∗ f is well-defined for all f ∈ Lp(R) and that the map
f 7→ Qy ∗ f(x) is continuous from Lp(R) to C.

The remainder of this proof is based on the identity

Qy ∗ f = Py ∗H f, (2.36)

valid for any f ∈ Lp(R). Indeed, if this identity holds then the result follows from Lemma 2.11.
Assume for the moment we have shown that (2.36) holds for all f ∈ S(R). If f ∈ Lp(R) is

arbitrary, then we can pick a sequence (φj)j∈N in S(R) that converges to f in Lp(Rn). Hence,
Qy ∗ φj → Qy ∗ f pointwise as j → ∞. By Minkowski’s inequality for convolutions, see Corollary
A.5, the right-hand side of (2.36) as a function of f is continuous as a map from Lp(R) to Lp(R).
Hence, Py ∗H φj → Py ∗H f as j →∞. But this implies there is some a.e. convergent subsequence
of (Py ∗H φj)j∈N with limit Py ∗H f . Thus, taking a.e. limits, we conclude from the fact that
Qy ∗ φj = Py ∗H φj for all j ∈ N that (2.36) is valid for all f ∈ Lp(R).

It remains to prove that (2.36) is valid for all f ∈ S(R). A direct computations show that
F (e−2πy| · |) = Py and F (i sign e−2πy| · |) = Qy. Fourier inversion then yields

FPy = e−2πy| · |, FQy = −i sign e−2πy| · |.

Let f ∈ S(R). Then

F (Qy ∗ f) = FQyFf = −i sign e−2πy| · |Ff = FPyF (H f) = F (Py ∗H f)

so that the assertion follows by Fourier inversion, where the first equality follows from the formula
F (u ∗ φ) = FuFφ valid for u ∈ S ′(R) and φ ∈ S(R) applied to u = Qy and φ = f , while the last
equality follows from the formula F (g ∗ h) = FgFh valid for g ∈ L1(R) and h ∈ L2(R) applied
to g = Py and h = H f , see Proposition B.41 and Theorem B.32. This proves the result.

Having shown this, we can now prove Theorem 2.4
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Proof of Theorem 2.4. By Lemma 2.16 we have 2f = Cg. Hence,

2 Im f(x+ iy) = Im((Py ∗ g)(x) + i(Qy ∗ g)(x))

= (Py ∗ Im g)(x) + (Qy ∗ Re g)(x)
(2.37)

for all z = x+ iy ∈ H. Since

lim
y↓0

(Py ∗ Im g) + (Qy ∗ Re g) = Im g + H (Re g)

in Lp(R) by Lemma 2.11 and Lemma 2.24, the sequence ((P1/j ∗ Im g) + (Q1/j ∗ Re g))j∈N has an
a.e. convergent subsequence with limit Im g + H (Re g). By combining this result with (2.5), we
conclude from (2.37) that

2 Im g = Im g + H (Re g).

The assertion follows.

With this result, we will work towards the proof of operator norm equalities in Theorem 2.3.
We will work with the outline provided by [Gr, Exercise 4.1.13] using results from the article [Pi]
by Pichorides, which gave the original proof of this result in 1972. On account of Proposition 2.6 it
suffices to check the cases where p ∈]1, 2]. Since we have already established the case where p = 2,
we may assume that p ∈]1, 2[. First we will establish the lower bound

‖H ‖L(Lp(R)) ≥ tan
π

2p
. (2.38)

We define φ : C\{1} → C to be the conformal mapping

φ(z) := i
z + 1

z − 1
=

2y

|z − 1|2
+ i
|z|2 − 1

|z − 1|2
.

Now let U ⊆ C be the open subset of C obtained by deleting the non-positive real numbers from
C. The function φ maps H into the open right half plane of C. In particular, this means that
φ(H) ⊆ U . Any z ∈ U can be written as z = reit with r ∈ R+ and t ∈]−π, π[. We let log : U → C
be the holomorphic function satisfying log z = log r+ it, where log r denotes the natural logarithm
of r. See Example C.24. For

γ ∈
]
π

2p′
,
π

2p

[
, (2.39)

this allows us to define an analytic function

f : H→ C, f(z) :=
φ(z)

2γ
π

z + 1
:=

e
2γ
π

log φ(z)

z + 1
.

We wish to apply Theorem 2.4 to this function. Since |φ(z)| → 1 as |z| → ∞, we find that
|zf(z)| → 1 as |z| → ∞. This implies that f satisfies (2.6).

Next, note that for x ∈ R\{±1} we can write φ(x) = r(x)eit(x) where r(x) = |x+ 1|/|x− 1| and

t(x) =


π
2 if |x| > 1

−π
2 if |x| < 1.
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This implies that if we set g(x) := limy↓0 f(x+ iy) for x ∈ R\{±1}, then

g(x) =
1

x+ 1

∣∣∣∣x+ 1

x− 1

∣∣∣∣ 2γπ ei 2γπ t(x).

Note that
|g(x)|p = |x+ 1|p(

2γ
π
−1)|x− 1|−p

2γ
π .

For large |x|, the function |g(x)|p behaves like |x + 1|−p which is integrable in a neighborhood
of infinity, since −p < −1. Moreover, |g(x)|p behaves like |x + 1|p(2γ/π−1) for x near −1 and
like |x − 1|−2pγ/π for x near 1. Since our assumptions on γ imply that −1 < p(2γ/π − 1) and
−1 < −2pγ/π, we may conclude that |g(x)|p is integrable for x near ±1. By combining these results
we have found that g ∈ Lp(R). Thus, we may conclude from Theorem 2.4 that H (Re g) = Im g.
Noting that

Re g(x) =
1

x+ 1

∣∣∣∣x+ 1

x− 1

∣∣∣∣ 2γπ cos γ

and

Im g(x) =


1

x+1

∣∣∣x+1
x−1

∣∣∣ 2γπ sin γ if |x| > 1

− 1
x+1

∣∣∣x+1
x−1

∣∣∣ 2γπ sin γ if |x| < 1,

this means that
‖H (Re g)‖p = ‖ Im g‖p = tan γ‖Re g‖p.

Hence,
‖H ‖L(Lp(R)) ≥ tan γ

for all γ satisfying (2.39). From this we may conclude that the lower bound (2.38) holds.
In view of our discussion after Proposition 2.17, we have now shown the operator norm equality

in Theorem 2.3 for p ∈]1,∞[ of the form p = 2k and p = 2k/(2k − 1) for k ∈ Z≥0.
The remainder of this subsection will be dedicated to proving the upper bound

‖H ‖L(Lp(R)) ≤ tan
π

2p
(2.40)

for p ∈]1, 2[. We will actually show that for such p we have

‖H f‖p ≤ tan
π

2p
‖f‖p for all real-valued f ∈ Lp(R). (2.41)

We sketch a way to conclude the general complex-valued result (2.40) from (2.41).

2.25 Lemma. Let p ∈]1,∞[ and L ∈ L(Lp(R)). Suppose L maps real-valued functions to real
valued functions and suppose there is some c ∈ R+ so that

‖L f‖p ≤ c‖f‖p for all real-valued f ∈ Lp(R).

Then
‖L f‖p ≤ c‖f‖p

for all f ∈ Lp(R).
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Proof. Define γ : C → R by γ(z) := e−π|z|
2
. Then γ defines a measure dγ on C through

dγ(z) = γ(z) dz. We denote by dγR the measure on R obtained as the image measure of dγ under
the projection z 7→ Re z. Since

∫
Re
−πy2 dy = 1, one finds that dγR(x) = e−πx

2
dx. If w ∈ C

satisfies |w| = 1, then, since γ is rotationally invariant, we find that the image measure of dγ under
z 7→ Re(wz) is also dγR. This implies that

k := π−
p+1
2 Γ

(
p+ 1

2

)
=

∫
R
|t|p dγR(t) =

∫
C
|Re(wz)|p dγ(z).

Thus, for any w ∈ C we may conclude that∫
C
|Re(wz)|p dγ(z) = k|w|p.

Hence, for any g ∈ Lp(R) we have

k‖g‖pp =

∫
C

∫
R
|Re(g(t)z)|p dt dγ(z). (2.42)

Let f ∈ Lp(R). Since L maps real-valued functions to real-valued functions we have

Re(L f(t)z) = L (Re(fz))(t)

for all t ∈ R and z ∈ C. Hence, by (2.42),

k‖L f‖pp =

∫
C
‖L (Re fz)‖pp dγ(z) ≤ cp

∫
C
‖(Re fz)‖pp dγ(z)

= cp
∫
C

∫
R
|Re(f(t)z)|p dtdγ(z) = cpk‖f‖pp.

The assertion follows.

The proof we give of (2.41) relies on a certain subharmonic function.

2.26 Definition. Let p ∈]1, 2]. We define fp : C→ C by fp(0) := 0 and

fp(z) := Re((|x|+ iy)p) = Re ep log(|x|+iy) = |z|p cos(p arg(|x|+ iy))

for z = x+ iy 6= 0, where the argument is taken between −π/2 and π/2. ♦

The importance of this function becomes clear in the following remarkable inequality:

2.27 Proposition. Let p ∈]1, 2]. Then(
sin π

2p

)p−1

cos π
2p

fp(a+ bi) ≤
(

tan
π

2p

)p
|a|p − |b|p (2.43)

for all a, b ∈ R.
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Our proof is based on [Pi, Lemma 2.1]. Note that this inequality is actually an equality when
p = 2.

Proof. We set

Ap :=

(
tan

π

2p

)p
, Bp :=

(
sin π

2p

)p−1

cos π
2p

.

The proof uses the inequality

| sinx|p ≤ Ap(cosx)p −Bp cos px, (2.44)

valid for x ∈ [−π/2, π/2].
Assume for the moment that we have shown validity of (2.44). The inequality (2.43) is im-

mediate for a = b = 0. Now let a, b ∈ R not both be 0 and x := arg(|a| + bi). We then find
that

sinx =
b

|a+ bi|
, cosx =

|a|
|a+ bi|

.

Hence,
|b|p

|a+ bi|p
≤ Ap

|a|p

|a+ bi|p
−Bp cos(p arg(|a|+ bi))

by (2.44). Rearranging the terms yields (2.43), as desired.
To prove (2.44), we note that there is equality when p = 2. Hence we may assume p ∈]1, 2[.

Moreover, since both sides are even functions in x, we need only consider the cases where x ∈
[0, π/2]. But then, by continuity, it suffices to consider the cases where x ∈]0, π/2[. We define

f :
]
0,
π

2

[
→ R, f(x) :=

(sinx)p +Bp cos px

(cosx)p
.

If we then set

g :
]
0,
π

2

[
→ R, g(x) := 1−Bp

sin((p− 1)x)

(sinx)p−1
,

then

f ′(x) = p
(sinx)p−1

(cosx)p+1
g(x).

We note that, since 2− p ∈]0, 1[,

g′(x) = −Bp(p− 1) cos((p− 1)x)(sinx)1−p +Bp(p− 1) sin((p− 1)x) cosx(sinx)−p

= −Bp(p− 1)
sin((2− p)x)

(sinx)p
< 0,

meaning that g is strictly decreasing. This allows us to conclude that g and hence f ′ has a unique
zero at π/(2p). An application of de L’Hôpital’s rule shows, using p ∈]1, 2[, that limx↓0 g(x) = 1.
This means that for small enough x ∈]0, π/2[ we have f ′(x) > 0. Moreover, since f(x) → −∞ as
x ↑ π/2 we may conclude that f attains a global maximum at π/(2p). Hence,

(sinx)p +Bp cos px

(cosx)p
≤ f

(
π

2p

)
= Ap,

for all x ∈]0, π/2[. This proves (2.44). The assertion follows.
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In view of this proposition, it now suffices to show that∫
R
fp(|φ(x)|+ iH φ(x)) dx ≥ 0

for all φ ∈ C∞c (R) to conclude (2.40). This will follow from the fact that fp is a subharmonic
function.

2.28 Definition. Let U ⊆ C be open and let u : U → R be a continuous function. We call u
subharmonic if it satisfies the mean-value property

u(z0) ≤ 1

2π

∫ 2π

0
u(z0 + reit) dt

for all z0 ∈ U , r ∈ R+ so that D(z0; r) ⊆ U . ♦

We will use the following characterization:

2.29 Lemma. Let U ⊆ C be open and let u : U → R be a continuous function. The following are
equivalent:

(i) u is subharmonic in U;

(ii) for every z0 ∈ U there is an r0 ∈ R+ so that D(z0; r0) ⊆ U and whenever 0 < r < r0, we have

u(z0) ≤ 1

2π

∫ 2π

0
u(z0 + reit) dt.

A discussion on subharmonic functions can be found in Appendix C and, in particular, Lemma
2.29 is a consequence of Theorem C.38.

2.30 Lemma. Let p ∈]1, 2]. Then fp is subharmonic in C.

Our proof follows the proof of [Pi, Lemma 3.5].

Proof. In the half planes {x + iy ∈ C | x ∈ R+} and {x + iy ∈ C | −x ∈ R+} the function fp
coincides with the real part of the holomorphic functions zp and (−z)p respectively and is thus
harmonic there. Hence, fp certainly satisfies the mean-value property at any point in these half
planes. It remains to check the purely imaginary points in C.

We first check that fp satisfies the mean-value property at discs around origin. Let r ∈ R+.
Then, noting that

fp(re
it) =

r
p cos pt if t ∈

[
−π

2 ,
π
2

]
rp cos p(π − t) if t ∈

[
π
2 ,

3π
2

]
,

(2.45)

we find that, since p ∈]1, 2],

1

2π

∫ 2π

0
fp(re

it) dt =
2rp

2π

∫ π
2

−π
2

cos pt dt =
2rp sin pπ2

πp
≥ 0 = fp(0),
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as desired.
We denote by U ⊆ C the set of complex numbers minus the non-positive real numbers, and

define u : U → R as the real part of the holomorphic function zp. Then u is harmonic in U , see
Proposition C.34, and coincides with fp on the closed right half plane. Let z = reit with r ∈ R+

and t ∈ [π/2, π]. Then, by (2.45), we have

fp(z)− u(z) = rp cos p(π − t)− rp cos pt = 2rp sin p
(
t− π

2

)
sin p

π

2
≥ 0.

If z = reit with r ∈ R+ and t ∈ [π, 3π/2], then

fp(z)− u(z) = rp cos p(π + t)− rp cos pt = −2rp sin p
(
t+

π

2

)
sin p

π

2
≥ 0.

Hence, we have found that u(z) ≤ fp(z) for all z ∈ U . This means that if y ∈ R\{0} and 0 < r < |y|,
then, since u is harmonic in U ,

fp(iy) = u(iy) =
1

2π

∫ 2π

0
u(iy + reit) dt ≤ 1

2π

∫ 2π

0
fp(iy + reit) dt.

The assertion follows.

2.31 Corollary. Let u ∈ C∞c (R) be real-valued and let p ∈]1, 2]. Then fp ◦ Cu : H → C is
subharmonic.

Proof. Since Cu : H→ C is holomorphic, this follows immediately from Lemma C.40.

As anounced, this result will be used to prove the following:

2.32 Lemma. Let p ∈]1, 2]. Then we have∫
R
fp(u(x) + iH u(x)) dx ≥ 0, (2.46)

for all real-valued u ∈ C∞c (R).

Proof. First we will check that fp(u+ iH u) is integrable over R. Since u ∈ C∞c (R) ⊆ Lp(R), we
also have H u ∈ Lp(R). Noting that |fp(u(x) + iH u(x))| ≤ |u(x) + iH u(x)|p for all x ∈ R, we
may indeed conclude that fp(u+ iH u) ∈ L1(R).

Next, let r ∈ R+ and let (Cr, σr) denote the circle in C of radius r, centered at ir, equipped
with its usual surface measure σr. Let 0 < r′ < r. Then, by Corollary 2.31, we have

fp(Cu(ir)) ≤ 1

2π

∫ 2π

0
fp(Cu(ir + r′eit)) dt. (2.47)

As the convergence in 2.11 is uniform in x, we can conclude that Cu extends continuously to the
closure H of H in C by declaring that it is equal to u + iH u on the real line. In particular this
means that Cu is bounded on any compact set in H. This justifies letting r′ ↑ r in (2.47) to
conclude that

2πrfp(Cu(ir)) ≤
∫ 2π

0
rfp(Cu(ir + reit)) dt =

∫
Cr

fp(Cu(ω)) dσ(ω). (2.48)
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The idea is now to let r →∞ in (2.48) to conclude (2.46).
By Lemma 2.14 we can find R, c ∈ R+ so that whenever |z| ≥ R, we have |Cu(z)| ≤ c/|z|.

Then, since p > 1, we have

|rfp(Cu(ir))| ≤ r|Cu(ir)|p ≤ rcp

|ir|p
=

cp

rp−1
→ 0 as R ≤ r →∞,

showing that the left-hand side of (2.48) tends to 0 as r →∞.
For the right-hand side of (2.48), we will parameterize the circle Cr by projecting it to the real

line through its north pole 2ir. For any t ∈ R, the unique intersection point of the line through
2ir and t with Cr\{2ir} is given by

γr(t) =
4r2t

4r2 + t2
+ i

2rt2

4r2 + t2
,

from which we compute

γ′r(t) = 4r2 4r2 − t2

(4r2 + t2)2
+ 4r2i

4rt

(4r2 + t2)2
.

This means that for all t ∈ R we have

|γr(t)| = |t|
(

4r2

4r2 + t2

) 1
2

, |γ′r(t)| =
4r2

4r2 + t2
. (2.49)

and
lim
r→∞

γr(t) = t, lim
r→∞

|γ′r(t)| = 1, for all t ∈ R. (2.50)

The former limit implies that if we take |t| ≥ R + 1, then for some large enough r ∈ R+ we have
|γr(t)| ≥ R. Hence, there is some M ∈ R+ so that whenever r ≥ M and |t| ≥ M , we have, by
(2.49), that

|γ′r(t)||fp(Cu(γr(t)))| ≤ cp
|γ′r(t)|
|γr(t)|p

=
cp

|t|p

(
4r2

4r2 + t2

)1− p
2

≤ cp

|t|p
,

where we used the fact that p ≤ 2 implies that 1 − p/2 ≥ 0. Since p > 1, the function 1/|t|p is
integrable over the set where |t| ≥M . This justifies the use of Lebesgue’s Dominated Convergence
Theorem to conclude from (2.50) that

lim
r→∞

∫
Cr

fp(Cu(ω)) dσ(ω) = lim
r→∞

∫
R
|γ′r(t)|fp(Cu(γr(t))) dt =

∫
R
fp(u(x) + iH u(x)) dx.

The result now follows by letting r →∞ in (2.48).

Now, by combining Proposition 2.27 and Lemma 2.32, we conclude that for all p ∈]1, 2] and all
real-valued u ∈ C∞c (R) we have

0 ≤

(
sin π

2p

)p−1

cos π
2p

∫
R
fp(u(t) + iH u(t)) dt ≤

(
tan

π

2p

)p
‖u‖p − ‖H u‖p.

The inequality (2.41) now follows from the density in Lp(R) of the space of real-valued functions
in ∈ C∞c (R) in the space of real-valued functions in Lp(R). This concludes the proof of Theorem
2.3.
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2.3 The Riesz Transforms and the Beurling-Ahlfors Transform

The method of rotations uses the Hilbert transform and its extensions in L(Lp(R)) for p ∈]1,∞[
to show that certain singular integral operators in Rn also have extensions in L(Lp(Rn)) for p ∈
]1,∞[. Since we will mainly be working in two dimensions when working with the Beurling-Ahlfors
transform, this will be our setting now as well.

While we denote our coordinates in the planar domain by z = x + iy, we will denote our
coordinates in the Fourier domain by ζ = ξ+ iη. In an attempt to generalize the Hilbert transform
to operators on C with similar properties, we wish to define the following:

2.33 Definition. The first and second Riesz transforms R1 and R2 are defined as the convolution
operators

R1φ :=
1

2π
PV

x

|z|3
∗ φ, 1

2π
R2φ := PV

y

|z|3
∗ φ,

where φ ∈ S(R). ♦

These operators are well-defined by Lemma 2.18. Just like with the Hilbert transform, the Riesz
transforms continuously map S(C) to OM (C), where

R1φ(w) =
1

2π
lim
ε↓0

∫
|w−z|≥ε

Re(w − z)
|w − z|3

φ(z) dz, R2φ(w) =
1

2π
lim
ε↓0

∫
|w−z|≥ε

Im(w − z)
|w − z|3

φ(z) dz.

Note that for the Hilbert transform we used the normalization 1/π. Usually the Riesz transforms
in Rn are defined as convolution with the distributions Γ((n + 1)/2)/π(n+1)/2 PV xj/|x|n+1 for
j ∈ {1, . . . , n}, which gives our normalization with 1/(2π) here.

We now state the main objectives of this subsection.

2.34 Theorem. Let p ∈]1,∞[. The Riesz transforms have extensions in L(Lp(C)) satisfying the
estimate ‖Rj‖L(Lp(C)) ≤ ‖H ‖L(Lp(R)) for j ∈ {1, 2}.

Showing this will involve what is called the method of rotations.
Additionally, we will wish to compute the Fourier transform of the Riesz transforms.

2.35 Theorem. We have

F (R1f) = M−i ξ|ζ|
Ff, F (R2f) = M−i η|ζ|

Ff,

for all f ∈ L2(C).

The main reason we wish to establish these results, is because we will define the Beurling-Ahlfors
transform in terms of the Riesz transforms to establish its Lp boundedness through Theorem 2.34.
Then, to see that this definition coincides with usual integral representation of the Beurling-Ahlfors
transform, we need only show that their Fourier transforms coincide. After we have established
our main results, we will use the remainder of this subsection to discuss properties of the Beurling-
Ahlfors transform.

First we will concern ourselves with the proof of Theorem 2.34. For α ∈ R we denote by
rα : C → C the rotation z 7→ eiαz. Then rα defines a map r∗α : L0(C) → L0(C), by r∗αf = f ◦ rα.
In particular, r∗α restricts to an isometric linear isomorphism of Lp(C) for all p ∈ [1,∞] with inverse
r∗−α.
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2.36 Definition. Let α ∈ R. We define the angular Hilbert transform Hα on S(C) by

Hαφ(z) :=
1

π
lim
ε↓0

∫
|t|≥ε

φ(z − eiαt)
t

dt,

where the integral is over the real coordinate t. ♦

The angular Hilbert transforms are seen to be well-defined in much the same way as this has been
done for the Hilbert transform.

2.37 Lemma. Let α ∈ R and p ∈]1,∞[. Then Hα has an extension in L(Lp(C)). If we again
denote this extension by Hα, then we have ‖Hα‖L(Lp(C)) ≤ ‖H ‖L(Lp(R)).

Proof. First we observe that
Hα = r∗−α ◦H0 ◦ r∗α.

Let φ ∈ S(C). Assuming we have proven the result in the case that α = 0, we find

‖Hαφ‖p ≤ ‖r∗−α‖L(Lp(C))‖H0‖L(Lp(C))‖r∗α‖L(Lp(C))‖φ‖p ≤ ‖H ‖L(Lp(R))‖φ‖p.

This shows that it suffices to consider the case where α = 0.
For y ∈ R we define ψy ∈ S(R) by ψy(x) := φ(x + iy). Then it follows from the definition of

H0 that H ψy(x) = H0φ(x+ iy). Hence,

‖H0φ‖pp ≤
∫
R
‖H ‖pL(Lp(R))

∫
R
|ψy(x)|p dx dy = ‖H ‖pL(Lp(R))‖φ‖

p
p,

by Fubini’s Theorem. The assertion follows.

Proof of Theorem 2.34. We will prove the result for R1. The corresponding result for R2 is
completely analogous. Let ε ∈ R+, w ∈ C, and φ ∈ C∞c (C). Then, by subsequently changing to
polar coordinates and substituting α for α+ π, we obtain∫

|z|≥ε

x

|z|3
φ(w − z) dz =

∫ 2π

0
cosα

∫ ∞
ε

φ(w − reiα)

r
dr dα (2.51)

= −
∫ 2π

0
cosα

∫ ∞
ε

φ(w + reiα)

r
dr dα (2.52)

Adding (2.51) and (2.52) and dividing by 2 yields∫
|z|≥ε

x

|z|3
φ(w − z) dz =

1

2

∫ 2π

0
cosα

∫ ∞
ε

φ(w − reiα)− φ(w + reiα)

r
dr dα. (2.53)

We now wish to justify using Lebesgue’s Dominated Convergence Theorem to conclude that

R1φ(w) =
1

4

∫ 2π

0
cosαHαφ(w) dα. (2.54)

37



For this, note that for all α ∈ [0, 2π] we have∣∣∣∣φ(w − reiα)− φ(w + reiα)

r

∣∣∣∣ ≤ 2
3
2 ν0,1(φ),

by applying the Mean Value Theorem to the function r 7→ φ(w − reiα). Then, by compactness of
the support of φ, we can find some R > ε so that∣∣∣∣∫ ∞

ε

φ(w − reiα)− φ(w + reiα)

r
dr

∣∣∣∣ ≤ ∫ R

ε

∣∣∣∣φ(w − reiα)− φ(w + reiα)

r

∣∣∣∣ dr ≤ 2
3
2Rν0,1(φ).

This justifies letting ε ↓ 0 in (2.53) to conclude (2.54).
If p ∈]1,∞[, then we can use Minkowski’s integral inequality and Lemma 2.37 to conclude that

‖R1φ‖p ≤
1

4

∫ 2π

0
| cosα|dα‖Hαφ‖p ≤ ‖H ‖L(Lp(R))‖φ‖p,

since ∫ 2π

0
| cosα|dα = 4.

The assertion now follows from Lemma 1.1.

In order to prove Theorem 2.35, we first consider another tempered distribution. Note that the
function |z|−1 is locally integrable in C, since∫

|z|≤1

1

|z|
dz = 2π

∫ 1

0
r

1

r
dr = 2π <∞.

Thus, |z|−1 defines a distribution. However, it actually defines a tempered distribution, since∫
C

|φ(z)|
|z|

dz =

∫
|z|≤1

|φ(z)|
|z|

dz +

∫
|z|≥1

|φ(z)|
|z|

dz

≤ 2πν0,0(φ) + ν2,0(φ)

∫
|z|≥1

1

|z|3
dz

= 2πν0,0(φ) + 2πν2,0(φ)

(2.55)

for all φ ∈ S(R). This connects to the Riesz transforms as follows:

2.38 Lemma. We have

−∂x|z|−1 = PV
x

|z|3
, −∂y|z|−1 = PV

y

|z|3
,

where the derivatives are taken in S ′(C).

38



Proof. Let ε ∈ R+ and φ ∈ S(C). Denote by σε the standard surface measure on the circle
S(ε) = {ω = ωx + iωy ∈ C | |ω| = ε}. As the outward unit normal vector ν to S(ε), seen as the
boundary of {z ∈ C | |z| ≥ ε}, is given by ν(z) = −z/ε, we have, using partial integration,∫

|z|≥ε
∂xφ(z)|z|−1 dz =

∫
|z|≥ε

x

|z|3
φ(z) dz −

∫
S(ε)

ωx
ε2
φ(ω) dσε(ω), (2.56)

and similarly for y instead of x. Since

lim
ε↓0

∫
S(ε)

ωx
ε2
φ(ω) dσε(ω) = lim

ε↓0

∫ 2π

0
φ(εeit) cos(t) dt = φ(0)

∫ 2π

0
cos(t) dt = 0,

and similarly for y where cos is replaced by sin, we may take the limit as ε ↓ 0 in (2.56) to conclude
that

〈−∂x|z|−1, φ〉 = 〈|z|−1, ∂xφ〉 = lim
ε↓0

∫
|z|≥ε

x

|z|3
φ(z) dz =

〈
PV

x

|z|3
, φ

〉
,

and similarly for y. This proves the desired result.

In view of Lemma 2.38, the vital step for proving Theorem 2.35 is the computation of the
Fourier transform of |z|−1. As it turns out, this is actually a fixed point of the Fourier transform.
To show this, we will use the following result:

2.39 Lemma. Suppose f ∈ C∞(C\{0}) satisfies f(tz) = t−1f(z) and f(eiαz) = f(z) for all
z ∈ C\{0}, t ∈ R+, and α ∈ R. Then there exists a constant c ∈ C so that f = c|z|−1.

Proof. Write z ∈ C\{0} in polar coordinates as z = reiα for r ∈ R+ and α ∈ R. Then

f(z) = f(reiα) = f(eiα)r−1 = f(1)|z|−1.

The assertion then follows with c = f(1).

2.40 Lemma. The Fourier transform of |z|−1 is given by |ζ|−1.

Proof. Since |z|−1 is invariant under rotations and homogeneous of degree −1, see Example B.18,
it follows from Corollary B.33 that F |z|−1 is also invariant under rotations and homogeneous of
degree −1 = −2−(−1). Moreover, since |z|−1 is smooth in C\{0}, we conclude from Theorem B.38
that F |z|−1 is given by a smooth function f in C\{0}. From this it follows that f(tz) = t−1f(z)
for all t ∈ R+ and z ∈ C\{0}. Hence, f satisfies the conditions from Lemma 2.39 and is thus of
the form f = c|ζ|−1 for some c ∈ C. Thus, f defines a tempered distribution in its own right.

Next, note that u := F |z|−1 − f ∈ S ′(C) is supported in the origin. This implies, by Theorem
B.12, that u is of the form

u =
∑
|α|≤k

cα∂
αδ,

where k ∈ Z≥0 and cα ∈ C for all multi-indices α with |α| ≤ k. As is shown in Example B.18,
the distributions ∂αδ are homogeneous of degree −2 − |α| for every multi-index α, while u is
homogeneous of degree −1. Hence, for every t ∈ R+ we have

t−1u = dtu =
∑
|α|≤k

cαdt(∂
αδ) =

∑
|α|≤k

t−2−|α|cα∂
αδ,
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which implies that for all φ ∈ S(C) we have

u(φ) =
∑
|α|≤k

t−1−|α|cα∂
αδ(φ)→ 0 as t→∞

so that u = 0. We conclude that F |z|−1 = c|ζ|−1.
To compute c, we recall that if γ := e−π|z|

2 ∈ S(C), then Fγ = γ, see Example B.29. Hence,

c〈|ζ|−1, γ〉 = 〈F |z|−1, γ〉 = 〈|z|−1, γ〉.

Since 〈|z|−1, γ〉 > 0, we conclude that c = 1. The assertion follows.

Proof of Theorem 2.35. By density, it suffices to show the result for functions in S(C). Let
φ ∈ S(C). From Lemma 2.38 and Lemma 2.40 it follows that

F (R1φ) = − 1

2π
F (∂x|z|−1)Fφ = −iξF |z|−1Fφ = −i ξ

|ζ|
Fφ.

The proof for R2 is analogous. The assertion follows.

As an analogue to Corollary 2.22 we also show the following:

2.41 Corollary. Let p ∈]1,∞[ and f ∈ Lp(C). Then

R2
1f + R2

2f = −f.

Proof. Since (
−i x
|z|

)2

+

(
−i y
|z|

)2

= −1,

the result follows by taking the Fourier transform.

2.42 Definition. Let p ∈]1,∞[. Denote the extensions of R1 and R2 to Lp(C) again by R1 and
R2. The Beurling-Ahlfors transform Bp in Lp(C) is defined as the operator Bp := (iR1 + R2)2 ∈
L(Lp(C)). ♦

We note that, per definition, all the operators (Bp)p∈]1,∞[ coincide on S(C) and in particular on
C∞c (C). Recalling Lemma 2.5, we could denote all these operators simply by B. We opt to not do
this at this point for the sake of clarity and to emphasize the involved subtleties.

2.43 Proposition. For all f ∈ L2(C) we have

F (B2f) = M ζ
ζ

Ff.

Proof. We have

F (B2f) = (iM−i ξ|ζ|
+M−i η|ζ|

)2Ff = M2
ξ−iη
|ζ|

Ff = M ζ
ζ

Ff,

as desired.
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This proposition can now be used to show that the Beurling-Ahlfors transform interchanges the
Wirtinger derivatives. Before we do this, we note, recalling Remark 1.3, that it is straightforward
to check that the conjugate transpose operator B†2 satisfies

B†2 = (−iR1 + R2)2 = F−1M z
z
F .

This first equality also gives a description of B†p for all p ∈]1,∞[, while the second equality implies
the following:

2.44 Lemma. Let p ∈]1,∞[. Then Bp is an isomorphism of Lp(C) with inverse B†p′. In particular,

B2 is a unitary isomorphism of L2(C).

Proof. Since
M z

z
M z

z
= M z

z
M z

z
= idL2(C),

it follows from taking the Fourier transform that B2B
†
2 and B†2B2 coincide with the identity

mapping on C∞c (C). The assertion for p = 2 follows by density. By Lemma 2.5 we find that for

all φ ∈ C∞c (C) we have B†2φ = B†p′φ ∈ L
2(C) ∩ Lp′(C). Hence, another application of Lemma 2.5

implies that
BpB

†
p′φ = B2B

†
p′φ = B2B

†
2φ = φ

for all φ ∈ C∞c (C). Thus, BpB
†
p′ coincides with the identity mapping on C∞c (C). Analogously we

find that B†p′Bp also coincides with the identity mapping on C∞c (C). The assertion now follows
by density.

We wish to establish a lower bound on the operator norms of the Beurling-Ahlfors transform.

2.45 Proposition. Let p ∈]1,∞[. Then we have ‖Bp‖L(Lp(C)) ≥ p∗ − 1.

This proposition will be proved by computing the Beurling-Ahlfors transform of specific func-
tions with favorable partial derivatives. Such examples were first discovered by Lehto, see [Le].

For p ∈ [1,∞[, we define the homogeneous Sobolev space

W̊ 1,p(C) := {f ∈ D′(C) | ∂zf, ∂zf ∈ Lp(C)},

topologized by the seminorm

‖f‖W̊ 1,p(C) := ‖∂zf‖p + ‖∂zf‖p.

2.46 Proposition. Let p ∈]1,∞[. For any f ∈ W̊ 1,p(C) we have

Bp(∂zf) = ∂zf, B†p(∂zf) = ∂zf.

As one might expect, the proof uses a density argument.

2.47 Lemma. For all p ∈ [1,∞[, the space C∞c (C) is dense in W̊ 1,p(C).

Proof. This proof is nearly identical to the proof of Theorem 1.5 and will therefore be omitted.
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Proof of Proposition 2.46. The equality for B†p follows from the equality for Bp by Lemma
2.44. Let φ ∈ C∞c (C). Then

F (B2(∂zφ)) =
z

z
F (∂zφ) = πizFφ = F (∂zφ),

hence Bp(∂zφ) = B2(∂zφ) = ∂zφ. The result now follows from density of C∞c (C) in W̊ 1,p(C).

As an analogue to Proposition 2.6, we have the following:

2.48 Proposition. Let p ∈]1,∞[. Then B∗p = Bp′.

Proof. We note that
B∗2 = FM z

z
F−1 = F−1M−z

−z
F = B2,

implying that
〈B2f, g〉 = 〈f,B∗2g〉 = 〈f,B2g〉

for all f, g ∈ L2(C). By Lemma 2.5, this means that

〈Bpf, g〉 = 〈f,Bp′g〉

for all f ∈ L2(C) ∩ Lp(C) and g ∈ L2(C) ∩ Lp′(C). The assertion now follows from density of
L2(C) ∩ Lp(C) and L2(C) ∩ Lp′(C) in Lp(C) and Lp

′
(C) respectively.

Finally, before we prove the lower bound on the operator norms of the Beurling-Ahlfors trans-
form, we consider certain functions known as radial stretchings.

2.49 Example. Suppose a function f : C→ C is of the form

f(z) =


z

|z|
ρ(|z|) if |z| > 0

0 if z = 0,

where ρ : R+ → R+ is a strictly increasing continuously differentiable function that extends
continuously to R≥0 by ρ(0) = 0. Then f is continuous and continuously differentiable outside of
the origin. A direct computation shows that ∂z|z| = z/(2|z|) and thus ∂z|z| = ∂z|z| = z/(2|z|).
Using Proposition C.1, this implies that

∂z
z

|z|
= ∂z

|z|
z

=
1

2|z|
, ∂z

z

|z|
= − z

|z|2
z

2|z|
= −z

z

1

2|z|
.

Hence,

∂zf(z) =
ρ(|z|)
2|z|

+
z

|z|
ρ′(|z|) z

2|z|
=

1

2

(
ρ′(|z|) +

ρ(|z|)
|z|

)
∂zf(z) = −z

z

ρ(|z|)
2|z|

+
z

|z|
ρ′(|z|) z

2|z|
=

z

2z

(
ρ′(|z|)− ρ(|z|)

|z|

)
.
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It follows that f satisfies
∂zf(z) = µ(z)∂zf(z)

for a.e. z ∈ C, where µ ∈ L∞(C) is defined by

µ(z) =
z

z

|z|ρ′(|z|)− ρ(|z|)
|z|ρ′(|z|) + ρ(|z|)

for z ∈ C\{0}. ♦

Proof of Proposition 2.45. It follows from Lemma 2.44 that ‖B2‖L(L2(C)) = 1. Thus, since
p∗−1 = (p′)∗−1, by Proposition 2.48 it is now sufficient to consider the cases p ∈]2,∞[ to establish
the result.

