
Seismic Oceanography;

A tomographic reconstruction of a

two-dimensional flowing medium

Bachelor Thesis : Jip van Steen
Student number : 3761916
Date : June 10, 2016
Supervisor : dr. Tristan van Leeuwen

University of Utrecht
Faculty of Science

Mathematics & Applications

Abstract
The flow velocity varies throughout the ocean. Seismic techniques (the transmit-
tance and interception of seismic waves to acquire data) can be used to image the
two-dimensional velocity field of the ocean. A finite difference method, which is
based on fluid mechanics, can be used to model seismic wave-propagation in ho-
mogeneous and inhomogeneous flowing media. The numerical implementation
of this finite difference method will be illustrated in Matlab. By measuring the
changing of various parameters at a certain level in the ocean, seismic waves can
be observed. In this study, the changing of the parameter pressure is focused on.
By creating synthetic measurements (self-created measurements with a known
velocity field), the aim is to determine the velocity field out of these measure-
ments. This can generally be achieved by matching simulations to the synthetic
measurements, followed by an inverse procedure. This inverse procedure will
be discussed and demonstrated, considering homogeneous flowing media. The
difficulties that come along when considering more realistic scenarios are dis-
cussed.
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1 Introduction

Oceanography, also known as oceanology, is in general the study of the ocean.
It covers a wide and diverse range of topics. Marine life and ecosystems, the
chemical properties of the ocean, ocean circulation, plate tectonics and the ge-
ology of the seafloor are some examples of topics covered by oceanography. The
collective aim of all these topics is to get a better understanding of the global
ocean and the processes within. In order to efficiently group the wide range of
topics, oceanography is divided into various disciplines. The major disciplines
within the oceanography are geological oceanography, physical oceanography
and chemical oceanography. A relatively new field of research within oceanog-
raphy is seismic oceanography.

Seismic oceanography investigates structures in the ocean by means of seis-
mic imaging. Seismic imaging is a tool that investigates the subsurface with the
use of sound waves, also termed seismic waves (both terms will be used inter-
changeably throughout this study, meaning exactly the same thing). In 2003,
a research group led by W. Steven Holbrook discovered that with the use of
seismic reflection techniques, information about the interior of the ocean could
be mapped out and illustrated. This technique had been used in the past to
image the solid earth beneath the ocean, but it was found that this technique
also provided a lot of detailed information about the ocean itself. The research
group presented their findings of of the explored area of the ocean interior in a
paper published in Science [Holbrook et al., 2003]. They showed that distinct
water masses (water masses with different pressures and temperatures) can be
mapped and their internal structures imaged. It had therefore been shown that
with the use of seismic reflection techniques, important oceanic phenomena can
be imaged with great detail.

Since this discovery, more studies with this new tool have been done to ex-
plore the many possibilities seismic oceanography has to offer. By observing the
changing speed of sound waves propagating through the ocean, oceanographers
hope to extract information about the ocean’s temperature, salinity and veloc-
ity. This study will focus on extracting the velocity field of the ocean with the
help of seismic imaging. In this study a two-dimensional ocean intersection is
considered.

In order to extract the velocity field out of emitting and observing seis-
mic waves, one first needs to know how a seismic wave propagates through a
medium such as the ocean. This process can be described by valid fluid dynam-
ics equations. By constructing a model of an ocean intersection, this process
can be simulated by means of (numerically) implementing these equations into
the model. It is therefore possible to simulate the propagation of a seismic wave
through the ocean intersection, including potential reflections.

Seismic waves can be observed at a certain observance location by measuring
various parameters. If the process of propagation of a seismic wave through
the ocean can be simulated, the parameters that would be measured at this
observance location can be simulated as well. Therefore, the measurements
done to detect a passing sound wave at the observation point can be simulated.
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The aim of this study is to determine the velocity flow field of the two-
dimensional ocean intersection by means of seismic imaging. With the help
of simulating the process of sound wave propagation through the ocean inter-
section, simulated measurements can be created for a specific velocity field.
By matching these simulations to the synthetic measurements, which are self-
constructed under the assumption that the velocity field is unknown, it will be
attempted to extract the velocity field. This inverse procedure will be illustrated
and discussed in this study.

2 Definitions

In this study, various mathematical terms will be discussed. To avoid repetitions
and redundancy, an introduction section with the used definitions in this study
is necessary. All the non-trivial mathematical terms used in this study are
discussed here in this section.

Because this study focuses on the velocity field in two dimensions of an
intersection of the ocean, the third dimension is ignored. Therefore a two-
dimensional Cartesian coordinate system is considered throughout this study.

In order to clarify that a certain variable a is a vector, the variable will be
denoted in bold : a = (ax, ay). The nabla-symbol used in this study is defined
and denoted as: ∇ := (∂/∂x, ∂/∂y). The nabla can be used as an operator, as
well as to determine the gradient and the divergence, depending on the notation.

For clarification, assume a pressure function P (x, y) ∈ R and a vector veloc-
ity function v = (vx, vy) ∈ R2 exists in a two-dimensional Cartesian coordinate
system. The gradient of only scalar-valued functions can be determined, so the
gradient of only P can be determined. This is denoted as follows:

grad(P ) = ∇P =
(

∂P
∂x ,

∂P
∂y

)
.

The divergence is denoted as the dot-product between the nabla-symbol and
the certain vector. Therefore, the divergence of the pressure is denoted as fol-
lows:

div(P ) = ∇ · P = ∂P
∂x + ∂P

∂y .

Though the notation of the divergence looks very similar to the notation
of the gradient, it should be denoted with great care. The gradient can only
be taken from a scalar-valued function, while the divergence does not have this
constraint. Therefore the gradient of the vector velocity cannot be determined
(because v is a vector), while the divergence of the vector velocity can be cal-
culated as follows:

div(v) = ∇ · v = ∇ · (vx, vy)T = ∂vx

∂x +
∂vy

∂y .
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Another notation which is also mentioned in this study is the dot-product
of a vector and the nabla, which is not the same as the divergence of a vector.
This is noted as follows:

v · ∇ = vx · ∂
∂x + vy · ∂

∂y .

