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Abstract

We derive relaxation times for magnon-magnon interactions in antiferromagnetic spin con-
figurations with easy-axis anisotropy and an external magnetic field. We apply the Holstein-
Primakoff transformation to the Heisenberg exchange Hamiltonian to calculate the ground state
energy. It turns out that the antiferromagnetic configuration is not an eigenstate of the Heisen-
berg exchange Hamiltonian. We go on to describe quantum fluctuations in antiferromagnetic
spin configurations with easy-axis anisotropy in an external magnetic field. Also we derive
spin wave dispersion using Landau-Lifshitz-Gilbert phenomenology. We calculate the scattering
amplitudes of magnon-magnon interactions and derive the scale of relaxation times of out-of-
equilibrium antiferromagnetic configurations, from which we find 1

τ ∝ T 2. Thermal magnons
have a relaxation rate 1

τ ∝ T . For Gilbert damping it is found that the relaxation rate goes as
1
τ ∝ T .
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1 Introduction

Magnetism is a physical phenomenon exhibited by materials in which neighbouring electrons have a
parallel spin alignment (figure 1a) such that their individual magnetic moment adds up to some net
magnetization. This magnetization give rise to many interesting physical phemomena. Materials
with a net magnetization go by the name of ferromagnets. Ferromagnets are characterized by their
Curie temperature; below this temperature the material exhibits long range parallel alignment of
neighbouring electron spins, whereas above this temperature all alignment vanishes due to thermal
fluctuations [1]. Some materials are known to also exhibit some of these magnetic phenomena,
while having no net magnetization. These antiferromagnets or AFM are magnetically ordered
such that neighbouring spins have anti-parallel spin alignment (figure 1b). Antiferromagnetic spin
configurations have no net magnetization such that in equilibrium they don’t show the same mag-
netic behaviour as ferromagnets, and are characterized by their Néel temperature above which all
magnetic ordering vanishes [1]. Magnetic materials find applications in many electronic devices, in
particular in the form of magnetic memories.

Figure 1: schematic representation of spin configurations. a) ferromagnet b) antiferromagnet

While many magnetic materials are also electrical conductors it is found that certain materi-
als posses magnetic ordering while at the same time being an insulator, therefore having bound
electrons. It has been found that disturbances of their magnetic ordering result in spin waves
propagating through the material [1], as can be seen in figure 2. In a quantum mechanical frame-
work these spin waves turn out to be well described by harmonic oscillators of which the quanta
are quasiparticles named magnons. As with photons, it was assumed that they can be used to
transport information. Since normal electronic information transport depends on electrons being
conducted through the material, which scatter with all kinds of impurities therefore giving rise to
resistance, information transport using spin waves would be a more efficient way of transport due
to less scattering. Current research focuses on creating a Bose-Einstein condensate of magnons to
create the room temperature equivalent of a low-temperature electronic superconductor [2]. Re-
cently the first electric circuit with a ferromagnetic insulator (Yttrium Iron Garnet or YIG) has
been realised [3]. However, since antiferromagnetic materials exhibit no net magnetization they
may be more convenient for certain electric circuits. In this thesis we will look into the subject of
spin waves in antiferromagnets. We will consider the ground state and quantum fluctuations in the
form of spin waves. As a first step towards a theory of transport and dynamics of spin waves, we
will consider spin wave collisions and their relaxation times.
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Figure 2: schematic drawing of the propagating disturbance in a ferromagnet: the spin wave (From
[4])

In the first two chapters we apply both semiclassical and quantum mechanical techniques to
derive the dispersion relation of spin waves in ferromagnets and antiferromagnets. Chapters 2-
3.2 are based on previous research [5] and serve mostly as an introduction to the subject. Next
there will be a short introduction into Landau-Lifshitz-Gilbert phenomenology, which was done in
collaboration with H. Snijder, who went on to apply it to bulk transport calculations in ferromagnets
[6]. In Chapter 4 we look into a more complex antiferromagnetic configuration and derive again
a dispersion relation. Finally we turn our attention towards magnon-magnon interactions and
approximate relaxation times for all possible interactions in both the low temperature regime as
well as the high temperature regime. We will compare these results to relaxation due to Gilbert
damping.
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2 Ferromagnets

In this section we will get ourselves acquainted with the general techniques required to analyze the
properties of magnetic spin configurations. The first configuration we look at is the ferromagnet,
since it is the simplest configuration.

2.1 Semiclassical regime

The Hamiltonian for magnetic systems is taken to be the Heisenberg exchange Hamiltonian:

H = −J
∑
〈i,j〉

Si · Sj . (1)

Where the summation runs over the nearest neighbour pairs and Si refers to the spin operator
at the i’th site. This Hamiltonian describes the interaction of two neighbouring spins through a
coupling constant J which is positive in the case of a ferromagnet. From this we can see that the
system is in its lowest energy state (ground state) when all spins are pointing in the same direction.
We now want to find the equations of motion of the three spin components Sx,Sy and Sz, by
making use of Ehrenfest’s theorem, which is given by:

d

dt
〈Sk〉 = − i

h̄
〈[Sk, H]〉. (2)

Here the square brackets denote the commutator. Rewriting equation 1 so that the summation
only runs over single sites instead of pairs, we find:

H = −J
∑
i

SiSi+1 + SiSi−1

= −J
∑
i

[Sxi S
x
i+1 + Sxi S

x
i−1 + Syi S

y
i+1 + Syi S

y
i−1 + Szi S

z
i+1 + Szi S

z
i−1]. (3)

Which we can now insert into equation 2, leading to:

d

dt
〈Sk〉 = J

i

h̄
〈[Sk,

∑
i

Sxi S
x
i+1 + Sxi S

x
i−1] + [Sk,

∑
i

Syi S
y
i+1 + Syi S

y
i−1]

+ [Sk,
∑
i

Szi S
z
i+1 + Szi S

z
i−1]〉. (4)

This expression can we worked out using the commutation relations for the spin operator:[
Si, Sj

]
= ih̄Skεijk ; i, j, k ∈ {x, y, z}. (5)

Applying this commutation relation and remembering that two spins Si and Sk always commute
when k 6= i the expression for the first component reduces to:

d

dt
〈Sxk 〉 = J

i

h̄
〈[Sxk , S

y
kS

y
k+1 + SykS

y
k−1] + [Sxk , S

z
kS

z
k+1 + SzkS

z
k−1]〉

= J〈Syk(Szk+1 + Szk−1)− Szk(Syk+1 + Syk−1)〉. (6)
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Since we make use of the commutation relation we can obtain our other two equations by cyclic
permutation (due to the Levi-Cevita Tensor). We drop the ensemble notation and we end up with
these three equations of motion:

d

dt
Sxk = JSyk(Szk+1 + Szk−1)− JSzk(Syk+1 + Syk−1),

d

dt
Syk = JSzk(Sxk+1 + Sxk−1)− JSxk (Szk+1 + Szk−1),

d

dt
Szk = JSxk (Syk+1 + Syk−1)− JSyk(Sxk+1 + Sxk−1). (7)

These equations can be summarized as

dSk
dt

= −Sk ×
∂H

∂Sk
. (8)

If we choose all spins of the system to be in the z-direction we can look at small deviations in
direction. Therefore we take Sz = h̄S and Sx, Sy � Sz so that equation 7 reduces to:

d

dt
Sxk ≈ JSh̄(2Syk − S

y
k+1 − S

y
k−1),

d

dt
Syk ≈ JSh̄(Sxk+1 + Sxk−1 − 2Sxk ),

d

dt
Szk ≈ 0. (9)

These are the equations of motion we have to solve. The third equation is a restatement of the
spin being deviated around the z-axis.