Let p ∈]2,∞[, γ ∈]0, 1[, and define f : C→ C by

f(z) :=


0 if z = 0

z|z|−
2γ
p if 0 < |z| < 1

1

z
if |z| ≥ 1.

Since 1 − 2γ/p = (p − 2γ)/p ∈ R+ and zz = 1 for |z| = 1, this function is continuous in C,
hence, lies in L1

loc(C). This means that f defines a distribution in C. Setting ρ(t) := t(p−2γ)/p for

t ∈ R+, we note that z|z|−
2γ
p = z/|z|ρ(|z|). Thus, by Example 2.49, we note that f is continuously

differentiable for 0 < |z| < 1 and |z| > 1 with

∂zf(z) =


1

2

(
|z|−

2γ
p +

p− 2γ

p
|z|−

2γ
p

)
=
p− γ
p
|z|−

2γ
p if 0 < |z| < 1

0 if |z| > 1,

and

∂zf(z) =


z

2z

(
−|z|−

2γ
p +

p− 2γ

p
|z|−

2γ
p

)
= −γ

p

z

z
|z|−

2γ
p if 0 < |z| < 1

− 1

z2 if |z| > 1.

These a.e. defined functions are locally integrable in their own right and hence define distributions.
We claim that they are the distributional derivatives of f . Indeed, let S1 denote the unit circle
in C and εS1 the circle around 0 of radius ε for ε ∈ R+ and let φ ∈ C∞c (C). Then, since
∂z(fφ) = (∂zf)φ+ f(∂zφ) where ∂zf is defined, we note that by Green’s Integral Theorem we have

−
∫
C
f(z)∂zφ(z) dz = −

∫
0<|z|<1

f(z)∂zφ(z) dz −
∫
|z|>1

f(z)∂zφ(z) dz

=

∫
|z|<1

∂zf(z)φ(z) dz − lim
ε↓0

∫
ε<|z|<1

∂z(φf)(z) dz +

∫
|z|>1

∂zf(z)φ(z) dz −
∫
|z|>1

∂z(φf)(z) dz

=

∫
C
∂zf(z)φ(z) dz + lim

ε↓0

∮
εS1

f(z)φ(z) dz −
∮
S1

f(z)φ(z) dz +

∮
S1

f(z)φ(z) dz

=

∫
C
∂zf(z)φ(z) dz + lim

ε↓0

∮
εS1

f(z)φ(z) dz,
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where the orientation of the circles is counterclockwise and

lim
ε↓0

∮
εS1

f(z)φ(z) dz = lim
ε↓0
−iε

∫ 2π

0
f(εeit)φ(εeit)e−it dt = 0

by continuity of f at 0. The computation for ∂zf is similar, which proves the claim.
Thus, using polar coordinates we may compute

‖∂zf‖pp = 2π

(
p− γ
p

)p ∫ 1

0
r1−2γ dr =

π

1− γ

(
p− γ
p

)p
,

and

‖∂zf‖pp =
π

1− γ

(
γ

p

)p
+ 2π

∫ ∞
1
r1−2p dr =

π

1− γ

(
γ

p

)p
+

π

p− 1
.

In particular, we have establishes that f ∈ W̊ 1,p(C) (and actually, we have f ∈ W 1,p(C)).
Hence, by Proposition 2.46,

‖Bp(∂zf)‖p
‖∂zf‖p

=
‖∂zf‖p
‖∂zf‖p

=


(
p−γ
p

)p(
γ
p

)p
+ 1−γ

p−1


1
p

,

so that we may now conclude that

‖Bp‖L(Lp(C)) ≥


(
p−γ
p

)p(
γ
p

)p
+ 1−γ

p−1


1
p

(2.57)

for all γ ∈]0, 1[. The right-hand side of (2.57) tends to p − 1 = p∗ − 1 as γ ↑ 1. The assertion
follows.

We can also establish that the operator norms of the Beurling-Ahlfors transform are determined
by the interchange of the Wirtinger derivatives.

2.50 Proposition. Let p ∈]1,∞[. Suppose V is a vector space so that C∞c (C) ⊆ V ⊆ W̊ 1,p(C).
Then

‖Bp‖L(Lp(C)) = inf{c ∈ R+ | ‖∂zf‖p ≤ c‖∂zf‖p for all f ∈ V }
= inf{c ∈ R+ | ‖∂zf‖p ≤ c‖∂zf‖p for all f ∈ V }.

This uses density of ∂z(C
∞
c (C)) = {∂zφ | φ ∈ C∞c (C)} in Lp(C) for p ∈]1,∞[. For this we will

use the following extension of Liouville’s Theorem:

2.51 Lemma. Let p ∈ [1,∞]. If f ∈ Lp(C) satisfies ∂zf = 0 in D′(C), then f is constant if p =∞
and f = 0 if p ∈ [1,∞[.

Proof. Note that πiζFf = F (∂zf) = 0, which implies that supp Ff ⊆ {0}. Hence, Ff must be
a linear combination of derivatives of the Dirac delta distribution. But this means that f itself is a
polynomial. The only bounded polynomials in C are the constant ones, while the only p-integrable
polynomial in C for p ∈ [1,∞[ is the zero polynomial. The assertion follows.
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2.52 Lemma. Let p ∈]1,∞[. Then ∂z(C
∞
c (C)) is dense in Lp(C).

Proof. The asserted density is equivalent to showing that the annihilator of ∂z(C
∞
c (C)) consists

of only the 0 function. This means that we have to show that if∫
C
f(z)∂zφ(z) dz = 0

for all φ ∈ C∞c (C) for some f ∈ Lp′(C), then f = 0. But this is precisely what Lemma 2.51 asserts.
This proves the result.

We note that the closure of ∂z(C
∞
c (C)) in L1(C) is given by the space of those integrable

functions that have mean value zero. In particular, ∂z(C
∞
c (C)) is not dense in L1(C) or L∞(C).

Proof of Proposition 2.50. In view of Proposition 2.46, the second equality follows in the same
way as the first one by replacing Bp by B†p′ and by noting that ‖Bp‖L(Lp(C)) = ‖B†p′‖L(Lp(C)).
Thus, we will only show the first equality.

For each vector space C∞c (C) ⊆W ⊆ W̊ 1,p(C) we set

c(W ) := inf{c ∈ R+ | ‖∂zf‖p ≤ c‖∂zf‖p for all f ∈W}.

Then, by Proposition 2.46, the chain of inequalities

c(C∞c (C)) ≤ c(V ) ≤ c(W̊ 1,p(C)) ≤ ‖Bp‖L(Lp(C))

is clear. Hence, it suffices to show that ‖Bp‖L(Lp(C)) ≤ c(C∞c (C)).
Note that for all φ ∈ C∞c (C) we have

‖Bp(∂zφ)‖p = ‖∂zφ‖p ≤ c(C∞c (C))‖∂zφ‖p.

But then it follows from Lemma 2.52 that

‖Bpf‖p ≤ c(C∞c (C))‖f‖p

for all f ∈ Lp(C). This proves that ‖Bp‖L(Lp(C)) ≤ c(C∞c (C)), as desired.

Finally, we will give an alternative method of defining the Beurling-Ahlfors transform, as a
complex analytic tool.

Consider the locally integrable function E := (πz)−1. Then we note that the estimate (2.55)
shows us that E ∈ S ′(C).

2.53 Definition. We define the Cauchy transform C : S(C)→ OM (C) as the convolution operator

Cφ := E ∗ φ.

♦
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We denote by δ the Dirac delta distribution at the origin. By Proposition C.12, the tempered
distribution E satisfies ∂zE = δ in D′(C). By Proposition B.43 this implies that

∂zC (φ) = ∂zE ∗ φ = φ

for all φ ∈ S(C).

2.54 Definition. We define the Beurling-Ahlfors transform B : S(C)→ OM (C) as the convolution
operator

Bφ := ∂z(Cφ) = ∂zE ∗ φ = E ∗ ∂zφ.

♦

It follows from this definition that we have the relations

∂z(Cφ) = C (∂zφ) = φ, ∂z(Cφ) = C (∂zφ) = Bφ for all φ ∈ S(C). (2.58)

In particular, this means that

B(∂zφ) = ∂z(C (∂zφ)) = ∂z(C (∂zφ)) = ∂zφ.

for all φ ∈ S(C).

2.55 Proposition. We have

Bφ(w) := − 1

π
PV

1

z2
∗ φ(w) = − 1

π
lim
ε↓0

∫
|w−z|≥ε

φ(z)

(w − z)2
dz.

for all φ ∈ S(C) and w ∈ C.

Proof. First we must check that PV 1/z2 is a well-defined tempered distribution. Then, it suffices
to show that we have the equality of distributions

∂z
1

z
= −PV

1

z2
(2.59)

to conclude the proof.
Let φ ∈ S(C) and let ε ∈ R+ so that ε < 1. By (C.3) in Example C.9 we find that the integral

of 1/z2 over the annulus ε ≤ |z| ≤ 1 vanishes. Hence,∣∣∣∣∣limε↓0
∫
ε≤|z|≤1

φ(z)

z2
dz

∣∣∣∣∣ =

∣∣∣∣∣limε↓0
∫
ε≤|z|≤1

φ(z)− φ(0)

z2
dz

∣∣∣∣∣ ≤ ν0,1(φ)

∫
|z|≤1

1

|z|
dz = 2πν0,1(φ).

Since ∫
|z|≥1

|φ(z)|
|z|2

dz ≤ ν1,0(φ)

∫
|z|≥1

1

|z|3
dt = 2πν1,0(φ),

we have now shown that PV 1/z2 ∈ S ′(C).
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For the next assertion, we let φ ∈ C∞c (C). We note that by the product rule for ∂z, we have
∂z(φ/z) = (∂zφ)/z − φ/z2 outside of the origin. Hence, we have〈

∂z
1

z
, φ

〉
= −

∫
C

∂zφ(z)

z
dz =

〈
−PV

1

z2
, φ

〉
− lim

ε↓0

∫
|z|≥ε

∂z

(
φ

z

)
(z) dz. (2.60)

Let ε ∈ R+ and define γ : [0, 2π] → C by γ(t) := εeit. Since φ has compact support, it follows
from Green’s Integral Theorem, see Theorem C.7, that∫

|z|≥ε
∂z

(
φ

z

)
(z) dz =

1

2i

∫
γ

φ(z)

z
dz

=
1

2i

∫ 2π

0

φ(εeit)

εeit
(−iεe−it) dt = −1

2

∫ 2π

0
φ(εeit)e−2it dt.

Hence,

lim
ε↓0

∫
|z|≥ε

∂z

(
φ

z

)
(z) dz = −φ(0)

2

∫ 2π

0
e−2it dt = 0.

Thus, it follows from (2.60) that 〈
∂z

1

z
, φ

〉
=

〈
−PV

1

z2
, φ

〉
for all φ ∈ C∞c (C). This proves the result.

Our next order of business is to establish that the Beurling-Ahlfors transform as defined here,
coincides with the definition we gave in Definition 2.42. For this, we will show that they both define
the same Fourier multiplier.

2.56 Lemma. We have FE = −iE.

Proof. The proof is similar to the proof of Lemma 2.40 which we refer to for more details on the
arguments presented here. We note that

1 = F δ = F (∂zE) = πiζFE.

From this we conclude that the tempered distributions FE and −iE coincide on C\{0}. Set
u := FE + iE ∈ S ′(C). Then u is supported in the origin, which implies that u is a linear
combination of derivatives of δ. Since u is homogeneous of degree −1 while ∂αδ is homogeneous of
degree −2− |α| for every multi-index α, we find that we must have u = 0. The result follows.

This lemma implies that for all φ ∈ S(C) we have

F (Bφ) = F (∂zE)Fφ = πizFEFφ = πzEFφ = M z
z
Fφ.

This means that B2 is an extension of B to L2(C). We conclude that Bp is an extension of B to
Lp(C) for all p ∈]1,∞[, as desired. From now on, we will simply denote the extensions Bp by B.

We conclude this subsection with a result we will need for the Cauchy transform. For p ∈ [1,∞],
we denote by Lpc(C) the classes in Lp(C) which have a representative that has compact support.
We note that the convolution C f := E ∗ f makes sense for any f ∈ Lpc(C) for p ∈ [1,∞].
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2.57 Proposition. Let p ∈]2,∞[. Then C defines a map from Lpc(C) to W 1,p(C) that is continuous
in the sense that whenever a sequence (fj)j∈N in Lpc(C) satisfies:

(i) (fj)j∈N converges in Lp(C) to a function f ∈ Lp(C),

(ii) there is a compact set K ⊆ C so that supp fj ⊆ K for all j ∈ N,

then f ∈ Lpc(C) and (C fj)j∈N converges to C f in W 1,p(C).
Furthermore, we have

∂zC f = f, ∂zC f = Bf

for all f ∈ Lpc(C).
Finally, for each f ∈ Lpc(C) there exist c,R ∈ R+ so that

|C f(z)| ≤ c

|z|
for a.e. z ∈ C satisfying |z| ≥ R.

Proof. For each r ∈ R+ we denote by χr the indicator function of the closed disc of radius r
centered at the origin.

Let f ∈ Lpc(C) and pick R ∈ R+ so that the support of f is contained in the disc of radius R
around the origin. First we will show that C f ∈ Lp(C). Let w ∈ C satisfy |w| ≤ 2R. Then, if
|z−w| ≥ 3R for some z ∈ C, then 3R ≤ |z−w| ≤ |z|+ 2R, i.e., |z| ≥ R, so that f vanishes almost
everywhere for z satisfying |z − w| ≥ 3R. This implies that

C f(w) =
1

π

∫
C
χ3R(w − z) f(z)

w − z
dz = (χ3RE ∗ f)(w).

Hence, Minkowski’s inequality for convolutions, see Corollary A.5, implies that

‖χ2RC f‖p ≤ ‖χ3RE‖1‖f‖p. (2.61)

Next, suppose w ∈ C satisfies |w| > 2R. Then, whenever |z| ≤ R, we have 2|z| ≤ 2R < |w| so
that |w − z| ≥ |w| − |z| ≥ |w|/2. Hence,

|C f(w)| ≤ 1

π

∫
|z|≤R

|f(z)|
|w − z|

dz ≤ 2

π|w|
‖f‖1 ≤

2(πR2)
1
p′

π|w|
‖f‖p,

where in the last inequality we used Hölder’s inequality. Hence,

‖(1− χ2R)C f‖p ≤
2(πR2)

1
p′

π
‖f‖p

∫
|w|>2R

1

|z|p
dz = 4(πR2)

1
p′ ‖f‖p

∫ ∞
2R

r1−p dr

=
4(πR2)

1
p′ (2R)2−p

p− 2
‖f‖p,

(2.62)

where we used p > 2. Thus, from (2.61) and (2.62) we conclude that

C f = χ2RC f + (1− χ2R)C f ∈ Lp(C),
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and
‖C f‖p ≤ k(p,R)‖f‖p,

where k(p,R) ∈ R+ depends only on p and on R.
Note that Fubini’s Theorem implies that 〈C f, φ〉 = −〈f,Cφ〉 for all φ ∈ C∞c (C). By (2.58) and

Proposition 2.48, this implies that

〈∂z(C f), φ〉 = 〈f,C (∂zφ)〉 = 〈f,Bφ〉 = 〈Bf, φ〉
〈∂z(C f), φ〉 = 〈f,C (∂zφ)〉 = 〈f, φ〉,

for all φ ∈ C∞c (C). Thus, we find the distributional equalities ∂z(C f) = Bf ∈ Lp(C), ∂z(C f) =
f ∈ Lp(C). In particular, this shows us that C f ∈W 1,p(C) with

‖C f‖p + ‖∂z(C f)‖p + ‖∂z(C f)‖p ≤ (k(p,R) + 1 + ‖B‖L(Lp(C)))‖f‖p. (2.63)

If a sequence (fj)j∈N in Lpc(C) converges in Lp(C) to a function f ∈ Lp(C) and satisfies the
assumption that there is a compact set K ⊆ C so that supp fj ⊆ K for all j ∈ N, then we note
that there is some R ∈ R+ so that K and hence the support of each fj lies in the disc of radius
R centered at the origin. Since convergence of a sequence in Lp(C) implies that there is an a.e.
convergent subsequence with the same limit, we conclude that f must vanish a.e. outside of K,
and thus f ∈ Lpc(C). Moreover, we note that the inequality (2.63) holds for f replaced by f − fj
for all j ∈ N, since the support of f − fj lies in the disc of radius R centered at the origin for all
j ∈ N. Then, letting j →∞ proves the desired convergence.

Finally, we note that for each f ∈ Lpc(C) we have

lim sup
|w|→∞

|wC f(w)| ≤ lim sup
|w|→∞

1

π

∫
C

|w|
|w − z|

|f(z)| dz ≤ ‖f‖1
π

This proves the final assertion.

Notes and Acknowledgments

The Lp-boundedness of the Hilbert transform dates back to the article [Ri] from 1928. The proof
of this result using complex contour integration follows a section from the book Complex Proofs
of Real Theorems by Lax and Zalcman, see [LZ, Section 3.6], and allowed us to give a complex
analytical exposition of the theory in contrast to our harmonic analytical exposition which requires
the language of distributions.

For our harmonic analytical approach we relied extensively on Grafakos’ Classical Fourier Anal-
ysis, see [Gr, Chapter 4]. Our exposition of Calderón and Zygmund’s Method of Rotations is
adapted from the general n-dimensional results presented in this book to our 2-dimensional case.
In Rn, defining the Riesz transforms Rj for j ∈ {1, . . . , n} as convolution with the tempered dis-
tributions Γ((n + 1)/2)/π(n+1)/2 PV xj/|x|n+1, one can use the Method of Rotations to show that
each Rj is Lp-bounded for p ∈]1,∞[ with

‖Rj‖L(Lp(Rn)) ≤ ‖H ‖L(Lp(R)) = cot
π

2p∗
, j ∈ {1, . . . , n},
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as we have shown in Theorem 2.34 for the case n = 2. It is actually true that this inequality of
operator norms is an equality. This is a result by Iwaniec and Martin and can be found in [IM].

Concerning homogeneous distributions such as the ones used to the define the Riesz transforms,
we gave a proof of the fact that F |z|−1 = |ζ|−1 in Lemma 2.40 which was based on [Gr, Section
2.4.c] and the discussion in [Gru, p. 112-114]. This is a well-known and understood result. In Rn,
for a complex parameter a ∈ C with Re a > −n we can define a tempered distribution ua through
the locally integrable function

π
a+n
2

Γ
(
a+n

2

) |x|a
in Rn, which is a homogeneous distribution of degree a. Using analytic continuation, see [Gr,
Section 2.4.c], one can extend the analytic family of tempered distributions (ua)Re a>−n to all
a ∈ C. One can then show that Fua = u−n−a for all a ∈ C, see [Gr, Theorem 2.4.6]. Our result
is then the special case n = 2, a = −1. The general result can be used to compute the Fourier
transform of the Riesz transforms in Rn, see [Gr, Exercise 4.1.10].
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3 Quasiconformal Mappings and Iwaniec’s Conjecture

In contrast to the previous sections, this subsection will be in a more narrative style. We will
introduce the notion of quasiconformal mappings as a generalization of biholomorphisms. We will
then show how this notion is related to the Beurling-Ahlfors transform. It was in the setting of qua-
siconformal mappings in which Iwaniec’s Conjecture was first proposed by the eponymous Tadeusz
Iwaniec in [Iw, Conjecture 1]. As it is not our goal to establish results in the vast theory of quasi-
conformal mappings, we will give references to full proofs of the results we will use. However, we
will strive to emphasize results that use the Beurling-Ahlfors transform and the Cauchy transform
by giving full proofs of auxiliary results where they are needed.

Geometrically speaking, holomorphic functions are interesting because they preserve angles
and orientation, i.e., are conformal mappings, at points where their complex derivative doesn’t
vanish. For the precise definitions and results we refer to Definition C.25 and the succeeding
results in Appendix C. In particular, Theorem C.31 asserts that the injective conformal mappings
are precisely the biholomorphisms. A fundamental result in the study of such mappings is the
Riemann Mapping Theorem.

3.1 Theorem (Riemann Mapping Theorem). Let U ⊆ C be non-empty, open, simply connected,
and not equal to all of C. Then, for each z0 ∈ U there is a biholomorphism f from U to the open
unit disk satisfying f(z0) = 0. Any such biholomorphism is uniquely determined up to multiplication
by eiα for α ∈ R.

For now we let U ⊆ C be a non-empty open set. We wish to generalize the notion of conformal
mappings on U to a more general setting. Rather than working in the space C1(U) of classically
differentiable functions, we can choose to work in a distributional setting which leads to the use
of Sobolev spaces. This immediately brings some subtleties. There exist conformal, and thus
holomorphic, see Lemma C.32, mappings from U = C that are injective, an example being the
identity map in C. However, by Lemma 2.51 one cannot hope for such a result if one also imposes
integrability of the maps. For a more fruitful theory, it is therefore sensible to consider the local
Sobolev space W 1,1

loc (U), consisting of those locally integrably functions whose distributional partial
derivatives are also locally integrable functions.

Another subtlety is the fact that if f ∈ W 1,1
loc (U) is an injective map satisfying ∂zf = 0, then

the ellipticity of the linear partial differential operator ∂z with constant coefficients implies that
f ∈ C∞(U), and is thus conformal in the classical sense, see Theorem B.37. If one wishes to
generalize the notion of conformal mappings to W 1,1

loc (U), this means that it may be prudent to look
for a definition with a geometric flavor rather than just an analytic one.

For f ∈ C1(U) we write u := Re f and v := Im f . Then the total derivative Df(z) at a point
z ∈ U , seen as a real linear map R2 → R2, is given by the Jacobian matrix(

∂xu(z) ∂yu(z)
∂xv(z) ∂yv(z)

)
.

Under the usual identification R2 ∼= C, this means that for z ∈ C, h1, h2 ∈ R and h = h1 + ih2,
we have

Df(z)h = ∂xf(z)h1 + ∂yf(z)h2 = (∂z + ∂z)f(z)h1 + i(∂z − ∂z)f(z)h2

= ∂zf(z)h+ ∂zf(z)h.
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We also recall the definition of the directional derivatives ∂hf at z ∈ U for h ∈ C as

∂hf(z) := lim
t→0

f(z + th)− f(z)

t
= Df(z)h.

The Jacobian determinant Jf (z) at z ∈ U satisfies

Jf (z) = ∂xu(z)∂yv(z)− ∂yu(z)∂xv(z)

=
1

4
((∂xu(z) + ∂yv(z))2 + (∂yu(z)− ∂xv(z))2 − (∂xu(z)− ∂yv(z))2 − (∂yu(z) + ∂xv(z))2)

= |∂zf(z)|2 − |∂zf(z)|2.

Since the determinant of a matrix gives the oriented volume of the image under the matrix of
the unit square, we say that f is orientation preserving if Jf (z) ≥ 0 for all z ∈ U . We have just
shown that this condition is equivalent to |∂zf(z)| ≤ |∂zf(z)| for all z ∈ U . This makes sense in
terms of the total derivative, since this is decomposed into the sum of multiplication by ∂zf and
multiplication after conjugation by ∂zf . In particular, if f is holomorphic, then Df(z) is simply
given by multiplication with ∂zf = f ′.

We give another characterization of an injective conformal mapping.

3.2 Proposition. Let U ⊆ C be open and let f ∈ C1(U) be an injective map. Then f is conformal
if and only if f is orientation preserving and for all z ∈ U the value of |∂hf(z)| is constant for
h ∈ C with |h| = 1.

Proof. If f is conformal, then f is holomorphic. This means that ∂zf(z) = 0 for all z ∈ U . Hence,
Jf (z) = |∂zf(z)|2 ≥ 0 for all z ∈ U so that f is orientation preserving. Moreover, we find that for
all z ∈ U and all h ∈ C with |h| = 1 we have

|∂hf(z)| = |Df(z)h| = |∂zf(z)h| = |∂zf(z)|,

which is independent of h. It remains to prove the converse implication.
Let z ∈ U . If the value of |∂hf(z)| is independent of h ∈ C with |h| = 1, then, by setting

h = e−iα/2 for α ∈ R, we find that the value of

|∂hf(z)| = |Df(z)h| = |∂zf(z)e−i
α
2 + ∂zf(z)ei

α
2 | = |∂zf(z) + ∂zf(z)eiα|

is independent of α ∈ R. The equation

∂zf(z) + ∂zf(z)eiα

describes a circle of center ∂zf(z) and radius |∂zf(z)| as α runs through [0, 2π]. We conclude that
we must either have ∂zf(z) = 0 or ∂zf(z) = 0 for the modulus to remain constant. In the first
case, we note that since f is orientation preserving, we have |∂zf(z)| ≤ |∂zf(z)| = 0 so that also
∂zf(z) = 0. We conclude that in either case we must have ∂zf(z) = 0. This implies that f is
holomorphic. But an injective holomorphic function is an injective conformal mapping by Theorem
C.31. The assertion follows.
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One might say that near each point z ∈ U , an injective conformal mapping on U sends circles
around z to circles around z. It is this notion that we wish to generalize by allowing a quasiconformal
mapping on U to send circles around a point z ∈ U to ellipses around z that are, in a quantifiable
way, not too far away from circles. Before we give a precise definition, we need to make some
preliminary definitions.

For any f ∈ W 1,1
loc (U) the distributional derivatives ∂zf and ∂zf exist as functions in L1

loc(U).
Then, for a.e. z ∈ U , this allows us to define the total derivative Df(z) : C→ C by

Df(z)h := ∂zf(z)h+ ∂zf(z)h.

As usual, we then write
‖Df(z)‖L(R2) = sup

|h|=1
|Df(z)h|.

For h ∈ C we may define the directional derivative ∂hf by

∂hf(z) := Df(z)h

for a.e. z ∈ U . Moreover, we define the Jacobian determinant Jf by

Jf (z) := |∂zf(z)|2 − |∂zf(z)|2

for a.e. z ∈ U . Since we want Jf to be a locally integrable function, we impose the addition

condition that f ∈ W 1,2
loc (U). We say that such a function f is orientation preserving if Jf (z) ≥ 0

for a.e. z ∈ U .

3.3 Definition. Let U ⊆ C be open and let K ∈ [1,∞[. We say that f ∈ W 1,2
loc (U) is K-

quasiconformal if it is a homeomorphism onto its image, if it is orientation preserving, and if we
have the inequality

max
|h|=1

|∂hf(z)| ≤ K min
|h|=1

|∂hf(z)| for a.e. z ∈ U . (3.1)

Moreover, we call
K(f) := inf{K ∈ [1,∞[ | (3.1) holds}

the maximal dilation of f . ♦

The inequality (3.1) means that the largest distance to a point of the image of a circle around this
point can, at most, be K times the shortest distance to this point. Brouwer’s Invariance of Domains
Theorem implies that the condition that f is a homeomorphism onto its image is equivalent to the
condition that f is continuous and injective. Additionally, this theorem implies that the image
of such a mapping must be open in C. We also note that this definition of a K-quasiconformal
mapping makes sense in dimensions higher than 2.

3.4 Remark. In the definition of a K-quasiconformal mapping, the condition that f ∈ W 1,2
loc (U)

is superfluous in the sense that if f ∈ W 1,1
loc (U), then one still has that Jf is locally integrable. As

a matter of fact, it is shown in [AIM, Corollary 3.3.6] that if f ∈W 1,1
loc (U) is orientation preserving

and a homeomorphism onto its image, then∫
E
Jf (z) dz ≤ |f(E)| for all Borel measurable E ⊆ U, (3.2)
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where |f(E)| denotes the Lebesgue measure of the Borel measurable set f(E). One cannot generally
ask for such a result for general Lebesgue measurable sets, since the homeomorphic image of a
Lebesgue measurable set need not be Lebesgue measurable.

We will show in the proof of Proposition 3.6 below that for an orientation preserving map the
inequality (3.1) is equivalent to the inequality

‖Df(z)‖2L(R2) ≤ KJf (z) for a.e. z ∈ U, (3.3)

and that
‖Df(z)‖L(R2) = |∂zf(z)|+ |∂zf(z)|

for a.e. z ∈ U . Hence, by (3.2), whenever f ∈ W 1,1
loc (U) satisfies (3.3) we must have f ∈ W 1,2

loc (U)
and f is a K-quasiconformal mapping. ♦

We call a function f ∈ W 1,2
loc (U) quasiconformal, if there is a K ∈ [1,∞[ so that f is K-

quasiconformal. The following proposition shows us that we have indeed generalized the notion of
injective conformal mappings.

3.5 Proposition. Let U ⊆ C be open. Then f ∈ W 1,2
loc (U) is 1-quasiconformal if and only if

f ∈ C1(U) and f is an injective conformal mapping.

Proof. If f ∈ C1(U) and f is an injective conformal mapping, then it follows from Proposition
3.2 that f is orientation preserving and for all z ∈ U the value of |∂hf(z)| is independent of h ∈ C
with |h| = 1, which is equivalent to saying that

max
|h|=1

|∂hf(z)| ≤ min
|h|=1

|∂hf(z)|

for all z ∈ U . Since injective conformal mappings are biholomorphisms, f is a homeomorphisms
onto its image. Noting that C1(U) ⊆W 1,2

loc (U), we conclude that f is 1-quasiconformal.
For the converse, we note that the proof of necessity in Proposition 3.2 also works in our more

general setting to show that ∂zf(z) = 0 for a.e. z ∈ U . But this means that ∂zf = 0 in the
distributional sense, which, by elliptic regularity, implies that f ∈ C∞(U) and f is holomorphic,
see Theorem B.37. As f is also injective, we may conclude that f is an injective conformal mapping.
The assertion follows.

It is an exercise in linear algebra to obtain different characterizations of quasiconformal map-
pings.

3.6 Proposition. Let U ⊆ C be open, let K ∈ [1,∞[, β ∈ [0, 1[ satisfy the relations

K =
1 + β

1− β
, β =

K − 1

K + 1
,

and let f ∈W 1,2
loc (U) be a homeomorphism onto its image. Then the following are equivalent:

(i) f is K-quasiconformal;

(ii) ‖Df(z)‖2L(R2) ≤ KJf (z) for a.e. z ∈ U ;
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(iii) |∂zf(z)| ≤ β|∂zf(z)| for a.e. z ∈ U ;

(iv) ∂zf(z) = µ(z)∂zf(z) for a.e. z ∈ U for some µ ∈ L∞(U) satisfying ‖µ‖∞ ≤ β < 1.

The proof uses a lemma.

3.7 Lemma. Let a, b, c, d ∈ R and let A : R2 → R2 be a real linear map given by the matrix(
a b
c d.

)
Then

max
|h|=1

|Ah| = 1

2

(√
(a+ d)2 + (c− b)2) +

√
(a− d)2 + (c+ b)2

)
= |z|+ |w|

min
|h|=1

|Ah| = 1

2

∣∣∣√(a+ d)2 + (c− b)2 −
√

(a− d)2 + (c+ b)2
∣∣∣ = ||z| − |w||,

where

z =
a+ d

2
+ i

c− b
2

, w =
a− d

2
+ i

c+ b

2

In particular, we have

|detA| = |ad− bc| = ||z|2 − |w|2| = min
|h|=1

|Ah|max
|h|=1

|Ah|.

Proof. In complex notation, for h ∈ C we have

Ah = zh+ wh.

We now have to show that max|h|=1 |Ah| = |z|+ |w| and min|h|=1 |Ah| = ||z| − |w||.
By the triangle inequality we have

||z| − |w|| ≤ |Ah| ≤ |z|+ |w|,

whenever |h| = 1, which implies

max
|h|=1

|Ah| ≤ |z|+ |w|, ||z| − |w|| ≤ min
|h|=1

|Ah|.

It now suffices to find vectors where the maximum and minimum are attained.
If z = |z|eit and w = |w|eis for t, s ∈ R, then we set h := ei(s−t)/2. Then

|Ah| = ||z|ei
s+t
2 + |w|ei

s+t
2 | = |z|+ |w|, |Aih| = |izh− iwh| = ||z| − |w||.

The assertion follows.

We note that for f ∈W 1,1
loc (U) this lemma implies that

‖Df(z)‖L(R2) = |∂zf(z)|+ |∂zf(z)|

for a.e. z ∈ U .
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Proof of Proposition 3.6. For (i)⇒(ii) we note that, by the determinant formula in Lemma 3.7,
we have

‖Df(z)‖2L(R2) =

(
max
|h|=1

|Df(z)h|
)2

≤ K min
|h|=1

|Df(z)h|max
|h|=1

|Df(z)h| = KJf (z),

for a.e. z ∈ U , where we used |Jf | = Jf , since f is orientation preserving.
For the converse implication (ii)⇒(i), we note that the inequality in (ii) implies that f must

be orientation preserving, while the inequality (3.1) is again clear by the determinant formula in
Lemma 3.7.

For (ii)⇒(iii), we note that, by Lemma 3.7, for a.e. z ∈ U ,

(|∂zf(z)|+ |∂zf(z)|)2 = ‖Df(z)‖2L(R2) ≤ KJf (z) = K(|∂zf(z)|2 − |∂zf(z)|2).

But this means that
|∂zf(z)|+ |∂zf(z)| ≤ K|∂zf(z)| −K|∂zf(z)|

for a.e. z ∈ U , which is aquivalent to (iii), as desired. The implication (iii)⇒(ii) follows from a
similar use of Lemma 3.7.

For (iii)⇒(iv), we define

µ(z) :=


∂zf(z)

∂zf(z)
if ∂zf(z) 6= 0

0 if ∂zf(z) = 0.

This satisfies the desired conditions. The implication (iv)⇒(iii) is clear. This proves the assertion.

With f satisfying the equivalent properties in the proposition, we remark that

K(f) =
1 + ‖µ‖∞
1− ‖µ‖∞

, ‖µ‖∞ =
K(f)− 1

K(f) + 1
,

with µ as in (iv).
The equation ∂zf = Mµ∂zf is called the Beltrami equation with Beltrami coefficient µ. Since

the Beurling-Ahlfors transform is defined on globally defined Lp functions, we will restrict our
considerations to globally defined quasiconformal mappings with compactly supported Beltrami
coefficients.

Let β ∈ [0, 1[ and let µ ∈ L∞c (C) satisfy ‖µ‖∞ ≤ β. The key to solving the Beltrami equation
with Beltrami coefficient µ, and thus to finding quasiconformal mappings, is to invert the operator
I −MµB, where I denotes the identity operator. We observe that

‖MµB‖L(L2(C)) ≤ ‖µ‖∞‖B‖L(L2(C)) = ‖µ‖∞ ≤ β < 1,

which implies that I −MµB is invertible in L2(C), whose inverse is given by the Neumann series

(I −MµB)−1 =
∑
j∈Z≥0

(MµB)j ,
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where the sum converges in L(L2(C)). As a matter of fact, we can get a better integrability
exponent than p = 2. We will show this in Lemma 3.10 below.

This is all we will need to establish existence of solutions to the Beltrami equations under
consideration.

3.8 Theorem (Existence of principal solutions to the Beltrami equation). Let µ ∈ L∞c (C) with
‖µ‖∞ ∈ [0, 1[. Then there exists a unique f ∈W 1,2

loc (C) satisfying

∂zf(z) = µ(z)∂zf(z) for a.e. z ∈ C,

with the condition that there exist c,R ∈ R+ so that

|f(z)− z| ≤ c

|z|
for a.e. z ∈ C satisfying |z| ≥ R. (3.4)

We call the solution f ∈ W 1,2
loc (C) as in the theorem the principal solution to the Beltrami

equation with Beltrami coefficient µ ∈ L∞c (C).

Proof. We will first find a solution g ∈W 1,2(C) to the equation

∂zg(z) = µ(z)∂zg(z) + µ(z) for a.e. z ∈ C. (3.5)

This equation can be rewritten as

(I −MµB)(∂zg) = µ.

As µ ∈ L∞c (C) ⊆ L2(C), we can define

ω := (I −MµB)−1µ =
∑
j∈Z≥0

(MµB)jµ = µ+ µ
∑
j∈N

B(MµB)j−1µ ∈ L2
c(C).

By Proposition 2.57 we can set g := Cω ∈ W 1,2(C). By retracing our steps and by noting that
∂zg = ω, we note that g is indeed a solution to (3.5). Moreover, by Proposition 2.57 we can find
c,R ∈ R+ so that

|g(z)| ≤ c

|z|
for a.e. z ∈ C satisfying |z| ≥ R.

