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Preface

The idea for this thesis comes from an article by William Thurston [1] about triangulations
of the sphere and more general shapes of polyhedra. In the first two sections of his
article he briefly outlines some methods to construct certain triangulations of the sphere.
However, this doesn’t seem to be the main focus of his article, as he goes on to work on
the more general cone manifolds.

However, his idea is a good start to find some enumerative results. The goal of this
thesis is therefore to count a certain class of triangulations, namely tetrahedral triangu-
lations, of which the smallest example is indeed the tetrahedron.

The same subject has been addressed in a previous thesis under supervision of Frits
Beukers [2], but it resulted in very cumbersome formulas. In this thesis we try to do the
counting more efficient to find nicer formulas.

I also chose another approach to the problem. Whereas the approach in [2] is based
on polytopes and graphs, I will use the more topological notion of Delta sets. These
structures are somewhat more general and I think they are more natural in this context.
Working with Delta sets is a bit more abstract and a lot of work went into figuring out
how the definitions work exactly. The main challenge was working with the triangle
maps, because my definition is a bit broader than the definition which usually occurs in
literature.

After this rather technical work with triangle maps, we will translate the problem
into a problem on symmetries of the regular triangulation of the plane. Once we have
achieved this, we can count the number of triangulations by using some number theory.
But we start now with some definitions.
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Chapter 1

Definitions

Triangles are a special case of simplices. In triangulations we will not only encounter tri-
angles, but also segments and points. They are all special cases of the following definition.
For every non-negative integer n, the standard n–simplex ∆n is defined by

{(t0, t1, . . . , tn) ∈ Rn+1 | t0 + t1 + . . .+ tn = 1 and ti ≥ 0 for all i ≥ 0}.

We know ∆0,∆1,∆2 and ∆3 respectively as a point, segment, triangle and tetrahedron.
A triangulated space can be seen as a collection of such simplices, with certain faces

glued together. This is made precise in the following definition. This is actually a special
case of a Delta set according to [3].

Definition 1.1. A triangulation X consists of a triple of (finite) sets X0, X1, X2, together
with face maps di : Xn → Xn−1 for each n ∈ {1, 2} and 0 ≤ i ≤ n, such that didj = dj−1di
for all i < j.

Define for each 0 ≤ i ≤ n the map di : ∆n−1 → ∆n by di : (t0, t1, . . . , tn−1) 7→
(t0, . . . , ti−1, 0, ti, . . . , tn−1). Then the geometric realization of this triangulation is given
by the topological space

|X| =

(
2∐

n=0

Xn ×∆n

)
/ ∼,

where the sets Xn have the discrete topology, and the equivalence relation ∼ is generated
by the relation (σ, dit) ∼ (diσ, t) for all σ ∈ Xn, t ∈ ∆n−1.

Let’s try to make some sense of this definition. The set Xn contains an element for
every n–simplex in the triangulation. Intuitively we say X0 is the set of vertices, X1 is
the set of edges and X2 is the set of triangles. Each of these n–simplices has n+1 faces of
dimension n− 1, and the face maps d0, . . . , dn serve to pick out these faces in Xn−1. We
can see this going on in the geometric realization. The space

∐2
n=0Xn×∆n is the disjoint

union of a number of simplices, one for every element of X0, X1 and X2. Because diσ is
a face of σ, the simpex corresponding to diσ should be identified to a face of the simplex
corresponding to σ. This is exactly what happens in the relation (σ, dit) ∼ (diσ, t).

Finally, the condition didj = dj−1di for i < j is also logical when we consider the
geometric realization. It is not hard to see that djdi = didj−1, hence we find that

(didjσ, t) ∼ (σ, djdit) = (σ, didj−1t) ∼ (dj−1diσ, t).

So we find that in the geometric realization, the simplices didjσ and dj−1diσ are identified.
Demanding they be the same in the triangulation ensures the geometric realization is
‘faithful’.
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We will mainly consider triangulations whose geometric realizations are 2-dimensional
manifolds. If this is the case, any point in any edge has a neighbourhood homeomorphic
to R2. This is clearly only possible when there is a triangle on both sides of the edge.
More formally, for every edge e ∈ X1 there are exactly two pairs (t, i) ∈ X2 × {0, 1, 2}
such that e = dit.

Whenever we introduce a new object, we also want to know what the ‘natural’ maps
between those objects look like. In this case, these ‘natural’ maps are triangle maps.

Definition 1.2. A triangle map f : X → Y between two triangulations X and Y
consists of maps fn : Xn → Yn and f ∗n : Xn → Sn+1 (where Sn+1 is the symmetric group
on {0, 1, . . . , n}), such that the following conditions are satisfied:

• fn−1diσ = d(f∗nσ)(i)fnσ for all σ ∈ Xn, n ∈ {1, 2};
• (f ∗nσ)di = d(f

∗
nσ)(i)(f ∗n−1diσ) for all σ ∈ Xn, n ∈ {1, 2}, where an element of Sn+1

acts on ∆n by permuting the coordinates.

A triangle map is an isomorphism if the maps fn are bijective.
A triangle map is called unfolding if for every pair of different triangles σ, σ′ ∈ X2 with

a common edge, i.e. diσ = di′σ
′ for some i, i′, we have (f2σ, (f

∗
2σ)(i)) 6= (f2σ

′, (f ∗2σ
′)(i′)).

The composition g ◦ f : X → Z of two triangle maps f : X → Y and g : Y → Z is
given by (g ◦ f)n = gn ◦ fn and (g ◦ f)∗n(σ) = g∗n(fnσ)f ∗n(σ). A straightforward calculation
verifies this is indeed a triangle map.

NB: From now on we will drop the subscripts in the maps and write fσ for fnσ (and
f ∗σ for f ∗nσ) if σ ∈ Xn.

The first condition of the triangle map makes sure that the faces of a simplex σ ∈ Xn

are mapped surjectively to the faces of fσ ∈ Yn. If the faces of fσ are all different, this
uniquely determines the permutation f ∗σ (given that all faces of σ are different). It may
seem that the permutations f ∗ are therefore superfluous in the definition, but they are
important in constructing the geometric triangle map (see next definition). The second
condition is needed to make sure the geometric triangle map can be defined.

Theorem 1.1. A triangle map f : X→ Y induces a continuous map |f | : |X| → |Y| by

(σ, t) 7→ (fσ, (f ∗σ)t).

This map is called the geometric triangle map. If f is an isomorphism, |f | is a
homeomorphism.

Proof. We first prove this map is well-defined. To do this, we have to show that (σ, dit)
and (diσ, t) (which are identified in |X|) are sent to the same point. We see that (σ, dit) 7→
(fσ, (f ∗σ)dit) and

(diσ, t) 7→ (fdiσ, (f
∗diσ)t) = (d(f∗σ)(i)fσ, (f

∗diσ)t) ∼ (fσ, d(f
∗σ)(i)(f ∗diσ)t),

where we used the first condition of a triangle map. Now the second condition yields
d(f
∗σ)(i)(f ∗diσ) = (f ∗σ)di, hence (σ, dit) and (diσ, t) are sent to the same point and |f | is

well-defined.

