
Applying Level Based Analysis to Optimal Mixing Evolutionary

Algorithms.

Ivor van der Hoog

June 20, 2016

Abstract

In recent years a new variant of Drift Analysis was introduced in the field of computational com-
plexity called Level Based Analysis. The Level Based Analysis provides a one-size-fits-all framework
to analyze Evolutionary Algorithms. This paper analyzes how the Level Based Theorem works and
applies it to GOMEA algorithms to get upper bounds on their computational time complexity. The
Univariate GOMEA algorithm will be analyzed on the Onemax domain using the Level Based Theo-
rem and more traditional methods. This paper will compare the use and bounds of the Level Based
Analysis with these more traditional methods and supply loose upper bounds for more GOMEA
algorithms on different domains as benchmarks for future work.

1 Introduction.

One aspect of computer science is finding algorithms to solve combinatorial optimization problems.
In most of these problems exhaustive search is not feasible and so computer scientists develop smart
algorithms to solve these problems within a reasonable time. A potent class of these algorithms are
Evolutionary Algorithms and in recent years many EAs have been developed and published. Determining
how fast such an EA solves a particular problem on a particular domain can be done in two ways:
either through measurements or through calculating theoretical upper bounds. Most publications on the
runtime of EAs provide measurements of the runtime of these algorithms on benchmark functions but
theories that determine the runtime of these algorithms theoretically are rarely developed and applied
[1]. In 2001 a general theory on determining the computational complexity time on EAs called Drift
Analysis was presented by Jun He and Xin Yao in [2]. Following this work the Level Based Analysis
was introduced by D-C Dang and P.K.Lehre in [4] and later improved in [5] and [6]. The Level Based
Analysis claims to provide an easy-to-use framework for determining upper bounds for EAs and even
Recombination Algorithms [8].
One class of EAs are the Genetic Optimal Mixing Evolutionary Algorithms introduced in [11]. These
algorithms build a model from the population to determine how to execute crossover. This paper will
analyze the Level Based Theorem in the context of GOMEA algorithms. It will apply the Level Based
Theorem to the Univariate GOMEA algorithm on the Onemax domain to estimate an expected upper
bound on the runtime. This paper will also use other methods to determine the upper bounds of the
Univariate GOMEA algorithm and compare the use and bounds of the Level Based Analysis with these
more traditional methods.
Section 2 will provide background information on EAs and combinatorial optimization problems and
introduces the GOMEA algorithms. Section 3 will introduce the predecessors of the Level Based Analysis,
Additive and Multiplicative Drift Analysis to introduce the concept of Drift. This section will also
elaborate on the proof for both analyses provided in [2]. The first part of Section 4 introduces the
Level Based Theorem and its recombination counterpart. This section will paraphrase and elaborate
on the latest proofs for these theorems presented in [6]. The second part of section 4 will comment on
the viability of the recombination adjustments of the Level Based Theorem and provide adjustments
of our own to improve the quality-of-life when applying the theorem to GOMEA algorithms. The last
part of section 4 will apply the adjusted theorem to the Univariate GOMEA algorithm on the Onemax
domain. This paper also uses two other methods to analyze the Univariate GOMEA algorithm in section
5: Martingale theory, the source of inspiration for drift analysis, and a direct proof.

1



The functionality of the Level Based Analysis in comparison to these two more traditional methods
is discussed in section 6. Loose upper bounds for other variants of the GOMEA framework on other
domains are presented in the end as benchmarks for further research on their theoretical upper bounds.

2 Preliminaries.

This section will provide the mathematical definitions that are needed to determine theoretical upper
bounds for the types of algorithms that we will analyze. Each subsection will cover a certain category of
definitions through first explaining the intuition behind the categories and the definitions in the category
and then stating their respective definitions.

2.1 Combinatorial optimization problems.

Intuitively, computational complexity is a theoretical indication for how long an algorithm takes to solve
a certain problem of a certain size. If we want to determine a theoretical upper bound for how long an
algorithm will take to solve a certain problem of a certain size, we first need a solid definition of what
we see as a problem, problem size and what we see as a unit of time.
The introduction mentioned that we determine bounds for so called combinatorial optimization problems.
These kind of problems are often an abstraction or model for a real life problem. We make a model for
the solution of the real life problem, an abstraction of what a solution could look like. Any object
that fills the axioms of this model could be the final solution hence we name it a candidate solution.
Combinatorial Optimization problems create a finite set of these candidate solutions called the search
space Ω. Algorithms search through these search space and test each candidate solution until they have
found the solution to the problem, the optimal candidate solution. This intuition leads to the following
definition:

Definition 1. A combinatorial optimization problem is a problem which has a finite set of candi-
date solutions Ω called the search space. The problem is to find an optimal element x∗ ∈ Ω.

There are usually few solutions to a problem so the number of optimal elements x∗ is usually quite
small. This makes it so that it is harder to find an optimal solution if the search space is larger. For
this, we need some sort of indication on how large the solution space is and we call this the problem
size n ∈ N. The problem size is usually derived from the number of problem variables and formally
defined when the problem itself or the solution space is defined. In all cases the problem size is a number
n ∈ N s.t. |Ω| = f(x) for a f ∈ C(R). Even for a computer, the search space is usually too large to just
try out every existing solution. So algorithms that want to solve these kind of problems within a feasible
time must search through the space in a smart way. The type of algorithms that will be discussed in this
paper do this using a fitness function. A fitness function is a measurement for how ’good’ a candidate
solution is. A fitness function assigns to each candidate solution a fitness value to indicate how close the
solution is to the optimal solution, the optimal solution then has a minimal of maximal fitness value.
Usually a candidate solution has certain aspects it has to have to be the optimal solution. One can
construct a fitness function through assigning each aspect a certain weight, the fitness value of candidate
solution is then the sum of the weights of each aspect it has. It is clear that in this case an optimal
solution has the maximal fitness value. The generic definition for fitness function is as follows:

Definition 2. A fitness function is a function f :: Ω → R satisfying: f(x∗) = min/max{f(x) | x ∈
Ω}.

An example: A traditional example for a combinatorial optimization problem is the knapsack prob-
lem. The knapsack problem involves a container that can hold a certain amount of weight. Given a
set of items, each with a weight and value, find the combination of items that fills the container that
has an optimal value but is within the weight limit. One could define a fitness function f that sums
the value of the items that are in the knapsack, and that is zero if the knapsack is too full. Knapsack
itself involves finding an optimal combination but the domain of combinatorial optimization problems is
not limited to only direct combination problems. Often existing problems can be redefined to become
a combinatorial optimization problem. Such is the case with constraint satisfaction problems which are
problems in which you have to comply to a certain set of constraints:

2



We will present 9x9-Sudoku as an example. 9x9-Sudoku becomes a combinatorial optimization problem
when we view the conditions (constraints) that create a solution for the 9x9 Sudoku. In Sudoku you get
a 9x9 matrix with certain numbers filled in at certain indexes. An (optimal) solution has each of the 81
fields filled with a number ranging from one to nine, no double numbers in each row, column or block of
3 by 3 and contains all the pre-determined numbers at all the predetermined indexes. We can construct
a solution space Ω as the set of all the 9x9 matrices with a number 1 to 9 assigned in each of the 81
fields. We can construct a fitness function f that first checks if all the predetermined field values are
still present, if that is the case the fitness value of the candidate solution is the number of doubles in
each row, column or block and else the fitness nears infinity. The optimal solution x∗ is a solution that
has all the fixated values and no doubles and hence it is the solution with the minimal fitness value: 0.
We can also provide for a definition of problem size if we take a look at Sudoku in general. Sudokus
have to have a dimension of n2 × n2 with n ∈ N so that we can provide a valid number of blocks. The
larger n is, the larger the search space Ω becomes and this makes n a good indicator for the problem size.

The last definition we need for determining the upper bound on the runtime of an algorithm is a definition
of time. The faster an algorithm solves a problem, the better we consider the algorithm to be. One could
try and determine upper bounds for the actual time in seconds. The time in seconds however is very
dependent on what kind of hardware the algorithm is run on and how the tasks are scheduled. One could
calculate that in, but it would give a very complex calculation. Other possible definitions for time such
as number of clockticks or processor instructions are in unfeasible for the same reasons. Almost every
attempt to solve a computational optimization problem makes use of a fitness function and generally
speaking it takes quite some time to calculate the fitness value of a candidate solution. That is why we
define the time an algorithm takes to run when talking about computational optimization problems as
the number of fitness evaluation calls. The number τ of function evaluations required to find the optimal
solution will be called a Stopping time. In this paper we will try to give a tight estimation for an upper
bound of the stopping time for GOMEA algorithms.

2.2 Evolutionary Algorithms.

The GOMEA algorithms are a subset of Evolutionary algorithms. Evolutionary algorithms are stochastic
algorithms for solving the earlier mentioned combinatorial optimization problems. Evolutionary algo-
rithms are inspired by biological evolution and imitate the successful optimization strategy of combining
and manipulating individuals in a population that we see in nature. There are many implementations of
Evolutionary Algorithms but we will define a basic framework. Note that there can exist evolutionary
algorithms that do not follow this framework but most of them do. Evolutionary Algorithms (EAs) work
with a subset of candidate solutions called the population which we will denote as P . The standard
framework has three possible tools: recombination, mutation and selection. The last one is noteworthy,
if an EA makes use of selection we can speak of generations. Intuitively the selection operator takes a
large set of candidate solutions and chooses a subset of candidate solutions to be the new population.
After selection has happened we say we have a new generation. The size of the population at generation
t (after applying the selection operator t times) will be denoted as λt, or λ if the size is constant for
every generation. The notion of generations will suffice to define the operators:

• Recombination. The recombination step frecomb selects a subset of an arbitrary size k of candidate
solutions from the population as mates fmat :: P− > Ωk and then applies a crossover operator on
those mates to generate a new candidate solution fxor :: Ωk → Ω. frecomb := fxor ◦ fmat.