Now set f := z + g ∈W 1,2
loc (C). Then f satisfies (3.4). Moreover, we have

∂zf(z) = ∂zg(z) = µ(z)∂zg(z) + µ(z)∂zz = µ(z)∂zf(z) for a.e. z ∈ C.

This establishes existence.
For uniqueness, suppose f̃ ∈ W 1,2

loc (C) is another solution. Then g̃ := f̃ − z ∈ W 1,2
loc (C) is a

solution to the equation (3.5). Set h := f̃ − f = g̃ − g. Since µ is compactly supported and by the
decay properties of f̃ and f , we can find c′, R′ ∈ R+ so that

|h(z)| ≤ c′

|z|
and ∂zh(z) = 0 for a.e. z ∈ C satisfying |z| ≥ R′. (3.6)
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Since ∂zh ∈ L2
loc(C) vanishes outside of a compact set, we conclude that ∂zh ∈ L2(C). But then

(I −MµB)(∂zh) = 0

so that ∂zh = 0 in L2(C) by invertibility of I − MµB in L2(C). Since (3.6) implies that h is
bounded, we conclude from Liouville’s Theorem, Lemma 2.51, that h is constant. But then the
decay property (3.6) implies that h = 0, as desired.

The principal solution we have found above actually turns out to be a homeomorphism of the
plane and, in particular, is a quasiconformal mapping of maximal dilation (1 + ‖µ‖∞)/(1−‖µ‖∞).
A full proof of this result can be found in [AIM, Theorem 5.3.2]. We also wish to state a result
that that is referred to as the Measurable Riemann Mapping Theorem and was established by Lars
Ahlfors and Lipman Bers in 1960 in [AB]. We state it here without proof. Here we denote the
Riemann sphere by Ĉ := C ∪ {∞}.

3.9 Theorem (Measurable Riemann Mapping Theorem). Let µ ∈ L∞c (C) with ‖µ‖∞ ∈ [0, 1[.
Then there is a unique homeomorphism f : Ĉ→ Ĉ satisfying

∂zf(z) = µ(z)∂zf(z) for a.e. z ∈ C

that is a quasiconformal mapping that fixes the points 0, 1, and ∞.

We note in particular that this theorem establishes existence of quasiconformal mappings of
any maximal dilation in domains U ⊆ C. Indeed, by extending the Beltrami coefficient of the
corresponding Beltrami equation by 0 outside of U , one obtains a Beltrami coefficient as in the
theorem. Restricting the solution from the theorem to U yields the desired quasiconformal mapping.

Next, we will establish higher integrability results for solutions of Beltrami equations. This
was the phenomenon, as perhaps first observed by Bojarski, see [Bo], that Iwaniec was studying
which led him to his conjecture. In Bojarski’s work he used the recently developed interpolation
techniques to obtain continuity results of integrability exponents from which higher integrability
results for solutions to certain partial differential equations can be found. A prime example is the
following lemma, used in conjunction with the Neumann series argument we have used so far.

3.10 Lemma. Let β ∈ [0, 1[. Then there exists an ε ∈ R+ so that for all p ∈]2− ε, 2 + ε[ we have

β‖B‖L(Lp(C)) < 1.

Proof. The Riesz-Thorin Interpolation Theorem implies that the function t 7→ log ‖B‖L(Lt−1 (C))

is convex in ]0, 1[. Since such functions are continuous, we conclude that the function p 7→
‖B‖L(Lp(C)) = elog ‖B‖L(Lp(C)) is continuous in ]1,∞[. But then, since ‖B‖L(L2(C)) = 1, we conclude
from the fact that β‖B‖L(L2(C)) < 1, that there must be some open interval around 2 where this
condition still holds. This proves the assertion.

Let β ∈ [0, 1[. Then we can set

p(β) := sup{p ∈]1,∞[ | I −MµB is invertible in Lp(C) for all µ ∈ L∞(C) satisfying ‖µ‖∞ ≤ β}.
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An argument using Neumann series as above yields

sup{p ∈]1,∞[ | β‖B‖|L(Lp(C)) < 1} ≤ p(β), (3.7)

which means that by the lemma we have p(β) ∈]2,∞].
Let U ⊆ C be open. Bojarski showed that any solution f ∈ W 1,2

loc (U) to the Beltrami equation

with Beltrami coefficient µ ∈ L∞(U) with ‖µ‖∞ ≤ β < 1 must actually lie in W 1,p
loc (U) for some

p ∈]2,∞[. This is a consequence of the following result, which we call Bojarski’s Theorem.

3.11 Theorem (Bojarski’s Theorem). Let U ⊆ C be open, let β ∈ [0, 1[, and let µ ∈ L∞(U) satisfy
‖µ‖∞ ≤ β. If f ∈W 1,2

loc (U) satisfies

∂zf(z) = µ(z)∂zf(z) for a.e. z ∈ U,

then f ∈W 1,p
loc (U) for all p ∈ [2, p(β)[.

For the proof we will use the following version of the Sobolev Embedding Theorem:

3.12 Theorem. For all p ∈ [2,∞[ we have the continuous inclusion W 1,2(C) ⊆ Lp(C).

Proof. Let φ ∈ C∞c (C) be arbitrary and let χ ∈ C∞c (R) satisfy χ(R) ⊆ [0, 1], χ(0) = 1, and
suppχ ⊆]− 1, 1[. For α ∈ R, the chain rule implies

φ(0) = −
∫ 1

0
∂r(χ(r)φ(reiα)) dr = −

∫ ∞
0

(
χ(r)Dφ(reiα)eiα + χ′(r)φ(reiα)

)
dr.

Hence, by employing polar coordinates,

−2πφ(0) =

∫ 1

0
r

∫ 2π

0

1

r

(
χ(r)Dφ(reiα)eiα + χ′(r)φ(reiα)

)
dα dr

=

∫
D

1

|z|

(
χ(|z|)Dφ(z)

z

|z|
+ χ′(|z|)φ(z)

)
dz,

where D ⊆ C denotes the open unit disk. Since Dφ(z)h = ∂zφ(z)h + ∂zφ(z)h, this implies that
there is some c ∈ R+ so that

|φ(0)| ≤ c
∫
D

1

|z|
(|φ(z)|+ |∂zφ(z)|+ |∂zφ(z)|) dz. (3.8)

Denote by χD the indicator function of D and fix z0 ∈ C. If we replace φ in (3.8) by z 7→
φ(z0 − z), then we obtain

|φ(z0)| ≤ c
∫
D

1

|z|
(|φ(z0 − z)|+ |∂zφ(z0 − z)|+ |∂zφ(z0 − z)|) dz = c

(
χD
|z|
∗ ψ
)

(z0), (3.9)

where ψ := |φ|+ |∂zφ|+ |∂zφ|.
Let p ∈ [2,∞[ and let q ∈ [1,∞[ satisfy

1

p
+ 1 =

1

q
+

1

2
.
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Then

q = 2− 4

2 + p
< 2,

so that χD/|z| ∈ Lq(C). Using (3.9) and Young’s inequality for convolutions, see Theorem A.3, we
obtain

‖φ‖p ≤ c
∥∥∥∥χD|z| ∗ ψ

∥∥∥∥
p

≤ c
∥∥∥∥χD|z|

∥∥∥∥
q

‖ψ‖2.

Since f 7→ ‖|f |+|∂zf |+|∂zf |‖2 defines a norm on W 1,2(C), equivalent to the usual one, we conclude
from the definition of ψ that there is some constant c′ ∈ R+, independent of φ, so that

‖φ‖p ≤ c′‖φ‖W 1,2(C).

The result now follows from density of C∞c (C) in W 1,2(C).

Proof of Bojarski’s Theorem. By Lemma 1.6 we need to check that for all φ ∈ C∞c (C) we have
φf ∈ W 1,p(U) whenever p ∈ [2, p(β)[. Let φ ∈ C∞c (U). Then φf ∈ W 1,2(U) extends to a function
g ∈ W 1,2(C) by declaring that it vanishes outside of the support of φ. We also extend µ to C by
0. Then, setting ψ := (∂zφ− µ∂zφ)f , we have

∂zg(z) = φ(z)∂zf(z) + ∂zφ(z)f(z)

= µ(z)φ(z)∂zf(z) + µ(z)∂zφ(z)f + ψ(z)

= µ(z)∂zg(z) + ψ(z)

for a.e. z ∈ C. By Theorem 2.46, this implies that

(I −MµB)(∂zg) = ψ. (3.10)

It follows from Theorem 3.12 that g ∈ Lp(C) for all p ∈ [2,∞[. Similarly, for all p ∈ [2,∞[ we
find that (∂zφ)f, (∂zφ)f ∈ Lp(C) so that ψ ∈ Lp(C). If p ∈ [2, p(β)[, then the invertability of
I −MµB in (3.10) in Lp(C) implies that ∂zg ∈ Lp(C). But then also ∂zg = B(∂zg) ∈ Lp(C). In
conclusion, we have g, ∂zg, ∂zg ∈ Lp(C) whenever p ∈ [2, p(β)[. This proves that g ∈ W 1,p(C) and
thus φf ∈W 1,p(U) whenever p ∈ [2, p(β)[. The assertion follows.

If, for β ∈ [0, 1[ and U ⊆ C open, we set K = (1 + β)/(1− β) and

P (β, U) := sup{p ∈ [2,∞[ | any K-quasiconformal mapping in U lies in W 1,p
loc (U)},

then we note that it follows from Bojarski’s Theorem and (3.7) that we have the chain of inequalities

sup{p ∈]1,∞[ | β‖B‖L(Lp(C)) < 1} ≤ p(β) ≤ P (β, U). (3.11)

By exhibiting a specific example we can determine an upper bound for P (β, U).

3.13 Lemma. Let U ⊆ C be open and β ∈ [0, 1[. Then p(β, U) ≤ 1 + 1/β ∈]2,∞].
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Proof. Set K := (1 + β)/(1− β) and define ρ1, ρ2 : R≥0 → R≥0 by ρ1(t) := t1/K and ρ2(t) := tK .
Then the corresponding radial stretchings f1(z) = ρ1(|z|)z/|z| = z|z|1/K−1, f2(z) = ρ2(|z|)z/|z| =
z|z|K−1 are continuous in C and inverses of each other. By Example 2.49, we have

∂zf1(z) =
1
K + 1

2
|z|

1
K
−1, ∂zf1(z) =

z

z

1
K − 1

2
|z|

1
K
−1

so that ∂zf1, ∂zf ∈ Lploc(C) whenever p(1/K−1) > −2 and ∂zf1, ∂zf /∈W 1,p
loc (C) when p(1/K−1) ≤

−2. This means that

f1 ∈W 1,p
loc (C) if p <

2K

K − 1
= 1 +

1

β

f1 /∈W 1,p
loc (C) if p ≥ 2K

K − 1
= 1 +

1

β
.

(3.12)

Moreover, we note that f1 is K-quasiconformal, since

|∂zf(z)| =

∣∣∣∣∣zz 1
K − 1
1
K + 1

∂zf(z)

∣∣∣∣∣ = β|∂zf(z)|

for a.e. z ∈ C. By picking w ∈ U and by considering the restriction of z 7→ f1(z − w) to U , we
conclude from (3.12) that P (β, U) ≤ 1 + 1/β.

We make a particular note that Lemma 3.13 and (3.11) implies that

‖B‖L(L1+1/β(C)) ≥
1

β

for β ∈]0, 1[, giving another proof of the upper bound ‖B‖L(Lp(C)) ≥ p∗ − 1 for p ∈]1,∞[. In fact,
we now see that Iwaniec’s Conjecture would imply that

sup{p ∈]1,∞[ | β‖B‖L(Lp(C)) < 1} = p(β) = P (β, U) = 1 +
1

β

for any open U ⊆ C and β ∈ [0, 1[. Remarkably, it has actually been proven that P (β, U) = 1+1/β.
Goldstein announced a proof of this result in [Go] in 1980. It were precisely these considerations
that led Iwaniec to his conjecture in 1982 in the first place. As a matter of fact, Iwaniec showed
that the equality P (β, U) = 1 + 1/β is an immediate consequence of the conjecture

lim
p→∞

‖B‖L(Lp(C))

p
= 1, (3.13)

which is an immediate consequence of Iwaniec’s Conjecture. Indeed, using existence results of qua-
siconformal mappings and area distortion results for such mappings he showed in [Iw, Theorem 5]
that

P (β, U) ≥
(

1 +
1

β

)
21−a,
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where

a := lim inf
p→∞

‖B‖L(Lp(C))

p
.

Results of this kind were shown by Gehring, and Reich in [GR] from 1966, following the work of
Bojarski. They conjectured bounds of the distortion of area under quasiconformal mappings which
imply the equality P (β, U) = 1 + 1/β. These conjectures were later shown to be true by Astala in
[As] in 1994.

In the following, we write |E| for the Lebesgue measure of a measurable set E ⊆ C.

3.14 Theorem (Astala, 1994). Let K ∈ [1,∞[ and let D ⊆ C denote the open unit disk. Then
there is a constant c(K) ∈ R+, depending only on K, so that for all K-quasiconformal mappings
f : D → D that satisfy f(0) = 0 we have

|f(E)| ≤ c(K)|E|
1
K ,

for all Borel measurable E ⊆ D.

3.15 Corollary. Let U ⊆ C be open and let β ∈ [0, 1[. Then P (β, U) = 1 + 1/β.

We conclude this section by sketching the proof of this corollary. We note, by Lemma 3.13,
that it suffices to show that

P (β, U) ≥ 1 +
1

β
=

2K

K − 1
∈]2,∞],

where K := (1 + β)/(1 − β) ∈ [1,∞[. Picking neighborhoods of disks in U , using the Riemann
Mapping Theorem on this neighborhood and the image of this neighborhood under a map, we
can compose this map with biholomorphisms to see that it suffices to consider integrability of K-
quasiconformal mappings of the open unit disk D to itself that fix the origin. Let f be such a
mapping. Then observe that, as in Remark 3.4, we have, setting Et = {z ∈ D | Jf (z) ≥ t} for
t ∈ R+, that

t|Et| ≤
∫
Et

Jf (z) dz ≤ |f(Et)| ≤ c|Et|
1
K ,

where c ∈ R+ is as in the theorem. This implies that

|Et| ≤
(c
t

) K
K−1

. (3.14)

We remark that this actually establishes that Jf lies in the weak LK/(K−1) space of unit disk.
Since f is continuous, it certainly lies in Lp(D) for any p ∈ [1,∞]. We conclude from Proposition

3.6 that
‖Df(z)‖2L(R2) ≤ KJf (z) for a.e. z ∈ D.

Since
‖Df(z)‖L(R2) = |∂zf(z)|+ |∂zf(z)|
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for a.e. z ∈ D, it now suffices to show that Jf ∈ Lp(D) for any p ∈ [2,K/(K − 1)[. For such a p we
find, by (3.14), that∫

D
|Jf (z)|p dz = p

∫
R+

tp−1|Et|dt

≤ p|D|
∫ 1

0
tp−1 dt+ c

K
K−1 p

∫ ∞
1
tp−1t−

K
K−1 dt <∞,

where we note that the second integral is finite since p − K/(K − 1) − 1 < −1. This proves the
desired result.

Historical Notes Regarding Iwaniec’s Conjecture

First we wish to briefly discuss the conjecture (3.13). The best known result in this direction so
far is the estimate

lim sup
p→∞

‖B‖L(Lp(C))

p
≤
√

2. (3.15)

Using martingale techniques, based on Burkholder’s work in 1984 in obtaining optimal constants
for estimates for certain martingale transforms (which, remarkably, is the constant p∗−1, see [Bu]),
it was shown by Dragičević and Volberg in [DV] from 2005 that we have the inequality

‖B‖L(Lp(C)) ≤
√

2(p− 1)

(
1

2π

∫ 2π

0
| cos t|p dt

)− 1
p

for p ∈ [2,∞[,

which implies (3.15). In 2008 it was shown by Bañuelos and Janakiraman in [BJ] that we have the
(asymptotically better) estimate

‖B‖L(Lp(C)) ≤
√

2p(p− 1) for p ∈ [2,∞[.

Noting that this gives the estimate ‖B‖L(L2(C)) ≤ 2 while we know that ‖B‖L(L2(C)) = 1, they
showed, using the Riesz-Thorin Interpolation Theorem, that this gives the estimate

‖B‖L(Lp(C)) ≤ 1.575(p∗ − 1) for p ∈]1,∞[.

So much for our historical discussion concerning partial results regarding Iwaniec’s conjectures.
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4 The Burkholder Functional

4.1 Motivation: Integral Estimates of the Jacobian Determinant

In the previous section we have seen how area distortion estimates lead to the local integrabil-
ity of the Jacobian determinant of quasiconformal mappings. This led to the fact that any K-
quasiconformal mapping in U ⊆ C lies in W 1,p

loc (U) for 2 ≤ p < 2K/(K − 1), which, in turn, served
as a motivation for Iwaniec’s Conjecture. We will now discuss general estimates involving the Ja-
cobian determinant of a map f ∈ W 1,p(C) for p ∈]1,∞[ in an attempt to prove the validity of
Iwaniec’s Conjecture.

We will denote the set of 2 × 2 matrices with real coefficients by R2×2. Moreover, for any
A ∈ R2×2 we will denote its operator norm by

|A| := ‖A‖L(R2) = sup
|h|=1

|Ah|,

where we identify a matrix with its corresponding linear operator. Then, for any f ∈W 1,1
loc (C), we

have

|Df(z)| = |∂zf(z)|+ |∂zf(z)|, Jf (z) = |∂zf(z)|2 − |∂zf(z)|2 = |Df(z)|(|∂zf(z)| − |∂zf(z)|)

for a.e. z ∈ C.
Let us take a step back for the moment and attempt to establish the upper bound

‖B‖L(Lp(C)) ≤ p∗ − 1

using the same strategy we used to prove the upper bound for the Hilbert transform, mutatis mu-
tandis. We started the proof of the upper bound for the Hilbert transform by using Pichorides’ in-
equality from Proposition 2.27. This was done because the left-hand side in (2.43) is a subharmonic
function. In a sense, subharmonicity is a form of convexity. Indeed, it is a direct generalization
of the concept of convexity in one dimension. Due to the work of Burkholder in [Bu2], we have a
similar inequality in our current situation.

4.1 Theorem. Let p ∈]1,∞[, a, b ∈ R, and suppose L ∈ [1,∞[ satisfies L ≥ p∗ − 1. Then

p

(
L

1 + L

)p−1

(L|a| − |b|)(|a|+ |b|)p−1 ≤ Lp|a|p − |b|p. (4.1)

We will see that the left-hand side of (4.1) has (conjecturally nice) convexity properties, which
we will attempt to utilize.

Proof. We will show that

p

(
L

1 + L

)p−1

(L|a| − |b|) ≤ Lp|a|p − |b|p if |a|+ |b| = 1. (4.2)

This is sufficient, as the general case follows by passing to a/(|a| + |b|), b/(|a| + |b|) for arbitrary
a, b ∈ R that are not both 0.
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We define

φ : [0, 1]→ R, φ(x) := Lpxp − (1− x)p − p
(

L

1 + L

)p−1

(Lx+ x− 1).

If we can now show that φ(x) ≥ 0 for all x ∈ [0, 1], then (4.2) follows by noting that φ(|a|) ≥ 0 for
a, b ∈ R, with |a|+ |b| = 1.

For the case p = 2, we have

φ(x) =
L− 1

L+ 1
(Lx+ x− 1)2 ≥ 0 for all x ∈ [0, 1].

Now assume p 6= 2. Taking derivatives, we find

φ′(x) = pLpxp−1 + p(1− x)p−1 − p Lp−1

(1 + L)p−2
,

φ′′(x) = p(p− 1)(Lpxp−2 − (1− x)p−2)

for x ∈]0, 1[. Then we note that φ′′ has a unique zero at x = (Lp/(p−2) + 1)−1 ∈]0, 1[. But, by
Rolle’s Theorem, this means that φ′ can have at most two zeroes in ]0, 1[. Since these cannot both
be local minima of φ, we conclude that φ can have at most one local minimum in ]0, 1[.

Since 1− 1/(1 + L) = L/(1 + L), we find that

φ

(
1

1 + L

)
= φ′

(
1

1 + L

)
= 0, φ′′

(
1

1 + L

)
= p(p− 1)

Lp−2

(1 + L)p−2
(L2 − 1) > 0,

where the last inequality follows from the fact that p 6= 2 implies that L > 1. We conclude that
1/(1 + L) is the point at which φ attains its unique local minimum in ]0, 1[, where φ attains the
value 0. If we can now show that φ is non-negative at the endpoints of [0, 1], then we can conclude
that φ(x) ≥ 0 for all x ∈ [0, 1], as desired.

Note that, since t 7→ t/(t+ 1) = 1− 1/(t+ 1) is an increasing function, we have

φ(0) = p

(
L

1 + L

)p−1

− 1 ≥ p
(
p∗ − 1

p∗

)p−1

− 1,

φ(1) = Lp
(

1− p

(1 + L)p−1

)
≥ Lp

(
1− p

(p∗)p−1

)
.

Thus, we have to show that

p

(
p∗ − 1

p∗

)p−1

≥ 1,
p

(p∗)p−1
≤ 1. (4.3)

We consider the two cases p ∈]1, 2[ and p ∈]2,∞[.
First assume that p ∈]1, 2[. Then p∗ = p/(p− 1). Hence,

p

(
p∗ − 1

p∗

)p−1

= p2−p > 1,
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which establishes the first inequality in (4.3). For the second inequality, we recall Young’s inequality

rs ≤ rq

q
+
sq
′

q′
for r, s ∈ R≥0, q ∈]1,∞[. (4.4)

Applying this to r = p2−p, s = (p− 1)p−1, q = 1/(2− p), q′ = q/(q − 1) = 1/(p− 1), we obtain

p

(p∗)p−1
= p2−p(p− 1)p−1 ≤ (2− p)p+ (p− 1)(p− 1) = 1,

as desired.
Now assume that p ∈]2,∞[. Then the second inequality in (4.3) is shown by noting that

p

(p∗)p−1
=

1

pp−2
< 1.

For the first inequality we use (4.4) with r = p(p−2)/(p−1), s = 1, q = (p−1)/(p−2), q′ = q/(q−1) =
p− 1 to find

p
p−2
p−1 ≤ p− 2

p− 1
p+

1

p− 1
= p− 1

so that

p

(
p∗ − 1

p∗

)p−1

=
(p− 1)p−1

pp−2
≥ 1.

The assertion follows.

In the case of Pichorides’ result, we proceeded to show that the integral over the left-hand side
in (2.43) was non-negative for a = u and b = H u for a real-valued u ∈ C∞c (R). Fixing p ∈]1,∞[
and assuming this strategy, we recall by Proposition 2.50 that it is sufficient to consider the case
where a = ∂zφ and b = ∂zφ for φ ∈ C∞c (C) (or in any space between C∞c (C) and W̊ 1,p(C)) in
(4.1). In fact, we wish to show that∫

C
((p∗ − 1)|∂zφ(z)| − |∂zφ(z)|)(|∂zφ(z)|+ |∂zφ(z)|)p−1 dz ≥ 0. (4.5)

Then, indeed, it follows from Theorem 4.1 with L = p∗ − 1 that

(p∗ − 1)p‖∂zφ(z)‖pp − ‖∂zφ(z)‖pp ≥ 0,

and thus ‖B‖L(Lp(C)) ≤ p∗−1, verifying Iwaniec’s Conjecture. In an attempt to verify the inequality
(4.5), we note that it can be rewritten as∫

C
|Dφ(z)|p−2Jφ(z) dz ≤ p∗ − 2

p∗

∫
C
|Dφ(z)|p dz =

∣∣∣∣1− 2

p

∣∣∣∣ ∫
C
|Dφ(z)|p dz.

We can then formulate a stronger conjecture than Iwaniec’s Conjecture.
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4.2 Conjecture. Let p ∈]1,∞[. Then∫
C
((p∗ − 1)|∂zφ| − |∂zφ(z)|)(|∂zφ(z)|+ |∂zφ(z)|)p−1 dz ≥ 0,

or equivalently, ∫
C
|Dφ(z)|p−2Jφ(z) dz ≤

∣∣∣∣1− 2

p

∣∣∣∣ ∫
C
|Dφ(z)|p dz,

for all φ ∈ C∞c (C).

The case p = 2 is easily verifiable. Pick φ ∈ C∞c (C). Then, by partially integrating twice, we
obtain ∫

C
|∂zφ(z)|2 dz =

∫
C
∂zφ(z)∂zφ(z) dz =

∫
C
∂zφ(z)∂zφ(z) dz =

∫
C
|∂zφ(z)|2 dz,

or equivalently, ∫
C
Jφ(z) dz = 0.

By Proposition 2.50, this gives us another proof of the fact that ‖B‖L(L2(C)) = 1. We will prove
the following partial result:

4.3 Proposition. Let p ∈]1,∞[. Then there exists an L ∈ [1,∞[ with L ≥ p∗ − 1 so that∫
C
(L|∂zf | − |∂zf(z)|)(|∂zf(z)|+ |∂zf(z)|)p−1 dz ≥ 0,

or equivalently, ∫
C
|Df(z)|p−2Jf (z) dz ≤ L− 1

L+ 1

∫
C
|Df(z)|p dz,

for all f ∈W 1,p(C). More precisely, this result holds for L = ‖B‖pL(Lp(C)).

We note that Conjecture 4.2 is the validity of the proposition for L = p∗ − 1. For the proof we
will use the following lemma:

4.4 Lemma. Let p ∈]1,∞[, a, b ∈ R, and suppose L ∈ [1,∞[ satisfies L ≥ p∗ − 1. Then

(L|a| − |b|)(|a|+ |b|)p−1 ≥ Lp|a|p − |b|p. (4.6)

Proof. The inequality is clear when b = 0. So suppose a, b ∈ R with b 6= 0.
We define φ : R→ R by φ(x) := (Lx− 1)(1 + x)p−1 − (Lxp − 1). Then we claim that φ(x) ≥ 0

whenever x ≥ 0. It follows from this claim that

(L|a| − |b|)(|a|+ |b|)p−1 − (Lp|a|p − |b|p) = |b|pφ
(
|a|
|b|

)
≥ 0,

as desired.
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For the claim, we note that for x > 0 we have

φ′(x) = (pLx+ (L− (p− 1)))(1 + x)p−2 − pLxp−1

= xp−1

((
pL+ (L− (p− 1))

1

x

)(
1

x
+ 1

)p−2

− pL

)

= xp−1ψ

(
1

x

)
,

(4.7)

where ψ :]− 1,∞[→ R is defined by

ψ(x) := (pL+ (L− (p− 1))x)(1 + x)p−2 − pL.

In view of (4.7), to prove the claim it suffices to show that ψ(x) ≥ 0 for x ≥ 0, since this would
imply that φ is increasing on R+ and thus

φ(x) ≥ φ(0) = 0

whenever x ≥ 0.
Since L ≥ p∗− 1 = max(p− 1, 1/(p− 1)), we find that (p− 1)L ≥ 1 and L− (p− 1) ≥ 0. Hence,

ψ′(x) = (p− 1)(1 + x)p−3((p− 1)L+ (L− (p− 1))x− 1) ≥ 0

whenever x ≥ 0. Thus, ψ(x) ≥ ψ(0) = 0. The assertion follows.

Proof of Proposition 4.3. Set L := ‖B‖pL(Lp(C)). Then L ≥ (p∗−1)p ≥ p∗−1 ≥ 1 by Proposition
2.45. Thus, since

Lp‖∂zf‖p ≥ ‖B(∂zf)‖pp = ‖∂zf‖pp,

it follows from Lemma 4.4 that∫
C
(L|∂zf | − |∂zf(z)|)(|∂zf(z)|+ |∂zf(z)|)p−1 dz ≥ Lp‖∂zf‖pp − ‖∂zf‖pp ≥ 0,

for all f ∈W 1,p(C). The assertion follows.

We will use these results as a motivation to study the functional

Ep,γ : R2×2 → R, Ep,γ(A) := γ|A|p − |A|p−2 detA,

for p ∈]1,∞[ and γ ≥ |1− 2/p|. In particular, we define the following:

4.5 Definition. Let p ∈]1,∞[. Then we define the Burkholder functional as the functional

Bp : R2×2 → R, Bp(A) :=

∣∣∣∣1− 2

p

∣∣∣∣ |A|p − |A|p−2 detA.

♦

While it is known that such functionals are rank-one convex, it is an open problem wether they are
quasiconvex. We will discuss these notions in the upcoming subsection.
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4.2 Rank-one Convex and Quasiconvex functions

We provide a short introduction into the theory of calculus of variations as a motivation for the
definitions of rank-one convex and quasiconvex functions. Such notions stem from the work of
Morrey in 1952, see [Mo], where he discussed necessary conditions for lower semicontinuity of
certain functionals.

Throughout the following example we will consider real-valued functions only. We will em-
phasize this fact by writing ; R for our function spaces. Suppose Ω ⊆ Rn is a non-empty open and
bounded set so that Ω is a C∞ manifold with boundary. Given a function g ∈ C∞(∂Ω; R), we want
to find a solution u ∈ C∞(Ω; R) to the problem{

∆u = 0

u|∂Ω = g,
(4.8)

where ∆ := −
∑n

j=1 ∂j is the Laplace operator. To facilitate this, we consider a different problem

where, for fixed g ∈W 1,2(Ω; R), we wish to find u ∈W 1,2(Ω; R) so that ∆u = 0 in the distributional
sense, and u− g can be approximated in W 1,2(Ω; R) by a sequence in C∞c (Ω; R), i.e., u must lie in
the convex set

Cg := g +W 1,2
0 (Ω; R) ⊆W 1,2(Ω; R),

where W 1,2
0 (Ω; R) is the closure of C∞c (Ω; R) in W 1,2(Ω; R). Note that elliptic regularity implies

that such a solution u must be a smooth function in Ω, see Theorem B.37. We refer to the proof of
[Ni, Corollary 2.31] to see how one can solve (4.8) using the solution to the distributional problem
and for a more elaborate discussion concerning these kind of boundary problems. While we note
that considering the case p = 2 is sufficient to solve our particular problem, our arguments work
just as well for any other p ∈]1,∞[.

We now define F : Rn → R by F (x) := |x|2 and consider the map

E : W 1,2(Ω; R)→ R, E(u) :=

∫
Ω
F (Du(x)) dx,

where Du = (∂1u, . . . , ∂nu) is the gradient of u ∈ W 1,2(Ω; R). Since F is non-negative, the
functional E is bounded from below. Our theory is motivated by the following result:

4.6 Theorem (Dirichlet’s Principle). Let Ω ⊆ Rn be open and bounded and let g ∈ W 1,2(Ω; R).
Then u ∈ Cg satisfies ∆u = 0 in the distributional sense, if and only if

E(u) = inf
v∈Cg

E(v). (4.9)

The equation ∆u = 0 is called the Euler-Lagrange equation of E .

Proof. Suppose u ∈ Cg satisfies ∆u = 0 in D′(Ω). Let v ∈ Cg. Then u− v = (u− g)− (v − g) ∈
W 1,2

0 (Ω; R) can be approximated in W 1,2(Ω; R) by a sequence (φj)j∈N in C∞c (Ω; R). Hence,∫
Ω
Du(x) · (Du(x)−Dv(x)) dx = lim

j→∞

∫
Ω
Du(x) · (Dφj(x)) dx = lim

j→∞
〈∆u, φj〉 = 0. (4.10)
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Using the inequality

2|Du(x) ·Dv(x)| ≤ 2|Du(x)||Dv(x)| ≤ |Du(x)|2 + |Dv(x)|2,

we conclude from (4.10) that

2E(u) = 2

∫
Ω
|Du(x)|2 dx =

∫
Ω

2Du(x) ·Dv(x) dx ≤ E(u) + E(v).

Hence, E(u) ≤ E(v), proving that u satisfies (4.9).
For the converse, let φ ∈ C∞c (Ω; R). Then u+ tφ ∈ Cg for all t ∈ R. Setting

f : R→ R, f(t) := E(u+ tφ),

the assumption on u implies that f attains a minimum at t = 0. Hence,

0 = f ′(0) = 〈Du,Dφ〉 = 〈∆u, φ〉.

We conclude that ∆u = 0 in D′(Ω), as desired.

We have changed our problem of solving (4.8) to the problem of minimizing the functional E in
Cg.

Pick a sequence (uj)j∈N in Cg so that

lim
j→∞

E(uj) = inf
v∈Cg

E(v) =: κ. (4.11)

Recall that the Poincaré inequality states that, since Ω is bounded, there is a constant c ∈ R+ so
that

‖v‖2W 1,2(Ω) ≤ c
∫

Ω
|Dv(x)|2 dx = cE(v)

for all v ∈W 1,2
0 (Ω; R). By (4.11), this implies that the sequence (uj)j∈N is bounded in W 1,2(Ω; R).

Thus, since W 1,2(Ω; R) is a reflexive Banach space, it follows from the Banach-Alaoglu Theorem
that there is a weakly convergent subsequence (ujk)k∈N of (uj)j∈N with limit u ∈W 1,2(Ω; R). Since
Cg is a closed convex subset of W 1,2(Ω; R), it follows that Cg is also weakly closed in W 1,2(Ω; R).
Thus, we must have u ∈ Cg.

It now remains to show that E(u) = κ. Since κ ≤ E(u), we only need the converse inequality.
A sufficient condition on E is that

E(v) ≤ lim inf
j→∞

E(vj) (4.12)

for every sequence (vj)j∈N in W 1,2(Ω; R) that weakly converges to v ∈W 1,2(Ω; R), since then

E(u) ≤ lim inf
k→∞

E(ujk) = κ.

The property (4.12) is usually referred to as weak lower semicontinuity of E .
To see that E is weakly lower semicontinuous, we can appeal to a general result in Banach

spaces.
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4.7 Lemma. Let X be a topological vector space with seminorm ‖ · ‖ and let X∗ denote its dual
space. If a sequence (xj)j∈N in X converges weakly to x ∈ X, then

‖x‖2 ≤ lim inf
j→∞

‖xj‖2.

Proof. By Hahn-Banach we can pick x∗ ∈ X∗ so that 〈x∗, x〉 = ‖x‖ and |〈x∗, y〉| ≤ ‖y‖ for all
y ∈ X. Then the inequality

|〈x∗, xj〉|2 ≤ ‖xj‖2

for all j ∈ N implies that
‖x‖2 = lim

j→∞
|〈x∗, xj〉|2 ≤ lim inf

j→∞
‖xj‖2.

The assertion follows.

Since u 7→ (E(u))
1
2 defines a seminorm on W 1,2(Ω; R), we may immediately deduce from the

lemma that
E(v) ≤ lim inf

j→∞
E(vj)

for any sequence (vj)j∈N in W 1,2(Ω; R) that converges weakly to v ∈ W 1,2(Ω; R), proving the
desired result.

The general cases of the situation described in our example are well understood in the sense
that we have the following result:

4.8 Theorem. Let Ω ⊆ Rn be open and bounded. Let F : Rn → R and let E : W 1,2(Ω; R) → R
be defined by

E(u) :=

∫
Ω
F (Du(x)) dx.

Then E is weakly lower semicontinuous if and only if F is convex.

See [Ev2, Theorem 2.2.1] for a proof. While this theorem deals with real-valued functions, one
also wishes to consider the vector-valued case, i.e., functions taking values in Rm.

We denote by Rm×n the set of m × n matrices with real coefficients. We equip it with the
operator norm

|A| := sup
|h|=1

|Ah|.

For an open and bounded Ω ⊆ Rn we denote by W 1,1
loc (Ω; Rm) the space of those u = (u1, . . . , um)

with uj ∈ W 1,1
loc (Ω; R) for all j ∈ {1, . . . ,m}. For any u ∈ W 1,1

loc (Ω; Rm) we may then define the
total derivative Du by the (generalized) Jacobian matrix

Du(x) :=

∂1u1(x) · · · ∂nu1(x)
...

. . .
...

∂1um(x) · · · ∂num(x)

 ∈ Rm×n

for a.e. x ∈ Ω.
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4.9 Definition. Let F : Rm×n → R be continuous. We say that F is quasiconvex at A ∈ Rm×n if∫
Ω
F (A+Dφ(x)) dx ≥

∫
Ω
F (A) dx = |Ω|F (A)

for all open and bounded Ω ⊆ Rn and all φ ∈ C∞c (Ω; Rm). We say that F is quasiconvex if F is
quasiconvex at A for all A ∈ Rm×n. ♦

This definition is motivated through Morrey’s search for necessary conditions for lower semiconti-
nuity of certain functionals. Instead of perturbations by compactly supported smooth functions,
he considered perturbations by Lipschitz continuous functions with vanishing boundary condi-
tions. These notions of quasiconvexity are the same as can be shown by a density argument, see
Proposition 4.12 below. We remark that any Lipschitz continuous function is differentiable almost
everywhere by Rademacher’s Theorem. Furthermore, Morrey considered lower semicontinuity with
respect to convergence of functions in the space of Lipschitz continuous functions rather than weak
lower semicontinuity in our sense:

4.10 Definition. Let Ω ⊆ Rn be non-empty open and bounded and let p ∈]1,∞[. We say that
E : W 1,p(Ω; Rm)→ R is weakly lower semicontinuous if

E(v) ≤ lim inf
j→∞

E(vj)

for every weakly convergent sequence (vj)j∈N in W 1,p(Ω; Rm) with limit v ∈W 1,p(Ω; Rm). ♦

We note that Conjecture 4.2 is the statement that the Burkholder functional is quasiconvex at 0.
While we are now considering a more modern setting, the ideas used remain the same.

