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Abstract

The Erdős-Stone-Simonovits theorems say that any graph F can be embedded in
any graph G when G has a sufficient amount of vertices and edges. We will discuss
some extremal problems and look at the Turán numbers of triangles, quadrilater-
als and some other graphs leading up to the proof of the Erdős-Stone-Simonovits
theorems.

1 Introduction

In this paper we will look at the Erdős-Stone-Simonovits theorems. We will first look
at some extremal problems, then we will move to extremal graph theory and in the end
we will prove the Erdős-Stone-Simonovits theorems.

In section 2 we will state some preliminaries. These consist primarily of graph the-
oretic definitions and we will end with some notations for asymptotic behaviour. This
section can be skipped by readers with a graph theoretic background. In section 3 we
will look at some extremal problems. We will look at planarity of graphs, colourability
of planar graphs and we will end with Van der Waerden’s theorem. In section 4 we
will be looking specifically at extremal graph theory. We will discuss some well-known
results from the extremal graph theory starting at Mantel’s theorem and Erdős-Rényi-
Sós and leading to Kővári-Sós-Túran. These sections lead up to the Erdős-Stone and
Erdős-Stone-Simonovits theorems in section 5. Here we will look at those theorems and
prove them using the tools developed in earlier sections.

In this paper, [1] is heavily used. The main structure and definitions, unless stated
otherwise, come from [1]. For Van der Waerden’s theorem in section 3, [3] is used.

2 Preliminaries

We will be looking at simple graphs. First, we will state some definitions. Any proofs
in this section are inspired by [1].

Definition 1. A (simple, unordered) graph (V , E) is a set V of vertices and a set E of
unordered pairs (v, w), v, w ∈ V .
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Definition 2. The neighbourhood of a vertex v in a graph (V,E), denoted as N (v) is
the set of all vertices u such that (v, u) ∈ E.

Definition 3. The degree of a vertex v in a graph (V,E), denoted as d (v), is the amount
of edges containing this vertex, id est, the cardinality of the neighbourhood of v.

Theorem 1. The sum of the degrees of all vertices,
∑

v∈V d (v), is equal to 2 ∗ |E|.

Proof. Any edge increases the degree of two vertices by one, or, equivalently, increases
the sum of all degrees by two.

Definition 4. A walk is a sequence of vertices v0..vk such that for any i < k, (vi, vi+1)
is an edge of the graph.

Definition 5. A path is a walk v0..vk such that vi 6= vj for any i, j ∈ {1..k}, i 6= j.

Definition 6. A cycle is a walk v0...vk such that v0 = vk and for any i, j, i 6= j and i
and j are not equal to 0 or k, vi 6= vj and v0 6= vi.

Definition 7. A subgraph of a graph G = (V,E) is a graph (V ′, E′) where V ′ ⊂ V and

E′ ⊂ E ∩
(
V ′

2

)
. The induced subgraph on V ′ ⊂ V is the graph (V ′, E ∩

(
V ′

2

)
).

Definition 8. A graph is connected if for any two vertices v, w there exists a path in
the graph that starts with v and ends in w.

Definition 9. A connected component of a graph G is a maximal connected subgraph
of G.

Definition 10. A tree is a connected, acyclic graph, id est, a connected graph without
any cycles.

Theorem 2. A tree on n vertices has n− 1 edges.

Proof. We will use induction on n. Let T = (V,E) be a tree on n = |V | vertices. For
n = 1, this is obviously true.

Now pick any r ∈ V . Let e1, e2, ..., ek be the set of neighbours of r and let Vi be the
sets of vertices such that the path from r to any ui ∈ Vi passes through ei. Observe that
these sets are disjoint, since if u ∈ Vi ∩ Vj (where i 6= j), then there is a path through ei
from r to u and a path from u to r through ej and therefore there must exist a cycle in
T , which is a contradiction with the fact that T is a tree.

Observe that T |Vi is also a tree and thus, according to our induction hypothesis, if
we let ni to be |Vi|, T |Vi has ni − 1 edges. Now we see that the amount of vertices in
this tree is 1 +

∑
i ni and the amount of edges in this tree is k +

∑
i (ni − 1) =

∑
i ni.

Thus, the amount of edges in T is n− 1.

Definition 11. A complete graph on a vertex set V is the graph (V,
(
V
2

)
), the graph

where any two vertices in V are joined by an edge. It is denoted as KV (or Kn for a
complete graph on n vertices, where the vertices don’t matter).
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Definition 12. A discrete graph is a graph without edges, G = (V, ∅).

Definition 13. A bipartite graph is a graph (V1 ∪ V2, E) such that no two edges in V1
or V2 are joined by an edge, the only edges are in between V1 and V2. It is denoted as
KV1,V2 (or, similarly, Km,n if the vertices don’t matter).

Definition 14. A complete bipartite graph is a graph (V1∪V2, E) such that it is bipartite
and for any v ∈ V1, w ∈ V2, (v, w) ∈ E.