Furthermore, the Frobenius norm will be used later on in this study. Suppose
X as a (m×n)-matrix with elements xij ; 0 ≤ i ≤ m, 0 ≤ j ≤ n with i, j,m, n ∈ N
(i < m, j < n). Then X looks like:

X =


x00 x01 . . . x0n
x10 x11 . . . x1n

...
...

. . .
...

xm0 xm1 . . . xmn

.

The Frobenius norm, sometimes also called the Euclidean norm, on X is then
defined as:

||X||F :=

 m∑
i=0

n∑
j=0

|xij |2
1/2

, (1)

which is the square root of the sum of the squares of its elements.
Lastly, Taylor’s theorem will be of use. Especially the k’th order Taylor

polynomial with its remainder term. This is stated as follows:

Theorem 2.1 Let k ≥ 1 be an integer and let the function f : R → R be
k-times differentiable at the point a ∈ R. Then the k’th order of the polynomial
appearing in Taylor’s theorem is stated as:

Pk(x) = f(a) + (x− a)f ′(a) + (x− a)2
f ′′(a)

2!
+ · · ·+ (x− a)k

f (k)(a)

k!
, (2)

of the function f at the point a. Taylor’s theorem describes the behavior of the
remainder term as:

Rk(x) = f(x)− Pk(x) = (x− a)k+1 f
(k+1)(ξL)

(k + 1)!
, (3)

for some real number ξL between a and x.

This theorem is assumed to be known to the reader, but [Vuik et al., 2006] is
referred to for further insight.
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3 Introduction seismic oceanography

For decades, seismic waves have been used to study the earth beneath the ocean
floor. With the help of hydrophones (microphones designed for underwater
recording) towed behind a ship, sound waves can be emitted and intercepted
to acquire useful data about the earth beneath the ocean. These sound waves
are (partly) reflected due to the different layers in the earth. Therefore, the
emittance, the reception and the travel time in between gives useful information
about what kind of materials lay beneath the ocean.

Seismic oceanography uses the same reflection-technique, but focuses on the
imaging of the structures within the ocean interior instead of the earth beneath
the ocean [Ruddick et al., 2009]. In this section, the basic principles of seismic
oceanography are discussed within the context of relevance for this study and
with the primary aim of determining the velocity field out of the reflection and
interception of seismic waves.

As said, an array of hydrophones towed by a ship floating in the ocean
can emit and receive seismic waves. A sketch made to illustrate this is shown
in figure 1. To get proper data, the amount of hydrophones is usually very
high, resulting in a rope of hydrophones which is often several kilometers long
[Ruddick et al., 2009]. The hydrophones are towed at usually about 15 meters
beneath the water surface. The sound waves emitted from the hydrophones can
be reflected by so called reflectors. Seismic waves can be reflected in the ocean
by changes in the acoustic impedance. The acoustic impedance is defined as
density times the sound velocity. Fortunately, the oceanic reflectors are mostly
horizontal, resulting in the strongest reflections.

Figure 1: Sketch.

In this study, the determination of the velocity field is of primary concern.
Locating the structures within the ocean that reflect due to changes in acoustic
impedance is another branch in the seismic oceanography and will therefore be
ignored.
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For the implementation of the wave-propagation later on, it is important to
state some assumptions beforehand, to simplify the problem. Firstly, it will be
assumed that one of the hydrophones (or the ship itself) sends out the seismic
waves and the hydrophones lay perfectly on a horizontal line at some distance
beneath the water-surface. Secondly it will be assumed that there is only one
oceanic reflector at a certain depth, the ocean floor, which is parallel to the
water-surface. Therefore, the seismic waves will bounce back from the reflector,
reaching the hydrophones again in time (see figure 1). Note that the seismic
wave does not only travel from the source along the arrow, but travels naturally
in all directions. This figure is merely to show the process of reflection.

Now that the context for the model has been constructed, the hydrophones
can detect the direct and reflected seismic waves that are passing through at
their location. The seismic waves can be observed by measuring various param-
eters. Because sound is merely a repeating pattern of high and low pressure
regions that propagates through a medium (sometimes also called a pressure
wave), the pressure is the most common/logical parameter to be measured at
the hydrophones.

The other parameters that can be observed are the so called acoustic velocity
components (wx,wy). This is the change in velocity at a certain point due to a
passing sound wave. It is not unimaginable that these parameters are measured,
but it is unlikely to be observed in practice because the change in acoustic
velocity due to a propagating wave is far smaller than the change in pressure
due to the same wave.

So because the pressure is most common to be measured at the hydrophones,
this study will focus on measurements based on the observance of pressure
through time. This leaves the question of how to determine the velocity field of
this two-dimensional intersection by means of these pressure measurements at
the hydrophones.

Assume the hydrophones kept a record of the pressure between a certain
start time, and a certain end time. These are called the measurements. To
determine the velocity field out of these observed measurements, one can try to
simulate the situation for a specific velocity field and compile the (simulated)
measurements for this case. After that, the real measurements can be compared
with the simulated measurements. If they are almost identical, the velocity fields
will also be close to each other. This comparison can be done for a lot of different
velocity fields, (thus, a lot of simulated measurements can be compared with
the real measurements) and one can determine which simulation is the closest
to the real measurements.

The whole process of trying to find the velocity field out of matching the
simulations with the measurements is called an inverse procedure. This proce-
dure will be shown and discussed in detail later on. Because there is no data
available in studies, synthetic measurements will be created to show this inverse
procedure. However, before this procedure can start, one needs to know what
fluid dynamics equations can describe a medium like the ocean including the
propagation of a sound wave through it.
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4 Fluid dynamics equations

The equations of the fluid dynamics in a certain medium (e.g. water or air)
can be simplified into various simpler sets. In this study, one specific set will be
discussed and analysed with the help of Matlab. But before the fluid dynamics
equations can be discussed, the involved variables will be defined first.

The Cartesian coordinates are defined as R = (x, y) , and the time is denoted
with t. For a specific point in the medium at a certain time, the following
variables can be determined: P̄ (R, t) stands for the pressure, %̄(R, t) is the
density, v̄(R, t) is the velocity vector and S̄(R, t) is the entropy in a medium.
These four variables may vary throughout the medium and depend on the time.