4.11 Theorem. Let Ω ⊆ Rn be a non-empty open and bounded set and let p ∈]1,∞[. Let F :
Rm×n → R be continuous and let E : W 1,p(Ω; Rm)→ R be defined by

E(u) :=

∫
Ω
F (Du(x)) dx.

If E is weakly lower semicontinuous, then F is quasiconvex.
Conversely, if F is quasiconvex and there is some c ∈ R+ so that

0 ≤ F (A) ≤ c(1 + |A|p)

for all A ∈ Rm×n, then E is weakly lower semicontinuous.

A proof can be found in [Ev2, Theorem 3.2.1].
Now it may seem strange that the notion of weak lower semicontinuity considers only a single

open bounded set Ω ⊆ Rn, while in the definition of quasiconvexity we require an estimate for all
open and bounded Ω ⊆ Rn. This is justified by the equivalence of (i) and (iv) in the following
result:

4.12 Proposition. Let F : Rm×n → R be continuous and let A ∈ Rm×n. Then the following are
equivalent:
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(i) F is quasiconvex at A;

(ii) for all φ ∈ C∞c (Rn; Rm) we have∫
Rn

(F (A+Dφ(x))− F (A)) dx ≥ 0;

(iii) for all bounded open sets Ω ⊆ Rn and all Lipschitz continuous functions f : Ω→ Rm satisfying
f |∂Ω = 0, we have ∫

Ω
F (A+Df(x)) dx ≥ |Ω|F (A);

(iv) there is a non-empty bounded open set Ω ⊆ Rn so that for all φ ∈ C∞c (Ω; Rm) we have∫
Ω
F (A+Dφ(x)) dx ≥ |Ω|F (A);

(v) for each ψ ∈ C∞(Rn; Rm) which is 1-periodic in the sense that ψ(x+k) = ψ(x) for all k ∈ Zn

and x ∈ Rn, we have ∫
[0,1]n

F (A+Dψ(x)) dx ≥ F (A).

Proof. For (i)⇒(ii), we pick φ ∈ C∞c (Rn; Rm). Then there is some open ball Ω ⊆ Rn so that
suppφ ⊆ Ω. Hence, we may view φ as an element of C∞c (Ω; Rm) and∫

Rn

(F (A+Dφ(x))− F (A)) dx =

∫
Ω

(F (A+Dφ(x))− F (A)) dx

=

∫
Ω
F (A+Dφ(x)) dx− |Ω|F (A) ≥ 0.

The assertion (ii)⇒(i) follows by noting that any φ ∈ C∞c (Ω; Rm) for some open and bounded
Ω ⊆ Rn extends by 0 to an element of C∞c (Rn; Rm).

For (i)⇒(iii), we pick any open and bounded Ω ⊆ Rn and a Lipschitz continuous function
f : Ω → Rm satisfying f |∂Ω = 0. Let (φε)ε∈R+ denote the standard mollifier, see Definition
A.10. We may extend f continuously to Rn by declaring that it vanishes outside of Ω. Performing
componentwise convolution, we may consider f ∗ φε ∈ C∞(Rn; Rm) for ε ∈ R+. By Lemma A.12
we have

supp(f ∗ φε) ⊆ Ω +Bε(0),

where Bε(x) denotes the closed ball around x ∈ Rn of radius ε ∈ R+. Since this sum of sets is
compact and shrinks as ε does, we can pick an open and bounded Ω′ ⊆ Rn that contains Ω and so
that supp(f ∗ φε) ⊆ Ω′ for all ε ∈ R+ small enough. For such ε ∈ R+ we may view f ∗ φε as an
element of C∞c (Ω′; Rm), which we denote by fε. This implies that∫

Ω′
F (A+Dfε(x)) dx ≥ |Ω′|F (A). (4.13)
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Since ∂j(fk ∗ φε) = ∂jfk ∗ φε for all j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, where f = (f1, . . . , fm), we
claim that D(fε)(x) → Df(x) in Rm×n as ε ↓ 0 for a.e. x ∈ Ω′. Here we note that f is almost
everywhere differentiable in Ω′ by Rademacher’s Theorem, and the derivatives of f are bounded by
its Lipschitz constant.

For the claim, we write g := ∂jfk ∈ L∞(Rn) ⊆ L1
loc(R

n). Then, for some c ∈ R+,

|(g ∗ φε)(x)− g(x)| =

∣∣∣∣∣ 1

εn

∫
Bε(x)

φ

(
x− y
ε

)
(g(y)− g(x)) dy

∣∣∣∣∣
≤ c

|Bε(y)|

∫
Bε(y)

|g(y)− g(x)|dy → 0 as ε ↓ 0

for a.e. x ∈ Rn by Lebesgue’s Differentiation Theorem. This proves the claim.
By continuity of F we may apply Lebesgue’s Dominated Convergence Theorem in (4.13) to

conclude that ∫
Ω
F (A+Df(x)) dx =

∫
Ω′
F (A+Df(x)) dx− |Ω′\Ω|F (A)

≥ |Ω′|F (A)− |Ω′\Ω|F (A) = |Ω|F (A),

as desired. For (iii)⇒(i), we note that for all open and bounded Ω ⊆ Rn, any φ ∈ C∞c (Ω; Rm) is
Lipschitz continuous with vanishing boundary conditions. The result follows.

The implication (i)⇒(iv) is immediate. For the converse, we assume (iv) and let Ω′ ⊆ Rn be
any non-empty open bounded set. Now consider the collection

V := {a+ tΩ′ | a ∈ Rn, t ∈ R+}.

As this is a Vitali covering of Ω, we may appeal to Vitali’s Covering Theorem for the Lebesgue
measure to obtain an at most countable disjoint family {aj + tjΩ′}j ⊆ V of subsets of Ω so that∣∣∣∣Ω\⋃

j

aj + tjΩ′
∣∣∣∣ = 0.

This means that ∑
j

tnj |Ω′| =
∑
j

∣∣aj + tjΩ′
∣∣ =

∣∣∣∣⋃
j

aj + tjΩ′
∣∣∣∣ = |Ω|. (4.14)

Now pick φ ∈ C∞c (Ω′; Rm) and define ψ ∈ C∞c (Ω; Rm) by

ψ(x) :=

tjφ
(
x− aj
tj

)
if x ∈ aj + tjΩ

′

0 otherwise.

Then, by (4.14),

|Ω|F (A) ≤
∫

Ω
F (A+Dψ(x)) dx =

∑
j

∫
aj+tjΩ′

F

(
A+Dφ

(
x− aj
tj

))
dx

=

∑
j

tnj

∫
Ω′
F (A+Dφ(x)) dx =

|Ω|
|Ω′|

∫
Ω′
F (A+Dφ(x)) dx,
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so that ∫
Ω′
F (A+Dφ(x)) dx ≥ |Ω′|F (A),

as desired.
For (v)⇒(iv) we note that any φ ∈ C∞c (]0, 1[n; Rm) can be extended 1-periodically to a smooth

map ψ ∈ C∞(Rn; Rm). Then∫
]0,1[n

F (A+Dφ(x)) dx =

∫
[0,1]n

F (A+Dψ(x)) dx ≥ F (A) = |]0, 1[n|F (A),

proving (iv) with Ω =]0, 1[n.
Finally, for (i)⇒(v) we refer to [Da, Proposition 5.13]. This concludes the proof.

4.13 Remark. We note that for an open and bounded set Ω ⊆ Rn with C1-boundary, the space
of Lipschitz continuous functions in Ω coincides with the space W 1,∞(Ω), see [Ev, 5.8, Theorem
5]. Thus, in view of characterization (iii) in the proposition, it makes sense that the notion of
quasiconvexity we are considering here is sometimes called W 1,∞-quasiconvexity as apposed to the
general notion of W 1,p-quasiconvexity, introduced in [BM], that deals with perturbations in the
space W 1,p

0 (Ω; Rm) for p ∈ [1,∞].

We have included the characterization (v) in the proposition since this was famously used by Šverák
in [Šv] to construct a function F : R3×2 → R that is rank-one convex, see Definition 4.17 below,
while it is not quasiconvex. For a further discussion of this example, we refer to Theorem 4.27
below. ♦

Having given our definition of quasiconvexity, it’s reasonable to check that quasiconvexity is
indeed a consequence of convexity.

4.14 Proposition. If F : Rm×n → R is continuous and convex, then F is quasiconvex. Con-
versely, if n = 1 or m = 1 and F is quasiconvex, then F is convex.

Proof. Let Ω ⊆ Rn be a non-empty open and bounded set, let A ∈ Rm×n, and let φ ∈ C∞c (Ω; Rm).
Considering componentwise integration, we note that∫

Ω
Dφ(x) dx = 0

by the Fundamental Theorem of Calculus. Then it follows from Jensen’s inequality that

1

|Ω|

∫
Ω
F (A+Dφ(x)) dx ≥ F

(
1

|Ω|

∫
Ω
(A+Dφ(x)) dx

)
= F (A).

This proves the first assertion.
Now suppose n = 1 and suppose F is quasiconvex. We identify R1×m with Rm. Fix a, b ∈ Rm

and let t ∈]0, 1[. We define c := ta+ (1− t)b and define

f : R→ Rm, f(x) := aχ]0,t[(x) + bχ]t,1[(x),
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where χ]r,s[ denotes the indicator function of the interval ]r, s[, r, s ∈ R, r < s. Then

φ : [0, 1]→ Rm, φ(y) := −yc+

∫ y

0
f(x) dx

defines a Lipschitz continuous map with derivative φ′(x) = −c+ f(x) for a.e. x ∈ [0, 1] and

φ(1) = −c+

∫ t

0
a dx+

∫ 1

t
bdx = −c+ c = 0 = φ(0).

Thus, φ is a Lipschitz continuous map with vanishing boundary conditions. Hence, quasiconvexity
of F (in the sense of Morrey) implies that

F (ta+ (1− t)b) = F (c) ≤
∫ 1

0
F (c+ φ′(x)) dx =

∫ t

0
F (a) dx+

∫ 1

t
F (b) dx = tF (a) + (1− t)F (b).

This proves that F is convex, as desired. The case m = 1 is analogous. The assertion follows.

4.15 Remark. Since we are interested in the quasiconvexity of the Burkhulder functional, it would
make sense to check if the Burkholder functional is convex. As a simple example shows, this is
unfortunately not the case. Let p ∈]1,∞[ and denote by I ∈ R2×2 the identity matrix. Then we
note that

Bp(I) =

∣∣∣∣1− 2

p

∣∣∣∣− 1 = 1− 2

p∗
− 1 = − 2

p∗
< 0.

Hence,

Bp

(
1

2
0 +

1

2
I

)
=

1

2p
Bp(I) >

1

2
Bp(I) =

1

2
Bp(0) +

1

2
Bp(I).

Thus, Bp is indeed not convex. ♦

Now, rather than considering lower semicontinuity, let us consider a more direct approach to
minimizing a functional

E(u) =

∫
Ω
F (Du(x)) dx, u ∈W 1,p(Ω; Rm)

for p ∈]1,∞[, a given open and bounded Ω ⊆ Rn, and a given F : Rm×n → R. For a given
g ∈ W 1,p(Ω; Rm) we again consider the functions u ∈ W 1,p(Ω; Rm) with the boundary condition
u − g ∈ W 1,p

0 (Ω; Rm), where W 1,p
0 (Ω; Rm) denotes the closure of C∞c (Ω; Rm) in W 1,p(Ω; Rm).

Suppose that v ∈ W 1,p(Ω; Rm) minimizes E in this class of functions satisfying the boundary
condition. Now pick any Lipschitz continuous function ψ with compact support in Ω and define

f : R→ R, f(t) := E(v + tψ).

Since v+tψ satisfies the desired boundary conditions for all t ∈ R, the function f must be minimized
at 0. Assuming that F is sufficiently regular, this means that the second derivative of f at 0 must
be non-negative. Denoting by D2F (A) : Rn×m ×Rn×m → R the Hessian of F at A ∈ Rn×m, we
have

0 ≤ f ′′(0) =

∫
Ω
D2F (Dv(x))(Dψ(x), Dψ(x)) dx. (4.15)
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Now let ρ : R→ R be the 2-periodic sawtooth function, i.e., the 2-periodic extension of the function
that is equal to t on [0, 1] and equal to 2 − t on [0, 1]. Then ρ is a Lipschitz continuous function
that satisfies ρ′(t)2 = 1 for a.e. t ∈ R. Pick any pair of vectors η ∈ Rm, ξ ∈ Rn, and let ε ∈ R+.
Letting φ ∈ C∞c (Ω; R) be arbitrary, we define

ψε : Ω→ Rm, ψε(x) := εφ(x)ρ

(
ξ · x
ε

)
η.

Then ψε is a Lipschitz continuous function of compact support in Ω. Picking i ∈ {1, . . . , n},
k ∈ {1, . . . ,m} we note that if ψkε denotes the k-th component of ψε, then

∂iψ
k
ε (x) = ε∂iφ(x)ρ

(
ξ · x
ε

)
ηk + φ(x)ρ′

(
ξ · x
ε

)
ξiηk.

This means that for any pair i, j ∈ {1, . . . , n} and any pair k, l ∈ {1, . . . ,m} we have

∂iψ
k
ε (x)∂jψ

l
ε(x) = ε2∂iφ(x)∂jφ(x)ρ

(
ξ · x
ε

)2

ηkηl + φ(x)2ρ′
(
ξ · x
ε

)2

ξiηkξjηl

+ ε

(
φ(x)∂iφ(x)ρ

(
ξ · x
ε

)
ρ′
(
ξ · x
ε

)
ηkξjηl + φ(x)∂jφ(x)ρ

(
ξ · x
ε

)
ρ′
(
ξ · x
ε

)
ξiηkηl

)
for a.e. x ∈ Ω. Since ρ and ρ′ are bounded, while ρ′(t)2 = 1 for a.e. t ∈ R, we conclude that

∂iψ
k
ε (x)∂jψ

l
ε(x)→ φ(x)2ξiηkξjηl as ε ↓ 0

for a.e. x ∈ Ω.
Since the Hessian D2F (Dv(x)), x ∈ Ω, is bilinear, replacing ψ by ψε in (4.15) and letting ε ↓ 0

implies that ∫
Ω
D2F (Dv(x))(η ⊗ ξ, η ⊗ ξ)φ(x)2 dx ≥ 0

for all φ ∈ C∞c (Ω; R), where η ⊗ ξ ∈ Rm×n denotes the matrix with entry ηkξi on the (k, i)-th
position. Since φ ∈ C∞c (Ω; R) is arbitrary, we conclude that

D2F (Dv(x))(η ⊗ ξ, η ⊗ ξ) ≥ 0

for a.e. x ∈ Ω. Since η ⊗ ξ is a typical rank-one matrix, it is therefore not unreasonable to assume
that F satisfies the so-called Legendre-Hadamard condition

D2F (A)(X,X) ≥ 0 for all A,X ∈ Rm×n with rankX = 1. (4.16)

We recall the following basic result on convex functions on the real line:

4.16 Lemma. Let U ⊆ R be an open interval and suppose f : U → R is twice differentiable. If
f ′′(t) ≥ 0 for all t ∈ U , then f is convex in U .
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Proof. First note that the condition f ′′(t) ≥ 0 for all t ∈ U implies that f ′ is increasing in U . Now
let x, y ∈ U , x < y, and t ∈ [0, 1]. We set p := tx+ (1− t)y. Then we have

tf(x) + (1− t)f(y)− f(p) = tf(p) + t

∫ x

p
f ′(s) ds+ (1− t)f(p) + (1− t)

∫ y

p
f ′(s) ds− f(p)

= −t
∫ p

x
f ′(s) ds+ (1− t)

∫ y

p
f ′(s) ds

≥ −t(p− x)f ′(p) + (1− t)(y − p)f ′(p)
= t(1− t)(x− y)f ′(p) + t(1− t)(y − x)f ′(p) = 0.

The assertion follows.

The condition (4.16) means that the function t 7→ F (A+ tX) is convex in R for every A,X ∈
Rm×n with X a rank-one matrix. Heuristically, this means that this so called rank-one convexity
is a natural condition to impose on F when minimizing E . Note also that in the case m = 1 our
considerations reduce to the convexity condition from Theorem 4.8.

4.17 Definition. Let F : Rm×n → R. We say that F is rank-one convex at A ∈ Rm×n if
t 7→ F (A + tX) is a convex function in R for every matrix X ∈ Rm×n of rank one. We call F
rank-one convex if it is rank-one convex at A for all A ∈ Rm×n. ♦

Generally, checking if a function is rank-one convex is easier than checking if a function is quasi-
convex, since pointwise estimates are simpler to establish than integral estimates.

Since we presented quasiconvexity as a characterization of weak lower semicontinuity of the
associated integral functional while we presented rank-one convexity as a necessary condition for
having minimizers of the associated integral functional, the following result is not surprising:

4.18 Proposition. Let F : Rm×n → R be quasiconvex at A ∈ Rm×n. Then F is rank-one convex
at A.

For a proof we refer to [Mo, Theorem 4.1 & 4.2]. Thus, if the Burkholder functional satisfies
the conjectured quasiconvexity property, then it must certainly be rank-one convex. We will now
prove that this is indeed the case.

4.19 Theorem (Burkholder). Let p ∈]1,∞[, let γ ∈ R with γ ≥ |1 − 2/p|, and let A,X ∈ R2×2

with detX ≤ 0. Then the function fγ : R→ R,

fγ(t) := Ep,γ(A+ tX) = γ|A+ tX|p − |A+ tX|p−2 det(A+ tX)

is convex. In particular, the functionals Ep,γ, including the Burkholder functional Bp, are rank-one
convex.

Before we turn to the proof of this result, we mention a generalization that was proven by
Iwaniec in [Iw2], which emphasizes the critical nature of the Burkholder functional.

4.20 Theorem (Iwaniec, 2002). Let p ∈]1,∞[ and let γ ∈ R. Then the functionals E±p,γ,n : Rn×n →
R defined by

E±p,γ,n(A) := γ|A|p ± |A|p−n det(A)

are rank-one convex for γ ≥ |1− n/p| and not rank-one convex for γ < |1− n/p|.
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Now, while the task of proving Theorem 4.19 seems daunting, the strategy for the proof we
give is straightforward. First we reduce to the cases where A is given by a simple matrix. Then we
conclude the proof by applying the second derivative test for convexity.

4.21 Lemma. Let p ∈]1,∞[ and let A,X ∈ R2×2. Then the map t 7→ |A+ tX|p is convex in R.

Proof. First we will show that the map r : [0,∞[→ R, r(s) := sp is convex and increasing in
[0,∞[. We have r′′(s) = p(p − 1)sp−2 ≥ 0 for all s ∈]0,∞[, proving convexity of r in ]0,∞[ by
Lemma 4.16. If x = 0, y > 0, t ∈ [0, 1], we have

(tx+ (1− t)y)p = (1− t)pyp ≤ (1− t)yp = txp + (1− t)yp,

establishing convexity of r at 0 so that r is indeed convex. To see that it’s increasing we note that
r′(s) = psp−1 ≥ 0 for all s ∈ [0,∞[.

Next, for all x, y ∈ R, t ∈ [0, 1] we have

|A+ (tx+ (1− t)y)X| = |tA+ txX + (1− t)A+ (1− t)yX| ≤ t|A+ xX|+ (1− t)|A+ yX|

so that

|A+ (tx+ (1− t)yX)|p = r(|A+ (tx+ (1− t)yX)|) ≤ r(t|A+ xX|+ (1− t)|A+ yX|)
≤ tr(|A+ xX|) + (1− t)r(|A+ yX|) = t|A+ xX|p + (1− t)|A+ yX|p.

The assertion follows.

4.22 Lemma. Let A ∈ R2×2 with |A| = 1, | detA| 6= 1. Then there exist rotation matrices
O1, O2 ∈ R2×2 so that

O1AO2 =

(
λ 0
0 1

)
for some λ ∈ R with |λ| < 1.

Proof. Using the singular value decomposition of 2 × 2 matrices we can find rotation matrices
O1, O2 ∈ R2×2 so that O1AO2 is diagonal, where the diagonal entries are given by roots of the
eigenvalues of AtA. Denote the diagonal entries by λ, µ ∈ R≥0. We claim that one of these
must have absolute value 1 and the other must have absolute value strictly smaller than 1. Since
multiplication by rotation matrices leaves the operator norm invariant, we have, by Lemma 3.7,
that

1 = |A| = |O1AO2| =
|λ+ µ|+ |λ− µ|

2
=
||λ|+ |µ||+ ||λ| − |µ||

2
= max(|λ|, |µ|).

Assume that |µ| = 1. Then |λ| ≤ 1, but since

1 6= |detA| = |detO1 detAdetO2| = |detO1AO2| = |λµ| = |λ|,

we may conclude that |λ| < 1, as desired.
Then, if necessary, by altering O1 and O2 by applying the rotation matrix

(
0 1
−1 0

)
from the left

and the rotation matrix
(

0 −1
1 0

)
from the right to change the position of the diagonal entries and

by multiplying by minus the identity if µ = −1, we may assume that O1AO2 is of the desired form.
This proves the assertion.
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4.23 Lemma. Let A,X ∈ R2×2 and

A =

(
λ 0
0 1

)
, |λ| < 1, X =

(
a b
c d

)
.

Moreover, assume that |A + tX|2 6= |det(A + tX)| for all t ∈ R. Define h : R → R by h(t) :=
|A+ tX|. Then h ∈ C∞(R; R), h is nowhere vanishing, and

h′(0) = d, h′′(0) =
b2 + c2 + 2λbc

1− λ2
.

Proof. By Lemma 3.7 we have

h(t) = |z(t)|+ |w(t)|, 2z(t) = λ+ 1 + t(a+ d+ i(c− b)), 2w(t) = λ− 1 + t(a− d+ i(c+ b))

and
| det(A+ tX)| = |A+ tX|||z(t)| − |w(t)||. (4.17)

We claim that z and w are nowhere vanishing, so that h is a nowhere vanishing smooth function.
By (4.17), the assumption that |A+ tX|2 6= | det(A+ tX)| for all t ∈ R implies that

||z(t)| − |w(t)|| 6= |A+ tX| = |z(t)|+ |w(t)| for all t ∈ R.

But since ||z(t)| − |w(t)|| ≤ |z(t)| + |w(t)|, this means that ||z(t)| − |w(t)|| < |z(t)| + |w(t)| for all
t ∈ R. If z(t) = 0 for some t ∈ R, this means that we must have |w(t)| < |w(t)|, which is absurd.
Similarly, we cannot have w(t) = 0 for any t ∈ R. The claim follows.

We may compute

h′(t) =
Re(z(t)z′(t))

|z(t)|
+

Re(w(t)w′(t))

|w(t)|

=
(λ+ 1 + t(a+ d))(a+ d) + t(c− b)2

4|z(t)|
+

(λ− 1 + t(a− d))(a− d) + t(c+ b)2

4|w(t)|
,

from which we conclude that

h′(0) =
(λ+ 1)(a+ d)

2|λ+ 1|
+

(λ− 1)(a− d)

2|λ− 1|
=
a+ d− (a− d)

2
= d.

Finally, we compute

h′′(0) =
|z(0)|((a+ d)2 + (c− b)2)− (a+ d)2 λ+1

2

4|z(0)|2
+
|w(0)|((a− d)2 + (c+ b)2)− (a− d)2 1−λ

2

4|w(0)|2

=
(c− b)2

2(1 + λ)
+

(c+ b)2

2(1− λ)
=

(c− b)2(1− λ) + (c+ b)2(1 + λ)

2(1− λ2)
=
b2 + c2 + 2λbc

1− λ2
.

The assertion follows.
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4.24 Lemma. Let X ∈ R2×2. Then the set of all A ∈ R2×2 so that

|A+ tX|2 6= | det(A+ tX)| for all t ∈ R

is dense in R2×2.

Proof. Let A ∈ R2×2 and write

A =

(
x1 x2

x3 x4

)
, X =

(
a b
c d

)
.

Suppose there is a t ∈ R such that |A+ tX|2 = |det(A+ tX)|. Setting

z =
x1 + x4 + t(a+ d)

2
+ i

x3 − x2 + t(c− b)
2

, w =
x1 − x4 + t(a− d)

2
+ i

x3 + x2 + t(c+ b)

2
,

it follows from Lemma 3.7 that

(|z|+ |w|)2 = |A+ tX|2 = | det(A+ tx)| = (|z|+ |w|)||z| − |w||

so that
|z|+ |w| = ||z| − |w||.

By taking squares on both sides, we note that this is equivalent to the assertion |z||w| = 0, meaning
that either z = 0 or w = 0. We conclude that |A + tX|2 = |det(A + tX)| holds if and only if we
have x1 + x4 = −t(a+ d)

x3 − x2 = −t(c− b),
or

x1 − x4 = −t(a− d)

x3 + x2 = −t(c+ b).
(4.18)

We proceed by cases. First suppose that c 6= ±b. If a matrix A =
(
x1 x2
x3 x4

)
satisfies (4.18) for some

fixed t ∈ R, then, for all j ∈ N, we define

Aj :=

(
x1 + 1

j x2

x3 x4

)
.

We claim that for some J ∈ N we have that |Aj + sX|2 6= |det(Aj + sX)| for all s ∈ R whenever
j > J . Indeed, if for all j ∈ N we have that |Aj + sX|2 6= | det(Aj + sX)| for all s ∈ R, then we can
set J = 1. On the other hand, if there is a J ∈ N and an s ∈ R so that |AJ+sX|2 = | det(AJ+sX)|,
then either x1 + 1/J + x4 = −s(a + d) and x3 − x2 = −s(c − b) or x1 + 1/J − x4 = −s(a − d)
and x3 + x2 = −s(c+ b). Suppose we are in the first case and suppose A satisfies the first case in
(4.18). Then −s(c− b) = x3− x2 = −t(c− b) so that s = t, since we assumed that c 6= b. But then
x1 + 1/J + x4 = −t(a+ d) = x1 + x4, which implies that 1/J = 0. This contradiction implies that
A must satisfy the second case in (4.18). Then we have

2x3 = x3 + x2 + x3 − x2 = −t(c+ b)− s(c− b). (4.19)

Now suppose that there is some j ∈ N so that there is an s′ ∈ R so that |Aj + s′X|2 = |det(Aj +
s′X)|. If x3 + x2 = −s′(c + b) and x1 + 1/j − x4 = −s′(a − d), then, as before, we may conclude
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that t = s′ and 1/j = 0, which is absurd. Hence, we must have x3 − x2 = −s′(c − b) and
x1 + 1/j + x4 = −s′(a+ d). But then, by (4.19), we have

−t(c+ b)− s′(c− b) = 2x3 = x3 + x2 + x3 − x2 = −t(c+ b)− s(c− b)

so that s′ = s. This implies that x1 + 1/j + x4 = −s(a + d) = x1 + 1/J − x4 so that j = J . We
conclude that for all j > J we have |Aj + sX|2 6= |det(Aj + sX)| for all s ∈ R. The other case is
proven analogously using c 6= −b. This proves the claim. Since Aj+J → A in R2×2 as j →∞, this
proves the assertion for the case c 6= ±b.

Now assume that c = b. If a matrix A =
(
x1 x2
x3 x4

)
satisfies (4.18) for some fixed t ∈ R, then, for

all j ∈ N, we define

Aj :=

(
x1 x2

x3 + 1
j x4

)
.

As before, we claim that for some J ∈ N we have that |Aj + sX|2 6= | det(Aj + sX)| for all s ∈ R
whenever j > J . Again, assume that there is a J ∈ N and an s ∈ R so that |AJ + sX|2 =
|det(AJ + sX)|, then either x1 + x4 = −s(a + d) and x3 + 1/J − x2 = 0 or x1 − x4 = −s(a − d)
and x3 + 1/J + x2 = −2sb. Suppose we are in the first case. If A satisfies the first case of (4.18),
then we find that x3 + 1/J − x2 = 0 = x3 − x2 so that 1/J = 0, which is absurd. We conclude
that A must satisfy the second case of (4.18). Proceeding in the same way as in the case c 6= ±b
we can show that if j ∈ N satisfies |Aj + s′X|2 6= | det(Aj + s′X)| for some s′ ∈ R, then we must
have s′ = s and j = J . We conclude that for all j > J we have |Aj + sX|2 6= |det(Aj + sX)| for
all s ∈ R, proving the claim in this case. The other case is analogous. Since Aj+J → A in R2×2 as
j → ∞, this proves the assertion for the case c = b. The case c = −b is treated analogously. The
assertion follows.

We refer to [Iw2, Proposition 3.1] for a more direct proof of a generalization of this lemma to
higher dimensions.

Proof of Theorem 4.19. Let A,X ∈ R2×2 with detX ≤ 0.
We claim that it suffices to consider the case γ = |1 − p/2|. Indeed, write f := f|1−p/2| and

suppose γ > |1− p/2|. It follows from Lemma 4.21 that

fγ(t)− f(t) =

(
γ −

∣∣∣∣1− 2

p

∣∣∣∣) |A+ tX|p

is convex in R as a function of t. Assuming we have shown that f is convex, we may then conclude
that fγ = (fγ − f) + f is convex as the sum of two convex functions. Hence, it suffices to consider
f .

Next, we claim that we may assume that |A + tX|2 6= |det(A + tX)| for all t ∈ R. Indeed,
assume we have shown the desired convexity result for such matrices and suppose we have a matrix
A ∈ R2×2 so that there is some s ∈ R so that |A+ sX|2 6= |det(A+ sX)|. By Lemma 4.24, we can
find a sequence (Aj)j∈N in R2×2 so that for all j ∈ N we have |Aj+tX|2 6= | det(Aj+tX)| for all t ∈
R, and Aj → A in R2×2 as j →∞. Writing fj(t) := |1−2/p||Aj+tX|p−|Aj+tX|p−2 det(Aj+tX),
we note that fj(t) → f(t) for all t ∈ R. Moreover, for all x, y ∈ R and t ∈ [0, 1], our assumption
implies that

fj(tx+ (1− t)y) ≤ tfj(x) + (1− t)fj(y).
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Letting j →∞ leads to convexity of f , as desired. Thus, from now on we assume that |A+ tX|2 6=
|det(A+ tX)| for all t ∈ R.

Next we will show that it suffices to consider the case where |A| = 1. First suppose A = 0.
Then f(t) = c|t|p for c = |1 − 2/p| − |X|detX ≥ |1 − 2/p| ≥ 0, which is convex in R as it is the
composition of the increasing convex function s 7→ sp in [0,∞[ and the convex function s 7→ |s| in
R. Assuming A 6= 0, we can write

f(t) = |A|−p
(∣∣∣∣1− 2

p

∣∣∣∣ ||A|−1A+ t|A|−1X|p − ||A|−1A+ t|A|−1X|p−2 det(|A|−1A+ t|A|−1X)

)
.

Since |A|−1X is again a matrix of non-negative determinant, since |A|−p is a positive constant, and
since

||A|−1A+ t|A|−1X|2 = |A|−2|A+ tX|2 6= |A|−2|det(A+ tX)| = |det(|A|−1A+ t|A|−1X)|

for all t ∈ R, we may replace A by |A|−1A and replace X by |A|−1X to reduce to the case |A| = 1.
Reducing further, we claim that we may assume that A is of the form

A =

(
λ 0
0 1

)
, |λ| < 1. (4.20)

Since, in particular, we assumed that 1 = |A|2 = |A + 0X|2 6= |det(A + 0X)| = |detA|, we may
appeal to Lemma 4.22 to find rotation matrices O1, O2 ∈ R2×2 so that O1AO2 is of the desired
form. Since multiplication by rotation matrices leave operator norms and determinants invariant,
noting that O1(A + tX)O2 = O1AO2 + tO1XO2, we may replace A by O1AO2 and X by O1XO2

to reduce to the case where A satisfies (4.20).
It follows from Lemma 4.23 that f is a smooth function and thus, by Lemma 4.16, to show that

f is convex, we have to show that f ′′(t) ≥ 0 for all t ∈ R. Setting h(t) := |A+ tX| and

g(t) := det(A+ tX) = (λ+ ta)(1 + td)− t2bc = λ+ (a+ λd)t+ (detX)t2,

then g is smooth and, by Lemma 4.23, h is also smooth. By picking t0 ∈ R and by replacing A
with A + t0X and by considering f(t + t0) instead of f(t), we note that we have reduced to the
case where we need only check that f ′′(0) ≥ 0 to conclude that f is convex.

By the computations of the derivatives of h in Lemma 4.23 and the fact that h(0) = |A| = 1 we
have

d2

dt2

∣∣∣∣
t=0

(h(t))p = p(p− 1)(h(0))p−2h′(0)2 + p(h(0))p−1h′′(0) = p(p− 1)d2 + ph′′(0).

Moreover, computing g(0) = detA = λ, g′(0) = a+ λd, g′′(0) = 2 detX ≤ 0, we find that

d2

dt2

∣∣∣∣
t=0

(h(t))p−2g(t)

= g(0)
d2

dt2

∣∣∣∣
t=0

(h(t))p−2 + 2g′(0)
d

dt

∣∣∣∣
t=0

(h(t))p−2 + (h(0))p−2g′′(0)

= λ(p− 2)(p− 3)d2 + λ(p− 2)h′′(0) + 2(p− 2)(a+ λd)d+ 2 detX

≤ λ(p− 2)(p− 3)d2 + λ(p− 2)h′′(0) + 2(p− 2)(a+ λd)d.
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Thus,

f ′′(0) ≥
∣∣∣∣1− 2

p

∣∣∣∣ (p(p− 1)d2 + ph′′(0))− λ(p− 2)(p− 3)d2 − (p− 2)h′′(0)− 2(p− 2)(a+ λd)d

= (|p− 2|(p− 1)− λ(p− 2)(p− 3))d2 + (|p− 2| − λ(p− 2))h′′(0)− 2(p− 2)ad− 2λ(p− 2)d2.

Collecting the terms with d2, we note that

(|p− 2|(p− 1)− λ(p− 2)(p− 3)− 2λ(p− 2))d2 = (p− 1)(|p− 2| − λ(p− 2))d2 ≥ 0,

since |λ| < 1. Thus, by continuing our estimate, we obtain

f ′′(0) ≥ (|p− 2| − λ(p− 2))h′′(0)− 2(p− 2)ad ≥ (|p− 2| − λ(p− 2))h′′(0)− 2(p− 2)bc, (4.21)

since ad− bc = detX ≤ 0.
We will conclude the proof by considering the cases p ≤ 2 and p ≥ 2 separately. Suppose p ≤ 2.

Then (4.21) becomes

f ′′(0) ≥ (2− p)((1 + λ)h′′(0) + 2bc) = (2− p)
(
b2 + c2 + 2λbc

1− λ
+ 2bc

)
= (2− p)(b+ c)2

1− λ
≥ 0.

Similarly, when p ≥ 2 we have

f ′′(0) ≥ (p− 2)
(b− c)2

1 + λ
≥ 0.

This proves the desired convexity result. Finally, since any rank-one matrix has determinant 0, we
conclude that Ep,γ is rank-one convex. The assertion follows.

While we know that quasiconvexity implies rank-one convexity, the question wether the converse
implication holds turns out to be a much more difficult problem. Let us first settle the 1-dimensional
cases of this problem.

4.25 Proposition. Let m = 1 or n = 1 and let F : Rm×n → R be continuous. Then the following
are equivalent:

(i) F is convex;

(ii) F is quasiconvex;

(iii) F is rank-one convex.

We will use the following lemma:

4.26 Lemma. Let F : Rm×n → R. Then F is rank-one convex if and only if

F (tA+ (1− t)B) ≤ tF (A) + (1− t)B

for all t ∈ [0, 1] and all A,B ∈ Rm×n such that rank(A−B) ≤ 1.
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Proof. Suppose F is rank-one convex. Let A,B ∈ Rm×n such that rank(A−B) ≤ 1. If rank(A−
B) = 0, then A = B and the result holds trivially. Thus, we may assume that X := A − B has
rank one. Now let t ∈ [0, 1]. Then, since F is rank-one convex, we have

F (tA+ (1− t)B) = F (B + tX) = F (B + (t+ (1− t)0)X)

≤ tF (B +X) + (1− t)F (B) = tF (A) + (1− t)F (B),

as desired.
For the converse, pick A,X ∈ Rm×n with rankX = 1 and let x, y ∈ R, t ∈ [0, 1]. Then, since

rank(A+ xX − (A+ yX)) = rank((x− y)X) ≤ 1, we have

F (A+ (tx+ (1− t)y)X) = F (t(A+ xX) + (1− t)(A+ yX))

≤ tF (A+ xX) + (1− t)F (A+ yX).