In order to solve these equations we can make a guess to what is the solution. A good
guess turns out to be the plane wave: Sxj = Aeik·Rj−iωt and Syj = Beik·Rj−iωt, where Rk = k · ax̂
and a the distance between two sites, since we are looking at a one dimensional model. Inserting
this ansatz into the equations above we find:

iωA = −2SJh̄B(1− cos (kxa)),

iωB = 2SJh̄A(1− cos (kxa)). (10)

This set of equation can be written in matrix form:(
iω 2SJh̄B(1− cos kxa)

2SJh̄B(1− cos kxa) −iω

)(
A
B

)
= 0. (11)

From this expression we can extract the dispersion relation for a one dimensional ferromagnet by
finding the zeroes of the determinant of this first matrix. Performing the calculation yields:

ωk = 2SJh̄(1− cos kxa). (12)

Next we calculate the eigenvectors of the system, which are given by:

ν1 =

(
0
0

)
, ν2 =

1√
2

(
i
1

)
. (13)
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The first eigenvector corresponds to a state where all spins point only in the z-direction, this is the
ground state of the system. However, plugging the second eigenvector into our planewave equations
and dropping the imaginary part we find:

Sxj =
1√
2

sin (kxja− ωt),

Syj =
1√
2

cos (kxja− ωt), (14)

These equations describe precession of the x and y components of Sj around the z-axis. Note that
for each consecutive site the components pick up a phase shift of kxa. It is this phase shift that gives
rise to a wave like behavior of the spins in the system. Like the vibration of a lattice in matter can
be described as quasiparticles (phonons), these spin waves can also be described as quasiparticles,
called magnons. In the limit of small kx we find that the dispersion relation reduces to:

ωk ≈ 2JSh̄(kxa)2. (15)

This means that a magnon with wavevector kx requires an energy h̄ωk > 0. For this reason a
ferromagnet in its groundstate does not have any magnons.

2.2 Quantum mechanical regime: Holstein-Primakoff transformation

In the previous part we derived our results from a semiclassical approach. However for an accurate
description we need to also take into account the existence of the magnons we found previously.
One way to do this turns out to be the Holstein-Primakoff transformation [8]. The first step in
performing this transformation is rewriting the familiar rising and lowering operators for spin, S−

and S+, in terms of the bosonic creation and annihilation operators ai and a†i . These operators

obey the commutation relation [ai, a
†
j ] = δij . The operator n̂i = a†iai is called the number operator;

it counts the number of bosons at a lattice site i. The spin raising and lowering operators are given
by:

S+
j = h̄

√
2S − a†iaiai,

S−j = h̄a†i

√
2S − a†iai,

Szj = h̄S − h̄a†iai. (16)

From these expressions we can deduce that n̂i ≤ 2S, in order for our results to be real and therefore
physical. For S � n̂i we can approximate the first two of these using a Taylor expansion, yielding:

S+
j = h̄

√
2Sai,

S−j = h̄a†i
√

2S,

Szj = h̄S − h̄a†iai. (17)

Also we would like to write the Heisenberg Hamiltonian in terms of these spin operators. Since we
know S+

j = Sxj + iSyj and S−j = Sxj − iS
y
j and rewriting SiSi+1 + SiSi−1 as

∑
δ SiSi+δ where i+ δ is

a vector connecting site i with its nearest neighbours, we end up with the following Hamiltonian:

H = −J
∑
i

∑
δ

Szi S
z
i+δ +

1

2
S+
i S
−
i+δ +

1

2
S−i S

+
i+δ. (18)
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The important thing about this Hamiltonian are the last two terms. Effectively, these move spins
to different sites, which can be seen as a spin wave. We can now insert the Holstein-Primakoff
transformation from equations 16 and 17 into this Hamiltonian. From the Taylor expansion leading
up to equation 17 we can see that terms like a†iaiai/S will become very small with increasing S.
Therefore we only keep terms up to quadratic order:

H = −Jh̄2
∑
i

∑
δ

S2 − Sa†iai − a
†
i+δai+δ + Sa†i+δai + Sa†iai+δ. (19)

Since we want to find the eigenstates of the system we diagonalize the matrix using a Fourier
transformation to the k-space, given by:

aj =
1√
N

∑
k

e−ik·rjak,

a†j =
1√
N

∑
k

eik·rja†k. (20)

The result of the rather cumbersome calculation is given below. Here z denotes the number of
nearest neighbours given by z = 2d where d is number of dimensions our system has.

H = −1

2
Jh̄2S2Nz︸ ︷︷ ︸
E0

+Jh̄2Sz
∑
k

a†kak(1− γk) = E0 +
∑
k

h̄ωka
†
kak, (21)

With ωk = JSh̄z(1 − γk), γk = 2
z

∑
δ cos (kδ). In the one dimensional case we find γk = cos kxa

such that ωk = JSh̄z(1 − cos(kxa)), which is the same dispersion relation we found using the
semiclassical approach. The Hamiltonian is diagonal in k-space and we see that the system can
be described as a sum of harmonic oscillators with different wavevectors k. The quantum of this
harmonic oscillator is the magnon. Note that the ground state of the ferromagnet does not have
any quantum corrections and thus has the same energy as the classical ground state.

3 Antiferromagnets

We can derive similar equations for the antiferromagnet in a way completely analogous to the
approach discussed in section 2. From a classical point of view we can state that the ground state of
an antiferromagnet corresponds to that in which neighbouring spins point in opposite directions (see
figure 1b). One convenient way to describe these systems is by introducing two sublattices A and
B which correspond to the spins pointing up and down respectively. The Heisenberg Hamiltonian
for an antiferromagnet is given by:

H = −J
∑
i,j

Si · Sj , (22)

with negative J , such that the energy is minimized if neighbouring spins point in opposite direction.
In this chapter we will first look at an antiferromagnetic system from a semiclassical point of view.
Next we will look at quantum mechanical effects again using a Holstein-Primakoff transformation.
Finally we will look at a phenomonological approach to describing the antiferromagnet, using the
Néel vector and total magnetization of the system.
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3.1 Semiclassical regime

Back in chapter 2 we found a general equation of motion 8:

dSk
dt

= −Sk ×
∂H

∂Sk
.