To see that |f | is continuous, consider the following diagram:
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∐2
n=0Xn ×∆n

∐2
n=0 Yn ×∆n

|X| |Y|

f̃

pX pY

|f |

where pX and pY are the quotient maps. The map f̃ is the map specified in the theorem,
and we have shown that this induces the map |f | such that the diagram commutes. We
easily see that f̃ is continuous; the components of

∐2
n=0Xn×∆n are single simplices and

f̃ is an embedding on each of this simplices. Then |f | ◦ pX = pY ◦ f̃ is continuous as
composition of two continuous maps, and by definition of the quotient space, |f | is also
continuous.

The second part of the theorem is easy. If f is an isomorphism, is has in inverse
triangle map g : Y → X given by gn = (fn)−1 and g∗n : σ 7→ (f ∗ngnσ)−1. The induced map
|g| : |Y| → |X| is also an inverse of |f |. Then |f | and its inverse |g| are both continuous,
hence |f | is a homeomorphism.

1.1 Eisenstein triangulation

Now we have seen triangulations and triangle maps, let us consider an explicit triangu-
lation. This specific triangulation will be very important in the rest of the thesis.

Definition 1.3. The Eisenstein lattice (also the Eisenstein integers) is the ring Z[ω],
where ω = e2πi/3 = −1

2
+ 1

2
i
√

3, and is a subring of C. (We will also use Z[ω] to denote
the underlying additive group.)

If we join the points of Z[ω] at distance 1 by segments, we form triangles. The
Eisenstein triangulation, denoted by Eis, has Z[ω] as vertices, the segments of length 1
between them as edges, and the triangles are the triangles formed by the edges. If we
denote the edge between a en b by [a, b], and the triangle with vertices a, b, c as [a, b, c],
the face maps are given by

d0([z, z + 1, z + 1 + ω]) = [z, z + 1], d0([z, z + ω, z + 1 + ω]) = [z, z + ω],

d1([z, z + 1, z + 1 + ω]) = [z, z + 1 + ω], d1([z, z + ω, z + 1 + ω]) = [z, z + 1 + ω],

d2([z, z + 1, z + 1 + ω]) = [z + 1, z + 1 + ω], d2([z, z + ω, z + 1 + ω]) = [z + ω, z + 1 + ω],

d0([z, z + 1]) = z, d0([z, z + ω]) = z, d0([z, z + 1 + ω]) = z,

d1([z, z + 1]) = z + 1, d1([z, z + ω]) = z + ω, d1([z, z + 1 + ω]) = z + 1 + ω,

for any z ∈ Z[ω]. The geometric realization is canonically homeomorphic to C, and we
will simply identify these two spaces.

Here we see the face maps in action: the maps d0, d1, d2 give the three sides of the
input triangle as output. To check that this is indeed a triangulation, we have to verify
that d0d1 = d0d0, d0d2 = d1d0 and d1d2 = d1d1. Because the maps are explicitly given,
this is a straightforward process.
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1.2 Statement of the problem

Now we have some definitions, we can rigorously define the problem statement. We
consider a triangulation X with S2 (the sphere) as geometric realization. Because the
sphere is a compact space, all sets of the triangulation must be finite. The vertices
and edges naturally form a graph, which is embedded in the sphere. Because there are
three face maps from each triangle to an edge, and each edge is reached exactly twice
by the face maps, we find that 3|X2| = 2|X1|. Hence there is an integer m such that
|X2| = 2m and |X1| = 3m. Because the sphere has Euler characteristic 2, we also find
that |X0|−3m+2m = |X0|−|X1|+ |X2| = 2, hence |X0| = m+2. We denote the degrees
of these m+ 2 vertices by d1, d2, . . . , dm+2. Then we find that

m+2∑
i=1

(6− di) = 6(m+ 2)−
m+2∑
i=1

di = 6m+ 12− 2|X1| = 12.

We are now interested in those triangulation for which di ≤ 6 for all i. We will call
these triangulations non-negatively curved. This implies there are at most 12 vertices
having degree smaller than 6, we call these vertices singular. All non-singular vertices
have degree 6.

An interesting question would be to count the number of different non-negatively
curved triangulations of S2, up to the isomorphism in definition 1.2. A rough asymptotic
bound on this number is given by O(n10), where n is the number of triangles [1], but
the exact formula is still unknown. This general problem is outside of the scope of this
thesis, but we will solve a special case. Based on ideas from Thurston [1], we will count
the number of triangulations with four singular vertices of degree 3. This class will be
called tetrahedral triangulations.
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Chapter 2

Constructing a triangle map

To count the number of triangulations on the sphere, we will translate the problem to a
counting problem in the Eisenstein lattice. The first step for this is the construction of
an unfolding triangle map from the Eisenstein triangulation Eis to a tetrahedral triangu-
lation T. The idea for this construction is to start with mapping one triangle in Eis to
a triangle in T, and extending this map one by one to neighbouring triangles. To show
that this construction is well-defined, we first have to do some work. We start with a
lemma that gives us a tool to extend a triangle map.

Lemma 2.1. Let X and X′ be two triangulations that both contain exactly one triangle
and only edges and vertices of this triangle. If X contains three different edges and three
different vertices and f is a triangle map from one side of X to one side of X′, then f
can be extended to a triangle map from X to X′.

If X′ has three different edges this extension is unique.

Proof. Write X0 = {v0, v1, v2}, X1 = {e0, e1, e2}, X2 = {t} such that the face maps are
given by dit = ei, d0ej = vmaxi 6=j(i) and d1ej = vmini 6=j(i). In the same way write X ′0 =
{v′0, v′1, v′2}, X ′1 = {e′0, e′1, e′2}, X ′2 = {t′} (where X ′0 and X ′1 may contains less than three
elements), again with face maps dit

′ = e′i, d0e
′
j = v′maxi 6=j(i)

and d1e
′
j = v′mini 6=j(i)

.
Assume f is given on the side e0 and hence on the vertices v1 and v2 as well. For ease

of notation we will assume fe0 = e′1, fv1 = v′2, fv2 = v′0, in other cases we can find similar
constructions. (Note that this is a valid assumption. Because f is a triangle map, f0
maps the endpoints of e0, which are v1 and v2, surjectively on the endpoints of e′1, which
are v′0 and v′2.) Now we consider two cases: f ∗e0 can be either the transposition (01) or
the identity.

If f ∗e0 = (01) we define ft = t′, fe1 = e′2, fe2 = e′0, fv0 = v′1 and f ∗e1 = (01), f ∗e2 =
Id, f ∗t = (012). To check that this indeed satisfies the conditions of a triangle map, we
need to check the 18 given equations. These calculations are straightforward and show
indeed that f is a triangle map.

Now we assume f ∗e0 = Id. Because f is a triangle map on e0, it follows that v′0 =
fv2 = fd0e0 = d0fe0 = d0e

′
1 = v′2. Now we choose ft = t′, fe1 = e′0, fe2 = e′2, fv0 = v′1

and f ∗e1 = Id, f ∗e2 = (01), f ∗t = (01). Using v′0 = v′2 it is again straightforward to check
the necessary equalities, which shows that f is a triangle map. This concludes the proof
of the existence. Now we will prove the statement about uniqueness.

