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Abstract

Inspired by Astala, Iwaniec, Prause and Saksman’s partial result of Morrey’s problem regarding
rank-one convex and quasiconvex functions on the functionals from Burkholder’s martingale theory,
we discuss and relate several open problems in different fields of mathematics. In particular, we
discuss the theory of Calderén and Zygmund regarding the LP-boundedness of the Beurling- Ahlfors
transform £ for 1 < p < oo to formulate Iwaniec’s conjecture regarding the precise operator norms
of #B. Moreover, we discuss its consequences in the theory of quasiconformal mappings. Finally,
we discuss the notions of rank-one convexity and quasiconvexity, motivated by their role in the
theory of calculus of variations, and show how a positive answer to Morrey’s conjecture implies
quasiconvexity of the Burkholder functional, which, in turn, is shown to imply Iwaniec’s conjecture.



ii



Preface

This thesis was written under supervision of Mark Veraar of the Analysis Group at the Delft
University of Technology as part of the master Mathematical Sciences at Utrecht University.

Acknowledgements

First and foremost I would like to thank my supervisor Mark Veraar, not only for introducing me
to this subject, but also for providing me with a working environment at the Delft University of
Technology that inspires academic excellence. Not only was I able to obtain direct feedback to
my ideas from Mark and the other people in the analysis department, but I was also able to learn
about current research being done there through various seminars and lectures organized by the
staff to provide me with a broader mathematical perspective.

I wish to express my gratitude to my examiners Erik van den Ban and Sjoerd Verduyn Lunel
for their enthusiasm about the thesis and for taking their time to listen to and read about my work.

I would like to thank Nick Lindemulder for providing commentary on the earlier drafts of this
thesis, for helping me work out some of my ideas, and for providing helpful suggestions to enhance
the quality of the text.

I am indebted to Adridna Szildgiova, who provided numerous comments leading to improvement
in the formulation and readability of the thesis, all while she was dealing with her own master’s
thesis and the pressure that comes with it.

iii



v



Contents

Abstract i
Preface iii
Introduction 1
1 Preliminaries: LP-Spaces 3
2 The Beurling-Ahlfors Transform 9

2.1 Motivation . . . . . . e e 9

2.2 The Hilbert Transform . . . . . . . . . . . . . . . . . . e 10

2.3 The Riesz Transforms and the Beurling-Ahlfors Transform . . . . . . . ... ... .. 36
3 Quasiconformal Mappings and Iwaniec’s Conjecture 51
4 The Burkholder Functional 64

4.1 Motivation: Integral Estimates of the Jacobian Determinant . . . . . . . .. ... .. 64

4.2 Rank-one Convex and Quasiconvex functions . . . . . . ... .. ... .. ...... 69
A Appendix: Convolution of Functions 91
B Appendix: Distribution Theory and the Fourier Transform 96
C Appendix: Complex Analysis 121
Index of notation 142
References 143



vi



Introduction

It was in a seminar on complex analysis in 1949 at the University of Uppsala where Arne Beurling
introduced a two-dimensional analogue of the Hilbert transform, which we now call the Beurling-
Ahlfors transform, and proved that it extends to an isometry of L? as a generalization of Hilbert’s
result for the Hilbert transform, see [Be, p. 460]. In 1955, this operator found its way into the
theory of quasiconformal mappings when it was used by Lars Ahlfors to establish the existence of
solutions to certain partial differential equations known as Beltrami equations, see [Al]. Notably, the
mathematician Ilia Vekua had done work in this area earlier in the same year in [Ve]. Ahlfors was
unaware of this fact and the results he found were independent of Vekua’s results. It was Vekua’s
student Bogdan Bojarski who combined their efforts in 1957 in the seminal paper Generalized
Solutions of a System of First Order Differential Equations of Elliptic Type with Discontinuous
Coefficients, see [Bo].

Bojarski used the newly developed theory of Calderén and Zygmund on singular integral opera-
tors to the Beurling- Ahlfors transform to establish LP estimates of solutions to Beltrami equations.
Having these integrability results in mind, in 1982 the Polish mathematician Tadeusz Iwaniec pub-
lished the article Extremal Inequalities In Sobolev Spaces and Quasiconformal Mappings, see [Iw],
in which he conjectures precise values of the operator norm in L of the the Beurling-Ahlfors trans-
form. In the same year, Donald Burkholder was independently working on his martingale theory
which happened to feature the same values from Iwaniec’s conjecture, see [Bu]. While Iwaniec’s
conjecture has yet to be settled, it has been through Burkholder’s estimates that the most progress
has been made. The study of the functionals obtained through Burkholder’s theory relates back to
notions of convexity introduced in the setting of calculus of variations in 1952 by Charles Morrey,
see [Mo], in which there is an outstanding open problem, known as Morrey’s conjecture, on relating
the notions of quasiconvexity and rank-one convexity.

As a culmination of these ideas, Astala, Iwaniec, Prause and Saksman obtain a partial result
with respect to Morrey’s conjecture in 2010 in the article Burkholder Integrals, Morrey’s Problem
and Quasiconformal Mappings, see [AIPS]. We let this result inspire us to delve into the theory
and to explore its history.

Goal and outline

The goal of this thesis is not to prove any new results, but to give an overview of the theory and ideas
necessary to understand Iwaniec’s conjecture and several related conjectures due to Burkholder’s
estimates.

The main text of the thesis is split into four sections. In Section 1 we provide some preliminary
notions and results regarding LP-spaces.

In Section 2 we first establish LP-boundedness of the Hilbert transform and we establish its
precise LP-norms. Then we use Calderén and Zygmund’s Method of Rotations to establish LP-
boundedness of the Riesz transforms and the Beurling- Ahlfors transform. We also establish a lower
bound of the LP-norms of the Beurling-Ahlfors transform.

In Section 3 we give an introduction into the theory of quasiconformal mappings. Moreover, we
explain Iwaniec’s reasoning on how he came to his conjecture.

In the last section, Section 4, we first describe how one of Burkholder’s estimates can be used to



deduce results regarding the operator norm of the Beurling-Ahlfors transform and we explain how
this is related to the study of the Burkholder functional. We then give an introduction into the
theory of calculus of variations and the related notions of quasiconvexity and rank-one convexity.
This leads us to Morrey’s conjecture on the equivalence of these convexity notions in two dimensions
and to conjectures related to the quasiconvexity of the Burkholder functional. We conclude the
section by giving an overview of the conjectures.



1 Preliminaries: LP-Spaces

This section deals with some preliminary facts we will be using on LP-spaces and some conventions
we will be working with. Whenever we speak of a function we mean a map whose codomain is the
field C of complex numbers. Naturally, all our function spaces will be vector spaces over C. When
we are working with functions defined on R?, we will use the standard identification C = R?. We
will usually denote the coordinates on C by z = = + iy. In an attempt to make our notation less
cumbersome we will sometimes consider z, x, and y to be functions, where one might interpret
z as the identity function on C and x and y as taking the respective real and imaginary parts
of a complex number. It should be implied by the context when these letters refer to functions
rather than values and vice-versa. When working in the Fourier domain we will usually denote the
coordinates by ¢ = £ + in, working under similar conventions. Sometimes we will step away from
these conventions when we wish to generalize to a setting on R" for n € N. In this case we will
denote the coordinates by = = (x1,...,x,) or sometimes y = (y1,...,yn). In the 1-dimensional
case we will also sometimes use ¢.

When (X, || -||x) and (Y, || - ||y) are normed (both real or both complex) vector spaces, then we
define the (extended) operator norm by

| llexy) : {€: X =Y [ L linear} — [0,00], [[ZL|[cxy) = sup |-Zz|y,
S
llzll x=1
and set
LIX,)Y)={Z: X =Y |Z linear, || £ sx,y) < oo}

We will also write £(X) := L(X, X).

Throughout this section we let U be a non-empty open subset of R™. We denote by L°(U)
the space of equivalence classes of Lebesgue measurable functions on U, where two functions are
deemed equivalent if they are equal almost everywhere. We will commit the usual abuse of notation
where we identify functions with their equivalence class, e.g., we will write f € L°(U) for a function
f rather than its corresponding equivalence class. For p € [1, c0] we define the (extended) norms

F@Pdz)’  ifpe L ool
|- llp: L°(U) = [0,00], || fllp == </U )

esssup | f(z)] if p = oo,
zcU

where dz means integration with respect to the Lebesgue measure (where x represents the coordi-
nates we are using) and where

esssup f(z) =inf{c € R| f(x) < cfor a.e. x € U}.
zelU

for real-valued f € LO(U). We then set
LP(U) = {f € L°U) | || fllp < o0},

which are Banach spaces when equipped with their respective norms.



Let p €]1,00[. We then call p' := p/(p — 1) the (Holder) conjugate exponent of p. The map
g+ q/(q— 1) gives a bijection from |1, 2] to [2, 0o and vice-versa. If f,g: U — C are measurable
functions so that fg is integrable, then we write

(f,9) = /Uf(l‘)g(w) dz.

The pairing (-, -) restricts to the dual pairing LP(U) x L? (U) — C, which is well-defined by Holder’s
inequality. Then the maps

= (LX), fe ()
/ - (LP(U))*7 g <7g>

are isometric linear isomorphisms.
Since the inclusion ¢ : C°(U) — L¥ (U) is continuous with dense range, see Appendix A, we
find that the restriction map

(LP(U)* = D'(U), u— uleeqy=uot
is a continuous injection. This allows us to give an alternative description of LP(U) by defining

I-1lp : D'(U) = [0,00], lully = sup |u(¢)]
$eCE (U)
l¢ll,=1

and setting
LP(U) = {u € D'(U)|||ull, < oo} .
The first definition of LP(U) yields a space that is isometrically isomorphic to this new space
through the map
f= A e
To see why this map is an isometry we will state a general lemma which will be used several times
later on.

1.1 Lemma. Let E be a normed vector space and F' a Banach space. Suppose V. C E is a dense
subspace, equipped with the restricted norm of E. Then the restriction map p : L(E, F) — L(V, F),
p(&) == Ly is an isometric linear isomorphism.

Proof. Note that p is linear. First we will show that p is isometric. Thus, we need to show that
for any £ € L(E, F) we have

1L zer) = 1LV I2v,my- (1.1)
The inequality

1L Wcvey = sup [|Z2|r <Ll ce,r)
zeV
|zl p=1

is clear. For the converse inequality, note that any x € E with ||z||g = 1 can be approximated by
a sequence (x;)jen in V such that ||z;||g = 1 for all j € N. Then

[Zz]lr = lim || Zz;|F < [|Z]v]c,F)-
j—o0

4



Hence, || -Z||zg,r) < [|Z|v]zv,F)- This proves (1.1).
It remains to show that p is surjective. Let .# € L(V, F). Then we have

2 5 < || vyl |5 for all o/ € V. (1.2)

Let o € E. Then there is a sequence (z;);en in V that converges to  in E. Then this sequence
is a Cauchy sequence in E. Hence, by taking 2’ = x; — xy in (1.2) for j,k € N, we see that the
sequence (# xj);en is a Cauchy sequence in F'. Since F' is complete, this means that there is some
y € F so that (A4 x;)jen converges to y. Note that if (x;)jeN is any other sequence in V that
converges to  in E, then (.#1});en is again convergent. By taking 2’ = 2, — z; in (1.2) it follows
that (//la:;)jeN must also converge to y.

Now we can define a map .Z : E — F by setting .Zz := y. This map is linear, and coincides
with .# on V. By another approximation argument using (1.2), it follows that .Z is bounded. We
conclude that £ € L(E, F) and p(.£) = .#. The assertion follows. O

To emphasize, a particular consequence of Lemma 1.1 is that

lgllyy = 1, )l czrrmy.c) = sup  [{¢,g)| for all g € LP (R™). (1.3)
$ECZ(R)
I$lip=1

Sometimes we will tacitly use the second definition of LP(R™), which should be clear from the
context.
We will be using the following basic result:

1.2 Lemma. Let £ € L(LP(U)). Then there is a unique dual operator £* € L(LP (U)) satisfying

forall f € LP(U) and g € Lp/(U). Moreover, this operator satisfies
1L M 2o @)y = 1€ 2z (wy)-
Proof. For any g € L” (U) the map LP(U) — C, f — (ZLf,g) lies in (LP(U))*. Hence, there is a

unique element h € LP (U) so that (Zf,g) = (f, h) for all f € LP(U). Setting £*g := h yields a
linear operator .Z* : LV (U) — L¥ (U) satisfying

H"%*HL(LP,(U)) = sup (Zf, 9= HD%HE(LP(U))-
feLr(U),geL? (U)
Il fllp=llgll,y=1
The assertion follows. O

While we won’t make much use of the additional Hilbert space structure of L?(U), we do want
to remark the following:



1.3 Remark. The inner product on L?(U) is defined by (f,g)2 := (f,g). More generally, for
p €]1,00] we can define (f,g) := (f,g) for f € LP(U), g € L¥(U). One then finds that for every
€ L(LP(U)) there is a unique conjugate transpose operator .Zt € £L(L¥ (U)) so that

(Zf.9)=(f.LT9)

for all f € LP(U), g € L (U). This relates to the dual operator of £ through the formula
L*f = ZTf and therefore also satisfies

H"gTuﬁ(LP'(U)) = H-iﬂHﬁ(LP(U))

To illustrate the differences between the notion of the dual operator and the conjugate transpose
operator we note that the Fourier transform .# viewed as an operator in £(L?(R")) now satisfies

F* = F, while FT = 771, &

We say that an open set V C U is relatively compact in U, if V. C U and V is compact. For
p € [1,00] we define the local LP-spaces

LP

loc

(U)={f e L°(U) | fly € LP(V) for all relatively compact V C U}.
We note that Hélder’s inequality implies that LY (U) C L;,.(U) for all p € [1, 00].

1.4 Lemma. Let p € [1,00] and f € L°(U). Then f € Ly (U) if and only if f € LP(U) for all
¢ € C(U).

Proof. We consider the cases where p € [1,00[. The case p = oo is similar.
If fe Ll (U)and ¢ € CE(U), then we can pick a relatively compact set V' C U so that
supp¢ C V. Then

/w Wm—/w quwdﬂfww<m

as desired.
For the converse, suppose f € LO(U) satisfies ¢f € LY (U) for all ¢ € C(U). Let V C U be
relatively compact and pick a cutoff function x € C2°(U) so that x|y = 1. Then

Jlr@ras= [ @ @ri < [ Mo <o

The assertion follows. O
In Section 3 we will be working in the Sobolev spaces
WYP(U):={f e D' U) | f,0;f € LP(U) for j € {1,...,n}}
WoP(U) = {f € D'(U) | £,0,f € L, (U) for j € {1,...,n}}

for p € [1,00]. The norm || f|[wr.ewy = [[fllp + 2 _5=1 110 f | turns WLP(U) into a Banach space.
We denote by R the strictly positive real numbers.



1.5 Theorem. Let p € [1oo[. Then the space C°(R™) is dense in WLP(R™).

Proof. We denote by WP (R") the space of those elements of WP(R™) that have compact sup-
port. The proof will be in two steps. First we will show that W ?(R™) lies in C2°(R"), where the
bar denotes taking the closure in W!?(R™). Then we will show that W2*(R?) = W12(R").

For the first step, let (¢c):cr, in CZ°(R") denote the standard mollifier, see Definition A.10.
Let € € R, and pick any f € W2 P(R™). Then it follows from Lemma A.13 that f x ¢., i f * ¢ €
C*(R") for all j € {1,...,n}. Moreover, since LP(R") C §'(R") and C°(R") C S(R") it follows
from Proposition B.41 that 0;(f * ¢.) = 0;f ¢ for all j € {1,...,n}. It follows from Theorem A.7
that, taking limits in LP(R"), we have

limf*x¢.=f, lim0;f*¢. =0;f forall je{l,...,n}.
el0 el0

This implies that f % ¢. — f in WYP(R") as ¢ | 0, proving that W *(R™) C C=(R"), as desired.

For the second step, we let f € WLP(R™) be arbitrary. Pick a cutoff function y € C°(R")
satisfying x(R"™) C [0,1], x(z) = 1 when |z| < 1. Then, for each k € N, we define x; € C°(R")
by xk(x) := x(x/k). Then xrf € LP(R"™) and, by the Leibniz rule for differentiation of the product
of a smooth function and a distribution, see Lemma B.14, we have

9i(xkf) = Ojxr)f + xx0;f € LP(R") (1.4)

for all j € {1,...,n} so that xxf € WEP(R™) for all k € N.

Since xx(z) = x(z/k) — x(0) =1 as k — oo for all z € R™, we conclude from Lebesgue’s
Dominated Convergence Theorem that xf — fin LP(R") as k — oco. Moreover, since 0;x;(z) = 0
for |x| < k, a similar argument shows, using (1.4), that also 0;(xxf) — 0;f in LP(R") as k — oo
for all j € {1,...,n}. We conclude that xzf — f in W'P(R") as k — oo. This proves that

WP(R?) = WLP(R"), as desired.
Finally, we observe that we have shown that

WP(R?) = WP (Rr) C G (R € WH(R™)
This proves the result. O]

The following lemma characterizes local Sobolev spaces.

1.6 Lemma. Let p € [1,00] and let f € D'(U). Then f € I/Vlif(U) if and only if of € WLP(U)
for all g € C(U).

Proof. Suppose f € I/Vllof(U) Let ¢ € CX(U) and j € {1,...,n}. Since 9;f € LY (U) and

loc

0;¢ € CX(U), Lemma 1.4 and the Leibniz rule for differentiation of the product of a smooth
function and a distribution, see Lemma B.14, tell us that

9i(¢f) = (0;0)f + ¢(9;f) € L(U), of € LP(U).
We conclude that ¢f € WLP(U).



For the converse, suppose f € D/(U) satisfies ¢f € WP(U) for all ¢ € C(U). Then, in
particular, ¢f € LP(U) for all ¢ € C°(U) so that f € L} (U) by Lemma 1.4. Moreover, for
jeA{l,...,n} we have

90 f = 0j(0f) = (9;0)f € LP(U)
for all ¢ € C°(U). By another application of Lemma 1.4, we conclude that also 9;f € L} (U).

loc

Hence, f € WbP(U), as asserted. O



2 The Beurling-Ahlfors Transform

2.1 DMotivation

Singular integral operators arise naturally in the study of certain partial differential equations.
While this might not directly be clear for the Hilbert transform which we will define in the succeed-
ing subsection, this will be the direct motivation for studying the Beurling-Ahlfors transform and
its relation to quasiconformal mappings which are defined as certain solutions to a certain partial
differential equation. One can check that the distribution PV 1/22 defines a tempered distribution
in C. Then we can define the Beurling-Ahlfors transform £ as the convolution operator

Bo(w) = ! PV 1 * p(w) = ! lim L)Q

T 22 T el0 Jjw—z|ze (W — 2)

dz

and try to deduce properties from this formula. However, the choice of our operator may now seem
rather arbitrary. To facilitate a more natural approach we will therefore, in a sense, work in a
backwards manner, in particular when compared to the more direct approach we will take for the
Hilbert transform in Subsection 2.2.

When working in C and, especially when working with results from complex analysis, the partial
differential operators d, and J, obtained from the natural coordinates of R? are not always the
natural choice. We define the so-called Wirtinger derivatives as the linear differential operators

0, = %(ax —i9,), 0= %(ax +i9,).

In many ways these operators behave like differentiation in R. See also Appendix C and in particular
Proposition C.1.

We start with a rather simple example which captures the general idea. Suppose a function
f € L?(C) satisfies zf € L?(C). One can then ask if it must also be true that 0, f € L?(C), and,
if yes, if its L?-norm can be estimated by that of dzf. A way to solve this problem is by finding an
operator . € L(L?*(C)) that satisfies

By taking the Fourier transform we obtain
miCFf = F(0.f) = FL(0:f) = FLF N (mi(Ff).

This equation is certainly satisfied if we define our operator so that F L F 1 is the operator that
multiplies a function by ¢/¢. Since |(/¢| = 1, this operator is an isometry of L?(C). This positively
answers both our questions, with

102 fll2 = 1-£(9=z)ll2 = 19=f|2-

Another way of looking at this, is that, since 9, = 0, + 0%, 9y = (0. — 0%), we have shown that the
domain of the unbounded operator &z in L?(C) is precisely the Sobolev space W2?(C) with the
norm || f||2 + ||0=f]|2, which is equivalent to the usual norm on W12(C). One might view this as a
form of elliptic regularity of the elliptic partial differential operator 9z in C. Of course, throughout



this example one could switch the roles of d, and 9z to deduce an analogous result for the operator
0.

We needed the fact that the Fourier transform is a unitary isomorphism of L?(C) for this
particular argument to work. The operator . we found in this example is actually equal to
the extension to L?(C) of the Beurling-Ahlfors transform . As we will show in Subsection 2.3,
the Beurling-Ahlfors transform has extensions to LP(C) for p €]1, 00], the proof of which will be
facilitated by an analogous result for the Hilbert transform. This result can be used to positively
answer the question if for all p €]1, oo[ there exist constants ¢, € Ry so that

||OZf||p < CpHa?pra

for all f € LP(C) satisfying dzf € LP(C). By density of C2°(C) in the Sobolev space W1P(C), it is

actually equivalent to ask if such an inequality holds in the more classical sense where f € C2°(C).
Finding the optimal constants ¢, however, which are given by || %||(»(c)), turns out to be quite

problematic. For p €]1, 00 we write p* := max(p,p’). Then we do have the following conjecture:

2.1 Conjecture. For all p €]1,00[ we have

1 *
1 1020l < 110201, < (p* = D)[|0z¢ll, for all $ € C°(C). (2.1)
The case p = 2 has been shown in our example above. What we do know so far is that if (2.1) is
true, then the constants are optimal. Conjecture 2.1 is actually equivalent to Iwaniec’s Conjecture:

2.2 Conjecture (Iwaniec). Let p €]1,00[. Then

p—= 1 pr € [2a OO[
12l ezrey =p" 1= 1 Fpell.2

— cll, 2.

— if p €]1,2]

The estimate || %||z(r»(c)) = p* — 1 was already known to Iwaniec and is shown in Proposition
2.45 below. Thus, the conjecture is the upper bound [ %|;(zr(c)) < p* — 1. In Section 3 we
will go into Iwaniec’ motivation for this conjecture. We will use Subsection 2.2 to not only prove
LP-boundedness of the Hilbert transform, but also to specifically determine its operator norms, as
this is a deep result of similar type to Iwaniec’ Conjecture. We will use Subsection 2.3 to obtain
preliminary results, including LP-boundedness, for the Beurling-Ahlfors transform.

2.2 The Hilbert Transform

The goal of this subsection is to study the Hilbert transform, which shares several properties with
the Beurling-Ahlfors transform. Mainly, both operators are integral operators with a comparable
singular integration kernel. They are both Fourier multipliers, from which it can easily be seen how
they extend to an isometry of L?(R) and L?(C) respectively. However, instead of using Fourier
analysis we will initially use complex analysis to work out several methods of extending the Hilbert
transform to a bounded operator on LP(R) for p €]1, 0o in order to give a fresh presentation on the
Hilbert transform, and to see which role it plays in the theory of complex analysis. Additionally,

10



a method due to Calderén and Zygmund called the method of rotations will be used to establish
that the Beurling-Ahlfors transform extends to a bounded operator on LP(C) for p €]1,00] as a
direct consequence of the corresponding property of the Hilbert transform.

We define the Hilbert transform 7 : C°(R™) — L°(R™) as the linear operator

t

— Loyl =Ly (1)
H () = - PV Lt () = - 16%1 /|:c—t|>a$ — dt.
By the Mean Value Theorem we have
¢(‘T — t) — ¢(‘T +t)‘ _ 2‘(25(1. — t) — (25(.1' +t)’ < 2H¢,”oo < 0. (22)

x—t—(x+1)

Thus, compactness of the support of ¢ justifies writing

o L[ e() > 9(t)
ijb(a:)-l;&;ﬂ_(/ “dt—l—/gchE“dt)

_mt [ SEZ ey g (2.3)
elo ™ J, t

_ L[ de—t)—dtt)

_7T R, t '

Our main theorem of this section is the following:

2.3 Theorem. Let p €]1,00[. Then the Hilbert transform extends to a bounded operator € :
LP(R) — LP(R) with norm

cot21 if p € [2,00]
p
|7 crr)) = - (2.4)
tan — if p €)1, 2].
2p

Note that such extensions must be unique, since C2°(R)) is dense in LP(R) for all p €]1, ool see
Theorem A.11.

As it turns out, the Hilbert transform gives a relation between the real and the imaginary part of
certain functions which we will use to establish the lower bounds of the operator norms in Theorem
2.3. The main tools we will be using to study this are Cauchy integrals. We denote by Ry the
(strictly) positive real numbers, and by H the upper half plane of C, i.e., H:={z =2 + iy € C |
y € Ry }. The following theorem states our relation precisely:

2.4 Theorem. Let p €]1,00[ and g € LP(R). Suppose f : H — C is a holomorphic function so
that

lim f(x +iy) = g(x) (2.5)
y40
for a.e x € R. If there exist R,c € Ry so that for z € H we have
el FlzR (2.6)

then
' (Reg) =Imyg.

11



The proof of this remarkable theorem will follow naturally through the course of this section
and is given below. First we will discuss some details concerning Theorem 2.3.

If for p,q €]|1,00] we denote the extensions of the Hilbert transform to LP(R) and LY(R)
by ¢, and ¢ respectively, then one would wish that whenever f € LP(R) N LY(R), we have
b, f = 7, f. The following lemma asserts that this must indeed be the case, which means that we
can unambiguously denote both operators by 7.

2.5 Lemma. Let n € N and p,q €]1,00[. Suppose a linear operator £ : C°(R™) — L°(R") has
extensions £, € L(LP(R™)) and £, € L(LY(R™)). If f € LP(R)N LY(R), then L,f = Z,f.

Proof. First suppose f has compact support. Let (¢.).cr, be the standard mollifier, see Definition
A.10. Then the sequence (f;)jen in C2°(R™) defined by f; := ¢y /;* f has the property that f; — f
as j — oo in both LP(R") and LY(R") by Theorem A.7. But then, since (.Z,f;)jen converges in
LP(R"™), there is an a.e. convergent subsequence (.Z,f;, )ken with limit %, f. Moreover, since
(L, £ )ken converges in LY(R™), there is an a.e. convergent subsequence (.Z fjkl)leN with limit
Z,f. Thus, taking a.e. limits, we obtain

Zpf = lliglo ‘”E/ﬂpfjkl = lliglo "g’ﬂqukl =24,

since .7}, and . coincide on C°(R").

Now suppose f € LP(R™) N LY(R") is arbitrary. For each j € N we denote by x; the indicator
function of the ball of radius j in R"™. If we set f; := x; f, then it follows from Lebesgue’s Dominated
Convergence Theorem that f; — f as j — oo in both LP(R") and LI(R"™). Since f; has compact
support for all 5 € N, we may conclude from our previous result, and by using an analogous
subsubsequence argument, that %, f = £, f. This proves the desired result. O

The following proposition uses some basic functional analysis to prepare us for the proof of
Theorem 2.3.

2.6 Proposition. Let p €]1,00[ and let p' = p/(p — 1) €]1,00[ denote the conjugate exponent of
p. Suppose F extends to an operator 7 € L(LP(R)). Then F also extends to an operator in
L(LP (R)), where the extension is given through the dual operator by —*. Moreover, if we have
established (2.4) for p, then it also holds for p'.

Proof. Let € € R} and ¢,¢ € C°(R). Then,

/:O/Rqﬁ(x_t);qﬁ(“t) z)dadt = //¢ t ) dzdt — / /W"H dz dt
//¢ ¢£y+tddt//¢ ) dydt
//1/1 y—1) (y+t¢(>ddt

As both ¢ and 1) have compact support we are justified in letting £ | 0 to conclude from (2.3) and
Fubini’s Theorem that

(¢, ) = (Hp, ) = (b, =HY). (2.7)
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Since, by Lemma 1.1, we have

sup (@, =) = sup (o, )| = ||=%ﬂ*||g(Lp’(R)) < 0
b0 (R) b e (R)
lollp=llsll,=1 llollp=lls]l, =1

it now follows that .# has an extension in £(L? (R)) and, by (2.7), —H*|coo(r) = I
Since

H - e%ﬁ*”g(Lp’(R)) = ||%“£(LP(R))7

and by noting that for conjugate exponents ¢, ¢’ €]1, 00[ one has

™ 1 T
cot — = cot 1—-- = tan —,
2q 2 q 2q'

the assertion follows.
O

From this proposition we may conclude that it suffices to establish Theorem 2.3 for the cases
where p €]1,2] or p € [2, 00|, since the map p — p/(p — 1) gives a bijection from |1, 2] to [2, co[ and
vice versa.

2.7 Definition. Let f € L°(R) so that t — f(t)/(t — z) is in L'(R) for all z € H. Then the
function C'f : H — C defined by
@)

Cf(z) =T m Jrt — 2

is called the Cauchy integral of f. &

dt

2.8 Lemma. Let p € [l,00[ and f € LP(R). Then Cf is well-defined. Moreover, there is a
continuous map ¢, : Ry — Ry, depending only on p € [1,00[, so that

ICF < @ flp

for all z =x + 1y € H.

Proof. Let f € LP(R) for p € [1,00[ and z = z +iy € H. Then, noting that [t —z|*> = (t —z)? +y?
majorizes both 32 and (¢ — z)? for all t € R, we find, if p > 1,

|f()l £l (@)l
/R‘t_z‘ ar = /x <t Y dt+/x—t|21 |t — | &

”f e, [

217’ 2
- ( y +p,_1) 171,
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by Hoélders inequality, and

JRCT
i <

|t — 2| y
if p = 1. This means that C'f is well-defined. By setting

1—1
27 »p 2
cp(y) = Ty + ;(p - 1),

the assertion follows. O
By the above lemma we may use Lebesgue’s Dominated Convergence Theorem to take limits under
the integral sign to conclude that C'f is continuous. As a matter of fact, we have the following:
2.9 Lemma. Letp € [1,00[ and f € LP(R). Then Cf is holomorphic in H.

Proof. For each ¢t € R one notes that the map z — f(t)/(t — z) is holomorphic in H. Then it
follows from Cauchy’s Integral Theorem that for any closed contour I' C H and all ¢ € R we have

f(t)

Ft—Z

dz = 0.
By Lemma 2.8 we are justified in applying Fubini’s Theorem to find that

ngf(z)dz:;i/Réthtldzdt:O

for any closed contour I' € H. The result now follows from Morera’s Theorem, see Theorem
C.23. 0

2.10 Definition. We define the Poisson kernel (P,)yer, and the associated Poisson kernel
(Qy)y€R+ by

1 1y
P, =P —Re—— = —
y(x) (-’L',y) € Tiz 77-%'2‘1‘3/27
1 1 =z
= — Im — S
Qy($) Q(xay) m Tiz 7Tl‘2+y2’
where z = x + iy € H. &

As P and @ are respectively the real and the imaginary part of a holomorphic function, they are
associated harmonic functions in H. Now let u € C2°(R) be a fixed real-valued function. Then we
can write

Cu(z) = (Py*u)(z) +i(Qy xu)(x) (z € H), (2.8)
where the real and imaginary parts are given by

(Py *u)(z) = 71T/Ru(t)(a;—t)y2—i—y? dt,

(Qy = u)(x) —i/ﬂu(t)mdt (z € H).

The following lemma shows that the function u + ¢57u gives the boundary values of C'u along the
real axis.

14



2.11 Lemma. Let p € [1,00[ and f € LP(R). Then
limP, x f = f, 2.9
w0 Y f=1r (2.9)

with limit in LP(R). For any f € Co(R) the limit (2.9) holds in L>*°(R). Furthermore, for any
¢ € C(R) we have

lim Qy * ¢ = H¢,

yd0

where the limit is in L°(R).

Proof. We set P := P;. Then

1 1 1
/nP(x) dr = - /Rxl—i—l dr = - larctan(z)]% = 1.
Since Py(z) = y~!P(x/y) for all z € R, y € Ry, it follows from Proposition A.8 that the family
(Py)yer.. is an approximate identity. The assertions about P, then follow from Theorem A.7.

Fix € R. For the assertion about @, we will rewrite Q) * ¢ as

t 1 t

1
By combining (2.10) and (2.3) we obtain, by (2.2) and by noting that —d; arctany/t = y/(t*> +v?),
2., 2
@+ o))~ o) < 216/l [ | 1

2y, / Yy
T ”qb ||OO R, 2 +y2

= Y[|¢/[loc-
Hence, since x was arbitrary,
1Qy % ¢ — P Lor) < Ylld]lo +0 asylO,
proving the assertion. ]
By (2.8) and Lemma 2.11, we may conclude that for any u € C°(R) we have

lim Cu(a + i) = u(a) +i(0) @) (2.11)
uniformly in # € R. This limit will allow us to use complex contour integration to establish LP
bounds for the Hilbert transform, which establishes the first assertion of Theorem 2.3.

2.12 Proposition. Let p €]1,00[. Then the Hilbert transform extends to a bounded operator
A : LP(R) — LP(R). Furthermore, the extension to L?>(R) is isometric.

An important tool we will use for the proof is the Riesz-Thorin Interpolation Theorem. We will
use the following version of this theorem:

15



2.13 Theorem (Riesz-Thorin). Let p,q € [1,00], p < q. Suppose a non-zero linear operator
&L CX(R") — LY(R™) has extensions £, € L(LP(R™)) and £, € L(LY(R™)). Then, for each
r € [p,q] there is an extension £, € L(L"(R™)) of £. Moreover, the function

11
[q’ p] =R, t=log|l Ll et gy

18 convex.

This version of the theorem is a consequence of the general result as can, for example, be
found in [Gr, Theorem 1.3.4], together with Lemma 2.5. With the notation as in the theorem, the
convexity condition is usually stated as

1 2y < 1Ll £ty 1Zall 2 o))
where ¢ € [0, 1] and r is given through
1 1—-t¢ t
_a-n,

r p q

As is common for arguments involving complex contour integrals, we will need to establish the
behavior of C'u at infinity.

2.14 Lemma. Let u € C°(R). There exist R,c € Ry so that for all z € H with |z| > R we have

c
|Cu(z)] < —.
E
Proof. We note that .
= ; —1 as|z| = oo,
t—z s—1
uniformly for ¢ € supp u. Hence,
. . 1 z 1 ,
lim [2Cu(z)] = lim |— [ wu(t) dt| = = | [ u(t)dt| =:¢.
|z| =00 |z| =00 | T JR t—=z T |JR

Setting ¢ := ¢’ +1 € R, the existence of R € R is a consequence of the definition of the limit. [J

2.15 Lemma. Let u € C°(R) and let R,c € Ry be as in Lemma 2.14. Then for all x € R with
|x| > R we have

lu(z) + i(Au)(x)| < ﬁ
Proof. Suppose x € R satisfies |z| > R and let ¢ € Ry. Then, by (2.11), we can choose y € Ry
small enough so that

lu(z) + i(Hu)(x) — Cu(x +iy)| < e. (2.12)
Moreover, we have |z + iy| > |z| > R. Hence,
c c
Cu(zx +iy)| < — < —. 2.13
Cule+ )] < ot < 1 (213)
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Thus, by (2.12) and (2.13),

u(z) + i(u)(2)| < Ju(z) +i(Hu)(x) — Culz + iy)| + |Culz + iy)| < e+ .

]
The assertion follows by letting € | 0. O

Proof of Proposition 2.12. By Proposition 2.6 it suffices to check the cases where p € [2,c0[. By
the Riesz-Thorin Interpolation Theorem it is then sufficient to find an increasing sequence (pg)keN
with p; = 2 and pr — oo as k — oo for which the extensions exist. For our proof we will consider
the cases where p = 2k, for k € N.
Fix k € N and let ¢,7 € Ry. Denote by I'(e,7) the closed contour in H given by the union of
line segment
L(e,r):={x+ice H|z € [-rr]}

<pi)

and the semicircle
C(e,r):= {TGQMt +ie

oriented as in the figure below.

Let u € C°(R) be real-valued. Then (Cu)?* is analytic in H, so it follows from Cauchy’s Theorem
that

Cu(z)?* dz = 0.
T'(e,r)

We will show that

/(u(w) + iu(x))* dz = lim lim Cu(z)* dz = 0. (2.14)
R

7700 el0 Jr(e,r)

First we will have to show that (u(z) + i7u(z))?* € L'(R). Let R,c € Ry be as in Lemma 2.14.
Then it suffices to note that, by Lemma 2.15, we have

CQk

/\u(x) + i0u(z)*F da S/ lu(x) + i0u(z)|** dx+/ —or
R |z|<R |oc|>R“T|

262]6

9k —1 RZF1 =

= / lu(x) + i0u(z) |k dz +
lz[<R

17



Next, letting 7 > R, we note that R < r = [re?™| < |re?™ 4 je| for all e € Ry and t € [0,1/2].
This allows us to estimate

chk CQk:

- - <
mt_|_z(€’2k — 742k—1’

‘Cu(’r’eth+i€)‘2k|T€27rit‘ < ’T€2

which, on account of Lebesgue’s Dominated Convergence Theorem, allows us to conclude both the
estimate and the existence of the limit in

1 . . 2k
lim / Cu(z)?*dz| < 2r lim/2 |Cu(re?™ + ie) |k |re®™ | dt < Zi T
el Cle,r) €0 Jo rerT
It follows that
lim lim Cu(z)* dz = 0. (2.15)

ro0 el JC(er)
Next, we note that for any r € R4 we have

lim Cu(z)?* dz = lim Cu(zx +ie)*F dx = / (u(x) + iu(x))** de,

0 S e A0 Jjal<r jol<r
where the interchange of the order of the limit and integration is justified by the uniform convergence
in (2.11). Then, since (u + i7#u)* € L'(R), we may conclude that

lim lim Cu(z)* dz = /(u(x) + i0u(x))* d. (2.16)
R

r—o0 )0 L(&,T)

Combining (2.15) and (2.16) yields (2.14).
Now set k = 1. Then, by taking the real part of (2.14), we find that

/(u(:c)2 — Hu(x)*)dz =0

R

This proves that for any real-valued u € C2°(R) we have || 7u|l2 = ||u|l2. Now let ¢ € C°(R) be
arbitrary. Then, since # maps real-valued functions to real-valued functions, we have

|83 = /R H(Red)(2)? di + /R H(Im §) () da

_ / (Re(a))? + (Im é(x))?) dz = | ]2

R

Then, by Lemma 1.1, the Hilbert transform extends to L?(R). Moreover, we may conclude that
this extension is isometric.
Now suppose k > 1. By the Binomial Theorem, taking the real part of (2.14) yields

/Rio @ID (=1 u(z) =2 u(z)¥ dx = 0.