Here H denotes the Heisenberg Hamiltonian for antiferromagnets given in equation22, which can
be rewritten in terms of the sublattices A and B where neighbouring spins are always in the other
sublattice (see figure 3) and to avoid overcounting we devide by 2:

H =
J

2

∑
j∈A

SAj · [SBj+1 + SBj−1] +
J

2

∑
j∈B

SBj · [SAj+1 + SAj−1]. (23)

Figure 3: Schematic representation of the sublattices in an antiferromagnet

These two equations yield us the equations of motion of the system:

Ṡ
A
j = −JSAj × [SBj−1 + SBj+1],

Ṡ
B
j = −JSBj × [SAj−1 + SAj+1]. (24)

Again we take the z direction to be the general direction of orientation, meaning we look at small
deviatians about the z-axis:

SAj =

δS
A,x
j

δSA,yj

h̄S

 , SBj =

−δS
B,x
j

−δSB,yj

−h̄S

 . (25)

Using the equations of motion 24 and the one dimensional plane wave ansatz: SA,xj = δAxe
i(kxa−ωt)

and similar expressions for the other components we yield the following matrix equation:
iω 2Jh̄S 0 2Jh̄S cos (kxa)

−2Jh̄S iω −2Jh̄S cos (kxa) 0
0 2Jh̄S cos (kxa) −iω 2Jh̄S

−2jh̄S cos (kxa) 0 −2Jh̄S −iω



δAx
δAy
δBx
δBy

 = 0.(26)

Here the zero of the determinant again gives us the dispersion relation ωk = 2Jh̄S sin (kxa) which
has linear kx dependence in case of small kx. The four eigenvectors of the Hamiltonian correspond
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Figure 4: Schematic representation of a spinwave in an antiferromagnet (From [7])

to four different types of wave-like motion: in both sublattices there is clockwise motion, one in
phase and one with a phase difference of π between the sublattices and an anti-clockwise motion
in both sublattices, again with and without a phase difference of π. A schematic representation is
given in figure 4.

3.2 Holstein-Primakoff transformation

As in the case of the ferromagnet we would like to also include quantum effects in our analysis. In
order to do this we again want to make use of the Holstein-Primakoff transformation to map our
spin operators in terms of the bosonic creation and annihilation operators. The transformed spin
operators are given in equation 16 and 17. However, since we now have two sublattices A and B,
we should consider the fact that one of these lattices, say B, is flipped with respect to lattice A,
therefore the spin operators should be swapped in the following way: Sz → −Sz and S+ ↔ S−.
We now have a set of operators, one for sublattice A and one for sublattice B:

SA,+j = h̄
√

2Saj , SB,+j = h̄
√

2Sb†j ,

SA,−j = h̄
√

2Sa†j , SB,−j = h̄
√

2Sbj ,

SA,zj = h̄S − h̄a†jaj , SB,zj = −h̄S + h̄b†jbj . (27)

Similar to 18 we can now write down the Hamiltonian for the antiferromagnet in terms of these
operators:

H =
J

2

∑
j∈A

∑
δ

SA,+j SB,−j+δ + SA,−j SB,+j+δ + 2SA,zj SB,zj+δ

+
J

2

∑
k∈B

∑
δ

SB,+k SA,−k+δ + SB,−k SA,+k+δ + 2SB,zk SA,zk+δ. (28)

Plugging equation 27 into this Hamiltonian yields up to quadratic order:

H = Jh̄2
∑
j∈A

∑
δ

S(ajbj+δ + a†jb
†
j+δ)− S

2 + S(a†jaj + b†j+δbj+δ)

+Jh̄2
∑
k∈B

∑
δ

S(bkak+δ + b†ka
†
k+δ)− S

2 + S(b†kbk + a†k+δak+δ). (29)

We now use a Fourier transform of the form:

aj =
1√
Na

∑
k

eik·rjak, bi =
1√
Nb

∑
k

eik·riak. (30)
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Applying this Fourier transform to the Hamiltonian yields:

H = −Jh̄2N
z

2
S2 + Jh̄2Sz

∑
k

(a†kak + b†kbk) + Jh̄2Sz
∑
k

γk(akb−k + a†kb
†
kb
†
−k), (31)

where γk = 2
z

∑
δ cos(kδ) = cos(|k|a). We now see that performing a fourier transform does not

diagonalize the Hamiltonian as it did in the case of the ferromagnet. This means that the bosonic
creation and annihilation operators we used are not good operators for the antiferromagnetic Hamil-
tonian. Instead one should make use of an additional transformation called the Bogoliubov transfor-
mation. This transformation implies introducing new operators α and β for which the Hamiltonian
will diagonalize. These operators are defined as:

αk = ukak − vkb†−k, βk = ukbk − vka†−k. (32)

Here uk and vk denote some real function of k. Since these transformations are canonical they still
obey the commutationrelations [αk, α

†
k′ ] = [βk, β

†
k′ ] = δk,k′ and we see that therefore u2

k − v2
k = 1.

From this we can simply guess these functions to be uk = cosh(θk) and vk = sinh(θk) and since

αk and β†
k′ do commute we also find that ukv−k = u−kvk which can be solved for uk = u−k and

v−k = vk. The inverse transformations are given by:

ak = ukαk + vkβ
†
−k, bk = ukβk + vkα

†
−k. (33)

If we now express the Hamiltonian in terms of these new operators α and β we find:

H = H0 + Jh̄2Sz
∑
k

[u2
k + v2

k + 2γkukvk](α†kαk + β†kβk) + 2(v2
k + γkvkuk)

+[γk(u2
k + v2

k) + 2ukvk](β−kαk + β†−kα
†
k). (34)

Here H0 = −Jh̄2N z
2S

2. If we now take uk and vk to cancel the terms in the last brackets of the
Hamiltonian, we find that for uk = cosh(θk) and vk = sinh(θk), γk = − tanh(2θk). From this we
can write the Hamiltonian as:

H = H0 + Jh̄2Sz
∑
k

[u2
k + v2

k + 2γkukvk](α†kαk + β†kβk + 1)

+Jh̄2Sz
∑
k

(v2
k − u2

k). (35)

Which can be rearranged to form the diagonal Hamiltonian:

