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Introduction
The solution to the general cubic equation ax3 + bx2 + cx + d = 0, with a 6= 0, over the real numbers
has been known for hundreds of years. Cardano, with attribution to Del Ferro and Tartaglia, published
the solution in 1545, which is now usually known as ‘Cardano’s Formula’. Cardano already knew how
to reduce the general cubic polynomial to a polynomial of the form x3 + px + q, where p, q ∈ R. This
is also the first step of our approach. Instead of following Cardano’s old methods, we use more modern
techniques from Galois theory to derive a more general result: We shall derive Cardano’s formula for
cubic polynomials over any field that is not of characteristic 2 or 3. Since Cardano’s formula does not
work in those characteristics, we also derive two separate formulas for the roots of cubic polynomials
using radicals for fields of characteristic 2 and 3.

Before we can get started on Cardano’s formula in chapter 2, we shall first take a look at discriminants
in chapter 1. The discriminant for quadratic polynomials is widely known and used. Indeed, for a
polynomial ax2 + bx + c ∈ R[x], most recognize b2 − 4ac as the discriminant. Moreover, we can derive
some information about the roots from the sign of the discriminant. For instance, if the discriminant is
positive, the two roots are real and distinct. However, what a discriminant is for any polynomial over
some field, let alone how to compute it, is usually less familiar. We shall derive a general formula for
discriminants using a special determinant known as the resultant. As we shall see, in the case of a poly-
nomial x3+px+q, the discriminant equals −4p3−27q2. For cubic polynomials the discriminant provides
similar information as for quadratic ones. In particular, when we work over R and the discriminant is
positive, then all roots are real and distinct.

Back to Cardano’s formula: For a polynomial f(x) := x3 +px+ q over some field F , not of characteristic
2 or 3, Cardano’s formula yields its roots as follows:
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Here ω is a primitive third root of unity, i.e., an element unequal to 1 such that ω3 = 1. The discriminant
of f is denoted by ∆.
Let us look at an example. Consider g(x) := x3 − 3x+ 1 ∈ Q[x], which is plotted in Figure 1 below.
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Figure 1: Plot of g.

In this case, the discriminant equals −4(−3)3 − 27 · 12 = 81. We see that the discriminant is positive,
which means that all roots are real and distinct, which the graph confirms. Also, using Mathematica,
we find approximations of the roots of g:

α1 ≈ −1.87939, α2 ≈ 0.347296, α3 ≈ 1.53209.

We observe that the only rational roots could be ±1 for the rational root test. Neither of these are roots
of g, so g is irreducible over Q. Thus in order to find the roots algebraically, we wish to apply Cardano’s
formula. However, we see that

√
−3 · 81 becomes a complex number. Whence the radicand of the cube

root, and therefore the cube root itself, is also a complex number in Cardano’s formula. Since the roots
of g are all real, two questions arise:

Question: Are the complex radicals necessary to express the roots of g using radicals?
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Question: For what kinds of polynomials does such a situation occur?

The answer to the first question turns out to be yes. Moreover, we shall find in section 4.1 that comput-
ing the cube roots is just as hard as finding a root of g in the first place. Therefore we are stuck with
the complex radicals. This situation, where the three real roots of a cubic polynomial over Q cannot
be expressed with real radicals, is known as the casus irreducibilis. This, appropriately, is Latin for the
‘irreducible case’. We examine this case in depth in section 4.1.
For the mathematicians from a few hundred years ago the casus irreducibilis had an important impli-
cation. Namely, it forced them to confront the complex numbers: Despite the fact that they worked
with polynomials over the real numbers with real roots, the complex numbers still arose. As opposed
to quadratic polynomials, where the complex roots can simply be ignored or deemed non-existent, the
complex numbers were still a necessity for the real roots of cubic polynomials.

Before we rigorously investigate these questions in chapter 4, we take a useful detour in chapter 3 in order
to obtain a more general answer to these questions. Namely, we shall not limit ourselves to polynomials
over the real numbers, but over any field with the necessary properties of R. We shall choose several
useful properties from R—such as the order relation > and the fact that adjoining the square root of
−1 to R yields an algebraically closed field C—and find a common type of fields that satisfies these
properties. The result will be real closed fields. One important result that makes this possible is the
following:

Theorem (3.39 & 3.40): Every ordered field has a real closed, algebraic extension that extends its order,
known as a real closure. Moreover, these real closures are unique up to order-preserving isomorphism.