• Mutation. The mutation step applies a mutation operator to candidate solutions in the population
fmut :: Ω→ Ω which transforms the candidate solutions into new candidate solutions.

• Selection. The selection step takes the new transformed population P ′t and selects candidate
solutions to form the new generation Pt+1 with a selection operator fsel :: Ω|P

′
t | → Ωλt+1 . We

call the algorithm elitist if the selection operator does not select candidate solutions with a lower
fitness value than the previous generation for the next generation.

3



Evolutionary algorithms are stochastic, meaning that there is a certain amount of chance involved.
Because the process of an evolutionary algorithm is a stochastic process, we can solidify the earlier
definition of stopping time τ with the definition of stopping time for Markov Chains in [9].

Definition 3. Given a stochastic process X := {Xn | n ∈ N}. If we were to observe the values X0, X1 . . .
We define the total information up to τ to be all the information contained in {X0 . . . Xτ}.

Definition 4. Let X := {Xn | n ∈ N} be a stochastic process. A stopping time with respect to
X is a random time τ such that for each n ∈ N the event τ = n is completely determined by the total
information up to n.

We will give examples of stopping times using the following case: assume you and an opponent both
have 5 dollars. You flip a coin and if it’s head you get a dollar from your opponent, else vice versa.

• Playing until five games are played will introduce a stopping time.

• Playing until one player has reached 3 dollar is a stopping time.

• Playing until you have the largest lead you’ll ever have over the other is not a stopping time since
it requires you to use information from the future.

Definition 5. Given two stopping times τ1 and τ2, combined stopping time denoted as τ1 ∨ τ2 is the
event that either τ1 occurs or τ2.

Corollary 1. Combined stopping time is also a stopping time.

Earlier we stated the number τ of function evaluations required before the algorithm is done will be
called a stopping time. We can show that τ satisfies the formal definition of a stopping time. This is
because the algorithm terminates when an optimal solution is found hence if τ = n then Xn = {x∗ ∈
Pn} ∪ {x∗ /∈ Pt | 0 ≤ t < n}, making the state only dependent on the previous states.

The definition of stopping time for an evolutionary algorithm gives rise for a definition the runtime
of that EA. We calculate the runtime of an upper bound of an algorithm by giving an upper bound for
the expected stopping time of an algorithm. This expected upper bound E[T ] is an upper bound for the
expected number of function calls that have to be done before one first encounters the optimum. It’s
interesting to note that there are two ways of estimating an upper bound for an Evolutionary Algorithm.
One can analyze the exact effect of the algorithm on the specified domain to give an estimation for how
long the algorithm would take. This however, can never be a generic approach because you look at
the specific actions of the algorithm in the search space. The other way is to utilize that Evolutionary
Algorithms are stochastic processes and make use of that process to provide upper bounds in a more
generic way. Traditionally this is done by creating a Markov chain model [10], but because absorbing
Markov chains can be a daunting task this is not very desirable. The Drift Analysis and the Level Based
Theorem that is new in this category tries to model the stochastic process in a way that has its origins
in Martingale Theory.

2.3 GOMEA Algorithms.

This paper will analyze the runtime of Gene-pool Optimal Mixing Evolutionary Algorithms introduced in
[11] using the Level Based Theorem and more. GOMEA algorithms make use of a FOS structure, where
FOS stands for Family Of Subsets. Evolutionary algorithms traditionally have a separate recombination,
mutation and selection operator (each of those can be the identity function). GOMEA algorithms
work different from Evolutionary algorithms because they combine the recombination and mutation
phase. GOMEA algorithms are a subset of what we call Model-Based Evolutionary Algorithms. These
algorithms create an effect similar to recombination and mutation through learning a model of the
population from the mutual information between the candidate solutions in the population. This model
is then used to combine elements to generate new offspring. The model usually takes the form of a family
of subsets of the problem variables. The key to constructing such a model lies in identifying groups of
problem variables that together make a grand contribution to the quality of the solutions.

Definition 6. Let there be n problem variables and S be the set of the indexes of those variables:
{0, 1, ..., n − 1}. We define a FOS-structure F ⊂ P(S) as a subset of the power set of S with the
restriction that ∀x ∈ S, ∃F ∈ F s.t. x ∈ F .

4



In GOMEA algorithms the FOS-structure specifies the linked variables of the solution. A subset of
the FOS is used as a traditional crossover mask. In this case, the crossover is greedy, accepting only
improvements or solutions that are equally good or better. The algorithm tries to generate new better
solutions by selecting a parent solution p and traversing the FOS structure and recombining accordingly
in a greedy way. For every subset F ∈ F , we select a new donor d from the population and we copy all
the values of the indexes in F from d to p.

Algorithm 1 GOMEA

1: procedure GOMEA
2: population← initializePop()
3: while NotTerminated(population) do
4: FOS← BuildFOS(population)
5: for all p ∈ population do
6: for all subset ∈ FOS do
7: donor← Selection(population)
8: p← GreedyComb(p, donor, subset)

return GetSolution(population)

Algorithm 2 GreedyComb

1: procedure GreedyComb(parent, donor, subset)
2: newSol← replaceSubset(parent, donor, subset)
3: if isImprovement(newSol, parent) then
4: parent← newSol

return parent

2.3.1 FOS-structures used.

We will introduce three FOS-structures of which we will use two in the analysis of the algorithms.

Definition 7. The Univariate structure on an index set S is defined as: F := {{i} | i ∈ S}.

It is the set of singleton indexes, making every variable independent of the other variables. GOMEA
with this structure strongly resembles doing (λ+ λ)-EA.

Definition 8. The Marginal Product structure on an index set S is defined as:
F ⊂ P(S) where ∀i ∈ S, ∃F ∈ F s.t. i ∈ F and ∀F1, F2 ∈ F , F1 ∩ F2 = ∅

In the Marginal Product structure every group of variables is independent of all the other groups.
We will not give bounds using this structure. The last structure is what we call a Linkage Tree structure:

Definition 9. The Linkage Tree structure on an index set S is defined as:
F ⊂ P(S) where ∀F ∈ F with |F | > 1, ∃F1, F2 ∈ F with:

• F1 6= ∅

• F2 6= ∅

• F1 ∩ F2 = ∅

• F1 ∪ F2 = F

The idea of a Linkage Tree is that within every subset the problem variables are linked but that
they have ‘child’ subsets where the problem variables become unlinked. For a problem with length n the
Linkage Tree has n leaf nodes consisting of singleton indexes making the univariate structure a subset
of the Linkage Tree structure. When using a Linkage Tree structure, we traverse the tree top down.

5



2.3.2 The domain.

The last thing left to define is the domain that we will analyze the Univariate GOMEA on. We will use
the Univariate algorithm to optimize bitstrings of length n. For a given individual x and index i with
0 ≤ i < n we denote x[i] as the value found in x at the index i. We initiate an individual by traversing
all indexes i and making x[i] a one with chance 1

c and a zero with chance 1− 1
c . We call a string optimal

if the string consists out of all ones. In general, a fitness function determines the ’shape’ of the search
space. The fitness function must indicate how close a candidate solution is to the optimum and how well
a fitness function can reflect that distance steers how well an algorithm can find a solution. A fitness
function is an integral part of the domain that the algorithm works on. The domain of optimizing strings
of length n is often taken as a benchmark for algorithms and there are a few known benchmark fitness
functions on this domain [13]:

Definition 10. The Onemax fitness function simply counts how many ones are in the string. It is
defined as fOnemax(x) :=

∑n
i=0 x[i].

Definition 11. The Leading Ones fitness function (often shortened as LO) counts how many consec-

utive ones there are starting from index zero. It is defined as fLO(x) :=
∑n
i=0

∏i
j=0 x[j].

Definition 12. The k-plateau. Given an integer k smaller than n and a fitness function fbase, k-plateau
changes the fitness function for a fitness interval Ik of size k, in that interval the fitness value is constant.
The value of fplateau(x) is based on the value of fbase(x):

• fbase(x) < L→ fbase(x)

• L ≤ fbase(x) < L+ k → L

• fbase(x) ≥ L+K → fbase(x)

The domains in this paper. This paper will focus on determining upper bounds using the simplest
FOS structure to analyze, the univariate structure on the Onemax domain. Loose upper bounds for the
Linkage Tree Genetic Algorithm will be provided near the end of this paper and also bounds on different
domains. We think it would be valuable future research to determine tight theoretical upper bounds for
those variants.

3 Drift analysis.

The Level Based Theorem is part of Drift Analysis. In probability theory, stochastic drift is the change
of the average value of a stochastic process. Drift analysis took the core concept of stochastic drift and
the theorems that came with it and transformed it into a framework for computational fitness. We first
note that Drift Analysis makes two assumptions:

• The optimization problem is a minimization problem:
a solution x∗ is optimal if f(x∗) = min{x | Ω}.

• The optimal solution has fitness zero.

If the optimization problem is not of this form, we can transform the fitness function so that it does
become of this form. For instance, if the problem is a maximization problem we can define a new fitness
function fnew to be fnew(x) = MAX − f(x) to satisfy the axioms. In Drift analysis we determine the
fitness of the population and we define drift of generation t as the difference in fitness between generation
t and generation t− 1.

Definition 13. The fitness of a population P , given a minimizing fitness function f is defined as
f(P ) := min{f(x) | x ∈ p}.

Definition 14. The drift of a population at generation t denoted as ∆t or ∆(Pt) is the difference in
fitness between Pt and Pt−1, ∆t := f(Pt−1) − f(Pt). Drift can either be towards the goal if ∆t ≥ 0 or
away from the goal. In the latter case the drift has a negative impact on the solution and hence we call
it negative drift.