H = E0 +
∑
k

h̄ωk(α†kαk + β†kβk), (36)

with ωk = Jh̄Sz
√

1− γ2
k (note that this reduces again to the dispersion relation found in the

semiclassical approach for the onedimensional case) and E0 = −1
2NJh̄

2(S2 +S)z+
∑

k h̄ωk. From
this we see that we have quantum corrections on the ground state, with energy Eqc = −1

2NJh̄
2Sz+∑

k h̄ωk, which lowers the ground state energy. Thus we see that the classical ground state of the
antiferromagnet is not an eigenstate of the Heisenberg exchange Hamiltonian and is corrected with
quantum fluctuations.
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3.3 Phenomenological approach

3.3.1 Introducing the Néel vector

In addition to the semiclassical approach as seen in the previous chapter, one can approach the
problem phenomenologically. We start of with a antiferromagnetic system, consisting of two sub-
lattices A and B with spins pointing up and down respectively. In the continuous limit one can then
describe the magnetization of the system by introducing m(r, t) = mA(r, t) + mB(r, t) as the total
magnetization, with mA(r, t) and mB(r, t) the magnetic moments of both sublattices. Besides this
we also introduce an antiferromagnetic order parameter l(r, t) = mA(r, t) −mB(r, t) and its unit
vector, called the Néel vector: n(r, t) = l(r, t)/l(r, t). From a purely phenomenological point of
view one can then give the antiferromagnetic free energy as [9]:

U =

∫
dr

[
a

2
m2 +

A

2
(∇n)2 −H ·m− κz

2
n2
z

]
. (37)

Here a and A are respectively the homogeneous and inhomogeneous exchange constants, H is some
external magnetic field and κz

2 n
2
z is an easy-axis anisotropy in the z-direction. This equation roughly

translates as: there is an energy contribution for spins to take some orientation at all as well as an
energy contribution due to a gradient in the antiferromagnetic order. If an external field is present,
then there will be an energy subtraction depending on the orientation of the magnetization with
respect to this field, meaning that having a magnetization parallel to the external field minimizes
this energy. The anisotropy term minimizes the free energy when n is parallel to the z-axis. Together
with the constraints m · n = 0 and |n| = 1 one obtains the following equations of motion:

ṅ = (γfm −G1ṁ)× n, (38)

ṁ = (γfn −G2ṅ)× n. (39)

Where γ is the gyromagnetic ratio, also fn = −δU/δn = An × (∇2n × n) −m(H · n) − κzn and
fm = −δU/δm = −am + n× (H× n) denote the effective fields corresponding to the free energy.

3.3.2 Equivalence to the semiclassical approach

In order to see if this phenomenological approach properly describes the behaviour of the anti-
ferromagnetic system we will now show that for the one dimensional case one fiends the same
dispersion relation as seen before in [5], which showed us a linear dispersion relation (in contrast to
the quadratic dispersion relation of the ferromagnet). Taking our main orientation axis to be the
z-axis we can look at small deviations of n about this axis, meaning that n = ẑ+ δn and m = δm.
In the absence of an external field, anisotropy and damping the equations of motion are then given
by:

ṅ = −γam× n, (40)

ṁ = γA[n× (∇2n× n)]× n + T, (41)

where T denotes the higher order terms we will not be taking into account. Since we expect similar
behaviour of the system as we have seen in Chapter 3.1 the way to solve the equations of motion

11



will again be using a plane wave ansatz.

δn =

 δnx
δny

− δn2
x

2 −
δn2
y

2

 ei(kxx−ωt),

δm =

 δmx

δmy

δnxδmx − δnyδmy

 ei(kxx−ωt). (42)

Where we made use of the constraints m · n = 0 and |n| = 1. Plugging these into the equations of
motion 38 and 39 yields:

iω · δmx = k2Aγ · δny,
iω · δmy = −k2Aγ · δnx,

iω · δnx = aγ · δmy,

iω · δny = −aγ · δmx. (43)

These equation can then be written in a more convenient matrix form:
iω 0 0 −γa
0 iω γa 0
0 k2Aγ iω 0

−k2Aγ 0 0 iω



δnx
δny
δmx

δmy

 = 0. (44)

As before the dispersion relation follows from finding the zeroes of the determinant which gives us
the dispersion relation ωk = γk

√
aA. As expected we found ωk to be linear in k and therefore the

phenomenological approach yields similar results as the semiclassical approach.

The eigenvectors of the characteristic matrix can be found by plugging this dispersion rela-
tion back in and setting δmx = δmy = 1 we find:

ν1 =
1

2


i
√
a√
Ak

0
0
1

 , ν2 =
1

2


0

− i
√
a√
Ak

1
0

 , ν3 =
1

2


− i
√
a√
Ak

0
0
1

 , ν4 =
1

2


0
i
√
a√
Ak

0
1

 . (45)

These can now be transformed back into the sublattice spin-operators SA and SB via:

SαA =
δnα + δmα

2
, −SαB =

δnα − δmα

2
. (46)

From here we can construct new vectors (δSxA, δS
y
A,−δSxB,−δS

y
B) when we are looking at deviations

of SA and SB around the z-axis:

χ1 =
1

2


i
√
a√
Ak

1
i
√
a√
Ak

−1

 , χ2 =
1

2


1

− i
√
a√
Ak

−1

− i
√
a√
Ak

 , χ3 =
1

2


− i
√
a√
Ak

1
i
√
a√
Ak

−1

 , χ4 =
1

2


1
i
√
a√
Ak

−1
i
√
a√
Ak

 . (47)
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These eigenvectors correspond to elliptical precession around the z-axis, of which the superposi-
tions restore the circular precession we found in 3.1. We have thus shown the equivalence of the
phenomenological approach with the semiclassical approach.

3.3.3 Damping, external field and anisotropy

If we take into account Gilbert damping, an external field and easy-axis anisotropy, the equations
of motion are given by equations 38 and 39. Again looking at small deviations of n around the
z-axis using the planar wave equation 42, we find the following set of equations:

δṅx = −γaδmy − γHzδny −G1δṁy,

δṅy = +γaδmx + γHzδnx +G1δṁx,

δṁx = γA∇2δny − γHzδmy −G2δṅy + γκzδny,

δṁy = −γA∇2δnx + γHzδmx +G2δṅx − γκzδnx, (48)

If we assume G1 � G2 we can already set G1 = 0. Now the above set of equations translates into
the following matrix equation:

iω −γHz 0 −γa
γHz iω γa 0

0 iωG2 − k2γA− γκz iω −γHz

k2γA− iωG2 + γκz 0 γHz iω



δnx
δny
δmx

δmy

 = 0 (49)

The dispersion relation follows from the zero of the determinant and is given by:

ω = Ω− iG2
a

2

1√
a(Ak2 + κz)

