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Abstract

In this thesis, we show a method to dynamically generate expansions of numbers in an
arbitrary base β > 1 using maps called the lazy and greedy maps. We introduce concepts
such as the Frobenius-Perron operator, which we then use to find the unique absolutely
continuous invariant measure for the greedy map in the case where the base is equal to
the golden mean. We provide some intuition about most concepts and results as they are
introduced. We introduce a two-dimensional random map K which simultaneously generates
two random β -expansions and show that it can be essentially identified with the left shift.
We then find an invariant measure of maximal entropy for K. We introduce a skew product
transformation based on K and prove that there exists an absolutely continuous invariant
measure. We prove some properties of digit sequences that give a simultaneous expansion
of two numbers x and y in bases β1 and β2. Finally, we introduce a random map G that
generates these sequences, after which we show that it can be essentially identified with the
left shift.
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Chapter 1

Introduction

In this thesis, we consider the theory of β -expansions and random maps. This thesis is
structured as follows: chapter 2 introduces the theory of expansions of numbers and gives
a method to dynamically generate two special β -expansions called the greedy and lazy
expansions. These will be generated by the greedy and lazy maps, respectively. Chapter 3
introduces concepts from measure theory and ergodic theory such as absolutely continuous
invariant measures, the Frobenius-Perron operator, measurable isomorphisms and the Er-
godic Theorem. These concepts will be applied at the end of Chapter 3 to find the unique
absolutely continuous invariant measure for the greedy map in the case where the base is
equal to the golden mean. We then use this measure to find the frequency of the digit 0
by applying the Ergodic Theorem. Chapter 4 is the main chapter of this thesis, in which
we return to the theory of β -expansions and show a method to dynamically generate all
β -expansions by using a random map based on the greedy and lazy maps. The main goal of
this thesis is to generalise this method to two dimensions for the case 1 < β < 2. We show
that the two-dimensional random map K which generates these random β -expansions can be
essentially identified with the left shift and find an invariant measure of maximal entropy for
K. We then introduce a skew product transformation based on K and prove that there exists
an absolutely continuous invariant measure. We prove some properties of digit sequences
that give a simultaneous expansion of two numbers x and y in bases β1 and β2. Finally, we
introduce a random map G that generates these sequences, after which we show that it can
be essentially identified with the left shift.

Much of this thesis is based on scientific publications. One of our aims is to lower the
barrier to entry of the theory of random maps and random β -expansions. To do this, we
follow the following principles:



2 Introduction

• The text is mostly self-contained. assuming a prior knowledge of measure theory but
not ergodic theory. We do refer to proofs of theorems in articles if they are too long to
be included.

• We give further details that were omitted from the scientific papers we used as refer-
ences.

• We aim to provide some intuition about concepts and theorems as they are introduced.

• We give an overview of equivalent definitions or representations that differ from one
paper to another.

• We discuss a variety of methods found in the literature, for instance several methods of
finding so-called absolutely continuous invariant measures.



Chapter 2

β -expansions

2.1 Representations of numbers

The number e has multiple representations or definitions. For example, we can define e as
the unique number such that d

dxex = ex for all x ∈ R. There are also several ways to define it
using limits:

e = lim
n→∞

(1+
1
n
)n

e =
∞

∑
k=0

1
k!

:= lim
n→∞

n

∑
k=0

1
k!

e = 2+
7

10
+

1
102 +

8
103 +

2
104 +

8
105 +

1
106 + ...

In this thesis, we are particularly interested in limits of the last form. This representation of e
is usually written as

e = 2.718281...

In other words, it is the decimal expansion of e. For some numbers, such a decimal expansion
is unique, while for others there are two. For instance, we can write the number 1 in two
ways:

1 = 1 ·100 +
∞

∑
k=1

0
10k

= 0 ·100 +
∞

∑
k=1

9
10k
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In the usual notation, this is written as

1 = 1.0000000...= 0.9999999...

This means that there are two different ways to approach the number 1 arbitrarily closely
by a sum of the form ∑

n
k=0

dk
10k , i.e. there are two ways to write the number 1 as a limit that

has the special form ∑
∞
k=0

dk
10k .

The number 10 here is not of particular interest1; we could take a different basis like the
number 2 instead. After choosing appropriate digits, we obtain the binary expansion.

Note that here we are considering the real numbers to be defined independently of any
representation. If we tried to define all real numbers in terms of expansions, we would
run into the following problem: suppose we have defined a number x by an expansion
x = ∑

∞
k=0

dk
rk . The digits and the basis are integers, which are themselves represented in some

basis. This only makes sense if the integers are already defined. To define these integers, one
might try to give a decimal or binary expansion, but to do this we again need the integers to
already be defined. Essentially, an expansion is a way of writing a number in terms of other
numbers. This means that as a starting point we need some numbers that are not defined by
an expansion. This is resolved by considering the real numbers as defined independently of
any representation, for instance using set theory and Dedekind cuts.

We will need the following definition:

Definition 2.1.1. The floor function is the function ⌊·⌋ : R+ → N,

⌊x⌋= max{m ∈ N : m ≤ x}.

Note that if we can write x = d0.d1d2d3..., then it is not necessarily the case that ⌊x⌋= d0.
For example, in base 10,

⌊1.9999999...⌋= 2 ̸= 1.

In this thesis, we will consider non-integer bases and focus on so-called β -expansions.
These are expansions of the form x = ∑

∞
k=1

dk
β k , where β > 1 is a non-integer and dk ∈

1the ubiquity of the decimal system is often attributed to the fact that humans have 10 fingers; the word
’digit’ is a synonym for ’finger’.
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{0,1, ...,⌊β⌋}. Taking all digits as large as possible (i.e. equal to ⌊β⌋), we find ∑
∞
n=1

⌊β⌋
β n =

⌊β⌋
β−1 . Hence the largest number that can be represented in this way is ⌊β⌋/(β − 1). The
smallest number representable this way is 0, which is found by taking all digits equal to 0.

Note that in the integer case, ⌊n⌋= n, but the largest digit allowed is n−1. This differs
from the non-integer case, where the digit ⌊β⌋ < β is allowed. This difference is only
superficial: if we write the largest permissible digits as ⌈n⌉−1 and ⌈β⌉−1, the difference
disappears. In principle, many of the results in this thesis also work for integer bases, but
the results for integers are well-known and there is often an easier way to prove the results.
To emphasise that these results are mainly interesting for the non-integer case, we will
henceforth consider β to be a non-integer.

While a number can have at most two expansions in an integer base, in non-integer bases
there can be infinitely many. Out of the possibly infinitely many β -expansions for a given
number x, two are particularly interesting: the greedy and the lazy expansions. As we will
see, these are respectively the lexicographically largest and smallest β -expansions. We can
generate the greedy and lazy expansions using measurable maps respectively called the
greedy and the lazy maps. We shall see in Chapter 4 that any β -expansion can be generated
by a random map based on these two maps.

2.2 The greedy and lazy expansions

This section is based on [3], [4] and [5].

In this section, we introduce the greedy and lazy maps. Furthermore, we show how they
each generate a β -expansion, which we respectively call the greedy and lazy expansions.
Finally, we give an alternative way to obtain the greedy and lazy expansions which explains
their names.

Definition 2.2.1. Let β > 1 be a non-integer. The greedy map is the map Tβ :
[
0, ⌊β⌋

β−1

]
→[

0, ⌊β⌋
β−1

]
,

Tβ (x) =

{
βx (mod 1) if 0 ≤ x < 1
βx−⌊β⌋ if 1 ≤ x ≤ ⌊β⌋/(β −1)
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Equivalently,

Tβ (x) =


βx−d if x ∈C(d) :=

[
d
β
, d+1

β

)
, d ∈ {0,1, ...,⌊β⌋−1}

βx−⌊β⌋ if x ∈C(⌊β⌋) :=
[
⌊β⌋
β
, ⌊β⌋

β−1

]
Consider the first definition of the greedy map. The map is piecewise linear, and the

second part of the map extends the final line piece of the first part. To see this, consider the
interval [⌊β⌋

β
,1). On this interval, βx will have ⌊β⌋ subtracted from it by the mod function,

which is the same number subtracted on [1,⌊β⌋/(β − 1)]. As the extension has the same
slope, we conclude that that Tβ is differentiable at x = 1, and the final line piece is indeed
extended. In the second definition of the greedy map, instead of defining the final line piece
in two parts, we immediately define it on the entire interval

[
⌊β⌋
β
, ⌊β⌋

β−1

]
(see Figure 2.1).

Fig. 2.1 Plot of the greedy map Tβ with β =
√

2+1 ≈ 2.41421. Source: [3].

Definition 2.2.2. Let β > 1 be a non-integer. The lazy map is the map Sβ :
[
0, ⌊β⌋

β−1

]
→[

0, ⌊β⌋
β−1

]
,

Sβ (x) =


βx if x ∈ ∆(0) :=

[
0, ⌊β⌋

β (β−1)

]
βx−d if x ∈ ∆(d) :=

(
⌊β⌋

β (β−1) +
d−1

β
, ⌊β⌋

β (β−1) +
d
β

]
, d ∈ {1,2, ...,⌊β⌋}

(see Figure 2.2)
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Fig. 2.2 Plot of the lazy map Sβ with β =
√

2+1 ≈ 2.41421. Source: [3].

We now show how to generate the greedy and lazy expansions using iterations of these
maps. The digits of the greedy expansion of x ∈ [0, 1

β−1 ] are defined as di(x) = d if and only
if T i−1

β
(x) ∈C(d). Equivalently, we set di(x) = ⌊βT i−1

β
(x)⌋.

Similarly, the digits of the lazy expansion of x ∈ [0, 1
β−1 ] are defined as d′

i(x) = d′ if and
only if Si−1

β
∈ ∆(d′).

We now show that the greedy digits indeed define a β -expansion of x. We can write

Tβ (x) = βx−d1(x) and dn = d1(T n−1
β

(x)).

Rewriting the first equation, we obtain

x =
d1(x)

β
+

Tβ (x)
β

.

Applying this equation to Tβ (x), we find

Tβ (x) =
d1(Tβ (x))

β
+

T 2
β
(x)

β
=

d2(x)
β

+
T 2

β
(x)

β
.

By the first equation,

x =
d1(x)

β
+

d2(x)
β 2 +

T 2
β
(x)

β 2 .
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Repeating this argument, we obtain for all n ≥ 1 :

x =
n

∑
i=1

di(x)
β i +

T n
β
(x)

β n .

As 0 ≤ T n
β
(x)≤ ⌊β⌋

β−1 and β > 1, the remainder term

x−
n

∑
i=1

di(x)
β i =

T n
β
(x)

β n → 0 for n → ∞.

We conclude that x = ∑
∞
i=1

di(x)
β i .

This proof also works for the lazy expansion, mutatis mutandis.

Example 2.2.3. Let x = 2
3 and β = 1.5. Then ∆(0) = [0, 1

β (β−1) ] = [0, 4
3 ] and ∆(1) =

[ 1
β (β−1) ,

1
β−1 ] = (4

3 ,2]. Then

x = 2/3 ∈ ∆(0)

Sβ (x) = 1 ∈ ∆(0)

S2
β
(x) = 1.5 ∈ ∆(1)

S3
β
(x) = 1.25 ∈ ∆(0)

S4
β
(x) = 1.875 ∈ ∆(1)

S5
β
(x) = 1.8125 ∈ ∆(1)

S6
β
(x) = 1.71875 ∈ ∆(1)

S7
β
(x) = 1.57813 ∈ ∆(1)

S8
β
(x) = 1.36719 ∈ ∆(1)

S9
β
(x) = 1.05078 ∈ ∆(0)

S10
β
(x) = 1.57617 ∈ ∆(1).

Hence the lazy expansion of 2
3 in base 1.5 is 0.00101111101...

We now consider what the effect is on the digits when two numbers are mapped to the
same number by the greedy map. The i-th digit of the greedy expansion is determined by
the i−1-th iteration of Tβ , where T 0

β
x = x. If for some numbers x,y we have Tβ (x) = Tβ (y)

and x ̸= y, then x and y are in different intervals, i.e. x ∈C(d) ̸=C(d′) ∋ y, so the first digit
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assigned to x will differ from that assigned to y. Any digit assigned afterwards to x (by the
next iterations of Tβ ) will be equal to the digit assigned to y. Hence the greedy expansion of
x and y will only differ in the first digit. An analogous argument works for the lazy expansion.

There is an alternative way to obtain the greedy and lazy expansions, which makes it
more obvious in what sense their names are appropriate. The method is recursive: the digits
of the greedy expansion are given by

dn = d ∈ {0,1, ...,⌊β⌋−1} ⇐⇒
n−1

∑
k=1

dk

β k +
d

β n ≤ x <
n−1

∑
k=1

dk

β k +
d +1

β n

and

dn = ⌊β⌋ ⇐⇒
n−1

∑
k=1

dk

β k +
⌊β⌋
β n ≤ x.