Finally we will need to have some way to describe asymptotic behaviour for functions.
These definitions come from [2]

Definition 15. A function f is said to be little-o of g if there exists a constant n0 ∈ R
such that for all constants c ∈ R and all n ∈ R, n > n0

|f(n)| ≤ |c · g(n)|.

This is denoted as f(n) = o(g(n)).

Definition 16. A function f is said to be big-o of g if there exist constants c, n0 ∈ R
such that for all n ∈ R, n > n0

|f(n)| ≤ |c · g(n)|.

This is denoted as f(n) = O(g(n)).

Definition 17. A function is said to be theta of g if there exist constants c−, c+ and
n0 ∈ R such that for all n ∈ R, n > n0

|c− · g(n)| ≤ |f(n)| ≤ |c+ · g(n)|.

This is denoted as f(n) = Θ(g(n)).

3 Some extremal problems

In this section we will look at some extremal problems in order to get some feeling of
what they are and how you can solve them. We will first look at planar graphs, then
we will look at the chromatic number of planar graphs and we will end with Van der
Waerden’s theorem.

In order to look at planar graphs, we will first need to deduce a simple theorem called
Euler’s formula. This formula fixes the relative amounts of vertices, edges and faces in
a planar graph.

Definition 18. The faces of a planar graph are the connected components of the plane
after you remove the curves and points that represent the graph from this plane.

.
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Theorem 3 (Euler’s formula). Let G = (V,E) be a connected planar graph and let F
be the faces of this graph, then

|V | − |E|+ |F | = 2 (1)

Proof. We will prove this using induction. If G is acyclic, then obviously, |F | = 1 and
|V | − |E| = 1, so the equation is true.

Now, suppose G has a cycle. By removing one edge from this cycle, we merge the two
opposite faces, so the new amount of faces |F ′| is |F |−1, and thus |V |−(|E|−1)+ |F ′| =
|V | − (|E| − 1) + (|F | − 1) = |V | − |E| + |F | − 1 + 1 and induction thus tells us that
|V | − |E|+ |F | = 2.

Theorem 4. For a connected planar graph G = (V,E), where |V | > 2, the amount of
edges is bounded by |E| ≤ 3|V | − 6.

Proof. This can easily be checked if |E| ≤ 3. Now observe that if |E| ≥ 3, every face
has at least three edges bounding it. Moreover, every edge bounds at most two faces, so
this gives us the inequality 3|F | ≥ 2|E|. Now we can use Eulers formula and substitute
to see that |E| ≤ 3|V | − 6:

|V | − |E|+ |F | = 2

3|V | − 3|E|+ 3|F | = 6

−3|E|+ 2|E| ≥ 6− 3|V |
|E| ≤ 3|V | − 6.

This of course implies that the average degree of the vertices in any planar graph is
strictly less than 6. We can actually improve this bound by requiring the graph to be
free of larger cycles, by generalising the proof.

Theorem 5. For a connected planar graph G = (V,E), where |E| > g and G has no
cycles of length < g for some g ∈ N, the amount of edges is bound by

|E| ≤ g

g − 2
(|V | − 2) (2)

Proof. Following the same way of thinking from general case, we can come to the con-
clusion that each face is bounded by at least g edges, which gives us the inequality
g|F | ≥ 2|E|. We can substitute this in Euler’s formula as follows:

|V | − |E|+ |F | = 2

g|V | − g|E|+ g|F | = g ∗ 2

−g|E|+ g|F | = g ∗ 2− g|V |
(−g + 2) ∗ |E| ≤ g ∗ (2− |V |)

|E| ≤ g

g − 2
(|V | − 2)
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According to these criteria for planar graphs, we can find a couple of non-planar
graphs:

• The complete graph K5, since it has 5 vertices and 10 edges and thus |E| � 3|V |−6.

• The complete bipartite graph K3,3, since it has no cycles of length 3 and thus we
can apply theorem 5 with g = 4 and observe that |E| � 2(|V | − 2).

• Of course, any graph containing a nonplanar graph as its subgraph.

Now we will look at the colouring of planar graphs.

Definition 19. A colouring on r colours of a graph G = (V,E) is a function c : V →
{1..r}. This colouring is called proper if no two adjacent vertices are of the same colour,
or, more formally, if (u, v) ∈ E implies that c (u) 6= c (v) for any two u, v ∈ V .

Definition 20. The chromatic number of a graph G is the smallest r such that there
exists a proper colouring of G on r colours.

An important observation to make, is that any planar graph can be properly coloured
with six colours.

Theorem 6. The chromatic number of any planar graph is at most 6.

Proof. Let G = (V,E) be any planar graph. By theorem 4 we see that there exists a
vertex v with degree at most 5. By removing this vertex we get another planar graph
G|V \{v} and by induction this graph can also be coloured with 6 colours. Since the
degree of v was at most 5, at least one of the colours in {1..6} has not been used by any
of the neighbours of v, and thus we can colour v with this colour.

In fact, we can prove something even stronger, namely that the chromatic number
of any planar graph is at most 5.

Theorem 7. The chromatic number of any planar graph is at most 5.