The assertion follows.

Proof of Proposition 4.25. The equivalence of (i) and (ii) has been established in Proposition
4.14. In view of Lemma 4.26, the equivalence of (i) and (iii) is clear because if m = 1 or n = 1,
then any A ∈ Rm×n satisfies rankA ≤ 1.

The notions of quasiconvexity and rank-one convexity were originally conceived in 1952, but it
wasn’t until 1992 that we learned that there are continuous rank-one convex functions that are not
quasiconvex. In [Šv], Šverák managed to cleverly construct examples demonstrating this result for
the cases where m ≥ 3 and n ≥ 2.

4.27 Theorem (Šverák, 1992). Let m ≥ 3, n ≥ 2. Then there are continuous rank-one convex
functions F : Rn×n → R that are not quasiconvex.

While we will not carry out the full construction of Šverák’s example, we will outline the idea.
We define the 1-periodic function ψ ∈ C∞(R2; R3) by

ψ(x) :=
1

2π
(sin 2πx1, sin 2πx2, sin 2π(x1 + x2)).

Then

Dψ(x) =

 cos 2πx1 0
0 cos 2πx2

cos 2π(x1 + x2) cos 2π(x1 + x2)

 .

Thus, if we define the subspace M ⊆ R3×2 by

M :=


a 0

0 b
c c

∣∣∣∣∣∣ a, b, c ∈ R

 ,

then we note that Dψ(x) ∈ L for all x ∈ R2. We note that any rank one matrix in M must be a
constant multiple of one of the spanning matrices

E1 :=

1 0
0 0
0 0

 , E2 :=

0 0
0 1
0 0

 , E3 :=

0 0
0 0
1 1


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of M . Thus, if we define

F : L→ R, F

a 0
0 b
c c

 := −abc,

then, for all x, y ∈ R and t ∈ [0, 1], setting A := aE1 + bE2 + cE3 for a, b, c ∈ R, the function F
satisfies

F (A+ (tx+ (1− t)y)E1) = −(a+ (tx+ (1− t)y))bc = −(t(a+ x) + (1− t)(a+ y))bc

= tF (A+ xE1) + (1− t)F (A+ yE1)

and similarly for E2, E3 instead of E1. Hence, F is certainly convex in the direction of any rank-one
matrix in M . However, we also note that since

cos 2π(x1 + x2) = (cos 2πx1)(cos 2πx2)− (sin 2πx1)(sin 2πx2)

and since t 7→ (sin 2πt)(cos 2πt) = (sin 4πt)/2 integrates to 0 over [0, 1], we find that∫
[0,1]2

F (Dψ(x)) dx = −
∫

[0,1]2
(cos 2πx1)2(cos 2πx2)2 dx < 0 = F (0)

so that F does not satisfy the quasiconvexity condition of characterization (v) in Proposition 4.12.
Now, Šverák managed to appropriately modify F to facilitate finding an extension F ′ : R3×2

of F to all of R3×2 which is still rank-one convex and which is still not quasiconvex. This settles
the case for m = 3 and n = 2. For the general cases where m ≥ 3 and n ≥ 2, we consider the
surjection P : Rm×n → R3×2 which maps a matrix A ∈ Rm×n to its upper left 3 × 2-matrix. By
considering the function Rm×3 → R, A 7→ F ′(P (A)) and the 1-periodic function ψ′ ∈ C∞(Rn; Rm),
ψ′(x) = (ψ(x1, x2), 0, . . . , 0), one obtains an example of a continuous rank-one convex function that
is not quasiconvex in Rm×n.

While this settles the cases m ≥ 3, n ≥ 2, this example does not help us in the cases where
m = 2, which for n ≥ 2 is still an open problem. The case m = n = 2 is the case we are interested
in, since this is the setting of the Burkholder functional. Since we want the Burkholder functional
to be quasiconvex, we formulate a conjecture as follows:

4.28 Conjecture (Morrey’s Conjecture). If a continuous map F : R2×2 → R is rank-one convex,
then F is quasiconvex.

In the introduction of [Mo], Morrey himself seems skeptical that quasiconvexity can be cha-
racterized this way. In the book [Mo2] he merely states that it is unknown wether this result is
true or false. There appears to exist evidence both for and against the validity of the conjecture,
an overview of which can be found in [Ba]. For example, one may view the existence of Šverák’s
example as evidence against the conjecture. However, since this example is specific for the cases
where m ≥ 3, one cannot draw any conclusions for the case m = 2. An argument in favor of
the conjecture is the fact that we can find classes of functions where rank-one convexity implies
quasiconvexity. Remarkably, using the Fourier transform one can deduce this result for quadratic
functions. We will present this argument here.
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For A,B ∈ Cm×n, A = (ai,k), B = (bi,k), we write

〈A,B〉 :=
n∑
i=1

m∑
k=1

ai,kbi,k.

4.29 Proposition. Let F : Rm×n → R and suppose F is of the form

F (A) =
n∑

i,j=1

m∑
k,l=1

cj,li,kai,kaj,l = 〈LA,A〉,

where A = (ai,k) and L = (cj,li,k) is a linear map from Rm×n to itself that is symmetric, i.e.,

cj,li,k = ci,kj,l for all i, j ∈ {1, . . . , n}, j, k ∈ {1, . . . ,m}. Then F is quasiconvex if and only if F is
rank-one convex.

Proof. By Proposition 4.18 we need only show that rank-one convexity of F implies quasiconvexity
of F . Suppose F is rank-one convex and let X ∈ Rm×n be a rank-one matrix. Then, since F is
quadratic,

F (X) = F

((
1

2
2 +

1

2
0

)
X

)
≤ 1

2
F (2X) +

1

2
F (0) = 2F (X).

Hence, since also F (0) = 0, we have

F (Y ) ≥ 0 for any Y ∈ Rm×n with rankY ≤ 1. (4.22)

Now let φ ∈ C∞c (Rn; Rm) where φ = (φ1, . . . , φm) and fix ξ ∈ Rn. By taking componentwise
Fourier transforms, we find that

F (Dφ)(ξ) = (2πiξjFφk(ξ))j,k = 2πi(Fφ(ξ)⊗ ξ),

from which we conclude that U, V ∈ Rm×n are rank-one matrices when U and V are respectively
the real and the imaginary parts of F (Dφ)(ξ) ∈ Cm×n. Thus, using the fact that L is symmetric,
we have

〈LF (Dφ)(ξ),F (Dφ)(ξ)〉 = 〈LU,U〉+ 〈LV, V 〉+ i(〈LV,U〉 − 〈LU, V 〉)
= 〈LU,U〉+ 〈LV, V 〉 = F (U) + F (V ) ≥ 0

(4.23)

by (4.22).
Then, since the Fourier transform is a unitary isomorphism of L2(Rn), we have∫

Rn

∂iφk(x)∂jφl(x) dx =

∫
Rn

∂iφk(x)∂jφl(x) dx =

∫
Rn

F (∂iφk)(ξ)F (∂jφl)(ξ) dξ

so that∫
Rn

F (Dφ(x)) dx =

∫
Rn

〈LDφ(x), Dφ(x)〉 dx =

∫
Rn

〈LF (Dφ)(ξ),F (Dφ)(ξ)〉 dξ ≥ 0 (4.24)

by (4.23).
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Now pick A ∈ Rm×n. We note that by the Fundamental Theorem of Calculus we have∫
Rn

〈LDφ(x), A〉dx =
n∑

i,j=1

m∑
k,l=1

cj,li,k

(∫
Rn

∂iφk(x) dx

)
aj,l = 0

so that ∫
Rn

(F (A+Dφ(x))− F (A)) dx =

∫
Rn

(〈LDφ(x), Dφ(x)〉+ 2〈LDφ(x), A〉) dx

=

∫
Rn

〈LDφ(x), Dφ(x)〉 dx ≥ 0

by (4.24). By characterization (ii) in Proposition 4.12 we conclude that F is quasiconvex. The
assertion follows.

An important example of a quadratic function is the determinant function for m = n = 2. Since

d2

dt2
det(A+ tX) = 2 det(X) = 0

for all A,X ∈ R2×2 where rankX = 1, we conclude that both det and −det are rank-one convex.
It then follows from Proposition 4.29 that both det and −det are quasiconvex. In particular, this
implies quasiconvexity of the Burkholder functional in the case p = 2, since B2 = −det.

Functions F : Rm×n → R where both F and −F are quasiconvex are usually called null
Lagrangian, which refers to the fact that all functions must solve the Euler-Lagrange equations
of the integral functional associated to F . One can check that the determinant function in any
dimension is null-Lagrangian, see [Ev, 8.1, Theorem 2].

Finally, we mention partial results with respect to quasiconvexity of the Burkholder functional.
The following result was established in [AIPS]:

4.30 Theorem (Astala, Iwaniec, Prause, Saksman, 2010). Let Ω ⊆ C be open and bounded and
let f ∈ W 1,2

loc (Ω) be a K-quasiconformal mapping. If f extends continuously to Ω with f(Ω) = Ω
and f |∂Ω = z, then ∫

Ω
Bp(Df(z)) dz ≥ −2

p
|Ω| for all p ∈

[
2,

2K

K − 1

]
.

Setting f := z + φ, in the critical case where p = 2K/(K − 1), the distortion inequality

|Df(z)|2 ≤ KJf (z) for a.e. z ∈ Ω,

which amounts to quasiconformality of f , see Proposition 3.6, is equivalent to the inequality Bp(I+
Dφ(z)) ≤ 0 for a.e. z ∈ Ω. Astala, Iwaniec, Prause, and Saksman used this to deduce the folllowing
corollary of Theorem 4.30:

4.31 Corollary. Let Ω ⊆ R2 be open and bounded and let I ∈ R2×2 denote the identity matrix.
Then, under the assumption that φ ∈ C∞c (Ω; R2) satisfies Bp(I + Dφ(x)) ≤ 0 for all x ∈ Ω, we
have ∫

Ω
Bp(I +Dφ(x)) dx ≥

∫
Ω
Bp(I) dx = −2

p
|Ω|.

for all p ∈ [2,∞[.
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While the result does not establish quasiconvexity of Bp at the identity, it does amount to
optimal gradient estimates for quasiconformal mappings as in Theorem 4.30, see [AIPS, Corollary
4.1].

Recall that we established in Proposition 4.3 that for p ∈]1,∞[ the functional E : R2×2 → R
defined by

E(A) = E
p,
‖B‖pL(Lp(C))

−1

‖B‖pL(Lp(C))
+1

(A) =
‖B‖pL(Lp(C)) − 1

‖B‖pL(Lp(C)) + 1
|A|p − |A|p−2 detA

is quasiconvex at 0. Even if Iwaniec’s conjecture is true, this result still does not yield quasiconvexity
of the Burkholder functional at 0. However, there is an interesting application in that existing upper
bounds of ‖B‖pL(Lp(C)) can be combined with this result to prove the following:

4.32 Proposition. Let U ⊆ C be open and let f ∈ W 1,1
loc (U). If f is orientation preserving and

satisfies ∫
U

|Df(z)|2

log(1 + |Df(z)|)
dz <∞,

then Jf ∈ L1
loc(U). Moreover, if u and v denote the respective real and imaginary parts of f , then

we have the integration by parts formula∫
U
φ(z)Jf (z) dz =

∫
U
u(z)(∂xv(z)∂yφ(z)− ∂yv(z)∂yφ(z)) dz

=

∫
U
v(z)(∂xφ(z)∂yu(z)− ∂yφ(z)∂yu(z)) dz

for all φ ∈ C∞c (U).

We discussed in Remark 3.4 that if a map f ∈ W 1,1
loc (U) is orientation preserving and a home-

omorphism onto its image, then Jf ∈ L1
loc(U). However, the integration by parts formula may fail

in this instance. This proposition gives a nice sufficient condition for both the local integrability of
the Jacobian and the integration by parts formula. We refer to [AIM, Theorem 19.3.1] for a proof.

We will conclude this section with a brief discussion summarizing our findings. A summary of
what we have shown is as follows:

Morrey’s Conjecture⇒ Bp is quasiconvex ⇒ Bp is quasiconvex at 0 ⇒ Iwaniec’s Conjecture.

While Morrey’s Conjecture is the oldest conjecture here, it appears to be the least understood. It
is not directly obvious how the notion of quasiconvexity is related to the notion rank-one convexity
when looking at the definitions. Our deduction of the Legendre-Hadamard as a necessary require-
ment for existence of minimizers shows one connection, but a more direct connection is given by the
fact that the Fourier transform of the Jacobian matrix of a function yields a rank-one matrix. As a
matter of fact, this was the key observation in the proof that showed that the notions of rank-one
convexity and quasiconvexity are equivalent for quadratic functions.

The rank-one convexity of the Burkholder functional Bp and its higher dimensional analogues
together with partial results of quasiconvexity of Bp at the identity matrix and known quasicon-
vexity results at 0 of the functionals Ep,γ for large enough γ all suggest that Bp itself may be
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quasiconvex, or at least quasiconvex at 0. Burkholder’s estimates that show the close relation of Bp
with the theory of quasiconformal mappings bear striking similarities with Pichorides’ estimates
with respect to his subharmonic function that eventually lead to finding the operator norms of the
Hilbert transform. It is these ideas that lead the author of this thesis to believe that further study
of the Burkholder functional will eventually lead to an affirmation of Iwaniec’s Conjecture.
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A Appendix: Convolution of Functions

In this appendix we wish to establish some fundamental results regarding the convolution of inte-
grable functions. Our main results will be to prove Young’s inequality for convolutions, see Theorem
A.3 below, and to establish that, for any open U ⊆ Rn, the space C∞c (U) is dense in Lp(U) for all
p ∈ [1,∞[, see Theorem A.11 below.

A.1 Definition. Let f, g : Rn → C be measurable functions so that y 7→ f(y)g(x−y) is integrable
for a.e. x ∈ Rn. Then we define the convolution product f ∗ g : Rn → C of f and g by

(f ∗ g)(x) :=

∫
Rn

f(y)g(x− y) dy.

♦

The change of variables y 7→ x− y shows that for any f, g ∈ L0(Rn) where f ∗ g is well-defined (as
in the definition) we have f ∗ g = g ∗ f .

A.2 Proposition. Let f, g ∈ L0(Rn) so that f ∗ g is well-defined. Then f ∗ g ∈ L0(Rn).

Proof. Since f, g are measurable, there exist sequences (fj)j∈N, (gj)j∈N of simple functions so that
fj → f and gj → g pointwise a.e. as j →∞. Then, for each j ∈ N, the function (x, y) 7→ fj(y)gj(x)
is again a simple function as a consequence of the formula

χB(y)χA(x) = χA×B(x, y),

for measurable sets A,B ⊆ Rn, where χX denotes the indicator function of a measurable set X.
By precomposing with the invertible linear transformation (x, y) 7→ (x− y, y), we conclude that

hj : Rn ×Rn → C, h(x, y) := fj(y)gj(x− y)

is a simple function for all j ∈ N. Since hj(x, y)→ f(y)g(x−y) as j →∞ for a.e. (x, y) ∈ Rn×Rn,
we conclude that (x, y) 7→ f(y)g(x − y) is measurable. By integrating over y, we conclude from
Fubini’s Theorem that f ∗ g is measurable. This proves the desired result.

A.3 Theorem (Young’s inequality for convolutions). Let p, q, r ∈ [1,∞] satisfy

1

p
+ 1 =

1

q
+

1

r
.

Then for f ∈ Lq(Rn), g ∈ Lr(Rn), the convolution f ∗ g is well-defined. Moreover, f ∗ g ∈ Lp(Rn)
and

‖f ∗ g‖p ≤ ‖f‖q‖g‖r.

For the proof we require a lemma.

A.4 Lemma. Let f, g ∈ L1(Rn). Then f ∗ g is well-defined. Moreover, f ∗ g ∈ L1(Rn) and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (A.1)
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Proof. We have∫
Rn

∫
Rn

|f(y)||g(x− y)| dy dx =

∫
Rn

|f(y)|
∫
Rn

|g(x− y)| dx dy =

∫
Rn

|f(y)|dy
∫
Rn

|g(x)| dx

= ‖f‖1‖g‖1
so that y 7→ f(y)g(x−y) must be integrable for a.e. x ∈ Rn. Moreover, this equality implies (A.1),
as desired.

Proof of Young’s inequality for convolutions. First suppose that r =∞. Then we must have
p =∞ and q = 1, in which case we have∫

Rn

|f(y)||g(x− y)|dy ≤ ‖f‖1‖g‖∞

for a.e. x ∈ Rn. The asserted results follow. The case q =∞ is treated analogously.
Now assume r <∞ and q <∞. We fix x ∈ Rn and define h1, h2, h3 by

h1(y) := |f(y)|
q
r′ , h2(y) := |g(x− y)|

r
q′ , h3(y) := |f(y)|

q
p |g(x− y)|

r
p .

Then h1 ∈ Lr
′
(Rn), h2 ∈ Lq

′
(Rn) and, moreover, we have h3 ∈ Lp(Rn) by Lemma A.4. The

relations on p, q, and r imply that we have

q

r′
+
q

p
= 1,

r

p
+
r

q′
= 1,

1

r′
+

1

q′
+

1

p
= 1.

This implies that h1h2hr(y) = |f(y)||g(x− y) and, by Hölder’s inequality for the product of three
functions, ∫

Rn

|f(y)||g(x− y)| dy ≤ ‖h1‖r′‖h2‖p‖h3‖q′ = ‖f‖
q
r′
q ‖g‖

r
q′
r (|f |q ∗ |g|r)(x)

1
p , (A.2)

which is finite for a.e. x ∈ Rn by Lemma A.4, which implies that f ∗ g is well-defined. Moreover,
(A.1) and (A.2) imply that

‖f ∗ g‖p ≤ ‖f‖
q
r′
q ‖g‖

r
q′
r ‖|f |q ∗ |g|r‖

1
p

1 ≤ ‖f‖
q
r′
q ‖g‖

r
q′
r ‖f‖

q
p
q ‖g‖

r
p
r = ‖f‖q‖g‖r.

The assertion follows.

A.5 Corollary (Minkowski’s inequality for convolutions). Let p ∈ [1,∞]. If f ∈ L1(Rn) and
g ∈ Lp(Rn) then f ∗ g is well-defined. Moreover, we have f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

A.6 Definition. A family of functions (fε)ε∈R+ in L1(Rn) is called an approximate identity if it
is uniformly bounded in L1(R) and satisfies∫

Rn

fε(x) dx = 1

for all ε ∈ R+ and

lim
ε↓0

∫
|x|>r
|fε(x)| dx = 0

for all r ∈ R+. ♦
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A.7 Theorem. Let (fε)ε∈R+ be an approximate identity and p ∈ [1,∞[. If g ∈ Lp(Rn), then

lim
ε↓0

fε ∗ g → g (A.3)

in Lp(Rn). Moreover, for any g that is continuous on a compact subset K ⊆ Rn, the limit (A.3)
holds uniformly on K. If g ∈ C0(Rn) ⊆ L∞(Rn), then the limit (A.3) holds in L∞(Rn).

For a proof, see [Gr, Theorem 1.2.19, Remark 1.2.22].

A.8 Proposition. Let f ∈ L1(Rn) with∫
Rn

f(x) dx = 1.

For each ε ∈ R+ we define fε ∈ L1(Rn) by fε(x) := ε−nf(x/ε). Then (fε)ε∈R+ is an approximate
identity.

Proof. Note that by the change of variables x 7→ εx we have∫
Rn

|fε(x)| dx =
1

εn

∫
Rn

∣∣∣f (x
ε

)∣∣∣ dx =

∫
Rn

|f(x)|dx = ‖f‖1

so that indeed fε ∈ L1(Rn) for all ε ∈ R+ and the family (fε)ε∈R+ is uniformly bounded by ‖f‖1
in L1(Rn). A similar calculation shows that fε integrates to 1 for all ε ∈ R+, since f does.

Now let r ∈ R+. Then, for all ε ∈ R+ we denote by χr/ε the indicator function of the
complement in Rn of the closed ball of radius r/ε centered at 0. Since this indicator function
converges pointwise to 0 as ε ↓ 0, we conclude from Lebesgue’s Dominated Convergence Theorem
that ∫

|x|>r
|fε(x)|dx =

∫
|εx|>r

|f(x)| dx =

∫
Rn

χr/ε(x)|f(x)|dx→ 0 as ε ↓ 0.

Hence, the family (fε)ε∈R+ satisfies all the properties of an approximate identity.

A.9 Definition. Let U ⊆ Rn be open and let f ∈ L0(U). We define the support supp f of f as
the complement in U of the set of all points in U that have an open neighborhood V ⊆ U so that
f(x) = 0 for a.e. x ∈ V .

For p ∈ [1,∞] we denote by Lpc(U) the set of those f ∈ Lp(U) where supp f is compact. ♦

Since the supports of two functions that are equal almost everywhere coincide, the notion of support
is well-defined on the set of equivalence classes L0(U). It follows from the definition that supp f is
closed for any f ∈ L0(U).

We wish to define an approximate identity consisting of compactly supported smooth functions.
For this we recall that the function ψ : R→ R defined by

ψ(t) :=

e
− 1
t if t > 0

0 if t ≤ 0

lies in C∞(Rn). See also [DK, Lemma 2.7].
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A.10 Definition. We define a function φ ∈ C∞c (Rn) by

φ(x) := cψ(1− |x|2) =

ce
1

|x|2−1 if |x| < 1

0 if |x| ≥ 1,

where c ∈ R+ is chosen so that φ integrates to 1. For ε ∈ R+ we then set φε(x) := ε−nφ(x/ε).
The family (φε)ε∈R+ is known as the standard mollifier. ♦

It follows from Proposition A.8 that the standard mollifier is an approximate identity. We note
that for all ε ∈ R+ we have that φε is non-negative and φε(x) 6= 0 if and only if |x| < ε.

The standard mollifier will be used to prove the following result:

A.11 Theorem. Let U ⊆ Rn be open and let p ∈ [1,∞[. Then C∞c (U) is dense in Lp(U).

Note that this result does not hold for L∞(U), since the uniform limit of continuous functions is
again a continuous function. In particular, the Stone-Weierstrass Theorem implies that the closure
in L∞(U) of C∞c (U) is C0(U).

For the proof, we require several lemmas. For two sets A,B ⊆ Rn we write A + B for the set
of those elements in Rn that can be written as x+ y with x ∈ A and y ∈ B.

A.12 Lemma. For any f, g ∈ L0(Rn) where f∗g is well-defined we have supp(f∗g) ⊆ supp f + supp g.

Proof. Let x ∈ Rn and y ∈ Rn so that y /∈ supp f ∩ ({x} − supp g). Then either y /∈ supp f
or x − y /∈ supp g. This implies that y /∈ supphx, where hx ∈ L1(Rn) is defined by hx(y′) :=
f(y′)g(x− y′). Hence, supphx ⊆ supp f ∩ ({x} − supp g).

Now suppose x /∈ supp f + supp g. Then supp f ∩ ({x} − supp g) = ∅, meaning that

(f ∗ g)(x) =

∫
Rn

hx(y) dy =

∫
supp f∩({x}−supp g)

hx(y) dy = 0.

Thus, if x /∈ supp f + supp g, then there is some open neighborhood V of x so that V ∩supp f + supp g =
∅ and hence so that f ∗ g vanishes on V . This implies that x /∈ supp(f ∗ g). By contraposition, this
proves that supp(f ∗ g) ⊆ supp f + supp g, as desired.

A.13 Lemma. Let p ∈ [1,∞]. If f ∈ Lpc(Rn) and g ∈ C∞c (Rn), then f ∗ g ∈ C∞c (Rn).

Proof. Since Lp(Rn) ⊆ S ′(Rn) and C∞c (Rn) ⊆ S(Rn), it is a consequence of Proposition B.41
below that f ∗ g ∈ C∞(Rn). Hence, it suffices to check that f ∗ g has compact support. By Lemma
A.12 we have supp(f ∗ g) ⊆ supp f + supp g, so it suffices to check that the sum of two compact
sets is again compact. Let K,L ⊆ Rn be compact. Since K and L are bounded, so is K + L. It
remains to show that K+L is closed to conclude that K+L is compact. Let (xj)j∈N be a sequence
in K + L with limit x ∈ Rn. Then we can find sequences (kj)j∈N, (lj)j∈N so that xj = kj + lj for
all j ∈ N. Since K is compact, the sequence (kj)j∈N has a convergent subsequence (kjm)m∈N with
limit k ∈ K. But then

lim
m→∞

ljm = lim
m→∞

xjm − kjm = x− k.

Since L is closed, we have x− k ∈ L. Hence, x = k+ l ∈ K +L. This proves that K +L is closed.
The assertion follows.
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A.14 Lemma. Let U ⊆ Rn be open and let p ∈ [1,∞[. Then Lpc(U) is dense in Lp(U).

Proof. Let f ∈ Lp(U) and choose a sequence of compact subsets (Kj)j∈N of U so that
⋃
j∈NKj =

U . For each j ∈ N we denote by χj ∈ Lpc(U) the indicator function of Kj . Then, by Lebesgue’s
Dominated Convergence Theorem, χjf → f as j → ∞ for any f ∈ Lp(U). Since χjf ∈ Lpc(U) for
all j ∈ N, the assertion follows.

Proof of Theorem A.11. Let f ∈ Lpc(U). Since K := supp f ⊆ U is compact and disjoint from
the closed set F := Rn\U , we have

δ := d(K,F ) := inf
x∈K, y∈F

|x− y| > 0.

Let ε ≤ δ/2 ∈ R+. We may view f as an element of Lp(Rn) by extending it by 0 outside of U .
Then, by Lemma A.13, we have f ∗ φε ∈ C∞c (Rn), where (φε)ε∈R+ is the standard mollifier.

Then, by Lemma A.12, we have

supp(f ∗ φε) ⊆ K + suppφε = K +Bε,

where Bε denotes the closed ball of radius ε around 0. We claim that K + Bε ⊆ U . Indeed, let
x ∈ K, y ∈ Bε, z ∈ F . Then

|x+ y − z| ≥ |x− z| − |y| ≥ δ − ε =
δ

2
> 0.

As z was arbitrary, this implies that x + y has a positive distance to F , meaning that x + y ∈ U .
This proves the claim and thus that supp(f ∗ g) ⊆ U . We conclude that the restriction of f ∗ φε to
U lies in C∞c (U).

But then it follows from Lemma A.7 that(∫
U
|f(x)− (f ∗ φε)(x)|p dx

) 1
p

=

(∫
Rn

|f(x)− (f ∗ φε)(x)|p dx

) 1
p

→ 0 as ε ↓ 0.

This implies that f ∈ C∞c (U), where the closure is taken in Lp(U). We conclude that Lpc(U) ⊆
C∞c (U). But then it follows from Lemma A.14 that

Lp(U) = Lpc(U) ⊆ C∞c (U) ⊆ Lp(U).

This proves that C∞c (U) = Lp(U), proving the assertion.
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B Appendix: Distribution Theory and the Fourier Transform

This appendix will, by no means, be a comprehensive disambiguation of the theory of distributions.
However, we will provide the definitions and results required for the main text. In particular, the
first part of this appendix can be used as a supplement for Section 1. We refer the reader to [DK]
and [Gru] for a more complete overview of the theory.

Throughout this appendix we let U be a non-empty open subset of Rn. For each compact
K ⊆ U we define

C∞K (U) := {φ ∈ C∞(U) | suppφ ⊆ K},

where suppφ denotes the complement of the largest open set on which φ vanishes, i.e.,

suppφ := {x ∈ Rn | φ(x) 6= 0}.

This space becomes a locally convex Hausdorff space when equipped with the countable family of
seminorms (ρK,k)k∈Z≥0

defined by

ρK,k(φ) := max
|α|≤k

sup
x∈K
|∂αφ(x)|.

Here we are using the multi-index notation

α = (α1, . . . , αn) ∈ (Z≥0)n, |α| =
n∑
j=1

αj , ∂α =
n∏
j=1

∂
αj
j =

n∏
j=1

∂αj

∂x
αj
j

.

Since any sequence in C∞K (U) that is a Cauchy sequence with respect to all seminorms converges
to a unique limit in C∞K (U), this space is actually a Fréchet space.

For every pair K,L of compact subsets of U such that K ⊆ L, we obtain a natural continuous
injection

ιKL : C∞K (U)→ C∞L (U), ιKL(φ) := φ.

Hence, the family {C∞K (U) | K ⊆ U compact} forms a direct system over the directed set of
compact subsets of U , partially ordered by inclusion. We may then form the direct limit

C∞c (U) := lim−→C∞K (U) =
⋃

K⊆U compact

C∞K (U).

This comes equipped with the largest topology so that all inclusion mappings

ιK : C∞K (U) ↪→ C∞c (U)

are continuous. Hence, a functional u : C∞c (U)→ C is continuous if and only if u◦ιK : C∞K (U)→ C
is continuous for all compactK ⊆ U . Sometimes the space of compactly supported smooth functions
with this topology is denoted by D(U).

This space is plenty rich. In particular, it contains cutoff functions that are equal to 1 on a
given compact set.

B.1 Lemma. Let K ⊆ U be compact. Then there is a function χ ∈ C∞c (U) satisfying χ(U) ⊆ [0, 1]
and χ(x) = 1 for all x in an open neighborhood of K.
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We refer to [DK, Corollary 2.16] for a proof. Inductively one can show the existence of partitions
of unity.

B.2 Lemma. Let K ⊆ U be compact and let {Uj}Jj=1 be a finite collection of open subsets of U so

that K ⊆
⋃J
j=1 Uj. Then there exists a partition of unity {χj}Jj=1 subordinate to the cover {Uj}Jj=1,

i.e., functions {χj}Jj=1 ⊆ C∞c (Rn) that take values in [0, 1] such that
∑J

j=1 χj(x) = 1 for all x in
an open neighborhood of K and suppχj ⊆ Uj for all j ∈ {1, . . . , J}.

We will freely use these constructions throughout the text.

B.3 Definition. We denote byD′(U) the space of all continuous linear functionals u : C∞c (U)→ C.
Such a functional u is called a distribution in U . We give D′(U) the structure of a locally convex
Hausdorff space by equipping it with the family of seminorms (u 7→ |u(φ)|), indexed over all
φ ∈ C∞c (U). ♦

For a distribution u ∈ D′(U) we have different notational conventions when applying u to φ ∈
C∞c (U), i.e., we will write either u(φ) or 〈u, φ〉.

The following proposition is an immediate consequence of the definitions.

B.4 Proposition. A linear functional u : C∞c (U)→ C is a distribution in U if and only if for all
compact K ⊆ U there is a c ∈ R+ and a k ∈ Z≥0 so that

|u(φ)| ≤ cρK,k(φ)

for all φ ∈ C∞K (U).

In a way, distributions can be seen as generalized functions. We will make this assertion precise.
We say that an open set V ⊆ U is relatively compact in U , if V ⊆ U and V is compact. As in

Section 1, we define the space L1
loc(U) of locally integrable functions in U by

L1
loc(U) := {f ∈ L0(U) | f |V ∈ L1(V ) for all relatively compact V ⊆ U}.

As an immediate consequence of Lemma 1.4 we have the following result:

B.5 Lemma. Let f ∈ L0(U). Then f ∈ L1
loc(U) if and only if φf ∈ L1(U) for all φ ∈ C∞c (U).

This allows us to give L1
loc(U) the structure of a locally convex Hausdorff space by equipping it

with the seminorms
‖f‖φ := ‖φf‖1

for φ ∈ C∞c (U). To verify that this space is Hausdorff, we would need to check that ‖f‖φ = 0 for
all φ ∈ C∞c (U) implies that f = 0 in L1

loc(U). As the arguments needed to show this use common
constructions, we briefly explain how this can be done. Choose a sequence of compact subsets
(Kj)j∈N of U so that

⋃
j∈NKj = U . For each j ∈ N we pick a χj ∈ C∞c (U) so that χj(x) = 1 for

all x ∈ Kj . Then, since ‖f‖χj = 0, it follows that f vanishes a.e. on Kj . Since this holds for each
j ∈ N, it follows from countable subadditivity of the Lebesgue measure that f = 0 a.e., as desired.

Lemma B.5 serves as a motivation for the following result:
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B.6 Proposition. We define ι : L1
loc(U)→ D′(U) by

ι(f)(φ) :=

∫
U
f(x)φ(x) dx.

Then ι is a well-defined continuous linear injective map.

Proof. Linearity of ι and of ι(f) are clear. To see why ι(f) is a distribution in U , we pick a
compact K ⊆ U and let φ ∈ C∞K (U). Then

|ι(f)(φ)| ≤
∫
U
|f(x)φ(x)|dx =

∫
K
|f(x)φ(x)| dx ≤ ρK,0(φ)

∫
K
|f(x)| dx. (B.1)

Thus, it follows from Proposition B.4 that ι(f) is indeed a distribution in U .
To see why ι is continuous, we note that the first inequality in (B.1) reads |ι(f)(φ)| ≤ ‖f‖φ,

which is valid for all φ ∈ C∞c (U).
It remains to check that ι is injective. Pick f ∈ L1

loc(U) so that ι(f) = 0. For any ψ ∈ C∞c (U)
we have ψf ∈ L1(U) by Lemma B.5. By extending ψf by 0 outside of the support of ψ, we may
view it as an element of L1(Rn). Let (φε)ε∈R+ denote the standard mollifier, see Definition A.10.
Then

(ψf ∗ φε)(x) =

∫
U
ψ(y)f(y)φε(x− y) dy = ι(f)(y 7→ ψ(y)φ(x− y)) = 0

for all x ∈ Rn. By Lemma A.7, the function ψf ∗ φε converges to ψf in L1(Rn) as ε ↓ 0 so that

‖f‖ψ = ‖ψf‖1 = lim
ε↓0
‖ψf ∗ φε‖1 = 0.

As ψ was arbitrary, we conclude that f = 0.

We will use the convention that whenever we say that u ∈ D′(U) is a function, we mean that
there is some f ∈ L1

loc(U) so that u = ι(f). We will often drop the ι and simply write f ∈ D′(U)
when f ∈ L1

loc(U).
We remark that the space L1

loc(U) is rather large. For example, by Hölder’s inequality it
continuously contains Lp(U) for all p ∈ [1,∞] while it also contains C∞c (U) itself and other spaces
of continuous functions. Even though functions in these spaces are not all differentiable in the
classical sense, we will be generalizing the notion of differentiability to all distributions.

B.7 Definition. Let u ∈ D′(U) and let j ∈ {1, . . . , n}. Then we define ∂ju ∈ D′(U) by

∂ju(φ) := −u(∂jφ).

We call this a distributional derivative of u. ♦

We note that that distributional derivatives of continuously differentiable functions coincides with
the classical derivatives by the partial integration formula. To see that the definition of distribu-
tional derivatives makes sense, we should check that ∂ju does indeed define a distribution in U for
u ∈ D′(U) and j ∈ {1, . . . , n}. Pick a compact K ⊆ U and pick c ∈ R+, k ∈ Z≥0 so that

|u(φ)| ≤ cρK,k(φ)
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for all φ ∈ C∞K (U). Then, since ∂jφ ∈ C∞K (U) for any φ ∈ C∞K (U) and ρK,k(∂jφ) ≤ ρK,k+1(φ), we
find that

|∂ju(φ)| = |u(∂jφ)| ≤ cρK,k+1(φ)

for all φ ∈ C∞K (U). We conclude that indeed ∂ju ∈ D′(U).

B.8 Definition. Let u ∈ D′(U) then we define its support as the complement in U of the set of
those points in U for which there exists an open neighborhood V ⊆ U so that whenever φ ∈ C∞c (U)
satisfies suppφ ⊆ V , we have u(φ) = 0. ♦

To determine the support of a distribution, we usually use the following characterization:

B.9 Proposition. Let u ∈ D′(U). Then a closed set F ⊆ U satisfies suppu ⊆ F if and only if for
all φ ∈ C∞c (U) satisfying suppφ ∩ F = ∅, we have u(φ) = 0.