We will again assume that fe0 = e′1, fv1 = v′2, fv2 = v′0. We will show that the triangle
map f must always be on of the above, depending on f ∗e0. First of all it is clear that
ft = t′. Because the sides of t must be mapped surjectively on the sides of t′, we also have
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fe1 = e′2 and fe2 = e′0, or fe1 = e′0 and fe2 = e′2. The endpoints of e1, which are v0 and
v2 must then be mapped surjectively to the endpoints of either e′2 or e′0. We now easily
see that this forces fv0 = v′1. Finally, because e′1 = fe0 = fd0t = d(f∗t)(0)ft = e′(f∗t)(0)
and because X′ has three different sides, we also have (f ∗t)(0) = 1.

Now we first assume f ∗e0 = (01). We know that (f ∗t)d0 = d(f∗t)(0)f ∗e0 = d1(01)
and if we apply this to a point (x, y) ∈ ∆1, we find that (f ∗t)(0, x, y) = (y, 0, x), hence
f ∗t = (012). This implies that fe1 = fd1t = d2ft = e′2 and fe2 = fd2t = d0ft = e′0.
Lastly we have to find f ∗e1 and f ∗e2. They follow from (012)di = (f ∗t)di = d(f

∗t)(i)f ∗ei
and we easily find that f ∗e1 = (01) and f ∗e2 = Id.

If on the other hand f ∗e0 = Id, we find that (f ∗t)d0 = d1, hence f ∗t = (01). In the
same way we find that fe1 = e′0, fe2 = e′2 and f ∗e1 = Id, f ∗e2 = (01). This finishes the
proof.

2.1 Triangle paths

Now that we have a tool to extend triangle paths, we define triangle paths, along which
we will extend the triangle map.

Definition 2.1. A triangle path of length n in a triangulation X is a sequence (t1, t2, . . . , tn)
of triangles such that for each i ∈ {1, . . . , n − 1} the triangles ti and ti+1 satisfy djti =
dkti+1 (i.e. they have a common edge) for some j, k with (ti, j) 6= (ti+1, k).

A triangle path (u1, . . . , un) depends continuously on (t1, . . . , tn) if for every i there
is a triangle map fi : ti → ui such that fi and fi+1 coincide on the common edge of of ti
and ti+1.

Because all degrees in Eis and T are greater than 1, every triangle has three different
sides. If X is one of these triangulations, this means that the condition (ti, j) 6= (ti+1, k)
is equivalent to ti 6= ti+1. We give this slightly more complicated definition to show that
similar arguments can be applied if X would contain vertices of degree 1. Because all
triangles in Eis and T have three different sides, we can also apply the second part of
2.1 which gives unique extensions.

There is one more subtlety if there are vertices of degree 2. In that case the common
edge of two neighbouring triangles is not unique and this would complicate the defini-
tion of the continuously depending triangle paths. To solve this, we have to include in
the triangle path which is the common edge of two neighbouring triangles. As this is
notationally cumbersome and not necessary in our case, we will not do this.

Note that the subscript in the notation fn is different from the subscript used in the
formal definition of the triangle map. In this case, the subscripts denote different triangle
maps.

The next theorem is very important. It shows that it does not matter along which
triangle path we extend the triangle map and therefore we can make a valid construction.
It is also in this theorem that we rely on the fact that T has only vertices of degree 3
and 6.

Theorem 2.1. (a) Let (u1, . . . , un+1) be a triangle path in T which depends continu-
ously on the triangle path (t1, . . . , tn+1) in Eis through the maps f1, . . . , fn+1. If
tn+1 = t1, then u1 = un+1 and f1 = fn+1.

(b) Let (u1, . . . , un) be a triangle path in T which depends continuously on the triangle
path (t1, . . . , tn) in Eis through the maps f1, . . . , fn, and let (u′1, . . . , u

′
m) be a triangle
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path in T which depends continuously on the triangle path (t′1, . . . , t
′
m) in Eis through

the maps f ′1, . . . , f
′
m. If t1 = t′1, f1 = f ′1 and tn = t′m, then un = u′m and fn = f ′m.

Proof. (a) Let pi be the midpoint of ti, then p1p2 . . . pnp1 forms a closed curve. Moreover,
if we connect the midpoints for every pair of adjacent triangles in Eis, we obtain a
tessellation of C with regular hexagons. The loop p1p2 . . . pnp1 then contains a finite
number of these hexagons. We will now prove the statement by strong induction on
K = n+ 5 · (number of enclosed hexagons).

Base. The base case is K = 2, with n = 2 and no hexagons enclosed. In this case
f1 and f2, as well as f2 and f3, coincide on the common edge of t1 and t2. This implies
that the common edge of u1 and u2 is also the common edge of u2 and u3. Because there
cannot be three triangles with the same common edge, we see that u1 = u3. Now f1
and f3 are both triangle maps from t1 to u1 that coincide on one edge. Now lemma 2.1
implies that f1 and f3 are the same.

Step. Now take a triangle path (t1, . . . , tn, t1) with a certain value of K, and assume
the result holds for all circular paths with smaller value of K.

Assume ti = tj for some i < j. Then the path (ui, . . . , uj) depends continuously on
(ti, . . . , tj = ti). This path has length j − i < n and encloses no more hexagons than the
original path. Therefore the value of K is smaller and by induction hypothesis we know
that ui = uj and fi = fj. Then we see that (u1, . . . , ui−1, ui = uj, uj+1, . . . , un, un+1)
depends continuously on (t1, . . . , ti−1, ti = tj, tj+1, . . . , tn, t1). This path has length n −
j + i < n and also encloses no more hexagons than the original path, so again by the
induction hypothesis we have un+1 = u1 and fn+1 = f1. This concludes the step in this
case.

We now consider the case where ti 6= tj for all i 6= j. The loop p1p2 . . . pnp1 is then
a simple closed curve if n > 2. If the loop encloses no hexagons, we will show that
we are in the base case. Namely, if n > 2, the two hexagons on both sides of p1p2 are
separated by the loop p1p2 . . . pnp1, and one of them must be contained in the loop. This
is a contradiction, hence n = 2 and we are in the base case.

Now assume that the loop encloses a positive number of hexagons. The side pnp1 bor-
ders two hexagons, one of which is contained in the loop. If we let pn, p−3, p−2, p−1, p0, p1
be the vertices of this hexagon, in order, then p1 . . . pnp−3p−2p−1p0p1 is a closed loop which
contains one fewer hexagon. Let t = (t1, . . . , tn, t−3, t−2, t−1, t0, t1) be the corresponding
triangle path. Because it contains one less hexagon and is four triangles longer, the value
of K is one smaller and we can apply the induction hypothesis on t.

Let x be the common vertex of the triangles tn, t−3, t−2, t−1, t0, t1. Then fn(x) is a ver-
tex of un and un+1. Because all vertices in T have degree 3 or 6, we may name the triangles
around this vertex as un, u−3, u−2, u−1, u0, un+1, where (un, u−3, u−2) = (u−1, u0, un+1) if
the degree of fn(x) is 3. We will now show that the path u = (u1, . . . , un, u−3, u−2, u−1, u0, un+1)
depends continuously on t and the corresponding map t1 → un+1 is still fn+1.