Proof. Let G be any planar graph. If G has a vertex of degree at most 4, we can use the
reasoning of theorem 6, so let’s assume we have a vertex v with a degree of 5.

By induction, we can colour G|V \{v} with at most 5 colours. If there is one of the
five colours unused in the neighbours of v, we can simply colour v with that colour, so
let’s assume each neighbour of v has a different colour.

Now suppose we have an embedding of G into R2. Name the neighbours of v as
follows: n1 is any vertex, n2 is the first vertex you encounter when you look counter-
clockwise around v from n1, n3 is the second, etcetera. Look at the induced subgraph
of G on the vertices coloured by c (n1) or c (n3) (excluding v). Now we can distinguish
two cases:

• Case 1: There does not exist a path from n1 to n3. In this case we can simply
swap c (n1) and c (n3) in the connected component containing n3 in this induced
subgraph and colour v as c (n3) to obtain a proper colouring on 5 colours.
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• Case 2: There does exist a path from n1 to n3. In this case this path together with
v separates n2 from n4 and therefore we can swap c (n2) and c (n4) on the connected
component of n2 in the subgraph induced on the vertices with the colours c (n2)
and c (n4) and colour v as c (n2) in order to obtain a proper colouring on 5 colours.

We will end this section by proving Van der Waarden’s theorem. This theorem isn’t
about graph theory, but it shows some of the techniques we shall see in extremal graph
theory. This proof is based on [3]

Before stating the theorem, we need to know the definitions for a colouring of numbers
and for an arithmetic progression.

Definition 21. A colouring of the numbers of 1 up to N on r colours is a function
f : {1..N} → {1..r}.

Definition 22. An arithmetic progression AP(α, δ, k) is a set of numbers {α, α+ δ, α+
2 ∗ δ, ..., α+ (k − 1)δ}.

Now we are ready to state and prove the theorem.

Theorem 8 (Van der Waerden’s theorem). For any r, k ∈ N there exists an N ∈ N
such that any colouring of N numbers on r colours contains a monochromatic arithmetic
progression, id est, there is an AP(α, δ, k) such that all of the elements in this progression
are coloured the same.

Proof. We will use induction on k. Let us call the number for which there must exist a
monochromatic arithmetic progression of length k in any colouring on r colours ω(r, k).

It is easy to see that ω(r, 1) is finite; this is simply asking for one number with a
colour, so ω(r, 1) = 1. We can also easily see that ω(r, 2) = r + 1, using the pigeonhole
principle. We will now show that ω(r, k) is finite given that ω(r, k − 1) is finite.

We will first need some more definitions.

Definition 23. The focus of an arithmetic progression AP(α, δ, k) is the point α+ kδ.

Definition 24. A collection AP of arithmetic progressions is called focused if every
AP ∈ AP has the same focus

Definition 25. A collection AP of arithmetic progressions is called colour-focused if:

• the collection is focused,

• every AP ∈ AP is monochromatic and

• no two progressions in AP have the same colour.

We will proof the theorem using the following lemma:
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Lemma 1. For all s ≤ r there exists an n such that for any colouring on n numbers
with r colours there exists either a monochromatic arithmetic progression of length k or
a colour-focused collection of arithmetic progressions of size s.

It is easy to see that this lemma implies the theorem; it says that there exists either
the k-term monochromatic progression that we want or a colour-focused collection of
size r of k − 1-term arithmetic progressions, which we can easily extend to a k-term
arithmetic progression by looking at its focus (which has to be one of the r colours). All
that remains, is proving the lemma.

Proof of the lemma. We will use induction on s to prove this lemma. Suppose s = 1,
then all the lemma says is that there exists an n such that for any colouring on n numbers
with r colours there exists either a monochromatic arithmetic progression of length k or
one of length k − 1. Since we had assumed that ω(r, k − 1) was finite, this proves the
base case.

Suppose, then, that s ≥ 2, and suppose that ns−1 suffices for s − 1. Then we can
find a new arithmetic progression by looking at colouring blocks of size 2ns−1, intervals
from d up to d+ 2ns− 1.

Naturally, we can colour a block of size 2ns−1 with r colours in r2ns−1 ways, namely by
picking one out of r colours for each number in our block. We also know that ω(r′, k−1)
is finite for any r′, so if we look at the numbers up to 2ns−1ω(r2ns−1 , k − 1) we know
that there must exist an arithmetic progression of blocks of size 2ns−1 of length k − 1
that are coloured exactly the same, id est, we know that there must exist k− 1 intervals
of 1 up to 2ns−1 that are coloured exactly the same and that are evenly spaced. We call
the elements of this arithmetic progression Bi for 1 ≤ i ≤ k − 1.

If we now look at a block Bi we see that it consists of 2ns−1 elements. Therefore,
we know that this block must contain a colour-focused collection of s − 1 arithmetic
progressions of length k − 1. Moreover, we know that it also contains its focus, since
all elements of that collection are in the interval of 1 up to ns−1. If this focus has the
same colour as any of the s− 1 elements in the collection, then we have found a k-term
arithmetic progression and we are done. If this focus has another colour, however, we
can see that this focus is at the same location in all of the blocks Bi. This means that
we have found a new arithmetic progression consisting of the focuses of the collections
in Bi. Combining that with the i’th element of APi for each arithmetic progression
APi ⊂ Bi in the colour-focused collection we had found, we have found a new colour-
focused collection of arithmetic progressions of size s and this proves the lemma.