Proof. Suppose a closed set F ⊆ U satisfies suppu ⊆ F and suppose φ ∈ C∞c (U) satisfies suppφ∩
F = ∅. Since suppφ is a compact set that is contained in the open set U\F , by the definition of
suppu we can find a finite cover (Vj)

J
j=1 of suppφ of subsets of U\F so that whenever ψ ∈ C∞c (U)

satisfies suppψ ⊆ Vj for some j ∈ {1, . . . , J}, we have u(ψ) = 0.
Pick a partition of unity (ψj)

J
j=1 in C∞c (U) subordinate to the cover (Vj)

J
j=1. Then, for each

j ∈ {1, . . . , J}, we have suppψjφ ⊆ Vj . Hence,

u(φ) =
J∑
j=1

u(ψjφ) = 0,

as desired.
For the converse, suppose F ⊆ U satisfies the property that for all φ ∈ C∞c (U) satisfying

suppφ ∩ F = ∅, we have u(φ) = 0. Pick x ∈ U\F . Setting V := U\F , we note that whenever
φ ∈ C∞c (U) satisfies suppφ ⊆ V , we have suppφ∩ F = ∅. Hence, for such φ we have u(φ) = 0. By
the definition of the support, we conclude that x ∈ U\ suppu. Thus, by contraposition, suppu ⊆ F ,
as desired.

Note in particular that this proposition implies that for u ∈ D′(U) we have u = 0 if and only if
suppu = ∅.

We should check that if f ∈ L1
loc(U), then its support as a function coincides with its support

as a distribution.

B.10 Lemma. Suppose f ∈ L1
loc(U). Then supp f = supp ι(f), where ι is defined as in Proposi-

tion B.6.

Proof. If x ∈ U\ supp f , then there is some open neighborhood V ⊆ U of x so that f vanishes a.e.
on V . This implies that for all φ ∈ C∞c (U) with suppφ ⊆ V we have

〈f, φ〉 =

∫
U
f(x)φ(x) dx =

∫
V
f(x)φ(x) dx = 0

so that x ∈ U\ supp ι(f). We conclude that supp ι(f) ⊆ supp f .
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For the converse, suppose x /∈ supp ι(f). Then there is some open neighborhood V ⊆ U of x so
that for all φ ∈ C∞c (U) with suppφ ⊆ V we have 〈f, φ〉 = 0. But this implies that f |V ∈ L1

loc(V ) is
the zero distribution in D′(V ). Since L1

loc(V ) injects into D′(V ), we conclude that f vanishes a.e.
in V . Thus, x ∈ U\ supp f . This proves the converse inclusion supp f ⊆ supp ι(f), proving that
supp f = supp ι(f), as desired.

The following example is used to characterize distributions supported in points.

B.11 Example. We assume that 0 ∈ U . Then we can define the Dirac delta distribution δ ∈ D′(U)
by δ(φ) := φ(0). To see why this is a distribution, we note that for all compact K ⊆ U we have

|δ(φ)| = |φ(0)| ≤ ρK,0(φ)

for all φ ∈ C∞K (U).

We claim that δ /∈ L1
loc(U). Indeed, if it were given by a function f ∈ L1

loc(U), then for all
φ ∈ C∞c (U) with 0 /∈ suppφ, we have

0 = φ(0) = δ(φ) =

∫
U
f(x)φ(x) dx.

This implies that f vanishes a.e. in U\{0}. But then f vanishes a.e. in U . Picking any φ ∈ C∞c (U)
with φ(0) = 1 yields a contradiction, since then

1 = δ(φ) =

∫
U
f(x)φ(x) dx = 0.

This proves the claim.

Next, we will show that supp δ = {0}. In the proof of the above claim we have shown that
supp δ ⊆ {0}. For the converse, let V be any open neighborhood of 0. Then we can pick a
φ ∈ C∞c (U) with suppφ ⊆ V and φ(0) = 1. Since δ(φ) 6= 0, we conclude that 0 ∈ supp δ, proving
the result. ♦

B.12 Theorem. Suppose 0 ∈ U and u ∈ D′(U) satisfies suppu ⊆ {0}. Then there is a k ∈ Z≥0

and there exist constants cα ∈ C for all multi-indices α with |α| ≤ k so that

u =
∑
|α|≤k

cα∂
αδ.

A proof may be found in [DK, Theorem 8.10] and is based on the Taylor expansion of smooth
functions.

Before we proceed we record a general result for the product of smooth functions. For a multi-
index α we write α! :=

∏n
j=1 αj !. For every pair of multi-indices α and β we can write β ≤ α to

mean that βj ≤ αj for all j ∈ {1, . . . , n}. Then, if β ≤ α, we may define the binomial coefficient(
α

β

)
:=

α!

β!(α− β)!
.
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Then, for any φ, ψ ∈ C∞(U) and multi-index α, we have the Leibniz rule for differentiation

∂α(φψ) =
∑
β≤α

(
α

β

)
∂βφ∂α−βψ.

One can prove this using the Leibniz rule for the partial differential operators ∂j , j ∈ {1, . . . , n}
and induction.

B.13 Definition. Let u ∈ D′(U) and ψ ∈ C∞(U). Then we define ψu ∈ D′(U) by

ψu(φ) := u(ψφ).

♦

Again, we should check that this definition makes sense by showing that ψu does indeed define a
distribution for u ∈ D′(U) and ψ ∈ C∞(U). Let K ⊆ U be compact and let φ ∈ C∞K (U). Pick
c ∈ R+ and k ∈ Z≥0 so that |u(φ)| ≤ cρK,k(φ). Then

|ψu(φ)| = |u(ψφ)| ≤ cρK,k(ψφ). (B.2)

By the Leibniz rule for differentiation we have

∂α(ψφ) =
∑
β≤α

(
α

β

)
∂βψ∂α−βφ

so that

sup
x∈K
|∂α(ψφ)(x)| ≤

∑
β≤α

(
α

β

)
sup
x∈K
|∂βψ(x)|ρK,k(φ)

for |α| ≤ k. Hence, there is a constant c′ ∈ R+ so that

ρK,k(ψφ) ≤ c′ρK,k(φ).

By combining this with (B.2), we have indeed established that ψu ∈ D′(U).
The product of a smooth function and a distribution still satisfy the Leibniz rule for differenti-

ation.

B.14 Lemma. Let φ ∈ C∞(U) and u ∈ D′(U). Then for each multi-index α we have

∂α(φu) =
∑
β≤α

(
α

β

)
∂βφ∂α−βu.

Proof. Let j ∈ {1, . . . , n} and let ψ ∈ C∞c (U). Then ∂j(φψ) = (∂jφ)ψ + φ∂jψ. Hence,

∂j(φu)(ψ) = −u(φ∂jψ) = u((∂jφ)ψ)− u(∂j(φψ)) = (∂jφ)u(ψ) + φ∂ju(ψ)

so that ∂j(φu) = (∂jφ)u+ φ∂ju. The general result now follows by induction.
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B.15 Proposition. Suppose u ∈ D′(U) satisfies ψu = 0 for some ψ ∈ C∞(U). Then

suppu ⊆ {x ∈ U | ψ(x) = 0}.

Proof. Suppose ψ(x) 6= 0 for some x ∈ U . By continuity of ψ there is some neighborhood V ⊆ U
of x so that ψ is nowhere vanishing on V . Pick φ ∈ C∞c (U) with suppφ ⊆ V . Then φ/ψ is a
well-defined element of C∞c (U), if it is understood to vanish outside of V . Then

u(φ) = ψu

(
φ

ψ

)
= 0.

We conclude that x /∈ suppu. The assertion follows.

We will prove a variation of Theorem B.12.

B.16 Proposition. Suppose u ∈ D′(Rn) satisfies xju = 0 for all j ∈ {1, . . . , n}. Then there is
some constant c ∈ C so that u = cδ.

Proof. By Proposition B.15 we have

suppu ⊆
n⋂
j=1

{x ∈ Rn | xj = 0} = {0}.

Now pick χ ∈ C∞c (Rn) with χ(x) = 1 for x in a neighborhood of 0 and fix φ ∈ C∞c (Rn). Then
(1− χ(x))φ(x) = 0 in a neighborhood of 0 so that supp((1− χ)φ) ∩ suppu = ∅. Thus, Proposition
B.9 implies that

u(φ)− u(χφ) = u((1− χ)φ) = 0. (B.3)

Now write

φ(x)− φ(0) =

∫ 1

0
∂tφ(tx) dt =

n∑
j=1

xj

∫ 1

0
∂jφ(tx) dt

so that

φ(x) = φ(0) +
n∑
j=1

xjφj(x)

for certain φj ∈ C∞(Rn). But then, by (B.3), we have

u(φ) = u(χφ) = φ(0)u(χ) +

n∑
j=1

xju(χφj) = u(χ)δ(φ).

This proves the assertion with c = u(χ).

If we assume that U is invariant under dilations, i.e., tU ⊆ U for all t ∈ R+, then, for any
f ∈ L0(U) and any t ∈ R+, we can define the dilated function dtf ∈ L0(U) by dtf(x) := f(tx). By
transposition, we can define dilated distributions.
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B.17 Definition. Suppose that U is invariant under dilations. For u ∈ D′(U) we define dtu ∈
D′(U) by

dtu(φ) := t−nu(dt−1φ).

Moreover, we say that u ∈ D′(U) is homogeneous of degree a ∈ C if

dtu = tau

for all t ∈ R+. ♦

It is straightforward to check that dtu is again a distribution for u ∈ D′(U) and t ∈ R+ and that,
for f ∈ L1

loc(U), both dt applied to f as a function and dt applied to f as a distribution yield the
same function so that there is no ambiguity in the notation. For such f , being homogeneous at
a ∈ C just means that for all t ∈ R+ we have

f(tx) = taf(x)

for a.e. x ∈ U . Note that typical examples of open U ⊆ Rn that are invariant under dilations are
Rn\{0} and Rn itself.

B.18 Example. The Dirac delta distribution δ ∈ D′(Rn) is homogeneous of degree −n. This is
actually a special case of the following result. Let α be a multi-index and let t ∈ R+. Then

dt(∂
αδ)(φ) = t−n(−1)|α|∂α(x 7→ φ(t−1x))(0) = t−n−|α|(−1)|α|∂αφ(0) = t−n−|α|∂αδ(φ).

Hence, ∂αδ is homogeneous of degree −n− |α|.
As another example we consider the function x 7→ |x|−s in Rn for s ∈ R. Using spherical coordinates
one can check that this function is locally integrable in Rn precisely when s < n. Using a change
of variables, we find that for all t ∈ R+ and all φ ∈ C∞c (Rn) we have

〈dt|x|−s, φ〉 = t−n
∫
Rn

φ(t−1x)

|x|s
dx =

∫
Rn

φ(x)

|tx|s
dx = t−s〈|x|−s, φ〉

so that |x|−s is homogeneous of degree −s. ♦

As a preparation for defining the Fourier transform, we need to define a certain class of distri-
butions known as tempered distributions. For x ∈ Rn, we write xα :=

∏n
j=1 x

αj
j .

B.19 Definition. We define the Schwartz space S(Rn) by the set of those φ ∈ C∞(Rn) such that
for all m ∈ Z≥0 and all multi-indices α the function x 7→ (1 + |x|)m∂αφ(x) is bounded in Rn. This
space is given the structure of a locally convex Hausdorff space by equipping it with the family of
seminorms (νm,k)m,k∈Z≥0

defined by

νm,k(φ) := max
|α|≤k

sup
x∈Rn

(1 + |x|)m|∂αφ(x)|.

The elements of the continuous dual S ′(Rn) of S(Rn) are called tempered distributions. We equip
S ′(Rn) with the weak-∗ topology. ♦
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We note that one can check that the Schwartz space is a Fréchet space. A typical example of
a Schwartz function is x 7→ e−|x|

2
, since this function and its derivatives vanish more quickly at

infinity than polynomials. However, this also means that x 7→ e|x|
2

cannot define a tempered
distribution as pairing off these two functions would results in a non-finite integral. However, we
will later show that S ′(Rn) contains the spaces Lp(Rn) for p ∈ [1,∞] as well as the so-called space
of smooth functions of moderate growth.

We note that for any m,m′, k, k′ ∈ Z≥0 and any φ ∈ S(Rn) we find that both νm,k(φ) and
νm′,k′(φ) are majorized by νmax(m,m′),max(k,k′)(φ). This implies the following:

B.20 Proposition. Let u : S(Rn)→ C be a linear functional. Then the following are equivalent:

(i) u is a tempered distribution;

(ii) for a finite collection (νj)
J
j=1 in (νm,k)m,k∈Z≥0

there are constants (cj)
J
j=1 in R+ so that

|u(φ)| ≤
J∑
j=1

cjνj(φ)

for all φ ∈ S(Rn);

(iii) there are m, k ∈ Z≥0 and a c ∈ R+ so that

|u(φ)| ≤ cνm,k(φ)

for all φ ∈ S(Rn).

The following lemma shows, in particular, why the space of Schwartz functions is a natural
domain for the Fourier transform, which is defined below.

B.21 Lemma. Let β be a multi-index. The maps

φ 7→ xβφ, φ 7→ ∂βφ

are continuous linear maps from S(Rn) to itself. More precisely, there is a constant c ∈ R+ so that

νm,k(x
βφ) ≤ cνm+|β|,k(φ), νm,k(∂

βφ) ≤ νm,k+|β|(φ)

for all m, k ∈ Z≥0.

Proof. Note that for any x ∈ Rn we have

|xβ| ≤ |x||β| ≤ (1 + |x|)|β|.

Moreover, for any multi-index γ we have

|∂γxβ| =
n∏
j=1

|∂γjj x
βj
j | ≤ c

′
n∏
j=1

(1 + |x|)βj = c(1 + |x|)|β|
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for some c′ ∈ R+. Thus, by the Leibniz rule for differentiation, there is a c′′ ∈ R+ so that

|∂α(xβφ)(x)| ≤ c′′
∑
γ≤α
|∂γxα||∂α−γφ(x)| ≤ c′′c′(1 + |x|)|β|

∑
γ≤α
||∂α−γφ(x)|

for all x ∈ Rn. Hence, for all m, k ∈ Z≥0 there is some c ∈ R+ so that for all x ∈ Rn we have

(1 + |x|)m|∂α(xβφ)(x)| ≤ cνm+|β|,k(φ)

whenever |α| ≤ k. We conclude that

νm,k(x
βφ) ≤ c′′νm+|β|,k(φ),

proving the assertion about φ 7→ xβφ. The assertion about φ 7→ ∂βφ is straightforward. The result
follows.

Next, we will show how the space of tempered distributions can be seen as a subspace of the
space of distributions in Rn. We first observe that we have C∞c (Rn) ⊆ S(Rn), since any smooth
function that vanishes outside of a bounded set surely vanishes quicker than any polynomial at
infinity.

B.22 Lemma. The inclusion C∞c (Rn) ↪→ S(Rn) is continuous. Moreover, the space C∞c (Rn) is
dense in S(Rn).

Proof. For the first assertion, we note that for any compact K ⊆ Rn and any φ ∈ C∞K (Rn) we
have

νm,k(φ) ≤ sup
x∈K

(1 + |x|)mρK,k(φ).

This proves continuity of the inclusion.
For the second assertion, let φ ∈ S(Rn) be arbitrary. Pick χ ∈ C∞c (Rn) so that χ(Rn) ⊆ [0, 1]

and χ(x) = 1 whenever |x| < 1. Then, for t ∈ R+, we define φt := (dtχ)φ ∈ C∞c (Rn). It suffices to
show that limt↓0 φt = φ in S(Rn).

For any multi-index α we have, by the Leibniz rule for differentiation and the chain rule,

∂αφt(x) =
∑
β≤α

(
α

β

)
t|β|∂βχ(tx)∂α−βφ(x)

for x ∈ Rn and t ∈ R+. Hence, there is some c ∈ R+ so that

|∂α(φt − φ)(x)| ≤ |(χ(tx)− 1)∂αφ(x)|+ c
∑

06=β≤α
t|β||∂α−βφ(x)|.

Since χ(tx)− 1 = 0 for |x| < 1/t, we conclude that for t < 1 there is a c′ ∈ R+ so that

(1 + |x|)m|∂α(φt − φ)(x)| ≤ max
|α|≤k

sup
|x|≥1/t

(1 + |x|)m|∂αφ(x)|+ c′tνm,k(φ) (B.4)

for |α| ≤ k for all m, k ∈ Z≥0. We note that

(1 + |x|)m|∂αφ(x)| ≤ (1 + |x|)−1νm+1,k(φ)→ 0 as |x| → ∞
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for m ∈ Z≥0 and |α| ≤ k ∈ Z≥0. Thus, we may conclude from (B.4) that

νm,k(φt − φ) ≤ max
|α|≤k

sup
|x|≥1/t

(1 + |x|)m|∂αφ(x)|+ c′tνm,k(φ)→ 0 as t ↓ 0

for all m, k ∈ Z≥0. The assertion follows.

By this lemma we see that the restriction mapping

S ′(Rn)→ D′(Rn), u 7→ u|C∞c (Rn)

is an injective continuous map, where well-definedness follows from continuity of the inclusion
C∞c (Rn) ↪→ S(Rn) and injectivity follows from density of C∞c (Rn) in S(Rn). We will usually
simply write S ′(Rn) ⊆ D′(Rn), where the identification is implied to be given by restriction.
Similarly we will simply call an element of D′(U) a tempered distribution if it is actually the
restriction of an element of S ′(Rn). An example would be the Dirac delta distribution δ ∈ D′(U).
Since

|δ(φ)| = |φ(0)| ≤ ν0,0(φ)

for any φ ∈ C∞c (U), we conclude that we actually have δ ∈ S ′(Rn). As a matter of fact, one can
show that any compactly supported distribution is a tempered distribution. A discussion on this
can be found in [DK, p. 189].

B.23 Proposition. Let p ∈ [1,∞]. Then S(Rn) ⊆ Lp(Rn), where the inclusion is continuous.
Furthermore, the map ι : Lp(Rn)→ S ′(Rn) defined by

ι(f)(φ) :=

∫
Rn

f(x)φ(x) dx

is a well-defined continuous injection.

By this proposition we have the continuous inclusions

C∞c (Rn) ⊆ S(Rn) ⊆ Lp(Rn) ⊆ S ′(Rn) ⊆ D′(Rn)

for all p ∈ [1,∞]. For the proof we will use an auxiliary lemma.

B.24 Lemma. Let s ∈ R. We have ∫
Rn

(1 + |x|)−sdx <∞

whenever s > n.

Proof. Let c ∈ R+ denote the n− 1-dimensional Euclidean surface measure of the unit sphere in
Rn. By employing spherical coordinates we obtain∫

Rn

(1 + |x|)−sdx = c

∫ ∞
0
rn−1(1 + r)−s dr ≤ c

∫ ∞
0

(1 + r)n−1−s dr =
c

s− n

whenever n− s < 0. The assertion follows.
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Proof of Proposition B.23. First suppose p ∈ [1,∞[. If φ ∈ S(Rn), then∫
Rn

|φ(x)|p dx =

∫
Rn

(1 + |x|)−(n+1)p|(1 + |x|)n+1φ(x)|p dx ≤ νn+1,0(φ)p
∫
Rn

(1 + |x|)−(n+1)p dx <∞

by Lemma B.24, so thatφ ∈ Lp(Rn). Moreover, this estimate implies that

‖φ‖p ≤
(∫

Rn

(1 + |x|)−(n+1)p dx

) 1
p

νn+1,0(φ),

so that the inclusion S(Rn) ⊆ Lp(Rn) is continuous. For p = ∞ we simply note that ‖φ‖∞ =
ν0,0(φ).

For the next assertion, we let p ∈ [1,∞] and let p′ ∈ [1,∞] denote its Hölder conjugate. For
any f ∈ Lp(Rn) and any φ ∈ S(Rn) we then find, by Hölder’s inequality, that

|ι(f)(φ)| ≤ ‖f‖p‖φ‖p′ .

By the previous result we can estimate ‖φ‖p′ by a constant times νm,0(φ) for an appropriate
m ∈ Z≥0, so that we may conclude that ι(f) indeed lies in S ′(Rn) and that ι is continuous.

Finally, we need to check that ι is injective. Suppose ι(f) = 0 for some f ∈ Lp(Rn). Then f is
a locally integrable function that defines the zero distribution in Rn, so it must vanish a.e. in Rn

as in the proof of Proposition B.6. The assertion follows.

B.25 Definition. We define the space OM (Rn) of smooth functions of moderate growth to consist
of those φ ∈ C∞(Rn) so that for each k ∈ Z≥0 there is some c ∈ R+ and an m0 ∈ Z≥0 so that for
all multi-indices α with |α| ≤ k we have

|∂αφ(x)| ≤ c(1 + |x|)m0

for all x ∈ Rn. We give the space the structure of a locally convex Hausdorff space by equipping
it with the seminorms

nk,ψ(φ) := max
|α|≤k

sup
x∈Rn

|ψ(x)∂αφ(x)|

for ψ ∈ S(Rn). ♦

For this definition, we should first check that these seminorms are well-defined. For this we shall
prove the following proposition:

B.26 Proposition. Let φ ∈ OM (Rn) and ψ ∈ S(Rn). Then φψ ∈ S(Rn). Moreover, the mapping
S(Rn)→ S(Rn) given by ψ 7→ φψ is continuous.

Proof. Let m, k ∈ Z≥0. Since φ ∈ OM (Rn), there is some c ∈ R+ and some m0 ∈ Z≥0 so that for
all multi-indices α with |α| ≤ k we have

|∂αφ(x)| ≤ c(1 + |x|)m0
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for all x ∈ Rn. Hence, by the Leibniz rule of differentiation, there are c′, c′′ ∈ R+ so that

(1 + |x|)m|∂α(φψ)(x)| ≤ (1 + |x|)m
∑
β≤α

(
α

β

)
|∂βφ(x)||∂α−βψ(x)|

≤ c′(1 + |x|)m
∑
β≤α

c(1 + |x|)m0 |∂α−βψ(x)|

≤ c′′νm+m0,k(ψ)

for |α| ≤ k, so that
νm,k(φψ) ≤ c′′νm+m0,k(ψ).

This proves both assertions.

Combining this proposition with the fact that ∂αφ ∈ OM (Rn) for any φ ∈ OM (Rn) and any
multi-index α, shows that ψ∂αφ ∈ S(Rn) ⊆ L∞(Rn). This proves that the seminorms on OM (Rn)
are indeed well-defined.

To see that OM (Rn) is indeed Hausdorff, we should check that if for some φ ∈ OM (Rn) we
have nk,ψ(φ) = 0 for all ψ ∈ S(Rn), then φ = 0. But for this we could pick any x ∈ Rn and a
χ ∈ C∞c (Rn) with χ(x) = 1 so that

|φ(x)| = |φ(x)χ(x)| ≤ n0,ψ(φ) = 0,

showing that, since x was arbitrary, φ must be 0.
Next, we will now show that OM (Rn) ⊆ S ′(Rn), where the inclusion is continuous.

B.27 Proposition. We have S(Rn) ⊆ OM (Rn), where the inclusion is continuous. Furthermore,
the map ι : OM (Rn)→ S ′(Rn) defined by

ι(φ)(ψ) :=

∫
Rn

φ(x)ψ(x) dx (B.5)

is a well-defined continuous injection.

Proof. Let k ∈ Z≥0 and φ, ψ ∈ S(Rn). Then for any multi-index α with |α| ≤ k and any x ∈ Rn

we have
|φ(x)∂αψ(x)| ≤ ν0,0(φ)ν(0, k)(ψ)

so that ψ ∈ OM (Rn) and
nk,φ(ψ) ≤ ν0,0(φ)ν(0, k)(ψ).

This proves the first assertion.
Next, we will check the second assertion. First we shall check that ι is well-defined. Let

φ ∈ OM (Rn) and ψ ∈ S(Rn). Then φψ ∈ S(Rn) ⊆ L1(Rn) by Proposition B.26 and Proposition
B.23 so that the integral in (B.5) is well-defined. Moreover, these propositions imply that the
composition

S(Rn)→ S(Rn) ↪→ L1(Rn), ψ 7→ φψ 7→ φψ
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is continuous. Hence, there are c ∈ R+ and m, k ∈ Z≥0 so that

‖φψ‖1 ≤ cνm,k(ψ).

Thus,
|ι(φ)(ψ)| ≤ ‖φψ‖1 ≤ cνm,k(ψ),

proving that ι(φ) ∈ S ′(Rn), as desired.
To see that ι is continuous, we define χ : Rn → C by χ(x) := 2n+1(1 + |x|2)n+1ψ(x) for

ψ ∈ S(Rn). Then χ ∈ S(Rn) by Lemma B.21 and the binomial theorem. Thus, since (1 + |x|)2 ≤
2(1 + |x|)2 so that

(1 + |x|)2(n+1) ≤ 2n+1(1 + |x|2)n+1,

we have

|ι(φ)(ψ)| ≤
∫
Rn

(1 + |x|)−2(n+1)(1 + |x|)2(n+1)|ψ(x)φ(x)| dx ≤ n0,χ(φ)

∫
Rn

(1 + |x|)−2(n+1) dx.

By Lemma B.24, this proves the result.
Finally, we should check that ι is injective. If ι(φ) = 0 for some φ ∈ OM (Rn) ⊆ L1

loc(R
n), then

φ defines the zero distribution. Thus, we must have φ = 0 a.e. in Rn by the corresponding result
for distributions. Since φ is continuous, we conclude that φ = 0. The assertion follows.

Next, we wish to define the Fourier transform. For any φ ∈ S(Rn) we define Fφ : Rn → C by

Fφ(ξ) :=

∫
Rn

φ(x)e−2πiξ·x dx,

where it is customary to write ξ for the coordinates on the Fourier side.

B.28 Proposition. The mapping φ 7→ Fφ is a well defined continuous linear map from S(Rn) to
S(Rn). For any φ ∈ S(Rn), ξ ∈ Rn, and j ∈ {1, . . . , n}, we have

F (∂jφ)(ξ) = 2πiξjFφ(ξ), ∂j(Fφ)(ξ) = −2πiF (xjφ)(ξ).

Finally, for any pair φ, ψ ∈ S(Rn) we have

〈Fφ, ψ〉 = 〈φ,Fψ〉. (B.6)

Proof. Since S(Rn) ⊆ L1(Rn) and |φ(x)e−2πiξ·x| = |φ(x)| for all x, ξ ∈ Rn, we find that the
integral that defines F is well-defined and that it yields a continuous function by Lebesgue’s
Dominated Convergence Theorem. In particular, we have Fφ ∈ L∞(Rn), where the bound is
given by ‖φ‖1.

For the last assertion, we note that for any φ, ψ ∈ S(Rn) we have

〈Fφ, ψ〉 =

∫
Rn

∫
Rn

φ(x)ψ(ξ)e−2πiξ·x dx dξ = 〈φ,Fψ〉

by Fubini’s Theorem. Note that all these integrals are well defined as integrals of the product of a
function in L1(Rn) and a function in L∞(Rn).
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Next, we will check that F maps S(Rn) into S(Rn). Fix j ∈ {1, . . . , n}. For any φ ∈ S(Rn)
we have xjφ ∈ S(Rn) by Lemma B.21. Hence, when differentiating with respect to ξ, we find that

∂j(φ(x)e−2πiξ·x) = −2πixjφ(x)e−2πiξ·x (B.7)

is integrable over Rn with respect to x. By the theorem on differentiation under the integral sign
we find that Fφ is partially differentiable with partial derivatives

∂j(Fφ) = −2πiF (xjφ) (B.8)

by (B.7). The partial derivatives of Fφ are again F applied to a Schwartz function so that, by
induction, we have Ff ∈ C∞(Rn).

Since ∂j maps S(Rn) into itself by Lemma B.21, we find that for any φ, ψ ∈ S(Rn) we have

〈F (∂jφ), ψ〉 = 〈∂jφ,Fψ〉 = −〈φ, ∂jFψ〉 = 〈φ, 2πiF (xjψ)〉 = 〈2πiξjFφ, ψ〉.

Since S(Rn) is dense in L1(Rn) as it contains the dense set C∞c (Rn), we conclude that

F (∂jφ) = 2πiξjFφ. (B.9)

By combining the expressions (B.8) and (B.9), we find that for every pair of multi-indices α, β, we
have

ξβ∂α(Fφ) = (−1)|α|(2πi)|α|−|β|F (∂β(xαφ)) ∈ L∞(Rn)

with bound c‖∂β(xαφ)‖1 for c = (−1)|α|(2πi)|α|−|β|. Thus, since for each m ∈ Z≥0 we can estimate
(1 + |x|)m by a polynomial in x, we conclude that we must indeed have Fφ ∈ S(Rn). Moreover,
by Lemma B.21 and Proposition B.23 there are m0, k0 ∈ Z≥0 so that for each k ∈ Z≥0 there are
constants c′, c′′ ∈ R+ so that

max
|α|≤k

sup
ξ∈Rn

|ξβ∂α(Fφ)(ξ)| ≤ cmax
|α|≤k

‖∂β(xαφ)‖1 ≤ c′ max
|α|≤k

νm0,k0(∂β(xαφ))

≤ c′′ max
|α|≤k

νm0+|α|,k0+|β|(φ) ≤ c′′νm0+k,k0+|β|(φ).
(B.10)

As each S(Rn)-seminorm of Fφ can be estimated by a constant times terms like the one on left-
hand side of (B.10), we conclude that F maps S(Rn) continuously into S(Rn). The assertion
follows.

We can now give an important example.

B.29 Example. Define γ1 ∈ S(R) by γ1(x) := e−πx
2
. Then γ1 integrates to 1, since(∫

R
e−πx

2
dx

)2

=

∫
R2

e−π(x21+x22) dx = 2π

∫ ∞
0
re−πr

2
dr = −2π

[
e−πr

2

2π

]∞
0

= 1.

Since
γ′1(x) = −2πxγ1(x),
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applying F yields

2πiξFγ1(ξ) = F (γ′1)(ξ) = −2πF (xγ1) =
1

i
(Fγ1)′(ξ)

by Proposition B.28. Hence, Fγ1 satisfies the differential equation

(Fγ1)′(ξ) = −2πξFγ1(ξ),

meaning that γ1 and Fγ1 satisfy the same differential equation. But then

d

dt

Fγ1(t)

γ1(t)
= −2πt

Fγ1(t)

γ1(t)
+ 2πt

Fγ1(t)

γ1(t)
= 0,

which implies that there is a constant c ∈ C so that Fγ1 = cγ1. To compute c, we note that

c = cγ1(0) = Fγ1(0) =

∫
R
γ1(x) dx = 1.

We conclude that Fγ1 = γ1.

Now define γ ∈ S(Rn) by γ(x) := e−π|x|
2
. Then

Fγ(ξ) =

∫
Rn

e−π|x|
2
e−2πiξ·x dx =

n∏
j=1

∫
R
γ1(xj)e

−2πiξjxj dxj =

n∏
j=1

γj(ξj) = γ(ξ)

for all ξ ∈ Rn so that Fγ = γ. ♦

B.30 Definition. We define the Fourier transform F : S ′(Rn)→ S ′(Rn) by

Fu(φ) := u(Fφ)

for u ∈ S ′(Rn) and φ ∈ S(Rn). ♦

By Proposition B.28 we indeed have u ◦ F ∈ S ′(Rn) for any u ∈ S ′(Rn) as F is a continuous
linear mapping from S(Rn) to itself. We also note that, by (B.6), this definition coincides with the
old definition for S(Rn) ⊆ S ′(Rn).

B.31 Proposition. The Fourier transform gives a homeomorphism F : S(Rn) → S(Rn) whose
inverse is given by F−1 : S(Rn)→ S(Rn),

F−1φ(x) := Fφ(−x) =

∫
Rn

φ(ξ)e2πix·ξ dξ

for φ ∈ S(Rn) and x ∈ Rn.

Proof. Since the constant 1 function, which we also denote by 1, is bounded, it defines a tempered
distribution. We will first show that F1 = δ. By Proposition B.28 we have

xjF1 =
1

2πi
F (∂j1) = 0
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for all j ∈ {1, . . . , n}. It follows from Proposition B.16 that F1 = cδ for some c ∈ C. If we define
γ as in Example B.29, then

c = cδ(γ) = F1(γ) = 〈1,Fγ〉 = 〈1, γ〉 =

∫
Rn

γ(x) dx = 1.

We conclude that we indeed have F1 = δ.
Since the Fourier transform maps S(Rn) continuously to itself, so does F−1. Pick any φ ∈

S(Rn) and fix x0 ∈ Rn. Then, by a change of variables, one finds

F (x 7→ φ(x0 − x))(ξ) = F−1φ(ξ)e−2πiξ·x0 .

Thus, we obtain

φ(x0) = δ(x 7→ φ(x0 − x)) = F1(x 7→ φ(x0 − x))

= 〈1,F (x 7→ φ(x0 − x))〉 =

∫
Rn

Fφ(−ξ)e−2πiξ·x0 dξ

so that F (F−1φ) = φ. But then, by a change of variables, we also have

F−1(Fφ)(x) = F (F−1(x 7→ φ(−x)))(−x) = φ(x)

for all x ∈ Rn. The assertion follows.

Note that F−1 : S(Rn)→ S(Rn) defined as in the proposition can be extended to all of S ′(Rn)
in the same way we did for the Fourier transform, i,e., for u ∈ S ′(Rn) we define

F−1u(φ) := u(F−1φ)

for φ ∈ S(Rn). This way of defining a linear operator on a space to its dual space is referred to
as transposition. Using the above proposition and by unwinding the definitions we see that F−1

inverts F on S ′(Rn).
In the following theorem, we summarize some important properties of the Fourier transform.

B.32 Theorem. The Fourier transform is a homeomorphism F : S ′(Rn)→ S ′(Rn) that restricts
to a homeomorphism from S(Rn) to S(Rn).

We have
F (L1(Rn)) ⊆ L∞(Rn), F (L2(Rn)) ⊆ L2(Rn),

where the restriction of F to L1(Rn) satisfies ‖Ff‖∞ ≤ ‖f‖1 for any f ∈ L1(Rn) and where the
restrict of F to L2(Rn) is a unitary isomorphism of L2(Rn). The same assertions hold for F−1

instead of F .
Finally, for any u ∈ S ′(Rn) we have

(i) F (∂αu) = (2πi)|α|ξαFu, ∂α(Fu) = (−2πi)|α|F (xαu) for every multi-index α;

(ii) dt(Fu) = t−nF (dt−1u), F (dtu) = t−ndt−1(Fu) for every t ∈ R+;
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(iii) FA∗ = A∗F for any orthogonal transformation A ∈ Rn×n, where A∗u(φ) := u(φ ◦ A) for
φ ∈ S(Rn);

(iv) F (f ∗ g) = FfFg for f ∈ L1(Rn) and g ∈ L1(Rn) or g ∈ L2(Rn), and similarly for F−1

instead of F .

Proof. To see that the Fourier transform is continuous, we note that for each u ∈ S ′(Rn) and each
φ ∈ S(Rn), since u is a tempered distribution, there is a c ∈ R+ and m, k ∈ Z≥0 so that

|Fu(φ)| = |u(Fφ)| ≤ cνm,k(Fφ).

Thus, since F maps S(Rn) continuously to S(Rn) by Proposition B.28, we can find a constant
c′ ∈ R+ and some m′, k′ ∈ Z≥0 so that

|Fu(φ)| ≤ cνm,k(Fφ) ≤ c′νm′,k′(φ).

This proves continuity of F . Showing that F−1 is continuous is completely analogous. To see that
F and F−1 invert each other, we use the fact that they invert each other on S(Rn) by Proposition
B.31. Then it follows that for any u ∈ S ′(Rn) we have

FF−1u = u ◦F ◦F−1 = u,

and similarly F−1Fu = u. We conclude that F is indeed a homeomorphism of S ′(Rn) with
inverse F−1.

To see that F (L1(Rn)) ⊆ L∞(Rn), we note that∫
Rn

f(x)e−2πiξ·x dx

is well defined for any f ∈ L1(Rn) and any ξ ∈ Rn. An application of Fubini’s Theorem shows that
this function coincides with Ff , so that the Fourier transform of an element of L1(Rn) is again
a function. Moreover, we find that |Ff(ξ)| ≤ ‖f‖1 for all ξ ∈ Rn so that ‖Ff‖∞ ≤ ‖f‖1. The
result follows.

For the assertion about L2(Rn), we first note that for any φ ∈ S(Rn) we have

Fφ(ξ) =

∫
Rn

φ(x)e2πiξ·x dx = F−1φ(ξ)

for any ξ ∈ Rn. Hence, for all φ, ψ ∈ S(Rn) we have

〈Fφ,Fψ〉 = 〈Fφ,F−1ψ〉 = 〈φ,FF−1ψ〉 = 〈φ, ψ〉

by (B.6). In particular, this means that

‖Fφ‖2 = 〈Fφ,Fφ〉
1
2 = ‖φ‖2

for any φ ∈ S(Rn). This means that F , viewed as a mapping from S(Rn) to S(Rn), has an
isometric extension F : L2(Rn) → L2(Rn). Since L2(Rn) ⊆ S ′(Rn), we should check that Ff =
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Ff for any f ∈ L2(Rn). Fix f ∈ L2(Rn). As S(Rn) is dense in L2(Rn), since it contains the
dense set C∞c (Rn), we can pick a sequence (φj)j∈N in S(Rn) that converges to f in L2(Rn).
Since F is continuous, this means that (Fφj)j∈N converges in L2(Rn) to Ff . As the inclusion
L2(Rn) ⊆ S ′(Rn) is continuous, we conclude that (Fφj)j∈N converges to Ff in S ′(Rn). On the
other hand, we can also conclude that (φj)j∈N converges to f in S ′(Rn). Since F is continuous as
a map from S ′(Rn) to S ′(Rn), we conclude that also (Fφj)j∈N converges to Ff in S ′(Rn). But
since Fφj = Fφj for all j ∈ N, we conclude, since S ′(Rn) is Hausdorff, that

Ff = lim
j→∞

Fφj = lim
j→∞

Fφj = Ff

where the limits are in S ′(Rn). But this means that for any f ∈ L2(Rn) we have Ff = Ff ∈
L2(Rn) with

‖Ff‖2 = ‖f‖2.