6



The first theorem in the Drift analysis was later called Additive Drift and presented in [7]. This
theorem denotes the expected number of function evaluations that the algorithm will do before finding
a global optimum at E[T]. It states that if you model the progress of an EA as a stochastic process, you
can get an upper bound for E[T] the following way:

Theorem 1. Additive drift.
If you know an upper bound for the expected starting fitness of the population smax and if you know a
lower bound for the expected positive drift ∀t, ∆t ≥ z∗. Then the expected number of timesteps before
you have found an optimal solution is upper bound by E[T ] ≤ smax

z∗ .

This theorem uses a concept of basic physics: if you have a known maximal distance and a known
minimal speed, you can compute a known maximal time by dividing the former by the latter. The
additive theorem is however too unwieldy to be applied directly. Often the lower bound for finding an
improvement is much lower than the actual odds of finding an improvement when running the algorithm.
Using a too low lower bound for z∗ will result in a too large upper bound for the runtime of the algorithm.

An improvement of the additive drift theorem is the Multiplicative Drift Theorem presented in [3].
The Multiplicative Drift tries to overcome the weak spot of the Additive Drift, picking a too low bound
for improvement and thus not getting tight bounds. Many Evolutionary Algorithms struggle to find
improvements in the beginning but as they progress they get a higher chance to make an improvement.
Other algorithms (including the Univariate GOMEA) work exactly the other way around with a higher
chance to find improvements early and later experiencing a rough end. Additive drift cannot accurately
model this convergence behavior as it uses the lowest bound for improvement. Multiplicative drift is
designed for these kind of algorithms. Multiplicative drift states that if the lower bound for improvement
is a multiple of the current fitness, better bounds can be found.

Theorem 2. Multiplicative Drift.
Denote the stopping time as T . Denote jmin to be min{f(Pt) | t < T} (this is possible since a finite set
always has a minimum). Denote J := {j ∈ R | Pr(f(P )) = j > 0} as the set of all distances we could
ever obtain. If for all generations, for all of those values j the expected drift is higher than delta times
j:

E[∆(Pt) | f(Pt) = j] > δ · j

If we start at a distance f(P0) then the expected stopping time is bounded by:

E[T ] ≤
1 + ln( f(P0)

jmin
)

δ

The idea behind the proof presented in [3] is that you introduce an extra concave function g called
the potential function. This function transforms the values of the fitness function f , g :: f(Ω)→ R. This
function will also have a minimum at the optimum but its extra properties allow for tighter bounds when
using the additive drift theorem. We will provide a paraphrased version of the proof presented in [3],
shortening the algebra and adding commentary on why certain decisions are made. This will be done
to make the use of a potential function intuitive because the Level Based Theorem in this paper makes
extensive use of that concept:

3.1 The proof

Denote the search space Ω. If we know the fitness function f :: Ω→ R+, we make a function g :: f(Ω)→ R
which sends the distances to another number via: g(j) = 1 + ln( j

jmin
). Now we denote:

Z(t) =

{
0 if f(Pt) = 0
g(f(Pt)) else

Basically, Z is the same function as g but now has a minimum at 0 instead of a negative minimum so
that the additive drift theorem can be applied. We now derive a lower bound for the drift of Z for each
generation t:

Z(t−1) − Z(t) ≥ ∆(Pt)

f(Pt−1)
(1)

7



In order to see that this is valid, we view two cases:
First we have the case that t is the last step: t = T . Then the optimum is found in t so Zt is zero,

making the left side equal to 1 + ln( f(Pt−1)
smin

). For the right hand side we note that we are at the last step
t = T so the drift has to cross the remaining distance, ∆(Pt) = f(Pt−1). This makes the right hand side
equal to 1. 1 is lesser or equal to 1 with a positive log.

The second case is that t is not the last step. Then Zt−1 − Zt = ln( f(Pt−1)
f(Pt)

). The theorem requires

a positive lower bound for the drift so we know that f(Pt−1) > f(Pt) for all t and we use that in the
following trick:

1 >
f(Pt)

f(Pt+1)
⇒

f(Pt)

f(Pt+1)
= 1 +

f(Pt)− f(Pt−1)

f(Pt−1)
≤ EXP

[
f(Pt)− f(Pt−1))

f(Pt−1)

]
⇒

ln

(
f(Pt)

f(Pt−1)

)
≤ f(Pt)− f(Pt−1))

f(Pt−1)
⇒

Zt−1 − Zt = ln(
f(Pt−1)

f(Pt)
) ≥ f(Pt−1)− f(Pt)

f(Pt−1)
=

∆(Pt)

f(Pt−1)

We now know that (1) holds. Now note that E [∆(Pt) | f(Pt) = j] > δ · j, substituting with 1 gives
a lower bound on the drift E

[
Zt−1 − Zt

]
> δ:

E [∆(Pt)] > δ · f(Pt)⇒ E

[
∆(Pt)

f(pt)

]
> δ ⇒ E

[
Zt−1 − Zt

]
> δ

Having a minimal value for the drift, the additive drift theorem now states that:

E [T | f(P0) = j] ≤ g(j)

δ
=

1 + ln( j
jmin

)

δ

Applying the Multiplicative drift theorem. The multiplicative drift theorem is not directly ap-
plicable to our problem, solving a Onemax bit problem with the Univariate GOMEA algorithm. This is
because it is hard to derive a multiplicative lower bound for the odds of improving. Assuming a parent p
has fitness j, then the parent can find an improvement if for any index i where p[i] = 0 it matches with
a donor d with d[i] = 1. The odds of that happening for a specific index i are lower bound by 1

c . We
will not find an improvement if we select a donor which has a zero for each of the zero indexes making
zj = (1− 1

c )n−j . One can see that the odds of finding an improvement decrease exponentially and not by
a multiplicative factor. That makes multiplicative drift not suitable for analyzing GOMEA algorithms
and thus we must resort to the more advanced form, Level Based Analysis.

4 Level Based Analysis

4.1 The Level Based Theorem

The main theorem of this paper is the Level Based Analysis theorem. The Level Based Analysis comes
forth from Drift Analysis and was first published in [4]. The idea of the level based analysis is that we
divide the possible fitness values into levels and that we divide the search space into sets Aj according
to those levels. We say that an entire population is at a certain level j if at least γ0 of the population
has a fitness that belongs to level Aj or higher. The analysis looks at two aspects of the Evolutionary
Algorithm it analyzes: The first aspect is described in the first axiom G1 where we determine a lower
bound zj for the odds of generating offspring in a level higher than the current level j. The second aspect
is modeled by G2 where we create a lower bound γ(1 + δ) for the odds of generating offspring in a level
higher than the current level given that a percentage γ of the population is already in a higher level
than j. These two aspects are the two aspects of an EA, exploration versus exploitation and the weight
of both aspects can be tuned in the variables γ0 and the later presented δ. The proof uses these lower
bounds and just like the multiplicative drift theorem a potential function g. The theorem also requires
the population to have a certain size in order for the algebraic tricks in the proof to work.

8



A quick note: There is one last requirement for the Level Based Theorem that is not mentioned in
the definition of the the theorem but is vital for the proof: the odds of sampling a new individual with a
certain level form a binomial distribution, dependent on the level of the current population. We denote
the distribution from which we sample new individuals based on the current population P as D(P ).

Theorem 3. Level Based Theorem.
Given a problem with problem size n, a partition {A0, A1, ..., Am} of the search space Ω and A+

j := {Ak |
k > j}, and given an algorithm with population size λ and a population per generation Pt, define the
stopping time T := min{tλ | |Pt ∩ Am| > 0} to be the first time (with time in the number of function
calls) that an optimal element in appears in Pt.
If there exist z0, ...zm, δ ∈ (0, 1] and γ0 ∈ (0, 1) such that for any population P and all γ ∈ (0, γ0) holds:

G1) ∀j ∈ [n],∀t if |Pt ∩A+
j−1| ≥ γ0λ then Pr(y ∈ A+

j | y ∈ D(Pt)) ≥ zj
This axiom describes a lower bound on the chance zj to sample an individual in a level higher than the
current level j.

G2) ∀j ∈ [n− 1],∀t if |Pt ∩A+
j−1| ≥ γ0λ and |Pt ∩A+

j | ≥ γλ then Pr(y ∈ A+
j | y ∈ D(Pt)) ≥ (1 + δ)γ

This axiom models the influence of the selection operator with a parameter δ. It provides a lower bound on
the chance to sample an individual in a level greater than the current level, given that γ of the population
is already in a level higher than j.

G3) For z∗ := min{zj | j ∈ [m]} the population size λ satisfies: λ ≥
(

8
γ0δ2

)
ln
(

128n
γ0δ3z∗

)
This axiom notes that given the parameters γ0, zj and δ, we have a lower bound on the size of the
population λ so that we can assume in the proof that we never drop a level.

then E[T ] ≤
(

454

δ
9
2

)(
nλ(1 + ln(1 + δ7/2λ

203 )) +
∑
j∈[n]

1
zj

)
We mention a quick lemma that is needed for the proof and immediately follows out of the definition

of the theorem. This lemma states that if we are at level j, the odds of sampling an individual at level
j or higher are greater or equal than (1 + δ)γ0.

Lemma 1. |Pt ∩A+
j−1| ≥ γ0λ⇒ Pr(y ∈ A+

j−1 | y ∈ D(Pt)) ≥ (1 + δ)γ0

Proof: We simply note that G2 applies: if we are at level j then by definition γ0 of the population is
at level j or higher and filling in γ = γ0 we get these lower bounds.

4.2 The proof

The proof is a long proof and so we will first provide a sketch of the proof. Just as with multiplicative
drift, the proof defines a potential function g. After proving some attributes of the potential function we
try to calculate the expected drift. We do this by splitting the drift into drift in the positive direction
and drift in the negative direction and use the needed size of the population to show that the drift in the
negative direction is negligible. Because the negative drift is negligible, we only have to derive a lower
bound for the positive drift to be able to apply the Additive Drift Theorem and get to our bounds.