4 Extremal graph theory

We will now be looking at extremal graph theory. The main question in extremal graph
theory is “how many edges must a graph have in order to have some local property”,
i.e. some specific subgraph. Extremal graph theory stems from the early 1940’s, when
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Turán proved his theorem, which we will be looking at later. First, we will be looking
at some simpler proofs, such as Mantel’s theorem.

Theorem 9 (Mantel’s theorem). Let G = (V,E) be a graph on n vertices. Then, if
|E| > bn/2cdn/2e, G contains a triangle

Proof. Suppose we have a triangle-free graph G = (V,E). We will modify this graph
such that it contains at least as many edges (and it still is triangle-free). This way, we
will show that the maximum amount of edges in a triangle-free graph is bn/2cdn/2e.

Let v ∈ V be a vertex in G with maximum degree, and let S be the set of all neigh-
bours of v. Then we define (V,E′) as the complete bipartite graph KV \S,S . Naturally,
this graph is triangle-free. We will now check that |E′| ≥ |E|.

Suppose we have the vertex w in KV \S,S . Then this vertex is an element of V \ S or
it is an element of S. Suppose it is a vertex in V \S, then it has |S| neighbours, and since
S is the set of neighbours of a vertex with the highest degree in G, the degree of w in the
new graph must be higher than or equal to the degree of w in G. Suppose, then, that
w is an element of S. Then, it was a neighbour of v in G, and since G was triangle-free,
it could not have been a neighbour of any other vertex in S. The maximum degree this
vertex could have in G is therefore |V \ S|, which is exactly the degree of the vertex in
KV \S,S . Thus, KV \S,S is a triangle-free graph with at least as many edges as G and any
maximal triangle-free graph must be a KV \S,S for some S ⊂ V . The amount of edges in
such a graph is maximal if |S| = b|V |/2c, which gives us the bound of bn/2cdn/2e.

We can generalise this theorem by looking at arbitrary complete graphs. This gives
us Turán’s theorem.

Theorem 10 (Turán’s theorem). Let G = (V,E) be a graph on n vertices, then G
contains a Kr+1 whenever

|E| > 1

2

(
n2 − (nmod r)dn/re2 − (r − (nmod r))bn/rc2

)
.

If n = cr for some r ∈ N, then obviously this equals r−1
r

(
n2

2

)
Proof. We will use a generalised version of the proof used for Mantel’s theorem. This
means we will first take G = (V,E) to be a Kr+1-free graph which we will modify so that
it has at least as many edges and it still is Kr+1-free. We will use this to prove the bound

of 1
2

(
n2 − (nmod r)dn/re2 − (r − (nmod r))bn/rc2

)
≤ r−1

r

(
n2

2

)
. We will use induction

on r to construct a Kr+1-free graph of maximum size. Observe that, if r = 2, then only
the discrete graphs have the right amount of edges, and indeed these are the only ones
without K2 (an edge).

First, we see that the complete r-partite graph on n vertices with parts of as equal
size as possible has exactly 1

2

(
n2 − (nmod r)dn/re2 − (r − (nmod r))bn/rc2

)
vertices,

so this bound is tight. This bound is seen by seeing that any of the n vertices can be
connected to any of the vertices that are not in the same part, and there are nmod r
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parts of size dn/re and r − (nmod r) parts of size bn/rc. This gives us n2

2 minus the

edges that are missing in each discrete part, or n2

2 −
(nmod r)dn/re2+(r−(nmod r))bn/rc2

2 edges
in total.

Let v ∈ V again be a vertex in G with maximum degree. Now, the induced subgraph
on the set S of neighbours of v must be Kr-free or else G would have contained a Kr+1.

Now look at the graph G′ = (V,E′) defined as follows. The induction hypothesis
tells us that there is a Kr-free graph on S with at least as many edges as the induced
subgraph on S in G. Take G′|S as this graph on S with at least as many edges as G|S .
Next, add all edges between V \ S and S and make G′|V \S discrete.

We claim that G′ has at least as many edges as G does, and is still Kr+1-free. First,
we observe that G′ is Kr+1-free, since G′|S is Kr-free and G′|V \S is discrete.

Now, we show that G′ has at least as many edges as G. Induction tells us that G′|S
has at least as many edges as G|S , so it suffices to show that the sum of the degrees of
the vertices in V \ S in G′ is at least as large as the sum of the degrees of the vertices
in V \S in G. This is easily shown by observing that we took S to be the neighbours of
the vertex with the highest degree, and thus |S| (and therefore d(v) for any v ∈ V \ S
in G′) is higher than the degree of any vertex of V \ S in G.