For n = 1, the first term is the empty sum, which is defined to be zero. The process starts
with the first digit d1, which is then used to determine the second digit, and so on. In each
step, the largest possible digit is taken, i.e. if we took a larger digit then either ∑

∞
k=1

dk
β k would

be greater than x even if we took the subsequent digits as small as possible (i.e. equal to
0), or the digit would be larger than ⌊β⌋. Neither of these cases would allow us to obtain a
β -expansion of x. In this sense, the greedy expansion is indeed greedy.

We can do something similar for the lazy expansion. The method is again recursive: the
digits of the lazy expansion are given by

d′
n = 0 ⇐⇒ x ≤

n−1

∑
k=1

d′
k

β k +
∞

∑
j=n+1

⌊β⌋
β j

and
d′

n = d′ ∈ {1, ...,⌊β⌋}

⇐⇒
n−1

∑
k=1

d′
k

β k +
d′−1

β n +
∞

∑
j=n+1

⌊β⌋
β j < x ≤

n−1

∑
k=1

d′
k

β k +
d′

β n +
∞

∑
j=n+1

⌊β⌋
β j .

Intuitively, we postpone taking a larger digit for as long as possible, i.e. if we did not
take a larger digit then ∑

∞
k=1

d′
k

β k would be less than x even if we took the largest possible digit
in all subsequent steps, which would not allow us to obtain a β -expansion of x. In this sense,
the lazy expansion is indeed lazy. We will return to these expansions in chapter 3.
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One might wonder why we chose the particular form ∑n
dn
β n ,dn ∈ {0, ...,⌊β⌋} to represent

numbers. In fact, it is possible to generalise this form and let the digits be in an arbitrary (but
fixed) finite set of real numbers. These can also be generated dynamically, see [7]. It is also
possible to use a so-called mixed radix system, where we do not use the same base for all
positions, but allow the base to vary from one position to another. However, these expansions
cannot in general be generated dynamically.

This still leaves open the question why we take the denominator to be a polynomial. We
can write

e = 1 ·2!+0 ·1!+
∞

∑
i=2

1
n!

If we use a notation similar to the decimal expansion, we could write e= 10.111111111111....
The difference here is that the denominator is a factorial instead of the power of a base.

It turns out that there is an alternative number system called the factorial number system,
which differs from the usual number system in that there is no base. Another difference
lies in what digits are allowed: the digit dn corresponding to n! must be an integer less than
or equal to n. The integers are represented in the form ∑

∞
n=1 dnn!, and fractional values in

the form ∑
∞
n=2

dn
n! . For example, the number 210 in the factorial number system is equal to

2 ·3!+1 ·2!+0 ·1! = 14.
Note that we cannot use the same (finite) digit set to represent all numbers. Furthermore,

the set of permissible digits depends on the position, so it is not possible to generate the
digits dynamically as with β -expansions. An advantage of the factorial number system is
that it makes it easy to represent permutations. The conclusion here is that there are other
possibilities to represent numbers, which each have their pros and cons. The main advantage
of β -expansions is that they can be generated dynamically.



Chapter 3

Measure theory and ergodic theory

3.1 Useful technical definitions and results

This section is based on [6] and [9].

From now on, we will consider sets such as X =
[
0, ⌊β⌋

β−1

]
to be part of a measure space

(X ,F ,µ). This will enable us to determine additional properties of β -expansions, such as
the frequency of a certain digit. We will introduce concepts such as absolutely continuous
invariant measure (abbreviated as acim) and ergodicity, after which we introduce a useful
result called the Ergodic Theorem.

Definition 3.1.1. Let µ and ν be measures on a measurable space (X ,F ). We say that ν is
absolutely continuous w.r.t. µ if for all A∈F such that µ(A) = 0, we also have ν(A) = 0. We
denote this by ν ≪ µ. If µ is the Lebesgue measure, we say that ν is absolutely continuous.

Definition 3.1.2. Let (X ,F ,µ) be a probability space. We say that a measurable map
T : X → X is measure-preserving with respect to µ if µ

(
T−1(A)

)
= µ(A) for all A ∈ F .

Equivalently, we say that µ is T -invariant.

There are several reasons why we are interested in absolutely continuous invariant
measures. Firstly, they allow us to compute the measure of sets using Riemann integrals
because of the equality between proper Riemann integrals and Lebesgue integrals. Secondly,
the Lebesgue measure is the natural measure in the sense that it is used to calculate areas
and volumes. Thirdly, if an acim exists, then it is often the case that computer simulations
have histograms which approach the corresponding density, see [1]. Finally, acims are useful
because they allow us to apply results from ergodic theory, as we shall see at the end of this
chapter.
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The following theorem states that almost every point in a set of positive measure eventu-
ally returns to this set after sufficiently many iterations of a measure-preserving map. In fact,
the theorem implies that this happens infinitely often.

Theorem 3.1.3 (Poincaré Recurrence Theorem). Let T be a measure-preserving transforma-
tion on a probability space (X ,F ,µ) and let A ∈ F be such that µ(A) > 0. Then for a.e.
x ∈ A there exists a number k ≥ 1 such that T k(x) ∈ A.

Proof. See [6].

Definition 3.1.4. Let (X ,F ,µ) be a measure space. We say that µ is σ -finite if F contains
an increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ ... such that ∪ j∈N A j = X and µ(A j)< ∞ for all j ∈
N.

Note that any probability measure is σ -finite; we can simply take the constant sequence
A j = X for all j.

Theorem 3.1.5 (Radon-Nikodym). Let µ and ν be measures on a measurable space (X ,F ),
where µ is σ -finite.

There exists an a.e. unique non-negative measurable function f such that

ν(A) =
∫

A
f dµ for all A ∈ F

if and only if
v ≪ µ.

Proof. See [9].

In other words, ν has a density w.r.t. µ if and only if ν is absolutely continuous w.r.t µ .

Lemma 3.1.6. Let (X ,F ,µ) be a measure space and let f ,g ∈ L1(µ). If∫
A

f dµ =
∫

A
gdµ

for all measurable sets A, then f = g a.e.

Proof. We prove this by contradiction. Assume to the contrary that µ({ f ̸= g}) > 0. Let
A = { f > g}, B = { f < g} and Cn = { f − g ≥ 1

n}. As f and g are measurable, these sets
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are measurable. As A∪B = { f ̸= g}, either µ(A)> 0 or µ(B)> 0. Assume without loss of
generality that µ(A)> 0. As A = ∪∞

n=1Cn, there exists an m ∈N such that µ(Cm)> 0. Hence∫
Cm

f dµ −
∫

Cm

gdµ =
∫

Cm

f −gdµ

≥
∫

Cm

1
m

dµ

=
1
m

µ(Cm)> 0.

This is a contradiction. We conclude that f = g a.e.

Definition 3.1.7. Let (X ,F ,µ) be a probability space. We say that a measurable map
T : X → X is non-singular if for all A ∈ F such that µ(A) = 0 we have µ(T−1(A)) = 0.

Note that any measure-preserving map is non-singular.

Definition 3.1.8. Let (X ,F ,µ) be a probability space. We say that a measure-preserving
map T : X → X is ergodic if for all A ∈ F such that T−1(A) = A we have µ(A) ∈ {0,1}.

We have the following generalisation of the Strong Law of Large Numbers:

Theorem 3.1.9 (Birkhoff’s Ergodic Theorem, theorem 2.1.1 in [6]). Let (X ,F ,µ) be a
probability space and let T : X → X be a measure-preserving map. Then for all f ∈ L1(µ),

lim
n→∞

1
n

n−1

∑
i=0

f (T i(x)) =: f ∗(x)

exists for almost every x ∈ X, is T -invariant and
∫

X f dµ =
∫

X f ∗dµ. If additionally T is
ergodic, then f ∗ ≡

∫
X f dµ a.e. In particular, f ∗ is constant a.e.

Proof. see [6].

Definition 3.1.10. Let (X ,F ,µ) be a probability space and let T be a measure-preserving
transformation. We say that (X ,F ,µ,T ) is a dynamical system.

The following definition states that two dynamical systems are the same if there is a
map preserving both the measure structures on each space given by the σ -algebras and
the probability measures, and the dynamical structures given by the measure-preserving
transformations.



14 Measure theory and ergodic theory

Definition 3.1.11 (based on definition 3.1.1 in [6]). The dynamical systems (X ,F ,µ,T ) and
(Y,C ,ν ,S) are called isomorphic there exists a map φ : X → Y satisfying the following:

(i) φ is bijective a.e., i.e. there exist measurable sets N ⊂ X and M ⊂ Y with µ(X \N) =

ν(Y \M) = 0, T (N)⊂ N,S(M)⊂ M such that the restriction φ ′ : N → M is a bijection.

(ii) φ ′ is F ∩N/C ∩M-measurable and its inverse φ−1 is C ∩M/F ∩N-measurable.

(iii) φ ′ preserves the measures, i.e. ν(C) = µ(φ−1(C)) for all C ∈ C ∩M. In other words,
ν = µ ◦φ−1.

(iv) φ ′ preserves the dynamics of T and S, i.e. φ ′ ◦T = S◦φ ′.

We say that φ is a measurable isomorphism.

3.2 The Frobenius-Perron operator

This section is based on chapter 4 of [2].

In this section, we introduce a useful technical tool called the Frobenius-Perron op-
erator. It will allow us to find acims explicitly for some special cases. We first provide a
motivating argument leading up to its definition, after which we prove several of its properties.

Let I = [a,b] and consider the probability space (I,B(I),λ ), where λ is the normalised
Lebesgue measure. Let X be distributed according to the probability density function f , i.e.
for any measurable set A,

P(X ∈ A) =
∫

A
f dλ .

Let T be a non-singular measurable map, so that T (X) is another random variable. One could
ask what the probability density function of T (X) is. We compute

P(T (X) ∈ A) = P(X ∈ T−1(A)) =
∫

T−1(A)
f dλ .

To obtain the probability density function of T (X), we need to write the previous integral in
the form ∫

A
φdλ
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for some function φ , which will then be the probability density function of T (X). We now
prove that this is always possible, i.e. that such a function φ exists. Define the measure

µ(A) :=
∫

T−1(A)
f dλ .

Let A be a measurable set such that λ (A) = 0. As T is non-singular, λ (T−1(A) = 0), so
µ(A) = 0. Therefore, µ ≪ λ . By the Radon-Nikodym theorem, T (X) has a probability
density function φ with respect to λ , which is a.e. uniquely defined.

Starting with a probability density function f , we have obtained a new probability density
function PT f := φ , where PT is an operator from the space of probability density functions
to itself. Concluding the previous discussion, we have the following definition:

Definition 3.2.1. Let T : I → I be a non-singular measurable map on the probability space
(I,B(I),λ ), where λ is the normalised Lebesgue measure and I = [a,b]. The Frobenius-
Perron operator is defined as PT : L 1 → L 1, PT f is the a.e. unique function in L 1 such
that for all measurable sets A, ∫

A
PT f dλ =

∫
T−1(A)

f dλ .

This is well-defined: as we have seen, the Radon-Nikodym Theorem implies existence
and a.e. uniqueness of PT f . This definition can be extended to more general measure spaces.
Although we have defined the operator for all integrable functions, in practice we will only
use it for non-negative functions with integral 1, i.e. probability density functions.

For A = [a,x]⊂ I, we have by the equality of proper Riemann integrals and Lebesgue
integrals: ∫ x

a
PT f (y)dy =

∫
T−1([a,x])

f dλ

Differentiating w.r.t. x gives the formula

PT f (x) =
d
dx

∫
T−1([a,x])

f dλ .
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Fig. 3.1 Plot of T . Source: [2].

Example 3.2.2 (example 4.1.2 in [2]).

Let I = [0,1] and define the piecewise linear map T : I → I,

T (x) =

{
2x if 0 ≤ x ≤ 1

2
−4

3x+ 5
3 if 1

2 < x ≤ 1

(see Figure 3.1)

Then

T−1([0,x]) =
[

0,
1
2

x
]

for x <
1
3

and

T−1([0,x]) =
[

0,
1
2

x
]
∪
[

5
4
− 3

4
x,1
]

for x ≥ 1
3

So for any probability density function f on [0,1],

∫
T−1([0,x])

f dλ =


∫ 1

2 x
0 f dλ if 0 ≤ x < 1

3

∫ 1
2 x

0 f dλ +
∫ 1

5
4−

3
4 x f dλ if 1

3 ≤ x ≤ 1

Differentiating, we obtain

PT f (x) =


1
2 f (1

2x) if 0 ≤ x < 1
3

1
2 f (1

2x)+ 3
4 f (5

4 −
3
4x) if 1

3 ≤ x ≤ 1
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Using an indicator function, we can write this more compactly:

PT f (x) =
1
2

f (
1
2

x)+
3
4

f (
5
4
− 3

4
x)1[ 1

3 ,1]
(x).

We will later generalise this result. We now prove several properties of the Frobenius-
Perron operator.

Proposition 3.2.3 (Linearity). PT is a linear operator.

Proof. Let A be a measurable set, let α,β be constants and let f ,g ∈ L1. Then∫
A

PT (α f +βg)dλ =
∫

T−1(A)
(α f +βg)dλ

= α

∫
T−1(A)

f dλ +β

∫
T−1(A)

gdλ

= α

∫
A

PT f dλ +β

∫
A

PT gdλ

=
∫

A
αPT f +βPT gdλ

By Lemma 3.1.6, we conclude that PT (α f +βg) = αPT f +βPT g, i.e. PT is linear.