The proof of the uniqueness we provide uses Zorn’s lemma. Although others use Zorn’s lemma to prove
this statement, such as [13] and [8], our proof has been written entirely independently.
The analogy to R is now as follows. As we before considered polynomials over Q, or any subfield F of
R, we can now consider any ordered field R. This ordered field is contained in a, for all intents and
purposes, unique real closed field R̃; in the same way as what R is to Q or F . One of the mentioned
properties asserts that R̃(i), where i is a square root of −1, is algebraically closed. The elements of R̃
we consider formally real and the ones of R̃(i) formally complex. This naturally extends the definitions
of real and complex radicals to real closed fields.

This has equipped us with all the necessary tools to answer the main two questions thoroughly in chapter
4. The main result, which answers the second question, is Theorem 4.16. The formulation as well as the
main idea of the proof of this theorem comes from Theorem 8.6.5 from [5]. However, in [5] the statement
is merely stated and proved for subfields of the real numbers. Thus, although the proof works the same,
we shall obtain a more general result thanks to the work we have done in chapter 3.
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Symbol Disambiguation
N The set of natural numbers: N := {1, 2, 3, . . .}.
N0 N ∪ {0}.
Z/n The integers modulo n.
Fp The finite field with p elements.
Sn The symmetric group of degree n.
An The alternating group of degree n.
R∗ The group of units (i.e., invertible elements with respect to multiplication) of a ring R.
vT The transpose of a vector or matrix.
A ⊆ B A is a subset of B, including the possibility A = B.
A ⊂ B A ⊆ B and A 6= B, i.e., A is a proper subset of B.⋃
C

⋃
C∈C C, where a C is a set of sets.

H ≤ G H is a subgroup of G; H is less than or equal to G.
H < G H ≤ G and H 6= G.
〈g〉 The cyclic group or the ideal generated by g, depending on the context.
CharF The characteristic of a field F .
[E : F ] The degree of a field extension E of F.
i The imaginary unit

√
−1 ∈ C; A root of x2 + 1.

α The complex conjugate of α ∈ C; The formally complex conjugate of α ∈ R(i), where R
is a formally real field (Definition 3.43).

℘p The Artin-Schreier polynomial xp − x of degree p, where p is a prime number.
∆(f) The discriminant of a polynomial f .
Gal(E/F ) The Galois group of E over F .
EG The fixed field of G in E, where G ≤ Gal(E/F ) and E/F finite Galois.
ΣF The set of sums of squares of a field F .
Σ∗F ΣF \ {0}.
F The algebraic closure of a field F .
F̃ The real closure of a formally real field F .
〈K,L〉 The compositum of K and L.
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0 Preliminary Field and Galois Theory
This chapter mainly functions as a way to repeat definitions and known facts that we shall often use.
We also use this to introduce some notation and terminology.

Definition 0.1: Let F be a field and let K and L be extensions of F . A homomorphism ϕ : K → L is
called an F -homomorphism if ϕ is the identity map on F . A similar definition applies to F -isomorphisms,
F -monomorphisms, and so on.
In particular, if K = L and ϕ is an automorphism, then ϕ is called an F -automorphism if ϕ fixes F .

Definition 0.2: Let F be a field and let E be an algebraic extension of F . We call E a normal extension
if each irreducible polynomial over F , which has a root in E, splits over E.

Definition 0.3: Let F be a field. We call an irreducible polynomial p ∈ F [x] separable if the roots of p
in its splitting field are distinct. An arbitrary polynomial f ∈ F [x] is called separable if each irreducible
factor of f in F [x] is separable.
An algebraic extension E of F is a separable extension if for each α ∈ E the minimal polynomial of α
over F is separable.

Definition 0.4: Let F be a field and E be a finite Galois extension, i.e., a finite separable, normal
extension. The Galois group of E over F is the group of F -automorphisms on E with composition as
group operation. We denote it by Gal(E/F ).

Notation: We often write ‘E/F ’ for ‘E over F ’ when speaking of extensions.