A complete set of fluid dynamic equations is adopted from [Ostashev et al., 2005].
These are the most basic equations for describing the medium (with potentially
a seismic wave passing through). The detailed origin of this set is discussed in
[Ostashev et al., 2005].(

∂

∂t
+ v̄ · ∇

)
v̄ +
∇P̄
%̄
− g =

F

%̄
, (4)

(
∂

∂t
+ v̄ · ∇

)
%̄+ %̄∇ · v̄ = %̄Q, (5)

(
∂

∂t
+ v̄ · ∇

)
S̄ = 0, (6)

P̄ = P̄ (%̄, S̄). (7)

In this set, g represents the acceleration due to the gravity, F represents
a force acting on the medium and Q characterizes a mass source. They are
considered to be constant.

In the absence of a sound wave propagating through the medium, the pres-
sure, the density, the velocity vector and the entropy are equivalent to their
ambient values P , %, v and S (without the bars on top). Though in the pres-
ence of a propagating wave, the fluctuations caused by the propagating wave
begin to matter. Therefore, if a seismic wave moves through a medium, these
variables can be expressed in their ambient values plus their fluctuation values p,
η, w and s. Note that w = (wx, wy) stands for the acoustic velocity (mentioned
previously). This gives the following set of variables:

P̄ = P + p,

%̄ = %+ η,

v̄ = v + w,

S̄ = S + s.

So in order to account for the fluctuations due to the propagating wave, the bar
is placed on top of the variables.
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In order to obtain the equations for a sound wave propagating through a
medium, the equations (4)-(7) can be transformed to another equation set under
the main restraint that a sound wave is generated by the mass source Q and
a force F. The newly derived equation set shows that the fluctuation values
p, η, w and s can be calculated if the ambient quantities %, v, P , S, c and
h are known. Where c is the adiabatic sound speed and h is given. This
new equation set is known to be the most general description of sound-wave
propagation in a moving inhomogeneous medium. However, because this set
is not of major importance in this study, the reader is therefore referred to
[Ostashev et al., 2005] for further detail on this equation set.

Two specific equations can be derived out of this transformed version of equa-
tions set (4)-(7) (with a lot of steps in between, shown in [Ostashev et al., 2005]).
This results in equations:

dp

dt
+ %c2∇ ·w + w · ∇P +

(
%βη + c2(1− α%/h)η + (α%/h)p

)
∇ ·v = %c2Q, (8)

and
dw

dt
+ (w · ∇)v +

∇p
%
− η∇P

%2
=

F

%
. (9)

This equation set is of importance, because out of these equations, two coupled
equations can be derived which will be the basis of the model discussed in this
study.

5 A usable equation set

Out of the fluid dynamics equations discussed in the previous section, two cou-
pled usable equations can be derived. However, to make this possible, three
important restrictions and approximations have to be taken into account as
they were used to derive these equations:

1. The speed of sound is not the same in all substances. Sound travels about
four times faster through water than it does through air. Therefore it can be
assumed that the magnitude of the velocity-vector is always much less than the
sound speed in the ocean (|v| � c).

2. With the help of [Landau and Sykes, 1987] and [Ostashev et al., 2005], it
can be shown that in equation (8) the term proportional to ∇·v can be ignored.

3. Furthermore, in both (8) and (9), the terms proportional to ∇ · P can
also be ignored because the ambient pressure is assumed to be constant (and
therefore ∇ · P = 0).

4. And last, the full derivative with respect to time is introduced and defined
as: d

dt = ∂
∂t + v · ∇.

Using these four notes, equation set (8) and (9) are transformed into(
∂

∂t
+ v · ∇

)
p+ %c2∇ ·w = %c2Q, (10)
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(
∂

∂t
+ v · ∇

)
w + (w · ∇)v +

∇p
%

= F/%. (11)

Equations (10) and (11) are also derived in [Ostashev, 1987] using a different
approach. This equation set is applicable for sound propagation through moving
inhomogeneous media (gasses or liquids) and is therefore also applicable for the
ocean.

This coupled set can be used to calculate the pressure (p) and the acoustic
velocity (w) through time. In order to solve this set, the ambient quantities:
speed of sound (c), the density (%) and the velocity (v) need to be known. This
set will be modeled to simulate wave propagation through the two-dimensional
ocean intersection. The numerical implementation will be discussed in the next
section. In addition, because a lot of terms are ignored and a lot of assumptions
have been made to construct this equation set (10) and (11), the applicability
of this equation set will be studied.

Several cases for the velocity field will be considered, a non-moving medium,
a homogeneous moving medium and a heterogeneous moving medium. The
equations for these situations need to be transformed in such a way that the
pressure and the acoustic velocity derivatives can be calculated (should be on
the left hand side). This makes them easy to implement in the next section.

5.1 Non-moving medium

First, consider an ocean that has no movement at all (v = 0). This means that
all the terms proportional to v can be neglected. After some simple transfor-
mations, the equations (10) and (11) become:

∂p

∂t
= %c2 (Q−∇ ·w) , (12)

∂wx

∂t
=

(
Fx −

∂p

∂x

)
/%, (13)

∂wy

∂t
=

(
Fy −

∂p

∂y

)
/%. (14)

It is shown in [Ostashev et al., 2005] that for a non-moving medium, the set of
fluid dynamics equations (4)-(7) can also be exactly reduced to a single equation:

∂

∂t

(
1

%c2
∂p

∂t

)
−∇ ·

(
∇p
%

)
= 0, (15)

which coincides with equation set (12), (13), (14).
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5.2 Homogeneous uniformly moving medium

In the case of a homogeneous uniformly moving medium, the ambient quantities
do not depend on their position or the time. This means that the variables c,
v, % are constant throughout the medium and throughout the time. Likewise,
the (partial) derivatives of v with respect to time and space are zero. Thus,
equation set (10) and (11) are transformed into:

∂p

∂t
= −(v · ∇)p+ %c2(Q−∇ ·w), (16)

∂wx

∂t
= −(v · ∇)wx +

(
Fx −

∂p

∂x

)
/%, (17)

∂wy

∂t
= −(v · ∇)wy +

(
Fy −

∂p

∂y

)
/%. (18)

It is shown in [Ostashev et al., 2005] that for a homogeneously moving medium,
the equation set (4)-(7) can also be exactly reduced to a single equation:(

∂

∂t
+ v · ∇

)2

p− c2∇2p = 0, (19)

which coincides with equation set (16), (17), (18).