18



Hence,

k—1
ok ok 2k k2| ()12 dae
/Rwu(z)y d:cg/R|u(x)| da:+/Rj§ <2j>|u(:17)| @) P dr. (217)

Now let j € {1,...,m — 1} and € € R} a number smaller than Zf;ll (g’;) If we set p = k/(k —j),
then p’ = p/(p — 1) = k/j. Young’s inequality asserts that for all a,b € R>( we have

a? b
b p

By applying this to a = (ep/) "V |u(z)|**=%, b = (ep/) /7| #u(z)|¥ for z € R, we find that there
is some constant c(e, j) € Ry so that

[u(@) 72| A u(2) P < ele, g)ul@) [ + el A u(x)]**.

Thus, by (2.17), we have

/Rwu(mﬂ%dxg 1+§(3§>c(5,j) A[u(x)]dex+5§<Z§) /R]%”u(:vﬂ%dx.

This proves that there is some ¢ € R so that || Jul|2F < c|ul|2;.

Now let ¢ € C°(R) be arbitrary. Another similar application of the Binomial Theorem and
Young’s inequality shows that there is some ¢’ € R4 so that for all a,b € R>¢ we have (a + bk <
d(a* + b¥). Hence, we have

|52 = /R (A (Re §)(2)? + (I §)(2)?)" da

< e / (Re d)(2) + (Im ¢)(2)*) da

R

< do / (Re)(2)? + (Im¢) (2)*)* da = /|| 635

R

The conclusion now follows from Lemma 1.1. O

To obtain a more precise bound on the norm of the Hilbert transform, we will prove a result
that will allow us to compute the Hilbert transform of certain functions.

2.16 Lemma. Suppose f: H — C is a holomorphic function so that
g(x) == lim f(x + iy)
yl0
exists for a.e. x € R. If there exist R,c € R4 so that for z € H we have

f(z) < = ifl2l = R, (2.18)

2|
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and

/ 9()] dz < oo for allw e H, (2.19)
\

z|<R ’l‘ - U}’

then =+ g(z)/(x — w) is in L*(R) for all w € H and

£(2) = 5C9(2) (220)
for all z € H.

Note that (2.19) is automatically satisfied if g is continuous, or, by Lemma 2.8, if g € LP(R)
for some p € [1, 00].

Proof. For ¢,r € Ry, let I'(e,r) = C(e,r) U L(e,r) be the closed contour from the proof of
Proposition 2.12. By Cauchy’s Integral Formula we find that for all w in the interior of I'(e, r) we

have
w) = @) g, 92.21
f(w) f}w) (2.21)

211 zZ—w

The strategy will be to justify letting € | 0 and r — oo to obtain (2.20).

Fix w € H. Choosing € € R small enough and r > R large enough, ensures that w lies in the
interior of T'(e,r). Note that R < r = |re?™| < |re?™ + je| for all e € Ry and t € [0,1/2]. Any
z € C(e,r) is of the form z = re?™ + je for some t € [0,1/2], while any w in the interior of T'(g, r)
is of the form pe?™ 4 e for some p €]0,r[ and ¢’ €]0,1/2[. This implies, by the reverse triangle
inequality, that

|z—w| _ |’l“€27rit _p627rit’| >r—p>0

for all z € C(e,r). Hence, by (2.18),

@) e 1

lz—w| “rr—p

for all z € C(e,r). Then, as a consequence of Lebesgue’s Dominated Convergence Theorem, this
allows us to conclude both the estimate and the existence of the limit in

lim / 7f(z) dz| < e
€l0 Cler)? —W r—p
Hence,
lim lim 1®) dz = 0. (2.22)

r—00 gl0 C(e,r) zZ—w

Next, we make the observation that we can assume that R > |w|. Indeed, if it were the case
that R < |w|, then one notes that by (2.18) the function = — g(z)/(x — w) is bounded on the
annulus R < |z| < |w| + 1, hence the condition (2.19) will still hold if we replace R by |w|+ 1. As
this change will also not affect (2.18), we can indeed assume that R > |w].

If we assume that » > R, then, for all z € R with |z| > r, we have

2= wl > a] = | = (jal 2 + Jwl2)(Jel2 = fuwl2) > |al2(% = fwl2) > 0
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Moreover, we have

lg(x)] < ‘% for a.e. x € R satisfying |z| > R.

Hence, one shows that x — g(z)/(r — w) is in L'(R) by the estimate

/ l9(2)| dxg/ l9(2)| dx+/ I
R|T —w| <R |7 — W] w[>R|z|2 (RZ — |w|?)
el e
|

o|<r|T —w| R2(R? — |w|2)

where we used (2.19). Then, by a similar computation, we can conclude that

/ 9(x) 4.
|z|>r & — W

Also noting that for » € R4 we have

lim Mdz:lim de:/ de
|

el0 JpemZ—w el0 Jjzj<r T+ 1€ —w g|<r® — W

4
T ¢ — —0 as R<r —oo.
rz(rz —fw|z)

<

by Lebesgue’s Dominated Convergence Theorem, we may conclude that

- &) 4~ tim 9(@) 4. _ [ 9@ .
lim lim dz =1 /| ol /R dz. (2.23)

=00 ell Jr(e ) — W T=00 Jig|<p T — W r—w

Combining (2.21), (2.22), and (2.23) yields

flw) = ! 9(x) dz = %C’g(w).

270 Jgw —w

The assertion follows. ]
As an application of this result, we will prove a remarkable identity known as Cotlar’s Identity.

2.17 Proposition (Cotlar’s Identity). For any ¢ € C°(R) we have
(D) = & + 25 (p.H D). (2.24)

Note that 7#¢ € C°(R) by differentiation under the integral sign. Hence, ¢.#¢ € C°(R),
meaning that the expression (¢ ¢) in (2.24) makes sense.

Proof. Let u € C°(R) be real-valued. Then the function f := i(Cu)? is analytic in H. For z € R,
it follows from (2.11) that this function takes boundary values

g(x) = liﬁ)l fx+iy) = i(u(x) +iu(x))? = —2u(z)u(z) + i(u(x)? — (Hu(z))?).
Y
It now suffices to show that J#(Reg) = Im g, which yields (2.24) for the real-valued case.
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Since C'u satisfies (2.18) by Lemma 2.14, so does f. Hence, by Lemma 2.16, we have

2f(x +iy) = (Py* g)(z) +i(Qy * g)(z)
= (Py* Reg)(z) — (Qy * Img)(z) +i((Py * Im g)(x) + (Qy * Re g)(x)).

Since Reg € C°(R), we find, by Lemma 2.11, that (Qy * Reg)(z) — € (Reg)(x) as y | 0 for all
r € R. Moreover, since u € C°(R) C L*(R), we also have ##u € L*(R) by Proposition 2.12.
Hence, u + #u € L?*(R) so that Img = (u + #u)(u — s#u) € L'(R). Thus, it follows from
Lemma 2.11 that Py xImg — Img in L'(R). This implies that the sequence (Pl/j *Im g) jen has
an a.e. convergent subsequence with limit Im g. By taking the imaginary part of (2.25) we may
pass to this a.e. convergent subsequence to conclude that

(2.25)

2Img =Img+ 5 (Reg)
and hence
#(Reg) =Img,

as desired. This proves (2.24) for real-valued ¢ = u € C°(R).
To obtain the complex valued case, we let ¢ € C2°(R) be arbitrary. Now fix € R and define
the (real) symmetric bilinear forms «, 8 by

a(u,v) = Hu(z)Hv(x), L(u,v) =u(x)v(x)+ H(utv)(z)+ (v u)(x)

for real-valued u,v € C®(R). We have shown that a(w,w) = f(w,w) for all real-valued w €
C2°(R). But then, by the (real) polarization identity, we obtain

a(u,v) = ia(u—}—v,u—{—v) - Za(u—v,u—v)
1 1
= Zﬁ(u—l—v,u—{—v) - Zﬁ(u —v,U — V)
:6(u7fu)'
For u := Re ¢, v := Im ¢, this gives
%¢($)2 = (u7 ) + 2ia(u,v) - Oé(U,U)

5(”7 u) + 2i6(ua U) - 6(”7 ’U)
$(x)® + 27 (9 ¢) ().

The assertion follows. O

Cotlar’s identity actually holds for any ¢ € S(R). For a proof, see Proposition 2.23 below.

Using an inductive argument, Cotlar’s identity allows us to give an upper bound of ||| £(1»(r))
for p of the form 2% for k € Z>o. We have already established that 1720 2wy = 1 = cot(m/4)
in Proposition 2.12. For p € [2, 00 we write ¢, := cot(n/(2p)). Now suppose we have established
that ¢, is an upper bound of |||z (zr(r)) for p = 2k for some k € Zso. Let ¢ € C°(R) satisfy
|¢l|2p = 1. Then, by Cotlar’s identity, we have

1215, = (202 [lp < 6%l + 2[5 (6 9) I,
<1+ 2¢p)|¢9|lp < 1+ 2¢p[|HP||2p,
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where the last step uses the Cauchy-Schwarz inequality. As the polynomial ¢ — 2 — 2¢pt — 1 has
zeroes t4 = ¢, = (1 + cg)l/ 2 we conclude from

(1A Dll2p — t) (15 Sll2p — t-) = 3, — 26| Pll2p — 1 < 0

that )
[ Pll2p <ty =cp+ (1 + 012;)5 = C2p,

where we have used the trigonometric identity
cotz = cot 2z + (1 + (cot 23:)2)%

valid for z €]0,7/4[. We conclude that ||| (r2p(r)) < c2p. Since 2p = 2k+1 this concludes the
inductive step.

As a matter of fact, if we can use other means, such as the Fourier transform, see Corollary 2.21
below, to show that the Hilbert transform extends to an isometry of L?(R), this yields another
proof of Proposition 2.12. Note that this does not give a circular argument, since the proof we
gave of Cotlar’s Identity only used the fact that . extends to L?(R). So far we have solely rested
on the theory of complex analysis and we have not used the Fourier transform at all. However,
the Fourier transform can be used to help us to sharpen the results we have established so far,
which is why we will be working in the distributional setting from now on. See also Appendix B.
This emphasizes but one of the many examples of interplay between Fourier analysis and complex
analysis, more of which we will encounter in the succeeding sections.

The Hilbert transform is given by convolution with the distribution PV 1/t = PV ¢/|t|*>. As
it turns out, this is actually a tempered distribution. Temporarily generalizing to R™, for j €
{1,...,n} we define PV z;/|z|" ! by

xj xj
PV — - ¢) =1l —I
(P em0) =g [ pnstor
for ¢ € S(R™). In the following lemma we will show that this is well-defined.
2.18 Lemma. For all j € {1,...,n} we have PV z;/|z|"™! € S'(R"™).

Proof. We fix j € {1,...,n} and denote by (S"!, o) the unit sphere in R" with its usual surface
measure. Then we observe that

/ wjdo(w) =0 (2.26)
Snfl

by symmetry. Now let £ €]0,1[. Then, by employing polar coordinates, it follows that

/ M /11/ wjdo(w)dr =0
= —_ - (0} = .
e<|z|<1 |x‘n+l e T Jgn-1 ’

Hence, if ¢ € S(R"), we have

/ () dz = / I (6(x) - 6(0)) da. (2.27)

<ol [ <aj< P
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Recall that the seminorms (vjx);kez., on S(R") defined by

vin() = sup (14 [z])!|0%(2),

zeR", |a|<k
for j, k € Z>o, ¢ € S(R™), generate the topology on S(R™). Since
1 \</ 0,6 (1 |dt</ Zy(w (t)a;| dt < nd|zlvo1(6)
0
7j=1

for all x € R™, we find that

/| I»‘”‘zllycp(a:) — ¢(0)| da < néy0,1(¢)/ lz50 4,

z|<1 |z

1

:nél/o,l(gb)/ 7‘”_17“_("_1)/ lwj| do(w) dr
0 n—1
Sn—

Hence, by (2.27) we may conclude that

< cavp1(9) (2.28)

lim/ x)dz| = / ¢(0)) dx
el0 Je<|z|<1 |:‘C‘n+1 | lz|<1 |$|n+1 ) ())

for some c € Ry.
Finally, note that

|;] || 0o
/|I|>1 e 9@ e < v10(9) /I|>1 oz 0 = 110(0) /1 o /S Jsldo(w)d

—0(0) [ fwildo(w).

5

(2.29)

Thus, by combining (2.28) and (2.29) we have now shown that the limit (PV z;/|z|"*1, ¢) exists
and that there exist ¢, ¢’ € Ry so that

‘ <PV ‘ |n+1 , ¢>’ < CI/()J((b) + CIV1,0(¢)-

This proves that PV z;/|z|"t! € §'(R"), as desired. O

One can now show that the convolution of PV z;/|z|"*! with a function ¢ € S(R") is given by
the function
xj YT
PV —2_ x ¢(y) = lim o
ERRRRS I M e
Actually, it follows from Proposition B.41 that these convolution operators, including the Hilbert
transform, define continuous linear maps from S(R"™) into Oy (R"), the space of moderately increas-

ing functions. Since we are now working with several different extension of the Hilbert transform,
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it is prudent to check that these notions all coincide. For p €]1, oo[, denote the extension of 7 to
LP(R) by ##,. We should check that for all ¢ € S(R) we have

dt

Joo(x) = 1 PV1 x ¢(x) = lim o)

™ t el0 ‘w_t‘26x —1

for all z € R. Fixing ¢ € S(R), we can use the density of C°(R) in S(R) to find a sequence

(¢j)jen in C°(R) that converges in S(R) to ¢. Since S(R) is continuously included in LP(R),

this sequence also converges to ¢ in LP(R). Since ¢, € L(LP(R)), the sequence (,¢;)jen then

converges to #,¢ in LP(R). Since LP(R) is continuously included in §'(R), the sequence (7,¢;) jen

also converges in S'(R) to J4,¢. On the other hand, since the convolution operator 1/m PV 1/tx is

a continuous map from S(R) to Op(R), the latter being continuously included in §'(R), we find

that 1/7m PV 1/t * ¢; converges to 1/r PV 1/t + ¢ in S'(R). Thus, since S’(R) is Hausdorff, we may
take limits in S’(R) to conclude that

11 11
= 1i . — lim = PV = . — _PV =
Tp jggo%% Jim Voxgj=_PVox9,

Since S| (r)y = 1/T PV 1/t % |goo(r)- To clarify, we have shown that the below diagram, where
the arrow on the top represents our initial definition of the Hilbert transform, is commutative.

V%
C&(R)

Ou(R) —— S'(R)

2.19 Definition. Let U C R"™ be open and p € [1,00]. For any f € L>®(U) we define the
multiplication operator My : LP(U) — LP(U) by Mg = fg. We use a similar definition for
P (U). ¢

loc

We note that for any f € L>°(U) we have My = My and M} = Ms.

We normalize our Fourier transform in R™ so that for ¢ € S(R"™) we have
Fo&) = | ox)e ™ da.
R”

The following lemma shows that in the Fourier domain, the Hilbert transform is just multiplication
by the function —isign.

2.20 Proposition. We have
y(%f) = M—z’signgaf

for all f € L*(R).
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Proof. By density of S(R) in L?(R) it suffices to consider functions in S(R). By Proposition B.41
we have

1 1 1 1
F(HG) = -F <PV -« ¢> -7 <PV ) T

T t us t

for all ¢ € S(R). Thus, it remains to show that
1 .

F (PV t) = —misign. (2.30)
A direct computation shows that for all y € R we have .Z (isigne 2™I1) = Q,. Let ¢ € C*(R)
and define S¢ € C°(R) by S¢(t) := ¢(—t). Then, by Lemma 2.11, we have

| | o
lim(Qy, 6) = lim(Qy * 59)(0) = #/(S9)(0) = <W Pyl ¢> |

Hence, @, converges to 1/rPV 1/t in D'(R) as y | 0. Thus, we have

1 1
;PVE = B%Qy = E&ly(isigne_2ﬂy"|), (231)

in D'(R). Since isign e~2mI"| converges to isign in S'(R) as y } 0, we find, by continuity of the
Fourier transform in S8’(R), that

11?01 F (isigne 2™ ) = i.Z (sign), (2.32)
Y

in §'(R). But since §’(R) is continuously included in D’(R), the limit in (2.32) also holds in D'(R).
Thus, we may conclude from (2.31), that

1 1

— PV - =7 (sign).

- s =1 (sign)

Fourier inversion then yields (2.30), as desired. O

Assuming one has not yet established L2?-boundedness of the Hilbert transform, one could
formulate and prove the result of the proposition as we have for functions in S(R). Then one
obtains:

2.21 Corollary. The Hilbert transform extends to an isometry of L*(R).
Proof. For any ¢ € S(R) we have
| ¢ll2 = || F A P|2 = [|M_isignF Sl|2 = [|§]]2-
The assertion follows. O

Another consequence is the following;:

2.22 Corollary. Let p €]1,00[. For any f € LP(R) we have #%f = —f. In other words, 7 is a
linear automorphism of LP(R) with inverse —7¢ .
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Proof. Let ¢ € S(R). Then, since #¢ € L*(R),
f(%%b) = Aizisigmg.qS =Z(—9).

Thus, #%¢ = —¢. By density of S(R) in LP(R), this result extends to all functions in LP(R), as
desired. O

We can also give another proof of Cotlar’s Identity, extending Proposition 2.17 to functions in
S(R).

2.23 Proposition (Cotlar’s Identity). For any ¢ € S(R) we have
(HD)* = ¢* + 2 (pHP).

Proof. Let ¢ € S(R) and € € R,  # 0. Using the fact that for v € S(R) and u € S'(R) we have
F (Yu) = F1 * Fu, we note that

F(§? + 2 (0 $)) (&) = (F b x Fp)(&) — 2isign(€)(F ¢ x M_; g0 F ) (€)
= (Fox F¢)(§) + 2sign(§) /Rffcﬁ(f —n)F ¢(n) sign(n) dn (2.33)
— (Fo+ FO)(€) + 2sign(€) /R Fo(n)FHE —n)sign(€ — n)dn.  (2.34)

Thus, by adding (2.33) and (2.34) and dividing by 2, we obtain

F (¢ + 25 (0 H9)) (&) = /R%b(n)«%ﬁ(f — n)(1 — sign(¢)(sign(n) — sign(§ —n)))dn.  (2.35)
A proof by cases reveals that
1 — sign(&)(sign(n) — sign(§ — n)) = —sign(n) sign(§ —n) = (—isign(n))(—isign(§ —n)),
for all ) € R with 7 # 0 and 7 # €. Hence, by (2.35), we have
P+ 2200H0)(E) = [ Moisan P HmMsin P16 1) dn = F(H0))E).

where the last equality follows from the formula . (f?) = .% f x.Z f valid for f € L>°(R) satisfying
Zf € LY(R) where f = s#¢. To see this, we note that indeed fi=Ff= M_;senF ¢ € L'(R).
Then f = F~1f L>*(R) and y_l(f* f) = (ﬂ_lf)Q = f2 by Theorem B.32. The assertion
follows. m

Next, we will extend the result of Lemma 2.11.

2.24 Lemma. Let p €|1,00] and f € LP(R). Then
limQ, * f = 2f,
i @, + / = #f
where the limit is in LP(R).
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Proof. Let p €]1,00]. Fix y € R4 and z € R. For all t € R and f € LP(R) we note that

|z — t| 1

|z — t| 1
< —
: P T ]

[z —tP+y* "y

! /(D) £ ()]
/ 1£) ’17 - t|2 /|m t|<1 ?/2 det /|mt|21 |z — 1] &

< ”f”p+||f||p / 7 at

1
27 2
= <y2 + p’—l) 1l

by Hélders inequality. This means that @y * f is well-defined for all f € LP(R) and that the map
f = Qy * f(z) is continuous from LP(R) to C.
The remainder of this proof is based on the identity

if [xt —t] <1 and

if |x —t] > 1.

Hence,

Qyx* f=DPyxAf, (2.36)

valid for any f € LP(R). Indeed, if this identity holds then the result follows from Lemma 2.11.

Assume for the moment we have shown that (2.36) holds for all f € S(R). If f € LP(R) is
arbitrary, then we can pick a sequence (¢;)jen in S(R) that converges to f in LP(R™). Hence,
Qy * ¢; — Qy * f pointwise as j — oo. By Minkowski’s inequality for convolutions, see Corollary
A5, the right-hand side of (2.36) as a function of f is continuous as a map from LP(R) to LP(R).
Hence, Pyx 7 ¢; — Py f as j — oo. But this implies there is some a.e. convergent subsequence
of (Py * 7 ¢;)jen with limit Py x 5 f. Thus, taking a.e. limits, we conclude from the fact that
Qy * ¢; = Pyx H¢; for all j € N that (2.36) is valid for all f € LP(R).

It remains to prove that (2.36) is valid for all f € S(R). A direct computations show that
F(e=?™I'l) = P, and ZF (isigne=?™I"l) = Q,. Fourier inversion then yields

FP, = e~ 2ml|, FQy = —isign el
Let f € S(R). Then
F(Qyx )= FQuFf = —isigne ™ |Ff = FP,F(H[) = F (P, Hf)

so that the assertion follows by Fourier inversion, where the first equality follows from the formula
F(ux @) = FuF ¢ valid for u € S'(R) and ¢ € S(R) applied to u = Q, and ¢ = f, while the last
equality follows from the formula .% (g * h) = .#¢.Zh valid for g € L'(R) and h € L?*(R) applied
to g = P, and h = Jf, see Proposition B.41 and Theorem B.32. This proves the result. O

Having shown this, we can now prove Theorem 2.4
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Proof of Theorem 2.4. By Lemma 2.16 we have 2f = C'g. Hence,

2Tm f(x + i) = Im((P, * g)(x) +i(Q, * 9)(x))

— (P, *Tmg)(z) + (Q, * Reg)(x) (2.37)

for all z = + iy € H. Since

hfg(Py *Img) + (Qy * Reg) =Img + S (Reg)
Y
in LP(R) by Lemma 2.11 and Lemma 2.24, the sequence ((P;/; * Im g) + (Q1/; * Reg))jen has an
a.e. convergent subsequence with limit Im g + 2 (Reg). By combining this result with (2.5), we
conclude from (2.37) that

2Img =Img+ 5 (Reg).

The assertion follows. O

With this result, we will work towards the proof of operator norm equalities in Theorem 2.3.
We will work with the outline provided by [Gr, Exercise 4.1.13] using results from the article [Pi]
by Pichorides, which gave the original proof of this result in 1972. On account of Proposition 2.6 it

suffices to check the cases where p €]1,2]. Since we have already established the case where p = 2,
we may assume that p €]1,2[. First we will establish the lower bound

T
||| £(r(r)) = tan % (2.38)

We define ¢ : C\{1} — C to be the conformal mapping

ozl 2 22 =1
@)= s e Y o

Now let U C C be the open subset of C obtained by deleting the non-positive real numbers from
C. The function ¢ maps H into the open right half plane of C. In particular, this means that
#(H) CU. Any z € U can be written as z = re' with r € Ry and t €] — 7, 7[. Welet log: U — C
be the holomorphic function satisfying log z = log r + it, where log r denotes the natural logarithm
of r. See Example C.24. For

™ s

this allows us to define an analytic function

2y 2
p(z)7 7w lo8dl)
IH = =
/ C. fe)=" Z+1

We wish to apply Theorem 2.4 to this function. Since |¢(z)] — 1 as |z] — oo, we find that
|zf(2)| = 1 as |z| = co. This implies that f satisfies (2.6).
Next, note that for z € R\{%1} we can write ¢(z) = 7(z)e"®) where r(z) = |z +1|/|z — 1| and

5 iffz[ >1

t(x) =

-5 iffz] <1
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This implies that if we set g(x) := limy o f(z + iy) for x € R\{£1}, then
27/)/

1 =

z+1

rz+1
r—1

2
z%t(m)‘

g(z) =

Note that ) ,
)
9@ = |z + 1PF |z — 1|77

For large |z|, the function |g(x)[P behaves like |z + 1|77 which is integrable in a neighborhood
of infinity, since —p < —1. Moreover, |g(z)[P behaves like |z 4 1|P7/7=1 for z near —1 and
like |z — 1|=2P7/™ for x near 1. Since our assumptions on + imply that —1 < p(2y/7 — 1) and
—1 < —2py/7, we may conclude that |g(x)|P is integrable for z near +1. By combining these results
we have found that g € LP(R). Thus, we may conclude from Theorem 2.4 that J#(Reg) = Img.
Noting that

2y
1 |Jz+1|~
R —
eg(z) el ey I
and 2
%H%Wsin'y if |z| > 1
Img(z) = 2

_a%&-l L T siny if 2] < 1,

this means that
|2 (Re g)llp = || Tm g[|, = tan || Re g,

Hence,
|7 £(r(r)) = tany

for all ~ satisfying (2.39). From this we may conclude that the lower bound (2.38) holds.

In view of our discussion after Proposition 2.17, we have now shown the operator norm equality
in Theorem 2.3 for p €]1, oo[ of the form p = 2% and p = 2¥/(2F — 1) for k € Z>,.

The remainder of this subsection will be dedicated to proving the upper bound

™
1] 2Lr(r)) < tan% (2.40)

for p €]1,2[. We will actually show that for such p we have

| f|p < tan QEHpr for all real-valued f € LP(R). (2.41)
p

We sketch a way to conclude the general complex-valued result (2.40) from (2.41).

2.25 Lemma. Let p €]1,00[ and £ € L(LP(R)). Suppose £ maps real-valued functions to real
valued functions and suppose there is some ¢ € Ry so that

\Z fllp <cllfll, for all real-valued f € LP(R).

Then
12 fllp < cll fllp
for all f € LP(R).
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Proof. Define v : C — R by v(z) := e=2*. Then ~ defines a measure dy on C through
dy(z) = v(z) dz. We denote by dyr the measure on R obtained as the image measure of dy under
the projection z — Rez. Since fRe_“yQ dy = 1, one finds that dygr(z) = e ™ dz. Ifw € C
satisfies |w| = 1, then, since + is rotationally invariant, we find that the image measure of dy under
z — Re(wz) is also dyg. This implies that

1
ki=7n"%T (29;) / [t|P dyr () / | Re(wz)|P dvy(z).

Thus, for any w € C we may conclude that
/ | Re(wz)|P dy(z) = k|wl|P.
C

Hence, for any g € LP(R) we have

tlall = | [ IRe@@) dtas(c). (242)
Let f € LP(R). Since .Z maps real-valued functions to real-valued functions we have

Re(Zf(t)z) = £ (Re(f2))(t)

for all t € R and z € C. Hence, by (2.42),
b2l = [ 12®ReTEaE) < [ [ReTlEdre)
= [ ] IRe(F02 dtas() = I
The assertion follows. O]

The proof we give of (2.41) relies on a certain subharmonic function.

2.26 Definition. Let p €]1,2]. We define f, : C — C by f,(0) := 0 and
fplz) = Re((|J2| + iy)?) = Re "B WIHW) = |2P cos(p arg(|z| + iy))
for z = x + iy # 0, where the argument is taken between —m/2 and /2. &

The importance of this function becomes clear in the following remarkable inequality:

2.27 Proposition. Let p €]1,2]. Then

T p=1
(sz”>f (a+bi) < (tan =) [af? — b (2.43)
cos% P - 2p

for all a,b € R.
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Our proof is based on [Pi, Lemma 2.1]. Note that this inequality is actually an equality when
p=2.

Proof. We set .
—
p (sin 2i)
Ap = (tan W) , Bp:= 717”.
COS 2%
The proof uses the inequality
|sinz|? < Ap(cosx)P — By cos pe, (2.44)
valid for x € [—m/2,7/2].
Assume for the moment that we have shown validity of (2.44). The inequality (2.43) is im-

mediate for a = b = 0. Now let a,b € R not both be 0 and z := arg(|a|] 4+ bi). We then find
that

) b |al
SInxr = COST = .
la + bi|’ la + bi|
Hence
’ bJ? Jaf?

- B bi
’a+b'&|p — p|a+bi‘p pCOS(parg(|a|—|— Z))

by (2.44). Rearranging the terms yields (2.43), as desired.

To prove (2.44), we note that there is equality when p = 2. Hence we may assume p €]1,2[.
Moreover, since both sides are even functions in x, we need only consider the cases where = €
[0,7/2]. But then, by continuity, it suffices to consider the cases where = €]0,7/2[. We define

(sinx)P + By cos px

I }O’ g [ R, f@)= (cos x)P

If we then set
sin((p — 1)a)
(sinz)P—1

)

g:}O,g[%R, g(x):=1-B,

then o
F@) = b ol

We note that, since 2 — p €]0, 1],
g (x) = —By(p — 1) cos((p — 1)x)(sinz)' P + By(p — 1) sin((p — 1)) cos z(sin z) P

— By 1)sin((2 p)x)

<0
(sinx)P ’

meaning that g is strictly decreasing. This allows us to conclude that g and hence f’ has a unique
zero at m/(2p). An application of de L’Hopital’s rule shows, using p €]1, 2], that lim, o g(z) = 1.
This means that for small enough z €]0,7/2[ we have f’(z) > 0. Moreover, since f(z) — —o0 as
x 1 7/2 we may conclude that f attains a global maximum at = /(2p). Hence,

(sinz)? + By, cos px </ m _a,
(cos z)P 2p

for all x €]0,7/2[. This proves (2.44). The assertion follows. O
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In view of this proposition, it now suffices to show that

/R Fo(l6(2)| +i6(2)) dz > 0

for all ¢ € C°(R) to conclude (2.40). This will follow from the fact that f,, is a subharmonic
function.

2.28 Definition. Let U C C be open and let u : U — R be a continuous function. We call u
subharmonic if it satisfies the mean-value property

1 27 )
u(zp) < 27r/0 u(zo + re't) dt

for all zg € U, r € Ry so that D(zg;7) C U. &
We will use the following characterization:

2.29 Lemma. Let U C C be open and let u : U — R be a continuous function. The following are
equivalent:

(i) u is subharmonic in U;

(ii) for every zo € U there is an g € Ry so that D(z9;70) C U and whenever 0 < r < 1o, we have

1 27 )
u(zp) < 27T/0 u(zo + re') dt.

A discussion on subharmonic functions can be found in Appendix C and, in particular, Lemma
2.29 is a consequence of Theorem C.38.

2.30 Lemma. Let p €]1,2]. Then f, is subharmonic in C.
Our proof follows the proof of [Pi, Lemma 3.5].

Proof. In the half planes {z +iy € C |z € Ry} and {z +iy € C | —x € R} the function f,
coincides with the real part of the holomorphic functions 2P and (—z)P respectively and is thus
harmonic there. Hence, f, certainly satisfies the mean-value property at any point in these half
planes. It remains to check the purely imaginary points in C.
We first check that f, satisfies the mean-value property at discs around origin. Let » € R.
Then, noting that
' rP cos pt ifte [—g,%]
fo(re') = (2.45)
rP cosp(m — t) if t € [Z,37],

we find that, since p €]1, 2],

1 2 ) mP 3 2rP sin pZ
fpretydt = - TP
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as desired.

We denote by U C C the set of complex numbers minus the non-positive real numbers, and
define v : U — R as the real part of the holomorphic function zP. Then w is harmonic in U, see
Proposition C.34, and coincides with f, on the closed right half plane. Let z = re' with r € Ry
and t € [r/2,7|. Then, by (2.45), we have

fp(z) —u(z) = rPcosp(m —t) —rP cospt = 2rP sinp (t - g) sinpg > 0.
If 2 = re' with r € Ry and t € [r, 37/2], then

fp(2) —u(z) = rPcosp(m +t) —rP cospt = —2rPsinp (t + g) sinpg > 0.

Hence, we have found that u(z) < fj,(z) for all z € U. This means that if y € R\{0} and 0 < r < |y|,
then, since u is harmonic in U,

1 27 i 1 2m .
foliy) = u(iy) = %/O u(iy + re') dt < or ) foliy +re') dt.
The assertion follows. O

2.31 Corollary. Let u € C°(R) be real-valued and let p €]1,2]. Then f,oCu : H — C is
subharmonic.

Proof. Since Cu : H — C is holomorphic, this follows immediately from Lemma C.40. O

As anounced, this result will be used to prove the following:

2.32 Lemma. Let p €]1,2]. Then we have

/R £ (ulz) + iAulz)) dz > 0, (2.46)

for all real-valued u € C°(R).

Proof. First we will check that fy(u+ i7#u) is integrable over R. Since u € C°(R) C LP(R), we
also have Ju € LP(R). Noting that |fy(u(z) + i€ u(z))| < |u(z) + i7€u(z)P for all z € R, we
may indeed conclude that f,(u + i7#u) € L'(R).

Next, let r € R and let (C,,o,) denote the circle in C of radius r, centered at ir, equipped
with its usual surface measure o,. Let 0 < 7/ < r. Then, by Corollary 2.31, we have

27 )
Fo(Cu(ir)) < % [ fplcutin et at (2.47)

As the convergence in 2.11 is uniform in x, we can conclude that Cu extends continuously to the
closure H of H in C by declaring that it is equal to u + i#u on the real line. In particular this
means that Cu is bounded on any compact set in H. This justifies letting ' 1 7 in (2.47) to
conclude that

2w
27r fp(Culir)) < /0 rfp(Culir + re)) dt = /C fp(Cu(w)) do(w). (2.48)
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The idea is now to let r — oo in (2.48) to conclude (2.46).
By Lemma 2.14 we can find R,c¢ € R so that whenever |z| > R, we have |Cu(z)| < ¢/|z|.
Then, since p > 1, we have

rcP P

[ fp(Cuir))| < r|Culir)[” < =0 as R<r — oo,

|zr|7’ rP—
showing that the left-hand side of (2.48) tends to 0 as r — oo.

For the right-hand side of (2.48), we will parameterize the circle C, by projecting it to the real
line through its north pole 2ir. For any ¢ € R, the unique intersection point of the line through
2ir and ¢t with C,\{2ir} is given by

() 472t Y 2rt?
= i
TS e T e
from which we compute
4r? — 2 4rt
") =4t At
) =4 ey YA iy
This means that for all ¢ € R we have
1
472 2 472
=101t -——5 ")) = ——s. 2.49
0=l (2) + PHOI= g (249)
and
lim ~v,.(t) =t, lim |y.(t)] =1, forallte€R. (2.50)
r—r00 r—>00

The former limit implies that if we take |[t| > R + 1, then for some large enough » € Ry we have
|7-(t)] > R. Hence, there is some M € Ry so that whenever » > M and [t| > M, we have, by
(2.49), that

p

(1)) P a2 N\
h/r( )pr( u(7T< )))’ = h/r(t)‘p ‘t‘p 47,2 +t2 = |t|p’
where we used the fact that p < 2 implies that 1 — p/2 > 0. Since p > 1, the function 1/[¢|P is
integrable over the set where |t| > M. This justifies the use of Lebesgue’s Dominated Convergence
Theorem to conclude from (2.50) that

lim [ fy(Cu(w)) o) = lim n [ OICutn ) de = [ flu(e) + i uta) da
The result now follows by letting » — oo in (2.48). O

Now, by combining Proposition 2.27 and Lemma 2.32, we conclude that for all p €]1,2] and all
real-valued u € C2°(R) we have

p
<A ) v i) di < (tan;;) el — 172l

€os o, R

The inequality (2.41) now follows from the density in LP(R) of the space of real-valued functions
in € C°(R) in the space of real-valued functions in LP(R). This concludes the proof of Theorem
2.3.
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2.3 The Riesz Transforms and the Beurling-Ahlfors Transform

The method of rotations uses the Hilbert transform and its extensions in L(LP(R)) for p €]1, 00|
to show that certain singular integral operators in R™ also have extensions in L(LP(R")) for p €
|1, 00]. Since we will mainly be working in two dimensions when working with the Beurling-Ahlfors
transform, this will be our setting now as well.

While we denote our coordinates in the planar domain by z = z + iy, we will denote our
coordinates in the Fourier domain by { = & 4+ 4n. In an attempt to generalize the Hilbert transform
to operators on C with similar properties, we wish to define the following:

2.33 Definition. The first and second Riesz transforms %1 and %s are defined as the convolution

operators
1
27 | |3 ¢7 '@2¢ =PV — | ‘3 ¢)

where ¢ € S(R). O

K10 =

These operators are well-defined by Lemma 2.18. Just like with the Hilbert transform, the Riesz
transforms continuously map S(C) to Oy (C), where

F1p(w) = x lim Re(w — 2)

27 £l0 |lw—z|>e |’LU—Z|3

Re(w = 2) ) de, od(w) = = lim tm{w —2)

21 €l0 |lw—z|>e |w _Z|3

5 ¢(2)dz

Note that for the Hilbert transform we used the normalization 1/7. Usually the Riesz transforms
in R™ are defined as convolution with the distributions T'((n + 1)/2)/x("*D/2PV z;/|z|**! for
j €{1,...,n}, which gives our normalization with 1/(27) here.

We now state the main objectives of this subsection.

2.34 Theorem. Let p €]1,00[. The Riesz transforms have extensions in L(LP(C)) satisfying the
estimate || Z;|cir(cy) < 7€) cr(wy) for 7 € {1,2}.

Showing this will involve what is called the method of rotations.
Additionally, we will wish to compute the Fourier transform of the Riesz transforms.

2.35 Theorem. We have
F(f)=M_,« Ff, F(%2f)=M_ 1 FFf,

<l i<l
for all f € L*(C).

The main reason we wish to establish these results, is because we will define the Beurling- Ahlfors
transform in terms of the Riesz transforms to establish its LP boundedness through Theorem 2.34.
Then, to see that this definition coincides with usual integral representation of the Beurling- Ahlfors
transform, we need only show that their Fourier transforms coincide. After we have established
our main results, we will use the remainder of this subsection to discuss properties of the Beurling-
Ahlfors transform.

First we will concern ourselves with the proof of Theorem 2.34. For @ € R we denote by

« : C — C the rotation z — ¢““2. Then r, defines a map r¥ : L°(C) — L%(C), by rif = f o rq.
In particular, r} restricts to an isometric linear isomorphism of LP(C) for all p € [1, co] with inverse
,’,,*

—o"
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2.36 Definition. Let o € R. We define the angular Hilbert transform s, on S(C) by

1 — e
Hod(z) = —lim oz =) dt,
T €l0 |t|>e t
where the integral is over the real coordinate . &

The angular Hilbert transforms are seen to be well-defined in much the same way as this has been
done for the Hilbert transform.