Theorem 0.5 (Proposition 5.1.8 [5]): Let F be a field and f ∈ F [x] an irreducible polynomial. Let E
be a splitting field of f over F and let α, β ∈ E be roots of f . Then there exists an F -automorphism
ϕ : E → E such that ϕ(α) = β.

Definition 0.6: Let E/F be a finite Galois extension and let H ≤ Gal(E/F ). The fixed field of H in
E, denoted by EH , is the field {a ∈ E | ϕ(a) = a for all ϕ ∈ H}.

Theorem 0.7 (Fundamental Theorem of Galois Theory, a.k.a. Galois Correspondence; 4.10.1 [6]): Let
E/F be a finite Galois extension of a field F . There is a bijection between the set of intermediate
fields—i.e., a field K such that F ⊆ K ⊆ E—and the set of subgroups of the Galois group of E/F .
The map K 7→ Gal(E/K)—that sends an intermediate field K to the Galois group of E/K—and the
map H 7→ EH—that sends a subgroup H of Gal(E/F ) to its fixed field—are inverses of each other.
Moreover, if K and L are intermediate fields with K ⊆ L, then Gal(E/L) ≤ Gal(E/K). Conversely, if
H and G are subgroups of Gal(E/F ) with H ≤ G, then EG ⊆ EH . Thus the correspondence reverses
inclusions.
Finally, H ≤ Gal(E/F ) is a normal subgroup if and only if EH/F is a normal extension.

Definition 0.8: Let F be a field. An n-th root of unity is a root of the polynomial xn−1, where n ∈ N,
in some extension field of F . A primitive n-th root of unity ζ is an n-th root of unity such that for each
k ∈ N, 1 ≤ k < n, ζk 6= 1.

Theorem 0.9 (4.11.1 [6]): Let F be a field, n ∈ N and E a splitting field of xn−1 over F . If CharF - n
(including CharF = 0), then the set µn of n-th roots of unity is a cyclic subgroup of E∗.

Note that, for such a field F , the primitive n-th roots of unity are precisely the generators of µn.

Theorem 0.10 (4.10.2 [6]): Let F be a field and E an extension field over F . If E is the splitting field
of a separable polynomial over F , then E/F is a finite Galois extension.

Theorem 0.11 (4.8.2 [6]): Let F be a field. The following hold:

(i) If CharF = 0, then every polynomial over F is separable.
(ii) If CharF = p, with p > 0, then an irreducible polynomial f ∈ F [x] is inseparable if and only if

there exists a polynomial g ∈ F [x] such that f(x) = g(xp).

Theorem 0.12 (Lemma from [6, p. 302]): Let F be a field and f ∈ F [x] a separable polynomial of
degree n ∈ N. Then the Galois group of the splitting field E of f over F is isomorphic to a subgroup of
the symmetric group Sn.
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It is worth noting that the proof of [6] uses the fact that every element of the Galois group of E/F
induces a permutation on the roots of f . This is something we often use when applying this theorem.

Theorem 0.13 (4.9.1 [6]): Let E/F be a finite Galois extension. Then |Gal(E/F )| = [E : F ].

Definition 0.14: Let F be a field. A radical over F is an element α in some extension field of F , which
satisfies one of the following conditions:

(i) α is a root of a polynomial xn − a ∈ F [x] with CharF - n;
(ii) α is a root of a polynomial xp − x− a ∈ F [x] with p = CharF .

Radicals of the form (i) are called n-th roots over F (or square or cube when n = 2 or n = 3, respectively)
and may be denoted by n

√
a. Radicals of the form (ii) are called p-th Artin-Schreier roots over F and

are denoted by ℘−1p (a). The polynomial xp− x is called the Artin-Schreier polynomial (of degree p) and
denoted by ℘p. Hence this terminology and notation.