5.3 Heterogeneous moving medium

For a heterogeneous flowing medium, two cases can be subdivided. For each
case, a set of equations can be derived having its own equations. In the first
case, a stratified moving medium is assumed, where the ambient quantities c,
% and v only depend on the depth (the y-axis). In the second case a turbulent
medium is assumed, with temperature and velocity changes throughout the
medium. As one can imagine, these are both complex situations resulting in
complex equations. Both are described and illustrated in [Ostashev et al., 2005].

The conclusion in [Ostashev et al., 2005] is that these newly derived equa-
tions for the stratified moving medium correspond exactly with the equation
set (10) and (11). The same goes for the turbulent moving medium, under
some approximations. Therefore, the equations (10) and (11) cannot further
be simplified, yielding the following three equations for a heterogeneous flowing
medium:

∂p

∂t
= −(v · ∇)p+ %c2(Q−∇ ·w), (20)

∂wx

∂t
= −(v · ∇)wx − (w · ∇)vx +

(
Fx −

∂p

∂x

)
/%, (21)

∂wy

∂t
= −(v · ∇)wy − (w · ∇)vy +

(
Fy −

∂p

∂y

)
/%. (22)

10



Thus (10) and (11) describe wave propagation exactly through a non-moving
and a homogeneously moving medium. And using some assumptions, it can also
describe wave propagation through heterogeneous moving medium. Therefore,
the validity of this equation set has been checked and it can now be implemented
in the model.

With the help of Matlab, wave propagation through the two-dimensional
medium can be simulated using equations (10) and (11) (or its discussed vari-
ants, depending on what kind of flowing medium is assumed).

6 Implementation in Matlab

In order to model the wave-propagation in a flowing medium, a finite difference
method will be used to implement the discussed equation set, consisting of
equations (10) and (11). In these equations the third dimension is ignored
because the flow field is only considered in the two spatial dimensions x and y,
when an intersection of the ocean is investigated. A new set of equations can
be derived by transforming equations (10) and (11).

The mass buoyancy b = 1/% and the adiabatic bulk modulus κ = %c2 will be
used and helpful in the equations below. Equation (10) and (11) then become:(

∂
∂t + v · ∇

)
p+ κ∇ ·w = κQ,(

∂
∂t + v · ∇

)
w + (w · ∇)v + b∇p = bF.

Rewriting these equations with the use of the definition of the gradient and
the divergence gives:

∂p
∂t +

(
vx · ∂

∂x + vy · ∂
∂y

)
p+ κ

(
∂wx

∂x +
∂wy

∂y

)
= κQ,

∂w
∂t +

(
vx · ∂

∂x + vy · ∂
∂y

)
w +

(
wx · ∂

∂x + wy · ∂
∂y

)
v + b

(
∂p
∂x + ∂p

∂y

)
= bF.

In the first equation, the partial derivative with respect to the time can be
isolated. The second equation is split into two by using the components along
the axes of w = (wx, wy), v = (vx, vy) and the rest of the vectors. After that,
the partial derivative in the two dimensions with respect to time can be isolated
separately as well. This transformation of the two equations results in the fol-
lowing new equation set:

∂p

∂t
= −

(
vx ·

∂

∂x
+ vy ·

∂

∂y

)
p− κ

(
∂wx

∂x
+
∂wy

∂y

)
+ κQ, (23)

∂wx

∂t
= −

(
vx ·

∂

∂x
+ vy ·

∂

∂y

)
wx−

(
wx ·

∂

∂x
+ wy ·

∂

∂y

)
vx−b

∂p

∂x
+bFx, (24)
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∂wy

∂t
= −

(
vx ·

∂

∂x
+ vy ·

∂

∂y

)
wy−

(
wx ·

∂

∂x
+ wy ·

∂

∂y

)
vy− b

∂p

∂y
+ bFy. (25)

This new equation set (23), (24) and (25) can be implemented and solved
in Matlab. The right hand sides of these equations will be further denoted with
fp, fx and fy, giving the shorter notation of the equation set:

∂p
∂t = fp,
∂wx

∂t = fx,
∂wy

∂t = fy.

(26)

6.1 Spatial grid

In order to numerically implement these equations, a spatially centered and
time centered finite-difference grid is considered. First, the spatially centered
finite-difference grid is explained (see figure 2). The grid intervals of the node
points are ∆x and ∆y. In order to get an equally spaced grid, they are held
equivalent to each other. ∆h(= ∆x = ∆y) is defined to be the grid-spacing.

Figure 2: Spatial grid.

To simulate an intersection of the ocean, a certain length L (corresponding
to the x-axis) and a depth D (corresponding to the y-axis, positively downward)
are fixed. Therefore point (0,0) corresponds to the top left of the grid, laying
on the surface of the ocean. The grid itself becomes:{

xi = i ·∆h (i = 0, 1, ..., bL/∆hc),
yj = j ·∆h (j = 0, 1, ..., bD/∆hc).

(27)
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All the variables in equation set (23)-(25) are stored at the these node points.
The density and the seismic velocity are presumed to be constant, therefore the
ambient quantities: adiabatic bulk modulus (κ = %c2) and the mass buoyancy
(b = 1/%) are also constant throughout the grid.

Because the constants are constant throughout the grid, there are no bound-
ary conditions for these parameters (they are all constant throughout the whole
grid). But for the parameters that vary throughout the grid, the boundary
conditions need to be stated. Because it is assumed that a lot of grid points
need to be taken in order to get reliable solutions and to avoid unnecessary
complications, the parameters at the boundaries of the grid are assumed to be
equivalent to their interior point directly beside it. Therefore, the variables
at the perimeter of the grid are calculated by equaling the variables beside it
(which is the perimeter of the grid where the surrounding grid points are being
removed).