9



4.2.1 The potential function.

Definition 15. For any integers λ,m > 0, a function g :: [λ]× [m+ 1]→ R is called a level function
if:

1) ∀(x, y) ∈ [λ]× [m], g(x, y) ≥ g(x, y + 1)

2) ∀(x, y) ∈ [λ− 1]× [m+ 1], g(x, y) ≥ g(x+ 1, y)

3) ∀y ∈ [m], g(λ, y) ≥ g(0, y + 1)

These definitions ensure that g decreases monotonously with y. The axioms also result in two lemmas
we are going to be using:

Lemma 2. The sum of two level functions is also a level function.

The proof of this lemma is trivial.

Lemma 3. ∀y1, y2 ∈ [m+ 1] with y2 ≥ y1, ∀x1, x2 ∈ [λ], g(x2, y2) ≤ g(x1, y1)

Proof: If y2 = y1 the proof is trivial, if y2 > y1 the proof is a concatenation of axioms: first we
note that g(x2, y2) ≤ g(0, y2) because of (2). Then we note that y2 ≤ y1 + 1 (because y2 > y1 implies
that the difference between them is at least 1 since they are both integers). From this it follows that
g(0, y2) ≤ g(0, y1 + 1) and (3) states that g(0, y1 + 1) ≤ g(λ, y1). Then we note that x1 ≤ λ and thus
according to (2) g(λ, y1) ≤ g(x1, y1)

We denote for all generations t: Xj
t := |Pt ∩ A+

j−1| as the number of individuals in the level j or
higher. Note that we sample each individual per generation t + 1 independently from the distribution
D(Pt). Let pjt+1 := Pr(y ∈ A+

j−1 | D(Pt)) be the probability of sampling an individual in level j or

higher for generation t+ 1. It follows that Xj
t+1 is binomially distributed with chance pjt+1.

Xj
t+1 ∼ Bin(λ, pjt+1)

Given the level constant γ0, we define Yt as:

Yt := min{j ∈ [m] | Xj+1
t < γ0λ}

If we are at level j and Xj+1
t = 0 then (G1) states that pj+1

t+1 ≥ zj . Moreover, if for a γ ∈ (0, γ0) we have

Xj+1
t ≥ γλ then (G2) states that pj+1

t+1 is also greater or equal to γ(1 + δ).

We define the distance function as: g(XYt+1
t , Yt) := g1(XYt+1

t , Yt) + g2(XYt+1
t , Yt) with:

g1(k, j) := (m− j) ln(1 +
δ

7
2λ

144
√

2
)− ln(1 +

δ
7
2 k

144
√

2
)

g2(k, j) :=
1

1− (1− zj)λ

(
1− δ

9
2λ

355

)k
+

m∑
i=j+1

1

1− (1− zj)λ

g1 will be used to provide a lower bound for the expected drift when the number of individuals in the
population with a higher level than the current level Yt is greater than zero, else we use g2.

Lemma 4. For any constant c > 0 and any integers λ and m, and for x ∈ [λ] and y ∈ [m], the function
g′1(x, y) := (m− y) ln(1 + cλ)− ln(1 + cx) is a level function.

10



Proof: We will prove the lemma by proving all the axioms:

1. ∀(x, y) ∈ [λ]× [m], g′1(x, y + 1)− g′1(x, y) =

(m− y − 1) ln(1 + cλ)− ln(1 + cx)− (m− y) ln(1 + cλ) + ln(1 + cx) = − ln(1 + cλ) < 0

2. ∀(x, y) ∈ [λ− 1]× [m+ 1], g′1(x+ 1, y)− g′1(x, y) =

(m− y) ln(1 + cλ)− ln(1 + c(x+ 1))− (m− y) ln(1 + cλ) + ln(1 + cx) = ln(
1 + cx

1 + cx+ c
) < 0

3. ∀y ∈ [m], g′1(λ, y) = (m− y) ln(1 + cλ)− ln(1 + cλ) = (m− (y + 1)) ln(1 + cλ) = g′1(0, y + 1)

Lemma 5. For any number c > 0 and any integers λ and m, and for x ∈ [λ], y ∈ [m] and k ∈ (0, 1)

and any qj ∈ (0, 1], the function g′2(x, y) := (1−k)x
qy

+
∑m
i=y+1

1
qi

is a level function.

Proof: The proof will be done in the same way:

1. ∀(x, y) ∈ [λ]× [m], g′2(x, y + 1)− g′2(x, y) =

(1− k)x

qy+1
+

m∑
i=y+2

1

qi
− (1− k)x

qy
−

m∑
i=y+1

1

qi
=

(1− k)x

qy+1
− (1− k)x

qy
− 1

qy+1
< 0

2. ∀(x, y) ∈ [λ]× [m], g′2(x+ 1, y)− g′2(x, y) =

(1− k)x+1

qy+1
+

m∑
i=y+1

1

qi
− (1− k)x

qy
−

m∑
i=y+1

1

qi
=

(1− k)x+1

qy+1
− (1− k)x

qy+1
< 0

3. ∀y ∈ [m], g′1(λ, y) =
(1− k)λ

qy
+

m∑
i=y+1

1

qi
>

m∑
i=y+1

1

qi

=
(1− k)0

qy+1
+

m∑
i=y+2

1

qi
= g′2(0, y + 1)

It follows from a combination of lemma 2, 4 and 5 that our potential function g is a level function.

4.2.2 Expected drift.

We denote the drift per timestep as ∆t+1 := g(XYt+1
t , Yt)−g(X

Yt+1+1
t , Yt+1). The level of the population

can either drop a level, remain the same or gain a level. We calculate the expected drift as the sum of
the expected drift when we drop a level and the expected drift when we do not:

Et[∆t+1] = (1− Pr(Yt+1 < Yt)) · Et[∆t+1 | Yt+1 ≥ Yt] + Pr(Yt+1 < Yt) · E[∆t+1 | Yt+1 < Yt]

4.2.3 Negative Drift.

Note that Yt+1 < Yt means that we have dropped a level, going in the wrong direction is callednegative
drift. We drop a level if and only if less than γ0 of the population is at level Yt or higher meaning:
XYt
t+1 < γ0λ. We will try and estimate these bounds. Note that lemma 1 states that if we are at level

Yt, the expected average sampled individuals in level Yt is lower bound by (1 + δ)γ0λ. Noting that the
number of individuals per generation are sampled from a binomial distribution, we can use multiplicative
Chernoff bounds to calculate the odds of sampling less than a factor δ

δ+1 away from the average. If it is
nearly impossible to drop such a small factor, it will be nearly impossible to drop a level.

11



Pr(Yt+1 < Yt) = Pr(XYt
t+1 < γ0λ) ≤ Pr

(
XYt
t+1 < (1− δ

δ + 1
)(1 + δ)γ0λ

)
≤ EXP [

−δ2(1 + δ)γ0λ

2(1 + δ)2
] ≤ EXP [

−δ2γ0λ
4

]

This is where we need condition (G3), substituting the lower bound for the population size into the
equation grants:

EXP [
−δ2γ0λ

4
] ≤ EXP [2 · ln

(
128m

γ0δ3z∗

)
] =

(
δ3γ0z∗
128m

)2

<

(
δ9/2

335

)( z∗
46m

)
(2)

We also provide a bound using the bound e−x < 1
x instead.

EXP [
−δ2γ0λ

4
] = EXP [

−δ2γ0λ
8

] · EXP [
−δ2γ0λ

8
] <

(
δ3γ0z∗
128m

)
·
(

8

δ2γ0λ

)
≤
(

δ

16mλ

)
(3)

Both bounds give a very low probability of the event Yt+1 < Yt and thus we can choose a very pessimistic
value for the expected value of the drift since it won’t have a major effect on the overall expected drift.
We now note that because g is a level function and the lowest level is 1, g is always bounded from above
by g(0, 1). Moreover filling in these values and noting that 1− (1− zj)λ ≥ 1− eλzj ≥ λzj/(1 +λzj) gives
an upper bound for g(0, 1):

g(0, 1) ≤ m ln

(
1 +

δ
7
2λ

144
√

2

)
+

m∑
j=1

1

1− (1− zj)λ
(4)

≤ m ln

(
1 +

δ
7
2λ

144
√

2

)
+m+

m∑
j=1

1

λzj
(5)

≤ m

(
ln

(
δ

7
2λ

144
√

2
+ 1

)
+ 1 +

1

λzj

)
(6)

≤ m

(
δ

7
2λ

144
√

2
+

2

z∗

)
(7)

We now use the bound on g(0, 1) and the bounds found in 2 and 3 to produce a lower bound on the
negative drift:

Pr(Yt+1 < Yt)E [∆t+1 | Yt+1 < Yt] ≥ −g(0, 1)Pr(Yt+1 < Yt) (8)

≥ −

(
Pr(Yt+1 < Yt)

(
2m

z∗

)
+ Pr(Yt+1 < Yt)

(
δ

7
2λm

144
√

2

))
(9)

≥ −

((
δ9/2

335

)( z∗
46m

)(2m

z∗

)
+

(
δ

16mλ

)(
δ

7
2λm

144
√

2

))
(10)

≥ −
(

2

46

)(
δ

9
2

355

)
−

(
δ

9
2

16 · 144
√

2

)
(11)

4.2.4 Positive drift.

We now look at the expected value gained when not dropping a level, so called positive drift. In this case
Yt+1 ≥ Yt and from lemma 3 it follows that for any X ∈ [λ]:

g(X
Yt+1+1
t+1 , Yt+1) ≤ g(X,Yt) = g(XYt+1

t , Yt)

12



We can substitute this inequality into the expected drift:

E [∆t | Yt+1 ≥ Yt] = E
[
g(XYt+1

t , Yt)− g(X
Yt+1+1
t+1 , Yt+1) | Yt+1 ≥ Yt

]
≥ E

[
g(XYt+1

t , Yt)− g(X
Yt+1+1
t+1 , Yt) | Yt+1

]
We again distinguish two cases. In the first case the number of individuals in a lever higher than the
current level is zero, XYt+1

t = 0 and the case where that is not the case.