Remark 0.15: In case of (i), by Theorem 0.9, there exists a primitive n-th root of unity ζ in some
extension of F . If n

√
a is any root of xn − a, then all the roots are n

√
a, ζ n
√
a, ζ2 n

√
a, . . . , ζn−1 n

√
a. See

also Remark 2.2 on page 13 for a convention of choosing these roots.
For (ii), we can use Fermat’s Little Theorem and the binomial expansion to see that if ℘−1p (a) is a root
of xp − x − a, then all the roots are ℘−1p (a), ℘−1p (a) + 1, ℘−1p (a) + 2, . . . , ℘−1p (a) + p − 1. Indeed, let
n ∈ Z/p. We have

℘p(℘
−1
p (a) + n) = (℘−1p (a) + n)p − (℘−1p (a) + n)

= ℘−1p (a)p + np − ℘−1p (a)− n
= ℘−1p (a)p − ℘−1p (a) = a.

Thus ℘−1p (a) + n is a root of xp − x− a.
Remark 0.16: The reason that roots of the form (i) are generally not considered when CharF | n, is
that in this case n-th roots behave ‘badly’: If n = pm, CharF = p, and α is a root of xn − a, then
xn − a = (xm − αm)p. Consequently, αm has multiplicity p and there are only up to m distinct roots.
In particular, when m = 1, xn − a only has one root with multiplicity p. In this case we replace these
radicals with inverses of the Artin-Schreier polynomial of degree p. As Remark 0.15 showed, these types
of radicals have a similar property to n-th roots in that all roots are known if one is known.

Theorem 0.17 (4.13.3 [6]): Let E/F be a finite Galois extension of degree n, with CharF - n, such
that F contains a primitive n-th root of unity. If Gal(E/F ) is a cyclic group, then E = F (ξ), where ξ is
an n-th root over F , i.e., a radical of the form (i) in Definition 0.14.

Theorem 0.18 (4.13.6 [6]): Let CharF = p > 0 and let E/F be a finite Galois extension of degree p. If
Gal(E/F ) is a cyclic group, then E = F (ξ), where ξ is a p-th Artin-Schreier root over F , i.e., a radical
of the form (ii) in Definition 0.14.
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1 Discriminants
In this chapter we shall define the discriminant of a polynomial over a field. We will prove several prop-
erties of discriminants and will see how these relate to the roots of polynomials. We will primarily look
at its properties for polynomials with real coefficients. Finally, we shall present a somewhat complicated,
but computable, formula for the discriminant in terms of the coefficients of the polynomial.

1.1 Introduction
The word ‘discriminant’ presumably comes from the Latin discriminare, which means ‘to distinguish’.
This is indeed what the discriminant allows us to do: For polynomials with coefficients in some field F , the
discriminant distinguishes between whether or not there are multiple roots. Moreover, for polynomials
of degree 2 and 3 over R, it also distinguishes between whether or not there are non-real complex roots,
as we shall see later. We define the discriminant as follows:

Definition 1.1: Let f ∈ F [x] be a polynomial of degree n ≥ 2, with F a field. Let an ∈ F be the
leading coefficient of f and let α1, . . . , αn be its roots, not necessarily distinct, in an extension field of
F . We define the discriminant ∆(f) of f over F by

∆(f) := a2n−2n

∏
1≤i<j≤n

(αi − αj)2.

The factor a2n−2n seems somewhat arbitrary, but we add this to keep the definition consistent with
historical formulas for the discriminant (see also Example 1.14). As mentioned above, the discriminant
of a polynomial can be computed without knowing its roots (see Theorem 1.17). Hence it makes sense
to use the discriminant to infer information about the nature of the roots. This computation will in
particular imply that ∆(f) ∈ F . We can also prove this directly using Galois theory.

Proposition 1.2: Let f ∈ F [x] be a polynomial of degree n ≥ 2, F a field. Then ∆(f) ∈ F .

Proof. Because ∆(f) ∈ F if and only if ∆(f)/a2n−2n ∈ F , where an is the leading coefficient of f , it
suffices to consider the case where f is monic.
If ∆(f) = 0, then clearly ∆(f) ∈ F . Suppose now ∆(f) 6= 0. Let α1, . . . , αn be the roots of f . The
product in the discriminant consists of (n− 1) + (n− 2) + · · ·+ 2 + 1 = 1

2n(n− 1) factors. Each factor
(αi − αj)2 can be written as −(αi − αj)(αj − αi). Thus we see that we can rewrite the discriminant as

∆(f) = (−1)
1
2n(n−1)

∏
i 6=j

(αi − αj). (1.1)