Proposition 3.2.4 (Non-negativity). Let f ∈ L1 be such that f ≥ 0. Then PT f ≥ 0.

Proof. Let A be a measurable set. Then∫
A

PT f dλ =
∫

T−1(A)
f dλ ≥ 0.

Similarly to the proof of Lemma 3.1.6, we conclude that PT f ≥ 0.

Proposition 3.2.5 (PT preserves integrals). Let I be an interval and let (I,B(I),µ) be a
measure space. Then ∫

I
PT f dλ =

∫
I

f dλ

Proof. As T−1(I) = I, ∫
I
PT f dλ =

∫
T−1(I)

f dλ =
∫

I
f dλ .

In particular, if f is a probability density function, then PT f also has integral 1. Combining
this with with Proposition 3.2.4, we find that PT f is also a probability density function.
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Proposition 3.2.6 (Composition property). Let S : I → I and T : I → I be non-singular
measurable maps. Then PS◦T = PS ◦PT .

Proof. We first show that PS◦T exists. For this we only need to show that S ◦ T is non-
singular. Let N be a measurable set such that λ (N) = 0. As S and T are non-singular,
λ
(
(S◦T )−1(N)

)
= λ

(
T−1(S−1(N)

))
= 0. Therefore, S◦T is non-singular and PS◦T exists.

Now let f ∈ L1 and let A be a measurable set. Repeatedly applying the definition of the
Frobenius-Perron operator, we obtain

∫
A

PS◦T f dλ =
∫
(S◦T )−1(A)

f dλ

=
∫

T−1
(

S−1(A)
) f dλ

=
∫

S−1(A)
PT f dλ

=
∫

A
PS(PT f )dλ

By Lemma 3.1.6, we conclude that PS◦T f = PS(PT f ) a.e.

Note: if we take T = S, then it follows by induction that PSn = Pn
S for n ≥ 1.

Finally, we have the following relationship between fixed points of PT and invariant
measures:

Proposition 3.2.7 (Proposition 4.2.7 in [2]). Let T : I → I be a non-singular measurable map
and let f ∈ L1. Then PT f = f a.e. if and only if the measure µ defined by µ(A) =

∫
A f dλ is

T -invariant.

Proof. ” ⇐= ”: assume µ is T -invariant, i.e. µ(T−1(A)) = µ(A) for any measurable set A.
By definition of µ , this means that∫

T−1(A)
f dλ =

∫
A

f dλ .

By definition of the Frobenius-Perron operator, this implies that∫
A

PT f dλ =
∫

A
f dλ .

By Lemma 3.1.6, we conclude that PT f = f a.e.
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” =⇒ ”: assume PT f = f a.e. Then

µ(A) =
∫

A
f dλ

=
∫

A
PT f dλ

=
∫

T−1(A)
f dλ

= µ(T−1(A)).

In other words, f is a fixed point of PT if and only if µ(A) =
∫

A f dλ is an acim.

3.3 Representations of the Frobenius-Perron operator

This section is based on chapter 4.3 and 9 of [2].

In this section, we will assume conditions on T which allow us to obtain explicit expres-
sions for the Frobenius-Perron operator. We first consider piecewise monotonic transforma-
tions, after which we further specialise to piecewise linear Markov transformations. In the
latter case, the Frobenius-Perron operator reduces to a matrix. Finally, we apply these results
to find an acim for the greedy map in the case that β is equal to the golden mean.

Definition 3.3.1 (based on definition 4.3.1 in [2]). Let I = [a,b]. The map T : I → I is called
piecewise monotonic if there exists a partition

P = {Ii}n
i=1 = {[a0,a1), [a1,a2), ..., [an−2,an−1), [an−1,an]}

of I, where a = a0 < a1 < ... < an = b, such that for 1 ≤ i ≤ n,

• T |Ii is a C1 function which can be extended to a C1 function on Ii.

• |T ′(x)|> 0 for all x ∈ Ii, where the derivative on the endpoint(s) is a one-sided deriva-
tive.

If additionally |T ′(x)| is positively bounded away from 1, we say that T is piecewise
monotonic and expanding. In other words, if T is piecewise monotonic and there exists a
constant α such that |T ′(x)| ≥ α > 1 for all x ∈ I.
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Fig. 3.2 Plot of a piecewise monotonic transformation. Source: [2].

The name ’piecewise monotonic’ is appropriate because |T ′(x)|> 0 on on each interval
Ii implies that T is monotonic on Ii. Note that we interpret monotonicity in a strict sense
here, i.e. T is either strictly increasing or strictly decreasing on each interval Ii. In particular,
T is invertible on each of these intervals. Let Ti : Ii → T (Ii),Ti := T |Ii and define its inverse
φi : T (Ii)→ Ii,φi := T−1

i .

We will now derive an explicit expression of PT for piecewise monotonic maps T . Let
A be a measurable set and let f ∈ L1. We can write T−1(A) as a union of disjoint sets:
T−1(A) = ∪n

i=1φi (A∩T (Ii)). Hence∫
A

PT f dλ =
∫

T−1(A)
f dλ

=
n

∑
i=1

∫
φi(A∩T (Ii))

f dλ

=
n

∑
i=1

∫
A∩T (Ii)

f (φi)|φ ′
i |dλ (by the change of variables formula)

=
∫

A

n

∑
i=1

f (φi)|φ ′
i |1T (Ii)dλ

=
∫

A

n

∑
i=1

f (T−1
i )

|T ′
i (T

−1
i )|

1T (Ii)dλ
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By Lemma 3.1.6, we obtain

PT f =
n

∑
i=1

f (T−1
i )

|T ′
i (T

−1
i )|

1T (Ii)

More compactly, we can write

PT f (x) = ∑
z∈T−1(x)

f (z)
|T ′(z)|

These expressions are well-defined: the denominators are non-zero because of the assumption
that |T ′

i |> 0.

Example 3.3.2 (example 4.3.1 in [2]).

Let T : [0,1] → [0,1],T (x) = rxe−bx, where r = 5e,b = 5 (see Figure 3.3). Define
I1 = [0, 1

b), I2 = [1
b ,1],T1 = T |I1 ,T2 = T |I2 . By the previous result, for f ∈ L1,

PT f =
f (T−1

1 )

|T ′
1(T

−1
1 )|

1T (I1)+
f (T−1

2 )

|T ′
2(T

−1
i )|

1T (I2)

=
f (T−1

1 )

|T ′
1(T

−1
1 )|

+
f (T−1

2 )

|T ′
2(T

−1
i )|

1[re−b,1].

Fig. 3.3 Plot of T . Source: [2].
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We now consider a special case of piecewise monotonic transformations: piecewise linear
Markov transformations.

Definition 3.3.3. A map T : X → Y is called a homeomorphism if

• T is bijective (hence it has an inverse T−1), and

• T and T−1 are continuous.

Definition 3.3.4. A map T : I → I is called a piecewise linear Markov transformation if there
exists a partition

P = {Ii}n
i=1 = {[a0,a1), [a1,a2), ..., [an−2,an−1), [an−1,an]}

of I, where a = a0 < a1 < ... < an = b, such that for 1 ≤ i ≤ n,

• T |Ii is a homeomorphism from Ii to a connected union of intervals in P

• |T ′(x)|> 0 for all x ∈ Ii, where the derivative on the endpoint(s) is a one-sided deriva-
tive.

• T |Ii is linear on Ii.

If additionally there exists a constant α such that |T ′(x)| ≥ α > 1 for all x ∈ I, we say that T
is an expanding piecewise linear Markov transformation.

We will use the result for piecewise monotonic transformations to derive a matrix rep-
resentation for PT in the case that T is a piecewise linear Markov transformation. First we
introduce some useful concepts and notation.

Definition 3.3.5 (definition 9.1.1 in [2]). Let T : I → I be a piecewise monotonic transforma-
tion and let P = {Ii}n

i=1 be a partition of I. The incidence matrix AT = (ai j)1≤i, j≤n induced
by T and P is defined by its entries

ai j =

{
1 if I j ⊂ T (Ii)

0 otherwise

Definition 3.3.6. Let P = {Ii}n
i=1 be a partition of I. A function f : I → I is called piecewise

constant on P if it is constant on each Ii, i.e. if we can write f = ∑
n
i=1 fi1Ii for some

constants f1, ..., fn. We denote the column vector obtained from f by π f = ( f1, ..., fn)
⊺,

where the superscript ⊺ denotes transposition.
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Theorem 3.3.7 (theorem 9.2.1 in [2]). Let T : I → I be a piecewise linear Markov transfor-
mation on a partition P = {Ii}n

i=1. There exists an n×n matrix MT such that PT f = MT π f

for all functions f that are piecewise constant on P . The matrix MT has entries

mi j =
a ji

|T ′
j |

1 ≤ i, j ≤ n.

where (ai j)1≤i, j≤n are the entries of the incidence matrix induced by T and P .

Note that T is a piecewise linear Markov transformation, so each denominator |T ′
i | is a

non-zero constant. Also note that the matrix is the same for all piecewise constant functions
f , and that PT f is piecewise constant.

Proof. First assume that f = 1Ik for some 1 ≤ k ≤ n. Then

PT f =
n

∑
i=1

f (T−1
i )

|T ′
i (T

−1
i )|

1T (Ii) (by the result for piecewise monotonic transformations)

=
n

∑
i=1

1Ik(T
−1

i )

|T ′
i (T

−1
i )|

1T (Ii)

=
1Ik(T

−1
k )

|T ′
k (T

−1
k )|

1T (Ik) (the range of T−1
i is Ii, so T−1

i (x) /∈ Ik for i ̸= k,∀x ∈ Ii)

=
1

|T ′
k (T

−1
k )|

1T (Ik)

=
1
|T ′

k |
1T (Ik) (T is piecewise linear, so the denominator |T ′

k | is a constant)

Now let f = ∑
n
k=1 fk1Ik be piecewise constant function. By Proposition 3.2.3, PT is a

linear operator, so

PT f =
n

∑
k=1

fk

|T ′
k |
1T (Ik)

For all k, T (Ik) is a union of sets in P . By the formula above, PT f is piecewise linear on P .
Let (d1, ...,dn)

T be the column vector obtained from PT f . We now show that we can write
PT as a matrix. Let x ∈ I j, so that PT f (x) = d j. For 1 ≤ k ≤ n, the term fk

|T ′
k |
1T (Ik) is equal to

fk
|T ′

k |
if and only if x ∈ T (Ik). As T is a piecewise linear Markov transformation, this is the

case if and only if the entire interval I j ⊆ T (Ik), i.e. if and only if ak j = 1. We conclude that

d j =
n

∑
k=1

fk
ak j

|T ′
k |

=
n

∑
k=1

fkm jk
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and
PT f = MT π

f .

Example 3.3.8.

Consider the greedy transformation Tβ for β = 1+
√

5
2 , so that β satisfies β (β −1) = 1.

We will show that in this case, Tβ is a piecewise linear Markov transformation. The greedy
map is obviously piecewise linear with non-zero derivatives. Let

I1 = [0,
1
β
), I2 = [

1
β
,1) and I3 = [1,

1
β −1

].

Then
Tβ (I1) = I1 ∪ I2, Tβ (I2) = I1 and Tβ (I3) = I2 ∪ I3.

Every part is a continuous bijection with a continuous inverse. Therefore, Tβ is a piecewise
linear Markov transformation. We now apply Theorem 3.3.7 to find its Frobenius-Perron
operator. The (i, j)-th entry of the Frobenius-Perron matrix is found by checking whether
I j ⊂ Tβ (Ii) and taking |T ′

β ,i| = β . By the previous theorem, for any piecewise constant
function f = ( f1, f2, f3)

⊺ on P we can write

PTβ
f = MTβ

π
f =


2

1+
√

5
2

1+
√

5
0

2
1+

√
5

0 2
1+

√
5

0 0 2
1+

√
5


 f1

f2

f3


We now find the piecewise constant absolutely continuous invariant density of Tβ by

solving the system of equations PTβ
f = f ,

∫
f (x)dx = 1 for f . Explicitly, we solve




2

1+
√

5
2

1+
√

5
0

2
1+

√
5

0 2
1+

√
5

0 0 2
1+

√
5


 f1

f2

f3

=

 f1

f2

f3


1
β

f1 +(1−1/β ) f2 +( 1
β−1 −1) f3 = 1
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and obtain the piecewise constant absolutely continuous invariant density

( f1, f2, f3) = (
5+3

√
5

10
,
5+

√
5

10
,0).

In different notation:

f (x) =


5+3

√
5

10 if x ∈ [0, 1
β
)

5+
√

5
10 if x ∈ [ 1

β
,1)

0 if x ∈ [1, 1
β−1 ]

The intuition for f3 being 0 is as follows: after iterating Tβ , all points in I3 except
x = 1

β−1 will eventually end up in I1 ∪ I2 and stay there for all subsequent iterations. Points
in I1∪I2 are never mapped to I3. Hence any Tβ -invariant measure must assign measure 0 to I3.