XYt+1
t = 0: In this case we prove that g1 has a drift greater than zero and provide a lower bound for the

drift using g2. The number of individuals in a level higher than Yt can not drop below zero so we know
that XYt+1

t ≤ XYt+1
t+1 . We also know that the first part of the potential function g1 is a level function

and so it follows from the first axiom that:

E
[
g1(XYt+1

t , Yt)− g1(XYt+1
t+1 , Yt) | Yt+1 ≥ Yt

]
≥ 0

If we gain no individuals in the next level we have an expected drift of zero so we can derive an expected
bound for g2 by calculating the odds that the number of individuals in the next level or higher will be
greater or equal than zero. We note that because we know that XYt+1

t+1 is binomially distributed it follows
that:

Pr(XYt+1
t+1 ≥ 1) = 1− (1− pYt+1

t+1 )λ ≥ 1− (1− zYt)λ

Now using the fact that g2 is also a level function we get:

E
[
g2(XYt+1

t , Yt)− g2(XYt+1
t+1 , Yt) | Yt+1 ≥ Yt

]
≥ Pr(XYt+1

t+1 ≥ 1)(g2(0, Yt)− g2(1, Yt)) ≥
δ

9
2

355

XYt+1
t+1 > 0: In this case we give a lower bound for g1 using lemma 26 in [8]:

Lemma 6. (Lemma 26 in [8])
If for some δ ∈ (0, 1] and i > 0, X ∼ Bin(λ, p) with p ≥ (i/λ)(1 + δ),
then:

E

ln

1 + δ
9
2X

144
√

(2)

1 + δ
9
2
i

144
√

(2)


 ≥ δ

9
2

355

Using this lemma gives:

E
[
g1(XYt+1

t , Yt)− g1(XYt+1
t+1 , Yt)

]
= E

[
ln

(
1 +

δ
7
2

144
√

2
XYt
t+1

)
− ln

(
1 +

δ
7
2

144
√

2
XYt
t

)]

= E

ln

1 + δ
7
2

144
√
2
XYt
t+1

1 + δ
7
2

144
√
2
XYt
t

 ≥ δ
9
2

355

We now show that the drift of g2 is greater or equal to zero. Note that XYt+1
t is known and constant.

E
[
g2(XYt+1

t , Yt)− g2(XYt+t
t+1 , Yt)

]
=

1

1− (1− zj)λ
E

(1− δ
9
2λ

355

)XYt+1
t

−

(
1− δ

9
2λ

355

)XYt+1
t+1


=

1

1− (1− zj)λ

(1− δ
9
2λ

355

)XYt+1
t

− E

(1− δ
9
2λ

355

)XYt+1
t+1

 ≥ 0

So for all cases we have a lower bound for the positive drift:

(1− Pr(Yt+1 < Yt))E[∆t+1 | Yt+1 ≥ Yt] ≥
(

1− 1

16

)(
δ

9
2

355

)
(12)

13



4.2.5 Using the lower bounds.

We can now compute a lower bound for the expected drift using the lower bounds for the negative drift
and the positive drift found in (8) and (12).

E[∆t+1] = Pr(Yt+1 < Yt)E[∆t+1 | Yt+1 < Yt] + (1− Pr(Yt+1 < Yt))Et[∆t+1 | Yt+1 ≥ Yt]

≥
(

1− 1

16

)(
δ

9
2

355

)
−
(

2

46

)(
δ

9
2

355

)
−

(
δ

9
2

16 · 144
√

2

)

≥
(

1− 1

16

1

23
− 1

9

)(
δ

9
2

355

)
>

δ
9
2

454

We know that the potential function is upper bound by g(0, 1) in (6). We also have a lower bound for
the expected drift. This allows us to use the additive drift theorem to create an upper bound for the
expected stopping generation. The level based analysis assumes that one makes λ function calls per
generation and thus we multiply by λ to get the expected stopping time E[T ]:

E[T ] ≤ λg(0, 1)

∆min
≤
(

454

δ
9
2

)mλ(ln

(
1 +

δ
7
2λ

144
√

2

)
+ 1

)
+

m∑
j=1

1

zj


4.3 A recombination version of the Level Based Theorem.

[5] and [8] also present a version of the Level Based Theorem that applies to algorithms using recombi-
nation (the papers call it crossover). Technically GOMEA algorithms do not make use of mutation, only
of recombination and thus we look at the possibility of using the recombination version of the theorem.
This version uses five axioms: C1 to C5.

• C1 describes a lower bound sj of the chance of mutating an individual from level j into a level
higher than j.

• C2 describes a lower bound P0 of the chance to mutate an individual in level j into a level that is
not worse than j.

• C3 a lower bound ε on the chance of creating an individual in a level higher than j when crossing
an individual in j with an individual in a level higher than j.

• C4 a lower bound on the chance of selecting the fittest part of the population.

• C5 follows from C1-C4 and describes a lower bound on the population size λ.

These axioms are used to produce a lower bound for the expected runtime E[T ] which is almost similar
to the one provided by the level based theorem. The adjusted version of the Level Based Theorem is
proved in both [5] and [8] by transforming C1−C5 into G1−G3. This version is however, not applicable.
We will provide a small sketch of the proof to explain why:

• G1 is constructed in the following way: we want a lower bound zj on the chance that we sample
an individual in a level higher than the current level j. The proof states that this can happen in
two ways: we either select two parents with one in a level higher than j, and get an individual in
a level higher than j with chance ε (C3), if that happens the mutation operator must simply not
ruin the new offspring with chance P0 (C2). If we select two parents in level j, we get offspring in
level j with chance ε (C3) and then mutate into a level higher with a chance lower bound by cj
(C1). These two chances can form a new version of G1.

• G2 is constructed by looking at the chance of not destroying a good solution during crossover
presented in (C3) and at the selection pressure described in (C4).

• The bounds in C5 just imply the bounds in G3

14



The proof shows that the recombination version of the Level Based Theorem cannot accurately model
the behavior of recombination algorithms. The proof only looks at the chance that the crossover does
not ruin the solution: G1 is constructed by assuming that we already have a good individual and looking
at the odds of keeping it, or by looking at the chance that the crossover does not ruin any individual
and that mutation then makes progress. This analysis never looks at the chance that the crossover
operator generates a better solution on its own. It is not surprising that this analysis provides similar
bounds to the Level Based Theorem since it practically models the same behavior: progress through
mutation and convergence to that progress. This approach will never be able to correctly model the
behavior of crossover algorithms. Crossover algorithms are used on domains that contain local optima.
Mutation operators have a hard time breaking through local optima and once the algorithm has reached
a local optimum the chance that the mutation operator breaks through might even be zero and the
only hope for progress in these cases is the crossover operator. If your domain contains such local
optima, this version of the Level Based Theorem will provide an upper bound of infinite time because
it neglects the chance that the crossover operator makes progress on its own. That makes this version
unsuitable for use, therefore we choose to make adjustments to the original Level Based Theorem when
analyzing GOMEA algorithms. The reason that this version cannot model the behavior of recombination
algorithms accurately is because the Level Based Theorem itself has problems modeling the behavior of
two separate operators, more on this will be in section 6.

4.4 Adjustments to the theorem.

Because we cannot make use of the recombination adjustments, this paper will introduce its own ad-
justments to the Level Based Theorem that improve the quality-of-life when applying the Level Based
Theorem. The Level Based Theorem has three axioms G1, G2, G3. Two axioms have parameters which
you can tweak and the third axiom G3 follows from the values of the other two. Calculating G1 and G2
and the following G3 for every single GOMEA algorithm on every domain is a large task but applying
Level Analysis on only GOMEA algorithms allows us to make a few adjustments to the Level Based
Theorem to improve the quality of life when applying it. Each of the axioms in the Level Based Analysis
tries to model a certain aspect of an EA. G1 tries to model mutation and looks for the minimal chance
of having a successful mutation z∗. G2 models the effects of the selection operator with a parameter
δ and G3 just ensures that the population is large enough for the proof to work. GOMEA algorithms
do not have a specific mutation/selection phase only accept improvements. Because the algorithm only
makes use of one operator and not two or three, having two separate tweak variables z∗ and δ seems
redundant. This paper presents adjustments to the Level Based Theorem that reduce the amount of
tweaking parameters. We will keep G1 intact and rename it axiom I and alter the second and third
axiom using the properties of the GOMEA algorithms to create an adjusted version of theorem 3:

4.4.1 The second axiom.

The second axiom, G2, requires that if γ0 of the population is at level j or higher and γ of the population
is above level j, then we create an individual in a level higher than j with a chance lower bound by
(1 + δ)γ. The elitism of the algorithm assures that if we pick an individual with a level higher than j, we
are guaranteed to get an individual in a level higher than j. This will happen γλ times per generation.
In all the other cases ((1− γ) of the time) we have a lower bound chance of z∗ to find an improvement.
This leads to a chance of: γ(1 + 1−γ

γ )z∗ to get an improvement. Now note that γ is upper bound by γ0
and that gives us a lower bound for G2:

∀j ∈ [m− 1],∀t if |Pt ∩A+
j−1| ≥ γ0λ and |Pt ∩A+

j | ≥ γλ then

Pr(y ∈ A+
j | y ∈ D(Pt)) ≥ (1 +

(1− γ0)

γ0
z∗)γ ⇒ δ =

1− γ0
γ0

z∗

15



4.4.2 The third axiom.

The third axiom, G3, requires that for z∗ := min{zj | j ∈ [m]} the population size λ satisfies: λ ≥(
8