Since ∆(f) 6= 0, all factors of the product are nonzero, meaning that αi 6= αj for i 6= j. Thus f has no
multiple roots, which means that f is separable. Let E be the splitting field of f over F . By Theorem
0.10, E is a finite Galois extension of F . Let G := Gal(E/F ) be the Galois group of E over F . By the
fundamental theorem of Galois theory, the fixed field EG of G in E is equal to F . Therefore, ∆(f) ∈ F
if and only if ∆(f) is fixed by G. Theorem 0.12 says that G is isomorphic to a subgroup of Sn. Hence
any element ϕ of G is determined by a permutation σ ∈ Sn on the indices of the roots of f . That is
to say, ϕ(αi) = ασ(i) for each i. From (1.1) we see that any permutation in Sn does not change ∆(f).
Whence ∆(f) is also invariant under all F -automorphisms on E, which are the elements of G. Thus
∆(f) ∈ EG = F .

1.2 Relation to the Roots
By definition C = R(i), where i is a root of x2 + 1 ∈ R[x]. The latter polynomial clearly is irreducible
and separable over R, which means that C/R is a Galois extension of degree 2. Then Gal(C/R) has two
elements by Theorem 0.13, namely the identity and the map that sends i to −i. The latter is called
complex conjugation and is denoted by · , e.g., i = −i. (This has a generalization: see Lemma 3.24.) This
has a nice consequence: If f is a polynomial over R with a root α (which lies in C by the fundamental
theorem of algebra; see also Theorem 3.30), then the complex conjugate α is also a root of f . Indeed, the
previous argument shows that complex conjugation is an R-automorphism, hence f(α) = f(α). From
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this we conclude that non-real complex roots of f come in pairs. We will usually refer to a complex
number and its conjugate as a complex pair.
We can now prove an interesting relation between the sign of the discriminant and the number of non-real
complex numbers. Note that, by Proposition 1.2, the discriminant is a real number if we are talking
about polynomials over R. So we may speak about its sign.

Theorem 1.3: Let f ∈ R[x] be a polynomial of degree n ≥ 2 with distinct roots α1, . . . , αn. Let r be
half of the number of complex roots of f (note that r ∈ N0 by the foregoing). Then sgn(∆(f)) = (−1)r,
where sgn is the signum function.

Proof. First note that the factor a2n−2n = (an−1n )2 is a square, hence does not influence the sign of the
discriminant. Therefore, we shall determine the sign of ∆(f) by looking at the factors (αi − αj)2, i < j,
and considering the following (exhaustive) cases:

(i) If αi − αj ∈ R, then (αi − αj)2 > 0.
(ii) If αi = αj , then αi−αj = 2i Im(αi) and so (αi−αj)2 < 0. Note that the conjugate αi − αj equals

αj − αi and does not appear in the product, as j > i.
(iii) If αi−αj /∈ R and αi 6= αj , then in the complex conjugate αi − αj = αi−αj appears at least one root

different from both αi and αj ; that is to say, αi 6= αi, αj or αj 6= αi, αj . Since (αi−αj)2 = (αj−αi)2,
this factor appears in the product as well. This means that the product has a factor

(αi − αj)2(αi − αj)2 = (αi − αj)2(αi − αj)2 = Re(αi − αj)2 + Im(αi − αj)2 > 0.

We see that each pair of complex conjugates yields one negative factor in the product and that the other
factors only contribute positive ones. There are r pairs of complex conjugates and hence r negative
factors. Therefore, the sign of ∆(f) equals (−1)r, as desired.

From this theorem we can infer whether or not all roots of polynomials of degree 2 or 3 are real. This is
shown in the corollaries below.

Corollary 1.4: Let f ∈ R[x] be a polynomial of degree 2. Let α1 and α2 be the roots of f . Then the
following hold:

• ∆(f) = 0 if and only if α1 = α2;
• ∆(f) > 0 if and only if α1, α2 ∈ R and α1 6= α2;
• ∆(f) < 0 if and only if α1, α2 ∈ C \ R and α1 = α2.