To do this, we construct maps fi : ti → ui for i = −3,−2,−1, 0. We do this with
lemma 2.1: f−3 must coincide with fn on the common edge of tn and t−3, hence there is a
unique extension to a map f−3 : t−3 → u−3. In a similar fashion we define f−2 to f0. Now
f0 and fn+1 map t0 and t1 to the adjacent triangles u0 and un+1, and they also map the
common edge of t0 and t1 to the common edge of u0 and un+1. Of course they also coincide
on x, which implies they also coincide on the other endpoint of the common edge of t0 and
t1. Now we still have to show that they give the same permutation on this common edge.
For this it is enough to show that a point on the common edge near x is sent to the same
point by |f0| and |fn+1|. Consider a small circle around x; we map this circle to |T| with
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the maps |fn+1|, |fn|, |f−3|, . . . , |f0|. If we traverse this circle starting at the common edge
of t0 and t1 we encounter six edges (including the last edge). If we look where this path
is mapped in |T|, we see that we walk in a small loop around fn(x) and also encounter
six edges. Because the degree of fn(x) is 3 or 6, we must end in the same point as where
we started. Hence f0 and fn+1 coincide on the common edge of t0 and t1. We now see
that u depends continuously on t with the maps f1 . . . , fn, f−3, f−2, f−1, f0, fn+1 and by
the induction hypothesis we conclude that un+1 = u1 and fn+1 = f1.

This concludes the induction and proves part (a).
(b) From the given we conclude that (un, . . . , u1, u

′
2, . . . , u

′
m) depends continuously on

(tn, . . . , t1, t
′
2, . . . , t

′
m−1, tn). Now we can apply part (a) and we find directly un = u′m and

fn = f ′m.

2.2 Unfolding triangle maps from Eis to T

Now we will go on to construct the triangle map we wanted.

Theorem 2.2. There exists an unfolding triangle map from Eis to T.

Proof. First we will choose for every triangle t in Eis a triangle u in T, together with a
triangle map from t to u. Then we show that these maps are compatible and hence can
be put together to form a map f : Eis→ T.

Choose a vertex A in T which has degree 3 and choose a triangle u0 which has A as
vertex. Let t0 = 4(0, 1, ω + 1), then we can form a triangle map f0 : t0 → u0 such that
f0(0) = A. For any other triangle t ∈ Eis we can find a triangle path (t0, t1, . . . , tn = t).
We will construct a triangle path (u0, u1, . . . , un) that depends continuously on this path.
This can easily be done inductively: the common edge of t0 and t1 is mapped to an
edge of u0, which is the edge of exactly one other triangle, let this be u1. Now f1 has
to coincide with f0 on the common edge of t0 and t1, so f1 has a unique extension to
t1. This argument can be repeated until the whole path (u0, u1, . . . , un) and a triangle
map fn : t → un has been constructed. Theorem 2.1 now tells us that un and the map
fn : t→ un do not depend on the chosen path (t0, . . . , tn).

We can apply the same method for every triangle t ∈ Eis to find a triangle ut ∈ T
and a triangle map ft : t→ ut. We want to put all maps together to form a triangle map
f : Eis → T, but this is only possible if ft and ft′ coincide on t ∩ t′. We will show that
this is indeed the case.

First consider the case that t and t′ have one common edge. Then we can choose a
triangle path from t0 to t, and extend it with (t′, t). The triangle path in T which depends
continuously on this path ends in (ut, ut′ , ut), and the triangle maps are just ft, ft′ and
ft. Then by definition, ft and ft′ coincide on the common edge of t and t′.

If t and t′ only coincide in a vertex x, we can either find one triangle ta that has
x as vertex such that (t, ta, t

′) is a triangle path, or two triangles ta, tb that have x as
vertex such that (t, ta, tb, t

′) is a triangle path. Because the triangle maps coincide on the
common edges, they coincide pairwise on x, but then ft and ft′ also coincide in x.

This concludes the construction of the triangle map f : Eis→ T. The only thing left
to show is that it is an unfolding map. Consider two triangles t, t′ ∈ Eis that share a side.
The corresponding triangles in T are ut, ut′ and the path (ut, ut′) depends continuously
on (t, t′). If the common edge of ut and ut′ is djut = dkut′ , then it follows from the
definition of a triangle path that (ut, j) 6= (ut′ , k), which we needed to show.
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When we consider this construction, we see that there is not much choice once we
have picked f0. This might be caused by this specific construction, but there actually is
no choice, as the following theorem shows.

Theorem 2.3. Let two unfolding triangle maps f, f ′ : Eis → T be given, that coincide
on one triangle of Eis. Then f = f ′.

Proof. Let t0 be the triangle on which f and f ′ coincide, and let t be another triangle.
Choose a triangle path (t0, t1, . . . , tn = t), and define ui = f(ti) and u′i = f ′(ti). We first
show that (u0, u1, . . . , un) is a triangle path. Consider triangles ti, ti+1 with a common
edge, so djti = dkti+1. Because f is unfolding, we have (ui, (f

∗ti)(j)) 6= (ui+1, (f
∗ti+1)(k)).

And because d(f∗ti)(j)ui = fdjti = fdkti+1 = d(f∗ti+1)(k)ui+1 is the common edge of ut and
ut+1, this implies exactly that (u0, u1, . . . , un) is a triangle path. It clearly also depends
continuously on (t0, t1, . . . , tn). But the same holds for (u′0, u

′
1, . . . , u

′
n). Applying theorem

2.1, we see that un = u′n and also that f and f ′ coincide on t. This holds for every triangle
t ∈ T, hence f = f ′.
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Chapter 3

Symmetry of the Eisenstein
triangulation

In the previous section we constructed an unfolding triangle map f : Eis → T and we
proved this map to be unique if it was given on one triangle. In this section we will see
that f can be regarded as a quotient map from a group action and therefore f can be
characterised by this group.

Let G be the group of isometries of C that map Z[ω] to itself. Each isometry induces
an isomorphism from Eis to itself. Note that each of these isomorphisms is uniquely
determined by its restriction to one triangle.

Theorem 3.1. Given an unfolding triangle map f : Eis → T, let Gf = {g ∈ G | f =
f ◦ g} be a subgroup of G. The group Gf acts on Eis and defines orbits of Eis0,Eis1 and
Eis2. Two simplices σ, σ′ are in the same orbit if and only if fσ = fσ′.

Proof. If two simplices σ, σ′ are in the same orbit, there is a g ∈ Gf such that gσ = σ′

and by definition of Gf we see that fσ′ = fgσ = fσ.
Now assume that fσ = fσ′ for different σ, σ′. First assume both are triangles. There

is an isomorphism g ∈ G that sends σ to σ′. We can choose g such that f(e) = f ◦ g(e)
for every side e of σ. Now we can easily show that f ∗t = (f ◦ g)∗t (because fσ has
three different edges), from which we can deduce that f ∗e = (f ◦ g)∗e for all the edges
and therefore they also coincide on the vertices. Hence f = f ◦ g on the triangle σ and
because both f and f ◦ g are unfolding, we find f = f ◦ g. Hence g ∈ Gf and σ and σ′

are in the same Gf–orbit.
Now assume σ and σ′ are edges. Choose a triangle t which contains σ, then we can

find a triangle t′ that contains σ′ such that ft = ft′. Now we repeat the above argument
to find an isomorphism g ∈ Gf such that gt = t′. Then gσ is an edge of t and it must
be σ′, because it is the only edge of t′ which is sent to fσ (because ft has three different
sides). Hence σ and σ′ are in the same Gf–orbit.