γ0δ2

)
ln
(

128n
γ0δ3z∗

)
. The first intuition is to use the δ that we have just set for G2 in this axiom, but

that leads to a problem: filling in our value for δ ensures that the population size λ must be greater

or equal to:
(

8
c1·z2∗

)
ln
(

128n
c2·z4∗

)
for some constants c1, c2. This makes the population size almost always

too large if the smallest chance for sampling a good individual is even moderately low. Assume that we
have an elitist algorithm that has a chance of 1/n to gain a level each generation. If we have n levels,
we assume to be done in roughly O(n2) generations. But if z∗ = 1/n, the population size would have
to be of O(n2 ln(n)). When you note that per generation GOMEA algorithms tend to do n function
evaluations for every individual in the population, we would have order n3 ln(n) function calls in one
generation alone, making this population size not feasible. The elitism of the EA algorithms allows us
to make a different adjustment to G3:
Intuitively, G3 ensures that the population must be large enough to ensure that the odds of dropping
a level are near zero. But the elitism of the algorithm already ensures that we will never drop a level.
The GOMEA algorithms do require a certain minimal population size. The GOMEA algorithms have no
actual form of mutation so if there exists an index i for which all the individuals of the population have
no 1, the algorithm can never terminate. The population size λ must be large enough to ensure that for
every string index i, the odds of having a zero at i for every individual in the starting population is near
zero. Usually when a genetic algorithm takes too long we terminate and start over. We do not want this
to happen too often but in practice we’ll gladly accept a chance of 1 in nk per index to have to start
over. Assume we initialize the population with a random chance 1

c to have a 1 at any index. We now
look at the odds that every individual in the population receives a zero bit:

Pr(all zero bits) = (1− 1

c
)λ =

1

nk
⇒ λ =

k ln(1/n)

ln(1− 1
c )

From this it follows that if we pick λ to be greater or equal to O(ln(n)) the odds of never finding an
improvement and having to restart are small enough.

4.4.3 The Adjusted Level Based Analysis.

The last adjustment we must make is that the GOMEA algorithm does not do λ function calls per
generation. Per individual, GOMEA algorithms traverse the entire FOS structure F and can do a
function evaluation per item in the FOS structure. Therefore we mustn’t multiply the expected number
of generations by λ but rather by λ·|F|. This all leads to an adjusted version of the Level Based Theorem
that we’ll use for the analysis of GOMEA algorithms:

Theorem 4. Adjusted Level Based Analysis.
Given a problem with problem size n, a partition {A0, A1, ..., Am} of the search space Ω an algorithm with
population size λ and a population per generation Pt, define the stopping time T := {tλ | |Pt ∩Am| > 0}
to be the first time (with time in the number of function calls) that an optimal element in appears in Pt.
If there exist z0, ...zm ∈ (0, 1] and γ0 ∈ (0, 1) and such that for any population P :

I) ∀j ∈ [m],∀t if |Pt ∩A+
j−1| ≥ γ0λ then Pr(y ∈ A+

j | y ∈ D(Pt)) ≥ zj

II) The population size λ satisfies: λ ≥ O (ln(n))

Then with high probability E[T ] ≤ |F|

(
454

z
9
2
∗

)mλ(1 + ln(1 +
z
7/2
∗ λ

203
)) +

∑
j∈[m]

1

zj



16



4.5 Applying the Level Based Theorem on Onemax.

We will now calculate an expected upper bound for the runtime of the Univariate GOMEA algorithm
on the Onemax domain. In Onemax we have a fitness function f that counts the number of one bits
in a string of length n. The optimum x∗ is found when the string consists entirely out of ones making
f(x∗) = n. The population is randomly generated with a chance 1

c to have a one bit at a given index in
a given individual. In most cases c = 2 and benchmark algorithms tend to solve this Onemax problem
in O(n ln(n)) steps. We will try and create bounds that match this benchmark. Because the algorithm
randomly selects a donor per index, the odds of making an improvement for a given parent and for a
given bit index where the parent has a zero, is at first equal to the beginning distribution: 1

c . During
the process the number of one bits in the population will increase but those new one bits will not follow
uniform random distribution. This is because if we make an improvement and increase the number of
ones at a certain index i, the odds that the next improvement is at that index is greater because the
algorithm deterministically iterates over all the indexes of all the members of the population. This is a
problem, since the level based theorem asks for a random distribution to sample the new population from.
We solve this by only looking at the original distribution for opportunities for improvement. If we sample
an individual and we want to improve a certain index with a zero, the odds of selecting an individual
with a one bit at that location is given by only looking at the original (unchanging) distribution hence
always giving the chance 1

c for improvement for that index of that individual.

4.5.1 Normal level based theorem.

We define the fitness level Aj := {x | f(x) = j} giving us m = n fitness levels. We now look at the odds
of making an improvement. Assuming the population is at level j the odds of making an improvement
zj are lower bound by one minus n− j failures:

zj = 1− (1− 1/c)(n−j) ⇒ z∗ =
1

c
(13)

Filling in z∗ = 1/c and λ = O ln(n) for I and II we get: E[T ] ≤ O
(
|F| · c9/2 · n ln(n) ln(c7/2 ln(n))

)
iterations. We note that the only FOS structures in F are the n string indexes so we get |F| = n, if c is
a constant and not dependent on n we get: E[T ] ≤ O

(
n2 log(n) log(log(n))

)
. These bounds are higher

than the set benchmark. These bounds however, are a direct result of the current approach: we always
do n function calls per iteration and have a population of ln(n) individuals, if we also have n levels then
the expected upper bound will be at least n2 ln(n) and that is too high. If we want any improvement,
we need to redefine the levels.

4.5.2 Redefining levels.

For simplicity in writing we denote b(x) to be the function indicating the amount of ’bad’ indexes in
a candidate solution as b(x) = n − f(x). Now for a number r ≥ 1 we define the fitness levels A as
Aj := {x | n · ( 1

r )j ≤ b(x) < n · ( 1
r )j+1}. Note that this definition implies that the maximal amount of

levels m is reached when ( 1
r )m = 1

n implying that m = ln(1/n)
ln(1/r) = ln(n)

ln(r) . We want to keep r as high as

possible to reduce the amount of levels that we create.

Assume we have an individual at level j. Worst case we have the maximal amount of ’bad genes’:
b(x) = n( 1

r )j . To create an individual in the next level we would have to make at least n( 1
r )j−n( 1

r )j+1 =
(1 − 1

r ) · n( 1
r )j improvements. Here we see that the larger r is, the greater the leap will be before we

cross a level. If the leap is too large then the worst case chance to make the leap z∗ becomes too small.
We also noted that r must be as large as possible in order to reduce the number of levels m. We demand
that r is small enough to ensure that (1 − 1

r ) < 1
c and then choose r to be large enough within that

frame. If we look to determine the zjs and z∗ to satisfy I, we must look the odds of gaining a level.
We can make an improvement when we sample a parent which has a one at that index. Just as in the
normal case, this chance is lower bound by 1

c . Noting that we can make n( 1
r )j improvements this gives

us a binomial distribution Bin(n( 1
r )j , 1c ). We can use this binomial distribution to calculate an upper

bound for the chance of not gaining a level using once again Multiplicative Chernoff bounds. Note that
the expected value is µ = p · n( 1

r )j .

17



P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 (14)

µ is the expected value being p · n( 1
r )j and filling the rest in gives: (1− 1

r ) · n( 1
r )j = (1− δ)p · n( 1

r )j ⇒
δ = 1 + 1

rp −
1
p . Substituting these values in the equation gives:

Pr(X ≤ (1− 1

r
) · n(

1

r
)j) ≤ EXP [−

(1 + 1
rp −

1
p )2( 1

r )j · pn
2

] (15)

Note that this is smallest when j is largest, filling in the maximal value for j, m = ln( 1
n )/ ln( 1

r ) grants
us:

Pr(X ≤ (1− 1

r
) · n(

1

r
)j) ≤ EXP [−

(1 + 1
rp −

1
p )2p

2
] (16)

We can now fill in the axioms of the adjusted theorem:

• I) z∗ = 1− EXP [− (1+ 1
rp−

1
p )

2p

2 ]

• II) λ = O (ln(n)).

And m = ln(n)/ln(r). Filling in any fitting value for r will result in an upper bound. The benchmark
form of Onemax has c = 2. In this case r is some small constant and m = O(ln(n)) and the expected
running time E[T ] will be upper bound by O (n ln(n) · ln(n) ln(ln(n))) which is still higher than the
benchmark time of O (n ln(n)). Even if 1

c would be very close to 1 and we would be able to choose

r = O (ln(n)) we would only get m = ln(n)
ln(ln(n)) and E[T ] ≤ O

(
n ln(n)

ln(ln(n)) ln(n) ln(ln(n))
)

= O
(
n ln2(n)

)
and still be a factor ln(n) off. This also seems to be the maximal potential for the Level Based Theorem:
we have a population size λ of O (ln(n)) and worst case do order n function calls per iteration. The only
way that the level based theorem could achieve an upper bound of O (n ln(n)) is if we were to have a
constant amount of levels and would get there in a constant number of generations but we cannot model
that using the Level Based Theorem without z∗ getting too high.

5 Other methods to determine upper bounds.

We have applied the Level Based Theorem to the Univariate GOMEA and the best upper bound we have
gotten was O (n ln(n)λ) = O

(
n ln(n)2

)
, if we initialize the population with a chance near one to get a 1

bit at a given index. We have noted before that we suspect the Univariate GOMEA to have a runtime
of O (nλ) and that we thus suspect the Level Based Theorem to give too high bounds. This section will
use another general theory called Martingale theory to show that this is the case and will also provide a
direct proof.