Proof. Clearly (α1 − α2)2 = 0 if and only if α1 = α2.
If ∆(f) > 0, the theorem tells us there is an even amount of complex pairs. Since there can be at
most one, as f only has two roots, this amount must be zero. Hence α1, α2 ∈ R. They are distinct,
as ∆(f) 6= 0. Conversely, if α1, α2 ∈ R and distinct, there are no complex pairs, so, by the theorem,
sgn(∆(f)) = (−1)0 = 1.
If ∆(f) < 0, by the theorem there is an odd number of complex pairs. There can only be one, so α1 and
α2 form a complex pair, i.e., α1, α2 ∈ C \R and α1 = α2. Conversely, α1 and α2 form the only complex
pair. The theorem says that sgn(∆(f)) = (−1)1 = −1.

Corollary 1.5: Let f ∈ R[x] be a polynomial of degree 3. Let α1, α2 and α3 be the roots of f . Then
the following hold:

• ∆(f) = 0 if and only if αi = αj for some i 6= j, i.e., there is a multiple root;
• ∆(f) > 0 if and only if α1, α2, α3 ∈ R and are all distinct;
• ∆(f) < 0 if and only if one root is real and the other two form a complex pair.

Proof. The product (α1 − α2)2(α1 − α3)2(α2 − α3)2 equals zero if and only if one of its factors is zero.
The latter clearly occurs precisely when two of the roots coincide.
Note that the amount of complex pairs is either zero or one, as f only has three roots.
If ∆(f) > 0, then, by the theorem, there are zero complex pairs, and so α1, α2, α3 ∈ R. They are distinct
as ∆(f) 6= 0. Conversely, if all roots are distinct and in R, then by the theorem sgn(∆(f)) = (−1)0 = 1.
If ∆(f) < 0, then the theorem implies there is one complex pair. This also means that the remaining root
is real. Conversely, there is one complex pair. Therefore, by the theorem, sgn(∆(f)) = (−1)1 = −1.
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The fact that the complex roots come in pairs also has another consequence:

Proposition 1.6: Every polynomial f ∈ R[x] of odd degree has a root in R.

Proof. Let n := deg f . Since n is odd, there are at most n−1
2 pairs of complex roots, not necessarily

distinct. This means that there are at most n− 1 complex roots (counting multiplicity), hence at least
one of the roots of f must lie in R.

The statement of Proposition 1.6 is usually obtained using real analysis by arguing that f(x) approaches
±∞ as x → −∞, while f(x) goes to ∓∞ as x → ∞. Then, because f is continuous, the intermediate
value theorem implies that f attains the value 0 somewhere, meaning that f has a root in R. In the
proof above we have actually obtained the same result algebraically.1

1.3 The Resultant
Here we shall define a useful tool, with which we can later derive the desired formula for the discriminant.
We will more or less be following Lang’s approach (see Chapter IV, §8 of [14]). We jump right into the
definition:

Definition 1.7: Let F be a field. Let x0, . . . , xn, y0, . . . , ym be algebraically independent over F , where
n,m ∈ N. We define the resultant Res ∈ F [x0, . . . , xn, y0, . . . , ym] by

Res(~x, ~y) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xn xn−1 · · · x0
xn xn−1 · · · x0

. . .
. . .

. . .
. . .

xn xn−1 · · · x0
ym ym−1 · · · y0

ym ym−1 · · · y0
. . .

. . .
. . .

. . .

ym ym−1 · · · y0︸ ︷︷ ︸
n+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mn

where the empty spaces are zeros and ~x = (x0, . . . , xn) and ~y = (y0, . . . , ym). If f, g ∈ F [z], z
a variable, and f(z) = anz

n + · · · + a1z + a0 and g(z) = bmz
m + · · · + b1z + b0, then we define

Res(f, g) := Res(a0, . . . , an, b0, . . . , bm).

We will now establish a range of properties of the resultant.
Let z be a variable. The first property, which we can deduce directly from the properties of determinants,
is homogeneity in ~x and ~y of degree m and n, respectively. To see this, consider Res(z~x, ~y). Then z
appears precisely in the first m rows in all non-zero entries of the matrix above. By factoring out one z
from each row, we obtain m z’s in total. Now all z’s have been removed, so Res(z~x, ~y) = zm Res(~x, ~y).
Similarly, factoring out z from the bottom n rows yields Res(~x, z~y) = zn Res(~x, ~y).
Now define the polynomials f(z) := xnz

n + · · ·+x1z+x0 and g(z) := ymz
m + · · ·+ y1z+ y0 over F [~x, ~y].