Now we have shown that the largest Kr+1-free graphs are the r-partite complete
graphs, since it is always preferable to split any Kr+1-free graph up into a discrete part
and a Kr-free part, and thus to split it up in r discrete parts. Therefore, the maximum
amount of edges in anyKr+1-free graph is 1

2

(
n2 − (nmod r)dn/re2 − (r − (nmod r))bn/rc2

)
(the amount of edges is maximalised if the parts are of equal size, since otherwise you
could increase the amount of edges by moving a vertex from the biggest part to the
smallest part).

The proof of Turán’s theorem marked the beginning of the extremal graph theory.
One of the principal questions in extremal graph theory is “what is the maximum amount
of edges a graph on n vertices can have without having some fixed graph F as a sub-
graph?” This number, bn/2cdn/2e in the case of triangles, or
1
2

(
n2 − (nmod r)dn/re2 − (r − (nmod r))bn/rc2

)
in the case of complete graphs on r+1

vertices (with n as the amount of vertices in the graph), is called the Turán number of a
graph F , and it is denoted as ex (n, F ). The r-partite complete graph on n vertices with
parts of size as equal as possible is called the Turán graph and it is denoted as Tn,r.

Similarly, one can ask the question “For a set of graphs F , what is the maximum
number of edges a graph on n vertices can contain such that it does not contain a
subgraph F for every F ∈ F?” This number is similarly called the Turán number of the
collection F and denoted as ex (n,F).

We will now look at some other specific Turán numbers and in the next chapter we
will address the general case, which is given by the Erdős-Stone-Simonovits theorem.

Theorem 11. Let F be the (k+ 1)-vertex star, i.e., a graph with one vertex of degree k
and k vertices of degree 1. Then ex (n, F ) is k−1

2 ∗ n.

Proof. Obviously, if any vertex in a graph G has degree k, then G contains F , so every
vertex in G has at most degree k − 1. The graph consisting of disjoint Kk−1s, let’s call
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it H, contains only vertices of degree k − 1 and therefore H has the most edges. The
amount of edges in H is k−1

2 ∗ n.

Theorem 12. The Turán number of a path of length k is k−1
2 ∗ n, ex (n, Pk) = k−1

2 ∗ n

Proof. Suppose G = (V,E) is a graph on n vertices and |E| > k−1
2 ∗ n. We can find

a path of length k in this graph by looking at the subgraph obtained by successively
removing vertices with degree less than k−1

2 until every vertex has a degree at least k−1
2 .

This gives us an induced subgraph G′ = (V ′, E′) with n′ vertices, all of which have degree
d(v) ≥ k−1

2 (and |E| > k−1
2 ∗ n

′). Of this graph we will take a connected component
with the maximum ratio of edges to vertices, G′′ = (V ′′, E′′) (with n′′ vertices).

We will now find a path of length k in G′′. Consider a path v0v1...vt of maximum
length in G′′. If t ≥ k, then we are done, so we will assume that t < k.

By maximality of the path, all neighbours of v0 and vt are in the path. Suppose that
(v0, vt) ∈ E′′, then we have a cycle v0v1...vtv0 in G′′ and thus vi+1vi+2...vtv0...vi is also
a path in E′′ for all 0 ≤ i ≤ t. This means that all neighbours of all vertices in the path
must be part of the graph, and since G′′ was a connected component of G′, the path
must consist of all vertices in G′′. This leads to a maximum amount of edges in G′′ of(
t+1
2

)
≤ (k−1)∗n′′. This means that G′ has a maximum amount of edges of (k−1)∗n′,

which is a contradiction.
Thus, (v0, vt) can’t be an edge in G′′. Now observe that, since all of the neighbours of

v0 and vt are in {v0, ..., vt}, d(v0) ≥ k−1
2 , d(vt) ≥ k−1

2 and t < k, there must be vi and vi+1

such that (v0, vi+1) ∈ E′′ and (vi, vt) ∈ E′′. Now we have the cycle v0v1...vivtvt−1...vi+1v0
and we can, analogously to before, conclude that the path must cover all of G′′, and thus
that the maximum of edges in G′ is (k − 1) ∗ n′, contradictory to our assumption.

This means that t is at least k, i.e., the graph G′ (and therefore G), contains a path
of length k.

Theorem 13. Let T be a tree on k+ 1 vertices. Then k−1
2 ∗ n ≤ ex(n, T ) ≤ (k− 1) ∗ n.

Proof. No Kk can contain T , of course, so that gives us the lower bound of k−1
2 ∗n. The

upper bound can be seen by observing that any graph on n vertices with (k − 1) ∗ n
or more edges contains at least one vertex of degree k, and obviously any tree on k + 1
vertices can be embedded in such a graph (if n is big enough).

The proof for Erdős-Rényi-Sós is based on their paper at [4]

Theorem 14 (Erdős-Rényi-Sós).

ex(n,K2,2) ≤
n+ n

√
4n− 3

4
(3)

Proof. We start by observing that in any K2,2-free graph the maximum amount of neigh-
bours two vertices can have in common, is one.