2.37 Lemma. Let o € R and p €]1,00[. Then S, has an extension in L(LP(C)). If we again
denote this extension by 7, then we have |74 cir(c)y < 117 cir(r)) -

Proof. First we observe that

Ho =1, 00T,
Let ¢ € S(C). Assuming we have proven the result in the case that o = 0, we find
[726bllp < IrZollccrepllZBll creplirallcreplolly < 1921 cir@pll@llp-

This shows that it suffices to consider the case where o = 0.
For y € R we define ¢, € S(R) by ¢y(x) := ¢(z + iy). Then it follows from the definition of
G that Yy (x) = Hp¢p(x + iy). Hence,

“%¢|’£ < /RH%H%(M(R)) /RWy(x)’p drdy = H%”ZZ(LP(R))H¢H£7

by Fubini’s Theorem. The assertion follows. O

Proof of Theorem 2.34. We will prove the result for #;. The corresponding result for % is
completely analogous. Let ¢ € Ry, w € C, and ¢ € C2°(C). Then, by subsequently changing to
polar coordinates and substituting « for o + 7, we obtain

27 [e'e) o e
/ ig¢(w —2z)dz = / cosa/ M dr da (2.51)
|z|>e |Z’ 0 € r
27 0 1o
= —/ cosa/ Mdr da (2.52)
0 € r
Adding (2.51) and (2.52) and dividing by 2 yields

27 o8] i i
/| icb(w —z)dz = ;/0 cosoz/e Plw = re®®) = p(w + re’?) dr da. (2.53)

z\Ze‘ZP r

We now wish to justify using Lebesgue’s Dominated Convergence Theorem to conclude that

1 2m
H1p(w) = 4/ cos a.7t)p(w) da. (2.54)
0
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For this, note that for all « € [0, 27] we have

3
g 22 V0>1(¢)7

'aﬁ(w —re’?) ; p(w + re')

by applying the Mean Value Theorem to the function r +— ¢(w — re'®). Then, by compactness of
the support of ¢, we can find some R > ¢ so that

/%Mw—rww—¢m+wwwm¢§/R

r

d(w — ret®) — ¢p(w + re'®)
T

dr < 2%RV071 (gb)

This justifies letting € | 0 in (2.53) to conclude (2.54).
If p €]1, 0o[, then we can use Minkowski’s integral inequality and Lemma 2.37 to conclude that

1 21
[21¢]lp < 4/0 |cosal dal| #Zadlly < [|7]| ey €]lp,

2m
/ |cosalda = 4.
0

The assertion now follows from Lemma 1.1. O

since

In order to prove Theorem 2.35, we first consider another tempered distribution. Note that the
function |z|~! is locally integrable in C, since

1 |
/ dz:27r/rdr:27r<oo.
|z|<1 2| o T

Thus, |z|~! defines a distribution. However, it actually defines a tempered distribution, since

6E) [ e, 6]
téur“‘ﬁq|dd+ﬁx\4d

< 27 0(¢) + 1/2,0(<Z>)/ L (2.55)

—dz
|z|>1 |2]3

= 27‘('1/070(@%)) + 27TV2,0(¢)

for all » € S(R). This connects to the Riesz transforms as follows:

2.38 Lemma. We have

— X _ )
—8I|Z’ ! :PVW’ —8y|z| ! :PVW,

where the derivatives are taken in S'(C).
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Proof. Let ¢ € R4 and ¢ € S(C). Denote by o. the standard surface measure on the circle
S(e) ={w =wz +iwy € C| |w| = e}. As the outward unit normal vector v to S(e), seen as the

boundary of {z € C | |z] > €}, is given by v(z) = —z/e, we have, using partial integration,
1 x Wy
Oup(2)]2|7" dz = To)dz— | —d(w)doe(w), (2.56)
|2[>e I2|>e 2] S(e) €
and similarly for y instead of x. Since
w 2m . 2m
lim —qub(w) doe(w) = lim p(ee™) cos(t) dt = ¢(0) / cos(t)dt =0,
el0 S(e) &€ el0 0 0

and similarly for y where cos is replaced by sin, we may take the limit as € | 0 in (2.56) to conclude
that

(—0ulzl ™, 8) = (1o 8pd) = lim [ % (z)dz:<Pv‘j}),,¢>,

ed0 Jiz|>e 2|3

and similarly for y. This proves the desired result. O

In view of Lemma 2.38, the vital step for proving Theorem 2.35 is the computation of the
Fourier transform of |z|~!. As it turns out, this is actually a fixed point of the Fourier transform.
To show this, we will use the following result:

2.39 Lemma. Suppose f € C°°(C\{0}) satisfies f(tz) = t~1f(2) and f(e'*z) = f(2) for all
z € C\{0}, t € Ry, and o € R. Then there exists a constant ¢ € C so that f = c|z|7L.

Proof. Write z € C\{0} in polar coordinates as z = re’® for r € Ry and o € R. Then

f(2) = f(re®) = fe)r™" = fD)]2] "
The assertion then follows with ¢ = f(1). O

2.40 Lemma. The Fourier transform of |z|~' is given by ||™!.

Proof. Since |z|~! is invariant under rotations and homogeneous of degree —1, see Example B.18,
it follows from Corollary B.33 that .%|z|~! is also invariant under rotations and homogeneous of
degree —1 = —2—(—1). Moreover, since |z|~! is smooth in C\{0}, we conclude from Theorem B.38
that .7 |z|~! is given by a smooth function f in C\{0}. From this it follows that f(tz) = t~1f(z)
for all £ € R4 and z € C\{0}. Hence, f satisfies the conditions from Lemma 2.39 and is thus of
the form f = ¢|[¢|~! for some ¢ € C. Thus, f defines a tempered distribution in its own right.

Next, note that u := .#|z|~! — f € S§'(C) is supported in the origin. This implies, by Theorem
B.12, that w is of the form

u = Z Ca0%0,

jal <k

where k € Z>¢ and ¢, € C for all multi-indices @ with |a| < k. As is shown in Example B.18,
the distributions 0%9 are homogeneous of degree —2 — || for every multi-index «, while u is
homogeneous of degree —1. Hence, for every ¢t € R4 we have

t™lu = du = Z Cadi(040) = Z t_2_‘°‘|ca8°‘5,

<k ol <k
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which implies that for all ¢ € S(C) we have

u(@) = > t7171ca0%(¢) 50 as t— oo

lof <k

so that u = 0. We conclude that .Z|z|~! = ¢|[¢|7 .
To compute ¢, we recall that if v := e~ ¢ S(C), then F~ = ~, see Example B.29. Hence,

c(lSI™h ) = (Flel ) = (1271 9)-
Since (|z|~1,7) > 0, we conclude that ¢ = 1. The assertion follows. O

Proof of Theorem 2.35. By density, it suffices to show the result for functions in S(C). Let
¢ € §(C). From Lemma 2.38 and Lemma 2.40 it follows that

1
F(6) = —5-F (Oule| ) F6 = it F|a " Fg = —ié‘%.

The proof for %5 is analogous. The assertion follows. O
As an analogue to Corollary 2.22 we also show the following;:

2.41 Corollary. Let p €]1,00[ and f € LP(C). Then

RLf+Rf = ~F.

(i) () =

the result follows by taking the Fourier transform. O

Proof. Since

2.42 Definition. Let p €]1,00[. Denote the extensions of #; and %2 to LP(C) again by %#; and
P>. The Beurling-Ahlfors transform %, in LP(C) is defined as the operator %, := (i%1 + %#2)? €

L(LP(C)). ¢

We note that, per definition, all the operators (%)),e1,00[ coincide on S(C) and in particular on
C°(C). Recalling Lemma 2.5, we could denote all these operators simply by 2. We opt to not do
this at this point for the sake of clarity and to emphasize the involved subtleties.

2.43 Proposition. For all f € L*(C) we have

F(Bof) = M: Ff.

Ay

Proof. We have

F(PBaf) = (iMfiﬁ +M—i%)2fff = M{ ., Ff=M:Ff,
< [<] <

as desired. ]



This proposition can now be used to show that the Beurling-Ahlfors transform interchanges the
Wirtinger derivatives. Before we do this, we note, recalling Remark 1.3, that it is straightforward
to check that the conjugate transpose operator 93; satisfies

Bl = (=i + Bo)* = F ' M: 7.

e

This first equality also gives a description of 93; for all p €]1, co[, while the second equality implies
the following:

2.44 Lemma. Letp €]1,00[. Then A, is an isomorphism of LP(C) with inverse %;,. In particular,
By is a unitary isomorphism of L?(C).

Proof. Since
MzM:z = M=M=z = isz(c),

it follows from taking the Fourier transform that ,%’2,%’; and %’;%’2 coincide with the identity
mapping on C°(C). The assertion for p = 2 follows by density. By Lemma 2.5 we find that for
all ¢ € C°(C) we have %;QS = %’;,gb € L?>(C) N LP (C). Hence, another application of Lemma 2.5
implies that

By B ) = BoBl o = By Byp = ¢

for all ¢ € C°(C). Thus, %p%;, coincides with the identity mapping on C2°(C). Analogously we

find that %;H%’p also coincides with the identity mapping on C2°(C). The assertion now follows
by density. O

We wish to establish a lower bound on the operator norms of the Beurling-Ahlfors transform.
2.45 Proposition. Let p €]1,00[. Then we have ||By| c(r(cy) = p* — 1.

This proposition will be proved by computing the Beurling-Ahlfors transform of specific func-
tions with favorable partial derivatives. Such examples were first discovered by Lehto, see [Le].
For p € [1, 00[, we define the homogeneous Sobolev space

W'P(C) == {f € D'(C) | 0.f,0=f € L"(C)},
topologized by the seminorm
1o = 10:F1p + 10:F 1.
2.46 Proposition. Let p €]1,00]. For any f € W'(C) we have
Bp(0:f) = 0-f,  BHO-f) = 0.
As one might expect, the proof uses a density argument.

2.47 Lemma. For all p € [1,00[, the space C°(C) is dense in W1#(C).

Proof. This proof is nearly identical to the proof of Theorem 1.5 and will therefore be omitted. [
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Proof of Proposition 2.46. The equality for ,%; follows from the equality for %, by Lemma
2.44. Let ¢ € C°(C). Then

T ($2(0:0)) = - F(029) = mizF ¢ = F(9:9),

t\z\l\z\

hence #),(0:¢) = $2(0z¢) = 0.¢. The result now follows from density of C2°(C) in whe(c). O
As an analogue to Proposition 2.6, we have the following:
2.48 Proposition. Let p €]1,00[. Then %, = %,y.

Proof. We note that
By =FM:F ' = F M= F = Bo,

w |

implying that
<<%2f7 g> = <f7 %§g> = <f7 '%29>
for all f,g € L?(C). By Lemma 2.5, this means that

(Bpf,q) = ([, @p@)

for all f € L?(C) N LP(C) and g € L*(C) N L¥ (C). The assertion now follows from density of
L?(C)N LP(C) and L?(C) N L¥ (C) in LP(C) and L¥ (C) respectively. O

Finally, before we prove the lower bound on the operator norms of the Beurling-Ahlfors trans-
form, we consider certain functions known as radial stretchings.

2.49 Example. Suppose a function f: C — C is of the form

z .
—p(zl) if 2] >0
f(z) =4 A
0 if z=0,

where p : Ry — Ry is a strictly increasing continuously differentiable function that extends
continuously to R>¢ by p(0) = 0. Then f is continuous and continuously differentiable outside of
the origin. A direct computation shows that 0,|z| = Z/(2|z|) and thus 0z|z| = 0,|z| = z/(2|z|).
Using Proposition C.1, this implies that

9,2 —g L %i:_ii: -

“lzl z 24 A P2 Z2

Hence,

0.1(:) = S + a5y = 5 (o0 + 2D

20 Tl

0:1() = - 255 + Zl eyt = o (90 - D).

z 20 Pl
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It follows that f satisfies
Ozf(2) = u(2)0-f(2)
for a.e. z € C, where p € L*°(C) is defined by

22D — o)
&) = 2 R (e + o)
for z € C\{0}. &

z
z

Proof of Proposition 2.45. It follows from Lemma 2.44 that | %2/s(r2(c)) = 1. Thus, since
p*—1=(p)* —1, by Proposition 2.48 it is now sufficient to consider the cases p €]2, o[ to establish
the result.

Let p €]2,00[, v €]0, 1[, and define f : C — C by

0 ifz=0
2
fl2) =427 o<z <1
1
= if |z] > 1.
z

Since 1 — 2v/p = (p —2v)/p € Ry and 2z = 1 for |z| = 1, this function is continuous in C,
hence, lies in L} (C). This means that f defines a distribution in C. Setting p(t) := t®=27)/? for

loc
t € Ry, we note that z|z| ™~ P = = z/|z|p(|z|). Thus, by Example 2.49, we note that f is continuously
differentiable for 0 < |z| < 1 and |2| > 1 with

8.f(2) = ;<|Z|_ + 2= 2v| |_)

2
7\z|_77 if0<|z] <1

0 if 2] > 1,
and
z <yz _21;Y+p_27|z|_21?) flfm T oifo<|z <1
0:1(z) = 1 7%, g r
—= if |z| > 1.

These a.e. defined functions are locally integrable in their own right and hence define distributions.
We claim that they are the distributional derivatives of f. Indeed, let S' denote the unit circle
in C and eS! the circle around 0 of radius € for ¢ € Ry and let ¢ € C°(C). Then, since

0.(fo) = (0.f)d+ f(0.¢) where O, f is defined, we note that by Green’s Integral Theorem we have
/ F(2)0.0(: / F0.0(z)dz — [ f(2)0:0(2) dz
0<z|<1 |z|>1
= [ 0.4()6(2)dz ~tim @wmaw+/ 0.f(2)0(z)dz — | 0.(0f)(=) dz
|z]<1 0 Je<lz|<1 >1 |z|>1

/8 f(z dz+11m f dz—j{ f(z dz—i—jilf(z)czﬁ(z)dz

/8 flz dz—l—hm f(2)o(z)dz,

Sl
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where the orientation of the circles is counterclockwise and

271— . . .
lim f(2)o(z)dz = lim —ie flee™)p(ee)e ™ dt = 0
el0 Jog1 el0 0

by continuity of f at 0. The computation for dzf is similar, which proves the claim.
Thus, using polar coordinates we may compute

_ p rl o P
ety =2n (222) [ = 7 (20
p 0 =\ »

T P o T P T
fossty = (1) won [Tromar— T (1) 4 T
I—v1\p 1 L—v1\p p—1

In particular, we have establishes that f € WP(C) (and actually, we have f € WhP(C)).
Hence, by Proposition 2.46,

and

_ p P
B0, sty [ (5)
o:sly o\ GV e )

so that we may now conclude that

=

_ p
|Dpll (Lo (c)) = @ (2.57)
)+ =

3
L

for all v €]0,1[. The right-hand side of (2.57) tends to p — 1 = p* — 1 as v 1 1. The assertion
follows. O

We can also establish that the operator norms of the Beurling-Ahlfors transform are determined
by the interchange of the Wirtinger derivatives.

2.50 Proposition. Let p €]1,00[. Suppose V' is a vector space so that C°(C) C V C Wl’p(C).
Then

1B, cio(cy = int{e € Re | 0: £, < cll9zfll, for all f € V}
= inf{c € Ry | |8/1lp < c|0.f, for all f € V.

This uses density of 9z(C°(C)) = {0z¢ | ¢ € C°(C)} in LP(C) for p €]1, 00[. For this we will
use the following extension of Liouville’s Theorem:

2.51 Lemma. Letp € [1,00]. If f € LP(C) satisfies 0zf = 0 in D'(C), then f is constant if p = oo
and f =0 if p € [1,00].

Proof. Note that mi(.7 f = % (0zf) = 0, which implies that supp .# f C {0}. Hence, % f must be
a linear combination of derivatives of the Dirac delta distribution. But this means that f itself is a
polynomial. The only bounded polynomials in C are the constant ones, while the only p-integrable
polynomial in C for p € [1,00][ is the zero polynomial. The assertion follows. O
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2.52 Lemma. Let p €|1,00[. Then 9z:(C>°(C)) is dense in LP(C).

Proof. The asserted density is equivalent to showing that the annihilator of 9z(C2°(C)) consists
of only the 0 function. This means that we have to show that if

[ 7@0e0(2)dz =0
C
for all ¢ € C2°(C) for some f € L (C), then f = 0. But this is precisely what Lemma 2.51 asserts.

This proves the result. O]

We note that the closure of d-(C°(C)) in L'(C) is given by the space of those integrable
functions that have mean value zero. In particular, dz(C2°(C)) is not dense in L!(C) or L>(C).

Proof of Proposition 2.50. In view of Proposition 2.46, the second equality follows in the same
way as the first one by replacing %, by %’;, and by noting that || %yl c(rr(c)) = H%;IHE(LP(C))-
Thus, we will only show the first equality.

For each vector space C2°(C) C W C WP(C) we set

c(W) :=inf{c € Ry | [|0.fllp < c||0zf||p for all f e W}.
Then, by Proposition 2.46, the chain of inequalities
o(C(C)) < (V) < e(WHP(C)) < Byl cwr(oy)

is clear. Hence, it suffices to show that || %, z(rr(c)) < c(C(C)).
Note that for all ¢ € C°(C) we have

12 (0z0)[lp = 11029, < c(CZ(C))|0z0|p-
But then it follows from Lemma 2.52 that
12y fllp < c(C(C) fllp
for all f € LP(C). This proves that || %, | z(1r(cy) < c(Ce°(C)), as desired. O

Finally, we will give an alternative method of defining the Beurling-Ahlfors transform, as a
complex analytic tool.

Consider the locally integrable function E := (72)~!. Then we note that the estimate (2.55)
shows us that F € §'(C).

2.53 Definition. We define the Cauchy transform € : S(C) — O (C) as the convolution operator

Cp:=FE * ¢.
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We denote by § the Dirac delta distribution at the origin. By Proposition C.12, the tempered
distribution E satisfies 9:F = § in D’'(C). By Proposition B.43 this implies that

0:6(9) = 0B+ 6 = ¢
for all ¢ € S(C).

2.54 Definition. We define the Beurling-Ahlfors transform % : S(C) — Oj;(C) as the convolution
operator

B = 0,(€p) =0, E*¢p=FEx0,0.

It follows from this definition that we have the relations
(60) = €(0:6) = b, 0.(€9) = (0.6) = Bé for all § € S(C). (2.58)
In particular, this means that
P(0:0) = 0:(6(9:9)) = 9:(¢(9:9)) = 0:¢.
for all ¢ € S(C).
2.55 Proposition. We have

- _l i . _l . M
Bo(w) = —PV 5+ P(w) = - lslﬁ} ho—z[e (W — 2)2

dz.
for all p € S(C) and w € C.

Proof. First we must check that PV 1/2? is a well-defined tempered distribution. Then, it suffices
to show that we have the equality of distributions

(2.59)

to conclude the proof.
Let ¢ € S(C) and let € € R4 so that ¢ < 1. By (C.3) in Example C.9 we find that the integral
of 1/22 over the annulus € < |z| < 1 vanishes. Hence,

lim /E 22 4| = i /5 <|z|<1¢(2)_¢(0) dz

el0 S|Z‘S1 Z2 el0 2'2

< wp,1(¢9) /|z|§1|i| dz = 2719,1(¢).

Since

/ |¢(22)\ 4z < V1,o(¢)/ Lg dt = 271 (),
|z|>1 ’

2| 12>1 12

we have now shown that PV 1/22 € S'(C).
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For the next assertion, we let ¢ € C°(C). We note that by the product rule for 9,, we have
0.(¢/z) = (0.4)/z — ¢/2* outside of the origin. Hence, we have

1 B 0:9(2) . 1 . o
<Ozz, ¢5> = — /C sz = <—PV z2,¢> — lglﬂ)l MZEGZ <z) (z)dz. (2.60)

Let ¢ € Ry and define v : [0,27] — C by ~(t) := ee’. Since ¢ has compact support, it follows
from Green’s Integral Theorem, see Theorem C.7, that

/'Z>€8z @) =5, /f&(j) az

B 1 27r¢(€eit)
2 ), eett

2w
lim MZE@Z <¢> (z)dz = —¢>(20)/0 e 2 dt = 0.

el0 z

<az1,¢>> — <PV 12,¢>>
yA z

for all ¢ € C2°(C). This proves the result. O

1 27

(—ice ™) dt = ) P(ee)e 2t dt.
0

Hence,

Thus, it follows from (2.60) that

Our next order of business is to establish that the Beurling-Ahlfors transform as defined here,
coincides with the definition we gave in Definition 2.42. For this, we will show that they both define
the same Fourier multiplier.

2.56 Lemma. We have #FE = —iF.

Proof. The proof is similar to the proof of Lemma 2.40 which we refer to for more details on the
arguments presented here. We note that

| = 76 = #(9:E) = mi( FE.

From this we conclude that the tempered distributions #FE and —iFE coincide on C\{0}. Set
u:= FE+iF € §(C). Then u is supported in the origin, which implies that u is a linear
combination of derivatives of §. Since u is homogeneous of degree —1 while 9%9 is homogeneous of
degree —2 — |a for every multi-index «, we find that we must have uw = 0. The result follows. [

This lemma implies that for all ¢ € S(C) we have
F(Bo) = F(0,E)F¢=mizFEF$=1zEFp= MzF¢.
This means that %, is an extension of % to L?(C). We conclude that %, is an extension of % to
LP(C) for all p €]1, 00], as desired. From now on, we will simply denote the extensions %, by %.
We conclude this subsection with a result we will need for the Cauchy transform. For p € [1, oo},

we denote by LE(C) the classes in LP(C) which have a representative that has compact support.
We note that the convolution ¢ f := E x f makes sense for any f € LE(C) for p € [1, 00].
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2.57 Proposition. Let p €]2,00[. Then € defines a map from LE(C) to WP (C) that is continuous
in the sense that whenever a sequence (f;)jen in LE(C) satisfies:

(i) (fj)jen converges in LP(C) to a function f € LP(C),
(i1) there is a compact set K C C so that supp f; C K for all j € N,

then f € LE(C) and (€ f;)jen converges to € f in WHP(C).
Furthermore, we have

#xCf=1Ff 0.Cf=2ABf

for all f € LE(C).
Finally, for each f € LE(C) there exist ¢, R € Ry so that

|€f(z)] < é for a.e. z € C satisfying |z| > R.
Proof. For each r € Ry we denote by x, the indicator function of the closed disc of radius r
centered at the origin.

Let f € LE(C) and pick R € Ry so that the support of f is contained in the disc of radius R
around the origin. First we will show that ¢ f € LP(C). Let w € C satisfy |w| < 2R. Then, if
|z —w| > 3R for some z € C, then 3R < [z —w| < |2|+ 2R, i.e., |2| > R, so that f vanishes almost
everywhere for z satisfying |z — w| > 3R. This implies that

f(2)

w—z

€ flw) = - /C xam(w — 2)

™

dz = (x3rE * f)(w).
Hence, Minkowski’s inequality for convolutions, see Corollary A.5, implies that

Ix2rEC fllp < IxsrELll fllp- (2.61)

Next, suppose w € C satisfies |w| > 2R. Then, whenever |z| < R, we have 2|z| < 2R < |w| so
that |w — z| > |w| — |2| > |w|/2. Hence,

o
€ fw)] < L / FC g, < 2y, < 20ED7) g

™ Jjzj<r w0 = 2| m|w] 7|w]

where in the last inequality we used Holder’s inequality. Hence,

=

2(mR?)? 1 1 > 4
0 =xane sty < g, [ oz = a@R A, [P
|w|>2R‘Z‘ 2R

™

(2.62)

=

_ A(wR%)¥ (2R)*7P
- -

£ 1lp,
where we used p > 2. Thus, from (2.61) and (2.62) we conclude that

cgf = XQRCgf + (1 — XQR)CKf S Lp(C>,
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and
1C fllp < k(p, R)I fllp,

where k(p, R) € Ry depends only on p and on R.
Note that Fubini’s Theorem implies that (€' f, ¢) = —(f, €' ¢) for all ¢ € C>*(C). By (2.58) and
Proposition 2.48, this implies that

(0:(Cf), ) = (f,€(0:0)) = (f, B¢) = (B, )
(0:(Cf), 0) = (f,€(029)) = ([, b),

for all ¢ € C2°(C). Thus, we find the distributional equalities 0,(€ f) = ZAf € LP(C), 0z(¢ f) =
f € LP(C). In particular, this shows us that €' f € WP(C) with

1€ fllp + 10:(CH)lp + 10=(C llp < (k(p, R) + 1+ B o)) [ f[lp- (2.63)

If a sequence (fj)jen in LE(C) converges in LP(C) to a function f € LP(C) and satisfies the
assumption that there is a compact set K C C so that supp f; € K for all j € N, then we note
that there is some R € R4 so that K and hence the support of each f; lies in the disc of radius
R centered at the origin. Since convergence of a sequence in LP(C) implies that there is an a.e.
convergent subsequence with the same limit, we conclude that f must vanish a.e. outside of K,
and thus f € L¥(C). Moreover, we note that the inequality (2.63) holds for f replaced by f — f;
for all j € N, since the support of f — f; lies in the disc of radius R centered at the origin for all
7 € N. Then, letting j — oo proves the desired convergence.

Finally, we note that for each f € LE(C) we have

1
timsup ()] < timsup = [ o)z < 12
|w|—00 lwl—soo T Jo|w — 2| T
This proves the final assertion. -

Notes and Acknowledgments

The LP-boundedness of the Hilbert transform dates back to the article [Ri] from 1928. The proof
of this result using complex contour integration follows a section from the book Complex Proofs
of Real Theorems by Lax and Zalcman, see [LZ, Section 3.6], and allowed us to give a complex
analytical exposition of the theory in contrast to our harmonic analytical exposition which requires
the language of distributions.

For our harmonic analytical approach we relied extensively on Grafakos’ Classical Fourier Anal-
ysis, see [Gr, Chapter 4]. Our exposition of Calderén and Zygmund’s Method of Rotations is
adapted from the general n-dimensional results presented in this book to our 2-dimensional case.
In R", defining the Riesz transforms #; for j € {1,...,n} as convolution with the tempered dis-
tributions T'((n + 1)/2) /7" *V/2 PV z;/|z|"*!, one can use the Method of Rotations to show that
each Z; is LP-bounded for p €]1, oo with

T
|2 ccrrny) < ]| 2L (r)) = cOt oy 1€ {1,...,n},
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as we have shown in Theorem 2.34 for the case n = 2. It is actually true that this inequality of
operator norms is an equality. This is a result by Iwaniec and Martin and can be found in [IM].
Concerning homogeneous distributions such as the ones used to the define the Riesz transforms,
we gave a proof of the fact that .#|z|~! = |[¢|~! in Lemma 2.40 which was based on [Gr, Section
2.4.c| and the discussion in [Gru, p. 112-114]. This is a well-known and understood result. In R",
for a complex parameter a € C with Rea > —n we can define a tempered distribution u, through

the locally integrable function
at+n

Lma

r a+n)

2
2
in R™, which is a homogeneous distribution of degree a. Using analytic continuation, see [Gr,
Section 2.4.c], one can extend the analytic family of tempered distributions (ug)Rea>—n to all
a € C. One can then show that Fu, = u_,_, for all a € C, see [Gr, Theorem 2.4.6]. Our result
is then the special case n = 2, a = —1. The general result can be used to compute the Fourier
transform of the Riesz transforms in R", see [Gr, Exercise 4.1.10].
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3 Quasiconformal Mappings and Iwaniec’s Conjecture

In contrast to the previous sections, this subsection will be in a more narrative style. We will
introduce the notion of quasiconformal mappings as a generalization of biholomorphisms. We will
then show how this notion is related to the Beurling-Ahlfors transform. It was in the setting of qua-
siconformal mappings in which Iwaniec’s Conjecture was first proposed by the eponymous Tadeusz
Iwaniec in [Iw, Conjecture 1]. As it is not our goal to establish results in the vast theory of quasi-
conformal mappings, we will give references to full proofs of the results we will use. However, we
will strive to emphasize results that use the Beurling-Ahlfors transform and the Cauchy transform
by giving full proofs of auxiliary results where they are needed.

Geometrically speaking, holomorphic functions are interesting because they preserve angles
and orientation, i.e., are conformal mappings, at points where their complex derivative doesn’t
vanish. For the precise definitions and results we refer to Definition C.25 and the succeeding
results in Appendix C. In particular, Theorem C.31 asserts that the injective conformal mappings
are precisely the biholomorphisms. A fundamental result in the study of such mappings is the
Riemann Mapping Theorem.

3.1 Theorem (Riemann Mapping Theorem). Let U C C be non-empty, open, simply connected,
and not equal to all of C. Then, for each zyg € U there is a biholomorphism f from U to the open
unit disk satisfying f(zo) = 0. Any such biholomorphism is uniquely determined up to multiplication
by € for a € R.

For now we let U C C be a non-empty open set. We wish to generalize the notion of conformal
mappings on U to a more general setting. Rather than working in the space C'(U) of classically
differentiable functions, we can choose to work in a distributional setting which leads to the use
of Sobolev spaces. This immediately brings some subtleties. There exist conformal, and thus
holomorphic, see Lemma C.32, mappings from U = C that are injective, an example being the
identity map in C. However, by Lemma 2.51 one cannot hope for such a result if one also imposes
integrability of the maps. For a more fruitful theory, it is therefore sensible to consider the local
Sobolev space Wlicl (U), consisting of those locally integrably functions whose distributional partial
derivatives are also locally integrable functions.

Another subtlety is the fact that if f € VVllocl(U ) is an injective map satisfying dzf = 0, then
the ellipticity of the linear partial differential operator 05 with constant coefficients implies that
f € C*(U), and is thus conformal in the classical sense, see Theorem B.37. If one wishes to
generalize the notion of conformal mappings to I/Vllocl (U), this means that it may be prudent to look
for a definition with a geometric flavor rather than just an analytic one.

For f € CY(U) we write u := Re f and v := Im f. Then the total derivative Df(z) at a point
z € U, seen as a real linear map R? — R2, is given by the Jacobian matrix

(3o i)

Under the usual identification R? = C, this means that for z € C, hi,hs € R and h = hq + iho,
we have

Df(2)h = 0 f(2)h1 + 0y f(2)he = (9: + 0z) f(2)h1 + i(0> — 02) f (2) ho
= 0,f(2)h + 0=f(2)h.
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We also recall the definition of the directional derivatives 9, f at z € U for h € C as

Onf(2) = tim LT = f)

t—0 t

= Df(2)h.
The Jacobian determinant J;(2) at z € U satisfies
Ji(2) = Opu(2)yv(z) — Byu(2)dpv(2)
= i((a:cu(z) +0y0(2))” + (Byu(2) — 0v(2))* = (Beu(2) — 9yv(2))? = (Dyu(z) + Dyv(2))?)
= 0:f(2)* — |0z (=)

Since the determinant of a matrix gives the oriented volume of the image under the matrix of
the unit square, we say that f is orientation preserving if J¢(z) > 0 for all z € U. We have just
shown that this condition is equivalent to |0zf(2z)| < |0,f(z)| for all z € U. This makes sense in
terms of the total derivative, since this is decomposed into the sum of multiplication by 0, f and
multiplication after conjugation by dzf. In particular, if f is holomorphic, then Df(z) is simply
given by multiplication with 9, f = f’.

We give another characterization of an injective conformal mapping.

3.2 Proposition. Let U C C be open and let f € C*(U) be an injective map. Then f is conformal
if and only if f is orientation preserving and for all z € U the value of |0Onf(z)| is constant for
h € C with |h| = 1.

Proof. If f is conformal, then f is holomorphic. This means that dzf(z) = 0 for all z € U. Hence,
Jf(z) = 10:f(2)|* > 0 for all z € U so that f is orientation preserving. Moreover, we find that for
all z € U and all h € C with |h| =1 we have

0nf(2)] = |Df(2)h| = 10-f(2)h] = [0-f(2)],

which is independent of h. It remains to prove the converse implication.
Let z € U. If the value of |0, f(2)| is independent of h € C with |h| = 1, then, by setting
h = e 2 for a € R, we find that the value of

0nf(2)] = [Df(2)h] = 18- f(2)e™"% + 0:f(2)e'2 | = 0.1 (2) + D= f (2)e™]
is independent of o € R. The equation
9:f(2) + %f(z)eia

describes a circle of center 0, f(z) and radius |0zf(z)| as « runs through [0, 27]. We conclude that
we must either have 0,f(z) = 0 or 0zf(z) = 0 for the modulus to remain constant. In the first
case, we note that since f is orientation preserving, we have |0zf(z)| < |0.f(z)| = 0 so that also
0zf(z) = 0. We conclude that in either case we must have 0zf(z) = 0. This implies that f is
holomorphic. But an injective holomorphic function is an injective conformal mapping by Theorem
C.31. The assertion follows. O
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One might say that near each point z € U, an injective conformal mapping on U sends circles
around z to circles around z. It is this notion that we wish to generalize by allowing a quasiconformal
mapping on U to send circles around a point z € U to ellipses around z that are, in a quantifiable
way, not too far away from circles. Before we give a precise definition, we need to make some
preliminary definitions.

For any f € Wli’cl(U ) the distributional derivatives 9, f and 9z f exist as functions in L} (U).
Then, for a.e. z € U, this allows us to define the total derivative Df(z) : C — C by

Df(2)h = 0.f(2)h + 0=f ()h.

As usual, we then write

IDf(2)llcme) = o [Df(2)h]-

For h € C we may define the directional derivative 0y f by
Onf(z) == Df(2)h
for a.e. z € U. Moreover, we define the Jacobian determinant J; by
Ji(z) = 0:1 ()" = 0=f (2)I?

for a.e. z € U. Since we want Jy to be a locally integrable function, we impose the addition
condition that f € VVZZS(U) We say that such a function f is orientation preserving if Jy(z) >0
for a.e. z € U.

3.3 Definition. Let U C C be open and let K € [1,00[. We say that f € I/Vlif(U) is K-
quasiconformal if it is a homeomorphism onto its image, if it is orientation preserving, and if we
have the inequality

_ .
max Onf(2)| < K min On.f(2)

for a.e. z € U. (3.1)

Moreover, we call

K(f):=inf{K € [1,00[| (3.1) holds}
the mazximal dilation of f. &

The inequality (3.1) means that the largest distance to a point of the image of a circle around this
point can, at most, be K times the shortest distance to this point. Brouwer’s Invariance of Domains
Theorem implies that the condition that f is a homeomorphism onto its image is equivalent to the
condition that f is continuous and injective. Additionally, this theorem implies that the image
of such a mapping must be open in C. We also note that this definition of a K-quasiconformal
mapping makes sense in dimensions higher than 2.

3.4 Remark. In the definition of a K-quasiconformal mapping, the condition that f € VV;)’S (U)

is superfluous in the sense that if f € VVlicl(U), then one still has that J; is locally integrable. As

a matter of fact, it is shown in [AIM, Corollary 3.3.6] that if f € I/Vlicl (U) is orientation preserving
and a homeomorphism onto its image, then

/Jf(z) dz < |f(E)| for all Borel measurable £ C U, (3.2)
E
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where | f(E)| denotes the Lebesgue measure of the Borel measurable set f(E). One cannot generally
ask for such a result for general Lebesgue measurable sets, since the homeomorphic image of a
Lebesgue measurable set need not be Lebesgue measurable.

We will show in the proof of Proposition 3.6 below that for an orientation preserving map the
inequality (3.1) is equivalent to the inequality

||Df(z)|\%(R2) < KJ¢(z) forae zeU, (3.3)

and that
IDf(2)llzmey = 10:£(2)] +10:f(2)]

for a.e. z € U. Hence, by (3.2), whenever f € I/Vli’cl(U) satisfies (3.3) we must have f € VVli’f(U)
and f is a K-quasiconformal mapping. &

We call a function [ € VV;S(U ) quasiconformal, if there is a K € [1,00[ so that f is K-
quasiconformal. The following proposition shows us that we have indeed generalized the notion of
injective conformal mappings.

3.5 Proposition. Let U C C be open. Then f € VV;)’CZ(U) 1s 1-quasiconformal if and only if
f€CYU) and f is an injective conformal mapping.

Proof. If f € C'(U) and f is an injective conformal mapping, then it follows from Proposition
3.2 that f is orientation preserving and for all z € U the value of |0y, f(2)| is independent of h € C
with |h| = 1, which is equivalent to saying that

max [0nf(2)| < min [0nf(2)]
for all z € U. Since injective conformal mappings are biholomorphisms, f is a homeomorphisms
onto its image. Noting that C*(U) C Wﬁ)’f(U ), we conclude that f is 1-quasiconformal.

For the converse, we note that the proof of necessity in Proposition 3.2 also works in our more
general setting to show that dzf(z) = 0 for a.e. z € U. But this means that dzf = 0 in the
distributional sense, which, by elliptic regularity, implies that f € C*°(U) and f is holomorphic,
see Theorem B.37. As f is also injective, we may conclude that f is an injective conformal mapping.
The assertion follows. O

It is an exercise in linear algebra to obtain different characterizations of quasiconformal map-
pings.

3.6 Proposition. Let U C C be open, let K € [1,00[, f € [0,1] satisfy the relations

1 —
PERED N S
1-8 K+1

and let f € Wlif(U) be a homeomorphism onto its image. Then the following are equivalent:
(i) [ is K-quasiconformal;
(i1) HDf(z)H%(RQ) < KJy¢(z) for a.e. z€ U;
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(iii) |0zf(2)| < B|0.f(2)| for a.e. z € U;
() 0zf(2) = u(2)0,f(2) for a.e. z€ U for some p € L>®(U) satisfying ||u]loo < B < 1.
The proof uses a lemma.

3.7 Lemma. Let a,b,c,d € R and let A:R? — R? be a real linear map given by the matriz

2

Then
1
ma | 48] = 5 (V@ dPP + (e = 02) + Vo= @2+ (4 5)%) =Jel + ful
1
min [Ah] = 5 [V + )2 + (0= 07 v/l =@+ (e 4 02| = 2] = o]l
where
_a+d+_c—b _a—d+_c+b
Ty Ty WE T T
In particular, we have
|det A| = |ad — be| = ||2]* — |w|?| = min |Ah| max |Ah)|.
|h|=1 h|=1

Proof. In complex notation, for h € C we have
Ah = zh + wh.

We now have to show that max,—; [Ah| = |z| + [w| and min,—; |Ah| = [|z| — [w]].
By the triangle inequality we have

[|2] = |wl| < |AR[] < |2] + Jwl,
whenever |h| = 1, which implies

max |[Ah| < |z| + |w|, ||z| — |w|| < min |AR|.
Ih|=1 Ih|=1

It now suffices to find vectors where the maximum and minimum are attained.
If z = |z|e® and w = |w|e®® for t,s € R, then we set h := ¢/(>"/2, Then

|AR| = ||2]e%" + |w|e!2 | = |2] + [w], |Aih| = |izh — iwh| = ||2] — w]].
The assertion follows.

We note that for f € I/Vlicl(U) this lemma implies that

IDf ()l cme) = 10:f(2)] + 1021 ()]

for a.e. z € U.
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Proof of Proposition 3.6. For (i)=-(ii) we note that, by the determinant formula in Lemma 3.7,
we have

2
DSy = (max D) < K uin D7)l max DA = K J5(2),

for a.e. z € U, where we used |J¢| = Jy, since f is orientation preserving.