We show that Res(f, g) can be expressed as a linear combination of f and g in F [~x, ~y][z]. Let M(~x, ~y)
be the matrix from Definition 1.7 (thus detM(~x, ~y) = Res(~x, ~y)). Applying this matrix to the vector
~z := (zn+m−1, . . . , z, 1)T yields the following:

xnz
n+m−1 + xn−1z

n−1+m−1 + · · ·+ x1z
1+m−1 + x0z

m−1

xnz
n+m−2 + xn−1z

n−1+m−2 + · · ·+ x1z
1+m−2 + x0z

m−2

...
xnz

n + xn−1z
n−1 + · · ·+ x1z + x0

ymz
m+n−1 + ym−1z

m−1+n−1 + · · ·+ y1z
1+n−1 + y0z

n−1

ymz
m+n−2 + ym−1z

m−1+n−2 + · · ·+ y1z
1+n−2 + y0z

n−2

...
ymz

m + ym−1z
m−1 + · · ·+ y1z + y0


=



zm−1f(z)
zm−2f(z)

...
f(z)

zn−1g(z)
zn−2g(z)

...
g(z)


.

1Observe, however, that we did assume that C is algebraically closed. We prove this in Theorem 3.30, where we
unavoidably use some analysis.
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Let w(z) be the vector on the right. Then, more compactly, we have the equalityM(~x, ~y)~z = w(z). Write
M̃(~x, ~y, z) for the matrix M(~x, ~y), whose final column is replaced by w(z). Note that the last component
of ~z is 1. Also note that the determinant of M(~x, ~y) is non-zero, as the diagonal yields the non-zero term
xmn y

n
0 , which does not occur any other way in the determinant. Therefore, by Cramer’s rule, we have

1 =
det M̃(~x, ~y, z)

detM(~x, ~y)
.

Since Res(~x, ~y) = detM(~x, ~y), we see that also Res(~x, ~y) = det M̃(~x, ~y, z). By definition, the determinant
is a summation of products, which consist of entries of the matrix such that from each column exactly
one entry is taken, while no two entries come from the same row. Since each entry in the final column
of M̃(~x, ~y, z) contains a power of z and either f(z) or g(z), it follows that each term in the determinant
of M̃(~x, ~y, z) contains either f(z) or g(z) (along with a power of z). By factoring out f(z) and g(z), we
see that there exist polynomials u, v ∈ F [~x, ~y][z] such that

Res(~x, ~y) = u(z)f(z) + v(z)g(z). (1.2)

Note that Res(~x, ~y) ∈ F [~x, ~y], so z completely vanishes.

Remark 1.8: The coefficients ~x and ~y of f and g have thus far been algebraically independent. However,
when we wish to apply these results to polynomials over some field F , their coefficients need not be
algebraically independent anymore. The reason these results still apply is that we substitute the inde-
terminates with elements of F ; this is the same process as the usual evaluation of polynomials. More
formally, if ~a represents elements a0, . . . , an ∈ F , then we have the F -homomorphism ε~a : F [~x] → F
defined by p 7→ p(~a). The fact that this is a homomorphism follows directly from addition and multipli-
cation of polynomials. In particular, ε~a sends each xi to ai.
To exemplify this, let p, q ∈ F [z] be polynomials of degree n and m, respectively, with coefficients ~a and
~b. Regard f, g, u, v from equation (1.2) as polynomials in F [z][~x, ~y]. We see that Res(p, q) = ε~a,~b(Res),
p = ε~a,~b(f) and q = ε~a,~b(g). We also obtain the polynomials ũ := ε~a,~b(u) and ṽ := ε~a,~b(v) over F . This
now results in equation (1.2) in F :

Res(p, q) = ũ(z)p(z) + ṽ(z)q(z).

We shall not explicitly use the homomorphism ε~a,~b, but just use this property of substituting values for
indeterminates.

Applying this, equation (1.2) yields the following result:

Proposition 1.9: Let p, q ∈ F [z] be polynomials that have at least one root in common in some
extension field of F . Then Res(p, q) = 0.