As |T ′
β
|= β > 1, this map is also expanding. One can show that for expanding piecewise

linear Markov transformations, every invariant density is piecewise constant (see [2]). There-
fore, the density we found is the only invariant density.

To define the digits of the greedy expansion, we iterated the greedy map. This iterative
structure, combined with the acim we have found, allows us to apply the Ergodic Theorem
to find the frequency of the digit 0 in the greedy expansion with β = 1+

√
5

2 . By Proposition
3.2.7, the measure νβ (A) :=

∫
A f dλ is Tβ -invariant. One can show that Tβ is ergodic w.r.t.

νβ . As in [3], the following holds for a.e. x:

lim
n→∞

1
n

#{1 ≤ i ≤ n : di(x) = 0}= lim
n→∞

1
n

n−1

∑
i=0

1[0,1/β )

(
T i

β
(x)
)

= νβ ([0,1/β )) =
∫ 1

β

0

5+3
√

5
10

dx =
5+

√
5

10

Note that the quantity on the left-hand side does not have anything to do with measure
theory or ergodic theory, but that introducing these concepts was useful to prove our result.
This example suggests the following general proof strategy:

• Given an object of interest defined on a set X , introduce a σ -algebra F and consider
the measurable space (X ,F ).

• Write the object in the form limn→∞
1
n ∑

n−1
i=0 f

(
T i(x)

)
for some measurable maps T

and f on X .
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• Find an invariant measure for T .

• Use the Ergodic Theorem to find an expression for the object which holds a.e.

The acim in the case where β is equal to the golden mean was first found by Rényi. The
following theorem states that there is in fact a unique acim for the greedy map for all values
of β > 1. This measure is called the extended Parry measure.

Theorem 3.3.9. Let β > 1 be a non-integer. There exists a unique Tβ -invariant measure
equivalent to the Lebesgue measure with density hβ : [0,⌊β⌋/(β −1)]→ R,

hβ (x) =

{
1

F(β ) ∑
∞
n=0

1
β n 1[0,T n

β
(1))(x) if 0 ≤ x < 1

0 if 1 ≤ x ≤ ⌊β⌋/(β −1)

where F(β ) is a normalising constant.

Proof. See [8].



Chapter 4

Random maps and random β -expansions

In this chapter, we first prove some additional properties of the lazy and greedy expansions.
We then introduce the theory of random maps and random β -expansions. We will show
how to obtain β -expansions other than the lazy and greedy expansions using a random
map based on the lazy and greedy maps. We extend these results to a two-dimensional
random map and find an invariant measure of maximal entropy for this map. We introduce
a variant of the two-dimensional random map called the skew product transformation, and
prove the existence of an acim. Finally, we prove some properties of digit sequences that
simultaneously give an expansion of two numbers x and y in bases β1 and β2 and introduce a
map which generates these sequences.

4.1 The lazy and greedy expansions revisited

We now return to the lazy and greedy expansions. For completeness, we mention the
following definition:

Definition 4.1.1. Let 0.d1d2... and 0.e1e2... be two β -expansions. We say that 0.d1d2... is
smaller than 0.e1e2... in lexicographical order, written

0.d1d2... <lex 0.e1e2...

if there exists an integer n such that di = ei for all i < n and dn < en.

Note that if we have two β -expansions such that x = 0.d1d2... <lex 0.e1e2...= y, then it
is possible that y < x. This conflicts with the usual intuition for binary or decimal expansions
that for instance 0.01111111... < 0.1 (in base 10). This is a consequence of the fact that for
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1 < β < 2, ∑
∞
k=n+1

1
β k >

1
β n . For example, for β = 1.5,

4
3
=

0
1.51 +

∞

∑
k=2

1
1.5k = 0.01111111... (in base 1.5)

while
2
3
=

1
1.51 +

∞

∑
k=2

0
1.5k = 0.10000000... (in base 1.5).

Furthermore, if we have a β -expansion that is lexicographically between the lazy expan-
sion of a number x and the greedy expansion of that same number x, then it is not necessarily
a β -expansion of x. For example, the lazy expansion of 2

3 in base 1.5 is 0.00101111101... , so

0.00101111101... <lex 0.01111111... <lex 0.10000000...

but
2
3
= 0.00101111101...= 0.10000000... < 0.01111111...=

4
3
.

However, greedy expansions do have the monotonicity property: if x < y, then the greedy
expansion of x is lexicographically smaller than the greedy expansion of y.

We now show that the lazy expansion is lexicographically smaller than the greedy expan-
sion (this inequality is not strict; they can be equal). The first interval in the definition of the
lazy map and the last interval of the greedy map have length ⌊β⌋

β (β−1) . All other intervals of

both maps have length 1
β

(see Figure 4.1). As ⌊β⌋> β −1, we have ⌊β⌋
β (β−1) >

1
β

.

Fig. 4.1 The intervals of the greedy and lazy maps with their assigned digits.

(In Figure 4.1, the first interval of the lazy map is shorter than the union of the first and
second intervals of the greedy map. This is only true for certain values of β ; the first interval
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of the lazy map can be longer.)

Therefore, the first interval of the lazy map is longer than the first interval of the greedy
map. As the subsequent lazy intervals are shorter than or of the same length as the subsequent
greedy intervals, the first lazy digit will be smaller than or equal to the first greedy digit.

Fig. 4.2 Plot of the greedy map (left) and the lazy map (centre) for β = π , and the two maps
superimposed (right). Source: [7], with slightly modified notation.

The larger T (x) is, the larger the second assigned digit will be (above certain thresholds).
In Figure 4.2 we see that it is possible that the lazy map maps x to a larger number than the
greedy map, so the second lazy digit may be larger than the second greedy digit. However,
this only happens if x is in one of the so-called switch regions, denoted by Si. The lazy digit
assigned to x in such a region is strictly smaller than the greedy digit (they differ by exactly
1). Hence, if the second lazy digit is larger than the second greedy digit, then the first greedy
digit must be larger than the first lazy digit. In general, assume that the n-th lazy digit is
larger than the n-th greedy digit, where n is the smallest number with this property. Then
T n−1

β
(x) ̸= Sn−1

β
(x), so there is a smallest number m ≤ n−1 such that T m

β
(x) ̸= Sm

β
(x), which

implies that T m−1
β

(x) = Sm−1
β

(x) is in a switch region. Consequently, the m-th greedy digit
is larger than the m-th lazy digit. By the choice of n we conclude that the lazy expansion is
lexicographically smaller than the greedy expansion.
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4.2 Random β -expansions

This section is based on [4] and [5].

We now introduce a way to dynamically generate any β -expansion of a number x ∈
[0, 1

β−1 ]. In the previous section it was shown that the lazy expansion is lexicographically
smaller than the greedy expansion. These expansions were generated by repeatedly applying
the lazy map and the greedy map, respectively. If at each iteration we randomly choose
which of these maps to apply and choose the digit corresponding to the chosen map, we
obtain a random β -expansion of x. We shall now make this precise.

The greedy map is piecewise-defined on a partition of [0, 1
β−1 ], and on each interval in

this partition a certain digit is assigned. The same is true for the lazy map. If we superimpose
the greedy and lazy maps, we obtain a finer partition (see the right-hand side in Figure
4.2). This partition is made up of two categories of intervals. Firstly, there are the equality
regions Ek, where the greedy and lazy maps assign the same digit k. Secondly, there are the
switch regions Sk, where the greedy map assigns digit k and the lazy map assigns digit k−1.
Explicitly,

E0 =

[
0,

1
β

)
,

Ek =

(
⌊β⌋

β (β −1)
+

k−1
β

,
k+1

β

)
, k = 1, ...,⌊β⌋−1,

E⌊β⌋ =

(
⌊β⌋

β (β −1)
+

⌊β⌋−1
β

,
⌊β⌋

β −1

]
and

Sk =

[
k
β
,

⌊β⌋
β (β −1)

+
k−1

β

]
, k = 1, ...,⌊β⌋.

Let Ω = {0,1}N, representing the set of possible outcomes of infinitely many coin tosses,
and let σ : Ω → Ω, σ(ω1,ω2, ...) = (ω2,ω3, ...) be the left shift. Define the map

Kβ : Ω×
[

0,
⌊β⌋

β −1

]
→ Ω×

[
0,

⌊β⌋
β −1

]
,

Kβ (ω,x) =


(ω,βx− k) if x ∈ Ek, k = 0,1, ...,⌊β⌋
(σ(ω),βx− k) if x ∈ Sk and ω1 = 1, k = 1, ...,⌊β⌋
(σ(ω),βx− k+1) if x ∈ Sk and ω1 = 0, k = 1, ...,⌊β⌋



4.2 Random β -expansions 31

We assign the first digit as follows:

d1 = d1(ω,x) =


k if x ∈ Ek, k = 0,1, ...,⌊β⌋

or x ∈ Sk,ω1 = 1, k = 1,2, ...,⌊β⌋
k−1 if x ∈ Sk,ω1 = 0, k = 1,2, ...,⌊β⌋

and the n-th digit as
dn = dn(ω,x) = d1

(
Kn−1

β
(ω,x)

)
.

Every time the orbit of x under Kβ hits a switch region, we flip a coin to determine which
map is applied, and hence which digit is chosen. A 1 (’heads’) means that the greedy map
will be applied, and a 0 (’tails’) means that the lazy map will be applied. On the equality
regions, the greedy and the lazy map are the same, so the choice does not matter and we do
not flip a coin.

Let π2 : Ω×
[
0, ⌊β⌋

β−1

]
→
[
0, ⌊β⌋

β−1

]
be the projection onto the second coordinate.

We can write π2
(
Kβ (ω,x)

)
= βx−d1(ω,x), so

π2

(
K2

β
(ω,x)

)
= β

2x−βd1(ω,x)−d1(Kβ (ω,x))

= β
2x−βd1(ω,x)−d2(ω,x)

= β
2x−βd1 −d2

and in general,

π2

(
Kn

β
(ω,x)

)
= β

nx−
n

∑
i=1

β
n−idi ,

which we can rewrite as

x =
d1

β
+ ...+

dn

β n +
π2

(
Kn

β
(ω,x)

)
β n .

As π2

(
Kn

β
(ω,x)

)
is bounded, we find that for all ω ∈ Ω and x ∈

[
0, ⌊β⌋

β−1

]
,

x =
∞

∑
i=1

di

β i =
∞

∑
i=1

di(ω,x)
β i .

So far we have only used the coin tosses as a motivating argument, but have not actually
needed any probability measure. For all ω ∈ Ω we have derived an algorithm which produces
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a β -expansion. The following theorem states that all β -expansions of x can be generated this
way:

Theorem 4.2.1. Let x ∈
[
0, ⌊β⌋

β−1

]
and suppose we can write x = ∑

∞
i=1

ai
β i , ai ∈ {0,1, ...,⌊β⌋}.

Then there exists an ω ∈ Ω such that ai = di(ω,x) for all i ≥ 1.

Proof. See [4].

Theorem 4.2.2 (theorem 1 in [4]). Let ω,ω ′ ∈ Ω be such that ω <lex ω ′. Then

0.d1(ω,x)d2(ω,x)...≤lex 0.d1(ω
′,x)d2(ω

′,x)...

Proof. Let i be the first index such that ωi ̸= ω ′
i . As ω <lex ω ′, we must have ωi = 0

and ω ′
i = 1. Let 0 ≤ ri ≤ ∞ be the time of the i-th visit to the switch region Ω× (∪iSi)

of the orbit of (ω,x) under Kβ . Then π2(K
j

β
(ω,x)) = π2(K

j
β
(ω ′,x)) for all 0 ≤ j ≤ ri, so

d j(ω,x) = d j(ω
′,x) for all 1 ≤ j ≤ ri (if ri = 0 then the previous statement is vacuous).

If ri = ∞, then by the above, d j(ω,x) = d j(ω
′,x) for all j.

If ri < ∞, then Kri
β
(ω,x),Kri

β
(ω ′,x) ∈ Ω × (∪iSi). As ωi = 0 and ω ′

i = 1, we have
dri+1(ω

′,x) = dri+1(ω,x)+1 so that

0.d1(ω,x)d2(ω,x)... <lex 0.d1(ω
′,x)d2(ω

′,x)...

We conclude that in either case,

0.d1(ω,x)d2(ω,x)...≤lex 0.d1(ω
′,x)d2(ω

′,x)...

Theorem 4.2.2 is a consequence of the fact that we did not apply the left shift to ω for x in
the equality regions. If we applied the left shift in every iteration (even on equality regions),
the statement in this theorem would no longer be true. This is because if i is the first index
such that ωi ̸= ω ′

i , then this difference does not affect any digit if the second coordinate of
Ki−1

β
(ω,x) is in an equality region.

Note that the lazy map corresponds to the lexicographically smallest member of Ω,
namely ω = (0,0,0, ...), and the greedy map corresponds to the lexicographically largest
member of Ω, namely ω = (1,1,1, ...). Hence the combination of Theorem 4.2.1 and 4.2.2
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provides another proof that the lazy expansion is lexicographically smaller than or equal to
the greedy expansion.