Showing that a similar result holds for F−1 is analogous. We conclude that F restricts to a unitary
isomorphism of L2(Rn).

The assertion (i) follows by transposition and Proposition B.31. For (ii) and (iii), one first
checks their validity for functions in S(Rn) by applying a suitable change of variables. The general
results follow by transposition. We will give a proof of (iii) and omit the proof of (ii).

We first note that for any orthogonal transformation A ∈ Rn×n we have that φ 7→ φ ◦ A
leaves the seminorms on S(Rn) invariant so that indeed A∗u ∈ S ′(Rn) for any u ∈ S ′(Rn). Fix
φ ∈ S(Rn). Using the change of variables x 7→ Atx = A−1x we obtain, since | detA| = 1,

F (φ ◦A)(ξ) =

∫
Rn

φ(Ax)e−2πiξ·Ax dx =

∫
Rn

φ(x)e−2πiξ·Atx dx

=

∫
Rn

φ(x)e−2πiAξ·x dx = Fφ(Aξ)

for all ξ ∈ Rn so that F (φ ◦A) = Fφ ◦A. Thus, for any u ∈ S ′(Rn) we have

FA∗u(φ) = u(Fφ ◦A) = u(F (φ ◦A)) = A∗Fu(φ).

This proves (iii).
For (iv), we first note that for any f ∈ L1(Rn) and g ∈ L1(Rn) or g ∈ L2(Rn) we have

f ∗ g ∈ L1(Rn) or f ∗ g ∈ L2(Rn) respectively by Minkowski’s inequality for convolutions, see
Lemma A.5. First we assume that f, g ∈ L1(Rn). Then, since

e−2πξ·x = e−2πξ·x−ye−2πξ·y

for all x, y, ξ ∈ Rn, we have

F (f ∗ g)(ξ) =

∫
Rn

∫
Rn

f(x− y)e−2πξ·x−yg(y)e−2πξ·y dy dx = Ff(ξ)Fg(ξ)

for all ξ ∈ Rn by Fubini’s Theorem.
Now suppose f ∈ L1(Rn) and g ∈ L2(Rn). Since L1(Rn)∩L2(Rn) contains C∞c (Rn), this space

is dense in L2(Rn). Pick a sequence (gj)j∈N in L1(Rn) ∩ L2(Rn) that converges to g in L2(Rn).

114



By Minkowski’s inequality for convolutions we have f ∗ gj → f ∗ g as j → ∞ in L2(Rn). As F
maps L2(Rn) isometrically into itself, we conclude that FfFgj = F (f ∗ gj) converges to F (f ∗ g)
as j → ∞ in L2(Rn). On the other hand, since Fgj ∈ L2(Rn) and since multiplication by an
essentially bounded function is a continuous operation in L2(Rn), we find that FfFgj → FfFg
in L2(Rn). Taking limits in L2(Rn), we conclude that

F (f ∗ g) = lim
j→∞

F (f ∗ gj) = lim
j→∞

FfFgj = FfFg.

This proves the desired result. The assertions for F−1 are proven analogously.

Properties (ii) and (iii) imply the following result:

B.33 Corollary. A tempered distribution u ∈ S ′(Rn) is rotationally invariant, i.e. A∗u = u for
all orthogonal transformations A ∈ Rn×n if and only if Fu is rotationally invariant. Moreover, u
is homogeneous of degree a ∈ C if and only if Fu is homogeneous of degree −n− a.

B.34 Example. Let α be a multi-index. Then we wish to compute the Fourier transform of
∂αδ ∈ S ′(Rn). First note that

F δ(φ) = Fφ(0) =

∫
Rn

φ(x) dx = 〈1, φ〉

for all φ ∈ S(Rn), so that F δ = 1. Therefore, we have

F (∂αδ) = (2πi)|α|ξαF δ = (2πi)|α|ξα.

Moreover, we can also compute
F−1(∂αδ) = (−2πi)|α|xα.

This means that if u ∈ S ′(Rn) is a distribution satisfying supp Fu ⊆ {0}, then it follows from
Theorem B.12 that Fu is a linear combination of terms of the form ∂αδ. Hence, by applying F−1

we conclude that u is a polynomial.

We describe a typical scenario where this would occur. Let P : Rn → C be a polynomial, i.e.,

P (x) :=
∑
|α|≤k

cαx
α

for k ∈ Z≥0 and cα ∈ C. We then write

Dj :=
1

2πi
∂j , P (D) :=

∑
|α|≤k

cα

(2πi)|α|
∂α (B.11)

for the associated partial differential operator. Now assume that P (x) = 0 if and only if x = 0 and
suppose u ∈ S ′(Rn) satisfies P (D)u = 0. Then

0 = F (P (D)u) = P (ξ)u,
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so that, by Proposition B.15, we have supp Fu ⊆ {0}. We conclude that any u ∈ S ′(Rn) that
satisfies P (D)u = 0 must be a polynomial. We can, for example, take P (D) to be the Laplacian
∆, where

∆ := −
n∑
j=1

∂2
j ,

since F∆ = (2π)2|ξ|2. In the case where n = 2, two important examples are the Wirtinger
derivatives

∂z :=
1

2
(∂1 − i∂2), ∂z :=

1

2
(∂1 + i∂2).

These satisfy F∂z = πi(ξ1 + iξ2), F∂z = πi(ξ1− iξ2) which both only vanish when ξ = 0. We refer
to Appendix C for a more complete discussion of the Wirtinger derivatives. ♦

The Laplacian, as well as the Wirtinger derivatives, are examples of so-called elliptic linear partial
differential operators. These have the particularly nice property that certain distributional solutions
to associated differential equations must automatically also be classical solutions in the sense that
these distributions must be given by classically differentiable functions. This is referred to as elliptic
regularity. We will make these statements more precise.

B.35 Definition. For u ∈ D′(U) we define its singular support sing suppu as the complement in
U of the set of all points in U that have an open neighborhood V ⊆ U so that there is a smooth
function ψ ∈ C∞c (V ) so that for any φ ∈ C∞c (U) with suppφ ⊆ V we have

u(φ) =

∫
V
ψ(x)φ(x) dx.

♦

The singular support of a distribution u ∈ D′(U) is the complement of the largest open set where
u is given by a smooth function. In particular this means that sing suppu = ∅ if and only if u
is a smooth function. Since the zero function is smooth, we have sing suppu ⊆ suppu for any
u ∈ D′(U).

As an example, the only singular point of δ is 0 so that sing supp δ = {0}.

B.36 Definition. Let P : Rn → C be a polynomial,

P (x) :=
∑
|α|≤k

cαx
α

for k ∈ Z≥0, cα ∈ C. We define the associated linear partial differential operator P (D) as in (B.11).
We say that this linear partial differential operator is elliptic if∑

|α|=k

cαx
α = 0 if and only if x = 0.

♦

Note that ellipticity of a linear partial differential operator only depends on its highest order terms.
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B.37 Theorem (Elliptic Regularity). Suppose P (D) is an elliptic partial differential operator. For
any u ∈ D′(U) we have

sing suppP (D)u = sing suppu.

In particular, if P (D)u = 0, then u is a smooth function.

For a proof, see [DK, Theorem 17.6]. So much for our discussion on elliptic regularity.

B.38 Theorem. Let u ∈ S ′(Rn). Suppose that u is homogeneous of any degree and that sing suppu ⊆
{0}. Then sing supp Fu ⊆ {0}.

See [Gr, Proposition 2.4.8] for a proof of this result. The proof uses an appropriate splitting of
the distribution and the fact that the Fourier transform of a compactly supported distribution is
given by a smooth function, the proof of which is given in [Gr, Theorem 2.3.21].

Let x ∈ Rn. Then we define the reflected translation T x : Rn → Rn by T x(y) := x− y.

B.39 Lemma. The mapping φ 7→ φ ◦ T x is a continuous linear mapping from S(Rn) to itself.
Moreover, for each u ∈ S ′(Rn) the mapping T x∗ u : S(Rn)→ C defined by

T x∗ u(φ) := u(φ ◦ T x)

is a tempered distribution.

Proof. Note that for each x, y ∈ Rn we have

1 + |x+ y| ≤ 1 + |x|+ |y| ≤ 1 + |x|+ |y|+ |x||y| = (1 + |x|)(1 + |y|).

Thus, for all m, k ∈ Z≥0 we have

νm,k(φ ◦ T x) = max
|α|≤k

sup
y∈Rn

(1 + |x+ y|)m|∂αφ(y)| ≤ (1 + |x|)mνm,k(φ). (B.12)

This proves the first assertion.
For the second assertion we let u ∈ S ′(Rn). Picking m, k ∈ Z≥0 and c ∈ R+ so that |u(φ)| ≤

cνm,k(φ) for all φ ∈ S(Rn), we conclude from (B.12) that

|T x∗ u(φ)| = |u(φ ◦ T x)| ≤ cνm,k(φ ◦ T x) ≤ c(1 + |x|)mνm,k(φ) for all φ ∈ S(Rn). (B.13)

The assertion follows.

B.40 Definition. For any pair u ∈ S ′(Rn), φ ∈ S(Rn) we define the convolution u ∗ φ : Rn → C
of u and φ by

(u ∗ φ)(x) := T x∗ u(φ),

where T x∗ u is defined as in Lemma B.39. ♦

One can similarly define the convolution of a distribution and a compactly supported smooth
function in which case one ends up with a smooth function. For the relevant properties of such
convolutions we refer to [DK, Chapter 11]. As an important example, we observe that for any
φ ∈ S(Rn) we have

(δ ∗ φ)(x) = φ(T x(0)) = φ(x)

for all x ∈ Rn so that δ ∗ φ = φ.
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B.41 Proposition. Let u ∈ S ′(Rn) and φ ∈ S(Rn). Then u ∗ φ ∈ OM (Rn). For any multi-index
α we have

∂α(u ∗ φ) = ∂αu ∗ φ = u ∗ ∂αφ. (B.14)

Moreover, the convolution operator

u ∗ : S(Rn)→ OM (Rn), ψ 7→ u ∗ ψ

is a continuous linear mapping. Finally, we have

F (u ∗ φ) = FφFu

as the product of a smooth function and a distribution.

Proof. We will first prove (B.14). We proceed in steps.

1. We will first show that φ ◦ T−x → φ as x→ 0 in S(Rn). Pick φ ∈ S(Rn). For all x, y ∈ Rn

we write

φ(x+ y)− φ(y) =

∫ 1

0

d

ds
φ(sx+ y) ds =

n∑
j=1

xj

∫ 1

0
∂jφ(sx+ y) ds

so that

|(φ ◦ T−x)(y)− φ(y)| ≤
n∑
j=1

|xj |
∫ 1

0
|∂jφ(sx+ y)|ds ≤ |x|

n∑
j=1

∫ 1

0
|(∂jφ ◦ T−sx)(y)| ds. (B.15)

Since, for every multi-index α and m ∈ Z≥0, we have

(1 + |y|)m
∫ 1

0
|(∂j∂αφ ◦ T−sx)(y)|dx ≤

∫ 1

0
νm,0(∂j∂

αφ ◦ T−sx) ds ≤
∫ 1

0
(1 + |sx|)mνm,0(∂j∂

αφ) ds

≤ (1 + |x|)mνm,0(∂j∂
αφ) ≤ (1 + |x|)mνm,|α|+1(φ)

by (B.12), we may apply (B.15) to ∂αφ instead of φ to conclude that for all m, k ∈ Z≥0 we have

νm,k(φ ◦ T−x − φ) ≤ n|x|(1 + |x|)mνm,k+1(φ)→ 0 as x→ 0.

This proves the desired result.

2. For each φ ∈ S(Rn), t ∈ R and j ∈ {1, . . . , n}, we define ∆j
tφ ∈ S(Rn) by

∆j
tφ(x) :=

φ(x+ tej)− φ(x)

t
,

where ej is the canonical j-th basis vector in Rn. We claim that ∆j
tφ converges to ∂jφ in S(Rn)

as t→ 0. Writing

φ(x+ hej)− φ(x) =

∫ 1

0

d

ds
φ(x+ stej) ds = t

∫ 1

0
∂jφ(x+ stej) ds,
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we conclude that

∆j
tφ(x)− ∂jφ(x) =

∫ 1

0
((∂jφ ◦ T−stej )(x)− ∂jφ(x)) ds.

Hence, by applying this to ∂αφ instead of φ, for all m, k ∈ Z≥0 we have

νm,k(∆
j
tφ− ∂jφ) ≤ νm,k+1(φ ◦ T−stej − φ)→ 0 as s→ 0

by step 1. This proves the result.

3. Now let u ∈ S ′(Rn), φ ∈ S(Rn), x ∈ Rn, and j ∈ {1, . . . , n}. Then

(u ∗ φ)(x+ tej)− (u ∗ φ)(x)

t
= u

(
φ ◦ T x+tej − φ ◦ T x

t

)
= −u(∆j

−t(φ ◦ T x))

for all t ∈ R, so that

∂j(u ∗ φ)(x) = lim
t→0

(u ∗ φ)(x+ tej)− (u ∗ φ)(x)

t
= −u(∂j(φ ◦ T x)) = (∂ju ∗ φ)(x)

by step 2 and Lemma B.39. Since

(∂ju ∗ φ)(x) = −u(∂j(φ ◦ T x)) = u(∂jφ ∗ T x) = (u ∗ ∂jφ)(x),

we may proceed by induction to conclude that (B.14) holds.

Next we will show that u ∗φ ∈ OM (Rn). Since u ∈ S ′(Rn), there are m, k ∈ Z≥0 and a c ∈ R+

so that |u(ψ)| ≤ cνm,k(ψ) for all ψ ∈ S(Rn). Hence, by (B.14) and (B.13), for all multi-indices α
we have

|∂α(u ∗ φ)(x)| = |(u ∗ ∂αφ)(x)| = |u(∂αφ ◦ T x)| ≤ cνm,k(∂αφ ◦ T x)

≤ c(1 + |x|)mνm,k(∂αφ) ≤ c(1 + |x|)mνm,k+|α|(φ)

so that u ∗ φ ∈ OM (Rn), as desired. Moreover, we note that this inequality implies that

nk′,ψ(u ∗ φ) ≤ c sup
x∈Rn

(1 + |x|)m|ψ(x)|νm,k+k′(φ) = cνm,0(ψ)νm,k+k′(φ)

so that the convolution operator S(Rn)→ OM (Rn), φ 7→ u ∗ φ is continuous.
For the final assertion we refer to [Gr, Proposition 2.3.22(11)].

B.42 Definition. Let P (D) be a linear partial differential operator with constant coefficients, i.e.,
an operator as in (B.11). We call E ∈ D′(Rn) a fundamental solution of P (D) if P (D)E = δ. ♦

B.43 Proposition. Let P be a polynomial and let P (D) be the associated linear partial differential
operator. Suppose P (D) has a fundamental solution E ∈ S ′(Rn). Then the convolution operator

L : S(Rn)→ OM (Rn), L φ := E ∗ φ
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satisfies
P (D)(L φ) = φ for all φ ∈ S(Rn).

In particular, for a given φ ∈ S(Rn) the function u := L φ ∈ OM (Rn) is a solution to the partial
differential equation P (D)u = φ. Moreover, the Fourier transform of the fundamental solution
satisfies the equation

P (ξ)FE = 1.

Proof. Let φ ∈ S(Rn). By linearity we have

P (D)(L φ) = P (D)(E ∗ φ) = P (D)E ∗ φ = δ ∗ φ = φ.

This proves the first assertion.
For the second assertion we note that

1 = F δ = FP (D)E = P (ξ)FE

by Example B.34. The assertion follows.
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C Appendix: Complex Analysis

Rather than differentiating with the coordinates obtained from R2, i.e., using the directional deriva-
tives ∂x and ∂y, we will use the so-called Wirtinger derivatives

∂z :=
1

2
(∂x − i∂y), ∂z :=

1

2
(∂x + i∂y). (C.1)

To motivate why it makes sense to define these operators in this way, we write z = x + iy and
z = x− iy. Then for a given C1-function f : R2 → C we can write

F (z, z) := f

(
z + z

2
,
z − z

2i

)
= f(x, y).

Formally taking derivatives and using the chain rule yields

∂xf(x, y) = ∂zF (z, z) + ∂zF (z, z)

∂yf(x, y) = i∂zF (z, z)− i∂zF (z, z),

which implies ∂x = ∂z + ∂z and i∂y = ∂z − ∂z. Solving for ∂z and ∂z yields (C.1).
We note in particular that ∂zz = ∂zz = 1 and ∂zz = ∂zz = 0.

C.1 Proposition. Let U ⊆ C be open and let f, g be differentiable in U . Then

(i) ∂zf = ∂zf , and ∂zf = ∂zf ;

(ii) ∂z(fg) = g∂zf + f∂zg, and ∂z(fg) = g∂zf + f∂zg;

(iii) If g(U) ⊆ U , then

∂z(f ◦ g) = (∂zf ◦ g)∂zg + (∂zf ◦ g)∂zg

∂z(f ◦ g) = (∂zf ◦ g)∂zg + (∂zf ◦ g)∂zg.

Let a, b ∈ R with a < b. We say that a function γ : [a, b]→ C is a C1 path if it is continuous,
continuously differentiable in ]a, b[, and its derivative extends continuously to [a, b]. We say that
such a function is a piecewise C1 path if there is a partition a = a0 < a1 < · · · < am = b of [a, b]
so that the restriction γj := γ|[aj−1,aj ] is of class C1 for all j ∈ {1, . . . ,m}. We call (γj)

m
j=1 the C1

pieces of γ. We say that γ is a closed path, if γ(a) = γ(b).

C.2 Definition. Suppose γ : [a, b]→ C is a C1 path and suppose f : γ([a, b])→ C is a continuous
function. Then we define the integral and the conjugate integral of f along γ by∫

γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt,

∫
γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt,

respectively.

More generally, if γ is a piecewise C1 path, then we may define the integral and the conjugate
integral of f along γ by∫

γ
f(z) dz :=

m∑
j=1

∫
γj

f(z) dz,

∫
γ
f(z) dz :=

m∑
j=1

∫
γj

f(z) dz,

where (γj)
m
j=1 are the C1 pieces of γ. ♦
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We note that we have the relation ∫
γ
f(z) dz =

∫
γ
f(z) dz.

C.3 Lemma. Suppose γ : [a, b] → C is a C1 path and suppose f : γ([a, b]) → C is a continuous
function. Let a′, b′ ∈ R with a′ < b′. If φ : [a′, b′]→ [a, b] is a C1 mapping satisfying φ(a′) = a and
φ(b′) = b, then ∫

γ
f(z) dz =

∫
γ◦φ

f(z) dz

and similarly for the conjugate integral. If however φ(a′) = b and φ(b′) = a, then∫
γ
f(z) dz = −

∫
γ◦φ

f(z) dz

and similarly for the conjugate integral.

Proof. Since (γ ◦ φ)′(t) = γ′(φ(t))φ′(t) for t ∈]a′, b′[, we find by the Change of Variables Theorem
that ∫

γ◦φ
f(z) dz =

∫ b′

a′
f(γ(φ(t)))γ′(φ(t))φ′(t) dt =

∫ φ(b′)

φ(a′)
f(γ(t))γ′(t) dt.

The integral on the right is equal to
∫
γf(z) dz if φ(a′) = a and φ(b′) = b and to −

∫
γf(z) dz if

φ(a′) = b and φ(b′) = a, as desired. The proof for the conjugate integral is analogous.

For a piecewise C1 path γ : [a, b] → C we define γ−1 : [a, b] → C by γ−1(t) := γ(a + b − t).
Then the above lemma implies that∫

γ−1

f(z) dz = −
∫
γ
f(z) dz

for any continuous function f defined on γ([a, b]), and similarly for the conjugate integral.

C.4 Definition. A set Γ ⊆ C is called a Jordan curve if there is a continuous closed path
γ : [a, b]→ C that is injective on [a, b[, satisfies γ(a) = γ(b), and satisfies γ([a, b]) = Γ. In this case
we say that Γ is parameterized by γ. If γ is a piecewise C1 path with non-vanishing derivatives
where it is C1, then we call Γ a piecewise C1 Jordan curve or a closed contour. ♦

Basic examples of piecewise C1 Jordan curves are circles and rectangles in C.

C.5 Theorem (Jordan Curve Theorem). The complement of any Jordan curve in C is the disjoint
union of exactly two non-empty connected open sets.

A proof may be found in [Ha, p. 169]. Since a Jordan Curve Γ is compact, precisely one of its
complementing components must be bounded. We say that Γ encases the bounded component.
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C.6 Definition. Let Ω ⊆ C be a bounded open set so that its boundary ∂Ω consists of finitely
many disjoint piecewise C1 Jordan curves Γ1, . . .Γm. We say that ∂Ω is positively oriented if for
each j ∈ {1, . . . ,m} we have chosen a parameterization γj of Γj so that γj traverses Γj while leaving
Ω to its left. For a continuous function f : ∂Ω→ C we then define the contour integrals∮

∂Ω
f(z) dz :=

m∑
j=1

∫
γj

f(z) dz,

∮
∂Ω
f(z) dz :=

m∑
j=1

∫
γj

f(z) dz.

♦

The notion of a parameterization of a Jordan curve leaving a region to its left is well-defined by
the Jordan Curve Theorem. We remark that the definition of the integral along ∂Ω as above is
independent of the chosen parameterizations of the Jordan curves by Lemma C.3. Green’s Integral
Theorem takes on a particularly nice form when using our current notation.

C.7 Theorem (Green’s Integral Theorem). Let Ω ⊆ C be a bounded open set so that its boundary
∂Ω consists of finitely many disjoint piecewise C1 Jordan curves. Let f : Ω → C be a continuous
function that is C1 in Ω. Then∫

Ω
∂zf(z) dz = − 1

2i

∮
∂Ω
f(z) dz,

∫
Ω
∂zf(z) dz =

1

2i

∮
∂Ω
f(z) dz,

where the integrals over Ω are integrals with respect to the Lebesgue measure on Ω.

An immediate consequence of Green’s Integral Theorem is Cauchy’s Theorem.

C.8 Corollary (Cauchy’s Theorem). Let U ⊆ C be open. Suppose f ∈ C1(U) satisfies ∂zf(z) = 0
for all z ∈ Ω. Let Γ ⊆ U be a piecewise C1 Jordan curve parameterized by γ, that encases a subset
of U . Then ∫

γ
f(z) dz = 0.

Proof. If we denote the set encased by Γ by Ω, then Ω ⊆ U and the result is immediate from
Green’s Integral Theorem.

C.9 Example. Let r,R ∈ R so that 0 < r < R. Then we define the annulus Ω := {z ∈ C | r <
|z| < R}. Then ∂Ω consists of the circles with radii r and R, centered at the origin. For ρ ∈ R+

we define
γρ : [0, 2π]→ C, γρ(t) := ρeit.

Then ∂Ω is given a positive orientation by the C1 paths γ−1
r and γR.

Let f : Ω → C be a continuous function that is C1 in Ω and satisfies ∂zf(z) = 0 for all z ∈ Ω.
Then Green’s Integral Theorem implies that

0 = 2i

∫
Ω
∂zf(z) dz =

∫
γR

f(z) dz −
∫
γr

f(z) dz.

123



Hence, ∫
γR

f(z) dz =

∫
γr

f(z) dz,

meaning that, where it is defined, the integral of f along counterclockwise oriented circles around
0 is independent of the radius of the circle.

Moreover, we find that ∫
Ω
∂zf(z) dz =

1

2i

∫
γr

f(z) dz − 1

2i

∫
γR

f(z) dz

=
1

2

∫ 2π

0
(Rf(Reit)− rf(reit))e−it dt.

(C.2)

If f(z) = −1/z for z ∈ ∂Ω, then ∂zf(z) = 1/z2 for z ∈ Ω, and we may conclude from (C.2) that∫
Ω

1

z2
dz =

1

2

∫ 2π

0
(e−it − e−it)e−it dt = 0. (C.3)

♦

C.10 Theorem (Cauchy-Pompeiu Integral Formula). Let Ω ⊆ C be a bounded open set so that
its boundary ∂Ω consists of finitely many disjoint piecewise C1 Jordan curves. Let f : Ω→ C be a
continuous function that is C1 in Ω. Then

f(w) =
1

2πi

∮
∂Ω

f(z)

z − w
dz − 1

π

∫
Ω

∂zf(z)

z − w
dz

for all w ∈ Ω.

Proof. Let w ∈ Ω. Pick ε ∈ R+ so that the closed disc Dε of radius ε centered at w lies in Ω. Then
consider the open set Ωε := Ω\Dε. By the product rule for ∂z and the fact that ∂z1/(z−w) = 0 in
Ωε we find that 1/(w− z)∂zf = ∂z(f/(z−w)) in Ωε. We define γ : [0, 2π]→ C by γ(t) := w+ εeit.
Then Green’s Integral Theorem implies that∫

Ωε

∂zf(z)

z − w
dz =

1

2i

∮
∂Ω

f(z)

z − w
dz − 1

2i

∫
γ

f(z)

z − w
dz

=
1

2i

∮
∂Ω

f(z)

z − w
dz − 1

2i

∫ 2π

0

f(w + εeit)

εeit
iεeit dt.

(C.4)

Since

lim
ε↓0

∫ 2π

0
f(w + εeit) dt = 2πf(w),

and since 1
z−w is integrable over Dε, we conclude from letting ε ↓ 0 in (C.4) that∫

Ω

∂zf(z)

z − w
dz =

1

2i

∮
∂Ω

f(z)

z − w
dz − πf(w).

The assertion follows.
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An immediate consequence is the following:

C.11 Corollary (Cauchy’s Integral Formula). Let Ω ⊆ C be a bounded open set so that its boundary
∂Ω consists of finitely many disjoint piecewise C1 Jordan curves. Let f : Ω → C be a continuous
function that is C1 in Ω and satisfies ∂zf(z) = 0 for all z ∈ Ω. Then

f(w) =
1

2πi

∮
∂Ω

f(z)

z − w
dz.

for all w ∈ Ω.

We can also show the following:

C.12 Corollary. The locally integrable function E := 1/(πz) is a fundamental solution of ∂z, i.e.,
∂zE = δ in D′(C).

Proof. Fix φ ∈ C∞c (C). Pick R ∈ R+ large enough so that φ(z) = 0 whenever |z| ≥ R. Let Ω
be the open disc of radius R around the origin. Then, since

∮
∂Ωφ(z)/z dz = 0, it follows from the

Cauchy-Pompeiu Integral Formula that

〈∂zE, φ〉 = − 1

π

∫
Ω

∂zφ(z)

z
dz = φ(0) = 〈δ, φ〉.

We conclude that ∂zE = δ in D′(C), as asserted.

C.13 Definition. Let U ⊆ C be open and let f : U → C be a function. We say that f is complex
differentiable at z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0

exists. If this is the case, then we denote the limit by f ′(z0). If f is complex differentiable at all
points in U , then we say that f is holomorphic in U with (complex) derivative f ′ : U → C. ♦

C.14 Lemma. Let U ⊆ C be open. A function f : U → C is complex differentiable at z0 ∈ U
if and only if it is (totally) differentiable in the sense of differentiability for maps from the real
two-dimensional vector space C to itself at z0 and satisfies ∂zf(z0) = 0. Moreover, in this case we
have ∂zf(z0) = f ′(z0).

Proof. Suppose f is complex differentiable at z0. Left multiplication by f ′(z0) = a+ bi, a, b ∈ R,
is represented by the matrix (

a −b
b a

)
.

If we denote the corresponding linear map by L, then

lim
z→z0

|f(z)− f(z0)− L(z − z0)|
|z − z0|

= lim
z→z0

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ = 0,

meaning that f = u+ iv is (totally) differentiable at z0 with (total) derivative given by(
∂xu(z0) ∂yu(z0)
∂xv(z0) ∂yv(z0)

)
=

(
a −b
b a

)
.
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But this implies that we have ∂xu(z0) = ∂yv(z0) and ∂yu(z0) = −∂xv(z0), or equivalently,

∂zf(z0) =
1

2
(∂xu(z0)− ∂yv(z0) + i(∂yu(z0) + ∂xv(z0))) = 0.

We note that this also implies that

∂zf(z0) =
1

2
(∂xu(z0) + ∂yv(z0) + i(∂xv(z0)− ∂yu(z0))) = ∂xu(z0) + i∂yu(z0) = a+ bi = f ′(z0).

For the converse, suppose f = u+ iv is continuously differentiable at z0 and satisfies ∂zf(z0) =
0. Then we find that ∂xu(z0) = ∂yv(z0) and ∂yu(z0) = −∂xv(z0). As above, this implies that
∂zf(z0) = ∂xu(z0) + i∂yu(z0). Moreover, it implies that the derivative of f is given by the Jacobian
matrix

L :=

(
∂xu(z0) ∂yu(z0)
∂xv(z0) ∂yv(z0)

)
=

(
∂xu(z0) ∂yu(z0)
−∂yu(z0) ∂xu(z0)

)
.

But then

lim
z→z0

∣∣∣∣f(z)− f(z0)

z − z0
− ∂zf(z0)

∣∣∣∣ = lim
z→z0

|f(z)− f(z0)− L(z − z0)|
|z − z0|

= 0.

The assertion follows.

Using the chain rule, one can now verify the following:

C.15 Lemma. Let U ⊆ C be open and let f ∈ C1(U). Suppose γ : [a, b]→ C is a C1 path whose
image lies in U . Then

(f ◦ γ)′(t) = ∂zf(γ(t))γ′(t) + ∂zf(γ(t))γ′(t)

for all t ∈]a, b[. In particular, if f is holomorphic, then (f ◦ γ)′(t) = f ′(γ(t))γ′(t) for all t ∈]a, b[.

Let (aj)j∈Z≥0
be a sequence of complex numbers. Then we define r ∈ [0,∞] by 1/r =

lim supj→∞ |aj |1/j , which we call the convergence radius of this sequence. This terminology is
justified by the fact that the power series ∑

j∈Z≥0

ajz
j

converges absolutely for z ∈ C with |z| < r, uniformly for z ∈ C with |z| ≤ r′ where r′ < r, and
diverges whenever |z| > r. We sometimes call r the convergence radius of the corresponding power
series.

C.16 Definition. Let U ⊆ C be open and let f : U → C be a function. We say that f is analytic
at z0 ∈ U if there is a sequence (aj)j∈Z≥0

with positive convergence radius r so that

f(z) =
∑
j∈Z≥0

aj(z − z0)j (C.5)

for |z − z0| < r. If f is analytic at all points in U , then we say that f is analytic in U . ♦
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A typical example is the exponential function exp : C→ C defined by

exp(z) := ez :=
∑
j∈Z≥0

zj

j!
.

The radius of convergence of this series is ∞. In the same way as is done for the real case, one can
show that ez+w = ezew for all z, w ∈ C. Moreover, we have

eit =
∑
j∈Z≥0

(it)j

j!
=
∑
j∈Z≥0

(−1)j
t2j

(2j)!
+ i

∑
j∈Z≥0

(−1)j
t2j+1

(2j + 1)!
= cos t+ i sin t

for all t ∈ R.
Suppose f is as in the definition and satisfies (C.5). Formally differentiating term by term

would indicate that
f ′(z) =

∑
j∈Z≥0

(j + 1)aj+1(z − z0)j

for |z−z0| < r. This is justified by the fact that lim supj→∞ |(j+1)aj+1|1/j = lim supj→∞ |aj |1/j =
1/r. In particular, if f is analytic in U , then f is holomorphic in U , and its complex derivative is
again analytic. In view of Lemma C.14, this means that we may conclude that analytic functions
are smooth. It is actually true that any holomorphic function is analytic.

C.17 Theorem. Let U ⊆ C be open and let f : U → C be a function. The following are equivalent:

(i) f is holomorphic in U ;

(ii) f ∈ C1(U) and ∂zf(z) = 0 for all z ∈ U ;

(iii) f is analytic in U .

C.18 Remark. The operator ∂z is an elliptic partial differential operator with constant coefficients.
The elliptic regularity theory tells us that if a distribution u ∈ D′(U) satisfies ∂zu = 0, then u is
given by a smooth function. The result of the theorem then implies that this function must
be holomorphic. In particular, condition (ii) in the theorem may be replaced by the equivalent
condition

(ii’) f is continuous and ∫
U
f(z)∂zφ(z) dz = 0

for all φ ∈ C∞c (U), i.e., ∂zf = 0 in D′(U).

♦

For the proof of Theorem C.17, we note that we have already established the implications (iii)⇒(ii)
in the discussion preceding the theorem and (ii)⇒(i) in Lemma C.14. Tt remains to show the
implication (i)⇒(iii). This follows from Proposition C.21 below. For this proposition, we require
a result known as Goursat’s Theorem. While this result is a version of Cauchy’s Theorem, it
is stronger in the sense that continuity of the derivatives of the function is not required. By a
rectangle, we mean a closed rectangle whose sides are parallel to the coordinate axes in the plane.
Per convention, we give its boundary a counterclockwise (positive) orientation.
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C.19 Theorem (Goursat’s Theorem). Let U ⊆ C be open and let f : U → C be holomorphic.
Suppose R ⊆ U is a closed rectangle. Then∮

∂R
f(z) dz = 0.

Proof. We claim that we can find rectangles

R ⊇ R1 ⊇ R2 ⊇ R3 ⊇ · · ·

so that, if Lj denotes the length of the boundary of Rj and L the length of the boundary of R and
dj denotes the diameter of Rj and d The diameter of R, we have the properties

1

4j

∣∣∣∣∮
∂R
f(z) dz

∣∣∣∣ ≤
∣∣∣∣∣
∮
∂Rj

f(z) dz

∣∣∣∣∣ , Lj =
1

2j
L, dj =

1

2j
d (C.6)

for all j ∈ N. Indeed, we bisect the sides of R to subdivide it into four rectangles R1, R2, R3, R4.
If one traverses the boundary of each of these rectangles counterclockwise, one notes that the sides
of the rectangle in the interior of R are traversed once forwards and once backwards so that∫

∂R
f(z) dz =

4∑
k=1

∫
∂Rk

f(z) dz

and thus ∣∣∣∣∫
∂R
f(z) dz

∣∣∣∣ ≤ 4∑
k=1

∣∣∣∣∫
∂Rk

f(z) dz

∣∣∣∣ ≤ 4 max
k∈{1,2,3,4}

∣∣∣∣∫
∂Rk

f(z) dz

∣∣∣∣
Pick k ∈ {1, 2, 3, 4} where this maximum is attained and set R1 := Rk. Then L1 = L/2, d1 = d/2
and (C.6) holds for j = 1.

Now suppose we have shown that we can pick subrectangles R1, . . . , RJ of R so that (C.6) holds
for j ∈ {1, . . . , J} for some J ∈ N. Using the same bisection process from before on RJ , we obtain
a rectangle RJ+1 so that LJ+1 = LJ/2 = L/2J+1, dJ+1 = dJ/2 = d/2J+1 and

1

4J

∣∣∣∣∮
∂R
f(z) dz

∣∣∣∣ ≤ ∣∣∣∣∮
∂RJ

f(z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂RJ+1

f(z) dz

∣∣∣∣ ,
which proves the induction step. This proves the claim.

By Cantor’s Intersection Theorem for complete metric spaces we find that the intersection⋂
j∈NRj consists of a single point z0. Since f is complex differentiable at z0, we find that the

function

r : U\{z0} → C, r(z) :=
f(z)− f(z0)

z − z0
− f ′(z0)

continuously extends to z0, where it takes the value 0. Now note that for each j ∈ N we have∮
∂Rj

f(z) dz = f(z0)

∮
∂Rj

dz + f ′(z0)

∮
∂Rj

(z − z0) dz +

∮
∂Rj

(z − z0)r(z) dz

=

∮
∂Rj

(z − z0)r(z) dz,
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where the first two integrals vanish by Cauchy’s Theorem. Then (C.6) gives us the estimate

1

4j

∣∣∣∣∮
∂R
f(z) dz

∣∣∣∣ ≤
∣∣∣∣∣
∮
∂Rj

f(z) dz

∣∣∣∣∣ ≤
∮
∂Rj

|z − z0||r(z)| dz ≤ djLj sup
z∈Rj

|r(z)| = dL

4j
sup
z∈Rj

|r(z)|.