Ω, (50)

where Ω = (Hz−
√
aγ2(Ak2 + κz)). We can clearly see the imaginary term added to the frequency

due to the damping. The ground state of the antiferromagnet minimizes the free energy U in
equation 37. Since the external field tends to align m in the z-direction and the easy-axis anisotropy
tends to align n in the z-direction. For Hz � κz the free energy will be minimized when n is parallel
to the z-axis, whereas for κz � Hz the energy will be minimized when m is parallel to the z-axis.
The threshold for this can be determined by considering the dispersion relation in equation 50.
Consider some small deviations of n around the z-direction, corresponding to a magnon for which
k → 0. When the ground state is given by n parallel to the z-axis and since the ground state
must be stable, then the Gilbert damping will relax these deviations back to the ground state.
However when the ground state is given by m parallel to the z-direction, the unstable state of n
being parallel to the z-direction will be driven into the ground state by the Gilbert damping. This
damping or driving corresponds to the sign of the Gilbert damping term. From this we can infer
that there should be some sign difference in the Gilbert damping term for these different ground
states. For k → 0 the Gilbert damping term is given by:

ωdamp = iG2
2
√
aκz

(Hzγ −
√
aγ2κz)

The sign of this term may flip at the threshold given by Hzγ −
√
aγ2κz = 0, from which we see

that the sign change occurs at Hz =
√
aκz.
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4 Magnon interactions in antiferromagnetic spin configurations

In this section we will focus on relaxation of magnon interactions within the antiferromagnet.
For this we will need their interaction amplitudes. In order to do this we return to the quan-
tum mechanical approach using the Holstein Primakoff transformation followed by the Bogoliubov
transformation introduced in section 3.1. This time we will add an anisotropy and external field
term in the z-direction and keep the higher order terms which effectively describe the magnon
interaction in the system in terms of creation and annihilation operators.

4.1 Holstein-Primakoff transformation with external field and anisotropy

We start of with the Hamiltonian:

H = J
∑
〈i,j〉

Si · Sj −B
∑
i

Szi −
κ

2S

∑
i

(Szi )2, (51)

which can again be split up into two sublatices to yield:

H = J
∑
j∈A

∑
δ

SAj · SBj+δ + J
∑
j∈B

∑
δ

SBj · SAj+δ −B
∑
j∈A

SA,zj +B
∑
j∈B

SB,zj

− κ

2S

∑
j∈A

(SA,zj )2 − κ

2S

∑
j∈B

(SB,zj )2. (52)

We can write out the dot product so that our Hamiltonian reads:

H = J
∑
j∈A

∑
δ

[
SA,xj SB,xj+δ + SA,yj SB,yj+δ + SA,zj SB,zj+δ

]
+ J

∑
j∈B

∑
δ

[
SB,xj SA,xj+δ + SB,yj SA,yj+δ + SB,zj SA,zj+δ

]
−BJ

∑
j∈A

SA,zj +BJ
∑
j∈B

SB,zj − κ

2S

∑
j∈A

(SA,zj )2 − κ

2S

∑
j∈B

(SB,zj )2. (53)

If we now introduce the spin-operators S+ = Sx + iSy and S− = Sx − iSy and express the Hamil-
tonian in terms of these operators we find:

H = J
∑
j∈A

∑
δ

[
1

2
SA,+j SB,−j+δ +

1

2
SA,−j SB,+j+δ + SA,zj SB,zj+δ

]
+J

∑
j∈B

∑
δ

[
1

2
SB,+j SA,−j+δ +

1

2
SB,−j SA,+j+δ + SB,zj SA,zj+δ

]
−BJ

∑
j∈A

SA,zj +BJ
∑
j∈B

SB,zj − κ

2S

∑
j∈A

(SA,zj )2 − κ

2S

∑
j∈B

(SB,zj )2. (54)

As before, we now introduce the Holstein-Primakoff transformations as given in 27:

H = Jh̄2
∑
j∈A

∑
δ

[
S(ajbj+δ + a†jb

†
j+δ)− S

2 + S(a†jaj + b†j+δbj+δ)− a
†
jajb

†
j+δbj+δ

]
+ Jh̄2

∑
j∈B

∑
δ

[
S(bjaj+δ + b†ja

†
j+δ)− S

2 + S(b†jbj + a†j+δaj+δ)− b
†
jbja

†
j+δaj+δ

]
− κh̄2

2S

∑
j∈A

(S2 − 2Sa†jaj + a†jaja
†
jaj)−

κh̄2

2S

∑
j∈B

(S2 − 2Sb†jbj + b†jbjb
†
jbj)

−Bh̄
∑
j∈A

(S − a†jaj) +Bh̄
∑
j∈B

(S − b†]bjj ). (55)
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Next we want to perform the fourier transformation, yielding:

H =
−Jh̄2NS2z

2
− κh̄2SN −Bh̄NS︸ ︷︷ ︸
H0

+Jh̄2Sz
∑
k

[
a†kak + b†kbk

]
+Jh̄2Sz

∑
k

γk

[
akb−k + a†kb

†
−k

]

+ κh̄2
∑
k

[
a†kak + b†kbk

]
+Bh̄

∑
k

[
b†kbk − a

†
kak

]
− 2Jh̄2z

N

∑
δ

∑
k1,k2
k3,k4

[
a†k1

ak2b
†
k3
bk4 − b

†
k1
bk2a

†
k3
ak4

]
ei(k4−k3)·δδk1+k2−k3−k4

− κh̄2

NS

∑
k1,k2
k3,k4

[
a†k1

ak2a
†
k3
ak4 + b†k1

bk2b
†
k3
bk4

]
δk1+k2−k3−k4 . (56)

As we have seen the Hamiltonian up to quadratic order can be diagonalized by performing a
Bogoliubov transformation:

ak = ukαk + vkβ
†
−k, bk = ukβk + vkα

†
−k. (57)

To quadratic order, the Hamiltonian then reads:

H = H0 + Jh̄2Sz
∑
k

[(u2
k + v2

k + 2γkukvk)(α†kαk + β†kβk) + 2(v2
k + γkukvk)

+ (γk(u2
k + v2

k) + 2ukvk)(β−kαk + β†−kα
†
k)]

+ κh̄2
∑
k

[
(u2

k + v2
k)(α†kαk + β†kβk) + 2v2

k + 2ukvk(β−kαk + β†−kα
†
k)
]

+Bh̄
∑
k

[
(u2

k − v2
k)(β†kβk − α

†
kαk)

]
. (58)

After some rearranging we find:

H = H0 + Jh̄2Sz
∑
k

{
(

1 +
κ

JSz

)
(u2

k + v2
k) + 2γkukvk}(α†kαk + β†kβk)