Now, we can take G = (V,E) to be a K2,2-free graph on n vertices. We take S to be
the following:

S = {({u, v} , z)|z, u, v ∈ V, (z, u), (z, v) ∈ E} . (4)
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We now know that |S| is at most
(
n
2

)
. We also know that |S| =

∑
z

(
d(z)
2

)
, since S is

all combinations of two neighbours for each neighbour. This gives rise to the following
inequality: ∑

z

(
d(z)

2

)
≤
(
n

2

)
(5)

First observe that Cauchy-Schwarz tells us(∑
z

d(z)

)2

≤ n
∑
z

d(z)2 (6)

Now we can get a lower bound for the number of edges (12
∑

z d(z)), let m =
1
2

∑
z d(z), then we can find a lower bound for 1

2

∑
z d(z) in terms of m and n:

∑
z

(
d(z)

2

)
≤

(
n

2

)
1

2

∑
z

d(z)2 − 1

2

∑
z

d(z) ≤
(
n

2

)
n
∑
z

d(z)2 − n
∑
z

d(z) ≤ 2n

(
n

2

)
(∑

z

d(z)

)2

− n
∑
z

d(z) ≤ n2(n− 1)

4m2 − 2mn ≤ n2(n− 1)(
2m− 1

2
n

)2

− n2

4
≤ n2(n− 1)(

2m− 1

2
n

)2

≤ n2(n− 1) +
n2

4

2m− 1

2
n ≤

√
n2
(
n− 3

4

)

m ≤
n
√
n− 3

4

2
+
n

4

m ≤ n+ n
√

4n− 3

4

which is an upper bound to our Turán number. Moreover, this bound is tight, we can
construct a graph that has Θ

(
n3/2

)
edges and no K2,2 as follows:

Consider a finite, discrete, three dimensional field F3p. We can now construct a graph
with as its vertices the directions in the field, i.e., the elements (a, b, c) ∈ F3p \ {(0, 0, 0)}
where two elements (x, y, z) and (a, b, c) are considered the same if there exists a λ such
that (a, b, c) = λ(x, y, z). Two vertices in this graph will be connected by an edge if they
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are ortagonal to each other, i.e. (a, b, c) is connected to (a, b, c) if ax+by+cz = 0. Now it
is obvious to see that any two vertices in this graph have exactly one vertex in common in
their neighbourhood. The amount of vertices in this graph is (p3−1)/(p−1) = p2+p+1
(all elements in the field without (0, 0, 0) and with each line reduced to a point) and the
degree of each vertex in this graph is (p2 − 1)/(p− 1) = p+ 1. This gives us an amount
of edges m of

m = (p+ 1)(p2 + p+ 1)

m = (p+ 1) ∗ n
m = Θ(

√
n) ∗ n

m = Θ(n3/2)

For the proof of Kővári–Sós–Turán, [5] was used.

Theorem 15 (Kővári–Sós–Turán). For every r, s we have

ex(n,Kr,s) ≤
(s− 1)1/r

2
n2−1/r +

nr

2
(7)

Proof. We will use a generalized version of the proof of theorem 14 for this one. We
observe that any graph G = (V E) is Kr,s-free if and only if any r vertices have at most
s−1 neighbours in common. This gives rise to the following inequality, for a graph with
n vertices and m edges: ∑

z

(
d(z)

r

)
≤ (s− 1)

(
n

r

)
. (8)

We now label the vertices with 1 up to n as follows:

zi ≥ r for i ≤ b
zi < r for i > b

for some b ≤ n. Now we can rewrite equation (8) as follows:

n∑
i=1

(
d(zi)

r

)
=

b∑
i=1

(
d(zi)

r

)
>

1

r!

b∑
i=1

(d(zi)− r)r

We can now use Hölder’s inequality, which says that
∑L

k=1 xkyk ≤
(∑L

k=1 x
p
k

)1/p (∑L
k=1 y

q
k

)1/q
,

or, equivalently, for q = 1 + 1
p−1 ,

L∑
k=1

xpk ≥ L
1−p

(
L∑
k=1

xk

)p
.

12



This gives us

n∑
i=1

(
d(zi)

r

)
>

1

r!
b1−r

(
b∑
i=1

(d(zi)− r)

)r
n∑
i=1

(
d(zi)

r

)
>

1

r!
b1−r

(
n∑
i=1

d(zi)− br −
n∑

i=b+1

d(z)

)r
≥ 1

r!
b1−r

(
n∑
i=1

d(zi)− nr

)r
n∑
i=1

(
d(zi)

r

)
>

1

r!
n1−r

(
n∑
i=1

d(zi)− nr

)r
.

This finally gives rise to the following inequality:

1

r!
n1−r

(
n∑
i=1

d(zi)− nr

)r
≤ (s− 1)

(
n

r

)
<
s− 1

r!
nr

n1−r

(
n∑
i=1

d(zi)− nr

)r
< (s− 1)nr(

n∑
i=1

d(zi)− nr

)r
< (s− 1)n2r−1

n∑
i=1

d(zi)− nr < (s− 1)1/rn2−1/r

m <
(s− 1)1/r

2
n2−1/r +

nr

2

5 Erdős-Stone-Simonovits

By now we have developed enough tools to look at the principal theorems of this paper,
the theorems of Erdős-Stone and Erdős-Stone-Simonovits. We will start by stating the
theorems and proving the Erdős-Stone-Simonovits theorems using Erdős-Stone and then
we will conclude by proving Erdős-Stone.