By Theorem 4.2.1 and 4.2.2, all β -expansions of x can be generated by this process, and
they are all lexicographically between the lazy and greedy expansions of x. As we have seen,
at least for 1 < β < 2, not all β -expansions lexicographically between the lazy and greedy
expansions of x are necessarily also β -expansions of x. Therefore, the orbit of every such x
must eventually hit an equality region for all ω ∈ Ω. To ensure that the resulting expansion is
an expansion of x, the algorithm imposes two restrictions. We are only free to choose a digit
in the switch regions, and if we choose the greedy digit, we must then also apply the greedy
map. The combination of these two requirements is restrictive enough to limit the resulting
β -expansion to expansions of x, as intended. The restrictions are as mild as possible in the
sense that the algorithm generates all β -expansions of x.

These results do not say anything about how many β -expansions there are of x. As the
choice of ω only matters in the switch regions, how many expansions there are depends
on how often the orbit of x hits a switch region. In [4] it was shown that there is a unique
β -expansion if and only if the orbit of x under the greedy map Tβ always stays in the equality
regions, in which case the lazy and greedy expansions coincide. A result in the opposite direc-
tion was shown in [10], namely that almost every number has a continuum of β -expansions,
i.e. the cardinality of the set of β -expansions is the same as the cardinality of R. In particular,
almost every x has infinitely many β -expansions.

The intuition for a number having infinitely many β -expansions follows from the fact
that there are two different β -expansions, namely the lazy and greedy expansions. For
almost every x, there are infinitely many expansions lexicographically in between these
two expansions, so it is intuitively plausible that at least some of these expansions are also
expansions of x.

This is in contrast to expansions in integer bases: if there are two different expansions
in an integer base, then there are no expansions lexicographically strictly in between them,
and hence there can be at most two expansions. For instance, there are no expansions
lexicographically strictly between 0.9999999... and 1.0000000... As these are respectively
the lazy and greedy expansions of 1 in base 10, there are no other expansions of 1 in base 10.
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4.3 A two-dimensional random map

In this section, we define a two-dimensional random map in a manner analogous to the
one-dimensional map from the previous section. We define this map by applying the one-
dimensional random map to both coordinates individually. We then show that K can be
essentially identified with the left shift on D = {(0,0),(0,1),(1,0),(1,1)}N and find an
invariant measure of maximal entropy.

Let 1 < βi < 2 be non-integers, i = 1,2, and consider the random map from the previous
section. In this case, any digit will be in {0,1} and the equality regions reduce to

Eβi
0 = [0,

1
βi
) , where digit 0 is assigned by both the greedy and lazy maps, and

Eβi
1 =(

⌊βi⌋
βi(βi −1)

+
⌊βi⌋−1

βi
,
⌊βi⌋

βi −1
] = (

1
βi(βi −1)

,
1

βi −1
] , where digit 1 is assigned by both maps.

Similarly, the switch regions reduce to

Sβi = [
1
βi
,

1
βi(βi −1)

] , where digit 1 is assigned by the greedy map, and digit 0 by the lazy map.

As before, on the switch regions we randomise the choice of map, and so the choice of
digit. We flip two coins, the first coin deciding the digit with respect to base β1, and the
second coin deciding the digit w.r.t. base β2. A 1 (’heads’) on the first coin means that the
greedy map will be applied to the x coordinate, and a 0 (’tails’) means that the lazy map
will be applied to the x coordinate. Similarly, the second coin toss determines what map
is applied to the y coordinate. We shall see that this process simultaneously generates two
expansions, respectively in base β1 and β2. We now make this precise.

Let σ be the left shift. We define the random map

K : Ω×Ω× [0,
1

β1 −1
]× [0,

1
β2 −1

]→ Ω×Ω× [0,
1

β1 −1
]× [0,

1
β2 −1

],
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K(ω,ω ′,x,y) =



(ω,ω ′,β1x,β2y) if (x,y) ∈ E00

(ω,ω ′,β1x−1,β2y) if (x,y) ∈ E10

(ω,ω ′,β1x,β2y−1) if (x,y) ∈ E01

(ω,ω ′,β1x−1,β2y−1) if (x,y) ∈ E11

(σ(ω),ω ′,β1x−ω1,β2y) if (x,y) ∈ S•0

(ω,σ(ω ′),β1x,β2y−ω ′
1) if (x,y) ∈ S0•

(σ(ω),σ(ω ′),β1x−ω1,β2y−ω ′
1) if (x,y) ∈ S••

(σ(ω),ω ′,β1x−ω1,β2y−1) if (x,y) ∈ S•1

(ω,σ(ω ′),β1x−1,β2y−ω ′
1) if (x,y) ∈ S1•

where we denote the four equality regions:

E00=Eβ1
0 ×Eβ2

0

E10=Eβ1
1 ×Eβ2

0

E01=Eβ1
0 ×Eβ2

1

E11=Eβ1
1 ×Eβ2

1

and the five switch regions:

S•0= Sβ1 ×Eβ2
0

S0•= Eβ1
0 ×Sβ2

S••= Sβ1 ×Sβ2

S•1= Sβ1 ×Eβ2
1

S1•= Eβ1
1 ×Sβ2
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The notation denotes what digits are dependent on the outcome of the coin tosses, and
what digits are fixed. On the switch regions S•0,S0•,S•1 and S1•, only one coin toss de-
termines where (x,y) is mapped under K. For instance, in S•1, the digit chosen in the x
coordinate (the β1 digit) depends on ω1, while the digit chosen in the y coordinate (the β2

digit) is always 1 and does not depend on ω ′
1. The regions are shown in Figure 4.3, along

with the possible digits that can be assigned by K.

Fig. 4.3 The regions with their possible digits assigned by K.

We can use a similar method as in the previous section to simultaneously obtain a
β1-expansion of x and a β2-expansion of y. We assign the first digits of x and y as follows:

d1 = d1(ω,ω ′,x,y) =


(k, l) if (x,y) ∈ Ekl, k, l ∈ {0,1}

or (x,y) ∈ S•l,ω1 = k, k, l ∈ {0,1}
or (x,y) ∈ S••,ω1 = k,ω ′

1 = l, k, l ∈ {0,1}
or (x,y) ∈ Sk•,ω

′
1 = l, k, l ∈ {0,1}

and the n-th digit as

dn = dn(ω,ω ′,x,y) = d1
(
Kn−1(ω,ω ′,x,y)

)
n ≥ 1.
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We can write π1,3 (K(ω,ω ′,x,y)) = Kβ1(ω,x), where Kβ1 is the one-dimensional ran-
dom map defined in the previous section. Similarly, π2,4 (K(ω,ω ′,x,y)) = Kβ2(ω

′,y). We
now prove by induction that π1,3 (Kn(ω,ω ′,x,y)) = Kn

β1
(ω,x) and π2,4 (Kn(ω,ω ′,x,y)) =

Kn
β2
(ω ′,y) for all n ≥ 1. The base case has already been shown, so assume that the statement

is true for n−1; we now show that it is true for n. Then

π1,3
(
Kn(ω,ω ′,x,y)

)
= π1,3

(
Kn−1 ◦K(ω,ω ′,x,y)

)
= Kn−1

β1

(
π1,3(K(ω,ω ′,x,y)

)
= Kn

β1
(ω,x)

By the principle of induction we conclude that π1,3 (Kn(ω,ω ′,x,y)) = Kn
β1
(ω,x) for

n ≥ 1. Similarly, π2,4 (Kn(ω,ω ′,x,y)) = Kn
β2
(ω ′,y).

Furthermore, d1(ω,ω ′,x,y) =
(
d1 (π1,3(ω,ω ′,x,y)) ,d′

1 (π2,4(ω,ω ′,x,y))
)
, where d1 is

the first digit of the β1-expansion of x corresponding to ω defined in the previous section,
and d′

1 is the first digit of the β2-expansion of y corresponding to ω ′. Therefore, every time
we iterate K, we obtain the pair of digits

dn(ω,ω ′,x,y) = d1
(
Kn−1 (

ω,ω ′,x,y
))

=
(
d1
(
π1,3

(
Kn−1 (

ω,ω ′,x,y
)))

,d′
1
(
π2,4

(
Kn−1 (

ω,ω ′,x,y
))))

=
(

d1

(
Kn−1

β1
(ω,x)

)
,d′

1

(
Kn−1

β2

(
ω

′,y
)))

=
(
dn(ω,x),d′

n(ω
′,y)
)
.

Applying Theorem 4.2.1 to both coordinates, we find that all β1-expansions of x and all
β2-expansions of y can be obtained by this algorithm. If we take β := β1 = β2, we can also
interpret this as an algorithm to generate β -expansions of z = x+ iy ∈ [0, 1

β−1 ]
2 ⊂ C.

Let Kβ be the one-dimensional random map on Ω× [0, ⌊β⌋
β−1 ] defined earlier in this chap-

ter. In [4] it was shown that Kβ can be essentially identified with the left shift σ̂ on D =

{0, ...,⌊β⌋}N. More precisely, it was shown that the map φ̂(ω,x) = (d1(ω,x),d2(ω,x), ...)
is a measurable isomorphism from (Ω× [0, ⌊β⌋

β−1 ],
ˆA × B̂,νβ ,Kβ )→ (D,D̂ ,P, σ̂), where ˆA

and D̂ are the product σ -algebra on Ω and D, respectively, B̂ is the Borel σ -algebra on
[0, ⌊β⌋

β−1 ], P is the uniform product measure on D and νβ is the unique Kβ -invariant measure

of maximal entropy on ˆA × B̂. For a definition of entropy and a discussion of its properties,
we refer to chapter 4 in [6].
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To see why this is intuitively plausible, let β > 1 and suppose we can write x = ∑
∞
i=1

ai
β i =

0.a1a2a3... for some a ∈ D. By Theorem 4.2.1, there exists an ω ∈ Ω such that a = d(ω,x).
We can write π2(Kβ (ω,x)) = βx−d1(ω,x). Then

π2(Kβ (ω,x)) = β

∞

∑
i=1

di(ω,x)
β i −d1(ω,x)

= d1(ω,x)+
∞

∑
i=2

di(ω,x)
β i−1 −d1(ω,x)

=
∞

∑
i=1

di+1(ω,x)
β i

= 0.a2a3a4...

Hence π2(Kβ (ω,0.a1a2a3...)) = 0.a2a3a4... In other words, a is left-shifted after apply-
ing Kβ for an appropriate choice of ω . Furthermore, P assigns the same probability to all
digits, which is intuitively the ’most random’ measure, and indeed entropy is maximised by
P. As isomorphic systems have the same (maximal) entropy, the measure νβ corresponding
to P should also be of maximal entropy.

We will show that a similar result is true for K. Let

D = {(0,0),(0,1),(1,0),(1,1)}N

and let σ : D → D, σ
(
(a1,a′1),(a2,a′2),(a3,a′3), ...

)
=
(
(a2,a′2),(a3,a′3),(a4,a′4)...

)
be the

left shift on D. We will show that K can be essentially identified with σ by giving an explicit
measurable isomorphism, after which we find a K-invariant measure of maximal entropy.
The proof will be analogous to the proof in [4]. Let 1 < βi < 2, i = 1,2. Define the function
φ : Ω×Ω× [0, 1

β1−1 ]× [0, 1
β2−1 ]→ D,

φ(ω,ω ′,x,y) =
(
d1(ω,ω ′,x,y),d2(ω,ω ′,x,y), ...

)
.

We will show that φ is a measurable isomorphism from (Ω×Ω× [0, 1
β1−1 ]× [0, 1

β2−1 ],A ×
B,ν ,K)→ (D,D ,P×P,σ), where A and D are the product σ -algebra on Ω×Ω and D,
respectively, B is the Borel σ -algebra on [0, 1

β1−1 ]× [0, 1
β2−1 ], P×P is the uniform product

measure on D and ν is a K-invariant measure of maximal entropy on A ×B.

We first show that φ is surjective. Let a =
(
(a1,a′1),(a2,a′2),(a3,a′3), ...

)
∈ D. Then a is

a β1-expansion of x and a′ is a β2-expansion of y, where x = ∑
∞
i=1

ai
β i

1
and y = ∑

∞
i=1

a′i
β i

2
. As
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we have seen, Theorem 4.2.1 implies that there exist ω,ω ′ such that (ai,a′i) = di(ω,ω ′,x,y)
for all i. Hence φ(ω,ω ′,x,y) = a. We conclude that φ is surjective. We will see that if we
restrict φ to an appropriate K-invariant subset Z, then the restriction φ ′ is invertible.

Let

Z1 =
{
(ω,ω ′,x,y) ∈ Ω×Ω× [0, 1

β1−1 ]× [0, 1
β2−1 ] :

Kn(ω,ω ′,x,y) ∈ Ω×Ω×Sβ1 × [0, 1
β2−1 ] for infinitely many n

}
,

Z2 =
{
(ω,ω ′,x,y) ∈ Ω×Ω× [0, 1

β1−1 ]× [0, 1
β2−1 ] :

Kn(ω,ω ′,x,y) ∈ Ω×Ω× [0, 1
β1−1 ]×Sβ2 for infinitely many n

}
,

D′
1 =

{(
(a1,a′1),(a2,a′2), ...