6.2 Advancing in time

To advance the solution in time, a time grid has to be made. By fixing the time
steps ∆t and a certain end time T , the following one dimensional time grid is
constructed:

tk = k ·∆t (k = 0, 1, ..., bT/∆tc). (28)

Next, equation (26) is of importance. A time centered finite-difference grid
over two time steps is considered, resulting in the following approximations for
the pressure and the acoustic velocity components:

∂p

∂t
(i∆x, j∆y, (l + 1)∆t) ≈ p(i∆x, j∆y, (l + 2)∆t)− p(i∆x, j∆y, l∆t)

2∆t
, (29)

∂wx

∂t
(i∆x, j∆y, (l + 1)∆t) ≈ wx(i∆x, j∆y, (l + 2)∆t)− wx(i∆x, j∆y, l∆t)

2∆t
,

(30)

∂wy

∂t
(i∆x, j∆y, (l + 1)∆t) ≈ wy(i∆x, j∆y, (l + 2)∆t)− wy(i∆x, j∆y, l∆t)

2∆t
,

(31)
If the errors are taken into account, the equations (29)-(31) plus their errors

would become equivalence relations. This will be discussed later on in this study.
For now, the errors are neglected so the approximations (29)-(31) are assumed
to be equivalence relations. The implementation of the model in Matlab can
therefore be continued.

Based on the equation (29), and taking the right hand sides of equation (26)
into account, the pressure updating equation becomes:

p(i∆x, j∆y, (l+2)∆t) = p(i∆x, j∆y, l∆t)+2∆t ·fp(i∆x, j∆y, (l+1)∆t). (32)
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The derivatives of wx, wy follow similarly out of (30) and (31), resulting in the
following acoustic velocity updating functions:

wx(i∆x, j∆y, (l + 2)∆t)

= wx(i∆x, j∆y, l∆t) + 2∆t · fx(i∆x, j∆y, (l + 1)∆t)
, (33)

wy(i∆x, j∆y, (l + 2)∆t)

= wy(i∆x, j∆y, l∆t) + 2∆t · fy(i∆x, j∆y, (l + 1)∆t)
. (34)

This updating scheme ((32). (33) and (34)) is called the non-staggered leapfrog
scheme. An advantage of this scheme (in comparison with the staggered leapfrog
scheme) is that it avoids the problems that arise when the variables at the half
integer time steps need to be determined. The main disadvantage of this scheme
is that the variables at all the grid points need to be stored over two time steps.

Out of the time-updating functions (32)-(34), it follows directly that there
are some begin-conditions that need to be known in order to roll through time.
The pressure and the acoustic velocity need to be known in the first two time
steps, in order to calculate the third one. It is stated that their values in the
first step is the same as their value in the second step, giving the following begin
conditions: 

p(i∆x, j∆y,∆t) = p(i∆x, j∆y, 0) = pb ∀i, j
wx(i∆x, j∆y,∆t) = wx(i∆x, j∆y, 0) = 0 ∀i, j
wy(i∆x, j∆y,∆t) = wy(i∆x, j∆y, 0) = 0 ∀i, j

(35)

The begin values of the acoustic velocity components are set to be 0, because
it is assumed that the seismic wave starts moving through the medium at time
t0 > 0. Without the presence of a propagating wave, there is no acoustic
velocity. The pressure on the other hand can be set on any begin value pb. Note
that the updating functions are only influenced by changes in pressure, so the
value of a constant background pressure throughout the grid does not affect the
solution.

6.3 Source simulation

The sound wave source that creates seismic waves that will propagate through
the medium is assumed to be at location (xs, ys). The aim is to simulate a
point-source at this location. Therefore the following equation is used:

Q(x, y, t) = q(t)δ(x− xs)δ(y − ys), (36)

where q represents a Mexican hat wavelet:

q(t) =

(
1− (t− t0)2

σ2

)
exp

(
−(t− t0)2

2σ2

)
, (37)
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where t0 is the time at which the seismic wave is emitted (the time-shift for the
wavelet), exp stands naturally for the exponential function and σ is a certain
constant which can later on be determined (by investigating which value gives
low numerical errors). The δ represents a Gauss-function, defined as:

δ(r) = φ · exp
(
−µr2

)
, (38)

where φ and µ are certain constants, which can be numerically tested later on
as well.

Let it be clear that it doesn’t matter with which constant the source is
multiplied because the solution will be multiplied with that constant as well.
For creating a point-source, it is therefore possible to simplify the Mexican hat
wavelet and the Gauss-function and define them as is done in equations (37)
and (38). This results in the following point-source:

Q(x, y, t) =

φ2
(

1− (t− t0)2

σ2

)
exp

(
− (t− t0)2

2σ2
− µ ·

(
(x− xs)2 + (y − ys)2

))
.

(39)

7 Results

The results of a modeled seismic wave propagating through a homogeneous
flowing ocean intersection are discussed. The inverse procedure to determine
the velocity field out of the resulting data is applied and illustrated. The results
will be evaluated and the difficulties when assuming a more realistic scenario
(e.g. considering a heterogeneous flowing medium) will be discussed.

7.1 Propagation through a homogeneous flowing medium

Consider a homogeneous flowing intersection of the ocean (where the veloc-
ity vector is the same at every point). For a homogeneous uniformly moving
medium, it is given that the ambient quantities do not depend on the position
or the time. This means that the pressure p, the density % and the medium
velocity v are all constant throughout the medium.