+ 2{
(

1 +
κ

JSz

)
v2
k + γkukvk}+ {γk(u2

k + v2
k) + 2

(
1 +

κ

JSz

)
ukvk}(α†kβ

†
−k + αkβ−k)

+Bh̄
∑
k

[
(u2

k − v2
k)(β†kβk − α

†
kαk)

]
. (59)

We want the term that couples the α and β magnons to vanish therefore we find that γk is constraint
to:

γk = −(1 +
κ

JSz
) tanh(2θk). (60)

Which for κ� J is approximated by γk = − tanh(2θk). The lower order terms now diagonalize to:

H = E0 +
∑
k

h̄ω−k α
†
kαk +

∑
k

h̄ω+
k β
†
kβk +

∑
k

h̄(ω+
k −B). (61)
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Figure 5: schematic representiation of the ααα†α† interaction

Where ω±k = ±B + Jh̄Sz
√

(1 + κ
JSz )2 − γ2

k and E0 = H0 − Jh̄2SzN
2 . We see that for an external

magnetic field the energies of the α and β magnons split, such that the β magnons have a higher
energy.

4.2 Relaxation time approximation in the low-temperature regime

The higher order terms expand into pairs of four operators corresponding to magnon-magnon
interactions and can be found in the Appendix (section 6). The magnon-magnon interactions (or
scattering) can be drawn schematically using Feynman diagrams (see for example figure 5). We
would like to find the rate of these scattering events. From quantum mechanical time-dependent
perturbation theory we know that the rate at which an initial quantum state |i〉 turns into some
other, final state |f〉 is given by Fermi’s Golden Rule and reads:

Γ =
2π

h̄

∑
i,f

Wi|〈f |Vint|i〉|2δ(εf − εi), (62)

where the sum runs over all possible initial and final states, Wi is the Boltzman weight that gives
the probability of being in some initial state |i〉, Vint is the matrix element of the Hamiltonian
corresponding to the interaction and the delta function enforces conservation of energy. We will
now derive the rate of the ααα†α† interaction, which are most present at low temperature (due to
energy splitting in case of an external magnetic field). The matrix element for this interaction is:

Vint = αk1αk2α
†
k3
α†k4

[Γk1,k2,k3,k4 + Γk1,k2,k4,k3 ]× δk1+k2−k3−k4 . (63)

Where Γk1,k2,k3,k4 +Γk1,k2,k4,k3 is the amplitude given in the appendix. Also we added a symmetric
term by swapping out k3 and k4 since these correspond to the same interaction. Since we start
off in some initial state and after the scattering event end up in the final state we readily see that
|f〉 = 1√

nk1
nk2

[1+nk3
][1+nk4

]
αk1αk2α

†
k3
α†k4
|i〉, with the prefactors ensuring proper normalization.

From this we see that summing over the final states becomes summing over k1,k2,k3 and k4 and
the scattering rate now reads:

Γ =
2π

h̄

∑
k1,k2
k3,k4

∑
i

Wi|〈i|
α†k1

α†k2
αk3αk4αk1αk2α

†
k3
α†k4√

nk1nk2 [1 + nk3 ][1 + nk4 ]
|i〉|2 × |Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2

× δk1+k2−k3−k4δ(εk1 + εk2 − εk3 − εk4). (64)
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Using a†kak = nk where nk gives the number of magnons of momentum k and [αk, α
†
k′ ] = δk,k′ so

that we can rearrange the operators to find:

Γ =
2π

h̄

∑
k1,k2
k3,k4

∑
i

Wi|〈i|
nk1nk2 [1 + nk3 ][1 + nk4 ]√
nk1nk2 [1 + nk3 ][1 + nk4 ]

|i〉|2 × |Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2

× δk1+k2−k3−k4δ(εk1 + εk2 − εk3 − εk4). (65)

Since k1,k2,k3 and k4 are independent momenta we can write
∑

iWi =
∑

ik1 ,ik2
ik3 ,ik4

Wik1
Wik2

Wik3
Wik4

and introduce the Planck distribution as:

f(k) =
∑
ik

Wiknk =
1

eβεk − 1
. (66)

Then we find for the rate of scattering into this state:

Γ =
2π

h̄

∑
k1,k2
k3,k4

|Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2 × δk1+k2−k3−k4δ(εk1 + εk2 − εk3 − εk4)

× f(k1)f(k2)[1 + f(k3)][1 + f(k4)]. (67)

Now we can look at the scattering rate for some k by fixing one of the four k’s that we have. Also
we can go to a continuous system by replacing sums by integrals yielding:

Γ =
2πV 2

h̄

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
|Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2

× δ(k1 + k2 − k3 − k4)δ(εk1 + εk2 − εk3 − εk4)× f(k1)f(k2)[1 + f(k3)][1 + f(k4)]. (68)

We have now found an expression to calculate the rate of magnon interactions in the antiferromag-
net. Next we will derive from this the relaxation time of an out-of-equilibrium antiferromagnet.
We use the relaxation time approximation:

Γ =
∂f

∂t
= −1

τ
[f(k1)− feq,k1 ], (69)

which describes how fast some non-equilibrium distribution relaxes to equilibrium. We can use this
to approximate the relaxation time by noting that we scatter out of the state with momentum k1

so that feq,k1 = 0 and we find:

Γ = −f(k1)

τ
. (70)

Combining this with the rate found by using Fermi’s Golden Rule we obtain an expression for the
relaxation time:

1

τ
= −2πV 2

h̄

∫
d3k2

(2π)3

∫
d3k3

(2π)3

∫
d3k4

(2π)3
|Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2 × f(k2)[1 + f(k3)][1 + f(k4)]

× δ(k1 + k2 − k3 − k4)δ(εk1 + εk2 − εk3 − εk4). (71)
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One can evaluate this integral numerically for some desired interaction. We are mostly interested
in its general behaviour and would like to know how the relaxation time depends on temperature.
In order to do this we make the integrals dimensionless. We use the dimensionless quantity:

βεk = −Bβh̄+ βJSh̄2z

√
(1 +

κ

JSz
)2 − γ2

k, (72)

wWhich can be rewritten and expanded for ka� 1 to read:

βεx = −y +
√
ν + x2 ≈ −y +

√
ν +

x2

2
√
ν
, (73)

with dimensionless quantities y = βBh̄, ν = β2J2S2h̄4z2
(

κ2

J2S2z2
+ 2κ

JSz

)
and x = JSh̄2βzka =

βck. From this we find:

dk =
dx

βc
. (74)

The integral becomes dimensionless by:

1

τ
= −2πV 2

h̄

∫
d3x2

(2βcπ)3

∫
d3x3

(2βcπ)3

∫
d3x4

(2βcπ)3
A|Γx1,x2,x3,x4+Γx1,x2,x4,x3 |2×f(x2)[1+f(x3)][1+f(x4)]