Last we assume σ and σ′ are vertices. Then there is an edge e containing σ such that
the other endpoint of e is not mapped to fσ. We also find an edge e′ which contains σ′

such that fe = fe′. Now we use the above argument to see that there is an isomorphism
g ∈ Gf such that ge = e′. Then gσ is an endpoint of e′ and because fe has two different
endpoints, we must have gσ = σ′. Hence σ and σ are in the same Gf–orbit. This
concludes the proof.
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3.1 From triangulation to lattice

Now we want to do two things. Firstly, given this group, can we reconstruct the space T?
In other words, can we form a quotient of a triangulation? We will see that this is indeed
possible, but we first address another issue: we want to know how the group looks like.
We introduce a bit of notation for this. Denote the half-turn about x by Hx : z 7→ 2x− z,
and the translation over x by Tx : z 7→ z + x.

Theorem 3.2. Given an unfolding map f : Eis → T, let S the set of singular vertices
in T, and let L = f−1(S). Then Gf is generated by {Hx | x ∈ L}.

Proof. We first prove that Hx ∈ G if and only if x ∈ L. If x ∈ L, we know that fx is
a vertex of degree 3. Consider a triangle path of four triangles with common vertex x,
such that the first is the mirror image of the last. This triangle path maps to a triangle
path with common vertex fx, and because fx has degree 3, the first and the last triangle
are the same. If we also consider where the sides are sent to, we see that f and f ◦Hx

coincide on the first triangle of the path. Because both maps are unfolding, we see that
f = f ◦Hx and therefore Hx ∈ Gf .
On the other hand, if Hx ∈ Gf and x is a vertex of Eis, then the edges ending in x are
sent pairwise to the same edge in T. This means that fx has degree 3, hence x ∈ L. If x
is not a vertex, it must be the midpoint of an edge. In this case the half-turn Hx maps
this edge to itself, but mirrored. Then it is impossible that f = f ◦ Hx on this edge,
which yields a contradiction.

By definition of f , we see that 0 ∈ L. If we take x, y ∈ L, we see that Hx ◦Hy ◦H0 =
Hx−y and this is an element of Gf . Then x− y ∈ L, so L is an additive group.

We also know that Hx ◦Hy is in Gf for x, y ∈ L, but this composition is a translation
over 2(x− y). If we denote by Ta the translation over a, this implies {T2x | x ∈ L} ⊂ Gf .
We want to prove that these half-turns and translations are the only elements of Gf . We
do this by considering the different types of possible isometries of C.

Assume Ty ∈ Gf for a y not in 2L, then Ty ◦ H0 = Hy/2 ∈ Gf , so y/2 ∈ L. This
contradicts y 6∈ 2L.

If there is a rotation in Gf other than a half-turn, it must be a 3-fold or 6-fold rotation.
Its center must be one of the vertices of Eis, and by an argument similar to the one for
the half-turns, we see that this vertex maps to a vertex of degree 2 or 1 in T. Because T
contains only vertices of degree 3 or 6, this is a contradiction, hence there are no other
rotations in Gf .

Assume there is a reflection in Gf . If the mirror axis is the perpendicular bisector
of an edge, this edge is sent to itself but mirrored. We have already seen that this is
impossible. Now assume the mirror axis runs along edges and consider one of these edges
e. The triangles on both side of e are then in the same orbit. For any other edge e′ in
the same orbit as e, there is an element of Gf sending e′ to e, which sends both triangles
bordering e′ to the triangles bordering e, hence all those triangles are also in the same
orbit. This means that there is only one triangle bordering fe, which contradicts the fact
that T is the triangulation of a 2-dimensional manifold.

For the last case, assume that Gf contains a glide reflection. To handle this case, we
first need to find out more about L. First note that 2L is in one orbit of Gf , because
{T2x | x ∈ L} ⊂ Gf . Each of its cosets is therefore also in one orbit, but T has four
singular points. This means there must be at least four cosets of 2L in L. Because L is
a subgroup of Z[ω] which is isomorphic to Z2, the rank of L is at most 2. If L has rank
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smaller than 2, the index of 2L is at most 2. Hence the rank of 2L is exactly 2 and each
of its cosets is exactly one Gf–orbit.

Now consider a glide reflection which is a reflection in line ` and a translation along
v. If ` contains a point x from L, we can compose the glide reflection with Hx. This is
a reflection in the line perpendicular to ` through x − v/2, but we already proved that
Gf contains no reflections. Hence ` contains no points from L. Consider a point x ∈ L
and let x′ be its image under the glide reflection. These two points are in the same orbit,
hence x′−x ∈ 2L. This means that the midpoint of x′ and x is in L, but the midpoint is
on `. This is a contradiction, hence Gf contains no glide reflections. This completes the
proof.

3.2 From lattice to triangulation

This theorem tells us what the group Gf looks like and also that the group is completely
determined by the lattice L. A lattice in C is a subgroup isomorphic to Z2 which spans
the whole of C. These lattices are well-known, hence the counting problem for these
lattices will be easier. So for know we concentrate on the reverse relation: showing that
every lattice gives a tetrahedral triangulation.

Theorem 3.3. Given a sublattice L of Z[ω], there is a tetrahedral triangulation T and
an unfolding triangle map f : Eis → T such that L = f−1(S), where S are the singular
points of T.

Proof. Construct the group GL = {Hx | x ∈ L} ∪ {T2x | x ∈ L}. This group acts on Eis
and defines orbits in Eis0,Eis1 and Eis2. We now define T by letting T0, T1, T2 be the
orbits in respectively Eis0,Eis1,Eis2. Note that by definition of GL it is impossible for
the two endpoints of an edge to be in the same orbit. The same goes for the three edges
of a triangle.

To finish the definition of T, we need to define the face maps. We start by noting that
T0, T1 and T2 are finite, hence we can write T0 = {x1, . . . , xn} (choosing a different order
will yield a different, but isomorphic triangulation). For an orbit in T1, we can choose
a representative edge e ∈ Eis1 and look at its endpoints. The orbit of these endpoints
does not depend on the chosen edge, because an isometry in GL sends the endpoints of
an edge to the endpoints of the image of the edge. If the endpoints of e are in the orbits
xi and xj, with i < j, we let d0([e]) = xj and d1([e]) = xi. Similarly for an orbit in T2
we can choose a representative triangle t ∈ Eis2 and look at its edges and vertices. If the
vertices are in the orbits xi, xj, xk with i < j < k, we let d0([t]) be the orbit of the edge
of t between xj and xk, d1([t]) is the orbit of the edge of t between xi and xk, and d2([t])
is the orbit of the edge of t between xi and xj. We can easily check that this is indeed a
triangulation according to the definition.

We also must construct an unfolding triangle map f : Eis→ T for this new triangula-
tion. The maps fn : Eisn → Tn are simply the quotient maps. The maps f ∗n : Eisn → Sn+1

then follow uniquely from the maps fn, because every triangle has three different edges
and every edge has two different vertices. Again we can easily check that this is a triangle
map according to the definition. By the explicit form of GL we also see that two triangles
that share an edge are never in the same orbit. This implies that f is also unfolding.