For the converse implication (ii)=-(i), we note that the inequality in (ii) implies that f must
be orientation preserving, while the inequality (3.1) is again clear by the determinant formula in
Lemma 3.7.

For (ii)=-(iii), we note that, by Lemma 3.7, for a.e. z € U,

(10:=F ()| +102F ())* = |IDF () pmezy < KTy (2) = K(10:1(2)]” = |01 (2)]).

But this means that
0.1 (2)| + [02f(2)| < K0.f(2)| — K|0zf(2)]

for a.e. z € U, which is aquivalent to (iii), as desired. The implication (iii)=-(ii) follows from a
similar use of Lemma 3.7.
For (iii)=-(iv), we define

if 9.f(z) #0
0 if 9.f(z) = 0.

This satisfies the desired conditions. The implication (iv)=>(iii) is clear. This proves the assertion.
O

With f satisfying the equivalent properties in the proposition, we remark that

K(f) -1

1+ lpllso
K(f)+1’

with p as in (iv).

The equation 0z f = M,0. f is called the Beltrami equation with Beltrami coefficient p. Since
the Beurling-Ahlfors transform is defined on globally defined LP functions, we will restrict our
considerations to globally defined quasiconformal mappings with compactly supported Beltrami
coefficients.

Let 8 € [0,1] and let p € L(C) satisty ||u]|c < 8. The key to solving the Beltrami equation

with Beltrami coefficient p, and thus to finding quasiconformal mappings, is to invert the operator
I — M, %, where I denotes the identity operator. We observe that

1Myl c(r2(cy) < litllool[ B2y = Il <6 <1,

which implies that I — M, % is invertible in L?(C), whose inverse is given by the Neumann series

(I-M2)™" = > (MY,

JE€EZ>g
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where the sum converges in £(L?(C)). As a matter of fact, we can get a better integrability
exponent than p = 2. We will show this in Lemma 3.10 below.

This is all we will need to establish existence of solutions to the Beltrami equations under
consideration.

3.8 Theorem (Existence of principal solutions to the Beltrami equation). Let p € L°(C) with
llttlloo € [0,1]. Then there exists a unique f € VV;CQ(C) satisfying

0zf(2) = w(2)0.f(z) for a.e. z € C,

with the condition that there exist ¢, R € Ry so that

|f(z) —z| < |76| for a.e. z € C satisfying |z| > R. (3.4)

We call the solution f € VVZ})CZ(C) as in the theorem the principal solution to the Beltrami
equation with Beltrami coefficient p € L°(C).

Proof. We will first find a solution g € W2(C) to the equation
0z9(2) = u(2)0:9(z) + p(z) for ae. z € C. (3.5)
This equation can be rewritten as
(I — M, $)(0=zg) = -

As € L¥(C) C L*(C), we can define

w:=(I—-M,B) 'p= Z (MuBY 1= p+ Z B(M, %)~ 1€ Li(C).
J€Z>q JEN

By Proposition 2.57 we can set g := ¥w € WH2(C). By retracing our steps and by noting that
0zg = w, we note that g is indeed a solution to (3.5). Moreover, by Proposition 2.57 we can find
¢, R € Ry so that

lg(2)] < £ forae zeC satisfying |z| > R.

2|

Now set f:=z2+g € VVZIOS(C) Then f satisfies (3.4). Moreover, we have
0zf(2) = 0z9(2) = u(2)0.9(2) + pu(2)0,2 = u(2)0, f(z) for a.e. z € C.

This establishes existence. 3
For uniqueness, suppose [ € VVllof(C) is another solution. Then g := f — z € I/Vlicz(C) is a

solution to the equation (3.5). Set h:= f — f = g — g. Since u is compactly supported and by the
decay properties of f and f, we can find ¢, R’ € R so that

/
|h(2)] < < and O-h(z) =0 for a.e. z € C satisfying |2| > R'. (3.6)

k1
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Since dzh € L} (C) vanishes outside of a compact set, we conclude that dzh € L?(C). But then
(I = M,#)(0zh) =0

so that dzh = 0 in L%(C) by invertibility of I — M,% in L?*(C). Since (3.6) implies that h is
bounded, we conclude from Liouville’s Theorem, Lemma 2.51, that h is constant. But then the
decay property (3.6) implies that h = 0, as desired. O

The principal solution we have found above actually turns out to be a homeomorphism of the
plane and, in particular, is a quasiconformal mapping of maximal dilation (1 + ||xt]/e0)/(1 — ||t]|c0)-
A full proof of this result can be found in [AIM, Theorem 5.3.2]. We also wish to state a result
that that is referred to as the Measurable Riemann Mapping Theorem and was established by Lars
Ahlfors and Lipman Bers in 1960 in [AB]. We state it here without proof. Here we denote the
Riemann sphere by C := C U {co}.

3.9 Theorem (Measurable Riemann Mapping Theorem). Let p € L¥(C) with |u|le € [0,1].
Then there is a unique homeomorphism f : C — C satisfying

0zf(2) = uw(2)0.f(z) for ae. z€C

that is a quasiconformal mapping that fixes the points 0, 1, and oo.

We note in particular that this theorem establishes existence of quasiconformal mappings of
any maximal dilation in domains U C C. Indeed, by extending the Beltrami coefficient of the
corresponding Beltrami equation by 0 outside of U, one obtains a Beltrami coefficient as in the
theorem. Restricting the solution from the theorem to U yields the desired quasiconformal mapping.

Next, we will establish higher integrability results for solutions of Beltrami equations. This
was the phenomenon, as perhaps first observed by Bojarski, see [Bo|, that Iwaniec was studying
which led him to his conjecture. In Bojarski’s work he used the recently developed interpolation
techniques to obtain continuity results of integrability exponents from which higher integrability
results for solutions to certain partial differential equations can be found. A prime example is the
following lemma, used in conjunction with the Neumann series argument we have used so far.

3.10 Lemma. Let § € [0,1[. Then there ezists an € € Ry so that for all p €]2 — ,2 + €[ we have

BIA| £ty (cy) < 1-

Proof. The Riesz-Thorin Interpolation Theorem implies that the function ¢ — log || 4| £ ()
is convex in ]0,1[. Since such functions are continuous, we conclude that the function p
1D\ (e (cy) = eloglZlcar () is continuous in |1, co[. But then, since |8l £(L2(c)) = 1, we conclude
from the fact that 3 %|z(z2(c)) < 1, that there must be some open interval around 2 where this

condition still holds. This proves the assertion. O

Let 5 € [0,1]. Then we can set

p(B) :=sup{p €]1,00[ | I — M, % is invertible in LP(C) for all p € L>°(C) satistying ||u|l < B}.
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An argument using Neumann series as above yields

sup{p €]1,00[ | B|Z|l|(zr(c)) < 1} < p(B), (3.7)

which means that by the lemma we have p(8) €]2, 0c].
Let U C C be open. Bojarski showed that any solution f € Wllo’f(U ) to the Beltrami equation

with Beltrami coefficient p € L (U) with ||p|lec < S < 1 must actually lie in I/Vllo’f(U) for some
p €]2,00[. This is a consequence of the following result, which we call Bojarski’s Theorem.

3.11 Theorem (Bojarski’s Theorem). Let U C C be open, let B € [0, 1], and let p € L*>°(U) satisfy
lptlloo < B If f € W2(U) satisfies

Ozf(2) = u(2)0:f(2)  for a.e. z€U,
then f € W/lif(U) for all p € [2,p(5)].
For the proof we will use the following version of the Sobolev Embedding Theorem:
3.12 Theorem. For all p € [2,00[ we have the continuous inclusion W12(C) C LP(C).

Proof. Let ¢ € C°(C) be arbitrary and let x € C°(R) satisfy x(R) C [0,1], x(0) = 1, and
supp x C] — 1,1[. For a € R, the chain rule implies

1 o]
=— / O, (x(r)p(re')) dr = — / (X(r)Dg(re’)e' + X' (r)p(re')) dr.
0 0

Hence, by employing polar coordinates,

—27¢(0 / /27r ! r)D(re'®)e™ + X/(T)qb(rem)) dodr

- [ (x(\Z\)lM(Z)M X (Do) d

where D C C denotes the open unit disk. Since Dé(z)h = 9,¢(2)h + O-¢(2)h, this implies that
there is some ¢ € R4 so that

<o /D 1| (16(2)] + 026(2)| + |0=6(2)]) d=. (3.8)

Denote by xp the indicator function of D and fix zp € C. If we replace ¢ in (3.8) by z —
#(z0 — z), then we obtain

[6(20)| < C/D’i‘ (Ip(z0 = 2)| +19:9(20 — 2)| + |0z¢(20 — 2)|) dz = ¢ (TZD * ¢> (20),  (3.9)

where ¢ := [¢] + [0:¢] 4 [0z¢).
Let p € [2,00[ and let ¢ € [1, 00| satisfy

1 1 1
—+l=-4_.
D q 2
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Then 4
=2~ <2
1 2+p
so that xp/|z] € L1(C). Using (3.9) and Young’s inequality for convolutions, see Theorem A.3, we

obtain

Xl*¢ XD

<c
|| » H E

Since f > ||| f|+]0..f|+|0-f|||2 defines a norm on W12(C), equivalent to the usual one, we conclude
from the definition of 1) that there is some constant ¢ € R, independent of ¢, so that

1ollp < e

112
q

ollp < clldllwrzc).
The result now follows from density of C°(C) in W2(C). O

Proof of Bojarski’s Theorem. By Lemma 1.6 we need to check that for all ¢ € C2>°(C) we have
of € WHP(U) whenever p € [2,p(B)[. Let ¢ € C(U). Then ¢f € WH2(U) extends to a function
g € W12(C) by declaring that it vanishes outside of the support of ¢. We also extend p to C by
0. Then, setting 1) := (0z¢ — pd.¢)f, we have

0z9(2) = ¢(2)0=f (2) + 0z9(2) f(2)
w(2)p(2)0xf(2) + 1(2)0:0(2) f +9(2)
= u(2)0:9(2) + ¥ (2)

for a.e. z € C. By Theorem 2.46, this implies that

(I — M, AB)(0=zg) = . (3.10)

It follows from Theorem 3.12 that g € LP(C) for all p € [2,00[. Similarly, for all p € [2,00[ we
find that (0z¢)f, (0.¢)f € LP(C) so that ¢ € LP(C). If p € [2,p(5)[, then the invertability of
I — M,% in (3.10) in LP(C) implies that 0zg € LP(C). But then also 0,9 = #(0zg) € LP(C). In
conclusion, we have g, 9.9, dzg € LP(C) whenever p € [2,p(8)[. This proves that g € WP(C) and
thus ¢f € WHP(U) whenever p € [2,p(8)[. The assertion follows. O

If, for 5 €[0,1] and U C C open, we set K = (14 3)/(1 — () and
P(B,U) :=sup{p € [2,00[ | any K-quasiconformal mapping in U lies in VV;’:(U)},
then we note that it follows from Bojarski’s Theorem and (3.7) that we have the chain of inequalities
sup{p €]1,00[ | B| 2|l c(Lr(cy) < 1} < p(B) < P(B,U). (3.11)
By exhibiting a specific example we can determine an upper bound for P(5,U).

3.13 Lemma. Let U C C be open and B € [0,1]. Then p(B,U) <141/ €]2,0].
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Proof. Set K := (1+ £)/(1 — ) and define p1, p2 : R>g — Rxg by p1(t) == tY/K and po(t) := t¥.
Then the corresponding radial stretchings f(z) = p1(|z])z/|z| = 2z|z|VE=L, fa(2) = pa(|2])2/|2| =
z|z|%=1 are continuous in C and inverses of each other. By Example 2.49, we have

e zg—1

0:-f1() = B el w7 0api(2) = S E— el

so that 8, f1,0:f € L (C) whenever p(1/K —1) > —2 and 0, f1,0:f ¢ I/Vllo’cp(C) when p(1/K—1) <

loc

—2. This means that

2K 1
fie WiP(C)if p < =1+4+=
oc K _ 1 B
9K 1 (3.12)
17p 3 > — —
flgéWloc(C)lfp_K_l 1+ﬂ.
Moreover, we note that f; is K-quasiconformal, since
z % -1
0:1 ()| = |2 X206, 1(2)| = Blo-
10=f(2)] e f(2)| = Blo.f(2)]

for a.e. z € C. By picking w € U and by considering the restriction of z — f1(z — w) to U, we
conclude from (3.12) that P(8,U) <1+ 1/5. O

~—

We make a particular note that Lemma 3.13 and (3.11) implies that

18| (r1/8(cy) =

™| =

for 8 €]0,1], giving another proof of the upper bound || %||z(rr(c)) > p* — 1 for p €]1,00[. In fact,
we now see that Iwaniec’s Conjecture would imply that

1
sup{p €|1,00[ | Bl| Bl z(r(c)) <1} =p(B) = P(B,U) =1+ 3
for any open U C C and 3 € [0, 1[. Remarkably, it has actually been proven that P(8,U) = 1+1/5.
Goldstein announced a proof of this result in [Go| in 1980. It were precisely these considerations
that led Iwaniec to his conjecture in 1982 in the first place. As a matter of fact, Iwaniec showed
that the equality P(5,U) =1+ 1/ is an immediate consequence of the conjecture

B
i 18| (e (c))

p—o0 p

=1, (3.13)

which is an immediate consequence of Iwaniec’s Conjecture. Indeed, using existence results of qua-
siconformal mappings and area distortion results for such mappings he showed in [Iw, Theorem 5]
that

l 1—a
P(B,U) > (1+5>2 ,
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where p
a := liminf 7H HL(LP(C)) )
p—00 P
Results of this kind were shown by Gehring, and Reich in [GR] from 1966, following the work of
Bojarski. They conjectured bounds of the distortion of area under quasiconformal mappings which
imply the equality P(8,U) =14 1/3. These conjectures were later shown to be true by Astala in
[As] in 1994.
In the following, we write |E| for the Lebesgue measure of a measurable set E C C.

3.14 Theorem (Astala, 1994). Let K € [1,00] and let D C C denote the open unit disk. Then
there is a constant ¢(K) € Ry, depending only on K, so that for all K-quasiconformal mappings
f: D — D that satisfy f(0) =0 we have

1
[f(E)| < «(K)|E|%,
for all Borel measurable E C D.

3.15 Corollary. Let U C C be open and let § € [0,1[. Then P(B,U)=1+1/8.

We conclude this section by sketching the proof of this corollary. We note, by Lemma 3.13,
that it suffices to show that

1 2K
where K := (1+ f)/(1 — ) € [1,00]. Picking neighborhoods of disks in U, using the Riemann
Mapping Theorem on this neighborhood and the image of this neighborhood under a map, we
can compose this map with biholomorphisms to see that it suffices to consider integrability of K-
quasiconformal mappings of the open unit disk D to itself that fix the origin. Let f be such a
mapping. Then observe that, as in Remark 3.4, we have, setting £y = {z € D | J¢(2) > t} for
te R+, that

B < / J5(2)dz < |f(B)| < ||,
Ey

where ¢ € R4 is as in the theorem. This implies that
o Lo
By < <¥> S (3.14)

We remark that this actually establishes that J¢ lies in the weak LE/(E=1) gpace of unit disk.
Since f is continuous, it certainly lies in LP(D) for any p € [1, 00]. We conclude from Proposition
3.6 that
HDf(z)H%(RQ) < KJy(z) forae. z€D.

Since

IDf(2)llcme) = 10:£(2)| + 10=f (2)]
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for a.e. z € D, it now suffices to show that Jy € LP(D) for any p € [2, K/(K — 1)[. For such a p we
find, by (3.14), that

[repaz=p [ otima
D R,

1 K o0 K
< p|D|/ P~ dt + cKlp/ P17 R=T dt < oo,
0 1

where we note that the second integral is finite since p — K/(K — 1) — 1 < —1. This proves the
desired result.
Historical Notes Regarding Iwaniec’s Conjecture

First we wish to briefly discuss the conjecture (3.13). The best known result in this direction so
far is the estimate

B
limsup”HEZ(ij(c)) <V2. (3.15)

p—o0

Using martingale techniques, based on Burkholder’s work in 1984 in obtaining optimal constants
for estimates for certain martingale transforms (which, remarkably, is the constant p* —1, see [Bu)),
it was shown by Dragicevi¢ and Volberg in [DV] from 2005 that we have the inequality

1 27 7%
18|10 (c)) < \/i(p— 1) (277/ |cost|pdt> for p € [2, 00,
0

which implies (3.15). In 2008 it was shown by Banuelos and Janakiraman in [BJ] that we have the
(asymptotically better) estimate

12 cLr(cy) < V2p(p—1) for p e [2,00].

Noting that this gives the estimate || 5| (12(c)) < 2 while we know that ||| 12(c)) = 1, they
showed, using the Riesz-Thorin Interpolation Theorem, that this gives the estimate

H%HE(LP(C)) < 1.575(p* — 1) for p €]1,00].

So much for our historical discussion concerning partial results regarding Iwaniec’s conjectures.
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4 The Burkholder Functional

4.1 Motivation: Integral Estimates of the Jacobian Determinant

In the previous section we have seen how area distortion estimates lead to the local integrabil-
ity of the Jacobian determinant of quasiconformal mappings. This led to the fact that any K-
quasiconformal mapping in U C C lies in VVllof (U) for 2 < p < 2K/(K — 1), which, in turn, served
as a motivation for Iwaniec’s Conjecture. We will now discuss general estimates involving the Ja-
cobian determinant of a map f € W'P(C) for p €]1,00[ in an attempt to prove the validity of
Iwaniec’s Conjecture.

We will denote the set of 2 x 2 matrices with real coefficients by R?*2. Moreover, for any
A € R?*? we will denote its operator norm by

|A| := [|Al|z(m2) = sup |Ah],
Ih|=1

where we identify a matrix with its corresponding linear operator. Then, for any f € VV;;(C), we
have

IDf(2)| = 0-f (2)| + |02f(2)],  Jp(z) =10-f(2)] — |0£(2)]> = [Df(2)[(10:f(2)| — |0z (2)])

for a.e. z € C.
Let us take a step back for the moment and attempt to establish the upper bound

1D crcy <p*—1

using the same strategy we used to prove the upper bound for the Hilbert transform, mutatis mu-
tandis. We started the proof of the upper bound for the Hilbert transform by using Pichorides’ in-
equality from Proposition 2.27. This was done because the left-hand side in (2.43) is a subharmonic
function. In a sense, subharmonicity is a form of convexity. Indeed, it is a direct generalization
of the concept of convexity in one dimension. Due to the work of Burkholder in [Bu2], we have a
similar inequality in our current situation.

4.1 Theorem. Let p €]1,], a,b € R, and suppose L € [1, 00| satisfies L > p* — 1. Then

L \"!
— Lla| — P=L < PlalP — |bP. 41
p<1+L) (Lla| — 1Bl)(lal + [b))*~* < LPlal? ~ [b (1)

We will see that the left-hand side of (4.1) has (conjecturally nice) convexity properties, which
we will attempt to utilize.

Proof. We will show that

L \P!
_ Lla| — b)) < LPlalP — P if =1. 4.2
p<1+L> (Lla| — [b]) < LP[al? — |b]P if |a| + (D] (4.2)

This is sufficient, as the general case follows by passing to a/(|a| + |b]), b/(|a| + |b|) for arbitrary
a,b € R that are not both 0.
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We define

L

p—1
— L —1).
1—|—L> (Lx +2—1)

¢:10,1] = R, o(x) ::Lp:np—(l—x)p—p<

If we can now show that ¢(x) > 0 for all x € [0, 1], then (4.2) follows by noting that ¢(|a|) > 0 for
a,b € R, with |a] + [b] = 1.
For the case p = 2, we have
L-1

2

Now assume p # 2. Taking derivatives, we find

L1
(14 L)p=2’
¢"(x) = p(p — 1)(LPa?™? — (1 —a)P7?)

¢'(z) = pLPaP~t +p(1 — )P~ —p

for z €]0,1]. Then we note that ¢’ has a unique zero at z = (LP/°=2) 4 1)~1 €]0,1[. But, by
Rolle’s Theorem, this means that ¢’ can have at most two zeroes in ]0, 1[. Since these cannot both
be local minima of ¢, we conclude that ¢ can have at most one local minimum in ]0, 1[.

Since 1 —1/(1+ L) =L/(1+ L), we find that

1 / 1 _ U 1 _ LpiQ 2
¢<1+L>:¢ <1+L>_0’ ¢ <1+L>_p(p_1)(1—|—L)P—2(L -1)>0,

where the last inequality follows from the fact that p # 2 implies that L > 1. We conclude that
1/(1 + L) is the point at which ¢ attains its unique local minimum in ]0, 1], where ¢ attains the
value 0. If we can now show that ¢ is non-negative at the endpoints of [0, 1], then we can conclude
that ¢(x) > 0 for all x € [0, 1], as desired.

Note that, since t — ¢t/(t +1) =1 —1/(t + 1) is an increasing function, we have

L p—1 * p—1
w=r(rg) e (5)

Thus, we have to show that

*_ 1 p—1
p(pw ) >1, P < (4.3)

We consider the two cases p €]1,2[ and p €]2, co].
First assume that p €]1,2[. Then p* = p/(p — 1). Hence,

*_ ] p—1
pC}*> =p" P> 1,
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which establishes the first inequality in (4.3). For the second inequality, we recall Young’s inequality

r4 57
rs < —+ — forr,s € Rxo, ¢ €]1,00][. (4.4)
q q -

Applying this to 7 = p* 7, s = (p = 1)P~!, ¢ =1/(2 - p), ¢ = q¢/(¢ — 1) = 1/(p — 1), we obtain

(p*]))pfl =p" -1 <2-ppt-Dp-1) =1,

as desired.
Now assume that p €]2, 0o[. Then the second inequality in (4.3) is shown by noting that

For the first inequality we use (4.4) with r = p®=2/=1) s =1 ¢= (p—1)/(p—2), ¢ = q/(¢—1) =
p —1 to find

Pt < i_f +——=p-1
so that
p (p* 1>p_1 e, 1
p* pr2 T
The assertion follows. O

In the case of Pichorides’ result, we proceeded to show that the integral over the left-hand side
in (2.43) was non-negative for a = v and b = J€u for a real-valued v € C°(R). Fixing p €]1, 0]
and assuming this strategy, we recall by Proposition 2.50 that it is sufficient to consider the case
where a = 9,¢ and b = dz¢ for ¢ € C°(C) (or in any space between C2°(C) and WP(C)) in
(4.1). In fact, we wish to show that

/C((p* = 1)|0:6(2)| = 0z6(2))(10:6(2)| + |0z0())P " dz > 0. (4.5)
Then, indeed, it follows from Theorem 4.1 with L = p* — 1 that

(" = DPO:0(2); — 10=0(2)I, = 0,

and thus [|B|| z(rr(c)) < p*—1, verifying Iwaniec’s Conjecture. In an attempt to verify the inequality

(4.5), we note that 1t can be rewritten as
/ DG ()P d — '1 - ‘ / Do ()P ds.

We can then formulate a stronger conjecture than Iwaniec’s Conjecture.

/|D¢ JP2Ty(z)dz < 2
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4.2 Conjecture. Let p €|1,00[. Then

/C (0" — 1)]9=0] — [8:6(2))(18:6(2)] + 10=6(=) ) dz > 0,

or equivalently,
2
Liper2aeas<|i- 2| [pocpas,
C piJc
for all o € CX(C).

The case p = 2 is easily verifiable. Pick ¢ € C2°(C). Then, by partially integrating twice, we
obtain

/ 0.6(2)[2 dz = / 0.6()0-5(2) dz = / B:6(2)0.3(2) dz = / 0=6(2) 2 dz,
C C C C
or equivalently,

/quﬁ(z) dz = 0.

By Proposition 2.50, this gives us another proof of the fact that ||%#||,(2(c)) = 1. We will prove
the following partial result:

4.3 Proposition. Let p €]1,00[. Then there exists an L € [1,00[ with L > p* — 1 so that

JE10= 1= 0. 0-£ )| + o ) d > 0
or equivalently,
Lipr@r2aa: < 705 [ e
for all f € WLP(C). More precisely, this result holds for L = ||<%’HIZ(LP(C)).

We note that Conjecture 4.2 is the validity of the proposition for L = p* — 1. For the proof we
will use the following lemma:

4.4 Lemma. Let p €]1,00[, a,b € R, and suppose L € [1,00| satisfies L > p* — 1. Then
(Llal = [p))(la] + [b])"~ = LP|al? — [b[". (4.6)

Proof. The inequality is clear when b = 0. So suppose a,b € R with b # 0.
We define ¢ : R — R by ¢(z) := (Lz — 1)(1 + )P~ — (La? — 1). Then we claim that ¢(z) > 0
whenever z > 0. It follows from this claim that

(Llal = [pl)(al + [p)P~" = (LP|al” — [bI") = [b]P¢ ('@D >0,

as desired.

67



For the claim, we note that for z > 0 we have

¢'(2) = (pLe + (L — (p— 1)))(1 +2)P~% — pLa?™

-~ ((pL +(L—-(- 1))i> (i + 1)p_2 PL) (4.7)
—a(t).

where 1 :] — 1,00[— R is defined by
Y(z) = (pL+ (L — (p— 1)) (1 +2)"~% — pL.

In view of (4.7), to prove the claim it suffices to show that ¢ (x) > 0 for x > 0, since this would
imply that ¢ is increasing on R and thus

¢(z) = ¢(0) =0

whenever > 0.
Since L > p* —1 =max(p—1,1/(p—1)), we find that (p—1)L > 1 and L — (p—1) > 0. Hence,

V(@)= - DA+a)P((p- DL+ (L—(p—1))a—1) 20
whenever x > 0. Thus, 1(z) > 1(0) = 0. The assertion follows. O

Proof of Proposition 4.3. Set L := ||93||12( . Then L > (p*—1)P > p*—1 > 1 by Proposition

Lr(C))
2.45. Thus, since

L2 0z flp > (|B(0=N)II5 = 10=f 11D,
it follows from Lemma 4.4 that

/C(L\azfl —10:F (0= f(2)] + 10=F ()P~ dz > LPO=f (15 — 10 £1 > 0,

for all f € WHP(C). The assertion follows. O
We will use these results as a motivation to study the functional
E,, :R¥2 5 R, E,,(A):=q|A]P — |AP~?det A,
for p €]1,00[ and v > |1 — 2/p|. In particular, we define the following:
4.5 Definition. Let p €]1,00[. Then we define the Burkholder functional as the functional

2
B,:R¥*? 5 R, B,(A):= '1 - p’ |AP — |A[P~2 det A.

o

While it is known that such functionals are rank-one convex, it is an open problem wether they are
quasiconvex. We will discuss these notions in the upcoming subsection.
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4.2 Rank-one Convex and Quasiconvex functions

We provide a short introduction into the theory of calculus of variations as a motivation for the
definitions of rank-one convex and quasiconvex functions. Such notions stem from the work of
Morrey in 1952, see [Mo], where he discussed necessary conditions for lower semicontinuity of
certain functionals.

Throughout the following example we will consider real-valued functions only. We will em-
phasize this fact by writing ; R for our function spaces. Suppose {2 C R" is a non-empty open and
bounded set so that  is a C* manifold with boundary. Given a function g € C*(9%2; R), we want
to find a solution u € C*°(Q; R) to the problem

{ Au=0 (4.8)

ulon = 9,

where A := — Z?:l 0; is the Laplace operator. To facilitate this, we consider a different problem
where, for fixed g € W2(Q; R), we wish to find u € W12(Q; R) so that Au = 0 in the distributional
sense, and u — g can be approximated in W12(Q; R) by a sequence in C2°(; R), i.e., u must lie in
the convex set

Cy =g+ Wy (Q;R) C WH(Q;R),

where VVO1 2(Q;R) is the closure of C°(Q;R) in W12(€; R). Note that elliptic regularity implies
that such a solution u must be a smooth function in {2, see Theorem B.37. We refer to the proof of
[Ni, Corollary 2.31] to see how one can solve (4.8) using the solution to the distributional problem
and for a more elaborate discussion concerning these kind of boundary problems. While we note
that considering the case p = 2 is sufficient to solve our particular problem, our arguments work

just as well for any other p €]1, co.
We now define F': R® — R by F(z) := |z|* and consider the map

£ WI2QR) SR, £(u) = / F(Du(x)) dz,
Q

where Du = (O1u,...,0,u) is the gradient of u € W%2(Q;R). Since F is non-negative, the
functional £ is bounded from below. Our theory is motivated by the following result:

4.6 Theorem (Dirichlet’s Principle). Let  C R™ be open and bounded and let g € W12(; R).
Then u € Cy satisfies Au = 0 in the distributional sense, if and only if

E(u) = inf E(v). (4.9)

vely
The equation Au = 0 is called the Euler-Lagrange equation of £.
Proof. Suppose u € Cy satisfies Au =0 in D'(Q2). Let v € Cy. Thenu—v = (u—g)— (v —g) €
W(}’Q(Q; R) can be approximated in W12(€; R) by a sequence (¢;);en in C2°(€%; R). Hence,

/QDu(x) - (Du(z) — Dv(z))dx = lim [ Du(x)- (D¢;(x))dx = jE\IEO(Au, ¢j) = 0. (4.10)

J—00 [¢)
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Using the inequality
2|Du(x) - Du()| < 2|Du(x)||Dv(w)| < |Du()* + |Du()[?,

we conclude from (4.10) that
28(u) = 2/ |Du(z)|* dz = /2Du($) -Du(z)dzr < E(u) + E(v).
Q Q

Hence, £(u) < &(v), proving that u satisfies (4.9).
For the converse, let ¢ € C°(2; R). Then u+t¢ € C, for all t € R. Setting

f:R—=R, f(t):=E@u+td),
the assumption on w implies that f attains a minimum at ¢ = 0. Hence,
0= £/(0) = (Du, Dg) = (Au, 6).
We conclude that Au = 0 in D/(Q), as desired. O

We have changed our problem of solving (4.8) to the problem of minimizing the functional £ in
Cy.
Pick a sequence (u;);jen in Cy so that
jli)rgog(uj) = Uiencﬁgf(v) =K. (4.11)

Recall that the Poincaré inequality states that, since 2 is bounded, there is a constant ¢ € Ry so
that

”UHIZ/VLQ(Q) < C/Q\Dv(x)lzdx = c&(v)

for allv € WOI’2(Q; R). By (4.11), this implies that the sequence (u;)jen is bounded in WH2(Q; R.).
Thus, since W12(Q; R) is a reflexive Banach space, it follows from the Banach-Alaoglu Theorem
that there is a weakly convergent subsequence (u;, )ren of (u;) jen With limit uw € W2(; R). Since
C, is a closed convex subset of W1H2(Q; R), it follows that C, is also weakly closed in W12(; R).
Thus, we must have u € Cj.
It now remains to show that £(u) = k. Since k < £(u), we only need the converse inequality.
A sufficient condition on £ is that
E(v) < liminf &(vj) (4.12)

J—00

for every sequence (v;);jen in WH2(Q; R) that weakly converges to v € W12(; R), since then

E(u) < liminf £(u;, ) = k.

k—o0

The property (4.12) is usually referred to as weak lower semicontinuity of &.
To see that &£ is weakly lower semicontinuous, we can appeal to a general result in Banach
spaces.
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4.7 Lemma. Let X be a topological vector space with seminorm || - || and let X* denote its dual
space. If a sequence (xj)jen in X converges weakly to x € X, then

Jol® < liminf [l 2
]*)OO

Proof. By Hahn-Banach we can pick z* € X* so that (z*,z) = ||z| and [(z*,y)| < ||y| for all
y € X. Then the inequality
[, ) |* < [l
for all j € N implies that
|2

lz]* = lim {2, 2;)|* < liminf [,
j—oo j—oo

The assertion follows. O

Since u — (€ (u))% defines a seminorm on W12(Q; R), we may immediately deduce from the

lemma that
E(v) < liminf &(vj)

J]—00

for any sequence (v;)jen in W12(;R) that converges weakly to v € W12(;R), proving the
desired result.

The general cases of the situation described in our example are well understood in the sense
that we have the following result:

4.8 Theorem. Let Q C R™ be open and bounded. Let F : R® — R and let £ : WH2(Q;R) — R
be defined by

E(u) == /F(Du(x))dx
Q
Then & is weakly lower semicontinuous if and only if F' is convex.

See [Ev2, Theorem 2.2.1] for a proof. While this theorem deals with real-valued functions, one
also wishes to consider the vector-valued case, i.e., functions taking values in R".
We denote by R™*™ the set of m x n matrices with real coefficients. We equip it with the

operator norm
|A| :== sup |Ah].
|hl=1

For an open and bounded 2 C R we denote by VV&);(Q, R™) the space of those u = (uy,...,un)
with u; € VV;;(Q,R) for all j € {1,...,m}. For any u € VVlt)cl(Q,Rm) we may then define the
total derivative Du by the (generalized) Jacobian matrix

Owui(z) -+ Opur(z)
Du(z) = : : e R
Oum(z) -+ Opum(x)

for a.e. © € Q.
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4.9 Definition. Let F': R™*"™ — R be continuous. We say that F' is quasiconver at A € R™*™ if
/F(A + Dé(x)) da > /F(A) dz — [Q|F(A)
Q Q

for all open and bounded Q@ C R"™ and all ¢ € C°(Q; R™). We say that F is quasiconvezx if F' is
quasiconvex at A for all A € R™*™, &

This definition is motivated through Morrey’s search for necessary conditions for lower semiconti-
nuity of certain functionals. Instead of perturbations by compactly supported smooth functions,
he considered perturbations by Lipschitz continuous functions with vanishing boundary condi-
tions. These notions of quasiconvexity are the same as can be shown by a density argument, see
Proposition 4.12 below. We remark that any Lipschitz continuous function is differentiable almost
everywhere by Rademacher’s Theorem. Furthermore, Morrey considered lower semicontinuity with
respect to convergence of functions in the space of Lipschitz continuous functions rather than weak
lower semicontinuity in our sense:

4.10 Definition. Let @ C R"™ be non-empty open and bounded and let p €]1,00[. We say that
E:WLP(Q;R™) — R is weakly lower semicontinuous if

E(v) < liminf &(vj)

J—00
for every weakly convergent sequence (v;);jen in WP(Q; R™) with limit v € WIP(Q; R™). O

We note that Conjecture 4.2 is the statement that the Burkholder functional is quasiconvex at 0.
While we are now considering a more modern setting, the ideas used remain the same.

4.11 Theorem. Let Q@ C R™ be a non-empty open and bounded set and let p €]1,00[. Let F :
R™ " — R be continuous and let £ : WIP(Q; R™) — R be defined by

E(u) == /QF(Du(x))dx

If £ is weakly lower semicontinuous, then F is quasiconver.
Conversely, if F' is quasiconvezr and there is some ¢ € Ry so that

0 < F(A) <c(1+|AlP)
for all A € R™* "™ then & is weakly lower semicontinuous.

A proof can be found in [Ev2, Theorem 3.2.1].

Now it may seem strange that the notion of weak lower semicontinuity considers only a single
open bounded set 2 C R"™, while in the definition of quasiconvexity we require an estimate for all
open and bounded 2 C R". This is justified by the equivalence of (i) and (iv) in the following
result:

4.12 Proposition. Let F': R™*"™ — R be continuous and let A € R™*™. Then the following are
equivalent:
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(i) F is quasiconvex at A;

(i1) for all p € C(R™;R™) we have

| (Pla+ Dota) - F) da = 0

(iii) for all bounded open sets @ C R™ and all Lipschitz continuous functions f : Q — R™ satisfying
floa =0, we have

| FasDf@)do = @IF ()
Q
(iv) there is a non-empty bounded open set Q@ C R so that for all ¢ € C°(Q; R™) we have

| Pl Do) az > @ir(a);

(v) for eachp € C*°(R™; R™) which is 1-periodic in the sense that (x+k) = ¥(x) for all k € Z™
and x € R™, we have
F(A+ Dy(x))dz > F(A).
[0,1]™
Proof. For (i)=(ii), we pick ¢ € C°(R™;R™). Then there is some open ball & C R" so that
supp ¢ C Q. Hence, we may view ¢ as an element of C2°(€2; R™) and

| (Pl Dota)) = FA) de = [ (PLA+ Dota)) - F(A) da

Q
~ [ F(a+ Dola) da — 4P (4) 2 0.

The assertion (ii)=-(i) follows by noting that any ¢ € C°(Q;R™) for some open and bounded
2 C R" extends by 0 to an element of C2°(R"™; R™).

For (i)=-(iii), we pick any open and bounded 2 C R™ and a Lipschitz continuous function
[+ Q — R™ satisfying flopo = 0. Let (¢c)zcr, denote the standard mollifier, see Definition
A.10. We may extend f continuously to R™ by declaring that it vanishes outside of 2. Performing
componentwise convolution, we may consider f x ¢. € C°(R™;R™) for ¢ € R;. By Lemma A.12
we have

supp(f * ¢¢) € Q + Be(0),

where B.(z) denotes the closed ball around z € R™ of radius € € Ry. Since this sum of sets is
compact and shrinks as € does, we can pick an open and bounded €’ C R" that contains Q and so
that supp(f * ¢.) C Q' for all ¢ € Ry small enough. For such ¢ € Ry we may view f * ¢. as an
element of C2°(£Y; R™), which we denote by f.. This implies that

/,F(A—i—Dfe(x))dx > || F(A). (4.13)

73



Since 0;(fi * ¢z) = 0jfr * ¢ for all j € {1,...,n} and k € {1,...,m}, where f = (f1,..., fm), we
claim that D(f.)(z) — Df(z) in R™*™ as ¢ | 0 for a.e. x € . Here we note that f is almost
everywhere differentiable in £’ by Rademacher’s Theorem, and the derivatives of f are bounded by
its Lipschitz constant.

For the claim, we write g := 9, fx, € L°(R") C L}, .(R"). Then, for some ¢ € R,

gn /Bs(z)qﬁ <m = y) (9(y) — g(=)) dy

c
~ B-(y)| /B.(v)
for a.e. x € R™ by Lebesgue’s Differentiation Theorem. This proves the claim.

By continuity of F' we may apply Lebesgue’s Dominated Convergence Theorem in (4.13) to
conclude that

(g % de)(x) — g(2)| =

lg(y) —g(z)|dy — 0 as ,0

/QF(A + Df(z))dz = /Q/F(A + Df(z))dz — |\QF(A)
> |YF(A) - [Q\QF(A) = [Q|F(A),

as desired. For (iii)=-(i), we note that for all open and bounded 2 C R", any ¢ € C°(Q;R™) is
Lipschitz continuous with vanishing boundary conditions. The result follows.