)
∈ D :

∞

∑
i=1

an+i−1

β i
1

∈ Sβ1 for infinitely many n

}
,

D′
2 =

{(
(a1,a′1),(a2,a′2), ...

)
∈ D :

∞

∑
i=1

a′n+i−1

β i
2

∈ Sβ2 for infinitely many n

}
.

Let Z = Z1∩Z2 and let D′ = D′
1∩D′

2. Then φ(Z) = D′, K−1(Z) = Z and σ−1(D′) = D′.

Let φ ′ be the restriction of φ to Z. We will show that φ ′ : Z → D′ is bijective.
Let

(
(a1,a′1),(a2,a′2), ...

)
∈ D′ and recursively define

r1 = min

{
n ≥ 1 :

∞

∑
i=1

an+i−1

β i
1

∈ Sβ1

}
,

rk = min

{
n > rk−1 :

∞

∑
i=1

an+i−1

β i
1

∈ Sβ1

}
,

s1 = min

{
n ≥ 1 :

∞

∑
i=1

a′n+i−1

β i
2

∈ Sβ2

}
,

sk = min

{
n > sk−1 :

∞

∑
i=1

a′n+i−1

β i
2

∈ Sβ2

}
.
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For k ≥ 1 let (ωk,ω
′
k) = (ark ,a

′
sk
). Define

φ
−1((a1,a′1),(a2,a′2), ...

)
=

(
ω,ω ′,

∞

∑
i=1

ai

β i
1
,

∞

∑
i=1

a′i
β i

2

)
.

Then φ ′ and φ−1 are measurable, and φ−1 is the inverse of φ ′.

Lemma 4.3.1. P×P
(
D′)= 1.

Proof. We first show that P×P
(
D′

1
)
= 1. For a = ((a1,a′1),(a2,a′2), ...) ∈ D and m ≥ 1,

define

xm =
1
β1

+
∞

∑
i=1

ai

β
m+i
1

.

Then
1
β1

≤ xm ≤ 1
β1

+
∞

∑
i=1

1
β

m+i
1

=
1
β1

(
1+

1
β

m−1
1 (β1 −1)

)
.

As 1 < β1 < 2 and 1+ 1
β

m−1
1 (β1−1)

↓ 1 as m → ∞, there exists an integer N > 0 such that
for all m > N,

1
β1

≤ xm ≤ 1
β1(β1 −1)

.

So xm ∈ Sβ1 for all m > N. Note that N does not depend on a.

Let

D′′
1 = {

(
(a1,a′1),(a2,a′2), ...

)
∈ D : anan+1...an+N−1 = 1 00...0︸ ︷︷ ︸

N −1 times

for infinitely many n}.

By the above, D′′
1 ⊆ D′

1. The second Borel-Cantelli lemma implies that P×P
(
D′′

1
)
= 1,

so P×P
(
D′

1
)
= 1. Similarly, P×P

(
D′

2
)
= 1. As the intersection of sets of measure 1 also

has measure 1, we conclude that P×P
(
D′)= 1.

Define the measure ν on A ×B by ν(A) = P×P(φ(Z∩A)). Then

ν(Z) = P×P(φ(Z)) = P×P
(
D′)= 1.
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So far we have seen that conditions (i) and (ii) of Definition 3.1.11 is satisfied. We now
show that condition (iii) is satisfied. For all D ∈ D ∩D′,

P×P(D) = P×P
(
φ
′ (

φ
−1(D)

))
= ν(φ−1(D)),

where we used that φ ′ is surjective in the first step, and that φ−1(D) ⊆ Z in the first and
second step. Therefore, condition (iii) is satisfied.

We now verify condition (iv). We have

φ ◦K(ω,ω ′,x,y) =
(
d1
(
K(ω,ω ′,x,y)

)
,d2
(
K(ω,ω ′,x,y)

)
, ...
)

=
(
d2(ω,ω ′,x,y),d3(ω,ω ′,x,y), ...

)
= σ ◦φ(ω,ω ′,x,y).

Hence condition (iv) is satisfied.

Lemma 4.3.2. Let B ∈ (A ×B)∩Z. Then

φ
′ (K−1 (B)

)
= σ

−1 (
φ
′ (B)

)
.

Proof. By condition (iv), φ ′ ◦K = σ ◦φ ′. Hence(
φ
′ ◦K

)−1
(B) = K−1 ◦φ

−1(B) = φ
−1 ◦σ

−1(B) =
(
σ ◦φ

′)−1
(B).

As φ ′ is bijective, the above implies that

K−1(B) = φ
−1 ◦σ

−1 ◦φ
′ (B) .

We conclude that

φ
′ (K−1 (B)

)
= φ

′ ◦φ
−1 ◦σ

−1 ◦φ
′ (B) = σ

−1 (
φ
′ (B)

)
.

It remains to show that (Ω×Ω× [0, 1
β1−1 ]× [0, 1

β2−1 ],A ×B,ν ,K) and (D,D ,P×P,σ)

are dynamical systems. Clearly, P×P is σ -invariant. Let B ∈ (A ×B)∩Z. Then
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ν(K−1 (B)) = P×P
(
φ
′ (K−1 (B)

))
(as K−1(Z) = Z)

= P×P
(
σ
−1 (

φ
′ (B)

))
(by Lemma 4.3.2)

= P×P
(
φ
′ (B)

)
(as P×P is σ -invariant)

= ν(B).

By the previous discussion, we have the following theorem:

Theorem 4.3.3 (cf. theorem 4 in [4]). Let 1 < βi < 2, i = 1,2 be non-integers. The map
φ :(Ω×Ω× [0, 1

β1−1 ]× [0, 1
β2−1 ],A ×B,ν ,K)→ (D,D ,P×P,σ) is a measurable isomor-

phism.

The uniform product measure P×P on 4 symbols is the unique measure of maximal
entropy on D, with entropy equal to log(4). We conclude that ν is the unique measure of
maximal entropy that has support Z, with entropy equal to log(4).

4.4 Skew products

In this section, we consider a variant of the map K from the previous sections. We apply the
left shift in every iteration, even on the equality regions.

We define the random map

R : Ω×Ω× [0,
1

β1 −1
]× [0,

1
β2 −1

]→ Ω×Ω× [0,
1

β1 −1
]× [0,

1
β2 −1

],

R(ω,ω ′,x,y) =



(σ(ω),σ(ω ′),β1x,β2y) if (x,y) ∈ E00

(σ(ω),σ(ω ′),β1x−1,β2y) if (x,y) ∈ E10

(σ(ω),σ(ω ′),β1x,β2y−1) if (x,y) ∈ E01

(σ(ω),σ(ω ′),β1x−1,β2y−1) if (x,y) ∈ E11

(σ(ω),σ(ω ′),β1x−ω1,β2y) if (x,y) ∈ S•0

(σ(ω),σ(ω ′),β1x,β2y−ω ′
1) if (x,y) ∈ S0•

(σ(ω),σ(ω ′),β1x−ω1,β2y−ω ′
1) if (x,y) ∈ S••

(σ(ω),σ(ω ′),β1x−ω1,β2y−1) if (x,y) ∈ S•1

(σ(ω),σ(ω ′),β1x−1,β2y−ω ′
1) if (x,y) ∈ S1•
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We call R the skew product transformation. Note that the proof of Theorem 4.3.3 does not
work for this map, because φ is no longer injective even if Sβ1 and Sβ2 are each hit infinitely
often. Furthermore, the statement in Theorem 4.2.2 no longer holds.

The projection of R onto the x and y coordinates has four possible realisations, which
we denote by R00,R10,R01 and R11. Here the subscript corresponds to the outcomes of the
two coin flips, i.e. π3,4 ◦R(ω,ω ′, ·, ·) = Ri j(·, ·) if and only if ω1 = i and ω ′

1 = j. These
realisations only differ on the switch regions. For instance, there is the realisation

R10(x,y) =



(β1x,β2y) if (x,y) ∈ E00

(β1x−1,β2y) if (x,y) ∈ E10

(β1x,β2y−1) if (x,y) ∈ E01

(β1x−1,β2y−1) if (x,y) ∈ E11

(β1x−1,β2y) if (x,y) ∈ S•0

(β1x,β2y) if (x,y) ∈ S0•

(β1x−1,β2y) if (x,y) ∈ S••

(β1x−1,β2y−1) if (x,y) ∈ S•1

(β1x−1,β2y) if (x,y) ∈ S1•

Let p1 = P(ω1 = 1) and p2 = P(ω ′
1 = 1) denote the probabilities of heads. The realisa-

tions occur with the following probabilities:

P(π3,4 ◦R = R00) = (1− p1)(1− p2)

P(π3,4 ◦R = R10) = p1(1− p2)

P(π3,4 ◦R = R01) = (1− p1)p2

P(π3,4 ◦R = R11) = p1 p2

These probabilities are the same for all (x,y); in other words, the probabilities are not
position-dependent.



44 Random maps and random β -expansions

For 0 < p < 1, let mp be the Bernoulli measure on Ω = {0,1}N, i.e.

mp ({ω1 = k1, ...,ωn = kn}) = p∑
n
j=1 k j(1− p)n−∑

n
j=1 k j .

Lemma 4.4.1. Let µ be a probability measure on [0, 1
β1−1 ]× [0, 1

β2−1 ]. Then
θ := mp1 ×mp2 ×µ is R-invariant if and only if

µ = (1− p1)(1− p2) ·µ ◦R−1
00 + p1(1− p2) ·µ ◦R−1

10 +(1− p1)p2 ·µ ◦R−1
01 + p1 p2 ·µ ◦R−1

11 .

Proof. Let A =C×B ∈ A ×B and define Ci, j = {ω1 = i,ω ′
1 = j}∩σ−1(C) . Then

R−1(A) =C0,0 ×R−1
00 (B)∪C1,0 ×R−1

10 (B)∪C0,1 ×R−1
01 (B)∪C1,1 ×R−1

11 (B).

So

θ
(
R−1(A)

)
= (1− p1)(1− p2) ·mp1 ×mp2(C) ·µ ◦R−1

00 (B)

+ p1(1− p2) ·mp1 ×mp2(C) ·µ ◦R−1
10 (B)

+(1− p1)p2 ·mp1 ×mp2(C) ·µ ◦R−1
01 (B)

+ p1 p2 ·mp1 ×mp2(C) ·µ ◦R−1
11 (B),

(4.1)

where we used that mp1 ×mp2 is σ -invariant.

" =⇒ ": assume that θ is R-invariant. Let B ∈ B. By (4.1), for C = Ω×Ω,

µ(B) = θ(Ω×Ω×B) = (1− p1)(1− p2) ·µ ◦R−1
00 (B)+ p1(1− p2) ·µ ◦R−1

10 (B)

+(1− p1)p2 ·µ ◦R−1
01 (B)+ p1 p2 ·µ ◦R−1

11 (B).

" ⇐= ": assume that

µ = (1− p1)(1− p2) ·µ ◦R−1
00 + p1(1− p2) ·µ ◦R−1

10 +(1− p1)p2 ·µ ◦R−1
01 + p1 p2 ·µ ◦R−1

11 .

We now show that θ = θ ◦R−1. It suffices to verify that the measures coincide on sets of the
form A =C×B ∈ A ×B, as these sets form a generating π-system. By (4.1),

θ
(
R−1(A)

)
= mp1 ×mp2(C) ·

(
(1− p1)(1− p2) ·µ ◦R−1

00 (B)+ p1(1− p2) ·µ ◦R−1
10 (B)

+(1− p1)p2 ·µ ◦R−1
01 (B)+ p1 p2 ·µ ◦R−1

11 (B)
)

= mp1 ×mp2(C) ·µ(B)

= θ(A).
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Hence θ is R-invariant.

Note that π3,4 ◦K = π3,4 ◦R. The following lemma states that a product measure of the
form mp1 ×mp2 ×µ is K-invariant if and only if it is R-invariant.

Lemma 4.4.2 (cf. lemma 1 in [5]). Let µ be a probability measure on [0, 1
β1−1 ]× [0, 1

β2−1 ].
Then

mp1 ×mp2 ×µ ◦K−1 = mp1 ×mp2 ×µ ◦R−1 = mp1 ×mp2 ×ν ,

where

ν = (1− p1)(1− p2) ·µ ◦R−1
00 + p1(1− p2) ·µ ◦R−1

10 +(1− p1)p2 ·µ ◦R−1
01 + p1 p2 ·µ ◦R−1

11 .

Proof. Let C = {ωm = k,ω ′
n = l}. It suffices to verify that the measures coincide on sets of

the form A =C×B ∈ A ×B, as these sets form a generating π-system. Then

K−1(A) =
⋃
i, j

(
{ω1 = i,ω ′

1 = j,ωm = k,ω ′
n = l}×

(
R−1

i j (B) ∩ E
)

∪ {ω1 = i,ω ′
1 = j,ωm+1 = k,ω ′

n = l} ×
(

R−1
i j (B) ∩ S•0 ∪S•1

)
∪{ω1 = i,ω ′

1 = j,ωm = k,ω ′
n+1 = l} ×

(
R−1

i j (B) ∩ S0•∪S1•
)

∪{ω1 = i,ω ′
1 = j,ωm+1 = k,ω ′

n+1 = l}×
(

R−1
i j (B) ∩ S••

))
.