Recall from section 3 the definitions of a (proper) colouring and the chromatic number
of a graph.

Theorem 16 (Erdős-Stone-Simonovits). Let F be a graph, and let r be the chromatic
number of F . Then the Turán number of F is given by:

ex(n, F ) =

(
r − 2

r − 1
+ o (1)

)(
n

2

)
. (9)

Or, even stronger,
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Theorem 17 (Erdős-Stone-Simonovits). Let F be a finite collection of graphs, and let
r be the minimum chromatic number of F ∈ F , then

ex(n,F) =

(
r − 2

r − 1
+ o (1)

)(
n

2

)
. (10)

In the proofs for these theorems, we will use the Erdős-Stone theorem.

Theorem 18 (Erdős-Stone). For any integer r ≥ 2, t ≥ 1 and any ε > 0, there exists

an integer n0 such that any graph on n ≥ n0 vertices with
(
r−2
r−1 + ε

) (
n
2

)
edges must

contain a Trt,r.

Now it is easy to prove Erdős-Stone-Simonovits.

Proof of theorem 16 (Erdős-Stone-Simonovits). Let F be a graph and suppose r is the
chromatic number of this graph and m is the amount of vertices in this graph. The
Turán number of this graph is of course greater than the amount of edges in Tn,r−1, the
(r − 1)-partite Turán graph, since F can’t be embedded in Tn,r−1 (since this graph can
be coloured in r − 1 colours by assigning a colour to each part). Thus,

ex(n, F ) ≥ 1

2

(
n2 − (nmod r)dn/re2 − (r − (nmod r))bn/rc2

)
. (11)

Erdős-Stone now tells us that there exists an n0 for our r and t = m such that for any

graph G on n ≥ n0 vertices with more than
(
r−2
r−1 + ε

) (
n
2

)
edges, G contains a copy of

Trt,r = Trm,r. Of course, F can be embedded in Trm,r, since one can simply put all
vertices of the same colour in the same part of Trm,r, each part is big enough to hold
all vertices of F and every two nodes that are in different parts of Trm,r are connected.
Therefore, we know that

ex(n, F ) ≤
(
r − 2

r − 1
+ ε

)(
n

2

)
. (12)

This proves the theorem that ex(n, F ) =
(
r−2
r−1 + o(1)

) (
n
2

)
.

Proof of theorem 17 (Erdős-Stone-Simonovits). Given a finite collection of graphs F ,
suppose r is the least chromatic number of any F ∈ F . Then for sufficiently large
n Erdős-Stone tells us that there is a copy of Trt,r in any graph on n vertices with(
r−2
r−1 + ε

) (
n
2

)
edges with t > |VF | where VF is the set of all vertices of the graph F ∈ F

with the least chromatic number. As we have shown before, this graph can be embedded

in Trt,r and thus for any graph G on n vertices with
(
r−2
r−1 + ε

) (
n
2

)
edges for a sufficiently

large n, we can find a graph F ∈ F that can be embedded in G.

Now all that is needed to conclude the proof, is the proof of Erdős-Stone’s theorem.

Proof of theorem 18 (Erdős-Stone). We will use the following lemma to prove Erdős-
Stone:
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Lemma 2. For any integer r ≥ 2, t ≥ 1 and any ε′ > 0 there exists an integer m0

such that any graph G on m ≥ m0 vertices and with all degrees greater than or equal to(
r−2
r−1 + ε′

)
m contains a copy of Trt,r.

We will first prove Erdős-Stone using this lemma, and then we will prove the lemma
to conclude the proof.

Let G = (V,E) be a graph on n vertices with more than
(
r−2
r−1 + ε

) (
n
2

)
edges. We

can construct a graph that meets all constraints of the lemma by recursively removing a

vertex with degree less than
(
r−2
r−1 + ε

2

)
times the amount of vertices in the graph, i.e.,

we can create a decreasing sequence

Gn ⊂ Gn−1 ⊂ ... ⊂ Gm+1 ⊂ Gm (13)

where Gi−1 is obtained from Gi by removing a vertex of degree less than
(
r−2
r−1 + ε

2

)
∗ i.

The lemma tells us that there is an m0 such that if m′ > m0, any graph on m′ vertices

with degrees higher than
(
r−2
r−1 + ε

2

)
∗m′ contains a copy of Trt,r for any r ≥ 2, t ≥ 1 and

any ε′ = ε
2 > 0. We claim that our Gm suffices these requirements. By definition, the

degrees are high enough, so all we need to prove, is that m > m0 if n is large enough.
This can be easily seen by observing that the amount of edges removed from Gn

(with |E| edges) can be at most
∑n

i=m+1

(
r−2
r−1 + ε

2

)
∗ i, and thus:

(
r − 2

r − 1
+ ε

)
∗
(
n

2

)
≤ |E| ≤

(
m

2

)
+

(
r − 2

r − 1
+
ε

2

)
∗

n∑
i=m+1

i(
r − 2

r − 1
+ ε

)
∗
(
n

2

)
≤ |E| ≤

(
m

2

)
+

(
r − 2

r − 1
+
ε

2

)
∗ (

1

2
(n−m)(m+ n+ 1)).