With the help of the discussed model, a seismic wave propagating through
this medium can be simulated. Technically this means that the pressure and the
acoustic velocity vector through time can be calculated for a two-dimensional
medium. For the first results, the discussed model, using the non-staggered
leapfrog updating scheme, is applied on a homogeneous uniformly flowing medium
using the following fixed parameters:

The size of the grid is set to D = 500 and L = 3000 with grid spacing
∆h = 10. The time grid is constructed with end time T = 0.8 and time spacing
∆t = 0.001. The force acting on the medium is neglected (F = 0), the density
is set to % = 1 resulting in the same value for the buoyancy b = 1/%. The speed
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of sound in the ocean is assumed to be constant at c = 1500, resulting in the
value for the adiabatic bulk modulus κ = %c2. The hydrophones are assumed
to be at a depth of yh = 100. The point source is held at the same depth as the
hydrophones and in the middle of the x-axis, at location (xs, ys) = (1500, 100)
(the process can therefore be clearly illustrated), with the constant values σ =
0.01, t0 = 0.05, φ = 106 and µ = 0.0002 to assign for the value Q(x, y, t).
The boundary conditions are stated as follows: pb = 0 ∀i, j. A homogeneous
flowing medium is considered and therefore: v = (100, 0) is constant throughout
the medium.

Using these given values for the parameters, the model can be run. Making
an overwriting plot of the pressure at every time step results in an animation
where one can see the development of the seismic wave, originating from the
source and spreading through the medium. Making plots at several time values
illustrates this process:

Pressure plot T=0.2
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Pressure plot T=0.6
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Pressure plot T=0.8
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Figure 3: Pressure plots at T=0.2, T=0.4, T=0.6 and T=0.8.

In figure 3, the yellow and blue areas correspond to (relatively) high and
low pressure regions. From this figure it can be seen that the emitted seismic
wave propagates from the source through the medium in all directions. When
the wave reaches the maximum depth (the ocean floor), the wave is reflected.

Now in order to get the data the hydrophones would receive from this wave
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in this situation, the pressure is captured at the depth of the hydrophones
throughout the time. This results in figure 4, where the x-axis can be seen as
the horizontal line of hydrophones at their depth and the y-axis becomes the
time-axis (downward means going further in time).

Pressure data from hydrophones
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Figure 4: Pressure data from hydrophones.

The end-time in figure 4 is held at the same time as in the last plot of figure
3. Additionally, as can be seen in both figures, the reflected wave at this time
T = 0.8 has already reached the hydrophones in the middle. Notice in figure 4
that the wave has just yet reached the hydrophone at distance x = 500, while
it seems that the wave has already nearly passed the hydrophone at distance
x = 2500. Even though these are both at distance 1000 from the source. The
same goes for the reflected wave at distances x = 1000 and x = 2000, both 500
from the source. It appears that the seismic/pressure wave is moving faster to
the right than it does to the left. This might be caused by the homogeneous
velocity field (vx, vy) = (100, 0).

This is not a coincidence. One can easily compute the pressure data from the
hydrophones with a velocity field of v = (0, 0) (keeping all the other parameters
the same) and a perfect symmetric variant of figure 4 appears (with the vertical
symmetry line at x = 1500). When comparing both figures, it follows that
indeed, the seismic wave appears to be altered more to the right due to the
constant horizontal velocity field. It can be concluded that the velocity field
influences the movement of the seismic wave.

So the velocity field influences the seismic wave propagating through the
medium, but is it possible to determine the velocity field out of only the data
from the hydrophones? Assume the data in figure 4 is the measured data from
which the velocity field is unknown (this data is the synthetic measurements).
The goal is to determine the velocity field out of this data. This can be achieved
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by simulating the measurements for various certain velocity fields. Comparing
these simulations to the data gives information about the velocity field.

But before this comparison can start, the ’measured’ data and the simulated
data need to be stated clearly. First the ’measured’ data, or in short: data, is
defined as d(v∗x, v

∗
y) with its unknown velocity field v∗ = (v∗x, v

∗
y), giving the

synthetic measured data (e.g. corresponding to the data in figure 4). The
measurements (at the hydrophones) can also be simulated for a given velocity
field v = (vx, vy), resulting in the simulated data. The simulated data, or in
short: simulation, is defined as s(vx, vy). If the simulation is equivalent to the
(measured) data (d(v∗) = s(v)), the velocity field of the data is equivalent
to the velocity field of the simulation (v∗ = v), and thus the velocity field is
determined.

Therefore, the ’difference’ between the data and the simulation are of inter-
est. Because these two components are both two-dimensional arrays (and the
amount of elements are the same), they can be compared with the help of the
Frobenius norm, equation (1). A function is defined for the Frobenius norm to
the second power:

ϕ(A) := ||A||2F =
∑
i,j

(A(i, j))2 =
∑
i,j

(aij)
2, (40)

where A is a two dimensional array with elements aij . Therefore, if the difference
between the data and the simulation is element-wise calculated, it can be put
in this function giving ϕ(d− s).

The data in this case is still the data as in figure 4, with end time T = 0.8.
ϕ(d − s(vx, vy)) can be plotted for various homogeneous velocity fields : 85 ≤
vx ≤ 115 and −15 ≤ vy ≤ 15. Making a three-dimensional plot where vx is
on the x-axis, vy is on the y-axis and ϕ is on z-axis and making a contour plot
results in the following two plots:
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Figure 5: 3D ϕ(d− s(vx, vy))-plot.
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Figure 6: Contour plot ϕ(d− s(vx, vy)).
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The three-dimensional figure and the contour-plot immediately show that
the simulation with the (homogeneous) velocity field v = (100, 0) has the lowest
norm value; ϕ(d(v*) − s(100, 0)) = 0, and v* = (100, 0) is therefore a perfect
prediction of what the velocity field of the measured data is. Therefore the
velocity field is found out of merely the data.

Trying this same process for data at time T = 0.6 or earlier (again, with all
the parameters held at the same values) and comparing again with the same
velocity fields will not yield in the same perfect results. If this is the case, a
minimum does not become clear as it is in figure 6 due to the inverse procedure
needing more than merely data from the direct wave. It also needs the data from
the reflected wave. This means that the reflected wave needs to have already
reached some hydrophones at their horizontal line, if not, it will not be possible
to determine the right velocity field out of the data.