5.1 Martingale theory.

One of the things that makes the Level Based Theorem valuable is that it presents a general framework to
determine an upper bound for any algorithm. The theorem almost only looks at the odds of improvement
and that makes it applicable to any EA. One could make the argument that having only a little too
high bounds is OK if your framework provides generality. Therefore we determine the upper bound of
the Univariate GOMEA algorithm using another general theory, Martingale theory. Martingale theory
is a model similar to Markov chains that predicts future winnings based on past events. We will use
Martingale theory to model the progression that the Univariate GOMEA makes per iteration and will
then use a general inequality, Azuma’s inequality, to get an upper bound for the expected runtime.

18



5.1.1 Modeling Univariate GOMEA.

The Level Based Theorem ran into the problem that it had a population size λ of O (ln(n)) and that
we had to assume that we do O(n) function evaluation calls per iteration. That means that if we want
to have tighter bounds we need to have a near constant number of generations and that could not be
achieved within the framework. Therefore we try a different approach and we model the progression of
the Univariate GOMEA per iteration and not generation.

We note that in the Univariate model, all the indexes (or problem variables) improve independently
from the others. Therefore we look at only one bit position and for the argument to work we assume that
we only evaluate if the index still has a zero bit. In the end of the section we will give a justification for
this assumption and note that this assumption leads to a shorter and better proof. We provide an upper
bound on the runtime by showing that for any index (or problem variable) it takes order λ function
evaluations to have the entire population have a 1-bit at that index. If that happens n times the entire
population has converged to the optimal solution and thus the algorithm terminates in O (nλ) function
evaluations.

5.1.2 The proof.

Assume we have population size λ and choose an arbitrary index. Denote Xt to be the number of
individuals in the population that has a one at that index at a given iteration t. We only iterate over
zero bits, so per iteration we can either improve Xt by one by selecting a donor which already has a one
at that position, or remain the same. It follows that:

E[Xt+1 | Xt] = (1 +
1

λ
)Xt (17)

We now define Yt := (1 + 1
λ )−kXt it follows that E[Yt | Y0] = Y0 and thus we have defined a martingale.

We now denote T as the first time that the entire population only consists out of one bits, T := min{t |
Xt = λ}. Note that T is again a stopping time. We prove that the odds of T being of greater order than
λ are near zero. We look at the odds of T being greater than an arbitrary N and then apply Azuma’s
inequality to give an upper bound near zero when N approaches λ.

Theorem 5. Azuma’s inequality
Suppose Yk is a martingale and for all k ≤ N , |Yk − Yk−1| < ck.
Then almost surely for any N :

Pr(YN − Y0 ≥ 0) ≤ EXP

[
−t2

2
∑N
k=1 ck

]
We first look at the maximal difference between Yk+1 and Yk:

|Yk+1 − Yk| = |(1 +
1

λ
)−k−1Xk+1 − (1 +

1

λ
)−kXk|

= |((1 +
1

λ
)−1 − 1)(1 +

1

λ
)−kXk + (1 +

1

λ
){0, 1}|

≤ |((1 +
1

λ
)−1 − 1)(1 +

1

λ
)−kXk|

≤ 1

(1 + λ)
(1 +

1

λ
)−kλ

≤ (1 +
1

λ
)−k = ck

We now look at the chance of T being greater than N . If T is greater than N it means that after N
steps the population still has not fully converged and that XN is thus smaller than λ.

Pr(T > N) = Pr(XN ≤ λ) = Pr(YN (1 +
1

λ
)N < λ)

= Pr(YN ≤ λ(1 +
1

λ
)−N ) = Pr(YN − Y0 ≤ −(Y0 − λ(1 +

1

λ
)−N )

19



These two equations allow us to apply Azuma’s inequality with t = −(Y0 − λ(1 + 1
λ )−N ) and ck =

(1 + 1
λ )−k. We also note that

∑
ck is a geometric series.

Pr(T > N) =≤ exp

(
−t2

2 ·
∑N
k=1 c

2
k

)

= exp

(
−(Y0 − λ(1 + 1

λ )−N )2

2 ·
∑N
k=1(1 + 1

λ )−k

)

= exp

−(Y0 − λ(1 + 1
λ )−N )2

2 · 1−(1+
1
λ )
−N

1
λ


= exp

(−(Y0 − λ(1 + 1
λ )−N )2

2λ(1− (1 + 1
λ )−N )

)
If we recall the previous analysis made on the runtime we know that we must be done in N = O(λ)

timesteps. Noting Y0 = X0 = λ/c for c constant so it follows that:

Pr(T > N) ≤ O

(
exp

(
−(( 1

c − (1 + 1
λ )−λ)λ)2

2λ(1− (1 + 1
λ )−λ)

))
(18)

Now noting that (1 + 1
λ )−λ will go to zero for λ large enough we get: Pr(T > N) ≤ O (exp (−λ)). If λ

is large enough this makes the chance of not terminating after order λ evaluations near zero and thus
E[T ] ≤ O (nλ) = O (n ln(n)) .

Justifying only evaluating zeroes. This analysis worked because we assumed that we only did a
function evaluation when we encountered a parent with a zero bit. The reason why we can assume this,
is the following: if for any index i we select a donor with the same value at i, we do not need to make
a change and thus do not need to evaluate. So we evaluate in two cases: When we have a 1 bit and the
donor has a zero bit, or the other way around. On average throughout the runtime of the algorithm,
these chances are equally great and so if we only look at evaluating one bits, we can take those number
of evaluations and multiply them by two. This realization leads to the following new proof for a runtime
of O (n ln(n)) function calls: Note that we only evaluate when either the parent has a zero bit and the
donor a one bit, or the other way around. On average, the odds of either happening are the same. So on
average, we have a chance of 1/2 per function call to make an improvement. Noting that we have order
n bit positions per order ln(n) individuals leads to having an expected runtime of E[T ] = O (n ln(n))
function evaluations.

6 Discussion on the Level Based Analysis

This paper has applied the Level Based Theorem and has compared the received bounds with bounds
derived by other methods. Doing this gave insight in the current problems with the Level Based Theorem.
This section will discuss the problems of the theorem in regard to accuracy, both accuracy in general
and the difficulty of obtaining accuracy on z∗, the problems that come with the definition of levels and
the problems that arise when using the general level based theorem on specific tailor-made algorithms.

6.0.1 The accuracy of the Level Based Theorem.

The theorem has two main problems regarding accuracy. First we show that the theorem gives too high
bounds in general. This forces one to have very tight bounds on all the variables of the theorem and
that leads to the second problem, the difficulty of finding tight bounds on z∗.

20



When applying the Level based theorem, assuming that we initialize a population with a chance near
1 to get a 1 bit at a given index, we still got bounds that were an order ln(n) off. One of the reasons for
this is that the current version theorem has too large constants. We already briefly mentioned that in
section 4.4 when adjusting the third axiom. The analysis is based on four main parameters: the number
of levels m, the lower bound chance of making an improvement z∗, a selection operator parameter δ and
a tweaking parameter γ0. If those four are set then according to the level based theorem we know a
lower bound for the population size λ and an upper bound for the expected runtime E[T ]:

E[T ] ≤
(

454

δ
9
2

)mλ(1 + ln(1 +
δ7/2λ

203
)

)
+
∑
j∈[m]

1

zj

 (19)

Whilst making adjustments in section 4.4 we noted that it was reasonable to denote that δ = z∗. Now
assume that we have a combinatorial optimization problem with size n and an elitist algorithm that
always has a chance 1

n to gain a level. It is clear to see that this would give an expected runtime of order
n2λ. We note that in the case of an elitist algorithm, we are not bound by G3 and we will thus leave
our population size to be λ and unspecified. Filling in the Level Based Analysis with z∗ = δ = 1

n and
m = n gives:

E[T ] ≤ O
(
n

11
2 λ ln(λ)

)
(20)

The upper bound is more than a factor n3 off the actual expected upper bound. There is currently a
version of the Level Based Theorem being developed that has a tighter upper bound for the expected
runtime [13]. This version states:

E[T ] ≤
(

8

δ2

)mλ(1 + ln(1 +
δλ

2
)

)
+
∑
j∈[n]

1

zj

 (21)

Filling in z∗ = δ = 1
n and m = n in this version yields a better result:

E[T ] ≤ O
(
n3λ ln(λ)

)
(22)

But is still more than an order n off.

6.0.2 The difficulty of determining z∗.

z∗ is a lower bound on the chance of sampling an improvement for any level. Determining a correct z∗ is
a difficult process of balancing the number of levels m with z∗. This is because the Level Based Theorem
looks at only the chance of breaking out of a level, so the algorithm always has to have at least order
m generations. If we know that our algorithm can go faster than that, we need to redefine the levels to
reduce m (just as we did in section 4.5.2). But redefining the levels has severe consequences for z∗ and
that can make getting tight bounds on z∗ even more difficult. We now know that the theorem has a
tendency to give slightly too high bounds in general. This means that because the general theorem is a
factor off, any inaccuracy on z∗ will be multiplied by that factor. The fact that determining tight bounds
for z∗ is inherently a difficult balance between z∗ and m, that the user often has to deal with difficult
algebraic methods to get those bounds (like multiplicative Chernoff bounds) and that these bounds have
to be very tight, make it that it is often easier to determine the runtime of the algorithm with a direct
proof.

6.0.3 Problems that arise with levels.

There are two main problems that arise when using ’fitness levels’ in the way the Level Based Theorem
does. The first one is that you have to choose between modeling leaps or steady progress and the second
one is that you often inaccurately model the domain.

21



As we mentioned earlier, the theorem assumes that you traverse all levels. Specifically it provides
no tools to model any leaps in fitness value that your algorithm might make, except for redefining the
levels such that the entire leap is one level. When you redefine a level to be larger than one fitness value,
you can only look at the chance to traverse that large level in one go, so any steady progress that your
algorithm might make in that level has to be neglected. This becomes a larger problem when dealing
with algorithms that have multiple operators that can make improvements. Take a canonical crossover
algorithm as an example: the recombination operator tends to make large jumps in fitness values whereas
the mutation operator tends to make steady progress. When you define a level, you must choose whether
the level is large, and thus only the recombination operator has a chance to break through or whether
the level is small and you fully rely on the steady progress of the mutation operator. In this way, you
lose some of the effectiveness of the algorithm when modeling it. The problem becomes even greater
when you have more than two operators that can make an improvement. The Linkage Tree GOMEA
recombines based on a binary tree of problem variables. Each level of depth of the tree is able to make
a leap in fitness of a different size, yet the theorem will only allow one depth level of the entire tree to
be fully effective per fitness level.