Last we have to show that T is indeed a tetrahedral triangulation. The degrees of
the vertices are good: every coset of 2L maps to a vertex of degree 3, which gives four
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in total. All other vertices have degree 6. We also need to show that |T| is a sphere.
We do this by considering the map |f | : C → |T|. It is easy to see that this map is
the pointwise quotient map by the action of GL. To see that it is also the topological
quotient map, we need to show that A ⊂ |T| is open if and only if |f |−1(A) ⊂ C is open.
But A is open if and only if it is open in every simplex (without the identification of
faces). The map f̃ (introduced in theorem 1.1) is an embedding on every simplex and
because it is surjective, it is also a projection, and hence a set is open if and only if its
inverse image is open. Prjoecting down again to C shows the final equivalence. Hence
|T| is homeomorphic to the topological quotient C/GL, which is homeomorphic to the
sphere.

We now have two constructions: from a triangulation we can construct a lattice and
from a lattice we can construct a triangulation. If a triangulation generates a lattice,
then we construct from this lattice an isomorphic triangulation. However, there may
be multiple lattices belonging to the same triangulation. This is made precise in the
following theorem.

Theorem 3.4. Let D6 be the group of isometries of Eis mapping 0 to itself. Two sub-
lattices of Z[ω] generate isomorphic triangulations if and only if they are in the same
D6–orbit.

Proof. If two lattices L,L′ are in the same D6–orbit, there is an isometry which maps L
to L′. This isometry also maps the orbits of GL to the orbits of GL′ hence induces an
isomorphism between the two triangulations.

Now assume two lattices L and L′ have isomorphic triangulations T and T′ with
respective unfolding triangle maps f, f ′. We will show that there is an isometry I of Eis
such that the following diagram commutes:

Eis Eis

T T′

f

I

∼

f ′

To do this, pick a triangle t in Eis and map it via f and ∼ to T′. Now choose a triangle
t′ in its inverse image from f ′. Then we can choose an isometry I which maps t to t′

such that ∼ ◦f and f ′ ◦ I coincide on t. Because both maps are unfolding, they are
equal by theorem 2.3. Now we decompose I as composition of an element g ∈ D6 and
a translation. Because 0 is in both L and L′, and g fixes 0, the translation maps L′ to
itself. But then g maps L to L′ which is what we wanted to prove.

The last thing we note is that we can find the number of triangles in a triangulation
from the lattice. Consider a sublattice L of Z[ω], for each of these two lattices we can
choose two generators and they span a parallelogram. The ratio of the areas of these
parallelograms is exactly the index |Z[ω] : L|. The group action of GL on C has a
fundamental domain formed by joining two of the parallelograms of L along a side, so
this fundamental domain has area 2|Z[ω] : L| · 2Area(4(0, 1, ω + 1)) and it contains
therefore exactly 4|Z[ω] : L| triangles. In particular we see that the number of triangles
in a tetrahedral triangulation is always a multiple of 4.

Now all the information we need about the triangulations is stated in terms of lattices
and it only remains to count these lattices.
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Chapter 4

Counting lattices

In the previous chapter we concluded that tetrahedral triangulations with 4m triangles
correspond bijectively to sublattices of Z[ω] of index m, modulo the action of a dihedral
group of order 12. So let’s count these lattices.

Theorem 4.1. There are exactly
∑

d|m d sublattices L of Z[ω] with index m.

Proof. Let a lattice L of index m be given. Pick two generators n1 + n2ω and n3 + n4ω
of L (ni integers), then n4(n1 +n2ω)−n2(n3 +n4ω) = n1n4−n2n3 is a non-zero element
of L (if n1n4 − n2n3 were zero, the generators would not be linearly independent). This
means that L ∩ Z is a non-trivial subgroup of Z, and therefore it is of the form dZ for
some d > 0. Now pick an element a+ bω of L with b > 0 and b minimal. Because d ∈ L,
we may also assume 0 ≤ a < d. Then d and a+bω also generate L. To see this, let k+`ω
be an element of L. Then

(k − ab `
b
c) + (`− bb `

b
c)ω

is also in L and 0 ≤ ` − bb `
b
c < b. Because a + bω is an element with b minimal, this

means that `− bb `
b
c = 0. Then k−ab `

b
c ∈ Z∩L is a multiple of d, hence k+ `ω is indeed

generated by d and a+ bω.
Now the parallelogram spanned by d and a+ bω has area bd · 1

2

√
3, so the index m of

L is equal to bd. This means that d | m and if we fix d, we also fix b. Then there are
exactly d choices for a, so the number of lattices with index m is equal to

∑
d|m d.

This is the total number of lattices without accounting for symmetry. So that is what
we will do now, with use of Burnside’s lemma.

Theorem 4.2. Let g(m) be the number of sublattices of Z[ω] of index m that are invariant
under multiplication with ω. Let t(m) be the number of sublattices of Z[ω] of index m
that are invariant under the conjugation automorphism of C. Then there are

1
6

∑
d|m

d+ 1
3
g(m) + 1

2
t(m)

tetrahedral triangulations with 4m triangles.

Proof. Burnside’s lemma states that the number of orbits given by a group action of G on
X, is equal to 1

|G|
∑

g∈G |Xg|, where Xg are the fixed points of g. In case of the action of

D6 on the set of sublattices of Z[ω] with index m, the group order is 12 and we will count
the number of fixed elements of every element. The number of orbits is then exactly the
number we want.
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For any lattice L we have x ∈ L ⇔ −x ∈ L, hence the identity and the half-turn
about 0 both leave all lattices fixed. This gives two terms

∑
d|m d. The other rotations in

D6 correspond with multiplication by ω,−ω, ω−1,−ω−1, and they all leave g(m) lattices
invariant. This gives four terms g(m).

Last we have the reflections which can be divided into two conjugacy classes: one
contains the reflection in the real axis, the other reflection in the imaginary axis. However,
both have the same number of fixpoints: composing one reflection with the half-turn
about 0 gives the other reflection. As conjugate elements also have the same number of
fixpoints, we find that each reflection has t(m) fixpoints.

Hence the total number of orbits is

1

12

2
∑
d|m

d+ 4g(m) + 6t(m)

 = 1
6

∑
d|m

d+ 1
3
g(m) + 1

2
t(m).

4.1 Number theory

We will now derive forms for the functions g(m) and t(m). To determine g(m) we do
some number theory in Z[ω], hence we need some knowledge of Z[ω]. It has a norm given
by

N(a+ bω) = (a+ bω)(a+ bω) = a2 − ab+ b2.

Using this norm we can show that Z[ω] is a Euclidean domain. Because of this it is also
a principal ideal domain (PID) and a unique factorization domain (UFD). Because it is a
UFD, the prime elements and the irreducible elements are the same. We will often make
implicit use of this. [4]

The number t(m) is easier to derive, it uses only elementary number theory.

Theorem 4.3. The function g(m) is multiplicative, that is, g(m)g(n) = g(mn) for all
coprime integers m,n. For prime powers, g is given by

g(pk) =


1 if p = 3,

k + 1 if p ≡ 1 mod 3,

0 if p ≡ 2 mod 3 and k ≡ 1 mod 2,

1 if p ≡ 2 mod 3 and k ≡ 0 mod 2.