The implication (i)=-(iv) is immediate. For the converse, we assume (iv) and let Q' C R" be
any non-empty open bounded set. Now consider the collection

Vi={a+t? | aeR" t€R:}.

As this is a Vitali covering of 2, we may appeal to Vitali’s Covering Theorem for the Lebesgue
measure to obtain an at most countable disjoint family {a; 4+ ¢;€'}; C V of subsets of {2 so that

‘Q\Uaj —l—th" = 0.
J

This means that

Ua; + 4,2 ’ €. (4.14)

Ztnym = Z |aj + ;9| =
J

Now pick ¢ € C°(€V; Rm) and define w € CX(;R™) by

r—aj;
tjqﬁ( J) if z € aj+ ;0
() == ti

0 otherwise.

Then, by (4.14),
QF(A /FA+D1/J ) d :Z/ F<A+D¢<x_‘”>> dz
Q j aj+th’ t]

1]

t2 | | F(A+ Dg(x))d IQ’I/ (A+ Dé()) de
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so that
| F(a+ Do) do = 2F (),

as desired.
For (v)=(iv) we note that any ¢ € C2°(]0, 1["; R"™) can be extended 1-periodically to a smooth
map 1 € C*°(R™; R™). Then

| P+ Do) o= [ F(A+ Di)de = F(A) = [0.10|F(A),
10,1 [0,1]"
proving (iv) with ©Q =]0, 1[™.
Finally, for (i)=(v) we refer to [Da, Proposition 5.13]. This concludes the proof.
O

4.13 Remark. We note that for an open and bounded set Q@ C R™ with C'-boundary, the space
of Lipschitz continuous functions in Q coincides with the space W1*°(Q), see [Ev, 5.8, Theorem
5]. Thus, in view of characterization (iii) in the proposition, it makes sense that the notion of
quasiconvexity we are considering here is sometimes called W1*°-quasiconvexity as apposed to the
general notion of W1P-quasiconvexity, introduced in [BM], that deals with perturbations in the
space Wy (Q; R™) for p € [1,00].

We have included the characterization (v) in the proposition since this was famously used by Sversk
in [Sv] to construct a function F : R**2 — R that is rank-one convex, see Definition 4.17 below,

while it is not quasiconvex. For a further discussion of this example, we refer to Theorem 4.27
below. o

Having given our definition of quasiconvexity, it’s reasonable to check that quasiconvexity is
indeed a consequence of convexity.

4.14 Proposition. If F' : R™*™ — R is continuous and convex, then F is quasiconver. Con-
versely, if n =1 orm =1 and F is quasiconvex, then F is convex.

Proof. Let Q C R" be a non-empty open and bounded set, let A € R™*", and let ¢ € C2°(2; R™).
Considering componentwise integration, we note that

/Q Dé(x)dz = 0

by the Fundamental Theorem of Calculus. Then it follows from Jensen’s inequality that

1 1
L /F(A + Dé(x))de > F ( /(A + Dé(x)) dx) — F(A).
12 Ja €] Jo
This proves the first assertion.
Now suppose n = 1 and suppose F is quasiconvex. We identify R™™ with R™. Fix a,b € R™
and let ¢ €]0, 1[. We define ¢ := ta + (1 — t)b and define
fR—=R" f(z):=axp(r) + bxjea((@),
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where ), ;| denotes the indicator function of the interval |r, s[, 7,s € R, r < s. Then

¢:[0,1] - R™, :—yc—l—/f

defines a Lipschitz continuous map with derivative ¢'(x) = —c + f(z) for a.e. z € [0,1] and

t 1
1)——c+/adm+/ bdx = —c+c=0=¢(0).
0 t

Thus, ¢ is a Lipschitz continuous map with vanishing boundary conditions. Hence, quasiconvexity
of F' (in the sense of Morrey) implies that

Flta+(1— )b / Fle+¢(z)) de = / Fla dz+/ F(b)da = tF(a) + (1 — t)F(b).
This proves that F' is convex, as desired. The case m = 1 is analogous. The assertion follows. [

4.15 Remark. Since we are interested in the quasiconvexity of the Burkhulder functional, it would
make sense to check if the Burkholder functional is convex. As a simple example shows, this is
unfortunately not the case. Let p €]1, 00 and denote by I € R?*? the identity matrix. Then we
note that

2 2 2
By(lH)=1—--]-1=1-——-1=——<0.
n=[1-2 2.--2
Hence,
1 1 1 1 1
By 50 + I 2po(I) > §Bp(1) = §Bp(0) + §Bp(1)
Thus, B, is indeed not convex. O

Now, rather than considering lower semicontinuity, let us consider a more direct approach to
minimizing a functional

E(u) = /QF(D’LL(SC))dSU, u € WHP(Q; R™)

for p €]1,00][, a given open and bounded 2 C R", and a given F : R™*" — R. For a given
g € WHP(Q; R™) we again consider the functions u € W1P(Q; R™) with the boundary condition
u—g e WyP(Q;R™), where WyP(Q; R™) denotes the closure of C°(Q; R™) in WhP(Q; R™).
Suppose that v € WHP(Q; R™) minimizes £ in this class of functions satisfying the boundary
condition. Now pick any Lipschitz continuous function ¢ with compact support in €2 and define

FIROR, f(t):=Ew+th).

Since v+t satisfies the desired boundary conditions for all ¢ € R, the function f must be minimized
at 0. Assuming that F' is sufficiently regular, this means that the second derivative of f at 0 must

be non-negative. Denoting by D2F(A) : R™™ x R™™ — R the Hessian of F at A € R™™ we
have

0< f(0) / D2F(Du())(Dy(x), Dib(x)) dz (4.15)
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Now let p : R — R be the 2-periodic sawtooth function, i.e., the 2-periodic extension of the function
that is equal to ¢ on [0,1] and equal to 2 — ¢ on [0,1]. Then p is a Lipschitz continuous function
that satisfies p/(t)? = 1 for a.e. t € R. Pick any pair of vectors n € R™, £ € R", and let ¢ € R.
Letting ¢ € C2°(Q; R) be arbitrary, we define

et QS R™, u(a) = ch(a)p <“> n

3

Then 1. is a Lipschitz continuous function of compact support in Q. Picking i € {1,...,n},
k€ {1,...,m} we note that if 1/* denotes the k-th component of 1., then

-z -z
8#/15(:1:) = c0ip(x)p (5 M + o()p —~ &inlk-
This means that for any pair 4,j € {1,...,n} and any pair k,l € {1,...,m} we have

2 2
00,0 a) = 0005000 (£ ) man-+ o0 () emesn

+e <¢(:v)8i¢(x)P <U> I3 <§€$> mEim + ¢(x)0;é(x)p (§€x> I (5 . x> Emkm)

£ e
for a.e. z € Q. Since p and p’ are bounded, while p'(t)2 = 1 for a.e. t € R, we conclude that
Ot (1) (x) — d(a)*Cm&ym as € L0

for a.e. z € Q.
Since the Hessian D?F(Duv(x)), x € €, is bilinear, replacing 1 by 9. in (4.15) and letting € | 0
implies that

/Q D2F(Du(x))(n® & 1 ® £)g(x)* dz > 0

for all ¢ € C°(Q;R), where n ® £ € R™*" denotes the matrix with entry nié; on the (k,)-th
position. Since ¢ € C2°(Q2; R) is arbitrary, we conclude that

D?F(Dv(z))(n®&n®E&) >0

for a.e. x € Q. Since n ® £ is a typical rank-one matrix, it is therefore not unreasonable to assume
that F' satisfies the so-called Legendre-Hadamard condition

D?*F(A)(X,X) >0 forall A, X € R™" with rank X = 1. (4.16)
We recall the following basic result on convex functions on the real line:

4.16 Lemma. Let U C R be an open interval and suppose f : U — R is twice differentiable. If
1"(t) >0 for allt € U, then f is convex in U.
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Proof. First note that the condition f”(¢) > 0 for all ¢ € U implies that f’ is increasing in U. Now
let z,y € U, z <y, and t € [0,1]. We set p =tz + (1 —t)y. Then we have

H(@)+ (=01 () — f(p) = tf /U<wu+u—oﬂ>+u—w/7%wb—ﬂm

:—t/f )ds + ( 1—t/f )ds

> —t(p—x)f'(p) + (1 —t)(y — p)f'(p)
=t(1—t)(z —y)f'(p) +t(1 —t)(y — ) f'(p) = 0.

The assertion follows. O

The condition (4.16) means that the function ¢ — F'(A + tX) is convex in R for every A, X €
R™*™ with X a rank-one matrix. Heuristically, this means that this so called rank-one convexity
is a natural condition to impose on F' when minimizing £. Note also that in the case m = 1 our
considerations reduce to the convexity condition from Theorem 4.8.

4.17 Definition. Let F : R™*" — R. We say that F' is rank-one convexr at A € R™*" if
t — F(A+tX) is a convex function in R for every matrix X € R™*" of rank one. We call F
rank-one convez if it is rank-one convex at A for all A € R™*", &

Generally, checking if a function is rank-one convex is easier than checking if a function is quasi-
convex, since pointwise estimates are simpler to establish than integral estimates.

Since we presented quasiconvexity as a characterization of weak lower semicontinuity of the
associated integral functional while we presented rank-one convexity as a necessary condition for
having minimizers of the associated integral functional, the following result is not surprising;:

4.18 Proposition. Let F : R™*" — R be quasiconver at A € R™*™. Then F is rank-one convex
at A.

For a proof we refer to [Mo, Theorem 4.1& 4.2]. Thus, if the Burkholder functional satisfies
the conjectured quasiconvexity property, then it must certainly be rank-one convex. We will now
prove that this is indeed the case.

4.19 Theorem (Burkholder). Let p €]1,00[, let v € R with v > |1 — 2/p|, and let A, X € R?*?
with det X < 0. Then the function f, : R — R,

fy(t) i= By (A+tX) = y|A+tX[P — |A+ tX[P~2 det(A + tX)

is convex. In particular, the functionals E, -, including the Burkholder functional B,, are rank-one
convet.

Before we turn to the proof of this result, we mention a generalization that was proven by
Iwaniec in [Iw2], which emphasizes the critical nature of the Burkholder functional.

4.20 Theorem (Iwaniec, 2002). Letp €]1,00[ and let v € R. Then the functionals E;,'f%n : R —
R defined by

+ - -n
EE. \(A) = 7| AP + | AP det(A)

are rank-one convex for vy > |1 — n/p| and not rank-one convex for v < |1 —n/p|.
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Now, while the task of proving Theorem 4.19 seems daunting, the strategy for the proof we
give is straightforward. First we reduce to the cases where A is given by a simple matrix. Then we
conclude the proof by applying the second derivative test for convexity.

4.21 Lemma. Let p €]1,00[ and let A, X € R?**2. Then the map t — |A + tX|P is convez in R.

Proof. First we will show that the map r : [0,00[— R, r(s) := s” is convex and increasing in
[0,00[. We have r"(s) = p(p — 1)sP=2 > 0 for all s €]0, 0], proving convexity of r in ]0, 00| by
Lemma 4.16. If x =0, y > 0, t € [0, 1], we have

(tr + (1 =t)y)P = (1 = t)Py? < (1 —t)y? = taP + (1 = t)y”,
establishing convexity of r at 0 so that r is indeed convex. To see that it’s increasing we note that

'(s) = psP~ > 0 for all s € [0, .
Next, for all z,y € R, t € [0,1] we have

A+ (tze+ (1 —-t)y)X|=[tA+taX + (1 —-t)A+ (1 —t)yX| <t|A+2X|+ (1 —t)|A + yX|
so that

A+ (tr + (1 =)y X)[P = r(|JA+ (tz + (1 - )yX)|) < r@lA+2X]|+ (1 - 1)[A+yX])
<tr(A+zX|)+ (1 —t)r(|A+yX|) =t|A+zX|P+ (1 —t)|A +yXP.

The assertion follows. OJ

4.22 Lemma. Let A € R*? with |A| = 1, |det A| # 1. Then there exist rotation matrices

01,05 € R**2 50 that
A0
oion= (3 )

for some A € R with |A| < 1.

Proof. Using the singular value decomposition of 2 x 2 matrices we can find rotation matrices
01,05 € R?*2 50 that 01 A0, is diagonal, where the diagonal entries are given by roots of the
eigenvalues of A'A. Denote the diagonal entries by A\, € R>g. We claim that one of these
must have absolute value 1 and the other must have absolute value strictly smaller than 1. Since
multiplication by rotation matrices leaves the operator norm invariant, we have, by Lemma 3.7,

that
e et I | 2V V2 | 1 2 el

2 2
Assume that |u| = 1. Then |A|] < 1, but since

1= A= 0140,] = — max(|A] [1)-

1 # | det A| = | det O; det Adet Oz| = | det O1AO2| = |Au| = [N,

we may conclude that |A\| < 1, as desired.

Then, if necessary, by altering O; and Os by applying the rotation matrix (_01 6) from the left
and the rotation matrix ((1) _01) from the right to change the position of the diagonal entries and
by multiplying by minus the identity if 4 = —1, we may assume that O1 AOs is of the desired form.

This proves the assertion. ]
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4.23 Lemma. Let A, X € R**? and

A0 a b
(30, wen =t ).

Moreover, assume that |A + tX|? # |det(A + tX)| for all t € R. Define h : R — R by h(t) :=
|A+tX|. Then h € C*°(R;R), h is nowhere vanishing, and

b+ P+ 2Xbe

/ _ "
h(())—d, h (0) 1—A2

Proof. By Lemma 3.7 we have
h(t) = |z(t)| + |w(t)|, 22(t) =A+1+tla+d+i(c—b), 2wlt)=A—1+t(a—d+i(c+b))

and
|det(A+tX)| = |A+tX|||z(t)| — |w(t)]]- (4.17)

We claim that z and w are nowhere vanishing, so that h is a nowhere vanishing smooth function.
By (4.17), the assumption that |A + tX|? # |det(A +tX)| for all ¢t € R implies that

12(8)] — [w(®)]] £ |A + tX| = |2(t)] + |w(t)] for all t € R.

But since ||z(t)] — |w(t)|] < |z(¢)| + |w(t)], this means that ||z(t)| — |w(t)|| < |z(t)| + |w(t)| for all
t € R. If z(t) = 0 for some t € R, this means that we must have |w(t)| < |w(¢)|, which is absurd.
Similarly, we cannot have w(t) = 0 for any ¢t € R. The claim follows.

We may compute

Re(z(t)2'(t)) = Re(w(t)w'(t))

O=TR0T T )
_ A+ 1+t(a+d))(a+d)+tlc—0b)? N A—1+t(a—d))(a—d)+t(c+b)?
4lz(t)| 4lw(t)] ’
from which we conclude that
oy = A+ De+d O-Da-d) _atd—(a=d _,

2|\ + 1 2|\ — 1] 2
Finally, we compute

[2O)I((a+d)P + (= b)) ~ (a+ d*5 | JwO)((a-d)* +(c+8)?) ~ (a—d5

R"(0) =
©) )P Tw(O)P
C(e=b)?  (c+b)? (c=bPA =N+ (c+bF1+N) b+ +2Xbe
C2(14+A)  2(1—-N) 2(1 — \2) 1=
The assertion follows. ]
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4.24 Lemma. Let X € R?*2. Then the set of all A € R**? so that
|A+tX? % |det(A+tX)| forallteR

is dense in R?*2.

Proof. Let A € R2*2 and write

A:<x1 :L‘2>’ X:<a b>.
T3 T4 c d

Suppose there is a t € R such that |4 + tX|? = | det(A + tX)|. Setting

t d — t(c—> — tla —d
Z:a:1+a:4—|— (a+ )+Z,x3 x9 +t(c )’ wo b x4+ t(a )+ix3+x2+t(c+b)’
2 2 2 2
it follows from Lemma 3.7 that
(] + [w])? = |[A+ tX* = | det(A + tz)| = (|z] + Jw])||z] — |w]|

so that
|2 + |w| = [[2] — w]].

By taking squares on both sides, we note that this is equivalent to the assertion |z||w| = 0, meaning
that either z = 0 or w = 0. We conclude that |A + ¢tX|? = |det(A + tX)| holds if and only if we
have
x1+ x4 = —t(a+d) x1 — x4 = —t(a —d)
or (4.18)
xr3 — xg = —t(c —b), x3+ x9 = —t(c+b).

We proceed by cases. First suppose that ¢ # +b. If a matrix A = (i; ﬁi) satisfies (4.18) for some
fixed t € R, then, for all j € N, we define

A e (:m—i—; xz) _
r3 T4

We claim that for some J € N we have that |A; + sX|? # | det(A; + sX)| for all s € R whenever
j > J. Indeed, if for all j € N we have that |A; +sX|? # | det(A4; + sX)]| for all s € R, then we can
set J = 1. On the other hand, if thereis a J € N and an s € R so that |[A;+sX|? = |det(4;+sX)],
then either x; +1/J + 24 = —s(a +d) and 23 — 22 = —s(c —b) or 1 +1/J — x4 = —s(a — d)
and x3 + x9 = —s(c+b). Suppose we are in the first case and suppose A satisfies the first case in
(4.18). Then —s(c—b) = x3 — x9 = —t(c —b) so that s = ¢, since we assumed that ¢ # b. But then
x1+1/J 4+ x4 = —t(a + d) = x1 + x4, which implies that 1/J = 0. This contradiction implies that
A must satisfy the second case in (4.18). Then we have

2x3 = x3+ x2 + 13 — X2 = —t(c+b) — s(c —b). (4.19)

Now suppose that there is some j € N so that there is an s’ € R so that [4; + s'X|? = | det(A; +
§SX)|. If xg 4+ 29 = —s'(c+b) and 21 + 1/j — x4 = —5'(a — d), then, as before, we may conclude

81



that ¢ = ¢ and 1/j = 0, which is absurd. Hence, we must have z3 — xo = —s'(¢ — b) and
x1+1/j+ x4 = —5'(a + d). But then, by (4.19), we have

—t(c+b) —s'(c—b) =2x3 =23+ 22+ 23 — 22 = —t(Cc+b) — 5(c— D)

so that s’ = s. This implies that 1 +1/j + x4 = —s(a +d) = x1 +1/J — x4 so that j = J. We
conclude that for all j > J we have |4; + sX|? # |det(A; + sX)| for all s € R. The other case is
proven analogously using ¢ # —b. This proves the claim. Since A;; — A in R**? as j — oo, this
proves the assertion for the case ¢ # +b.

Now assume that ¢ = b. If a matrix A = (7} 32) satisfies (4.18) for some fixed ¢ € R, then, for

all 7 € N, we define
L T Z2
Aj T <Z‘3 —i—% m) '

As before, we claim that for some J € N we have that [A; + sX | # |det(A; + sX)| for all s € R
whenever j > J. Again, assume that there is a J € N and an s € R so that |A; + sX|? =
|det(Ay + sX)|, then either x; + x4 = —s(a+d) and 23 +1/J —22 =0 or z; — x4 = —s(a — d)
and x3 + 1/J 4+ x9 = —2sb. Suppose we are in the first case. If A satisfies the first case of (4.18),
then we find that x3 + 1/J — 29 = 0 = x3 — 22 so that 1/J = 0, which is absurd. We conclude
that A must satisfy the second case of (4.18). Proceeding in the same way as in the case ¢ # +b
we can show that if j € N satisfies |4; + s'X|? # | det(A4; + s'X)| for some s’ € R, then we must
have s’ = s and j = J. We conclude that for all j > J we have |4; + sX|? # | det(4; + sX)| for
all s € R, proving the claim in this case. The other case is analogous. Since Aj;; — A in R?*? as
j — 00, this proves the assertion for the case ¢ = b. The case ¢ = —b is treated analogously. The
assertion follows. ]

We refer to [Iw2, Proposition 3.1] for a more direct proof of a generalization of this lemma to
higher dimensions.

Proof of Theorem 4.19. Let A, X € R?>*? with det X < 0.
We claim that it suffices to consider the case v = [1 — p/2|. Indeed, write f := fj;_,/s and
suppose v > |1 — p/2|. It follows from Lemma 4.21 that

hi) - 10 = (v - }1 - ;') A+ exp

is convex in R as a function of ¢. Assuming we have shown that f is convex, we may then conclude
that f, = (fy — f) + f is convex as the sum of two convex functions. Hence, it suffices to consider
I

Next, we claim that we may assume that |A + tX|? # |det(A + tX)| for all t € R. Indeed,
assume we have shown the desired convexity result for such matrices and suppose we have a matrix
A € R**2 50 that there is some s € R so that |A+ sX|? # | det(A +5X)|. By Lemma 4.24, we can
find a sequence (4;)jen in R?*? so that for all j € N we have |A;+tX | # | det(A;+tX)| for all ¢ €
R, and A; — Ain R*? as j — co. Writing f;(¢) := [1-2/p||A; +tX [P —|A; +tX [P~ 2 det(A; +tX),
we note that f;(t) — f(t) for all t € R. Moreover, for all 2,y € R and ¢ € [0, 1], our assumption
implies that

filte + (1 =t)y) <tfi(x) + (1 —1)fi(y).
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Letting j — oo leads to convexity of f, as desired. Thus, from now on we assume that |A +tX|? #
|det(A +tX)| for all t € R.

Next we will show that it suffices to consider the case where |A| = 1. First suppose A = 0.
Then f(t) = c|t|P for ¢ = |1 —2/p| — | X|det X > |1 —2/p| > 0, which is convex in R as it is the
composition of the increasing convex function s +— s” in [0, oo and the convex function s — |s| in
R. Assuming A # 0, we can write

2
f) =14" (‘1 - p‘ JA|TPA 4+ t| AT X P — ||ATPA + t|ATEX P2 det (| A1 A + t|A[1X)) .

Since |A| 71X is again a matrix of non-negative determinant, since | A| 7P is a positive constant, and
since

A7 A + A7 X2 = |A]72A + tX 2 2 |A]72| det(A + tX)| = | det(JA] " A + t|A] 71 X)]

for all t € R, we may replace A by |A|71A and replace X by |A|71X to reduce to the case |A| = 1.
Reducing further, we claim that we may assume that A is of the form

A0
A_<0 1), A < 1. (4.20)

Since, in particular, we assumed that 1 = |A|> = |A + 0X|? # |det(A + 0X)| = | det A|, we may
appeal to Lemma 4.22 to find rotation matrices O1, Oy € R?*? so that O1 A0, is of the desired
form. Since multiplication by rotation matrices leave operator norms and determinants invariant,
noting that O1(A + tX)02 = O1AO3 + tO1 X Oz, we may replace A by O1A02 and X by 01 X0,
to reduce to the case where A satisfies (4.20).

It follows from Lemma 4.23 that f is a smooth function and thus, by Lemma 4.16, to show that
f is convex, we have to show that f”(t) > 0 for all ¢t € R.. Setting h(t) := |A + tX| and

g(t) := det(A +tX) = (A +ta)(1 + td) — t?bc = A + (a + Ad)t + (det X)t?,

then ¢ is smooth and, by Lemma 4.23, h is also smooth. By picking t5 € R and by replacing A
with A + t9X and by considering f(t + to) instead of f(¢), we note that we have reduced to the
case where we need only check that f”(0) > 0 to conclude that f is convex.

By the computations of the derivatives of h in Lemma 4.23 and the fact that h(0) = |A] =1 we
have

2
G| 0P = (o= 1RO O + p(h0)P 1 (0) = pp — i + p(0),
Moreover, computing ¢g(0) =det A =\, ¢’(0) = a + \d, ¢"(0) = 2det X <0, we find that
d2
az|,_ Oy
9(0) i (h(£))P~% +2¢'(0) d (R(£))P~% + (h(0))P~2¢"(0)
di? |, dt i
= Ap—2)(p—3)d>+ Ap—2)h"(0) +2(p — 2)(a + Ad)d + 2det X
< Ap—=2)(p—=3)d®+Xp—2)h"0) +2(p — 2)(a + Ad)d.
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Thus,

1"(0) > '1 - 12?’ (p(p — 1)d® + ph"(0)) = A(p = 2)(p — 3)d* — (p — 2)R"(0) — 2(p — 2)(a + Ad)d
=(lp=2l(p—1) = Ap —2)(p = 3))d® + (Ip — 2| = A(p — 2))1"(0) — 2(p — 2)ad — 2\ (p — 2)d”.
Collecting the terms with d?, we note that
(Ip=2l(p—1) = Ap = 2)(p = 3) = 2A(p = 2))d* = (p = 1)(Ip — 2| = A(p — 2))d* > 0,
since |A| < 1. Thus, by continuing our estimate, we obtain
£1(0) 2 (Ip — 2 — Ap — 2)K"(0) — 2(p — 2ad = (Ip — 2| — A(p — 2))H"(0) — 2(p — 2be,  (4.21)

since ad — bc = det X < 0.
We will conclude the proof by considering the cases p < 2 and p > 2 separately. Suppose p < 2.
Then (4.21) becomes

b2+ c? +2)\b b4 )2
£7(0) > (2 = p)((1 + VR"(0) + 2bc) = (2 — p) <+1‘3_+AC N 2bc> s _p)(1+_cA) -
Similarly, when p > 2 we have
0) > (p—2) (b—c) >0
- 1+X —

This proves the desired convexity result. Finally, since any rank-one matrix has determinant 0, we
conclude that E), ., is rank-one convex. The assertion follows. O

While we know that quasiconvexity implies rank-one convexity, the question wether the converse
implication holds turns out to be a much more difficult problem. Let us first settle the 1-dimensional
cases of this problem.

4.25 Proposition. Let m =1 orn =1 and let F: R™*™ — R be continuous. Then the following
are equivalent:

(i) F is convex;
(ii) F is quasiconvex;
(iii) F is rank-one convex.
We will use the following lemma:
4.26 Lemma. Let F': R™*"™ — R. Then F is rank-one convex if and only if
FtA+(1-t)B)<tF(A)+(1—-t)B

for allt € [0,1] and all A, B € R™*™ such that rank(A — B) < 1.
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Proof. Suppose F is rank-one convex. Let A, B € R™*" such that rank(A — B) < 1. If rank(A —
B) =0, then A = B and the result holds trivially. Thus, we may assume that X := A — B has
rank one. Now let t € [0,1]. Then, since F' is rank-one convex, we have

FtA+(1-t)B)=F(B+tX)=F(B+ (t+(1—-1)0)X)
<tF(B+X)+ (1—-t)F(B)=tF(A)+ (1 -t)F(B),
as desired.
For the converse, pick A, X € R™*" with rank X = 1 and let z,y € R, t € [0,1]. Then, since
rank(A + 2X — (A4 yX)) = rank((z — y)X) < 1, we have
FA+(tze+(1-t)y)X)=Ft(A+zX)+ (1 -t)(A+yX))
<tF(A4+2zX)+ (1 —t)F(A+yX).

The assertion follows. O

Proof of Proposition 4.25. The equivalence of (i) and (ii) has been established in Proposition
4.14. In view of Lemma 4.26, the equivalence of (i) and (iii) is clear because if m = 1 or n = 1,
then any A € R™*" satisfies rank A < 1. O

The notions of quasiconvexity and rank-one convexity were originally conceived in 1952, but it
wasn’t until 1992 that we learned that there are continuous rank-one convex functions that are not
quasiconvex. In [SV], Sverdk managed to cleverly construct examples demonstrating this result for
the cases where m > 3 and n > 2.

4.27 Theorem (Sverdk, 1992). Let m > 3, n > 2. Then there are continuous rank-one convex
functions F : R™™ — R that are not quasiconvez.

While we will not carry out the full construction of Sverdk’s example, we will outline the idea.
We define the 1-periodic function 1y € C*°(R?; R?) by

P(x) = 2—(sin 27xy, sin 2mwe, sin 27w (1 + 2)).
™

Then
Ccos 2mxq 0

Di(z) = 0 COS 27Ty
cos 27 (x1 + we) cos2mw(xy + x2)

Thus, if we define the subspace M C R3*2 by

M =

o O

0
b||a,b,ceR },
c

then we note that Dy(z) € L for all z € R%. We note that any rank one matrix in M must be a
constant multiple of one of the spanning matrices

10 0 0 0 0
Ey:=10 0], Ey:=(0 1], E3:=|0 0
0 0 0 0 11
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of M. Thus, if we define

a 0
F:L—-R, F 0 b = —abc,
c ¢

then, for all z,y € R and ¢ € [0, 1], setting A := aE; + bEs + cEj3 for a,b,c € R, the function F
satisfies

F(A+ (tz+ (1 —t)y)E) = —(a+ (tx+ (1 — t)y))be = —(t(a+z) + (1 — t)(a + y))bc
=tF(A+2E)) + (1 —t)F(A+yE))

and similarly for Fo, F3 instead of F1. Hence, F' is certainly convex in the direction of any rank-one
matrix in M. However, we also note that since

cos 2m(x1 + xe) = (cos 2wy )(cos 2mxa) — (sin 27y ) (sin 27 xe)

and since t — (sin 27t)(cos 27t) = (sin4nt)/2 integrates to 0 over [0, 1], we find that
/ F(Dy(x))dx = —/ (cos 2mx1)?(cos 2ma9)? da < 0 = F(0)
[0,1]2 [0,1]2

so that F' does not satisfy the quasiconvexity condition of characterization (v) in Proposition 4.12.

Now, Sverdk managed to appropriately modify F to facilitate finding an extension F’ : R3*2
of F to all of R3*? which is still rank-one convex and which is still not quasiconvex. This settles
the case for m = 3 and n = 2. For the general cases where m > 3 and n > 2, we consider the
surjection P : R™*" — R3*? which maps a matrix A € R™*" to its upper left 3 x 2-matrix. By
considering the function R™*? — R, A — F'(P(A)) and the 1-periodic function ¢’ € C*°(R™; R™),
' (x) = (¢Y(21,22),0,...,0), one obtains an example of a continuous rank-one convex function that
is not quasiconvex in R™*™,

While this settles the cases m > 3, n > 2, this example does not help us in the cases where
m = 2, which for n > 2 is still an open problem. The case m = n = 2 is the case we are interested
in, since this is the setting of the Burkholder functional. Since we want the Burkholder functional
to be quasiconvex, we formulate a conjecture as follows:

4.28 Conjecture (Morrey’s Conjecture). If a continuous map F : R?**? — R is rank-one convex,
then I is quasiconverz.

In the introduction of [Mo], Morrey himself seems skeptical that quasiconvexity can be cha-
racterized this way. In the book [Mo2] he merely states that it is unknown wether this result is
true or false. There appears to exist evidence both for and against the validity of the conjecture,
an overview of which can be found in [Ba]. For example, one may view the existence of Sverak’s
example as evidence against the conjecture. However, since this example is specific for the cases
where m > 3, one cannot draw any conclusions for the case m = 2. An argument in favor of
the conjecture is the fact that we can find classes of functions where rank-one convexity implies
quasiconvexity. Remarkably, using the Fourier transform one can deduce this result for quadratic
functions. We will present this argument here.
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For A,B € C"™*" A = (a;x), B = (bix), we write
n m L
=2 > aikbik.
i=1 k=1
4.29 Proposition. Let F': R™*"™ — R and suppose F' is of the form

Z Z 1kazka]l— LA A>

t,j=1kl=1

where A = (a;) and L = (0272) is a linear map from R™*™ to itself that is symmetric, i.e.,

c7k = c" il ¥ for alli,j € {1,...,n}, j,k € {1,...,m}. Then F is quasiconvez if and only if F is

K3
rank- one convex.

Proof. By Proposition 4.18 we need only show that rank-one convexity of F' implies quasiconvexity
of F. Suppose F' is rank-one convex and let X € R™*" be a rank-one matrix. Then, since F is
quadratic,

1 1 1 1
F(X)=F <<22 n 20) X) < SF(2X) + 3 F(0) = 2F(X).
Hence, since also F'(0) = 0, we have
F(Y)>0 forany Y € R™*" with rankY < 1. (4.22)

Now let ¢ € C(R™;R™) where ¢ = (¢1,...,0n,) and fix £ € R". By taking componentwise
Fourier transforms, we find that

F(D)(§) = (2mi&; F ¢r(§))jk = 2mi(F $(§) ® §),

from which we conclude that U,V € R™*"™ are rank-one matrices when U and V are respectively
the real and the imaginary parts of #(D¢)(§) € C™*™. Thus, using the fact that L is symmetric,
we have

(LF(D)(E), 7 (De)(£)) = (LU U) + (LV, V) +i({LV,U) = (LU, V))

= (LU, U)+(LV,V)=F{U)+ F(V)>0 (4.23)

by (4.22).
Then, since the Fourier transform is a unitary isomorphism of L?(R™), we have

| oo s = | so@fatid = [ F@0)OFCaE
so that
| PDo@)ds= | (LD6(w). Dota))do = [ (LFDO)E).F DN =0 (121)
by (4.23).
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Now pick A € R"™*"™. We note that by the Fundamental Theorem of Calculus we have

/ (LD(x), A) dr = Zn: ij i ( /R nr) dx> a0 =0

ij=1k,l=1

so that

/ (F(A+ D(x)) ~ F(A)) dr = / (LD(x), Dé(x)) + 2(LD(x), A)) da

- / (LDo(x), Do(a)) d > 0

by (4.24). By characterization (ii) in Proposition 4.12 we conclude that F' is quasiconvex. The
assertion follows. ]

An important example of a quadratic function is the determinant function for m = n = 2. Since

2

de?

for all A, X € R?>*? where rank X = 1, we conclude that both det and — det are rank-one convex.
It then follows from Proposition 4.29 that both det and — det are quasiconvex. In particular, this
implies quasiconvexity of the Burkholder functional in the case p = 2, since By = — det.

Functions F' : R™*™ — R where both F' and —F are quasiconvex are usually called null
Lagrangian, which refers to the fact that all functions must solve the Euler-Lagrange equations
of the integral functional associated to F. One can check that the determinant function in any
dimension is null-Lagrangian, see [Ev, 8.1, Theorem 2].

Finally, we mention partial results with respect to quasiconvexity of the Burkholder functional.
The following result was established in [AIPS]:

det(A+tX) =2det(X)=0

4.30 Theorem (Astala, Iwaniec, Prause, Saksman, 2010). Let Q@ C C be open and bounded and
let f € VVlif(Q) be a K-quasiconformal mapping. If f extends continuously to Q2 with f(2) = Q
and floo = z, then

2
Setting f := z + ¢, in the critical case where p = 2K /(K — 1), the distortion inequality
IDf(2)> < KJy(2) forae. z€Q,

which amounts to quasiconformality of f, see Proposition 3.6, is equivalent to the inequality B, (I +
D¢(z)) <0 for a.e. z € Q. Astala, Iwaniec, Prause, and Saksman used this to deduce the folllowing
corollary of Theorem 4.30:

4.31 Corollary. Let Q C R? be open and bounded and let I € R?**? denote the identity matric.
Then, under the assumption that ¢ € C(Q; R?) satisfies By(I + Dé(z)) < 0 for all z € Q, we
have

2
/QBp(I + D¢(x))dz > /QBP(I) dz = —];|Q\
for all p € [2,00].
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While the result does not establish quasiconvexity of B, at the identity, it does amount to
optimal gradient estimates for quasiconformal mappings as in Theorem 4.30, see [AIPS, Corollary
4.1].

Recall that we established in Proposition 4.3 that for p €]1,00[ the functional E : R?*? — R
defined by
1B oy — 1

12y L

E(A)=E o

iyt () AP~ AP~ det A

+1

is quasiconvex at 0. Even if Iwaniec’s conjecture is true, this result still does not yield quasiconvexity
of the Burkholder functional at 0. However, there is an interesting application in that existing upper
bounds of || A le( Lr(c)) ¢an be combined with this result to prove the following:

4.32 Proposition. Let U C C be open and let f € W’li)cl(U) If f is orientation preserving and

satisfies
[Df(2)[?
dz < oo,
/Ulog(l +[Df(2)])
then Jy € LllOC(U). Moreover, if u and v denote the respective real and imaginary parts of f, then

we have the integration by parts formula
[ 66051z = [ @) 0:0(:)0,6() - 9,0(09,0(:) d

U U
= [ v2@:0(20,u(2) - 0,0()0,u(2))

for all p € C(U).

We discussed in Remark 3.4 that if a map f € Wllo’cl(U ) is orientation preserving and a home-
omorphism onto its image, then Jy € Llloc(U ). However, the integration by parts formula may fail
in this instance. This proposition gives a nice sufficient condition for both the local integrability of
the Jacobian and the integration by parts formula. We refer to [AIM, Theorem 19.3.1] for a proof.

We will conclude this section with a brief discussion summarizing our findings. A summary of

what we have shown is as follows:
Morrey’s Conjecture=- B, is quasiconvex = B,, is quasiconvex at 0 = Iwaniec’s Conjecture.

While Morrey’s Conjecture is the oldest conjecture here, it appears to be the least understood. It
is not directly obvious how the notion of quasiconvexity is related to the notion rank-one convexity
when looking at the definitions. Our deduction of the Legendre-Hadamard as a necessary require-
ment for existence of minimizers shows one connection, but a more direct connection is given by the
fact that the Fourier transform of the Jacobian matrix of a function yields a rank-one matrix. As a
matter of fact, this was the key observation in the proof that showed that the notions of rank-one
convexity and quasiconvexity are equivalent for quadratic functions.

The rank-one convexity of the Burkholder functional B, and its higher dimensional analogues
together with partial results of quasiconvexity of B, at the identity matrix and known quasicon-
vexity results at 0 of the functionals FE, . for large enough 7 all suggest that B, itself may be
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quasiconvex, or at least quasiconvex at 0. Burkholder’s estimates that show the close relation of B,
with the theory of quasiconformal mappings bear striking similarities with Pichorides’ estimates
with respect to his subharmonic function that eventually lead to finding the operator norms of the
Hilbert transform. It is these ideas that lead the author of this thesis to believe that further study
of the Burkholder functional will eventually lead to an affirmation of Iwaniec’s Conjecture.
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A Appendix: Convolution of Functions

In this appendix we wish to establish some fundamental results regarding the convolution of inte-
grable functions. Our main results will be to prove Young’s inequality for convolutions, see Theorem
A.3 below, and to establish that, for any open U C R", the space C2°(U) is dense in LP(U) for all
p € [1,00], see Theorem A.11 below.

A.1 Definition. Let f,g: R™ — C be measurable functions so that y — f(y)g(xz —y) is integrable
for a.e. x € R™. Then we define the convolution product f x g: R™ — C of f and g by

(fxg)(x) = | [f(y)g(z—y)dy.
R

o

The change of variables y — x — y shows that for any f,g € L°(R") where f g is well-defined (as
in the definition) we have fxg=gx* f.

A.2 Proposition. Let f,g € L°(R") so that f * g is well-defined. Then f x g € L°(R™).