One can also easily notice that ϕ(d− s) in figure 6 is a lot more sensitive in
the vx-direction than it is in the vy-direction. Changes in vy result in relatively
small changes in ϕ. It therefore appears that, by matching the simulations
to the data, the horizontal velocity component is easier to extract than the
vertical velocity component. This presumption is confirmed when looking at
the homogeneous velocity field v = (0, 100). Figure 7 shows the contour plot
illustrated in this situation (again, with all the parameter values held the same).
Though ϕ appears to be more sensitive in the vy-direction than in figure 6, ϕ
is still more sensitive in the vx-direction.
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Figure 7: Contour plot ϕ(d− s(vx, vy)).
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7.2 Difficulties

In the previous subsection, an ideal situation is discussed where a homoge-
neous flowing medium is assumed and the velocity field could be perfectly re-
constructed out of the inverse procedure. Unfortunately, in most cases, it is
substantially more difficult to determine the velocity field out of merely the
given data. In this subsection some of these difficulties will be discussed.

In the previous subsection, the perfect choice of plotting the velocity values
at 85 ≤ vx ≤ 115 and −15 ≤ vy ≤ 15 and comparing these with the synthetic
data, gave an ideal minimum in the middle with ϕ(d − s) = 0. Though in
realistic scenarios (where a homogeneous velocity field is still assumed), one has
to guess which velocity fields will probably be close to the data. It would thus
take a lot more simulations to determine where this minimum lies.

Secondly, in realistic scenarios a ϕ(d− s) = 0 is highly unlikely. Thinking of
all the approximations that are done and all the errors that were not included,
the reader is referred to Appendix A for further detail. It might be more re-
alistic if it is assumed that there is no velocity field that would simulate the
measurements that would fit the data perfectly. It would then be more logical
to determine the simulation with velocity field v that would approximate the
data the best. Thus to determine the minimum of ϕ(d− s).

The main issue that arises, assuming that no simulation can fit the data
perfectly, is to determine a minimum of the function ϕ, so that a simulation
can be determined that would approximate the data the best. Merely checking
which simulation (of the simulations that are done) has the lowest value for
ϕ(d − s) might not be enough. One can not exclude that there is not another
(better) minimum. If this problem could be solved analytically, one could say
with certainty that the found minimum is the global optimum.

But the determining the minimum of ϕ analytically could be somewhat
difficult. This norm function depends only on the velocity field components (d
is constant). Thus one needs to partial differentiate this function to its variables:

∂ϕ(vx, vy)

∂vx
=
∂ϕ(vx, vy)

∂vy
= 0, (41)

with vx, vy ∈ R, and hereby the stationary points are found. But with these
stationary points, one also needs to be certain that this is not a saddle point.
Suppose a certain stationary point v′ = (v′x, v

′
y) is found. Then one needs to

check that:
∂2ϕ

∂v2x

∂2ϕ

∂v2y
−
(

∂2ϕ

∂vx∂vy

)2

> 0, (42)

at (v′x, v
′
y), which is the condition for a relative minimum or maximum. With

the extra check of:

∂2ϕ

∂v2x
(v′x, v

′
y) > 0,

∂2ϕ

∂v2y
(v′x, v

′
y) > 0, (43)

one can say with certainty that (v′x, v
′
y) is a relative minimum.
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The equations (42) and (43) are derived from Taylor’s theorem for a function
of two variables. After some algebra, it can be converted into these equations.
The reader is referred to [Stewart, 2015] for further detail and background of
equations (42) and (43).

So for a somewhat more realistic scenario (where ϕ(d−s(vx, vy)) > 0 ∀vx, vy
with vx, vy ∈ R), the problem becomes a lot more difficult, because all these
derivatives are not so easy to determine. It can therefore be concluded that
in the case of a more realistic homogeneous flowing medium, the problem gets
more complicated.

Now suppose a heterogeneous flowing medium is considered, where the ve-
locity is not constant throughout the medium, but depends on the position in
the grid. Therefore vx and vy are functions of x and y. This can also be imple-
mented in the model and the same steps as in the homogeneous flowing medium
can be followed. The seismic wave and the resulting pressure data at the hy-
drophones are simulated in the same way. However, the inverse procedure to
determine the velocity field gets even more difficult.

Because the velocity can now vary throughout the medium, one has to esti-
mate what the velocity is at every point in the medium to make a simulation,
which magnifies the problem. Assume a certain velocity field (vx, vy) is chosen.
The resulting simulation should then be compared with the data. The norm
function ϕ(d−s(vx, vy)) can be used again to quantify the difference, but in this
case, if this difference is unacceptably high, one can not easily know at what
point in the grid the velocity should be changed (and to what value it should be
changed) to make it a better simulation. The only thing one can do is changing
the velocity field and calculating the ϕ(d−s(vx, vy)) again to check whether this
gives lower values. Where in the homogeneous case, the choice of the velocity
fields for the simulations can be somewhat narrowed down (vx, vy are known
to be constant), in the heterogeneous case, this choice seems to be completely
random.

Thus it can be concluded that for a heterogeneous case, the problem gets a lot
more complicated. Though if a specific state of the heterogeneous flowing field
is assumed (like for example a stratified moving medium, the reader is referred
to [Winters and Rouseff, 1993]) or if the problem is simplified elsewhere (the
reader is referred to [Rouseff and Winters, 1994]), for a realistic heterogeneous
case, this is still an undetermined problem.
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8 Conclusion

Seismic oceanography investigates structures within the interior of the ocean.
This includes trying to determine the velocity field by means of sound waves.
Considering a two-dimensional intersection of the ocean, a sound wave propa-
gating through this medium can be modeled, including the reflection from the
ocean floor. By means of calculating the pressure throughout this grid, through-
out the time, the propagating wave can be simulated.

Measurements done at certain observing points can be simulated by keeping
record of the pressure throughout the time at that location. Assuming ’real’
measurements are done and these records with an unknown velocity field are
known, the question would be how to figure out the velocity field.

Assuming this unknown velocity field is a homogeneous flowing medium,
simulations can be done for various homogeneous velocity fields to determine
what measurements would be recorded at the observing points. By comparing
all these simulated records to the ’real’ measurements, the simulation that has
its records closest to the real records has a velocity field that approximates the
real situation the best.