Proof. This proof is based on a similar result from [5].
We first show that g(m) is equal to the number of numbers α ∈ Z[ω] with norm m,

modulo multiplication with units. Note that the norm is defined as N(α) = αα and the
units are 1, ω, ω2,−1,−ω,−ω2.

Given a sublattice L that is invariant under multiplication with ω, then L is an ideal
in Z[ω]. Because Z[ω] is a PID, L is generated by a single element α. The choice of α is
unique up to multiplication with units. We also see that the index of L is equal to the
area of the parallelogram spanned by α and ωα, divided by the area of the parallelogram
spanned by 1 and ω. This ratio is exactly |α|2 = N(α). Hence every lattice with index
m corresponds to a number α with norm m, modulo multiplication with units.

We first will prove that g is multiplicative. We write α ≡ β to indicate the equality
is modulo multiplication with units. For all α with norm m and β with norm n, we see
that αβ has norm mn. This yields g(m)g(n) numbers of norm mn, but we need to show
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that they are all different. So assume αβ ≡ α′β′ and let π be an Eisenstein prime that
divides α. If it also divides β′, then N(π) would divide m and n, hence it would divide
1. This is a contradiction, hence α and β′ have no common prime factors. As α | α′β′,
this implies α | α′. Similarly we find that α′ | α, hence α ≡ α′ and therefore β ≡ β′ as
well. This means that g(mn) ≥ g(m)g(n).

Now assume γ has norm mn, and write α ≡ (γ,m), β ≡ (γ, n). We want to prove
that αβ ≡ γ and that α and β have norms m and n. Let πk be an Eisenstein prime
power. If πk divides γ, we have πk | γγ = mn. As m and n are coprime, this means
that either πk | m or πk | n. In the first case we see that πk | α, because it divides
both γ and m, hence πk | αβ. In the second case a similar argument shows πk | αβ.
This holds for all Eisenstein prime powers, hence γ | αβ. Now if πk | αβ, we have either
πk | α or πk | β, because (α, β) | (m,n) = 1. But πk | α gives πk | γ because α | γ,
and in the same way πk | β gives πk | γ. Hence αβ | γ, so αβ ≡ γ. Comparing the
norms gives N(α)N(β) = mn, from which it follows that N(α) = m and N(β) = n. This
means that g(mn) ≤ g(m)g(n). Together with the bound we already proved this gives
g(mn) = g(m)g(n).

Now g is completely determined by its value on prime powers. To calculate these
values, we will first find out which prime numbers are Eisenstein primes as well. We will
prove that a prime number p is an Eisenstein prime if and only if p ≡ 2 mod 3.

First we consider the case p ≡ 2 mod 3 and we assume p = αβ for two non-unit
Eisenstein integers α, β. Taking the norm gives p2 = N(α)N(β), so N(α) = N(β) = p.
But if we write α = a + bω, this gives p = a2 − ab + b2. If we consider this equation
modulo 3, we see that 2 ≡ p = a2 − ab + b2 ≡ a2 + 2ab + b2 = (a + b)2 mod 3, but this
is a contradiction as 2 is not a quadratic residue modulo 3.

The case p ≡ 0 mod 3 is easily handled, as this implies p = 3. We see that we can
factor 3 = (2 + ω)(1− ω). Note that −ω2(1− ω) = ω3 − ω2 = 2 + ω, hence both factors
are the same up to multiplication with a unit.

Last, consider the case p ≡ 1 mod 3. We will show that p is not prime by con-
tradiction. Because p ≡ 1 mod 3 we can show with quadratic reciprocity that −3
is a quadratic residue modulo p. Hence there is an integer s with p | s2 + 3. But
s2 + 3 = (s + 1 + 2ω)(s − 1 − 2ω), so if p is an Eisenstein prime, it must divide either
s + 1 + 2ω or s − 1 − 2ω. But if p | s + 1 + 2ω, we must have p | s + 1 and p | 2, but
p | 2 is impossible. In the same way p | s − 1 − 2ω gives a contradiction, hence p is not
an Eisenstein prime. Hence we can write p = ππ′ where π and π′ are non-units. Because
p2 = N(p) = N(π)N(π′), we see that N(π) = N(π′) = p. This means that p = ππ and
because N(π) is prime, π must be an Eisenstein prime.

We will also need that π 6≡ π, so assume π ≡ π. The argument of every unit is a
multiple of π/3, so π ≡ π implies that the argument of π is a multiple of π/6. If it is
even a multiple of π/3, we see that π ≡ n for some integer n, but this is impossible. Else
we have π ≡ (2 + ω)n for some integer n, but comparing the norms gives p = 3n2, which
is impossible for p ≡ 2 mod 3. Hence π 6≡ π.

Now we will calculate the function g on prime powers. We start with p ≡ 2 mod 3,
and we want the number of solutions to pk = αα. Because p is an Eisenstein prime, α
can only contain prime factors p. Hence α ≡ pk/2 ≡ α, this gives exactly one possibility if
k is even, and otherwise there are no solutions. Hence g(pk) = 1 for even k and g(pk) = 0
for odd k.

If p = 3, we see that αα = 3k ≡ (2 + ω)2k with 2 + ω prime. Hence the only solution
is α ≡ (2 + ω)k ≡ α, which gives exactly one solution. Hence g(pk) = 1.
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If p ≡ 1 mod 3, we have seen that p = ππ for a prime π and that π and π are different
primes. If we want to write αα = pk = πkπk, then α must contain exactly k of the prime
factors on the right. Hence α = πjπk−j, and this suffices as α = πjπk−j. The number
j must be one of the integers 0, 1, . . . , k, which gives k + 1 options. Note that they are
all different, because Z[ω] has unique factorization. Hence g(pk) = k+ 1. This concludes
the proof.

Theorem 4.4. Let τ(n) be the number of positive divisors of n, and let it be 0 if n is not
an integer. Then t(m) = τ(m)− τ(m/2) + 2τ(m/4) for all m.

Proof. Suppose a lattice L of index m in Z[ω] is generated by d and a + m
d
ω, for d a

positive divisor of m, and a an integer from {0, 1, . . . , d − 1}. If it is invariant under
conjugation, we must have a + m

d
ω ∈ L, hence 2a + m

d
(ω + ω) = 2a − m

d
. As this is an

integer, we have d | 2a − m
d

. And it is easy to see that this relation implies that L is
invariant under conjugation.

Hence we need to find the number of solutions to d | 2a− m
d

. We will split this based
on the parity of d and m

d
. If d is odd, there is an inverse for 2, hence we can find a unique

value of a. If d is even and m
d

is odd there are no a that satisfy the relation and if both
d and m

d
are even, there are two values of a that satisfy the relation. Hence we find

t(m) =
∑
d|m


1 if d odd,

0 if d even, m
d

odd,

2 if d even, m
d

even,

=
∑
d|m

1−
∑
d|m

{
0 if d odd,

1 if d even,
+ 2

∑
d|m

{
1 if d even, m

d
even,

0 else.

= τ(m)− τ(m/2) + 2τ(m/4).