We can now move n to the left hand side to see that there is an n0 such that n > n0
implies that m > m0. (

r − 2

r − 1
+ ε

)
∗
(
n

2

)
≤

(
m

2

)
+

(
r − 2

r − 1
+
ε

2

)
∗ (

1

2
(n−m)(m+ n+ 1))(

r − 2

r − 1
+ ε

)
∗
(
n

2

)
≤

(
m

2

)
+

(
r − 2

r − 1
+
ε

2

)
∗ (

1

2
(n2 + n−m2 −m))(

r − 2

r − 1
+
ε

2

)
∗
((

n

2

)
− 1

2
(n2 + n)

)
+
ε

2

(
n

2

)
≤

(
m

2

)
−
(
r − 2

r − 1
+
ε

2

)(
m2 +m

2

)
ε

2

(
n

2

)
−
(
r − 2

r − 1
+
ε

2

)
∗ n ≤

(
m

2

)
−
(
r − 2

r − 1
+
ε

2

)(
m2 +m

2

)
ε

4
n2 +O(n) ≤ m2 −m

2
−
(
r − 2

r − 1
+
ε

2

)(
m2 +m

2

)
ε

4
n2 +O(n) ≤

(
1− r − 2

r − 1
− ε

2

)
m2/2 +O(m)
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Now we can choose ε and n0 such that n > n0 implies that m > m0 since both the left
hand side of this equation and the right hand side of this equation are increasing for

increasing m and n if
(

1− r−2
r−1 −

ε
2

)
> 0.

All that is needed to conclude this proof, is the proof of lemma 2.

Proof of the lemma. We will prove this lemma using induction on r. Take G = (V,E) to
be a graph on m vertices and with the minimum degree of the vertices as

(
r−1
r + ε

)
∗m.

For r = 2, we have seen this problem in section 4 in Kovari-Sos-Turan’s theorem. This

theorem said that there is a copy of T2t,2 in G if
(
εm
t

)
∗m > (t−1)

(
m
t

)
, or

(εmt )∗m
(mt )

> (t−1),

so there definitely is some m0 such that for m ≥ m0 there is a copy of T2t,2 in G.
Assume now that r ≥ 2. Let s = d tεe. We will show that there exists a copy of

T(r+1)t,r+1 in G. The induction hypothesis now tells us that, for a large enough m, there
is a copy of Trs,r in G. Let A1, A2, ...Ar be the r parts of the r-partite graph Trs,r, each
of which has size s. Let U be the vertices in G that are not in the copy of Trs,r inside
G, U = V \ (A1 ∪A2 ∪ ...∪AR). We are now going to look at the edges between Ai and
U and show that we can find a group of t vertices that are connected to t vertices in Ai
for all 1 ≤ i ≤ r, and thus we can extend it to a T(r+1)t,r.

Let W be the set of all vertices w in U such that |N (w) ∩ Ai| > t for all i. Now
the number of edges that are missing between U and ∪iAi is at least (|U | − |W |) (s− t)
(the minimum amount of edges missing between the vertices not in W and ∪iAi) and at

most rs(1r − ε)m (since the degrees of all vertices in are at least
(
r−2
r−1 + ε

)
∗m and the

degrees of all vertices in the subgraph induced by ∪iAi are (r − 1)s). This leads to the
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following inequality:

(|U | − |W |) (s− t) ≤ rs(
1

r
− ε)m

(m− rs− |W |) (s− t) ≤ rs(
1

r
− ε)m

m− rs− |W | ≤ rs

s− t
(
1

r
− ε)m

|W | ≥ m− rs

s− t
(
1

r
− ε)m− rs

|W | ≥
(

1− rs

s− t

(
1− rε
r

))
m− rs

|W | ≥
(

1− s(1− rε)
s− t

)
m− rs

|W | ≥
(

1− s(1− rε)
s(1− t/dt/εe)

)
m− rs

|W | ≥
(

1− 1− rε
1− t/dt/εe

)
m− rs

|W | ≥
(

1− 1− rε
1− ε

)
m− rs

|W | ≥ rε− ε
1− ε

m− rs

|W | ≥ (r − 1)ε

1− ε
m− rs

For ε < 1, (r−1)ε
1−ε m − rs is increasing linearly with m. Therefore, we can choose m0

such that, if m ≥ m0, |W | >
(
s
t

)r
(t− 1) and thus we can extend the Trs,r to a T(r+1)t,r.

This concludes the proof of the lemma.
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[4] P. Erdős, A. Rényi, V. T. Sós,
On a problem of graph theory,
Studia Scientiarum Mathematicarum Hungaria I,
pages 215-235,
1966.
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