× δ(x1 + x2 − x3 − x4)

(d3k/d3x)x=x1

δ(|x1|+ |x2| − |x3| − |x4|)
(dε/dx)x=x1

, (75)

where A is some constant that makes the scattering amplitude dimensionless, in order to find it we
want to express |Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2 explicitly in terms of k. For this type of scattering it is
given by:

|Γk1,k2,k3,k4+Γk1,k2,k4,k3 |2 =
1

N2

∣∣∣∣ h̄2κ

S
(vk1vk2vk3vk4+uk1uk2uk3uk4)+2h̄2J(vk1vk3uk2uk4+vk1vk4uk2uk3)

∣∣∣∣2,
(76)

where we recall uk = cosh θk and vk = sinh θk. If we now express vk and uk in terms of γk =
− tanh(2θk) = coska ≈ 1− k2a2

2 , where we now also assume the long wavelength limit, we find:

cosh(θk) =

√
1 + γk√

γ2k−1

2
≈ −(−1)3/4√

2|k|a
≈ sinh θk. (77)

Since the scattering amplitudes always have pairs of four cosh θk and/or sinh θk, |Γk1,k2,k3,k4 +
Γk1,k2,k4,k3 |2 becomes dimensionless as:

|Γk1,k2,k3,k4 + Γk1,k2,k4,k3 |2 =

(
βc

a

)4

|Γx1,x2,x3,x4 + Γx1,x2,x4,x3 |2, (78)

where due to the approximation we also find (see Appendix for other processes):

|Γx1,x2,x3,x4 + Γx1,x2,x4,x3 |2 =
4

N2

(
2h̄2κ

S
+ 4h̄2J

)2

× 1

16|x1||x2||x3||x4|
. (79)
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And we see that A =
(
βc
a

)4
. Since V 2 = N2a6 we find the dimensionless integral:

1

τ
=

4πkbT

8h̄c2

(
2h̄2κ

S
+ 4h̄2J

)2 √
ν

x1

∫
d3x2

(2π)3

∫
d3x3

(2π)3

∫
d3x4

(2π)3

1

x1x2x3x4

× f(x2)[1 + f(x3)][1 + f(x4)]× δ(x1 + x2 − x3 − x4)δ(|x1|+ |x2| − |x3| − |x4|)

=
4πk2

bT
2

8h̄7J3S3z3a2k2
1

(
2h̄2κ

S
+ 4h̄2J

)2(
κ2

J2S2z2
+

2κ

JSz

)1/2 ∫
d3x2

(2π)3

∫
d3x3

(2π)3

∫
d3x4

(2π)3

1

x2x3x4

× f(x2)[1 + f(x3)][1 + f(x4)]× δ(x1 + x2 − x3 − x4)δ(|x1|+ |x2| − |x3| − |x4|). (80)

Lastly the distribution functions are given by:

f(x2)[1 + f(x3)][1 + f(x4)] =
1

e
−y+

√
ν+

x22
2
√
ν − 1

1 +
1

e
−y+

√
ν+

x23
2
√
ν − 1

1 +
1

e
−y+

√
ν+

x24
2
√
ν − 1

 .(81)

In the low temperature regime these reduce to:

f(x2)[1 + f(x3)][1 + f(x4)] ≈ ey−
√
ν

e
x22√
ν

× 1× 1, (82)

from which we find for the relaxation time:

1

τ
∝

4πk2
bT

2

8h̄7J3S3z3a2k2
1

(
2h̄2κ

S
+ 4h̄2J

)2(
κ2

J2S2z2
+

2κ

JSz

)1/2

× eβBh̄−
√
ν . (83)

Which we can simplify for κ� J to find:

1

τ
∝

8πk2
bT

2

h̄3J2S4z4a2k2
1

(2κJSz)1/2 × eβBh̄−
√
ν . (84)

Since antiferromagnetic ordering disappears above the so called Néel Temperature, which depends
on the exchange constant like TN = JSz, it is convenient to write the relaxation time as:

1

τ
∝

8
√

2κJk2
b

h̄3
√
Sza2k2

1

(
T

TN

)2

× eβBh̄−
√
ν . (85)

In a similar way all relaxation times can be determined and are given in the Appendix.

4.3 High temperature regime

The relaxation time approximation above assumed the low temperature regime (kbT � εk) allowing
for approximating the distributions with Boltzmann distributions. However, in the high energy
regime we are allowed to neglect the anisotropy and external field since these are small compared
to the high thermal energy and we can approximate:

βεk = βh̄ωk = βJSh̄2z|k|a = x. (86)
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Again looking at the process of ααα†α†, we find the relaxation time to be given by the integral:

1

τ
=

4πkbT

8h̄c2a

(
2h̄2κ

S
+ 4h̄2J

)2 ∫
d3x2

(2π)3

∫
d3x3

(2π)3

∫
d3x4

(2π)3

1

x1x2x3x4

× f(x2)[1 + f(x3)][1 + f(x4)]× δ(x1 + x2 − x3 − x4)δ(|x1|+ |x2| − |x3| − |x4|). (87)

Here we can neglect the κ term since it is small compared to J and we find:

1

τ
∝

8πk2
bT

2

h̄3JS3z3a|k1|
, (88)

which in terms of TN reads:

1

τ
∝

8πk2
bJ

h̄3Sza|k1|

(
T

TN

)2

. (89)

So we see that in the high temperature regime the external field and anisotropy can be completely
neglected and therefore don’t affect the relaxation time, such that there is no longer any exponential
suppression due to field and anisotropy. For thermal magnons we get from ε = kbT that |k1| =
kbT

JSh̄2za
= kbT

TN h̄
2a

. In this way the relaxation time reduces to:

1

τ
∝ 8πkbJ

h̄Sz

(
T

TN

)
. (90)

4.4 Gilbert damping

Another way for an out-of-equilibrium antiferromagnet to relax to equilibrium is by means of
Gilbert damping. In this case there is no interaction/scattering with other magnons involved. From
Landau-Lifshitz-Gilbert phenomenology we find that relaxation due to Gilbert damping comes into
the Boltzmann equation as:

Γ =
∂f

∂t
= − 1

τG
[fk1 − feq] = −2αωk1 [fk1 − feq] = −2αεk1

h̄
[fk1 − feq], (91)

where α is the Gilbert damping coefficient. For εk1 = kbT (thermal magnons) this reduces to:

1

τG
=

2αkbT

h̄
. (92)

So we find that in the thermal magnon regime the system relaxes to equilibrium due to Gilbert
damping at a rate that is linear in temperature.
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5 Conclusion