If m,n > 1, it immediately follows that

mp1 ×mp2 ×µ ◦K−1(A) = mp1 ×mp2(C) ·
(
(1− p1)(1− p2) ·µ ◦R−1

00 (B)+(1− p1)p2 ·µ ◦R−1
01 (B)

+ p1(1− p2) ·µ ◦R−1
10 (B)+ p1 p2 ·µ ◦R−1

11 (B)
)

= mp1 ×mp2 ×ν(A).

Now assume that m = n = 1. Then

K−1(A) = {ω1 = k,ω ′
1 = l}×

(
R−1

kl (B) ∩ E
)
∪

1⋃
i=0

{ω1 = i,ω ′
1 = l,ωm+1 = k}×

(
R−1

il (B) ∩ S•0 ∪S•1
)
∪

1⋃
j=0

{ω1 = k,ω ′
1 = j,ω ′

n+1 = l}×
(

R−1
k j (B) ∩ S0•∪S1•

)
∪

⋃
i, j

{ω1 = i,ω ′
1 = j,ωm+1 = k,ω ′

n+1 = l}×
(

R−1
i j (B) ∩ S••

))
.
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On the equality regions, the realisations of π3,4 ◦R coincide, so can write

E ∩R−1
00 (B) = E ∩R−1

10 (B) = E ∩R−1
01 (B) = E ∩R−1

11 (B).

Hence

µ
(
E ∩R−1

kl (B)
)
= (1− p1)(1− p2) ·µ

(
E ∩R−1

00 (B)
)
+ p1(1− p2) ·µ

(
E ∩R−1

10 (B)
)

+(1− p1)p2 ·µ
(
E ∩R−1

01 (B)
)
+ p1 p2 ·µ

(
E ∩R−1

11 (B)
)
.

Similarly,
S•0 ∩R−1

00 (B) = S•0 ∩R−1
01 (B),

S•1 ∩R−1
01 (B) = S•1 ∩R−1

00 (B),

S0•∩R−1
00 (B) = S0•∩R−1

10 (B),

S1•∩R−1
10 (B) = S1•∩R−1

00 (B),

S•0 ∩R−1
10 (B) = S•0 ∩R−1

11 (B),

S•1 ∩R−1
11 (B) = S•1 ∩R−1

10 (B),

S0•∩R−1
01 (B) = S0•∩R−1

11 (B),

S1•∩R−1
11 (B) = S1•∩R−1

01 (B),

so

µ(R−1
il (B) ∩ S•0 ∪S•1) = (1− p2) ·µ(R−1

i0 (B) ∩ S•0 ∪S•1)+ p2 ·µ(R−1
i1 (B) ∩ S•0 ∪S•1),

µ(R−1
k j (B) ∩ S0•∪S1•) = (1− p1) ·µ(R−1

0 j (B) ∩ S0•∪S1•)+ p1 ·µ(R−1
1 j (B) ∩ S0•∪S1•).

Therefore,

mp1 ×mp2 ×µ ◦K−1(A) = mp1 ×mp2(C) ·
(
(1− p1)(1− p2) ·µ ◦R−1

00 (B)+(1− p1)p2 ·µ ◦R−1
01 (B)

+ p1(1− p2) ·µ ◦R−1
10 (B)+ p1 p2 ·µ ◦R−1

11 (B)
)

= mp1 ×mp2 ×ν(A).

The cases m = 1,n > 1 and m > 1,n = 1 are analogous. Hence

mp1 ×mp2 ×µ ◦K−1 = mp1 ×mp2 ×ν .
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By (4.1),
mp1 ×mp2 ×µ ◦R−1 = mp1 ×mp2 ×ν .

We conclude that

mp1 ×mp2 ×µ ◦K−1 = mp1 ×mp2 ×µ ◦R−1 = mp1 ×mp2 ×ν .

Theorem 4.4.3. There exists an absolutely continuous R-invariant measure of the form
mp1 ×mp2 ×µ .

Proof. Let

Rβ1(ω,x) =


(
σ(ω),Tβ1(x)

)
if ω1 = 1(

σ(ω),Sβ1(x)
)

if ω1 = 0

and

Rβ2(ω
′,y) =


(
σ(ω ′),Tβ2(y)

)
if ω ′

1 = 1(
σ(ω ′),Sβ2(y)

)
if ω ′

1 = 0

where Tβ and Sβ are the greedy and lazy maps w.r.t. base β , respectively. Up to a permutation,

R(ω,ω ′,x,y) = Rβ1(ω,x)×Rβ2(ω
′,y).

We can write
R00(x,y) =

(
Sβ1(x),Sβ2(y)

)
,

R10(x,y) =
(
Tβ1(x),Sβ2(y)

)
,

R01(x,y) =
(
Sβ1(x),Tβ2(y)

)
,

R11(x,y) =
(
Tβ1(x),Tβ2(y)

)
.

In [5] it was shown that there exists an Rβ1-invariant measure mp1 × µβ1 and an Rβ2-
invariant measure mp2 × µβ2 , where µβ1 and µβ2 are absolutely continuous. Hence µ is
absolutely continuous. Furthermore,

µβ1 = p1 ·µβ1 ◦T−1
β1

+(1− p1) ·µβ1 ◦S−1
β1

,

µβ2 = p2 ·µβ2 ◦T−1
β2

+(1− p2) ·µβ2 ◦S−1
β2

.
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We now show that mp1 ×mp2 × µβ1 × µβ2 is R-invariant. Let µ = µβ1 × µβ2 and let
I1 × I2 ∈ B. Then

µ(I1 × I2) = µβ1(I1) ·µβ2(I2)

=
(

p1 ·µβ1 ◦T−1
β1

(I1)+(1− p1) ·µβ1 ◦S−1
β1

(I1)
)

·
(

p2 ·µβ2 ◦T−1
β2

(I2)+(1− p2) ·µβ2 ◦S−1
β2

(I2)
)

= (1− p1)(1− p2) ·µβ1 ◦S−1
β1

(I1) ·µβ2 ◦S−1
β2

(I2)

+ p1(1− p2) ·µβ1 ◦T−1
β1

(I1) ·µβ2 ◦S−1
β2

(I2)

+(1− p1)p2 ·µβ1 ◦S−1
β1

(I1) ·µβ2 ◦T−1
β2

(I2)

+ p1 p2 ·µβ1 ◦T−1
β1

(I1) ·µβ2 ◦T−1
β2

(I2)

= (1− p1)(1− p2) ·µ ◦R−1
00 (I1 × I2)+ p1(1− p2) ·µ ◦R−1

10 (I1 × I2)

+(1− p1)p2 ·µ ◦R−1
01 (I1 × I2)+ p1 p2 ·µ ◦R−1

11 (I1 × I2).

As these sets form a generating π-system,

µ = (1− p1)(1− p2) ·µ ◦R−1
00 + p1(1− p2) ·µ ◦R−1

10 +(1− p1)p2 ·µ ◦R−1
01 + p1 p2 ·µ ◦R−1

11 .

By Lemma 4.4.1, we conclude that mp1 ×mp2 ×µβ1 ×µβ2 is R-invariant.

By Lemma 4.4.2, µ is also K-invariant.
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4.5 Simultaneous expansions

In this section, we prove some properties of digit sequences that give a simultaneous expan-
sion of two numbers x and y in bases β1 and β2. We then introduce a random map G which
generates these sequences, after which we show that G can be essentially identified with the
left shift and find an acim for G.

For 1 < β < 2 and x ∈ [0, 1
β−1 ], let

Dβ
x = {d ∈ {0,1}N :

∞

∑
i=1

di

β i = x}

be the set of β -expansions of x.

Proposition 4.5.1. Let 1 < β < 2 be fixed. The sets Dβ
x form a partition of {0,1}N, i.e.

⋃
x∈[0, 1

β−1 ]

Dβ
x = {0,1}N,

where the left-hand side is a disjoint union.

Proof. ” ⊆ ”: let d ∈∪x∈[0, 1
β−1 ]

Dβ
x . By the definition of set unions there exists an x ∈ [0, 1

β−1 ]

such that d ∈ Dβ
x . The set Dβ

x is defined as a subset of {0,1}N, so d ∈ {0,1}N. We conclude
that ∪x∈[0, 1

β−1 ]
Dβ

x ⊆ {0,1}N.

” ⊇ ”: let d ∈ {0,1}N and let x = ∑
∞
i=1

di
β i . By definition of Dβ

x we have d ∈ Dβ
x . As

x = ∑
∞
i=1

di
β i ∈ [0, 1

β−1 ], we have d ∈∪x∈[0, 1
β−1 ]

Dβ
x . We conclude that ∪x∈[0, 1

β−1 ]
Dβ

x ⊇ {0,1}N.

Hence ⋃
x∈[0, 1

β−1 ]

Dβ
x = {0,1}N.

It remains to show that this is a disjoint union. Assume to the contrary that there exists a
d ∈ Dβ

x ∩Dβ
y , where x ̸= y. Then x = ∑

∞
i=1

di
β i = y, which is a contradiction. Therefore, the

union is disjoint.

Let 1 < βi < 2, i = 1,2 and let x ∈ [0, 1
β1−1 ], y ∈ [0, 1

β2−1 ]. Consider Dβ1
x ∩Dβ2

y , which is
the set of sequences that simultaneously give an expansion of x and y, but in different bases.
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So

Dβ1
x ∩Dβ2

y =

{
(d1,d2, ...) ∈ {0,1}N : x =

∞

∑
i=1

di

β i
1
,y =

∞

∑
i=1

di

β i
2

}
.

Let d ∈ {0,1}N. By Proposition 4.5.1 there exist unique x ∈ [0, 1
β1−1 ],y ∈ [0, 1

β2−1 ] such

that d ∈ Dβ1
x and d ∈ Dβ2

y , namely x = ∑
∞
i=1

di
β i

1
,y = ∑

∞
i=1

di
β i

2
. The same digits are permissible

for β1 and β2 because ⌊β1⌋= ⌊β2⌋= 1. Hence d is simultaneously a β1-expansion of x and
a β2-expansion of y. We have the following corollary:

Corollary 4.5.2. Let 1 < βi < 2, i = 1,2 be fixed. The sets Dβ1
x ∩Dβ2

y form a partition of
{0,1}N, i.e. ⋃

(x,y)∈[0, 1
β1−1 ]×[0, 1

β2−1 ]

Dβ1
x ∩Dβ2

y = {0,1}N,

where the left-hand side is a disjoint union.

As we have seen, almost all x have a continuum of β -expansions. Hence if x = y and
β1 = β2, then for almost all x, Dβ1

x ∩Dβ2
y = Dβ1

x has the same cardinality as R. There is a set
of measure 0 of numbers x for which Dβ1

x may have a smaller cardinality than R (it cannot
have a greater cardinality because {0,1}N has the same cardinality as R). The cardinality of
these sets is a matter of active research. If x = y ̸= 0 and β1 ̸= β2, then Dβ1

x ∩Dβ2
y is empty

as ∑
∞
i=1

di
β i

1
̸= ∑

∞
i=1

di
β i

2
. If x = y = 0, then Dβ1

x ∩Dβ2
y has 1 element, namely d = (0,0, ...). If

x ̸= y and β1 = β2, then Dβ1
x ∩Dβ2

y is again empty by Proposition 4.5.1.

The remaining case is x ̸= y,β1 ̸= β2. We have the following proposition:

Proposition 4.5.3. Let x ∈ [0, 1
β1−1 ],y ∈ [0, 1

β2−1 ], let d = (d1,d2, ...) be the greedy expansion
of x in base β1 and let d′ = (d′

1,d
′
2, ...) be the lazy expansion of y in base β2. If

0.d1d2... <lex 0.d′
1d′

2...

then Dβ1
x ∩Dβ2

y is empty.

Proof. Assume to the contrary that there exists a d̃ ∈ Dβ1
x ∩Dβ2

y . All β2-expansions of y are
lexicographically greater than or equal to the lazy expansion in the same basis, so

0.d′
1d′

2...≤lex 0.d̃1d̃2...
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By assumption, 0.d1d2... <lex 0.d′
1d′

2..., so

0.d1d2... <lex 0.d̃1d̃2...

This is a contradiction, because all β1-expansions of x are lexicographically smaller than
or equal to the greedy expansion in the same basis. We conclude that Dβ1

x ∩Dβ2
y is empty.

Example 4.5.4. The greedy expansion of x = 1
2 in base β1 = 1.25 is 0.000100000010... and

the lazy expansion of y = 2
3 in base β2 = 1.5 is 0.00101111101... By Proposition 4.5.3, any

expansion of 1
2 in base 1.25 is not an expansion of 2

3 in base 1.5, and vice versa.