Hence, ∣∣∣∣∮
∂R
f(z) dz

∣∣∣∣ ≤ dL sup
z∈Rj

|r(z)| → 0 as j →∞.

The assertion follows.

C.20 Corollary. Let Ω ⊆ C be an open disc centered at z0 ∈ C and let f : Ω→ C be holomorphic.
Then there is a holomorphic function F : Ω→ C so that F ′ = f .

Proof. For w ∈ Ω we set

F (w) :=

∫ w

z0

f(z) dz,

which should be interpreted as the integral of f along a path following the sides of the rectangle
R with opposing vertices z0 and w. To see that this is well-defined, we first note that there are
two possible choices of such paths which we shall call γ1 and γ2. If one traverses γ1 followed by
traversing γ2 backwards, we note that we have traversed the boundary of R where we assume
without loss of generality that this has been done counterclockwise. Hence, by Goursat’s Theorem,
we have ∫

γ1

f(z) dz −
∫
γ2

f(z) dz =

∮
∂R
f(z) dz = 0.

This proves that F is well-defined.
Pick h ∈ C. Then, by making appropriate choices of traversed sides of rectangles, we note that

F (w + h)− F (w) =

∫ w+h

w
f(z) dz,

where the integral is taken along a path following the sides of a rectangle Rh with opposing vertices
w and w+ h. We note that the length of this path can be estimated by |Reh|+ | Imh|. Moreover,
we note that

F (w + h)− F (w) =

∫ w+h

w
(f(z)− f(w) + f(w)) dz = hf(w) +

∫ w+h

w
(f(z)− f(w)) dz. (C.7)

Since f is continuous at w, we find that∣∣∣∣1h
∫ w+h

w
(f(z)− f(w)) dz

∣∣∣∣ ≤ |Reh|+ | Imh|
|h|

sup
z∈∂Rh

|f(z)− f(w)| ≤
√

2 sup
z∈∂Rh

|f(z)− f(w)| → 0

as h→ 0. Thus, we conclude from (C.7) that

lim
h→0

F (w + h)− F (w)

h
= f(w).

This proves the desired result.
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C.21 Proposition. Let U ⊆ C be open and let z0 ∈ U and R ∈ R+ so that the closure in C of
the open disc Ω of radius R centered at z0 lies in U . Suppose a function f : U → C is holomorphic
in U . Then

f(w) =
1

2πi

∮
∂Ω

f(z)

z − w
dz

for all w ∈ Ω. Moreover, f is analytic at z0, and its series representation has a convergence radius
greater than or equal to R.

Proof. Fix w ∈ Ω. First, we define

g : U\{w} → C, g(z) :=
f(z)− f(w)

z − w
.

Then g is holomorphic in U\{w}. For ρ ∈ R+ small enough so that the closed disc centered at w
of radius ρ lies in Ω we define

γρ : [0, 2π]→ C, γρ(t) := w + ρeit.

Moreover, we set γR : [0, 2π] → C, γR(t) := z0 + eit and we fix a ρ ∈ R+ as before. Consider a
partition 0 = a0 ≤ a1 ≤ · · · ≤ aJ = 2π of the interval [0, 2π] so that there exist discs {Ωj}J−1

j=0 in
U\{w} so that

γR([aj , aj+1]) ⊆ Ωj , γρ([aj , aj+1]) ⊆ Ωj

for all j ∈ {0, . . . , J − 1}. We write vj := γR(aj), wj := γρ(aj) for all j ∈ {0, . . . , J}. By
Corollary C.20 we can find holomorphic primitives Gj : Ωj → C of the restriction of g to Ωj for all
j ∈ {0, . . . , J − 1}. Note that for each z ∈ Ωj ∩ Ωj+1 we have

∂z(Gj −Gj+1)(z) = g(z)− g(z) = 0, ∂z(Gj −Gj+1)(z) = 0.

This implies that Gj −Gj+1 is constant in Ωj ∩ Ωj+1. In particular, since vj+1, wj+1 ∈ Ωj ∩ Ωj+1,
we have

Gj+1(vj+1)−Gj+1(wj+1) = Gj(vj+1)−Gj(wj+1) for all j ∈ {0, . . . , J − 2}. (C.8)

Then, by the Fundamental Theorem of Calculus∫
γρ

g(z) dz =

J−1∑
j=0

∫ aj+1

aj

G′j(γρ(t))γ
′
ρ(t) dt =

J−1∑
j=0

(Gj(wj+1)−Gj(wj))

Similarly we have ∫
γR

g(z) dz =

J−1∑
j=0

(Gj(vj+1)−Gj(vj)) .

Hence, by (C.8), we have∫
γR

g(z) dz −
∫
γρ

g(z) dz =

J−1∑
j=0

(Gj(vj+1)−Gj(wj+1)− (Gj(vj)−Gj(wj)))

= GJ−1(vJ)−GJ−1(wJ)− (G0(v0)−G0(w0))

= GJ−1(z0)−G0(z0)− (GJ−1(w0)−G0(z0)) = 0,
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since v0 = z0 + R = vJ , w0 = w + ρ = wJ and GJ−1 − G0 is constant on the intersection of their
domains. Thus, we have shown that the integral of g along γρ does not depend on ρ. Now, since f
is complex differentiable at z0, g extends continuously to z0 and is thus bounded in a neighborhood
of z0 by a constant c ∈ R+. This implies that for small enough ρ ∈ R+ we have∣∣∣∣∣

∫
γρ

g(z) dz

∣∣∣∣∣ ≤ c
∫ 2π

0
|γ′ρ(t)|dt = 2πρc,

for which the right-hand side tends to 0 as ρ ↓ 0. Thus, we have shown that

0 =

∫
γR

g(z) dz =

∫
γR

f(z)

z − w
dz − f(w)

∫
γR

1

z − w
dz

so that ∮
∂Ω

f(z)

z − w
dz = f(w)

∫
γR

1

z − w
dz = f(w)

∫ 2π

0

iReit

Reit
dt = 2πif(w).

This proves the first assertion.
For the last assertion, let 0 < ρ < R. Then, since∣∣∣∣w − z0

z − z0

∣∣∣∣ =
|w − z0|

R
< 1

for all w ∈ Ω and z ∈ ∂Ω, we find that

1

z − w
=

1

z − z0

1

1− w−z0
z−z0

=
1

z − z0

∑
j∈Z≥0

(
w − z0

z − z0

)j
for all w ∈ Ω and z ∈ ∂Ω, where the sum is absolutely and uniformly convergent for |w − z0| ≤ ρ.
Then dominated convergence implies that

f(w) =
∑
j∈Z≥0

(
1

2πi

∮
∂Ω

f(z)

(z − z0)j+1
dz

)
(w − z0)j ,

where the sum is absolutely and uniformly convergent for |w − z0| ≤ ρ. The assertion follows.

We note that we may now use the terms analytic and holomorphic interchangeably. In partic-
ular, we obtain the following:

C.22 Corollary. Let U ⊆ C be open. If f : U → C is holomorphic in U , then f ′ is also
holomorphic in U . Thus, f is infinitely many times complex differentiable in U .

We present a converse to Cauchy’s Theorem. We say that an open connected set U ⊆ C is
simply connected if all Jordan curves in U encase a subset of U . As an example we note that open
discs are simply connected, whereas open annuli are not. As an extreme case of this, removing a
point from C results in a connected open set that is not simply connected.
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C.23 Theorem (Morera’s Theorem). Let U ⊆ C be open. Suppose a continuous function f : U →
C satisfies ∮

Γ
f(z) dz = 0 (C.9)

for all piecewise C1 Jordan curves Γ ⊆ U encasing a subset of U . Then, on each simply connected
open subset V ⊆ U , there is a holomorphic function F : V → C satisfying F ′(z) = f(z) for all
z ∈ V . In particular, f is holomorphic in U and, if U itself is simply connected, then f admits a
holomorphic primitive in U .

Proof. Let z0 ∈ U and let V be a simply connected open subset of U containing z0, e.g., a disc of
small enough radius centered at z0. Then for each w ∈ V \{z0} there exists an injective piecewise
C1 path γ : [0, 1] → C in V so that γ(0) = z0, γ(1) = w. Let γ̃ be another injective piecewise C1

path in V from z0 to w. Then the concatenated path ψ which first traverses γ and then traverses
γ̃−1 describes a piecewise C1 Jordan curve. Then (C.9) implies that∫

γ
f(z) dz −

∫
γ̃
f(z) dz =

∫
ψ
f(z) dz = 0.

Thus, we may define F : V → C by

F (w) :=

∫ w

z0

f(z) dz :=

∫
γ
f(z) dz.

Let ε ∈ R+. And let w ∈ V . By continuity of f at w we can find a δ ∈ R+ so that w′ ∈ V and
|f(w) − f(w′)| < ε whenever |w − w′| < δ. Suppose w′ ∈ V \{w} satisfies |w − w′| < δ. Define
γ : [0, 1]→ C by γ(t) = (1− t)w′ + tw. Then

F (w)− F (w′) =

∫
γ
f(z) dz = (w − w′)f(w) +

∫
γ
(f(z)− f(w)) dz. (C.10)

Since γ([0, 1]) lies in the ball centered at w of radius δ, we have

1

|w − w′|

∣∣∣∣∫
γ
(f(z)− f(w)) dz

∣∣∣∣ ≤ ε 1

|w − w′|

∫ 1

0
|γ′(t)| dt = ε.

We conclude from (C.10) that

lim
w′→w

F (w)− F (w′)

w − w′
= f(w) + lim

w′→w

1

w − w′

∫
γ
(f(z)− f(w)) dz = f(w).

The assertion follows.

An important example is the definition of the complex logarithm.

C.24 Example. Let U be the complement in C of the non-positive real numbers. Then U is
a simply connected open set in C. Consider the holomorphic function f : U → C defined by
f(z) := 1/z. Then, by Cauchy’s Theorem, f satisfies (C.9) for all piecewise C1 Jordan curves
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Γ ⊆ U encasing a subset of U . The proof of Morera’s Theorem shows that we may define a
holomorphic primitive F of f on U by

log(w) :=

∫ w

1
f(z) dz,

where the integral should be interpreted as the integral from 1 to w along a piecewise C1 path from
1 to w. Note that F coincides with the natural logarithm on the positive real numbers. Moreover,
we note that

∂z(ze
− log z) = e− log z − e− log z = 0.

Since also ∂z(ze
− log z) = 0 we conclude that ∂x(ze− log z) = ∂y(ze

− log z) = 0 and thus, since U is
connected, ze− log z = c for some c ∈ C. Taking z = 1 shows that c = 1 and

elog z = z for all z ∈ U.

Note that we can write any z ∈ U as reiα with r ∈ R+ and α ∈]− π, π[. Define γ : [0, α] → C by
γ(t) := reit. Then

log(reit) =

∫ r

1
f(z) dz +

∫
γ
f(z) dz = log r +

∫ α

0
i dt = log r + iα.

Next, we wish to define the logarithm of a function. Suppose V ⊆ C is a simply connected open
set and suppose f : V → C is holomorphic and satisfies f(z) 6= 0 for all z ∈ V . Let z0 be any
point in V and pick a point w0 ∈ C so that ew0 = f(z0). Then we define a holomorphic function
Lf : V → C by

Lf (w) := w0 +

∫ w

z0

f ′(z)

f(z)
dz.

A proof analogous to the one above shows that eLf (z) = f(z) for all z ∈ V . ♦

C.25 Definition. Let z, w ∈ C\{0}. We define the oriented angle from z to w to be the unique
number α ∈ [0, 2π[ so that

w

|w|
= eiα

z

|z|
.

Let U ⊆ C be open and let z0 ∈ U . If γj : [aj , bj ] → C, j ∈ {1, 2} are two C1 paths in U so that
γj(tj) = z0 for some tj ∈]aj , bj [, j ∈ {1, 2}, then we say that γ1 and γ2 are paths through z0. If
γ′j(tj) 6= 0 for j ∈ {1, 2}, then there is a well-defined oriented angle α ∈ [0, 2π[ from γ′1(t1) to γ′2(t2).
We define the oriented angle from γ1 to γ2 at z0 to be α.

A C1 function f : U → C is said to preserve oriented angles at z0 if the following conditions hold: if
γ1 and γ2 are paths through z0 whose oriented angle α ∈ [0, 2π[ at z0 from γ1 to γ2 is well defined,
then the oriented angle from f ◦ γ1 to f ◦ γ2 at f(z0) is also well-defined and is equal to α. The
function f is called conformal if it preserves oriented angles at all points in U . ♦
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In the notation of this definition, note that if f is holomorphic, then Lemma C.15 implies that
(f ◦ γj)′(tj) = f ′(z0)γ′j(tj) for j ∈ {1, 2}. Thus, for the oriented angle from f ◦ γ1 to f ◦ γ2 at
f(z0) to be defined, it is necessary that f ′(z0) 6= 0. In fact, this is also a sufficient condition for
preservation of angles.

C.26 Proposition. Let U ⊆ C be open and let f : U → C be a holomorphic function. Then f
preserves oriented angles at z0 ∈ U if and only if f ′(z0) 6= 0.

Proof. Assume f ′(z0) 6= 0. Let γ1 and γ2 be paths through z0 in U whose oriented angle α ∈ [0, 2π[
at z0 from γ1 to γ2 is well defined. If γ1(t1) = γ2(t2) = z0 we write z1 := γ′1(t1) 6= 0, z2 := γ′2(t2) 6= 0.
Then (f ◦ γj)′(tj) = f ′(z0)zj 6= 0 for j ∈ {1, 2} so that the oriented angle from f ◦ γ1 to f ◦ γ2 at
f(z0) is also well-defined. Let α ∈ [0, 2π[ be the oriented angle from γ1 to γ2 at z0. Then,

(f ◦ γ2)′(t2)

|(f ◦ γ2)′(t2)|

/ (f ◦ γ1)′(t1)

|(f ◦ γ1)′(t1)|
=

(
f ′(z0)

|f ′(z0)|
z2

|z2|

)/( f ′(z0)

|f ′(z0)|
z1

|z1|

)
=

z2

|z2|

/ z1

|z1|
= eiα.

The assertion follows.

Next we present an Inverse Function Theorem for holomorphic functions as a consequence of
the Inverse Function Theorem from real analysis.

C.27 Definition. Let U ⊆ C be open and f : U → C a holomorphic function. We say that f
is a biholomorphism if V := f(U) is open and there is a holomorphic map g : V → C satisfying
g(V ) = U , g(f(z)) = z for all z ∈ U and f(g(z)) = z for all z ∈ V . We say that f is biholomorphic
at a point z0 if there is an open neighborhood U ′ ⊆ U of z0 so that the restriction of f to U ′ is a
biholomorphism. ♦

C.28 Theorem (Inverse Function Theorem). Let U ⊆ C be open and f : U → C a holomorphic
function. If f ′(z0) 6= 0 for some z0 ∈ U , then f is biholomorphic at z0.

Proof. Recall the proof of Lemma C.14. Write f ′(z0) = a+ bi. Then the Jacobian matrix of f at
z0 is given by (

a −b
b a

)
.

This has determinant a2 + b2 = |f ′(z0)|2 6= 0. Thus, the real analysis Inverse Function Theorem
implies that there is an open neighborhood U ′ ⊆ C of z0 in U and an open set V ⊆ C so that
f(U ′) = V , and a function g ∈ C1(V ) so that g(V ) = U ′, that inverts f . The chain rule implies
that the Jacobian matrix of g at f(z0) is given by the inverse matrix

1

|f ′(z0)|2

(
a b
−b a

)
.

But from this it follows that

∂zg(f(z0)) =
1

2|f ′(z0)|
((a− a) + i(−b+ b) = 0.

Similarly, one shows that ∂zg(w) = 0 for all w ∈ V . Hence, g is holomorphic in V , as asserted.
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The converse to the preceding theorem, that if a function is biholomorphic at a point, then its
derivative at that point is non-zero, also holds. We actually have a stronger result:

C.29 Proposition. Let U ⊆ C be open and f : U → C a holomorphic function. If f is injective,
then f ′(z) 6= 0 for all z ∈ U and f is a biholomorphism.

For the proof we require a lemma.

C.30 Lemma. Let U ⊆ C be open and let f : U → C be a holomorphic function. Suppose the
series expansion at z0 ∈ U of f is given by

f(z) = a0 +
∑
j∈Z≥k

aj(z − z0)j ,

for some k ∈ Z≥1 with ak 6= 0. Then there is an open neighborhood U ′ ⊆ U of z0 and a holomorphic
function g : U ′ → C so that g is biholomorphic at z0 and

f(z) = a0 + g(z)k

for all z ∈ U ′.

Proof. We may assume a0 = 0 and z0 = 0 by considering z 7→ f(z + z0) − f(z0) instead of f .
Then, for |z| small enough, define h so that

f(z) = akz
k
∑
j∈Z≥0

aj+k
ak

zj = akz
kh(z).

Then h is holomorphic and, since h(0) = 1, it is non-zero in an open neighborhood V of 0. Let
Lh : V → C denote the holomorphic logarithm of h as defined in Example C.24. Pick s ∈ C so
that sk = ak. Then we may define a holomorphic function g : V → C by

g(z) := sze
Lh(z)

k .

Then g(z)k = f(z) for all z ∈ V and g′(0) = seLh(0)/k 6= 0 by the assumption sk = ak 6= 0. By the
Inverse Function Theorem, g is biholomorphic at 0. The assertion follows.

Proof of Proposition C.29. The function U → f(U) given by f is bijective, hence has an inverse
function h. In particular, note that injectivity of f implies that f is nowhere constant so that we
may apply Lemma C.30. Let z0 ∈ U and let g and k be as in the lemma so that f(z) = f(z0)+g(z)k

for z in an open neighborhood U ′ of z0. Injectivity of f on U ′ implies that z 7→ φ(z) := g(z + z0)k

must be injective in a neighborhood of 0. But since g is biholomorphic at z0, this means that
w 7→ wk is injective in a neighborhood of 0. This is only possible when k = 1. But this means that
f ′(z0) = a1 6= 0, which implies that f is biholomorphic at z0. As z0 was arbitrary, this means that
f must be locally invertible by a holomorphic map at every point in U . But since each of these
inverses must be given by restrictions of h, we may conclude that h is holomorphic. The assertion
follows.

We can now characterize biholomorphisms.
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C.31 Theorem. Let U ⊆ C be open and let f ∈ C1(U). The following are equivalent:

(i) f is a biholomorphism;

(ii) f is injective and holomorphic;

(iii) f is injective and conformal.

For the proof we require a lemma.

C.32 Lemma. Let U ⊆ C be open, f ∈ C1(U), and z0 ∈ U . Then if f preserves angles at z0, then
∂zf(z0) = 0. In particular, if f is conformal, then f is holomorphic.

Proof. For θ ∈ R we define a C1 path γθ by γθ(t) := z0 + te−iθ/2 on an interval around 0, small
enough so that the image of γθ lies in U . Then γθ(0) = z0 and γ′θ(0) = e−iθ/2 6= 0 so that

γ′θ(0)

γ′θ(0)
= eiθ. (C.11)

Then, since f preserves angles at z0, we have for α, β ∈ R that

(f ◦ γα)′(0)

|(f ◦ γα)′(0)|

/ (f ◦ γβ)′(0)

|(f ◦ γβ)′(0)|
=

γ′α(0)

|γ′α(0)|

/ γ′β(0)

|γ′β(0)|
,

or equivalently,
|γ′α(0)|

|(f ◦ γα)′(0)|
(f ◦ γα)′(0)

γ′α(0)
=

|γ′β(0)|
|(f ◦ γβ)′(0)|

(f ◦ γβ)′(0)

γ′β(0)
.

This means that (f ◦γα)′(0)/γ′α(0) and (f ◦γβ)′(0)/γ′β(0) have the same argument. But then, since
α, β were arbitrary, we find, by Lemma C.15 and (C.11), that the argument of

(f ◦ γθ)′(0)

γ′θ(0)
= ∂zf(z0) + ∂zf(z0)eiθ (C.12)

is independent of θ ∈ R. Since (C.12) describes a circle of radius |∂zf(z0)| as θ runs through [0, 2π],
we conclude that we must have ∂zf(z0) = 0. The result follows. The last assertion follows from
Theorem C.17.

Proof of Theorem C.31. The equivalence of (i) and (ii) follows from Proposition C.29. The
implication (ii)⇒(iii) follows from Proposition C.26 while the implication (iii)⇒(ii) follows from
Lemma C.32.

We can also prove the Open Mapping Theorem for holomorphic functions.

C.33 Theorem (Open Mapping Theorem). Let U ⊆ C be open. Suppose f : U → C is a
holomorphic function that is non-constant on any non-empty open subset of U . Then f maps open
sets to open sets.
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Proof. Let V ⊆ U be open and let z0 ∈ V so that f(z0) is an arbitrary point in f(V ). We have to
show that there is an open neighborhood of f(z0) that is contained in f(V ).

By Lemma C.30 we can find an open neighborhood U ′ ⊆ V of z0 and a holomorphic function
g : U ′ → C so that g is biholomorphic at z0 and

f(z) = f(z0) + g(z)k

for all z ∈ U ′. As g is a biholomorphism on an open neighborhood W ⊆ U ′ of z0, the set g(W ) is
open. Since g(z0) = 0, there is an open disc D around the origin contained in g(W ). Since the disc
D gets mapped to another disc D′ through the map w 7→ wk, we conclude that

f(g−1(D)) = f(z0) +D′

is an open neighborhood of f(z0) contained in f(V ). We conclude that f(V ) is open, as desired.

We define
∆ := −4∂z∂z = −∂2

x − ∂2
y

and recall that for an open set U ⊆ C a real-valued function u ∈ C2(U) is called harmonic if
∆u = 0 in U .

C.34 Proposition. Let U ⊆ C be a simply connected open set and suppose a real-valued u ∈ C2(U)
is harmonic. Then there is a holomorphic function f : U → C so that Re f = u. Conversely, the
real part of any holomorphic function is harmonic.

Proof. Set g := 2∂zu ∈ C1(U). Then ∂zg(z) = −∆u(z)/2 = 0 for all z ∈ U . Thus, g is holomorphic
in U . By Morera’s Theorem, g has a holomorphic primitive f : U → C. Set ũ := Re f . Then,
recalling the proof of Lemma C.14,

∂xu(z)− i∂yu(z) = g(z) = f ′(z) = ∂zf(z) = ∂xũ(z)− i∂yũ(z)

for all z ∈ U . This implies that u − ũ ∈ C1(U) has vanishing partial derivatives, hence must be
equal to a constant c ∈ R. Thus, u is the real part of the holomorphic function f + c. This proves
the first assertion.

For the converse, let V ⊆ C be open and let f : V → C be holomorphic. Then f is smooth, and
certainly u := Re f ∈ C2(V ). Since ∂zf(z) = 0 for all z ∈ V , we have ∆u(z) = Re(−4∂z∂zf(z)) = 0
for all z ∈ V . The result follows.

For z0 ∈ C and r ∈ R+ we will denote by D(z0; r) and D(z0; r) the respectively open and closed
disc of radius r in C centered at z0. We denote the boundary of such a disc by ∂D(z0; r).

C.35 Corollary. Let V,U ⊆ C be open and let u : V → R be harmonic. If f : U → C is a
holomorphic function satisfying f(U) ⊆ V , then the composition u ◦ f : U → R is harmonic in U .

Proof. If f is constant then the result is trivial, so assume f is non-constant. Let z0 ∈ U . Pick
r ∈ R+ so that D(z0; r) ⊆ U . As f(D(z0; r)) is open by the Open Mapping Theorem, there is some
r′ ∈ R+ so that D(f(z0); r′) ⊆ f(D(z0; r)) ⊆ V . Since D(f(z0); r′) is simply connected, there is a
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holomorphic function g : D(z0; r) → C so that Re g(z) = u(z) for all z ∈ D(f(z0); r′). It follows
that

u ◦ f(z) = Re((g ◦ f)(z))

for all z ∈ D(z0; r). As the composition of holomorphic functions is holomorphic, we conclude that
u ◦ f is holomorphic at z0. Since z0 was arbitrary, we conclude that u ◦ f is harmonic in U .

Alternatively, one can compute ∆(u ◦ f)(z) = ∆u(f(z))|f ′(z)|2 = 0 for all z ∈ U .

If D(z0; r) ⊆ U for some z0 ∈ U and r ∈ R+, then u is the real part of some holomorphic
function f defined on an open set in U containing D(z0; r). If γ : [0, 2π] → C is defined by
γ(t) := z0 + reit, then we find, by Cauchy’s integral formula, that

u(z0) = Re f(z0) = Re
1

2πi

∫
γ

f(z)

z0 − z
dz =

1

2π

∫ 2π

0
u(z0 + reit) dt.

This motivates the following definition:

C.36 Definition. Let U ⊆ C be open and let u : U → R be a continuous function. We call u
subharmonic if

u(z0) ≤ 1

2π

∫ 2π

0
u(z0 + reit) dt

for all z0 ∈ U , r ∈ R+ so that D(z0; r) ⊆ U . ♦

For real-valued functions u ∈ C2(U), subharmonicity is a condition on ∆u.

C.37 Proposition. Let U ⊆ C be open and let u ∈ C2(U) be real-valued. Then u is subharmonic
in U if and only if ∆u ≤ 0 in U .

Proof. Suppose u ∈ C2(U). Let z0 ∈ U and pick r0 ∈ R+ so that D(z0; r0) ⊆ U . Define
φ : [0; r0[→ R by

φ(r) :=
1

2π

∫ 2π

0
u(z0 + reit) dt.

For r ∈]0, r0[, define γr : [0, 2π]→ C by γr(t) := z0 + reit. Then, by Green’s Integral Theorem, we
have

− 1

2r

∫
D(z0;r)

∆u(z) dz =
2

r

∫
D(z0;r)

∂z∂zu(z) dz =
1

ri

∫
γ
∂zu(z) dz =

∫ 2π

0
∂zu(z0 + reit)eit dt

and

− 1

2r

∫
D(z0;r)

∆u(z) dz =
2

r

∫
D(z0;r)

∂z∂zu(z) dz = − 1

ri

∫
γ
∂zu(z) dz =

∫ 2π

0
∂zu(z0 + re−it)e−it dt,

so that

φ′(r) =
1

2π

∫ 2π

0

(
∂zu(z0 + reit)eit + ∂zu(z0 + reit)e−it

)
dt = − 1

2πr

∫
D(z0;r)

∆u(z) dz. (C.13)
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Now suppose ∆u ≤ 0 in U . Then (C.13) implies that φ′(r) ≥ 0 for r ∈]0, r0[ so that φ is
increasing. This implies that

u(z0) = φ(0) ≤ φ(r) =
1

2π

∫ 2π

0
u(z0 + reit) dt

for all r ∈]0, r0[. We conclude that u is subharmonic.
For the converse we argue by contraposition. Suppose that ∆u(z0) > 0 for some z0 ∈ U . Then,

by continuity of ∆u, there is some r0 ∈ R+ so that D(z0; r0) ⊆ U and ∆u > 0 on D(z0; r). Then,
defining φ as before, by (C.13), we have φ′(r) < 0 for r ∈]0, r0[. Hence, φ is strictly decreasing.
This implies that

u(z0) = φ(0) > φ(r) =
1

2π

∫ 2π

0
u(z0 + reit) dt

for r ∈]0, r0[. Thus, u is not subharmonic in U . The assertion follows.

The notion of subharmonicity can be characterized in various ways.

C.38 Theorem. Let U ⊆ C be open and let u : U → R be a continuous function. The following
are equivalent:

(i) u is subharmonic in U;

(ii) for every z0 ∈ U there is an r0 ∈ R+ so that D(z0; r0) ⊆ U and whenever 0 < r < r0, we have

u(z0) ≤ 1

2π

∫ 2π

0
u(z0 + reit) dt;

(iii) for every z0 ∈ U and r ∈ R+ so that D(z0; r) ⊆ U we have that if a continuous function
v : D(z0; r)→ R, twice continuously differentiable and harmonic in D(z0; r), satisfies u(z) ≤
v(z) for all z ∈ ∂D(z0; r), then u(z) ≤ v(z) for all z ∈ D(z0; r).

We will give a proof of this result momentarily. The implication (ii)⇒(iii) uses the so-called
Maximum Principle, while the implication (iii)⇒(i) uses the fact that for all z0 ∈ C, r ∈ R+ and
continuous g : ∂D(z0; r) → R, there exists a unique continuous function u : D(z0; r) → R, twice
continuously differentiable in D(z0; r), solving the Dirichlet problem{

∆u = 0 in D(z0; r);

u|∂D(z0;r) = g.

A proof of this result can be found in [Ev, Chapter 2, Theorem 15].

C.39 Proposition (The Maximum Principle). Let U ⊆ C be open and connected and let u : U → R
be continuous. Suppose that for every z0 ∈ U there is an r0 ∈ R+ so that D(z0; r0) ⊆ U and
whenever 0 < r < r0, we have

u(z0) ≤ 1

2π

∫ 2π

0
u(z0 + reit) dt. (C.14)

If for some z0 ∈ U we have u(z0) = maxz∈U u(z), then u is constant in U .
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Proof. Set M := maxz∈U u(z). We let W be the subset of U consisting of all z ∈ U so that
u(z) = M . Per assumption, W is non-empty. By continuity of u, W is closed in U . We will show
that W is also open in U . Then it follows from connectedness of U that U = W , as desired. Let
z0 ∈ W and pick R ∈ R+ so that D(z0;R) ⊆ U . Per assumption we can find 0 < r0 < R so that
u satisfies (C.14) for any r ∈ R+ satisfying 0 < r < r0. Fix 0 < ε < r0. By employing polar
coordinates we find that

1

πε2

∫
D(z0;ε)

u(z) dz =
1

πε2

∫ ε

0

∫ 2π

0
u(z0 + ρeit)ρ dt dρ ≥ 2πu(z0)

πε2

∫ ε

0
ρdρ = M

so that

M ≤ 1

πε2

∫
D(z0;ε)

u(z) dz ≤ M

πε2

∫
D(z0;ε)

dz = M.

But this is only possible if u(z) = M for all z ∈ D(z0; ε). We conclude that D(z0; ε) ⊆W , proving
that W is open. It now follows that u is constant in U . By continuity this means that u is constant
in U , as desired.

Proof of Theorem C.38. The implication (i)⇒(ii) is clear.
For (ii)⇒(iii), pick z0 ∈ U and r ∈ R+ so that D(z0; r) ⊆ U . Suppose v : D(z0; r) → R

is a continuous function, twice continuously differentiable and harmonic in D(z0; r), and satisfies
u(z) ≤ v(z) for all z ∈ ∂D(z0; r). If we set w := u − v, then w(z) ≤ 0 for all z ∈ ∂D(z0; r). Pick
z1 ∈ D(z0; r) so that w(z1) = maxz∈D(z0;r)w(z). We consider two cases.

First we assume that z1 ∈ ∂D(z0; r). Then it follows that u(z) − v(z) = w(z) ≤ 0 for all
z ∈ D(z0; r), as desired.

Next, we assume that z1 ∈ D(z0; r). Since v is harmonic in D(z0; r), this means, in particular,
that −v is subharmonic in D(z0; r), and thus so is w as the sum of subharmonic functions. Hence,
w satisfies the conditions for the Maximum Principle in D(z0; r) and is thus constant in D(z0; r).
Picking a z′ ∈ ∂D(z0; r), we find that u(z) − v(z) = w(z) = w(z′) ≤ 0 for all z ∈ D(z0; r). The
assertion follows.

For (iii)⇒(i), let z0 ∈ U , r ∈ R+ so that D(z0; r) ⊆ U . Let v : D(z0; r) → R be the unique
solution to the Dirichlet problem{

∆v = 0 in D(z0; r);

v|∂D(z0;r) = u|∂D(z0;r).

Then u(z) ≤ v(z) for all z ∈ D(z0; r). Thus, we have

u(z0) ≤ v(z0) =
1

2π

∫ 2π

0
v(z0 + reit) dt =

1

2π

∫ 2π

0
u(z0 + reit) dt,

as desired.

C.40 Lemma. Let V,U ⊆ C be open and let u : V → R be subharmonic. If f : U → C is a
holomorphic function satisfying f(U) ⊆ V , then the composition u ◦ f : U → R is subharmonic in
U .
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Proof. Let z0 ∈ U . First assume f ′(z0) 6= 0. Then it follows from the Inverse Function Theorem
that there is an open neighborhood U ′ ⊆ U of z0 so that V ′ := f(U ′) is open and there is a
holomorphic map g : V ′ → C satisfying g(V ′) = U ′, g(f(z)) = z for all z ∈ U ′ and f(g(z)) = z for
all z ∈ V ′.

Let r0 ∈ R+ so that D(z0; r0) ⊆ U ′ and let 0 < r < r0. Let v : D(z0; r) → R be a continuous
function that is twice continuously differentiable and harmonic in D(z0; r) and satisfies u(f(z)) ≤
v(z) for all z ∈ ∂D(z0; r). We have to show that u(f(z)) ≤ v(z) for all z ∈ D(z0; r). Note
that f(∂D(z0; r)) is a C1 Jordan curve which encases the connected open set f(D(z0; r)). Set
w := u − v ◦ g : f(D(z0; r)) → R. Our assumption implies that w(z) ≤ 0 for all z ∈ f(∂D(z0; r)).
Pick z1 ∈ f(D(z0; r)) so that w(z1) = maxz∈D(z0;r)w(z). We consider two cases.

First we assume that z1 ∈ ∂f(D(z0; r)) = f(∂D(z0; r)). Then it follows that u(z) − v(g(z)) =
w(z) ≤ 0 for all z ∈ f(D(z0; r)) = f(D(z0; r)), as desired.

Next, we assume that z1 ∈ f(D(z0; r)). Since v ◦ g is harmonic in f(D(z0; r)), this means, in
particular, that −v ◦ g is subharmonic in f(D(z0; r)), and thus so is w as the sum of subharmonic
functions. Hence, w satisfies the conditions for the Maximum Principle in f(D(z0; r)) and is thus
constant in f(D(z0; r)). Picking a z′ ∈ f(∂D(z0; r)), we find that u(z)−v(g(z)) = w(z) = w(z′) ≤ 0
for all z ∈ f(D(z0; r)).

As in the proof of Theorem C.38, it now follows that

u(f(z0)) ≤ 1

2π

∫ 2π

0
u(f(z0 + reit)) dt

for 0 < r < r0.
It remains to check the case when f ′(z0) = 0. If f is constant, then the result is clear. If not,

then Lemma C.30 implies that there is an open neighborhood U ′ ⊆ U of z0 and a holomorphic
function g : U ′ → C so that g is biholomorphic at z0 and

f(z) = f(z0) + g(z)k

for all z ∈ U ′, for some k ∈ Z≥2. Let z0 ∈ U ′′ ⊆ U ′ so that g is a biholomorphism on U ′′. Now,
since g(z0) = 0, we can pick 0 < r′0 < 1 small enough so that D(0; r′0) ⊆ g(U ′′). Let 0 < r′ < r′0.
Then

1

2π

∫ 2π

0
u(f(z0) + r′keikt) dt =

1

2kπ

∫ 2kπ

0
u(f(z0) + r′keit) dt

=
k

2kπ

∫ 2π

0
u(f(z0) + r′keit) dt ≥ u(f(z0)),

since u is subharmonic at f(z0). But this means that z 7→ u(f(z0) + zk) is subharmonic at 0.
Then, since g′(z0) 6= 0 and g is holomorphic, we may use our previous result to conclude that
z 7→ u(f(z0) + g(z)k) = u(f(z)) is subharmonic at z0, i.e., there is some r0 ∈ R+ so that

u(f(z0)) ≤ 1

2π

∫ 2π

0
u(f(z0 + reit)) dt

for 0 < r < r0. The assertion follows.
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Index of notation

〈·, ·〉 4
Df 53, 71
∂hf 53
∂z, ∂z 9, 116, 121
B, Bp 9, 40, 46
Bp 68
H 11
Cf 13
C∞K (U) 96
C∞c (U) 96
C 45
dtu 103
D′(U) 97
δ 100
∆ 116, 137
Ep,γ 68
η ⊗ ξ 77
f ∗ g 91
F 109, 111
H 11
Hα 37
Jf 53
L ∗ 5
L † 6
L(X,Y ) 3
L(X) 3
L0(U) 3
Lp(U) 3, 4
Lploc(U) 6
Mf 25
OM (Rn) 107
p′ 4
p(β) 58
P (β, U) 60
Py, Qy 14
R+ 6
R1, R2 36
supp f 93, 96
sing suppu 116
S(Rn), S ′(Rn) 103
T x, 117

W 1,p(U) 6
W 1,p
loc (U) 6

W̊ 1,p(C) 41
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