This inverse procedure theoretically works for an ideal situation where a
homogeneous velocity field is considered. Thus, one can argue that it is possible
to determine the velocity field out of the observance of seismic waves. Though
it seems that, even in ideal conditions, the horizontal velocity component can
be extracted more easily than the vertical velocity component. Therefore, it is
not unthinkable that in other situations, the vertical velocity component can
not be accurately predicted.

If some more realistic constraints are adopted, applying the inverse proce-
dure becomes a lot more difficult. Assuming that no simulation can fit the
measured data perfectly makes it theoretically a lot more challenging. And for
assuming certain heterogeneous media (like turbulent media), this is even an
undetermined problem.
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A Appendix : stability and accuracy

There are 3 kind of errors that can occur in the discussed model: numerical
errors (including the spatial derivative error and the time derivative error), the
error on the data and the error in calculating the derivative of the function
ϕ = ||data− sim||2F .

A.1 Numerical errors

First, the numerical errors are discussed. The approximations (29)-(31) used for
the updating equations in the model can also be represented with their errors.
These are the time derivative errors.

So in order to calculate the error of the derivative of the pressure function
(29), theorem 2.1 needs to be applied. First the approximation which was used
is stated again:

∂p

∂t
(i∆x, j∆y, (l + 1)∆t) ≈ p(i∆x, j∆y, (l + 2)∆t)− p(i∆x, j∆y, l∆t)

2∆t
. (44)

For both components p(i∆x, j∆y, (l + 2)∆t) and p(i∆x, j∆y, l∆t), a second-
order Taylor polynomial is taken. The coordinates of the pressure are always
the same in this equation, so the components are shortened for convenience to
p((l + 2)∆t)) and p(l∆t) (for every possible i and j). This gives:

p((l+2)∆t) = p((l+1)∆t)+∆t·p′((l+1)∆t)+
(∆t)2

2
p′′((l+1)∆t)+

(∆t)3

6
p′′′(ξ1),

and

p(l∆t) = p((l+ 1)∆t)−∆t · p′((l+ 1)∆t) +
(∆t)2

2
p′′((l+ 1)∆t)− (∆t)3

6
p′′′(ξ2),

where ξ1 ∈](l+1)∆t, (l+2)∆t[, ξ2 ∈]l∆t, (l+1)∆t[ and the derivatives of p stand
for the derivatives with respect to the time. Implementing these in equation (44)
gives:

∂p

∂t
((l + 1)∆t) = p′((l + 1)∆t) +

(∆t)2

12
(p′′′(ξ1) + p′′′(ξ2)) , (45)

with the help of the intermediate value theorem, (p′′′(ξ1) + p′′′(ξ2)) can be short-
ened to 2p′′′(ξ) for some ξ ∈ [ξ1, ξ2], assuming that p′′′ is a continuous function.
Thus the time derivative error (defined by τ) of the pressure updating function
is given by:

τ =
(∆t)2

6
p′′′(ξ). (46)

with some ξ ∈]l∆t, (l + 2)∆t[.
The time derivative errors of the updating functions of wx, wy follow sim-

ilarly out of their derivative functions (30) and (31), giving the same error as
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in equation (46). But instead of p′′′, the third derivative wx and wy is applied.
To determine the order of the total error at the end time caused by these ap-
proximation errors in each separate step, one can multiply this error with the
amount of steps that are needed.

The second numerical error that occurs is the spatial derivative error. In
equations (23)-(25) the derivative of the pressure and the acoustic velocity com-
ponents with respect to x and y need to be known in order to progress through
time. These derivative functions are calculated in the model with the help of
the gradient function in Matlab. This gradient function calculates the gradient
of a matrix, giving two whole matrices back (one for the derivative with respect
to x, and one for the derivative with respect to y), both with the same amount
of elements as the original matrix.

The gradient function uses the central difference method for interior data
points and the single-sided difference method for the edges of the matrix. Be-
cause the amount of grid points are assumed to be very high, the gradient of the
boundaries can be neglected (the value for an edge can for example be assumed
to be equivalent to a calculated point beside it). Therefore, the single-sided
difference method is ignored.

The derivative of the pressure with respect to x, by means of the central
difference method, is calculated as follows:

∂p

∂x
(i∆x, j∆y) ≈ p((i+ 1)∆x, j∆y)− p((i− 1)∆x, j∆y)

2∆x
, (47)

∀1 ≤ i ≤ (bL/∆hc − 1), ∀0 ≤ j ≤ bD/∆hc, thus for all the interior points. The
process of calculating the spatial derivative error goes equivalent to the process
of calculating the time derivative error. The second order Taylor polynomial is
taken of p((i+ 1)∆x, j∆y) and p((i− 1)∆x, j∆y), and after some algebra, the
resulting error becomes:

τ =
(∆x)2

6
p′′′(ξ), (48)

with some ξ ∈](i− 1)∆x, (i+ 1)∆x[ and where p′′′ stands in this case of course
for the third derivative of p with respect to x.

The spatial derivative error is shown for the derivative of the pressure with
respect to x. And because the same method is used for the spatial derivative
with respect to y (replacing the ∆x with ∆y and so on), this process goes
exactly similar for the derivative of the pressure with respect to y. Note that
∆h = ∆x = ∆y still counts if an equally spaced grid is considered.

The whole process for determining the spatial derivative errors of the acoustic
velocity components (the derivatives of both components with respect to x and
y) goes exactly the same. Therefore, all the spatial derivative errors can be
calculated in a similar way as is demonstrated above.
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A.2 Error on the data

In practice, it is highly probable that there is noise on the measured data.
Noise on the data can for example be defined as η, giving the new data function
dnew := d(v∗) + η. This can trouble the inverse procedure if the η is relatively
big, which may yield in velocity fields which do not correspond with reliable
solutions (which are not close to v∗). It is imaginable that it is extremely hard
to find a reliable velocity field if only dnew is known and η is unknown but
known to be big.

A.3 Derivative of the norm-function ϕ

And thirdly, if the derivative of the function ϕ needs to be evaluated to find
a minimum for ϕ(d− s(vx, vy)), and this derivative is numerically approached,
the error in the derivative function needs to be included. Depending on how
this function is numerically calculated, this error needs to be accounted for.
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