We now consider when the situation of Proposition 4.5.3 occurs in the algorithm from sec-
tion 4.3. Note that on E00∪E11∪S0•∪S•1, the greedy β1-digit and the lazy β2-digit are equal
(here ω = (1,1,1, ...) and ω ′ = (0,0,0, ...)). The region E01 is the only region where the lazy
β2-digit is greater than the greedy β1-digit. In the remaining regions S••∪S•0∪S1•∪E10, the
lazy β2-digit is smaller than the greedy β1-digit. Hence this situation occurs in the algorithm
if we take ω = (1,1, ...),ω ′ = (0,0, ...) and (x,y) such that the orbit under K hits E01 before
it hits S••∪S•0 ∪S1•∪E10.

To generate elements of Dβ1
x ∩Dβ2

y using K, we should choose appropriate values of
ω and ω ′. If Kn−1(ω,ω ′,x,y) ∈ E00 ∪E11, then the assigned n-th digits will be equal. If
Kn−1(ω,ω ′,x,y) ∈ S•0 ∪ S0•∪ S•1 ∪ S1•, then we are forced to choose ω or ω ′ so that the
digits match. If Kn−1(ω,ω ′,x,y) ∈ S••, we can either choose ω and ω ′ such that the n-th
digits are both 0 or both 1. If at any iteration the orbit of (x,y) under K enters E01 ∪E10, we
are forced to choose differing n-th digits and the resulting expansion will not be an element
of Dβ1

x ∩Dβ2
y .

Note that the only freedom of choice we have is on S••. Here we are forced to choose the
digits to be equal, so a single coin flip is sufficient. We now introduce a new random map
which generates all elements of Dβ1

x ∩Dβ2
y .

We define the random map

G : Ω× [0,
1

β1 −1
]× [0,

1
β2 −1

]→ Ω× [0,
1

β1 −1
]× [0,

1
β2 −1

],
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G(ω,x,y) =



(ω,β1x,β2y) if (x,y) ∈ E00

(ω,β1x−1,β2y) if (x,y) ∈ E10

(ω,β1x,β2y−1) if (x,y) ∈ E01

(ω,β1x−1,β2y−1) if (x,y) ∈ E11

(ω,β1x,β2y) if (x,y) ∈ S•0

(ω,β1x,β2y) if (x,y) ∈ S0•

(σ(ω),β1x−ω1,β2y−ω1) if (x,y) ∈ S••

(ω,β1x−1,β2y−1) if (x,y) ∈ S•1

(ω,β1x−1,β2y−1) if (x,y) ∈ S1•

We assign the first digit as follows:

d̃1 = d̃1(ω,x,y) =


0 if (x,y) ∈ E00 ∪S•0 ∪S0•∪E01

k if (x,y) ∈ S••,ω1 = k, k ∈ {0,1}
1 if (x,y) ∈ E11 ∪S•1 ∪S1•∪E10

and the n-th digit as

d̃n = d̃n(ω,x,y) = d̃1
(
Gn−1(ω,x,y)

)
n ≥ 1.

(see Figure 4.4)

The digit we assign on E10 and E01 ensures that the resulting expansion is always a
β1-expansion of x. However, the resulting expansion is not always a β2-expansion of y. This
is because on E10 and E01, all β2-expansions of y must be assigned digit 0 and 1, respectively.
We now show that the resulting expansion is a simultaneous expansion of x and y if and only
if the orbit never hits E10 ∪E01.

Theorem 4.5.5. The set Dβ1
x ∩Dβ2

y is generated by

Ω̃ = Ω̃(x,y) :=
{

ω ∈ Ω : π2,3 ◦Gn(ω,x,y) /∈ E10 ∪E01 ∀n ≥ 0
}
,

i.e.
Dβ1

x ∩Dβ2
y =

{(
d̃1 (ω̃,x,y) , d̃2 (ω̃,x,y) , ...

)
: ω̃ ∈ Ω̃

}
.
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Fig. 4.4 The regions with the digits assigned by G.

Proof. ” ⊆ ”: let a = (a1,a2, ...) ∈ Dβ1
x ∩Dβ2

y . The map K from earlier in this chapter gener-
ates all expansions of x and y, so there exist (ω,ω ′)∈Ω×Ω such that ((a1,a1),(a2,a2), ...)=

d(ω,ω ′,x,y), where dn(ω,ω ′,x,y) = (dn(ω,x),d′
n(ω

′,y)). As dn(ω,x) = d′
n(ω

′,y) = an

for all n ≥ 1, the orbit under K never hits E10 ∪E01, and on the switch regions the dig-
its are chosen to be equal. For i ≥ 1 let ri ≥ 0 be the time index of the i-th time the
orbit under K hits the switch region S•• and define ω̃i = π1 ◦ Kri (ω,ω ′,x,y) (if S•• is
hit only finitely many times, ω̃i can be chosen arbitrarily from a certain point on). As
π2,3 ◦Gn(ω̃,x,y) = π3,4 ◦Kn(ω,ω ′,x,y), we have d̃(ω̃,x,y) = d(ω,x) = d′(ω ′,y). Hence
d̃(ω̃,x,y) = a. Finally, π2,3 ◦Gn(ω̃,x,y) = π3,4 ◦Kn(ω,ω ′,x,y) /∈ E10 ∪E01 for all n ≥ 0.
Therefore,

Dβ1
x ∩Dβ2

y ⊆ {
(
d̃1(ω̃,x,y), d̃2(ω̃,x,y), ...

)
: ω̃ ∈ Ω̃}.

” ⊇ ”: let a ∈ {
(
d̃1(ω̃,x,y), d̃2(ω̃,x,y), ...

)
: ω̃ ∈ Ω̃}. There exists an ω̃ ∈ Ω̃ such that

(a1,a2, ...) =
(
d̃1(ω̃,x,y), d̃2(ω̃,x,y), ...

)
.

For i≥ 1, let ri ≥ 0 be time index of the i-th time the orbit under G hits S̃1 := S•0∪S•1∪S••
and let ki = #{ j < ri : π2,3 ◦G j(ω̃,x,y) ∈ S••} be the number of times S•• is hit before
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time ri. Let ωi = 0 if π2,3 ◦Gri(ω̃,x,y) ∈ S•0, let ωi = 1 if π2,3 ◦Gri(ω̃,x,y) ∈ S•1 and let
ωi = ω̃1+ki if π2,3 ◦Gri(ω̃,x,y) ∈ S••. Similarly, let si ≥ 0 be time index of the i-th time the
orbit under K hits S̃2 := S0•∪S1•∪S•• and let li = #{ j < si : π2,3 ◦G j(ω̃,x,y) ∈ S••}. Let
ω ′

i = 0 if π2,3 ◦Gsi(ω̃,x,y) ∈ S0•, let ω ′
i = 1 if π2,3 ◦Gsi(ω̃,x,y) ∈ S1• and let ω ′

i = ω̃1+li if
π2,3 ◦Gsi(ω̃,x,y) ∈ S••. If S̃1 or S̃2 is hit only finitely many times, ωi or ω ′

i can be chosen
arbitrarily from a certain point on. Then by the choice of ω,ω ′,

d1(ω,ω ′,x,y) =
(
d̃1(ω̃,x,y), d̃1(ω̃,x,y)

)
for all (x,y) /∈ E10 ∪E01

and
π2,3 ◦Gn(ω̃,x,y) = π3,4 ◦Kn(ω,ω ′,x,y) for all n ≥ 0.

As Gn(ω,x,y) /∈ E10 ∪E01 for all n ≥ 0, we have

dn(ω,ω ′,x,y) =
(
d̃n(ω̃,x,y), d̃n(ω̃,x,y)

)
for all n ≥ 1.

Therefore,
d(ω,ω ′,x,y) = ((a1,a1),(a2,a2), ...) .

All sequences generated by K are expansions of x and y, so a is a β1-expansion of x and
a β2-expansion of y. Hence a ∈ Dβ1

x ∩Dβ2
y , so

Dβ1
x ∩Dβ2

y ⊇ {
(
d̃1(ω̃,x,y), d̃2(ω̃,x,y), ...

)
: ω̃ ∈ Ω̃}.

We conclude that

Dβ1
x ∩Dβ2

y = {
(
d̃1(ω̃,x,y), d̃2(ω̃,x,y), ...

)
: ω̃ ∈ Ω̃}.

We now show that G can be essentially identified with the left shift σ on D = {0,1}N.
By [4], this implies that G can also be essentially identified with Kβ1 and Kβ2.

Let ˆA and D̂ be the product σ -algebra on Ω and D, respectively, let B be the Borel
σ -algebra on [0, 1

β1−1 ]× [0, 1
β2−1 ] and let P be the uniform product measure on D.

Let φ̃ : Ω× [0, 1
β1−1 ]× [0, 1

β2−1 ]→ D,

φ̃(ω,x,y) =
(
d̃1(ω,x,y), d̃2(ω,x,y), ...

)
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and let

Z̃1 =
{
(ω,x,y)∈Ω× [0,

1
β1 −1

]× [0,
1

β2 −1
] : Gn(ω,x,y)∈Ω×S•• for infinitely many n

}
,

Z̃2 =
{
(ω,x,y)∈Ω× [0,

1
β1 −1

]× [0,
1

β2 −1
] : Gn(ω,x,y) /∈Ω×(E10 ∪E01) for all n≥ 0

}
,

Z̃ = Z̃1 ∩ Z̃2,

D̃′ =
{(

a1,a2, ...
)
∈ D :

(
∑

∞
i=1

an+i−1
β i

1
,∑∞

i=1
an+i−1

β i
2

)
∈ S•• for infinitely many n

}
.

Then φ̃(Z̃) = D̃′, G(Z̃)⊆ Z̃ and σ−1(D̃′) = D̃′.

We will need the following lemma:

Lemma 4.5.6.
{(

a1,a2, ...
)
∈ D :

(
∑

∞
i=1

an+i−1
β i

1
,∑∞

i=1
an+i−1

β i
2

)
/∈ E10 ∪E01 for all n ≥ 1

}
=D.

Proof. "⊆": this inclusion is obvious.

"⊇": let d = (d1,d2, ...)∈ D. Then d is a β1-expansion of x = ∑
∞
i=1

di
β i

1
and a β2-expansion

of y = ∑
∞
i=1

di
β i

2
. By Theorem 4.5.5, there exists an ω ∈ Ω such that π2,3 ◦Gn(ω,x,y) /∈

E10 ∪E01 for all n ≥ 0. As π2,3 ◦Gn−1(ω,x,y) =
(

∑
∞
i=1

an+i−1
β i

1
,∑∞

i=1
an+i−1

β i
2

)
, we conclude

that
(

∑
∞
i=1

an+i−1
β i

1
,∑∞

i=1
an+i−1

β i
2

)
/∈ E10 ∪E01 for all n ≥ 1. So

{(
a1,a2, ...

)
∈ D :

(
∞

∑
i=1

an+i−1

β i
1

,
∞

∑
i=1

an+i−1

β i
2

)
/∈ E10 ∪E01 for all n ≥ 1

}
⊇ D.

The remainder of the proof is analogous to the proof in [4] and section 4.3. Let φ̃ ′ be the
restriction of φ̃ to Z̃:

φ̃ ′ : Z̃ → D̃′,

φ̃(ω,x,y) =
(
d̃1(ω,x,y), d̃2(ω,x,y), ...

)
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We will show that φ̃ ′ is bijective. Let
(
a1,a2, ...

)
∈ D̃′ and recursively define

r1 = min

{
n ≥ 1 :

(
∞

∑
i=1

an+i−1

β i
1

,
∞

∑
i=1

an+i−1

β i
2

)
∈ S••

}
,

rk = min

{
n > rk−1 :

(
∞

∑
i=1

an+i−1

β i
1

,
∞

∑
i=1

an+i−1

β i
2

)
∈ S••

}
.

For k ≥ 1 let ωk = ark . Define

φ̃
−1(a1,a2, ...

)
=

(
ω,

∞

∑
i=1

ai

β i
1
,

∞

∑
i=1

ai

β i
2

)
.

Then φ̃ ′ and φ̃−1 are measurable. By Lemma 4.5.6,
(

ω,∑∞
i=1

ai
β i

1
,∑∞

i=1
ai
β i

2

)
∈ Z̃. Furthermore,

φ̃ ′ ◦ φ̃−1(a) = a. As φ̃ is injective, we conclude that φ̃−1 is the inverse of φ̃ ′.

Then φ̃ ′ ◦G = σ ◦ φ̃ ′. By the second Borel-Cantelli lemma, P(D̃′) = 1. Define the
measure ν̃ on ˜A ×B by ν̃(A) = P

(
φ̃(Z̃ ∩A)

)
. Then ν̃(Z̃) = P

(
φ̃(Z̃)

)
= P

(
D̃′)= 1.

We have the following theorem:

Theorem 4.5.7. The map φ̃(ω,x,y) =
(
d̃1(ω,x,y), d̃2(ω,x,y), ...

)
is a measurable isomor-

phism from (Ω× [0, 1
β1−1 ]× [0, 1

β2−1 ],
˜A ×B, ν̃ ,G)→ (D,D̃ ,P,σ).

The uniform product measure P on 2 symbols is the unique measure of maximal entropy
on D, with entropy equal to log(2). We conclude that ν̃ is the unique measure of maximal
entropy that has support Z̃, with entropy equal to log(2).
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