Proof. Since f, g are measurable, there exist sequences (f;);jen, (g;)jen of simple functions so that
fj — f and g; — g pointwise a.e. as j — oco. Then, for each j € N, the function (z,y) — f;(v)g;(x)
is again a simple function as a consequence of the formula

xB(Y)xa(z) = xaxp(z,y),

for measurable sets A, B C R"™, where yx denotes the indicator function of a measurable set X.
By precomposing with the invertible linear transformation (z,y) — (z — ¥y, y), we conclude that

hj: R" xR" = C, h(z,y) := fj(y)g;j(z —y)

is a simple function for all j € N. Since h;(z,y) — f(y)g(x—y) as j — oo for a.e. (z,y) € R"xR",
we conclude that (x,y) — f(y)g(x — y) is measurable. By integrating over y, we conclude from
Fubini’s Theorem that f * g is measurable. This proves the desired result. O

A.3 Theorem (Young’s inequality for convolutions). Let p,q,r € [1,00] satisfy
1 1 1
S41= -
p q T

Then for f € LY(R"™), g € L"(R"™), the convolution f * g is well-defined. Moreover, f x g € LP(R™)

and
1f = gllp < 1 fllqllgllr-

For the proof we require a lemma.

A.4 Lemma. Let f,g € L'(R"). Then f * g is well-defined. Moreover, f x g € L'(R"™) and
1f = glle < [ Fllllglls- (A.1)
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Proof. We have
|| itlste=wlavds = [ 11wl [ o =nldedy= [ wldy [ lo@)]da

= [I£llllgllx

so that y — f(y)g(z —y) must be integrable for a.e. x € R™. Moreover, this equality implies (A.1),
as desired. O

Proof of Young’s inequality for convolutions. First suppose that r = co. Then we must have
p =00 and g = 1, in which case we have

[ 1£)lgte =)l dy < 1fllgle
.

for a.e. x € R™. The asserted results follow. The case ¢ = oo is treated analogously.
Now assume 7 < oo and g < co. We fix x € R” and define hq, ho, hg by

q r aq r
hi(y) == [fW)I7,  ha(y) == lg(z —y)|7, hs(y) :=[fy)lrlg(z —y)|».
Then hy € L" (R"), hy € LY (R") and, moreover, we have hy € LP(R") by Lemma A.4. The
relations on p, ¢, and r imply that we have

roor 1 1 1
9.9, T4l S+ 4-=1

)

D P q

-
This implies that hihoh,(y) = |f(y)||g(x — y) and, by Holder’s inequality for the product of three
functions,

xr
7

/Rn\f(y)lg(w )l dy < [l lBallplibslly = 11 191 (17175 Lol @), (A.2)

which is finite for a.e. z € R™ by Lemma A.4, which implies that f x g is well-defined. Moreover,
(A.1) and (A.2) imply that

q - 1 i/ - q r
£ *glly < NFIG gl IAT 191" 17 < NFlg Nl NFNGNgll® = 11 fllgllglle-
The assertion follows. O

A.5 Corollary (Minkowski’s inequality for convolutions). Let p € [1,00]. If f € LY(R"™) and
g € LP(R™) then f * g is well-defined. Moreover, we have f x g € LP(R") and

1F* gllp < 1 fll1llgllp-

A.6 Definition. A family of functions (f:).cr, in LY(R™) is called an approzimate identity if it
is uniformly bounded in L'(R) and satisfies

fe(@)dz =1
R’VL

for all e € R4 and

lim z)|dx =0
i [ 1)

for all r € R4.. &
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A.7 Theorem. Let (f.).cr, be an approximate identity and p € [1,00[. If g € LP(R"), then
limf.*xg—g (A.3)
el0

in LP(R™). Moreover, for any g that is continuous on a compact subset K C R", the limit (A.3)

holds uniformly on K. If g € Co(R™) C L>°(R"), then the limit (A.3) holds in L*°(R").

For a proof, see [Gr, Theorem 1.2.19, Remark 1.2.22].

A.8 Proposition. Let f € LY(R"™) with

flx)dx = 1.
RTL

For each € € Ry we define f. € L'(R"™) by f.(x) == e " f(z/e). Then (f:):cr, is an approzimate
identity.

Proof. Note that by the change of variables x — ez we have

An!fs(x)ldzZ;An‘f <§>‘ dx:/Rn’f(x)'dx:anl

so that indeed f. € L'(R™) for all ¢ € Ry and the family (f.).cr, is uniformly bounded by || f||1
in L'(R™). A similar calculation shows that f. integrates to 1 for all ¢ € R, since f does.

Now let » € Ry. Then, for all ¢ € Ry we denote by X,/ the indicator function of the
complement in R™ of the closed ball of radius r/e centered at 0. Since this indicator function
converges pointwise to 0 as € | 0, we conclude from Lebesgue’s Dominated Convergence Theorem
that

/|$I>T|fe(a?)|dx:/|8ml>rf(:c)!dx:/Rnxr/a(x)|f(a:)|da:—>0 as ¢l0.

Hence, the family (f:).cr, satisfies all the properties of an approximate identity. O

A.9 Definition. Let U C R"™ be open and let f € L%(U). We define the support supp f of f as
the complement in U of the set of all points in U that have an open neighborhood V' C U so that
f(z)=0for a.e. z € V.

For p € [1, 00] we denote by LE(U) the set of those f € LP(U) where supp f is compact. &

Since the supports of two functions that are equal almost everywhere coincide, the notion of support
is well-defined on the set of equivalence classes L°(U). It follows from the definition that supp f is
closed for any f € LO(U).

We wish to define an approximate identity consisting of compactly supported smooth functions.
For this we recall that the function ¥ : R — R defined by

et ift>0
Y(t) ==
0 ift<o0

lies in C*°(R"™). See also [DK, Lemma 2.7].
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A.10 Definition. We define a function ¢ € C°(R") by

1
cel=P-1 if |z| < 1
$x) = cp(1 — |zf*) =
0 if |z| > 1,

where ¢ € Ry is chosen so that ¢ integrates to 1. For e € R4 we then set ¢.(x) := e "¢p(x/¢).
The family (¢¢)-cr, is known as the standard mollifier. &

It follows from Proposition A.8 that the standard mollifier is an approximate identity. We note
that for all e € Ry we have that ¢. is non-negative and ¢.(x) # 0 if and only if |z| < e.
The standard mollifier will be used to prove the following result:

A.11 Theorem. Let U C R™ be open and let p € [1,00[. Then C°(U) is dense in LP(U).

Note that this result does not hold for L>(U), since the uniform limit of continuous functions is
again a continuous function. In particular, the Stone-Weierstrass Theorem implies that the closure
in L®(U) of CX(U) is Co(U).

For the proof, we require several lemmas. For two sets A, B C R" we write A + B for the set
of those elements in R™ that can be written as « + y with x € A and y € B.

A.12 Lemma. For any f,g € L°(R™) where fxg is well-defined we have supp(f*g) C supp f + suppg.

Proof. Let z € R"™ and y € R" so that y ¢ supp f N ({z} — suppg). Then either y ¢ supp f
or x —y ¢ suppg. This implies that y ¢ supp h,, where h, € L'(R") is defined by h.(y') :=
f(W)g(x —9'). Hence, supp h, C supp f N ({z} —suppg).

Now suppose x ¢ supp f + supp g. Then supp f N ({z} — supp g) = (), meaning that

* = hy dy = hy dy = 0.
(f * 9)(a) / haly)dy /suppm{z}suppg) (v) dy

Thus, if x ¢ supp f + supp g, then there is some open neighborhood V' of z so that VNsupp f + supp g =
() and hence so that f g vanishes on V. This implies that ¢ supp(f *g). By contraposition, this
proves that supp(f * ¢g) C supp f + supp g, as desired. O

A.13 Lemma. Letp € [1,00]. If f € LE(R") and g € C°(R"™), then f x g € C°(R").

Proof. Since LP(R™) C §'(R™) and C*(R™) C S(R™), it is a consequence of Proposition B.41
below that f*g € C°°(R"™). Hence, it suffices to check that f* g has compact support. By Lemma
A.12 we have supp(f * g) C supp f + supp g, so it suffices to check that the sum of two compact
sets is again compact. Let K, L C R" be compact. Since K and L are bounded, so is K + L. It
remains to show that K + L is closed to conclude that K + L is compact. Let (z;);en be a sequence
in K 4 L with limit € R™. Then we can find sequences (k;)jenN, (Ij)jen so that x; = k; + [; for
all j € N. Since K is compact, the sequence (k;);en has a convergent subsequence (k;,, )men with
limit £ € K. But then

Iim !, = lim z; —k; =x—k.

Since L is closed, we have x — k € L. Hence, x = k + 1 € K + L. This proves that K + L is closed.
The assertion follows. O
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A.14 Lemma. Let U C R"™ be open and let p € [1,00[. Then LE(U) is dense in LP(U).

Proof. Let f € LP(U) and choose a sequence of compact subsets (Kj)jen of U so that J;en K =
U. For each j € N we denote by x; € LE(U) the indicator function of K;. Then, by Lebesgue’s
Dominated Convergence Theorem, x;f — f as j — oo for any f € LP(U). Since x;f € LE(U) for
all j € N, the assertion follows. O

Proof of Theorem A.11. Let f € LE(U). Since K := supp f C U is compact and disjoint from
the closed set F':= R™\U, we have

d:=d(K,F):= xe}i{ngeF\x —y|>0.

Let € < §/2 € Ry. We may view f as an element of LP(R"™) by extending it by 0 outside of U.
Then, by Lemma A.13, we have f x ¢, € C°(R"), where (¢¢).cr. is the standard mollifier.
Then, by Lemma A.12, we have

supp(f * ¢.) € K + supp ¢. = K + B.,

where B, denotes the closed ball of radius € around 0. We claim that K + B. C U. Indeed, let
x €K,y € B, z€ F. Then

)
|:1:—|—y—z\2|x—z|—|y|25—5:§>0.

As z was arbitrary, this implies that x + y has a positive distance to F, meaning that x +y € U.
This proves the claim and thus that supp(f *g) C U. We conclude that the restriction of f * ¢. to
U lies in C°(U).

But then it follows from Lemma A.7 that

(/(Jf(fc)—(f*cbs)(w)lpdx);:</Rn|f(w)—(f*¢s)(w)|”dx>p—>0 as <10

This implies that f € C°(U), where the closure is taken in LP(U). We conclude that LE(U) C
C(U). But then it follows from Lemma A.14 that

1/(U) = TEU) € C(0) C I(U).

This proves that C2°(U) = LP(U), proving the assertion. O
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B Appendix: Distribution Theory and the Fourier Transform

This appendix will, by no means, be a comprehensive disambiguation of the theory of distributions.
However, we will provide the definitions and results required for the main text. In particular, the
first part of this appendix can be used as a supplement for Section 1. We refer the reader to [DK]
and [Gru] for a more complete overview of the theory.
Throughout this appendix we let U be a non-empty open subset of R". For each compact
K C U we define
CE(U) == {6 € C=(U) | suppo C K},

where supp ¢ denotes the complement of the largest open set on which ¢ vanishes, i.e.,
supp ¢ := {z € R" | ¢(z) # 0}.

This space becomes a locally convex Hausdorff space when equipped with the countable family of
seminorms (PK,k)kGZZO defined by

prck(¢) = max sup [0%¢(z)|.
la|<k zeK

Here we are using the multi-index notation

a= (a1, 00) € (Z0)", ol =Y a;, =[]0 =[] +=
j=1 j=1

Olj M
j=1 axj

Since any sequence in C°(U) that is a Cauchy sequence with respect to all seminorms converges
to a unique limit in C3°(U), this space is actually a Fréchet space.
For every pair K, L of compact subsets of U such that K C L, we obtain a natural continuous
injection
wkr : CE(U) = C(U),  wkr(9) = ¢.
Hence, the family {C3(U) | K C U compact} forms a direct system over the directed set of
compact subsets of U, partially ordered by inclusion. We may then form the direct limit

crU)=tmcgW) = | RO
KCU compact

This comes equipped with the largest topology so that all inclusion mappings
1 O (U) = CX(U)

are continuous. Hence, a functional u : C2°(U) — C is continuous if and only if uorg : CF(U) — C
is continuous for all compact K C U. Sometimes the space of compactly supported smooth functions
with this topology is denoted by D(U).

This space is plenty rich. In particular, it contains cutoff functions that are equal to 1 on a
given compact set.

B.1 Lemma. Let K C U be compact. Then there is a function x € C°(U) satisfying x(U) C [0, 1]
and x(x) =1 for all  in an open neighborhood of K.
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We refer to [DK, Corollary 2.16] for a proof. Inductively one can show the existence of partitions
of unity.

B.2 Lemma. Let K C U be compact and let {UJ-}»3-]:1 be a finite collection of open subsets of U so
that K C U}]:l Uj. Then there exists a partition of unity {Xj}jzl subordinate to the cover {Uj}}‘Izl’
i.e., functions {x; 3]:1 C C°(R™) that take values in [0,1] such that ijl Xj(x) =1 for all x in
an open neighborhood of K and supp x; € U; for all j € {1,...,J}.

We will freely use these constructions throughout the text.

B.3 Definition. We denote by D’(U) the space of all continuous linear functionals u : C2°(U) — C.
Such a functional u is called a distribution in U. We give D’(U) the structure of a locally convex
Hausdorff space by equipping it with the family of seminorms (u +— |u(¢)|), indexed over all

¢ € C(U). &

For a distribution w € D'(U) we have different notational conventions when applying u to ¢ €
C(U), i.e., we will write either u(¢) or (u, ¢).
The following proposition is an immediate consequence of the definitions.

B.4 Proposition. A linear functional u : C°(U) — C is a distribution in U if and only if for all
compact K C U there is a c € Ry and a k € Z>q so that

u(®) < cpri(o)
for all p € CE(U).

In a way, distributions can be seen as generalized functions. We will make this assertion precise.
We say that an open set V' C U is relatively compact in U, if V' C U and V is compact. As in
Section 1, we define the space L} (U) of locally integrable functions in U by

loc
Ll (U):={f e L°(U) | flv € L*(V) for all relatively compact V C U}.
As an immediate consequence of Lemma 1.4 we have the following result:

B.5 Lemma. Let f € L°(U). Then f € L} (U) if and only if ¢pf € L*(U) for all ¢ € CZ(U).

loc

This allows us to give L}OC(U ) the structure of a locally convex Hausdorff space by equipping it
with the seminorms

1Fllo == ll&fllx

for ¢ € C°(U). To verify that this space is Hausdorff, we would need to check that || f||, = 0 for

all ¢ € C°(U) implies that f =0 in L} (U). As the arguments needed to show this use common

constructions, we briefly explain how this can be done. Choose a sequence of compact subsets

(Kj)jen of U so that (J;en K; = U. For each j € N we pick a x; € C2°(U) so that x;(z) =1 for

all z € K. Then, since || f[|y, = 0, it follows that f vanishes a.e. on K. Since this holds for each

j € N, it follows from countable subadditivity of the Lebesgue measure that f = 0 a.e., as desired.
Lemma B.5 serves as a motivation for the following result:
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B.6 Proposition. We define ¢: L}, (U) — D'(U) by

_ /U f(2)p(x) da

Then ¢ is a well-defined continuous linear injective map.

Proof. Linearity of ¢ and of +(f) are clear. To see why «(f) is a distribution in U, we pick a
compact K C U and let ¢ € C(U). Then

NI [ @@ de = [ 1#@l)ldr < picofo) [ If(@)]do (B.1)

Thus, it follows from Proposition B.4 that «(f) is indeed a distribution in U.

To see why ¢ is continuous, we note that the first inequality in (B.1) reads |¢(f)(¢)] < |/ f]l4,
which is valid for all ¢ € C°(U).

It remains to check that ¢ is injective. Pick f € L} (U) so that ¢(f) = 0. For any ¢ € C°(U)
we have ¢f € L'(U) by Lemma B.5. By extending v f by 0 outside of the support of v, we may
view it as an element of L'(R"). Let (¢.).cr, denote the standard mollifier, see Definition A.10.
Then

(0 #0)(@) = [ V) )6 =) dy = 1)y = v)ota =) =0
for all z € R™. By Lemma A.7, the function 9 f * ¢. converges to ¢ f in L'(R") as ¢ | 0 so that

1f 1l = 11l = i [ * el = 0.

As 1) was arbitrary, we conclude that f = 0. O

We will use the convention that whenever we say that u € D'(U) is a function, we mean that
there is some f € L} (U) so that u = ¢(f). We will often drop the ¢« and simply write f € D'(U)
when f € L},.(U).

We remark that the space L} (U) is rather large. For example, by Hoélder’s inequality it
continuously contains LP(U) for all p € [1, oo] while it also contains CZ°(U) itself and other spaces
of continuous functions. Even though functions in these spaces are not all differentiable in the
classical sense, we will be generalizing the notion of differentiability to all distributions.

loc

B.7 Definition. Let uw € D/(U) and let j € {1,...,n}. Then we define 9;u € D'(U) by
Dyu(6) = —u(d0).
We call this a distributional derivative of u. &

We note that that distributional derivatives of continuously differentiable functions coincides with
the classical derivatives by the partial integration formula. To see that the definition of distribu-
tional derivatives makes sense, we should check that 0;u does indeed define a distribution in U for
uweD'(U) and j € {1,...,n}. Pick a compact K C U and pick ¢ € Ry, k € Z>( so that

[u(9)] < cprk(9)
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for all ¢ € C(U). Then, since 0;¢ € CF(U) for any ¢ € CF(U) and pg r(0;¢) < pk k+1(0), we
find that
|0ju(@)| = |u(0;9)| < cpr k+1(9)

for all ¢ € C72(U). We conclude that indeed 0;u € D'(U).

B.8 Definition. Let u € D'(U) then we define its support as the complement in U of the set of
those points in U for which there exists an open neighborhood V' C U so that whenever ¢ € C2°(U)
satisfies supp ¢ C V', we have u(¢) = 0. &

To determine the support of a distribution, we usually use the following characterization:

B.9 Proposition. Let u € D'(U). Then a closed set F C U satisfies suppu C F if and only if for
all p € C°(U) satisfying supp ¢ N F = 0, we have u(¢) = 0.

Proof. Suppose a closed set F' C U satisfies suppu C F' and suppose ¢ € C°(U) satisfies supp ¢ N
F = (). Since supp ¢ is a compact set that is contained in the open set U\F, by the definition of
supp u we can find a finite cover (VJ)‘]]:1 of supp ¢ of subsets of U\ F so that whenever ¢ € C°(U)
satisfies supp ¢ C V; for some j € {1,...,J}, we have u(¢)) = 0.

Pick a partition of unity (wj)jzl in C2°(U) subordinate to the cover (V])j:1 Then, for each
je{l,...,J}, we have suppej¢ C V;. Hence,

u(g) = Zuchb) =0,

Jj=1

as desired.

For the converse, suppose F' C U satisfies the property that for all ¢ € C°(U) satisfying
suppd N F = @, we have u(¢) = 0. Pick z € U\F. Setting V := U\F, we note that whenever
¢ € CX(U) satisfies supp ¢ C V', we have supp ¢ N F' = (). Hence, for such ¢ we have u(¢) = 0. By
the definition of the support, we conclude that x € U\ supp u. Thus, by contraposition, suppu C F,
as desired. O

Note in particular that this proposition implies that for u € D'(U) we have u = 0 if and only if
suppu = 0.

We should check that if f € Li, (U), then its support as a function coincides with its support
as a distribution.

B.10 Lemma. Suppose f € L} (U). Then supp f = supp ¢(f), where ¢ is defined as in Proposi-
tion B.6.

Proof. If x € U\ supp f, then there is some open neighborhood V' C U of z so that f vanishes a.e.
on V. This implies that for all ¢ € C>°(U) with supp ¢ C V' we have

(10) = [ f@o@)dz = [ f@ow)dz =0
so that € U\ supp ¢(f). We conclude that supp ¢(f) C supp f.
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For the converse, suppose x ¢ supp¢(f). Then there is some open neighborhood V' C U of x so
that for all ¢ € C°(U) with supp ¢ C V we have (f, #) = 0. But this implies that f|y € L} (V) is

loc

the zero distribution in D’'(V). Since L,.(V) injects into D'(V), we conclude that f vanishes a.e.
in V. Thus, z € U\supp f. This proves the converse inclusion supp f C supp¢(f), proving that
supp f = supp¢(f), as desired. O

The following example is used to characterize distributions supported in points.

B.11 Example. We assume that 0 € U. Then we can define the Dirac delta distribution 6 € D'(U)
by 0(¢) := ¢(0). To see why this is a distribution, we note that for all compact K C U we have

0(#)] = [#(0)] < pro(0)

for all ¢ € CRF(U).
We claim that § ¢ L} (U). Indeed, if it were given by a function f € L} (U), then for all

loc loc

¢ € C°(U) with 0 ¢ supp ¢, we have

0= 6(0) = 6(¢) = /U f(@)é(z) da.

This implies that f vanishes a.e. in U\{0}. But then f vanishes a.e. in U. Picking any ¢ € C°(U)
with ¢(0) = 1 yields a contradiction, since then

1= §(¢) = /U f(@)(x) dz = 0.

This proves the claim.

Next, we will show that suppd = {0}. In the proof of the above claim we have shown that
suppd C {0}. For the converse, let V' be any open neighborhood of 0. Then we can pick a
¢ € C(U) with supp¢ C V and ¢(0) = 1. Since d(¢) # 0, we conclude that 0 € suppd, proving
the result. &

B.12 Theorem. Suppose 0 € U and u € D'(U) satisfies suppu C {0}. Then there is a k € Z>o
and there exist constants co € C for all multi-indices o with |a| < k so that

U= Z € 0%.

| <k

A proof may be found in [DK, Theorem 8.10] and is based on the Taylor expansion of smooth
functions.

Before we proceed we record a general result for the product of smooth functions. For a multi-
index o we write a! := H;L:1 a;!. For every pair of multi-indices a and 3 we can write 3 < o to
mean that §; < «; for all j € {1,...,n}. Then, if 8 < a, we may define the binomial coefficient

(3) = -y
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Then, for any ¢,1 € C°°(U) and multi-index «, we have the Leibniz rule for differentiation
8} «a o —
() = > < )a%a By,
B<a b

One can prove this using the Leibniz rule for the partial differential operators 9;, j € {1,...,n}
and induction.

B.13 Definition. Let u € D'(U) and ¢ € C*°(U). Then we define ¢u € D'(U) by
Yu(e) = u(yo).
¢

Again, we should check that this definition makes sense by showing that ¢u does indeed define a
distribution for v € D'(U) and ¢ € C*(U). Let K C U be compact and let ¢ € C(U). Pick
c € Ry and k € Z> so that |u(¢)| < cpk k(). Then

[pu(@)| = lu(Pe)| < cpr k(). (B.2)

By the Leibniz rule for differentiation we have

W)=Y (g) e
BLla

so that
0 (25 E

B

() sup 0% w(olorca(s)

S

for |a| < k. Hence, there is a constant ¢’ € R4 so that

P k(WD) < dpr ().

By combining this with (B.2), we have indeed established that ¢Yu € D'(U).
The product of a smooth function and a distribution still satisfy the Leibniz rule for differenti-
ation.

B.14 Lemma. Let ¢ € C*°(U) and u € D'(U). Then for each multi-index o we have

O(pu) =Y <g> 8860 By.

BLa

Proof. Let j € {1,...,n} and let ¢ € C°(U). Then 0;(¢v0) = (0;¢)v + ¢0;v. Hence,

9j(u) () = —u(99;) = u((9;0)) — u(d;(¢y)) = (9;@)u(v) + ¢dju(y)

so that 0;(¢u) = (0;¢0)u + ¢p0;u. The general result now follows by induction. O
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B.15 Proposition. Suppose u € D'(U) satisfies u =0 for some ¢ € C>°(U). Then
suppu C {z € U | ¢(z) = 0}.

Proof. Suppose 1(z) # 0 for some z € U. By continuity of ¢ there is some neighborhood V' C U
of z so that 1 is nowhere vanishing on V. Pick ¢ € C*(U) with supp¢p C V. Then ¢/ is a
well-defined element of C2°(U), if it is understood to vanish outside of V. Then

o) =vu (%) =o.

We conclude that = ¢ suppu. The assertion follows. O
We will prove a variation of Theorem B.12.

B.16 Proposition. Suppose v € D'(R") satisfies zju = 0 for all j € {1,...,n}. Then there is
some constant ¢ € C so that u = 0.

Proof. By Proposition B.15 we have

suppu C ﬂ{x eR" | z; =0} = {0}.
j=1

Now pick x € C°(R") with x(z) = 1 for  in a neighborhood of 0 and fix ¢ € C°(R™). Then
(1 —x(z))¢(x) =0 in a neighborhood of 0 so that supp((1 — x)¢) Nsuppwu = (). Thus, Proposition
B.9 implies that

u(¢) —u(x¢) = u((1 —x)¢) = 0. (B.3)
Now write ) . .
o) — 0(0) = [ duoles)at = Y | asotea a
so that

d(z) = ¢(0) + Z zj¢i(z)

for certain ¢; € C°°(R"). But then, by (B.3), we have
u(¢) = u(xd) = ¢(0)u(x) + D wulxd;) = u(x)9(#).
j=1
This proves the assertion with ¢ = u(y). O

If we assume that U is invariant under dilations, i.e., tU C U for all t € R4, then, for any
f € L%U) and any t € R, we can define the dilated function d;f € L°(U) by dif(x) := f(tz). By

transposition, we can define dilated distributions.
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B.17 Definition. Suppose that U is invariant under dilations. For u € D'(U) we define diu €
D'(U) by
diu(p) ==t "u(di-19).

Moreover, we say that u € D'(U) is homogeneous of degree a € C if
diu = t"u
for all t € Ry. &

It is straightforward to check that dyu is again a distribution for w € D’(U) and t € R and that,
for f € L}OC(U ), both d; applied to f as a function and d; applied to f as a distribution yield the
same function so that there is no ambiguity in the notation. For such f, being homogeneous at
a € C just means that for all t € Ry we have

ftz) =1°f(x)
for a.e. x € U. Note that typical examples of open U C R" that are invariant under dilations are

R™ {0} and R™ itself.

B.18 Example. The Dirac delta distribution 6 € D'(R"™) is homogeneous of degree —n. This is
actually a special case of the following result. Let o be a multi-index and let ¢ € R;. Then

di(0°6)(¢) = t 7" (=)0 (x = §(t712))(0) = ¢~ (= 1) 1?15 ¢(0) = t7"7 1196 (9).

Hence, 0“6 is homogeneous of degree —n — |«|.

As another example we consider the function z +— |z|~*° in R™ for s € R. Using spherical coordinates
one can check that this function is locally integrable in R™ precisely when s < n. Using a change
of variables, we find that for all £ € Ry and all ¢ € C2°(R™) we have

g T
hlal o) = [ o= [ S oo ial )

| R [tz[*
so that |z|~® is homogeneous of degree —s. O

As a preparation for defining the Fourier transform, we need to define a certain class of distri-
butions known as tempered distributions. For = € R, we write z := H;‘:l x?j .
B.19 Definition. We define the Schwartz space S(R™) by the set of those ¢ € C*°(R"™) such that
for all m € Z>¢ and all multi-indices « the function = — (1 + |z|)"90%¢(z) is bounded in R™. This
space is given the structure of a locally convex Hausdorff space by equipping it with the family of
seminorms (Vy, k)m kez-, defined by

Vm,k(#) = max sup (1 + |z])™[0%¢(z)|.
lo|<k zeRn

The elements of the continuous dual §’'(R"™) of S(R™) are called tempered distributions. We equip
S'(R™) with the weak-* topology. &
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We note that one can check that the Schwartz space is a Fréchet space. A typical example of
a Schwartz function is = — e“x|2, since this function and its derivatives vanish more quickly at
infinity than polynomials. However, this also means that z — el#® cannot define a tempered
distribution as pairing off these two functions would results in a non-finite integral. However, we
will later show that S'(R™) contains the spaces LP(R™) for p € [1,00] as well as the so-called space

of smooth functions of moderate growth.
We note that for any m,m’,k, k' € Z>¢ and any ¢ € S(R™) we find that both v, ;(¢) and
V' k' (¢) are majorized BY Viax(m,m),max(k,k’)(#). This implies the following:

B.20 Proposition. Let u: S(R™) — C be a linear functional. Then the following are equivalent:
(i) u is a tempered distribution;

(i) for a finite collection (I/j)}-lzl in (Vi k)m kezs, there are constants (Cj)}‘Izl in Ry so that

J
[u(@)] <3 ey (9)

for all p € S(R™);
(iii) there are m,k € Z>o and a ¢ € Ry so that
[u(@)| < v k()
for all p € S(R™).

The following lemma shows, in particular, why the space of Schwartz functions is a natural
domain for the Fourier transform, which is defined below.

B.21 Lemma. Let 8 be a multi-index. The maps
¢ 2l ¢ 879
are continuous linear maps from S(R™) to itself. More precisely, there is a constant ¢ € Ry so that

Vo (27 0) < Vi1 1(0)s vk (0°8) < Vi oy 1(0)
for all m,k € Zx>.
Proof. Note that for any x € R" we have
2] < Jal ¥ < (1 Jal) .

Moreover, for any multi-index v we have

n n
072 = [T107 a7 | < ¢ [T+ lal)? = e(1 + [a)
j=1 j=1
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for some ¢ € Ry. Thus, by the Leibniz rule for differentiation, there is a ¢’ € R4 so that
0%(@P ) (@) < Y |72 [0* ()| < (1 +|2)P Y [[0* 76 ()|
<« <«

for all x € R™. Hence, for all m,k € Z>q there is some c € R so that for all z € R" we have

(14 |z)™|0%(279) ()| < cvmy1p4(9)

whenever |a| < k. We conclude that

Vm,k(xﬁ(b) < C//Vm+|,8|,k’(¢)a

proving the assertion about ¢ + 2%¢. The assertion about ¢ +— 9°¢ is straightforward. The result
follows. ]

Next, we will show how the space of tempered distributions can be seen as a subspace of the
space of distributions in R"™. We first observe that we have C2°(R") C S(R"), since any smooth
function that vanishes outside of a bounded set surely vanishes quicker than any polynomial at
infinity.

B.22 Lemma. The inclusion C°(R™) — S(R™) is continuous. Moreover, the space C°(R™) is
dense in S(R™).

Proof. For the first assertion, we note that for any compact K C R™ and any ¢ € C¥(R") we
have

V() < sup (1 + |z])"pk k(¢)-
zeK

This proves continuity of the inclusion.

For the second assertion, let ¢ € S(R"™) be arbitrary. Pick x € C2°(R") so that x(R"™) C [0, 1]
and x(z) = 1 whenever |z| < 1. Then, for ¢t € R, we define ¢; := (drx)¢ € C°(R™). It suffices to
show that lim; g ¢ = ¢ in S(R").

For any multi-index o we have, by the Leibniz rule for differentiation and the chain rule,

8%y (z) = ) 8198 (t2) 02 B ()
> (3)

for x € R™ and t € R4. Hence, there is some ¢ € Ry so that

0%(¢1 = ¢)(@)] < [(x(tz) = DO"d(x)| + ¢ Y ¥]0°Po(a)].
0£B<a

Since x(tx) — 1 =0 for |z| < 1/t, we conclude that for ¢ < 1 there is a ¢ € Ry so that

(14 [z])™0%(¢¢ — ¢)(@)| < max sup (1+ |2])"|0%()] + ctv,k(9) (B.4)
ol <k |z>1/¢

for |a| < k for all m, k € Z>o. We note that

(L+[2)™0%(x)] < (L + |2) " vmsrk(d) = 0 as [a] = o0

105



for m € Z>g and |a| < k € Z>g. Thus, we may conclude from (B.4) that

Vi gi(¢¢ — ¢) < max sup (1 +[z])"[0%¢(z)| + tvpmu(¢) =0 as t10
lo| <k |z>1/¢

for all m,k € Z>g. The assertion follows. O
By this lemma we see that the restriction mapping
Sl(Rn> — D/(Rn)7 u +— u‘ccoo(Rn)

is an injective continuous map, where well-definedness follows from continuity of the inclusion
C*(R") — S(R™) and injectivity follows from density of C°(R") in S(R™). We will usually
simply write S'(R™) C D'(R"™), where the identification is implied to be given by restriction.
Similarly we will simply call an element of D'(U) a tempered distribution if it is actually the
restriction of an element of S’(R™). An example would be the Dirac delta distribution § € D'(U).
Since

6(#)] = [(0)] < v0,0(¢)

for any ¢ € C°(U), we conclude that we actually have § € S'(R"™). As a matter of fact, one can
show that any compactly supported distribution is a tempered distribution. A discussion on this
can be found in [DK, p. 189].

B.23 Proposition. Let p € [1,00]. Then S(R™) C LP(R™), where the inclusion is continuous.
Furthermore, the map ¢ : LP(R"™) — S'(R") defined by

Uf)(9) = Rnf(@cﬁ(w) dz
1s a well-defined continuous injection.
By this proposition we have the continuous inclusions
CZR") CSR") C L'(R") € S'(R") S D'(R")
for all p € [1,00]. For the proof we will use an auxiliary lemma.

B.24 Lemma. Let s € R. We have

/ (1+|z|) *de < oo

whenever s > n.

Proof. Let ¢ € R4 denote the n — 1-dimensional Euclidean surface measure of the unit sphere in
R". By employing spherical coordinates we obtain

Cc

/ (1+ |z|)~°dx = c/ PN 14 r) "0 dr < c/ (1+r)"17%dr =
n 0 0

s—n

whenever n — s < 0. The assertion follows. O
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Proof of Proposition B.23. First suppose p € [1,00][. If ¢ € S(R"), then

| o@irds = [ (41 4 ) 6@ do < o0 [ 1+ [al) P e < o

n

by Lemma B.24, so that¢ € LP(R"™). Moreover, this estimate implies that

16l < ( JRCEIEI NG pdx) " vmrrol®),

so that the inclusion S(R™) C LP(R") is continuous. For p = oo we simply note that ||¢|l.c =

v0,0()-
For the next assertion, we let p € [1,00] and let p’ € [1,00] denote its Holder conjugate. For
any f € LP(R"™) and any ¢ € S(R™) we then find, by Holder’s inequality, that

(£ @) < [ fllpll¢llp-

By the previous result we can estimate ||¢|,y by a constant times vy, o(¢) for an appropriate
m € Z>g, so that we may conclude that ¢(f) indeed lies in S'(R™) and that ¢ is continuous.
Finally, we need to check that ¢ is injective. Suppose ¢(f) = 0 for some f € LP(R"™). Then f is
a locally integrable function that defines the zero distribution in R"™, so it must vanish a.e. in R"”
as in the proof of Proposition B.6. The assertion follows. O

B.25 Definition. We define the space Oy (R™) of smooth functions of moderate growth to consist
of those ¢ € C*°(R") so that for each k € Z>( there is some ¢ € Ry and an mg € Z>¢ so that for
all multi-indices o with |a| < k we have

0%p(x)] < e(1 + =)™

for all x € R™. We give the space the structure of a locally convex Hausdorff space by equipping
it with the seminorms

Ny (@) := max sup [¢(x)0%¢(z)|

la|<k zeR™

for ¢ € S(R™). &

For this definition, we should first check that these seminorms are well-defined. For this we shall
prove the following proposition:

B.26 Proposition. Let ¢ € Oy (R™) and ¢ € S(R™). Then ¢pyp € S(R™). Moreover, the mapping
S(R™) — S(R™) given by ¢ — ¢ is continuous.

Proof. Let m,k € Z>¢. Since ¢ € Opr(R"), there is some ¢ € Ry and some mg € Z>( so that for
all multi-indices « with |a| < k we have

|0%p(x)] < e(1 + [z])™

107



for all x € R™. Hence, by the Leibniz rule of differentiation, there are ¢/, ¢” € Ry so that

(1+ [z)™0%(dw) ()] < (1 +[z)™ Y <g> 10° 6 ()[|0* P4 ()]
BLa

< (A )™ Y el + |a]) 0|0 P ()]

BLa

< C//Vermo,k(w)

for |a| < k, so that
Vm,k:(gml)) < C,/Vm-‘rmo,k(d))-

This proves both assertions. O

Combining this proposition with the fact that 0%¢p € Op(R™) for any ¢ € Op(R™) and any
multi-index «, shows that 10%¢ € S(R™) C L*°(R"). This proves that the seminorms on Oy (R")
are indeed well-defined.

To see that Op/(R") is indeed Hausdorff, we should check that if for some ¢ € Oy (R") we
have ny (¢) = 0 for all » € S(R"), then ¢ = 0. But for this we could pick any z € R" and a
x € C(R™) with x(z) =1 so that

¢(x)] = [o(x)x(2)] < no.y(d) =0,

showing that, since x was arbitrary, ¢ must be 0.
Next, we will now show that Oy;(R") C §’(R"™), where the inclusion is continuous.

B.27 Proposition. We have S(R™) C Oy (R™), where the inclusion is continuous. Furthermore,
the map ¢ : Oy (R™) — S'(R™) defined by

UR) (W) == [ dla)(x)dx (B.5)

Rn
18 a well-defined continuous injection.

Proof. Let k € Z> and ¢,¢ € S(R™). Then for any multi-index o with |a| < k and any z € R"
we have

|6(2)0%Y ()| < v0,0(9)v(0, k) ()
so that ¢ € O (R") and
k.o (¢) < v00(@)r(0,k)(4).

This proves the first assertion.

Next, we will check the second assertion. First we shall check that ¢ is well-defined. Let
¢ € Oy (R") and ¢ € S(R™). Then ¢ € S(R™) C L'(R™) by Proposition B.26 and Proposition
B.23 so that the integral in (B.5) is well-defined. Moreover, these propositions imply that the
composition

S(R") = S(R") = L'(R"), ¢ ¢y > o0
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is continuous. Hence, there are ¢ € R4 and m, k € Z>( so that

[¢vll1 < cvim k().
Thus,
(@) (W) < |89l < cvm k()

proving that «(¢) € S'(R™), as desired.
To see that ¢ is continuous, we define x : R® — C by x(z) := 2"TY(1 + |z|?)""1y(x) for
1 € S(R™). Then y € S(R") by Lemma B.21 and the binomial theorem. Thus, since (1 + |z])? <
2(1 + |z[)? so that
(14 Ja)20) < 271 (1 4 a2y,

we have

(&) (@)] < /R (Ul 2D ] 2D () o) | da < oy (0) / (1+[al)20+D) dg.

R”

By Lemma B.24, this proves the result.

Finally, we should check that ¢ is injective. If ¢(¢) = 0 for some ¢ € Op(R") C L}, .(R™), then
¢ defines the zero distribution. Thus, we must have ¢ = 0 a.e. in R" by the corresponding result
for distributions. Since ¢ is continuous, we conclude that ¢ = 0. The assertion follows. O

Next, we wish to define the Fourier transform. For any ¢ € S(R") we define .#¢ : R"™ — C by

F9(€):= [ dla)e " d,

where it is customary to write £ for the coordinates on the Fourier side.