Figure 1: an illustration of how we collapse other points to local optima.

The second problem with the levels is that they are defined on fitness value, not on what the solutions
with those fitness values look like. This becomes a problem when dealing with local optima. Assume
that we have only one mutation operator, and a continuous domain with a local optimum xopt at fitness
value 5 and several other local optima. It is hard for a mutation operator to break out of a local optimum
so when on the local optimum, it will be hard for the algorithm to go from fitness 5 to 6. The domain
might contain many more points that have fitness value 5 and that pose no difficulty for the algorithm to
make progress. Because the levels are based on fitness value alone, all those points are collapsed together
with xopt in one fitness level. The Level Based Theorem looks at the lower bound chance to get an
improvement out of a single level, so we must take the very low chance to get out of xopt. Effectively, we
assume that every point with fitness value 5 behaves like xopt making the domain harder than it actually
is. This way of modeling levels and using those levels leads to multiplying the number of local optima
in your model, possibly resulting in higher bounds on the runtime.

22



6.1 Future Work.

Section 2.3 introduces three forms of GOMEA algorithms: Univariate, Marginal Product and Linkage
Tree. This paper provides upper bounds for only the Univariate GOMEA algorithm on the Onemax
domain but it would be interesting to know accurate upper bounds for other forms or other domains. In
this section we provide loose upper bounds for several domains and GOMEA algorithms as a benchmark
for those who are interested in finding upper bounds for these algorithms using the Level Based Theorem.
We mentioned that the Level Based Theorem does not provide the most suitable framework for these
algorithms and it will be interesting to see what bounds other methods can provide. Note that we do
not give rigorous proofs but rather proof sketches that give a loose upper bound.

6.1.1 Leading Ones with Univariate.

Leading one rates the fitness of a population as the number of consecutive ones at the beginning.
fLO(x) :=

∑n
i=0

∏i
j=0 x[j] with the starting population initialized with a chance 1

c to have a 1-bit

at a given index. If we define Aj := {x ∈ Ω | fLO(x) = j} we get E[T ] ≤ O
(
n2 ln(n)

)
.

Proof: Note that if you take an individual at level j then this individual has a zero bit at index j + 1.
The odds of making an improvement are given by the odds of selecting a donor which has a 1 bit at
position j + 1 and those odds are lower bound by the start distribution 1

c . So z∗ = δ = 1
c . Noting that

1
c is constant, it follows that E[T ] ≤ n2 ln(ln(n)) ln(ln(ln(n)))

6.1.2 K-L-plateau with Onemax.

Definition 16. We define a k-L-plateau function to be fitness function f based on a fitness function
fbase to be: f(x) = case(fbase(x))

• fbase(x) < L→ fbase(x)

• L ≤ fbase(x) ≤ L+ k → L

• fbase(x) > L+K → fbase(x)

This function gives the fitness values of its base function but starting from a certain level L it will
give the value L for k improvements, this will create a flat plateau of fitness values. The problem with
k-L-plateau fitness functions is that the algorithm is practically blind for improvements. It cannot see
if it is going in the right or wrong direction which has the risk of iterating left and right without ever
breaking out of the plateau.
Note that the elitism of our algorithm guarantees that once we have reached level L, we will not fall
down. The algorithm will continue as usual after reaching fitness L + k. This is why we estimate the
runtime as an upper bound for the runtime of the normal problem plus the expected time to breach the
plateau.

6.2 Onemax.

Univariate GOMEA. Assume we have a K-jump on a Onemax domain. Note that up to the jump,
the algorithm is simply doing Onemax with a known time of O(nλ ln(λn)). The difficulty lies in the
jump. Assume that the leap starts at level J , the elitism of the algorithm ensures that your fitness cannot
go below level J . Since we are blind during the jump, we must assume the worst case and calculate the
possibility of making the leap in one go. The worst case if the jump level J = n− k. this is fairly easy
to see: if it is i less, you can try i more times since you never drop below J . We know make a general
assumption on how the algorithm progresses: If the algorithm makes an improvement at an index i, the
chance that an other individual also gets an improvement at i is increased. This makes it so that at level
j, the number of 1-bits are not uniformly distributed over an individual, we actually see that the 1-bits
have all gathered in a ’block’ of 1-bits and that there are a random number of k′ indexes that are still
’free variables’ that have roughly the initial distribution. If we encounter a bit position that is contained
in the ’block’, the odds of matching with a donor that has a 1-bit in that index as well is nearly one
because all the other individuals will have the same converged ’block’ of indexes. This behavior ensures

23



that we do not have to look at all the indexes in the block so to break out of the leap we only have
to encounter k′ donors that all have a 1-bit at the index of these free variables. That happens with
chance lower bound by the initial distribution 1

c so it follows that the runtime is O(ck
′
). If we’ve almost

converged to the global optimum, k′ is very close to the size of the leap k.

LTGA. We now provide an upper bound for the Linkage Tree Genetic Algorithm introduced in [12]
and described in section 2.3. This algorithm has a binary tree of indexes as a FOS structure. The leaves
of the tree work the same as the Univariate GOMEA does, noting that GOMEA is elitist we can use
the upper bound of Univariate GOMEA for the canonical part of the K-Plateau. We only determine the
bounds on actually making the leap. We again take the same assumption that all the gained 1-bits are
not randomly distributed but rather gained in a ’block’ of indexes. If the leap starts at level j, we will
have about k free variables left. Again we note that the problem is the hardest when the leap is at the
end, specifically when the leap size K = k/2. We first rely on the algorithm to recognize the non-free
variables as a block meaning that there is a subset that contains the largest part of the block of indexes.
Because the complement if a subset in F is also in F we have a subset F0 ∈ F that contains all k free
variables. Because the tree is roughly binary these subsets we have two subsets F1, F2 ∈ F that divide
F0 roughly into two.
To break through the plateau we need k improvements. So we look at the odds of selecting a parent
with k zero’s in F1 and matching it with a donor that has all ones in that subset.

P(parent has k zeroes) ≥ (k!)2

(2k)!
≈ O


(√

kkk
)2

√
k(2k)2k

 = O

(√
kk2k

4kk2k

)
= O

(√
k

4k

)
(23)

The parent has to have all zeros and the donor has to have all ones making the odds square giving a

runtime of O( 8k

k ).

7 Conclusion.

This paper presents an application of the Level Based Theorem to the Univariate Gene-pool Optimal
Mixing Evolutionary Algorithm. It elaborates on earlier publications of Drift Analysis and their proofs
and discusses the recombination version of the Level Based Analysis. It then presents adjustments to the
Level Based Theorem for when applying it to GOMEA algorithms and it provides a theoretical upper
bound of order n ln(n)2 on the runtime of the Univariate GOMEA algorithm on the Onemax domain.
Tighter bounds are found using Martingale Theory and a direct proof. The use of the Level Based
Theorem is compared to these two methods. This comparison is used to discuss the current problems
of the Level Based Theorem regarding its current accuracy and the difficulty of use. This paper then
elaborates on how the definition of levels will always inaccurately model the problem domain and on
how the general approach based on traditional EAs can lead to problems when analyzing tailor-made
algorithms.

Acknowledgments. A special thanks to D-C Dang and P.K. Lehre for all the time they have devoted
to me and this paper during my time in England. Their input was both helpful and inspirational and I
thank them for all the time invested.

References

[1] A.E. Eiben, G. Rudolph, Theory of evolutionary algorithms: A bird eye view, Theoretical Computer
Science 229, 1999, (3-9)

[2] Jun He, Xin Yao, Drift analysis and average time complexity of Evolutionary Algorithms, Artificial
Intelligence 127, 2001

[3] B Doerr, D Johannsen, C Winzen. Multiplicative Drift Analisys, Algoritmetica, Volume 64, Issue 4,
Springer, 2012, 673-697

24



[4] P.K.Lehre, Fitness-Levels for Non-Elitist Populations, Proceedings of the 2011 Annual Conference
on Genetic and Evolutionary Computation, GECCO’11, 2011, (2075-2082)

[5] P.K.Lehre, D-C Dang, Refined Upper Bounds on the Expected Runtime of Non-elitist Populations
from Fitness-Levels, Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Com-
putation, GECCO’14, 2014, (1367-1374)

[6] P.K.Lehre, D-C Dang, Simplified Runtime Analysis of Estimation of Distribution Algorithms, Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO’15,
2015, (513-518)

[7] Hajek, B. Hitting-time and occupation-time bounds implied by drift analysis with applications, Ad-
vances in Applied probability, 1982, (502-525)

[8] D. Corus, D-C Dang, A. V. Eremeev, P. K. Lehre, Level-Based Analysis of Genetic Algorithms and
Other Search Processes, Parallel Problem Solving from Nature - PPSN XIII. Volume 8672, Springer
2014, (912-921)

[9] K. Sigman, Stopping Times, Lecture notes, University of Colombia, 2009

[10] Jun He, Xin Yao, A study of drift analysis for estimating computation time of evolutionary algo-
rithms, Natural Computing 3, 2004, (21-35)

[11] D Thierens, P Bosman, Optimal mixing evolutionary algorithms, Proceedings of the 2011 Annual
Conference on Genetic and Evolutionary Computation, GECCO’11, 2011, (617-624)

[12] D Thierens, The Linkage Tree Genetic Algorithm, Parallel Problem Solving from Nature - PPSN
XI. 2010, (264-273)

[13] P.K. Lehre, personal communication April 2016.

25