If m has at least two factors 2, we can even simplify this expression to t(m) = τ(m) +
τ(m/8). This follows from writing m = 2kn with n odd. We see that τ(2`n) = (`+1)τ(n)
for all ` ≥ −1, hence if k ≥ 2 we have

t(m) = τ(m)− τ(m
2

) + 2τ(m
4

)

= τ(m)− kτ(n) + 2(k − 1)τ(n)

= τ(m) + (k − 2)τ(n)

= τ(m) + τ(m
8

).

Now that we have derived the forms for g(m) and t(m), we have found an explicit
formula for the number of tetrahedral triangulations. In this calculation we need the
prime factorization of the number m, which can be obtained very efficiently if m is not
too large.
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Chapter 5

Generalizations

We have enumerated the tetrahedral triangulations, but this is only one special case of
the non-negatively curved triangulations. You might wonder if the same ideas can be
applied to other cases, but this is only the case for a few other cases. In our construction
we used that all degrees in a tetrahedral are divisors of 6. So in any triangulation where
this is the case as well, we could carry out a similar argument. This could be applied
to the case with 3 singular vertices of degrees 1, 2 and 3, and the case with 3 singular
vertices of degree 2.

A possible approach for other triangulations could be to replace the Eisenstein tri-
angulation with a triangulation of the hyperbolic plane. In the hyperbolic plane there
is a triangulation with equilateral triangles such that the degree is 60 at all points. In
quite a similar way we could create a triangle map from this hyperbolic triangulation
to a non-negatively cured triangulation, and this will always work, because all numbers
from 1 to 6 divide 60. Again we can form a group of isometries of the hyperbolic plane
such that the triangulation is a quotient of the hyperbolic triangulation by this group.
However, this group will be much larger and finding the exact structure will be more
difficult.

5.1 Projective triangulations

We will now deal with a different generalization, where we consider different spaces to
triangulate. Ideally we would consider spaces that are 2-dimensional manifolds with
positive Euler characteristic. Apart from the sphere there is exactly one such manifold
that is compact, namely the projective plane with Euler characteristic 1. We will count
the number of ‘tetrahedral’ triangulations for the projective plane.

Let P be a triangulation of the projective plane where two singular vertices have
degree 3, and the other vertices have degree 6. We will call such triangulation a projective
tetrahedral triangulation. Note that there is a 2-sheeted covering map from the sphere
to the projective plane. This allows us to lift the triangulation P to a triangulation of
the sphere. Because the covering is two-sheeted, we obtain 4 points of degree 3, hence a
tetrahedral triangulation. We already have constructed an unfolding triangle map from
the Eisenstein triangulation to this tetrahedral triangulation, and we can compose it with
the covering map to obtain an unfolding triangle map f : Eis→ P. We will find out how
the group Gf looks like in this case.

Theorem 5.1. Let S bet the set of singular vertices in P, and let L = f−1(S). Then Gf
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is generated by {Hx | x ∈ L} and a glide reflection.

Proof. We have constructed f as composition of a map from Eis to a tetrahedral trian-
gulation (with the covering map). We already know that this map is unchanged upon
composition with an Hx for x ∈ L, because L is exactly the inverse image of the singular
points. Hence {Hx | x ∈ L} and {T2x | x ∈ L} are contained in Gf . Furthermore, we
can use similar argument as in theorem 3.2 to show that Gf contains no other rotations,
translations or reflections. However, if Gf contains no other elements than the given
translation and half-turns, the triangulation P must be tetrahedral. Hence Gf will also
contain a glide reflection, say a reflection in ` followed by a translation along v. Applying
the glide reflection twice gives a translation over 2v, hence v ∈ L. This means that Tv
maps L to itself, then the reflection in ` also maps L to itself. In the same way as in
theorem 3.2 we find that ` contains no point from L.

Given these facts we will show that L is a rectangular lattice. Take a point x ∈ L
and let x′ be its reflection in `. We may assume there are no points on the segment xx′,
otherwise we take as x the point on this segment closest to `. This point cannot lie on
`, so x 6= x′. Then we can take a1 = x′ − x as one of the generators of L. Now consider
L/(a1Z) which is isomorphic to Z, hence it is generated by an element a2 + a1Z. We
choose the representative a2 such that x + a2 has minimal distance to `. Consider the
reflection y of x + a2 in `. Then y − (x + a2) is parallel to xx′, hence y − (x + a2) is a
multiple of a1. Then the distance from x + a2 to ` is at least |a1|/2. But if the distance
is more than |a1|/2, one of x + a2 + a1 and x + a2 − a1 has distance less than |a1|/2 to
`, which contradicts that x+ a2 has minimal distance to `. So x+ a2 has distance |a1|/2
to `. If x + a2 is on the same side of ` as x, we see that a1 ⊥ a2. If x + a2 is on the
other side of `, we see that x + a2 − a1 is on the same side of ` and also has distance
|a1|/2 to `. Then a1 ⊥ a2 − a1 and because a1 and a2 − a1 also generate L, we still have
a perpendicular set of generators. From now on we will assume a2 is chosen such that it
is parallel to ` and that a1 and a2 are the perpendicular generators.

We see as well that ` maps Z[ω] to itself, so it must be parallel to one of the mirror
axes in D6. Then a1 and a2 are also parallel to mirror axes of D6, hence L is fixed by
two of the reflections in D6.

Now we still have to find out how Gf looks like. For the given glide reflection, we see
that v 6∈ 2L. If this were the case, composing the glide reflection with the translation
over v (which are both in Gf ) gives a reflection, which cannot be in Gf . So v is an
odd multiple of a2. It is now a simple exercise to see that the following glide reflections
are also in Gf : reflect in a line through the point (n + 1

2
)ai for an integer n, which is

perpendicular to ai, and compose it with a translation over (2m + 1)a3−i for an integer
m. These are all the glide reflections which map L to itself such that the mirror axis
doesn’t pass through a point of L, hence they are the only glide reflections in Gf .

We see again that Gf is completely determined by the lattice L, but now the lattice
must be rectangular. Hence we need to count the number of rectangular lattices modulo
the action of D6. In this case it is somewhat simpler to count. Note that the number of
triangles in the triangulation corresponding to L is now 2|Z[ω] : L|.

Theorem 5.2. The number of projective tetrahedral triangulations with 2m triangles is
t(m) = τ(m)− τ(m/2) + 2τ(m/4).

Proof. For each rectangular lattice, there are two reflections with perpendicular axes in
D6 which fix the lattice. If there is another reflection which fixes the lattice, we can
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compose the reflections to give a rotation (not a half-turn) that fixes the lattice. But a
lattice is fixed by a rotation only if it is an ideal. However, the ideals are not rectangular,
so there are only two reflections which fix the lattice. For the same reason there cannot
be rotations that fix the lattice. So every lattice is fixed by exactly four elements of D6:
the identity, the half-turn and two perpendicular reflections.

Now for each of the three pairs of perpendicular reflections, we can find t(m) different
rectangular lattices with index m, which gives a total of 3t(m). But every lattice is in
an orbit of size 3 (because the stabilizer has order 4), hence there are t(m) projective
tetrahedral triangulations with 2m triangles.

We have seen that with not too much extra effort we can find the number of tetrahedral
triangulations of the projective plane. Even for the torus or the Klein bottle we can count
the number of triangulations having degree 6 in all vertices. Other connected, compact,
2-dimensional manifolds all have negative Euler characteristic, hence do not admit non-
negatively curved triangulations.
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