B.28 Proposition. The mapping ¢ — F ¢ is a well defined continuous linear map from S(R™) to
S(R"™). For any ¢ € S(R"), £ € R", and j € {1,...,n}, we have

F(0;0)(§) = 2mi&;. 7 (&),  0;(F¢)(§) = —2miF (x0)().
Finally, for any pair ¢,v € S(R™) we have
(F¢,0) = (o, F1)). (B.6)

Proof. Since S(R") C L'(R") and |p(z)e 2" = |p(x)| for all 2,6 € R"™, we find that the
integral that defines % is well-defined and that it yields a continuous function by Lebesgue’s
Dominated Convergence Theorem. In particular, we have Z¢ € L*°(R"™), where the bound is

given by [|o]|1.
For the last assertion, we note that for any ¢,9 € S(R"™) we have

Fou) = [ [ o deds = (0. 70)

by Fubini’s Theorem. Note that all these integrals are well defined as integrals of the product of a
function in L!'(R") and a function in L>(R™).
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Next, we will check that .# maps S(R") into S(R"). Fix j € {1,...,n}. For any ¢ € S(R")
we have z;¢ € S(R™) by Lemma B.21. Hence, when differentiating with respect to £, we find that

8j(¢(x)e_2m§'x) = —27rixj¢(m)e_2m§'w (B.7)

is integrable over R™ with respect to x. By the theorem on differentiation under the integral sign
we find that .# ¢ is partially differentiable with partial derivatives

0}(F6) = ~2miF (2;9) (B3)

by (B.7). The partial derivatives of Z¢ are again % applied to a Schwartz function so that, by
induction, we have .7 f € C>(R").
Since 0; maps S(R") into itself by Lemma B.21, we find that for any ¢, € S(R"™) we have

Since S(R™) is dense in L!(R™) as it contains the dense set C2°(R™), we conclude that
F(0j¢) = 2mi&; F ¢. (B.9)

By combining the expressions (B.8) and (B.9), we find that for every pair of multi-indices «, 3, we
have
Eo(F¢) = (—1)l 2mi) 117 (07 (2%¢)) € L(R™)

with bound ¢||0?(z%¢)||; for ¢ = (—1)lol(27i)l*I=18l. Thus, since for each m € Z>o we can estimate
(1 + |z|)™ by a polynomial in x, we conclude that we must indeed have .#¢ € S(R™). Moreover,
by Lemma B.21 and Proposition B.23 there are mg, kg € Z>¢ so that for each k € Z>( there are
constants ¢, ¢’ € R4 so that

max sup |£P0%(F < cmax ||0% (2 < ¢ max v, 98 (2
max sup [€°0°(F6)(O)] < emax [07(2"0) b < ¢ it v 1, (0°(2°6) -

// //
< ¢ max Vimo-+lalko+18] (#) < € Ving ke ko-+16] ()

As each S(R"™)-seminorm of .% ¢ can be estimated by a constant times terms like the one on left-
hand side of (B.10), we conclude that .# maps S(R™) continuously into S(R™). The assertion
follows. O

We can now give an important example.

B.29 Example. Define 71 € S(R) by 71(x) := e~™” Then ~; integrates to 1, since

2 00 —r2 >
(/ e~ dx) = / e T@i+a3) 4 = 27r/ re” ™ dr = —21r [e ] = 1.
R R2 0 2T

0

Since
Y (x) = =21y (),
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applying .7 yields

it Fn(E) = FH)(E) = ~2mF (o) = 5 (Fn)(€)

by Proposition B.28. Hence, .#; satisfies the differential equation

(Fn) (&) = —21EF71(8),

meaning that v, and %~ satisfy the same differential equation. But then

d ZFy(t Fy(t Fy(t
AFn®) _ _, Fnl) 71()20,
dt ~1(t) ~1(t) 71(t)
which implies that there is a constant ¢ € C so that .#~; = ¢vy1. To compute ¢, we note that
¢=cm(0) =Fn(0 /’n
R

We conclude that %+, = ;.
Now define v € S(R") by v(z) := e ™*°. Then

#206)= [ePemenan = [ onten)enrn s = [10(6) =00

J=1

for all £ € R" so that v =~. %

B.30 Definition. We define the Fourier transform # : S'(R") — S'(R™) by

for u € S'(R") and ¢ € S(R™). ¢

By Proposition B.28 we indeed have u o .# € S'(R") for any u € S'(R") as .# is a continuous
linear mapping from S(R™) to itself. We also note that, by (B.6), this definition coincides with the
old definition for S(R"™) C S'(R").

B.31 Proposition. The Fourier transform gives a homeomorphism % : S(R") — S(R™) whose
inverse is given by 1 : S(R") — S(R"),

Fo(x) = Fo(—x) = Rn¢(£)e2ﬂ'ix~§ dé

for € S(R™) and x € R™.

Proof. Since the constant 1 function, which we also denote by 1, is bounded, it defines a tempered
distribution. We will first show that .#1 = §. By Proposition B.28 we have

1
Fl = —F(3;1) =0
x] 271-1 ( J )
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for all j € {1,...,n}. It follows from Proposition B.16 that .#1 = ¢d for some ¢ € C. If we define
~ as in Example B.29, then

We conclude that we indeed have Z#1 = .
Since the Fourier transform maps S(R") continuously to itself, so does .#~!. Pick any ¢ €
S(R™) and fix xgp € R™. Then, by a change of variables, one finds

F (= ¢lxo — 1))(§) = F 1 ¢(€)e 7m0,
Thus, we obtain
b(z0) = 6(z — d(zo — 7)) = F1(z > d(z0 — 7))
= (L, F(z = ¢(xo — 1)) = / F(—€)e 2w ¢

n

so that .% (. ~1¢) = ¢. But then, by a change of variables, we also have
F N F)(x) = F(F (x> ¢(—1)))(—z) = ¢(x)
for all x € R™. The assertion follows. O

Note that .# ! : S(R") — S(R") defined as in the proposition can be extended to all of S’(R")
in the same way we did for the Fourier transform, i,e., for u € S'(R") we define

T u(¢) = u(F'9)

for ¢ € S(R™). This way of defining a linear operator on a space to its dual space is referred to
as transposition. Using the above proposition and by unwinding the definitions we see that .# !
inverts .# on S'(R").

In the following theorem, we summarize some important properties of the Fourier transform.

B.32 Theorem. The Fourier transform is a homeomorphism F : §'(R"™) — S'(R"™) that restricts
to a homeomorphism from S(R™) to S(R™).
We have
F(L'(R") C L*(R"), F(L*(R") C L*(R"),

where the restriction of F to L'(R™) satisfies ||.Z flloo < || fll1 for any f € LY(R™) and where the

restrict of F to L*(R") is a unitary isomorphism of L>(R™). The same assertions hold for F !
instead of F .
Finally, for any u € S'(R™) we have

(i) F(0%u) = (2mi)lMe*Fu, 0%(Fu) = (—2mi)lM\Z (2%u) for every multi-index a;

(ii) di(Fu) =t7"F(dy-1u), F(du) =t "dj-1(Fu) for everyt € Ry;
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(i1i) FA, = A.F for any orthogonal transformation A € R™™, where A.u(¢) := u(¢p o A) for
¢ € S(R™);

(iv) F(f*g) = FfFg for f € L*R"™) and g € L*(R™) or g € L*(R™), and similarly for 1
instead of F.

Proof. To see that the Fourier transform is continuous, we note that for each u € S'(R"™) and each
¢ € S(R"), since u is a tempered distribution, there is a ¢ € R4 and m, k € Z>¢ so that

[ Fu(@)] = [u(FP)| < cvmi(F ).

Thus, since .# maps S(R") continuously to S(R™) by Proposition B.28, we can find a constant
¢ € Ry and some m/, k' € Z>( so that

| Zu(@)] < cmp(Fd) < vny ().

This proves continuity of .%. Showing that .# ! is continuous is completely analogous. To see that
Z and .Z ~! invert each other, we use the fact that they invert each other on S(R™) by Proposition
B.31. Then it follows that for any u € S’'(R"™) we have

FF u=uoFoF ' =u,

and similarly % 1.%u = u. We conclude that .% is indeed a homeomorphism of &'(R") with
inverse .7 L.
To see that .Z (L'(R™)) C L>®(R"), we note that

f(x)e_%”f'x dz
Rn

is well defined for any f € L'(R") and any ¢ € R". An application of Fubini’s Theorem shows that
this function coincides with .7 f, so that the Fourier transform of an element of L!(R") is again
a function. Moreover, we find that |Z f(§)| < || f|l1 for all £ € R™ so that ||.Z f|lcc < ||f|l1- The
result follows.

For the assertion about L?(R™), we first note that for any ¢ € S(R™) we have

Fo@ = [ @ as = 75(e)

= Rn
for any £ € R™. Hence, for all ¢,9 € S(R"™) we have
(F 0, TU) =(F 6, T 79) = (6, 7T ) = (6,9))
by (B.6). In particular, this means that
|Z6l: = (76, 76)2 = |62

for any ¢ € S(R™). This means that .%, viewed as a mapping from S(R") to S(R"), has an
isometric extension F : L?(R") — L?*(R"). Since L?(R") C S'(R"), we should check that Ff =
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Zf for any f € L*(R"). Fix f € L*(R"). As S(R") is dense in L*(R"), since it contains the
dense set C2°(R™), we can pick a sequence (¢;)jen in S(R") that converges to f in L*(R").
Since F is continuous, this means that (F¢;)jen converges in L%(R") to Ff. As the inclusion
L*(R") C S'(R™) is continuous, we conclude that (F¢;)jen converges to Ff in S/(R™). On the
other hand, we can also conclude that (¢;),;en converges to f in S’'(R™). Since .# is continuous as
a map from S’'(R") to S’(R"), we conclude that also (% ¢;)jen converges to .# f in S'(R™). But
since .Z ¢; = F¢; for all j € N, we conclude, since S’'(R") is Hausdorff, that

Ff=lim F¢; = lim %¢; =%f
j—00 j—o0

where the limits are in S'(R"). But this means that for any f € L?(R") we have Zf = Ff €
L?(R") with
17 fll2 = [ fll2-

1

Showing that a similar result holds for .# ~ is analogous. We conclude that .% restricts to a unitary

isomorphism of L?(R™).

The assertion (i) follows by transposition and Proposition B.31. For (ii) and (iii), one first
checks their validity for functions in S(R"™) by applying a suitable change of variables. The general
results follow by transposition. We will give a proof of (iii) and omit the proof of (ii).

We first note that for any orthogonal transformation A € R™"™ we have that ¢ — ¢o A
leaves the seminorms on S(R™) invariant so that indeed A.u € S'(R™) for any v € §'(R™). Fix
¢ € S(R™). Using the change of variables z — Az = A~lz we obtain, since |det A| = 1,

F(poA)&) = | d(An)e ™ N dr= | ¢(a)e TN da
R R"
= | d(a)e” A Az = Fo(Ag)

RTL

for all £ € R™ so that Z(¢po A) =.F¢o A. Thus, for any u € S'(R™) we have
FAwu(p) =u(FpoA) =u(F(poA)) = A Fu(ep).
This proves (iii).
For (iv), we first note that for any f € L'(R") and g € L'(R") or ¢ € L?(R") we have

fxg € LYR") or f*g € L*(R") respectively by Minkowski’s inequality for convolutions, see
Lemma A.5. First we assume that f,g € L'(R"). Then, since

e—27r§~x — 6—27r£':c—y€—27r§-y
for all z,y,& € R™, we have
F(f+9)&) = / R flz = y)e 2™ g(y)e ™Y dy da = F f(§) F g(€)
for all £ € R™ by Fubini’s Theorem.
Now suppose f € L'(R") and g € L?(R"). Since L'(R")NL?(R™) contains C2°(R™), this space

is dense in L?(R™). Pick a sequence (g;)jen in L'(R™) N L?(R™) that converges to g in L*(R").
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By Minkowski’s inequality for convolutions we have f % g; — f * g as j — oo in L*(R"). As .F
maps L?(R™) isometrically into itself, we conclude that .7 f.% gj = F(f *gj) converges to .Z(f *g)
as j — oo in L%(R™). On the other hand, since Fg; € L*(R") and since multiplication by an
essentially bounded function is a continuous operation in L?(R"), we find that . f.% g —~ F[fFg
in L?(R™). Taking limits in L?(R"), we conclude that

F(f*9) Zjlgriloﬂ(f*gj) =jlggoﬁfﬁgj =7f7g.

This proves the desired result. The assertions for .# ! are proven analogously. 0
Properties (ii) and (iii) imply the following result:

B.33 Corollary. A tempered distribution u € S'(R™) is rotationally invariant, i.e. Asu = u for
all orthogonal transformations A € R™™ if and only if Fu is rotationally invariant. Moreover, u
is homogeneous of degree a € C if and only if Fu is homogeneous of degree —n — a.

B.34 Example. Let o be a multi-index. Then we wish to compute the Fourier transform of
0%6 € 8'(R™). First note that

Fo(0) = Fo(0) = | o(r)de = (1.9
for all ¢ € S(R™), so that .76 = 1. Therefore, we have
F(0%6) = (2mi)lle>Z 6 = (2mi)lelee,
Moreover, we can also compute
FH9%0) = (—2mi)lolz,

This means that if v € S'(R") is a distribution satisfying supp #u C {0}, then it follows from
Theorem B.12 that .Zu is a linear combination of terms of the form 9%5. Hence, by applying .% ~*
we conclude that w is a polynomial.

We describe a typical scenario where this would occur. Let P : R® — C be a polynomial, i.e.,

P(zx) := Z Cax®

|| <k
for k € Z>¢ and c, € C. We then write
D, — La. P(D) = Z Co_ g (B.11)
T o ._| = (27i)led ‘

for the associated partial differential operator. Now assume that P(z) = 0 if and only if z = 0 and
suppose u € §'(R") satisfies P(D)u = 0. Then

0

i
9
)
S
=
I
)
o
s
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so that, by Proposition B.15, we have supp #u C {0}. We conclude that any v € S’'(R"™) that
satisfies P(D)u = 0 must be a polynomial. We can, for example, take P(D) to be the Laplacian

A, where
n
A= — Z 6]2 ,
j=1
since . FA = (2m)%|¢2. In the case where n = 2, two important examples are the Wirtinger
derivatives

1 1
0, = 5(81 —i09), Oz:= 5(81 +i02).

These satisfy Z0, = wi(& +1&2), F 0z = wi(§1 —i&2) which both only vanish when £ = 0. We refer
to Appendix C for a more complete discussion of the Wirtinger derivatives. &

The Laplacian, as well as the Wirtinger derivatives, are examples of so-called elliptic linear partial
differential operators. These have the particularly nice property that certain distributional solutions
to associated differential equations must automatically also be classical solutions in the sense that
these distributions must be given by classically differentiable functions. This is referred to as elliptic
regularity. We will make these statements more precise.

B.35 Definition. For u € D'(U) we define its singular support singsuppu as the complement in
U of the set of all points in U that have an open neighborhood V C U so that there is a smooth
function ¢ € C°(V') so that for any ¢ € C°(U) with supp ¢ C V we have

u(g) = /V b()p(z) de.
&

The singular support of a distribution u € D'(U) is the complement of the largest open set where
u is given by a smooth function. In particular this means that singsuppu = ) if and only if u
is a smooth function. Since the zero function is smooth, we have singsuppu C suppu for any
u e D'(U).

As an example, the only singular point of d is 0 so that sing supp d = {0}.

B.36 Definition. Let P : R" — C be a polynomial,

P(x) := Z Cax®

o] <k

for k € Z>o, co € C. We define the associated linear partial differential operator P(D) as in (B.11).
We say that this linear partial differential operator is elliptic if

Z cex® =0 1if and only if x =0.
la|=k

¢

Note that ellipticity of a linear partial differential operator only depends on its highest order terms.
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B.37 Theorem (Elliptic Regularity). Suppose P(D) is an elliptic partial differential operator. For
any uw € D'(U) we have
sing supp P(D)u = sing supp u.

In particular, if P(D)u = 0, then u is a smooth function.
For a proof, see [DK, Theorem 17.6]. So much for our discussion on elliptic regularity.

B.38 Theorem. Letu € S'(R™). Suppose that u is homogeneous of any degree and that sing supp u C
{0}. Then singsupp .Fu C {0}.

See [Gr, Proposition 2.4.8] for a proof of this result. The proof uses an appropriate splitting of
the distribution and the fact that the Fourier transform of a compactly supported distribution is
given by a smooth function, the proof of which is given in [Gr, Theorem 2.3.21].

Let z € R™. Then we define the reflected translation 7% : R™ — R" by T*(y) := = — y.

B.39 Lemma. The mapping ¢ — ¢ o T% is a continuous linear mapping from S(R™) to itself.
Moreover, for each u € S'(R™) the mapping Tu : S(R™) — C defined by

Tou(6) = u(g o T7)
s a tempered distribution.

Proof. Note that for each z,y € R™ we have
T+ [z 4yl < T4 faf+ Jyl < T+ fa + Jyl + [=llyl = T+ 2D+ Jy])-
Thus, for all m,k € Z>g we have

V(¢ 0 T%) = max sup (14 [z +y[)"[0%(y)| < (1 + |2])" vk (¢)- (B.12)
oo <k yeERM

This proves the first assertion.
For the second assertion we let u € S'(R"). Picking m,k € Z>p and ¢ € R4 so that |u(¢)| <
cVm k(@) for all ¢ € S(R™), we conclude from (B.12) that

T2u(6)] = [u(é 0 T%)| < cVmi($0T7) < (1 + [2)"v(¢) forall g € SRY.  (B.13)
The assertion follows. O

B.40 Definition. For any pair u € 8'(R"), ¢ € S(R"™) we define the convolution u* ¢ : R" — C
of u and ¢ by

(ux @) (z) = Tiu(9),

where T7u is defined as in Lemma B.39. &

One can similarly define the convolution of a distribution and a compactly supported smooth
function in which case one ends up with a smooth function. For the relevant properties of such

convolutions we refer to [DK, Chapter 11]. As an important example, we observe that for any
¢ € S(R™) we have

(0% ¢)(x) = (T*(0)) = ()
for all z € R™ so that d x ¢ = ¢.
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B.41 Proposition. Let u € S'(R™) and ¢ € S(R™). Then ux ¢ € Oy (R™). For any multi-index
a we have

0%(u* @) = 0% p =ux*d¢. (B.14)

Moreover, the convolution operator
ukx:S(R") = Oy(R"), Y uxtp
18 a continuous linear mapping. Finally, we have
Fux o) =FdFu
as the product of a smooth function and a distribution.

Proof. We will first prove (B.14). We proceed in steps.

1. We will first show that poT™% — ¢ as z — 0 in S(R"). Pick ¢ € S(R"). For all z,y € R"

we write

olx+y) — /(;5 st +y) ds—Zx]/ajq[) sr+y)d

so that
(60 T)(y) - oly)| < Zw/ 10;6(52 + y)| ds < |er/ (@560 T ")) ds.  (B.15)
Since, for every multi-index o and m € Zx>(, we have

(T+ |y])™ /()1\(8j8°‘¢ o T™*%)(y)|dx < /Oll/m,o((‘)j@agb oT™*")ds < /01(1 + |82]) " Ui, 0(0;0%¢) ds
< (1 [o]) ™m0 (850°9) < (1 + 2l) Wy 11(6)
by (B.12), we may apply (B.15) to 0%¢ instead of ¢ to conclude that for all m,k € Z>o we have
Um k(o T™% — @) <nlz|(1+ |z))"Vmt1(¢) = 0 as x—0.

This proves the desired result.
2. For each ¢ € S(R"), t € Rand j € {1,...,n}, we define AJp € S(R™) by

¢(x + tej) — o(x)
t )

Alp(x) :=

where e; is the canonical j-th basis vector in R". We claim that A{ ¢ converges to 0j¢ in S(R")
as t — 0. Writing

1 d 1
oz + hej) — ¢(x) = /0 ol +stej)ds =t /0 Oy9(x + ste;) ds,

118



we conclude that .
Al(x) — 90(x) = /0 (950 0 T~*')(x) — 9j(x)) ds.
Hence, by applying this to 0“¢ instead of ¢, for all m, k € Z>y we have
Ui (Ap — 0;0) < Va1 (o T —¢) 50 as s—0
by step 1. This proves the result.
3. Now let u € S'(R™), ¢ € S(R"), z € R", and j € {1,...,n}. Then

(ux@)(x+tej) — (uxo)(x) . <¢0Tw+tej —¢poT*
t t

) = —ulat (o)

for all ¢t € R, so that

dj(u* ¢)(x) = lim (ux @)(x + tej) — (ux ¢)(x)

t—0 t

= —u(9(¢oT")) = (Jju* ¢)(z)
by step 2 and Lemma B.39. Since
(Ojux ¢)(z) = —u(0j(¢ o T7)) = w(8;¢ * T%) = (u * 9;¢)(x),

we may proceed by induction to conclude that (B.14) holds.

Next we will show that u* ¢ € Oy (R™). Since u € §’'(R"), there are m,k € Z>p and a c € Ry
so that |u(v)| < cvp k(1) for all p € S(R™). Hence, by (B.14) and (B.13), for all multi-indices o
we have

0% (ux §)(2)] = |(u* 87¢)(z)| = [w(8%¢ 0 T*)| < vy k(0P 0 T7)
< (1 [2])"vm 1 (0%¢) < (1 + [2])" Vin k41 ()

so that u* ¢ € Op(R"™), as desired. Moreover, we note that this inequality implies that
(U @) < c Sup (L4 [2))™ ¢ (@) [V 41 (8) = Vim0 (¥)Vm i1 (9)
zeR"™

so that the convolution operator S(R"™) — Oy (R™), ¢ — u * ¢ is continuous.
For the final assertion we refer to [Gr, Proposition 2.3.22(11)]. O

B.42 Definition. Let P(D) be a linear partial differential operator with constant coefficients, i.e.,
an operator as in (B.11). We call E € D'(R") a fundamental solution of P(D) if P(D)E =4.

B.43 Proposition. Let P be a polynomial and let P(D) be the associated linear partial differential
operator. Suppose P(D) has a fundamental solution E € S'(R™). Then the convolution operator

Z:SR") - Ou(R"), ZLo:=FEx¢
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satisfies

P(D)(ZL¢)=¢ forall p € S(R").

In particular, for a given ¢ € S(R™) the function u := L¢ € Op(R") is a solution to the partial
differential equation P(D)u = ¢. Moreover, the Fourier transform of the fundamental solution

satisfies the equation
P)FE =1.

Proof. Let ¢ € S(R™). By linearity we have
P(D)(Z¢) = P(D)(E*¢)=P(D)Ex¢=0%¢=¢.

This proves the first assertion.
For the second assertion we note that

| = 76 = FP(D)E = P(¢)FE

by Example B.34. The assertion follows. O
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C Appendix: Complex Analysis

Rather than differentiating with the coordinates obtained from R?, i.e., using the directional deriva-
tives 0, and 0, we will use the so-called Wirtinger derivatives

1 ) 1 .
0, == 5(81 —i0y), Oz:= 5(036 +10y). (C.1)
To motivate why it makes sense to define these operators in this way, we write z = x + iy and

Z = 2 — iy. Then for a given C'-function f : R?> — C we can write
Z2+zZ z2—Z

Pz =1 (55557 ) = s
Formally taking derivatives and using the chain rule yields
Opf(z,y) = 0, F(2,Z) + 0:F (2, 2)
Oy f(2,y) = i0.F (2,7) — i0:F (2, %),

which implies 0, = 0, + 0z and i0y = 07 — 0. Solving for 0, and 05 yields (C.1).
We note in particular that 0,z = 932 = 1 and 9,Z = 0z = 0.

C.1 Proposition. Let U C C be open and let f, g be differentiable in U. Then
(i) 0:(fg) = g0-f + fO.g, and 0z(fg) = g0=f + fOzg;
(iii) If g(U) C U, then

6Z(f © g) = (82}0 o g)azg + (@f o g)az§
0z(f o g) = (0zf 0 9)9zg + (0. f © 9)0=g.

Let a,b € R with a < b. We say that a function v : [a,b] — C is a C! path if it is continuous,
continuously differentiable in ]a, b[, and its derivative extends continuously to [a,b]. We say that
such a function is a piecewise C! path if there is a partition a = ag < a; < - < ay, = b of [a, b]
so that the restriction v; := ’Y’[aj,l,aj} is of class C! for all j € {1,...,m}. We call (7))L, the ct
pieces of 7. We say that v is a closed path, if v(a) = v(b).

C.2 Definition. Suppose v : [a,b] — C is a C'! path and suppose f : y([a, b]) — C is a continuous
function. Then we define the integral and the conjugate integral of f along v by

b b
z)dz := "(t) dt, z)dz := (t) dt,
L £(2) / S (1) dt / 1(2) / Fr D dt

respectively.

More generally, if v is a piecewise C' path, then we may define the integral and the conjugate
integral of f along v by

L f(2)dz = Z / FELE / f()dz = Z / FOLE
where (v;)72; are the C! pieces of 7. &
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We note that we have the relation

/yf(z) dz = A]”(z)dz.

C.3 Lemma. Suppose 7 : [a,b] — C is a C* path and suppose f : v(|a,b]) — C is a continuous
function. Let a’,b' € R with o' <V. If ¢ : [a',V'] — [a,b] is a C* mapping satisfying ¢(a’) = a and
o(b') = b, then

][f(Z)dz=: f(2)dz
¥ Yo

and similarly for the conjugate integral. If however ¢p(a’) =b and ¢(b') = a, then

[1@az=- [ se)a
ol Yo

and similarly for the conjugate integral.

Proof. Since (yo0¢)'(t) =+ (¢(t))¢'(t) for t €]a’, V[, we find by the Change of Variables Theorem
that

v p(b)
(z)dz= [ f(v((1))V (6(t))¢'(t) dt = / FOr@)y'(t) dt.
Yo¢ a’ p(a’)
The integral on the right is equal to fvf(z) dz if ¢(a’) = a and ¢(b') = b and to — fvf(z) dz if
¢(a’) = b and ¢(b') = a, as desired. The proof for the conjugate integral is analogous. O

For a piecewise C! path v : [a,b] — C we define y~! : [a,b] — C by v~ 1(t) := v(a + b —1).
Then the above lemma implies that

for any continuous function f defined on ~([a,b]), and similarly for the conjugate integral.

C.4 Definition. A set I' C C is called a Jordan curve if there is a continuous closed path
7 : [a,b] — C that is injective on [a, b[, satisfies v(a) = v(b), and satisfies y([a,b]) =T'. In this case
we say that I' is parameterized by . If 7 is a piecewise C! path with non-vanishing derivatives
where it is C!, then we call I" a piecewise C! Jordan curve or a closed contour. &

Basic examples of piecewise C! Jordan curves are circles and rectangles in C.

C.5 Theorem (Jordan Curve Theorem). The complement of any Jordan curve in C is the disjoint
union of exactly two non-empty connected open sets.

A proof may be found in [Ha, p. 169]. Since a Jordan Curve I' is compact, precisely one of its
complementing components must be bounded. We say that I' encases the bounded component.

122



C.6 Definition. Let 2 C C be a bounded open set so that its boundary 02 consists of finitely
many disjoint piecewise C! Jordan curves I'y,...T,,. We say that 9 is positively oriented if for
each j € {1,..., m} we have chosen a parameterization v; of I'; so that -y, traverses I'; while leaving
Q to its left. For a continuous function f : 92 — C we then define the contour integrals

8Qf(z) dz := Z f(z)dz, aQf(z) dz := ; wf(z) dz.

j=1"7i
%

The notion of a parameterization of a Jordan curve leaving a region to its left is well-defined by
the Jordan Curve Theorem. We remark that the definition of the integral along 92 as above is
independent of the chosen parameterizations of the Jordan curves by Lemma C.3. Green’s Integral
Theorem takes on a particularly nice form when using our current notation.

C.7 Theorem (Green’s Integral Theorem). Let Q C C be a bounded open set so that its boundary
0Q consists of finitely many disjoint piecewise C* Jordan curves. Let f : Q — C be a continuous
function that is C' in Q. Then

1

= Z an(Z) dZa

1 _
/Qﬁzf(z)dz: —5 {mf(z)dz, /Qagf(z)dz

where the integrals over Q are integrals with respect to the Lebesgue measure on ).
An immediate consequence of Green’s Integral Theorem is Cauchy’s Theorem.

C.8 Corollary (Cauchy’s Theorem). Let U C C be open. Suppose f € CY(U) satisfies Ozf(z) = 0
forall z € Q. LetT C U be a piecewise C' Jordan curve parameterized by «y, that encases a subset

of U. Then
/f(z) dz =0.
~

Proof. If we denote the set encased by I' by €, then Q C U and the result is immediate from
Green’s Integral Theorem. O

C.9 Example. Let r, R € R so that 0 < r < R. Then we define the annulus @ :={z € C | r <
|z| < R}. Then 02 consists of the circles with radii » and R, centered at the origin. For p € Ry
we define A

Y, :[0,27] = C,  v,(t) == pe™.
Then 052 is given a positive orientation by the C* paths v, ! and ~g.

Let f : Q — C be a continuous function that is C! in Q and satisfies 9:f(z) = 0 for all z € Q.
Then Green’s Integral Theorem implies that

o:2¢/Qazf(z)dz:/mf(z)dz—/rf(z)dz.
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Hence,

/7 fe)az = / )

meaning that, where it is defined, the integral of f along counterclockwise oriented circles around
0 is independent of the radius of the circle.

Moreover, we find that

/Q 0.1(2)dz = o / 1) @z o / ECL
1
2

o | | ' (C.2)
= /0 (Rf(Re™) —rf(re™))e " dt.

If f(z) = —1/z for z € 99, then 0, f(z) = 1/2% for z € Q, and we may conclude from (C.2) that
1 O P
Q?dzzi ; (e —e Me "dt = 0. (C.3)
¢

C.10 Theorem (Cauchy-Pompeiu Integral Formula). Let Q@ C C be a bounded open set so that
its boundary 0 consists of finitely many disjoint piecewise C* Jordan curves. Let f: Q — C be a
continuous function that is C' in Q. Then

1 1 [0s
flw) = — f(Z)dZ_/Zf(Z)dZ
2mi Jonz —w T Joz—w
for all w € Q.
Proof. Let w € Q). Picke € Ri so that the closed disc D, of radius € centered at w lies in Q. Then
consider the open set €. := Q\D.. By the product rule for 9z and the fact that dz1/(z —w) =0 in

Q. we find that 1/(w — 2)05f = 0z(f/(z —w)) in Q.. We define 7 : [0,27] — C by 7(¢) := w + ee®.
Then Green’s Integral Theorem implies that

A, Lf S0, LI,

zZ—w 2 z—w 2 ) z—w
Q. ) 9 . 1 vZ forec) (C.4)
= — dz — — S Liee dt.
2i Joqz—w 2i Jo gett
Since
2 )
lim flw+ee™)dt = 2n f(w),
EJ,O 0
and since ﬁ is integrable over D, we conclude from letting € | 0 in (C.4) that
Oz 1
/Zf(z)dz:‘ Mdz—wf(w).
QZ—w 2t Joqz —w
The assertion follows. ]
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An immediate consequence is the following:

C.11 Corollary (Cauchy’s Integral Formula). Let Q@ C C be a bounded open set so that its boundary
0Q consists of finitely many disjoint piecewise C* Jordan curves. Let f : Q — C be a continuous
function that is C1 in Q and satisfies Ozf(z) = 0 for all z € Q. Then

flw) = 1 (2) dz.

N 211 oN< — W
for all w € Q.
We can also show the following:

C.12 Corollary. The locally integrable function E :=1/(nz) is a fundamental solution of Oz, i.e.,
0zFE =0 in D'(C).

Proof. Fix ¢ € C°(C). Pick R € R, large enough so that ¢(z) = 0 whenever |z| > R. Let Q
be the open disc of radius R around the origin. Then, since §,,¢(z)/zdz = 0, it follows from the
Cauchy-Pompeiu Integral Formula that

(0:E,6) = —I/Qa”(z)dzzas(m — (5, 0).

™ z

We conclude that 9zE = 6 in D’(C), as asserted. O

C.13 Definition. Let U C C be open and let f : U — C be a function. We say that f is complex
differentiable at zg € U if
i 1) = 1)

Z—r20 Z— 20

exists. If this is the case, then we denote the limit by f’(z¢). If f is complex differentiable at all
points in U, then we say that f is holomorphic in U with (complex) derivative f': U — C. &

C.14 Lemma. Let U C C be open. A function f : U — C is complex differentiable at zg € U
if and only if it is (totally) differentiable in the sense of differentiability for maps from the real
two-dimensional vector space C to itself at zy and satisfies Oz f(z9) = 0. Moreover, in this case we

have 9, f(z0) = f'(20)-

Proof. Suppose f is complex differentiable at zp. Left multiplication by f'(z0) = a + bi, a,b € R,
is represented by the matrix
a —b
)

If we denote the corresponding linear map by L, then

lim |f(2) = f(20) = L(z — 20)| — lim

Z—r20 |Z — Zo| Z—20

f(z) = f(=0)

2 — 2 _f/(ZO) :O)

meaning that f = u + v is (totally) differentiable at zy with (total) derivative given by
Opu(z0) Oyu(z0)\  (a —b
Opv(z0) Oyv(z0)) \b a )’
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But this implies that we have 0,u(z9) = 0yv(20) and Oyu(z9) = —0,v(20), or equivalently,

0=/ (z0) = 5(Buu(z0) — Byv(z0) +i(Byu(z0) +Drv(20))) = 0.
We note that this also implies that
0. f(z0) = é(@mu(zo) + 9yv(20) + 1(9xv(20) — Oyu(20))) = dpu(20) + i0yu(zo) = a + bi = f'(z0).
For the converse, suppose f = u + iv is continuously differentiable at zo and satisfies 9z f(zp) =

0. Then we find that d,u(z0) = Jyv(20) and Jyu(zp) = —0,v(20). As above, this implies that
0. f(20) = Ozu(20) +1i0yu(2p). Moreover, it implies that the derivative of f is given by the Jacobian

matrix
I <6xu(zo) 8yu(z0)> _ ( Oru(zo) Gyu(zo)>
' 0,v(20) Oyv(20) —0yu(z0) Ozu(zp)) "
But then
i | ) = f(z0) 0. f(z0)| = tim |f(2) = flz0) = Lz~ =)l _
Z—r20 Z— 20 2—r20 ‘Z — Zo’
The assertion follows. O

Using the chain rule, one can now verify the following:

C.15 Lemma. Let U C C be open and let f € C*(U). Suppose 7 : [a,b] — C is a C* path whose
1mage lies in U. Then

(f09)'(t) = 0-F(¥()' (1) + 0=F (v(1)Y'(¢)
for all t €la,b]. In particular, if [ is holomorphic, then (f o~) (t) = f'(v(t))Y(t) for all t €]a,b].

Let (aj)jez., be a sequence of complex numbers. Then we define r € [0,00] by 1/r =

limsup,_, |aj|1/j , which we call the convergence radius of this sequence. This terminology is
justified by the fact that the power series

E o
CLJZ
JE€EZ>o

converges absolutely for z € C with |z| < r, uniformly for z € C with |z| < 7/ where ' < r, and
diverges whenever |z| > r. We sometimes call r the convergence radius of the corresponding power
series.

C.16 Definition. Let U C C be open and let f : U — C be a function. We say that f is analytic
at zg € U if there is a sequence (a;);ez., With positive convergence radius r so that

f()= ) ajlz—z) (C.5)

JE€EZ>o

for |z — z9| < r. If f is analytic at all points in U, then we say that f is analytic in U. O
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A typical example is the exponential function exp : C — C defined by
2 ol
exp(z) :=e* = Z T
JE€EZ>o

The radius of convergence of this series is co. In the same way as is done for the real case, one can
show that e*T¥ = ee® for all z,w € C. Moreover, we have

" it)d
SR I

J€Z>q ’ J€Z>o J€Z>q

t2]+1

1)’ =cost+isint
25 +1)!

for all t € R.
Suppose f is as in the definition and satisfies (C.5). Formally differentiating term by term
would indicate that

F'z)=>_ (G +Dajr(z — 20)

JE€EZ>o

for |2 — 29| < 7. This is justified by the fact that limsup,_, ., |(j + Daj1]Y7 = lim SUD, 00 |a;|M7 =
1/r. In particular, if f is analytic in U, then f is holomorphic in U, and its complex derivative is
again analytic. In view of Lemma C.14, this means that we may conclude that analytic functions
are smooth. It is actually true that any holomorphic function is analytic.

C.17 Theorem. Let U C C be open and let f : U — C be a function. The following are equivalent:
(i) f is holomorphic in U;
(is) f € CYU) and dzf(z) =0 for all z € U;

(iii) f is analytic in U.

C.18 Remark. The operator dz is an elliptic partial differential operator with constant coefficients.
The elliptic regularity theory tells us that if a distribution u € D'(U) satisfies dzu = 0, then u is
given by a smooth function. The result of the theorem then implies that this function must
be holomorphic. In particular, condition (ii) in the theorem may be replaced by the equivalent

condition
/ Feeole) 2 =0

forall p € CX(U), i.e., 0sf =0 in D'(U

(ii’) f is continuous and

%

For the proof of Theorem C.17, we note that we have already established the implications (iii)=-(ii)
in the discussion preceding the theorem and (ii)=(i) in Lemma C.14. Tt remains to show the
implication (i)=-(iii). This follows from Proposition C.21 below. For this proposition, we require
a result known as Goursat’s Theorem. While this result is a version of Cauchy’s Theorem, it
is stronger in the sense that continuity of the derivatives of the function is not required. By a
rectangle, we mean a closed rectangle whose sides are parallel to the coordinate axes in the plane.
Per convention, we give its boundary a counterclockwise (positive) orientation.
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C.19 Theorem (Goursat’s Theorem). Let U C C be open and let f : U — C be holomorphic.
Suppose R C U is a closed rectangle. Then

f(z)dz =0.
OR

Proof. We claim that we can find rectangles
RORI 2Ry 2 R32 -

so that, if L; denotes the length of the boundary of R; and L the length of the boundary of R and
d; denotes the diameter of R; and d The diameter of R, we have the properties

1

43

1

f(z)dz 5

OR

<

f(z)dz

1
. L, dj=d (C.6)

) L]:

for all j € N. Indeed, we bisect the sides of R to subdivide it into four rectangles R', R?, R?, R*.
If one traverses the boundary of each of these rectangles counterclockwise, one notes that the sides
of the rectangle in the interior of R are traversed once forwards and once backwards so that

4
8Rf(z) dz = ;/amf(z) dz

and thus

<4 max
kc{1,2,3,4}

f(z)dz
OR

f(z)dz| <

ORF

4
<3 | s

Pick k € {1,2,3,4} where this maximum is attained and set Ry := R*. Then Ly = L/2, d; = d/2
and (C.6) holds for j = 1.