In this thesis we performed an analysis of the behaviour of ferromagnets as well as antiferromag-
nets. It is found that perturbations of the ground state result in a propagating spin wave within
the magnetic material. The ground state of the ferromagnet turns out to be an eigenstate of
the Heisenberg exchange Hamiltonian and thus has a constant magnetization. However for the
antiferromagnet we found that the ground state is not an eigenstate of the Heisenberg exchange
Hamiltonian, which results in corrections due to quantum fluctuations. These results were
confirmed using semiclassical, quantum mechanical and phenomenological approaches. We went on
to look at the antiferromagnet including an external field and easy-axis anisotropy and performed
the Holstein-Primakoff transformation, followed by the Bogoliubov transformation to diagonalize
the Hamiltonion, yielding a dispersion relation for spin waves in such a system. This time we
also included higher order terms in bosonic operators, effectively describing magnon-magnon
interactions/scattering. We performed quantum mechanical, time-dependent perturbation theory
in the form of Fermi’s Golden Rule to do a relaxation time approximation of these interactions.
For the different temperature regimes we found different relaxation times. Finally we compared
the results with the relaxation time approximation for Gilbert damping and noted that for higher
temperatures, interactions become more and more important. Previous research confirms T 2

dependence of relaxation rates [11] [12].

The results contribute to a better understanding of the dynamics and the transport of spin
waves within the antiferromagnet, with the goal of obtaining a complete theory of transport.
The results found in this thesis can be used for kinetic theories by making use of the Boltzmann
equation: (

∂f

∂t

)
coll

=

(
∂

∂t
+ v(k)~∇+ k̇~∇k

)
f(k) = −1

τ
[f(k)− feq]. (93)

For future studies we suggest numerical calculations of the relaxation time, by calculating
the dimensionless integrals. Also it might be interesting to look into the three-magnon interactions
that are obtained when not expanding the Holstein-Primakoff spin operators and various other
possible magnon interactions, to extract a relaxation time. These relaxation times can then be
used for various calculations on transport within the antiferromagnet.
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6 Appendix

6.1 Constants

J Exchange coefficient/Spin stiffness
S Spin number
a Lattice constant/spacing
z Number of nearest neighbours
kb Boltzmann constant
T Temperature
h̄ Planck’s constant
κ Anisotropy coefficient
B/H Magnetic field coefficients
β 1

kbT

k Wave vector
τ Relaxation time
TN Curie temperature, TN = JSz
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6.2 Scattering amplitudes

Here we give a list of the symmetrized scattering amplitudes N
2 (Γk1,k2,k3,k4 + Γk1,k2,k4,k3) as used

in calculating the scattering rates.

αk1αk2α
†
k3
α†k4

:

− h̄
2κ

S
(vk1vk2vk3vk4 + uk1uk2uk3uk4)− 2h̄2J(vk1vk3uk2uk4 + vk1vk4uk2uk3)

αk1αk2βk3βk4 :

− h̄
2κ

S
(vk1vk2vk3vk4 + uk1uk2uk3uk4)− 4h̄2J(vk1vk2uk3uk4)

αk1βk2βk3β
†
k4

:

−2h̄2κ

S
(uk1vk2vk3vk4 + vk1uk2uk3uk4)− 2h̄2J(vk1vk2uk3vk4 + vk1vk2vk3uk4 + 2uk1vk2uk3uk4)

βk1βk2β
†
k3
β†k4

:

− h̄
2κ

S
(vk1vk2vk3vk4 + uk1uk2uk3uk4)− 2h̄2J(vk1uk2vk3uk4 + vk1uk2uk3vk4)

α†k1
α†k2

β†k3
β†k4

:

− h̄
2κ

S
(vk1vk2vk3vk4 + uk1uk2uk3uk4)− 4h̄2J(vk1vk2uk3uk4)

βk1α
†
k2
β†k3

β†k4
:

− 2h̄2κ

S
(vk1uk2vk3vk4 + uk1vk2uk3uk4)

− 2h̄2J(vk1vk2vk3uk4 + vk1vk2uk3vk4 + uk1uk2vk3uk4 + uk1uk2uk3vk4)

αk1α
†
k2
α†k3

β†k4
:

− h̄2κ

S
(uk1uk2uk3vk4 + uk1uk2vk3uk4 + vk1vk2vk3uk4 + vk1vk2uk3vk4)

− 2h̄2J(vk1vk2vk3uk4 + vk1vk2uk3vk4 + 2uk1vk2uk3uk4)
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αk1βk2α
†
k3
β†k4

:

− 2h̄2κ

S
(uk1vk2uk3vk4 + uk1vk2vk3uk4 + vk1uk2vk3uk4 + vk1uk2uk3vk4)

−2h̄2J(2vk1vk2vk3vk4+2uk1uk2uk3uk4+vk1uk2uk3vk4+vk1uk2vk3uk4+uk1vk2vk3uk4+uk1vk2uk3vk4)
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6.3 Relaxation times for magnon-magnon scattering processes

Table 1: Relaxation times for different scattering processes.
Scattering
↓ |Γx1,x2,x3,x4 + Γx1,x2,x4,x3 |2 Low Temperature (T): 1

τ ∝ High T: 1
τ ∝

α→ αα†α† 4
N2

(
2h̄2κ
S + 4h̄2J

)2
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α† → ααα†
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α→ αββ 4
N2

(
2h̄2κ
S + 4h̄2J

)2
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β → ααβ
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α→ βββ†

4
N2

(
4h̄2κ
S + 8h̄2J

)2

32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β → αββ†
32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β† → αββ
32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β → βββ† 4
N2

(
2h̄2κ
S + 4h̄2J

)2
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β† → βββ†
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α† → α†β†β† 4
N2

(
2h̄2κ
S + 4h̄2J

)2
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
.

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β† → α†α†β†
8π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
.

8πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β → α†β†β†

4
N2

(
4h̄2κ
S + 8h̄2J

)2

32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
.

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α† → ββ†β†
32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β† → α†ββ†
32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α→ α†α†β†

4
N2

(
4h̄2κ
S + 8h̄2J

)2

32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
.

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α† → αα†β†
32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β† → αα†α†
32π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

32πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α→ βα†β†

4
N2

(
8h̄2κ
S + 16h̄2J

)2

128π
√

2κJV 2k2b
h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

128πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β → αα†β†
128π

√
2κJV 2k2b

h̄3
√
Sza8k2

1

(
T
TN

)2
× eβBh̄−

√
ν .

128πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

β† → αβα†
128π

√
2κJV 2k2b

h̄3
√
Sza8k2

1

(
T
TN

)2
.

128πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.

α† → αββ†
128π

√
2κJV 2k2b

h̄3
√
Sza8k2

1

(
T
TN

)2
.

128πV 2k2bJ

h̄3Sza7|k1|

(
T
TN

)2
.
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