Now suppose we have shown that we can pick subrectangles Ry, ..., Ry of R so that (C.6) holds
for j € {1,...,J} for some J € N. Using the same bisection process from before on R, we obtain
a rectangle Ryy1 so that Ly,1 = L;/2=L/2/% d;;1 =dj/2 =d/2'*! and

1
— z)dz
- /8 e
which proves the induction step. This proves the claim.
By Cantor’s Intersection Theorem for complete metric spaces we find that the intersection
N jen Ity consists of a single point zg. Since f is complex differentiable at zp, we find that the

function
f(2) = f(20)
Z— 20

< <4

)

f(z)dz

OR

f(z)dz

OR;

r:U\{z0} = C, r(z):= — f(20)

continuously extends to zgp, where it takes the value 0. Now note that for each j € N we have

fE)ds= 1) det o) § (= a)dit (-0

OR; R, R,
- f (2 — z0)r(2) dz,
R,
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where the first two integrals vanish by Cauchy’s Theorem. Then (C.6) gives us the estimate

1 dL
b 1(e)a de| < ¢ o= allr(@)|ds < 4Ly sup [r()] = 5 sup (2]
4J OR; zER; 4] zER;
Hence,
f(z)dz| <dL sup |r(z)] =0 as j— oc.
OR z€ER;
The assertion follows. O

C.20 Corollary. Let Q2 C C be an open disc centered at zg € C and let f : Q0 — C be holomorphic.
Then there is a holomorphic function F : Q — C so that F' = f.

w) = /Z:)f(z)dz

which should be interpreted as the integral of f along a path following the sides of the rectangle
R with opposing vertices 2y and w. To see that this is well-defined, we first note that there are
two possible choices of such paths which we shall call v; and ~». If one traverses v, followed by
traversing s backwards, we note that we have traversed the boundary of R where we assume
without loss of generality that this has been done counterclockwise. Hence, by Goursat’s Theorem,
we have

Proof. For w € Q we set

fa:— [ faz= ¢ sz =
" V2 OR

This proves that F' is well-defined.
Pick h € C. Then, by making appropriate choices of traversed sides of rectangles, we note that

w+h
F(w—i—h)—F(w):/ f(z)dz,

w

where the integral is taken along a path following the sides of a rectangle Ry, with opposing vertices
w and w + h. We note that the length of this path can be estimated by | Re h| 4+ | Im h|. Moreover,
we note that

w+h w+h
Flw+h) - F(w) = / (F(2) = f(w) + fw))dz = hf(w) + / (f(2) = fw))dz.  (C.7)

w w

Since f is continuous at w, we find that

'Reh;'lmh' D |f(2) = f(w)| V2 sup |f(2) = flw)| =0
z€EO0Ry, 2€0R),

’ ; / e - fw) dz' <

as h — 0. Thus, we conclude from (C.7) that

lim F(w + h}z — F(w) ~ fw).

h—0

This proves the desired result. O
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C.21 Proposition. Let U C C be open and let zg € U and R € R4 so that the closure in C of
the open disc ) of radius R centered at zy lies in U. Suppose a function f : U — C is holomorphic
in U. Then .

(=) 4,

flw) = o—

2w Joqzr —w

for allw € Q. Moreover, f is analytic at 29, and its series representation has a convergence radius
greater than or equal to R.

Proof. Fix w € Q. First, we define

F(z) = f(w)

g:U\{w} = C, g(z):=

Then ¢ is holomorphic in U\{w}. For p € R4 small enough so that the closed disc centered at w
of radius p lies in 2 we define

Yp 0 [0,27] = C,  7,(t) == w + pe'.

Moreover, we set vg : [0,27] — C, yr(t) := 2o + ¢ and we fix a p € Ry as before. Consider a
partition 0 = ap < a; < --- < ay = 27 of the interval [0, 27] so that there exist discs {Qj}jz_ol in
U\{w} so that

Vr(laj, aja]) € Qj,  yp(lay, aj41]) €y
for all j € {0,...,J —1}. We write v; := vr(a;), w; = 7,(a;) for all j € {0,...,J}. By
Corollary C.20 we can find holomorphic primitives G : £2; — C of the restriction of g to £2; for all
j€{0,...,J —1}. Note that for each z € Q; N Q;1; we have

0.(Gy — Gia1)(2) = 9(2) — 9(2) = 0, 3:(G; — Gye)(2) = 0.

This implies that G; — G171 is constant in €; N €2;11. In particular, since v;i1, wjy1 € ;N Qj11,
we have

Gi1(vj+1) — Gipr(wjr) = Gj(vjp1) — Gj(wjpa) forall j € {0,...,J —2}. (C.8)
Then, by the Fundamental Theorem of Calculus
T=1 i J-1
[ o2az= 3 [ Gopm0d = 3 (65 wi) - Gyw)
Ve j=0"% Jj=0
Similarly we have
J—1
/ 9(z)dz = (Gj(vjt1) — Gj(vy))
TR j=0
Hence, by (C.8), we have
J—1
[ s@dz [ g2)de = 3 (Ges) - Gilwgan) - (65(0) = Gylwy))
YR Yo j=0

T
—
—
N
=)
N
|
Q
o
—
N
(=)
N
|
—
Q
T
—
—~
S
=
~—
[
@
o
—
N
=
~
~
Il

0,
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since vg = 20+ R =wvy, wg = w+ p = wy and Gj_1 — Gy is constant on the intersection of their
domains. Thus, we have shown that the integral of g along «, does not depend on p. Now, since f
is complex differentiable at zg, ¢ extends continuously to zg and is thus bounded in a neighborhood
of zp by a constant ¢ € R. This implies that for small enough p € R4 we have

/7 pg(z) dz

for which the right-hand side tends to 0 as p | 0. Thus, we have shown that

O:LRg(z)dz: ’YRf(z)dz—f(w)[m ! dz

Z—w Z—w

27
<c [ hp0ld = 2mpe,
0

so that

» 271',1: e’it
(2) dz:f(w)/ ! dz:f(w)/o R. dt = 2mif(w).
R

9% — W zZ—w Re't

This proves the first assertion.
For the last assertion, let 0 < p < R. Then, since

w—z|  |w— 2

1
R <

Z— 20

for all w € © and z € 0F), we find that

11 11 3 w— 2\’
z—w z—291— Y2z z z— 2

Z—20 jeZZO

for all w €  and z € 0F2, where the sum is absolutely and uniformly convergent for |w — zg| < p.
Then dominated convergence implies that

1= 5 (om f LS as) tw— o,

JE€Z>0 Z = 20)

where the sum is absolutely and uniformly convergent for |w — zy| < p. The assertion follows. [

We note that we may now use the terms analytic and holomorphic interchangeably. In partic-
ular, we obtain the following;:

C.22 Corollary. Let U C C be open. If f : U — C is holomorphic in U, then f' is also
holomorphic in U. Thus, [ is infinitely many times complex differentiable in U.

We present a converse to Cauchy’s Theorem. We say that an open connected set U C C is
simply connected if all Jordan curves in U encase a subset of U. As an example we note that open
discs are simply connected, whereas open annuli are not. As an extreme case of this, removing a
point from C results in a connected open set that is not simply connected.
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C.23 Theorem (Morera’s Theorem). Let U C C be open. Suppose a continuous function f : U —

C satisfies
jqff(z) dz =0 (C.9)
r

for all piecewise C' Jordan curves T C U encasing a subset of U. Then, on each simply connected
open subset V. C U, there is a holomorphic function F : V. — C satisfying F'(z) = f(z) for all
z € V. In particular, f is holomorphic in U and, if U itself is simply connected, then f admits a
holomorphic primitive in U.

Proof. Let zg € U and let V' be a simply connected open subset of U containing zg, e.g., a disc of

small enough radius centered at zg. Then for each w € V\{z} there exists an injective piecewise

C! path v:[0,1] — C in V so that 7(0) = zp, 7(1) = w. Let 7 be another injective piecewise C'!

path in V from zp to w. Then the concatenated path 1 which first traverses v and then traverses
~1 describes a piecewise C! Jordan curve. Then (C.9) implies that

/f dz—/f dz—/f

Thus, we may define F': V — C by
= / f(z)dz = /f(z) dz
20 ¥

Let e € Ry. And let w € V. By continuity of f at w we can find a 6 € R4 so that w’ € V and
|f(w) = f(w')] < & whenever |w — w'| < 6. Suppose w' € V\{w} satisfies |w — w'| < 4. Define
v:[0,1] = C by v(t) = (1 — t)w’ + tw. Then
F(w) - F@') = [ £(:)dz = (w - u))f(w) + [(7() = flw) d (€10)
g gl

Since ([0, 1]) lies in the ball centered at w of radius §, we have

1 1
Ndz| <e—— ") dt = e.
/ z_sm_wqﬁrww .

We conclude from (C.10) that

[w —w'| w’l

F — F(w'
lim (w—,(w) = f(w) + lim / ))dz = f(w)
w' —w w —w w—w W — w' y
The assertion follows. O

An important example is the definition of the complex logarithm.

C.24 Example. Let U be the complement in C of the non-positive real numbers. Then U is
a simply connected open set in C. Consider the holomorphic function f : U — C defined by
f(2) := 1/z. Then, by Cauchy’s Theorem, f satisfies (C.9) for all piecewise C' Jordan curves
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I' C U encasing a subset of U. The proof of Morera’s Theorem shows that we may define a
holomorphic primitive F' of f on U by

log(w) i= [ 1(:)

where the integral should be interpreted as the integral from 1 to w along a piecewise C' path from
1 to w. Note that F' coincides with the natural logarithm on the positive real numbers. Moreover,

we note that
az(ze—logz) _ e—logz _ e—logz —0.

Since also dz(ze~1°8%) = 0 we conclude that 9, (ze1°8%) = 9,(ze~1°2%) = 0 and thus, since U is
connected, ze~ 8% = ¢ for some ¢ € C. Taking z = 1 shows that ¢ = 1 and

elog? — o forall z € U.

Note that we can write any z € U as re’® with 7 € Ry and a €] — 7, 7[. Define v : [0,a] — C by
y(t) := re’. Then

log(reit):/ f(z)dz+/f(z)dz:logr+/ idt =logr +ia.
1 ol 0

Next, we wish to define the logarithm of a function. Suppose V C C is a simply connected open
set and suppose f : V' — C is holomorphic and satisfies f(z) # 0 for all z € V. Let zp be any
point in V and pick a point wy € C so that €*° = f(zp). Then we define a holomorphic function
Ly:V — Cby

Y f'(2)
Ls(w) :=wy+ dz.
) . F)
A proof analogous to the one above shows that ef(*) = f(2) for all z € V. &

C.25 Definition. Let z,w € C\{0}. We define the oriented angle from z to w to be the unique
number « € [0, 27[ so that

Let U C C be open and let 29 € U. If 5 : [aj,b;] — C, j € {1,2} are two C! paths in U so that
v;(t;) = 2o for some t; €]aj,b;[, j € {1,2}, then we say that v; and o are paths through zo. If
v;(t;) # 0 for j € {1,2}, then there is a well-defined oriented angle a € [0, 27[ from ] (t1) to v5(t2).
We define the oriented angle from 1 to v2 at zg to be a.

A C' function f : U — C is said to preserve oriented angles at zg if the following conditions hold: if
~1 and o are paths through zp whose oriented angle o € [0, 27[ at zp from 7, to 7y, is well defined,
then the oriented angle from f o7 to f o, at f(z0) is also well-defined and is equal to a. The
function f is called conformal if it preserves oriented angles at all points in U. &
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In the notation of this definition, note that if f is holomorphic, then Lemma C.15 implies that
(f o) (t;) = f'(20)7;(t;) for j € {1,2}. Thus, for the oriented angle from f o~ to f oo at
f(20) to be defined, it is necessary that f’(z9) # 0. In fact, this is also a sufficient condition for
preservation of angles.

C.26 Proposition. Let U C C be open and let f : U — C be a holomorphic function. Then f
preserves oriented angles at zo € U if and only if f'(z9) # 0.

Proof. Assume f’(29) # 0. Let 71 and 2 be paths through zp in U whose oriented angle a € [0, 27|
at zo from 71 to 2 is well defined. If v1 (1) = va(t2) = 2o we write 21 := 7, (1) # 0, 22 := 5 (t2) # 0.
Then (f ov;)'(t;) = f'(20)z; # 0 for j € {1,2} so that the oriented angle from f o~ to f oy, at
f(20) is also well-defined. Let o € [0, 27| be the oriented angle from 71 to 72 at zp. Then,

for) / (fom)'(tr) (f’(zO)zQ>/<f/(20)Z1>:22 A ia
fom) ()l |(fon) ()l \If'(z0)l 2] [f'(z0)l |21l ) Jzel /|21 '

The assertion follows.

O]

Next we present an Inverse Function Theorem for holomorphic functions as a consequence of
the Inverse Function Theorem from real analysis.

C.27 Definition. Let U C C be open and f : U — C a holomorphic function. We say that f
is a biholomorphism if V := f(U) is open and there is a holomorphic map g : V' — C satisfying
g(V)=U, g(f(z)) = zfor all z € U and f(g(z)) = z for all z € V. We say that f is biholomorphic
at a point zq if there is an open neighborhood U’ C U of zy so that the restriction of f to U’ is a
biholomorphism. &

C.28 Theorem (Inverse Function Theorem). Let U C C be open and f : U — C a holomorphic
function. If f'(z9) # 0 for some zy € U, then f is biholomorphic at 2.

Proof. Recall the proof of Lemma C.14. Write f’(29) = a + bi. Then the Jacobian matrix of f at

zp is given by
a —b
()

This has determinant a? + b = |f/(20)|?> # 0. Thus, the real analysis Inverse Function Theorem
implies that there is an open neighborhood U’ C C of zy in U and an open set V C C so that
f(U") =V, and a function g € C1(V) so that g(V) = U’, that inverts f. The chain rule implies
that the Jacobian matrix of g at f(zg) is given by the inverse matrix

P ()

1
2[f'(z0)]
Similarly, one shows that dzg(w) = 0 for all w € V. Hence, g is holomorphic in V, as asserted. [J

But from this it follows that

9z9(f(20)) = ((a—a)+i(=b+b) =0.
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The converse to the preceding theorem, that if a function is biholomorphic at a point, then its
derivative at that point is non-zero, also holds. We actually have a stronger result:

C.29 Proposition. Let U C C be open and f : U — C a holomorphic function. If f is injective,
then f'(z) #0 for all z € U and f is a biholomorphism.

For the proof we require a lemma.

C.30 Lemma. Let U C C be open and let f: U — C be a holomorphic function. Suppose the
series expansion at zg € U of f is given by

f2)=ao+ Y aj(z— =),

JEZ>y

for some k € Z>1 with a, # 0. Then there is an open neighborhood U' C U of zy and a holomorphic
function g : U' — C so that g is biholomorphic at zy and

f(z) = ao+g(2)"*
forall z€ U'.

Proof. We may assume a9 = 0 and zp = 0 by considering z — f(z + z0) — f(20) instead of f.
Then, for |z| small enough, define h so that

_ k Atk 5 _ k
f(z) = arz Z o 2l = arz"h(z).
J€Z>o
Then h is holomorphic and, since h(0) = 1, it is non-zero in an open neighborhood V' of 0. Let
Ly : 'V — C denote the holomorphic logarithm of A as defined in Example C.24. Pick s € C so
that s* = aj. Then we may define a holomorphic function g : V' — C by

Lp(2)
g(z) = sze IS

Then g(2)¥ = f(z) for all z € V and ¢'(0) = se=r(0/k - 0 by the assumption s* = a;, # 0. By the
Inverse Function Theorem, g is biholomorphic at 0. The assertion follows. 0

Proof of Proposition C.29. The function U — f(U) given by f is bijective, hence has an inverse
function h. In particular, note that injectivity of f implies that f is nowhere constant so that we
may apply Lemma C.30. Let 2z € U and let g and k be as in the lemma so that f(z) = f(z0)+g(2)*
for z in an open neighborhood U’ of zg. Injectivity of f on U’ implies that z — ¢(2) := g(z + 20)*
must be injective in a neighborhood of 0. But since g is biholomorphic at zp, this means that
w — wF is injective in a neighborhood of 0. This is only possible when k = 1. But this means that
f'(20) = a1 # 0, which implies that f is biholomorphic at zy. As zp was arbitrary, this means that
f must be locally invertible by a holomorphic map at every point in U. But since each of these
inverses must be given by restrictions of h, we may conclude that A is holomorphic. The assertion
follows. O

We can now characterize biholomorphisms.
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C.31 Theorem. Let U C C be open and let f € CY(U). The following are equivalent:
(i) f is a biholomorphism;
(ii) f is injective and holomorphic;
(iii) f is injective and conformal.
For the proof we require a lemma.

C.32 Lemma. Let U C C be open, f € CH(U), and zg € U. Then if f preserves angles at zo, then
0zf(20) = 0. In particular, if f is conformal, then f is holomorphic.

Proof. For § € R we define a C! path 7y by v(t) := 20 + te~/2 on an interval around 0, small
enough so that the image of vy lies in U. Then v5(0) = 29 and ~;(0) = e~/2 £ 0 so that

WO _
75(0) '

Then, since f preserves angles at zg, we have for a;, 3 € R that

(C.11)

fova)'(0) fovs)(0)  ~,(0) / ’Y,/B(O)
fo7)'(0)] | o) (0] 174 (0)1/ [v5(0)]
or equivalently,
a0 (for)'(0) _ Ol (fos)(0)
[(f 27)'(0)] 74(0) [(f o) (0] 75(0)

This means that (f ©74)(0)/74(0) and (f ov5)'(0)/75(0) have the same argument. But then, since
a, 3 were arbitrary, we find, by Lemma C.15 and (C.11), that the argument of

(f ©7)'(0)
75(0)
is independent of # € R.. Since (C.12) describes a circle of radius |0z f(z0)| as 6 runs through [0, 27],

we conclude that we must have dzf(z9) = 0. The result follows. The last assertion follows from
Theorem C.17. O

= 0,f(20) + %f(zo)ew (C.12)

Proof of Theorem C.31. The equivalence of (i) and (ii) follows from Proposition C.29. The
implication (ii)=-(iii) follows from Proposition C.26 while the implication (iii)=-(ii) follows from
Lemma C.32. O

We can also prove the Open Mapping Theorem for holomorphic functions.

C.33 Theorem (Open Mapping Theorem). Let U C C be open. Suppose f : U — C is a
holomorphic function that is non-constant on any non-empty open subset of U. Then f maps open
sets to open sets.
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Proof. Let V C U be open and let zg € V so that f(zp) is an arbitrary point in f(V'). We have to
show that there is an open neighborhood of f(zp) that is contained in f(V).

By Lemma C.30 we can find an open neighborhood U’ C V of 2y and a holomorphic function
g : U — C so that g is biholomorphic at zy and

f(2) = f(z0) + g(2)*

for all z € U'. As g is a biholomorphism on an open neighborhood W C U’ of 2, the set g(W) is
open. Since g(z9) = 0, there is an open disc D around the origin contained in g(W). Since the disc
D gets mapped to another disc D’ through the map w — w¥, we conclude that

flgH (D)) = f(z0) + D'
is an open neighborhood of f(z) contained in f(V'). We conclude that f(V') is open, as desired. [

We define
A= —40.0; = -2 —
-

and recall that for an open set U C C a real-valued function u € C?(U) is called harmonic if

Au=0inU.

C.34 Proposition. Let U C C be a simply connected open set and suppose a real-valued u € C*(U)
is harmonic. Then there is a holomorphic function f : U — C so that Re f = u. Conwversely, the
real part of any holomorphic function is harmonic.

Proof. Set g :=20,u € C'(U). Then dzg(z) = —Au(z)/2 = 0forall z € U. Thus, g is holomorphic
in U. By Morera’s Theorem, g has a holomorphic primitive f : U — C. Set @ := Re f. Then,
recalling the proof of Lemma C.14,

Opu(z) — Byu(z) = 9(2) = f(2) = .1(2) = Bpia(2) — 0y i(2)

for all z € U. This implies that u — @ € C'(U) has vanishing partial derivatives, hence must be
equal to a constant ¢ € R. Thus, u is the real part of the holomorphic function f + c¢. This proves
the first assertion.

For the converse, let V' C C be open and let f : V' — C be holomorphic. Then f is smooth, and
certainly u := Re f € C%(V). Since dsf(z) = 0 for all z € V, we have Au(z) = Re(—40,0:f(2)) =0
for all z € V. The result follows. O

For 29 € C and r € R we will denote by D(zo;7) and D(zo;r) the respectively open and closed
disc of radius 7 in C centered at zg. We denote the boundary of such a disc by 9D(zo; 7).

C.35 Corollary. Let V,U C C be open and let w : V. — R be harmonic. If f : U — C is a
holomorphic function satisfying f(U) C V, then the composition uo f : U — R is harmonic in U.

Proof. If f is constant then the result is trivial, so assume f is non-constant. Let zg € U. Pick
r € Ry so that D(zg;7) CU. As f(D(zo;7)) is open by the Open Mapping Theorem, there is some
r" € Ry so that D(f(z0);7") C f(D(z0;7)) C V. Since D(f(29);r’) is simply connected, there is a
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holomorphic function g : D(zp;7) — C so that Reg(z) = u(z) for all z € D(f(z0);r’). It follows
that

uo f(z) =Re((go [)(2))

for all z € D(zp;7). As the composition of holomorphic functions is holomorphic, we conclude that
u o f is holomorphic at zy. Since zg was arbitrary, we conclude that u o f is harmonic in U.
Alternatively, one can compute A(u o f)(z) = Au(f(2))|f(2)|> =0 for all z € U. O

If D(z9;7) C U for some 29 € U and r € Ry, then wu is the real part of some holomorphic
function f defined on an open set in U containing D(zp;r). If v : [0,27] — C is defined by
7(t) := 29 + re®t, then we find, by Cauchy’s integral formula, that

- S
u(z0) = Re f(:) =Re o | 27

1 27 )
dz = Py /0 u(zo + re') dt.

This motivates the following definition:

C.36 Definition. Let U C C be open and let u : U — R be a continuous function. We call u
subharmonic if

I :
u(zp) < 27T/0 u(zo + re') dt
for all z9 € U, r € Ry so that D(zp;7) C U. O
For real-valued functions u € C?(U), subharmonicity is a condition on Au.

C.37 Proposition. Let U C C be open and let u € C*(U) be real-valued. Then u is subharmonic
mn U if and only if Au <0 in U.

Proof. Suppose u € C?(U). Let zg € U and pick rp € Ry so that D(zp;79) € U. Define
¢ : [0;79]— R by

2
o(r) := 217T/0 u(zo + re't) dt.

For 7 €]0, ro[, define ~, : [0,27] — C by ~,(t) := 2o + 7e’. Then, by Green’s Integral Theorem, we
have

1 2 1 2w L
- Au(z)dz = = 0z0,u(z)dz = — [ O,u(z)dz = O u(zo +ret)e dt
2
" JD(z05r) " J D(z0;r) TSy 0
and
1 2 1 2m ) A
—— Au(z)dz = - 0,0zu(z)dz = —— [ Ozu(z)dz = Ou(zo +re e " dt,
2
T JD(zo;r) T JD(z0;r) T Jy 0
so that
1 [27 L . . 1
¢ (r) = 27r/0 (0:u(z0 4 re™)e™ + Dzu(zo + re')e™™) dt = "2 )AU(Z) dz.  (C.13)
Z0;5T
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Now suppose Au < 0 in U. Then (C.13) implies that ¢'(r) > 0 for r €]0,r¢[ so that ¢ is
increasing. This implies that

27
u(z0) = 6(0) < B(r) = — /O u(zo + rett) dt

2

for all r €]0, ro[. We conclude that u is subharmonic.

For the converse we argue by contraposition. Suppose that Au(zg) > 0 for some zy € U. Then,
by continuity of Aw, there is some 9 € R4 so that D(zp;79) C U and Au > 0 on D(zp;r). Then,
defining ¢ as before, by (C.13), we have ¢'(r) < 0 for r €]0,rg[. Hence, ¢ is strictly decreasing.
This implies that

1 [ 4
u(z0) = ¢(0) > ¢(r) = / u(zo + re't) dt
2m Jo
for r €]0,ro[. Thus, u is not subharmonic in U. The assertion follows. O

The notion of subharmonicity can be characterized in various ways.

C.38 Theorem. Let U C C be open and let u : U — R be a continuous function. The following
are equivalent:

(1) w is subharmonic in U;

(ii) for every zo € U there is anro € Ry so that D(zo;70) C U and whenever 0 < r < 1o, we have

1 2m )
u(zp) < 2/ u(zo + re') dt;
0

™

(iii) for every zo € U and r € Ry so that D(zp;r) C U we have that if a continuous function
v: D(20;7) — R, twice continuously differentiable and ‘harmonic in D(zo;7), satisfies u(z) <
v(z) for all z € OD(zo;7), then u(z) < v(z) for all z € D(zg;r).

We will give a proof of this result momentarily. The implication (ii)=-(iii) uses the so-called
Maximum Principle, while the implication (iii)=-(i) uses the fact that for all zp € C, r € Ry and
continuous g : D(zp;7) — R, there exists a unique continuous function u : D(zg;7) — R, twice
continuously differentiable in D(zp;7), solving the Dirichlet problem

Au=0 in D(z;r);
u‘aD(Zo;T‘) =g
A proof of this result can be found in [Ev, Chapter 2, Theorem 15].

C.39 Proposition (The Maximum Principle). Let U C C be open and connected and letu : U — R
be continuous. Suppose that for every zop € U there is an ro € R4 so that D(zo;1m9) € U and
whenever 0 < r < rg, we have

™

1 2 )
u(zp) < 2/ u(zo + re') dt. (C.14)
0
If for some zy € U we have u(zy) = max, gy u(z), then u is constant in U.
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Proof. Set M := max, u(z). We let W be the subset of U consisting of all z € U so that
u(z) = M. Per assumption, W is non-empty. By continuity of u, W is closed in U. We will show
that W is also open in U. Then it follows from connectedness of U that U = W, as desired. Let
290 € W and pick R € R, so that D(zg; R) C U. Per assumption we can find 0 < 79 < R so that
u satisfies (C.14) for any r € Ry satisfying 0 < r < ro. Fix 0 < € < 9. By employing polar
coordinates we find that

1 1 [ [ - 2ru(zo) [°
— dz = —; Hpdtdp > / dp=M
so that ) M
MSQ/ u(z)dz < — dz = M.
e JD(z03¢) TE™ JD(z03¢)

But this is only possible if u(z) = M for all z € D(zp;¢). We conclude that D(zg;e) C W, proving
that W is open. It now follows that u is constant in U. By continuity this means that u is constant
in U, as desired. O

Proof of Theorem C.38. The implication (i)=-(ii) is clear.

For (ii)=(iii), pick 20 € U and r € R4 so that D(zp;7) € U. Suppose v : D(z;7) — R
is a continuous function, twice continuously differentiable and harmonic in D(zp;7), and satisfies
u(z) < w(z) for all z € dD(zp;7). If we set w := u — v, then w(z) < 0 for all z € D(zp;r). Pick
21 € D(z0;7) so that w(z1) = MaX, 5.y W(2). We consider two cases.

First we assume that z; € dD(zp;r). Then it follows that u(z) — v(z) = w(z) < 0 for all
z € D(zp;7), as desired.

Next, we assume that z; € D(zg;7). Since v is harmonic in D(zg;r), this means, in particular,
that —v is subharmonic in D(zp;r), and thus so is w as the sum of subharmonic functions. Hence,
w satisfies the conditions for the Maximum Principle in D(zp;7) and is thus constant in D(zg;7).
Picking a 2’ € dD(zo;7), we find that u(z) — v(z) = w(z) = w(z') < 0 for all 2 € D(zg;7). The
assertion follows.

For (iii)=(i), let 29 € U, » € Ry so that D(z9;7) € U. Let v : D(z0;7) — R be the unique
solution to the Dirichlet problem

Av=0 in D(zo;7);
U’@D(zo;r) = u|8D(zo;7")'

Then u(z) < v(z) for all z € D(2g;7). Thus, we have

1 27

2m
/ v(z +ret)dt = — u(zo + re') dt,
0 21 Jo

1
u(z0) < wv(z) = o
T
as desired. O

C.40 Lemma. Let VU C C be open and let u : V. — R be subharmonic. If f : U — C is a
holomorphic function satisfying f(U) C V', then the composition uo f: U — R is subharmonic in
U.
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Proof. Let zp € U. First assume f'(z9) # 0. Then it follows from the Inverse Function Theorem
that there is an open neighborhood U’ C U of zy so that V' := f(U’) is open and there is a
holomorphic map ¢ : V' — C satisfying g(V') = U’, g(f(z)) = z for all z € U’ and f(g(z)) = z for
all z € V',

Let 7o € R4 so that ﬁ(zo;ro) CU' andlet 0 <7 <rg. Let v: E(zo;r) — R be a continuous
function that is twice continuously differentiable and harmonic in D(zp;r) and satisfies u(f(z)) <
v(z) for all z € OD(zp;7r). We have to show that u(f(z)) < v(z) for all z € D(zp;7). Note
that f(0D(zo;7)) is a C' Jordan curve which encases the connected open set f(D(zo;7)). Set
w:=u—vog: f(D(2;r)) — R. Our assumption implies that w(z) < 0 for all z € f(0D(z0;7)).
Pick 21 € f(D(z0;7)) so that w(z1) = max, 5,y W(z). We consider two cases.

First we assume that z; € 0f(D(z0;7)) = f(0D(20;7)). Then it follows that u(z) — v(g(z)) =
w(z) <0 for all z € f(D(z0;7)) = f(D(z20;7)), as desired.

Next, we assume that z; € f(D(z0;7)). Since v o g is harmonic in f(D(zp;7)), this means, in
particular, that —v o g is subharmonic in f(D(zg;r)), and thus so is w as the sum of subharmonic
functions. Hence, w satisfies the conditions for the Maximum Principle in f(D(zp;7)) and is thus
constant in f(D(zo;7)). Picking a 2’ € f(0D(zo;7)), we find that u(z) —v(g(2)) = w(z) = w(z’) <0
for all z € f(D(z0;7)).

As in the proof of Theorem C.38, it now follows that

2m
(o) < 5= [ o+ et ar

™

for 0 < r < rg.

It remains to check the case when f/(z9) = 0. If f is constant, then the result is clear. If not,
then Lemma C.30 implies that there is an open neighborhood U’ C U of zp and a holomorphic
function g : U’ — C so that g is biholomorphic at zy and

f(2) = f(z0) + g(2)*

for all z € U’, for some k € Z>s. Let z9 € U” C U’ so that g is a biholomorphism on U”. Now,
since g(z9) = 0, we can pick 0 < r{ < 1 small enough so that D(0;r}) C g(U"). Let 0 < ' < r{.
Then

1 21 ) 1 2kt )
— | u(f(z0) +r'Fetydt = — u(f(z0) + r'"ei) dt
k 2 1k it
= 5= [ ulf(z0) +r"e”)dt = u(f(20)),
Qkﬂ' 0

since u is subharmonic at f(zp). But this means that z ~ u(f(z0) + 2*) is subharmonic at 0.
Then, since ¢'(29) # 0 and ¢ is holomorphic, we may use our previous result to conclude that
z > u(f(20) + g(2)*) = u(f(2)) is subharmonic at zo, i.e., there is some ry € R so that

2m
(o) < 5 [ ulhen +ret)

for 0 < r < rg. The assertion follows.
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Index of notation

() 4

D 53, 71
onf 53

0., 0z 9,116, 121
B, By 9,40, 46
B, 68

H 11

Ccf 13
cxWU) 96
Ce(U) 96
€ 45

diw 103
D(U) 97

6 100

A 116, 137
E,, 68
nee 17
fxg 91

& 109, 111
20 11

6, 37

Jr 53

ZL* 5

Z1 6
L(X,)Y) 3
LX) 3
L°(U) 3

LP(U) 3,4
LE(U) 6

My 25
Ou(R™) 107
po4

p(B) 58
P(B,U) 60

P, Q, 14

K1, B2 36
supp f 93, 96
singsuppu 116
S(R™), S'(R™) 103
T, 117

142

41



References

[Al] L. V. Ahlfors. Conformality with respect to Riemannian Metrics. Ann. Acad. Sci. Fenn. A 1
206 (1955).

[Al2] L.V. Ahlfors. Lectures on Quasiconformal Mappings. Van Nostrand, Princeton, NJ, 1966.

[AB] L.V. Ahlfors, L. Bers. Riemann Mapping’s Theorem for Variable Metrics. Ann. of Math. (2)
72 (1960) 385-404.

[Am] H. Amann. Vector Valued Distributions and Fourier Multipliers. Ziirich, 2003.
[As] K. Astala. Area Distortion of Quasiconformal Mappings. Acta Math. 173 (1994), no. 1, 37-60.

[AIM] K. Astala, T. Iwaniec, G. Martin. Elliptic Partial Differential Equations and Quasiconformal
Mappings in the Plane. Princeton Mathematical Series. Princeton University Press, Princeton
and Oxford, 2009.

[AIPS] K. Astala, T. Iwaniec, I. Prause, E. Saksman. Burkholder Integrals, Morrey’s Problem and
Quasiconformal Mappings. J. Amer. Math. Soc. 25 (2012), 507-531.

[Ba] J.M. Ball. Does rank-one convezity imply quasiconvexity? In Metastability and Incompletely
Posed Problems, volume 3, pages 17-32. IMA volumes in Mathematics and its Applications,
1987.

[BM] J.M. Ball, F. Murat. W'P-Quasiconvexity and Variational Problems for Multiple Integrals.
J. Functional Analysis, 58 (1984), 225-253.

[BJ] R. Baniuelos, P. Janakiraman. LP-bounds for the Beurling-Ahlfors Transform. Amer. Math.
Soc. 360 (2008), no. 7, 3603-3612.

[Be] A. Beurling. The Collected Works of Arne Beurling. Volume 1, Birkh&user, Boston, 1989.

[Bo] B.V. Bojarski. Generalized Solutions of a System of First Order Differential Equations of
FElliptic Type with Discontinuous Coefficients. Mat. Sb. 43 (85) (1957), 451-503.

u] D.L. Burkholder. Boundary Value Problems an arp Inequalities for Martingale Trans-
Bu] D.L. Burkholder. Bound Value Probl d Sharp T [ for M le T
forms. Ann. Probab. Volume 12, Number 3 (1984), 647-702.

[Bu2] D.L. Burkholder. Sharp Inequalities for Martingales and Stochastic Integrals. Colloque Paul
Lévy sur les Processus Stochastique (Palaiseau, 1987). Astérisque No. 157-158 (1988), 75-94.

[Da] B. Dacorogna. Direct Methods in the Calculus of Variations. Second edition. Applied Mathe-
matical Sciences 78. Springer. 2008.

[DV] O. Dragicevi¢, A. Volberg. Bellman Functions, Littlewood-Paley Estimates and Asymptotics
for the Ahlfors-Beurling Operator in LP(C). Indiana University Mathematics Journal 54 (4)
(2005), 971-995.

143



[DK] J.J. Duistermaat, J. A. C. Kolk. Distributions: Theory and Applications. Translated by J.P.
van Braam Houckgeest. Cornerstones. Birkhauser, New York, 2010.

[Ev] L.C. Evans. Partial Differential Equations: Second Edition. Graduate Studies in Mathematics,
Volume 19. American Mathematical Society, Providence, Rhode Island, 2010.

[Ev2] L.C. Evans. Weak Convergence Methods for Nonlinear Partial Differential Equations. Con-
ference Board of the Mathematical Sciences, Regional Conference Series in Mathematics 74.
American Mathematical Society, Providence, Rhode Island, 1990.

[Go] W. Goldstein. The Ezponent of Integrability of Generalized Derivatives of Quasiconformal
Homeomorphisms on the Plane. Dokl. Akad. Nauk SSSR 250 (1980), 18-21.

[GR] F.W. Gehring, E. Reich. Area Distortion under Quasiconformal Mappings. Ann. Acad. Sci.
Fenn. Ser. A. I. Math., 388 (1966), 3-15.

[Gr] L. Grafakos. Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer. 2008.
[Gru] G. Grubb. Distributions and Operators. Graduate Texts in Mathematics 252. Springer. 2009.
[Ha] A. Hatcher. Algebraic Topology. Cambridge University Press. 2001.

[Iw] T. Iwaniec. Extremal Inequalities In Sobolev Spaces and Quasiconformal Mappings. Z. Anal.
Anwendungen 1 (1982), no. 6, 1-16.

[Iw2] T. Iwaniec. Nonlinear Cauchy-Riemann Operators in R™. Trans. Amer. Math. Soc., 354
(2002), 1961-1995.

[IM] T.Iwaniec. G. Martin. Riesz Transform and Related Singular Integrals. J. Reine Angew. Math
437 (1996), 25-57.

[La] S. Lang. Complex Analysis. Fourth edition. Graduate Texts in Mathematics. Springer. 1999.

[LZ] P.D. Lax, L. Zalcman. Complex Proofs of Real Theorems. University Lectures Series, Volume
58. American Mathematical Society, Providence, Rhode Island, 2012.

[Le] O. Lehto. Remarks on the Integrability of the Derivatives of Quasiconformal Mappings. Ann.
Sci. Fenn. Series AI Math. 371 (1965), 3-8.

[Mo] C.B. Morrey. Quasi-convezity and the Lower Semicontinuity of Multiple Integrals. Pacific J.
Math., 2 (1952), 25-53.

[Mo2] C.B. Morrey. Multiple Integrals in the Calculus of Variations. Springer. Berlin, 1966.

[Ni] B. Nieraeth. The Spectrum of the Dirichlet Laplacian. Bachelor’s Thesis Mathematics. Utrecht
University, 2014. http://dspace.library.uu.nl/handle/1874/297489

[Pi] S. Pichorides. On the best values of the constants in the theorems of M. Riesz, Zygmund and
Kolmogorov. Studia Mathematica 44.2 (1972), 165-179.

144



[Ri] M. Riesz. Sur Les Fonctions Cunjuguées. Mathematische Zeitschrift 27 (1928), 218-244.

[Sv] V. Sverdk. Rank-one convezity does not imply quasiconvezity. Proc. Roy. Soc. Edinburbh Sect.
A 120 (1992), 185-1809.

[Ve] I.N. Vekua. The Problem of Reduction to the Canonical Form of Differential Forms of Elliptic
Type and the Generalized Cauchy-Riemann System. Dokl. Akad. Nauk SSSR. (N.S.) 100, (1995),
197-200.

145