Proof. From (1.2) we see that there exist polynomials u, v ∈ F [z]—where we substituted the coefficients
of p and q for ~x and ~y, respectively—such that Res(p, q) = u(z)p(z) + v(z)q(z). Let α be in some
extension field of F such that p(α) = q(α) = 0. Then it follows that

Res(p, q) = u(α)p(α) + v(α)q(α) = u(α) · 0 + v(α) · 0 = 0,

as desired.

This proposition actually has a converse, which we shall now work toward. We will need the following
two lemmas.

Lemma 1.10: Let R be an integral domain and let f ∈ R[x, y] be such that f(x, x) = 0. Then y − x is
a factor of f .

Proof. Regard f as a polynomial of y, so that f(y) =
∑n
i=0 fi(x)yi with fi ∈ R[x] and n = deg f in

R[x][y]. Since f(x) = f(x, x) = 0, we see that

f(y) = f(y)− f(x) =

n∑
i=0

fi(x)(yi − xi).

As yi − xi = (y− x)(yi−1 + xyi−2 + · · ·+ xi−2y+ xi−1), it follows that y− x divides f(y). Thus y− x is
a factor of f .
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Before we continue with the second lemma, we first introduce some notation:

Notation: Denote by ~αβji the vector ~α with the i-th component replaced by βj . We extend this notation
so that ~αi means that the i-th entry is deleted entirely.

Lemma 1.11: Let F be a field and let α1, . . . , αn, β1, . . . , βm be algebraically independent over F . Then
αi − βj is prime in F [~α, ~β] for each i and j. Moreover, if (i, j) 6= (k, l), then αi − βj 6= αk − βl.

Proof. Suppose there are a, b ∈ F [~α, ~β] such that αi − βj = a(~α, ~β)b(~α, ~β). If we regard a and b as
polynomials in F [~αi, ~β][αi], then we see that deg(ab) = 1, as deg(αi − βj) = 1 in F [~αi, ~β][αi]. Since
a, b 6= 0 and F [~α, ~β] is an integral domain, we have deg a+ deg b = 1. Hence, without loss of generality,
deg a = 0. This means that a ∈ F [~αi, ~β]. It follows that deg b = 1 and so there are elements c, d ∈ F [~αi, ~β]
such that b(αi) = cαi + d. Since ab(αi) = αi− βj , it follows that ac = 1. Therefore, a is a unit. Whence
αi − βj does not have a proper devisor and thus is prime.
To see that αi− βj and αk − βl give rise to different primes for (i, j) 6= (k, l), suppose αi− βj = αk − βl.
Note that i = k if and only if j = l, so αi 6= αk and βj 6= βl. Consider the non-zero polynomial
p(z1, z2, z3, z4) := z1 − z2 − z3 + z4 ∈ F [z1, z2, z3, z4]. Then (αi, βj , αk, βl) is a root of p, contradicting
their algebraic independence. Hence αi − βj 6= αk − βl.

We shall now derive a formula for the resultant in terms of the roots of the polynomials. We do this by
considering the resultant as a function of the roots, for which we need to deem the roots as indeterminates.

Theorem 1.12: Let α1, . . . , αn, xn, β1, . . . , βm, ym be algebraically independent over a field F . Let
~α := (α1, . . . , αn) and ~β := (β1, . . . , βm). Define the polynomials f~α(z) := xn

∏n
i=1(z − αi) =: xnz

n +
· · ·+ x1z + x0 and g~β(z) := ym

∏m
j=1(z − βj) =: ymz

m + · · ·+ y1z + y0. Then

Res(f~α, g~β) = xmn y
n
m

n∏
i=1

m∏
j=1

(αi − βj) =: P (~α, xn, ~β, ym).

Proof. By simply expanding the products above, we see that the coefficients xi (i < n) and yj (j < m) are
polynomials in F [~α, xn] and F [~β, ym], respectively. From this will follow that x0, . . . , xn, y0, . . . , ym are
also algebraically independent. Indeed, suppose there is a non-trivial polynomial h such that h(~x, ~y) = 0.
Then we get a non-trivial polynomial h̃ with (~α, xn, ~β, ym) as a root:

h̃(~α, xn, ~β, ym) := h(x0(~α, xn), . . . , xn−1(~α, xn), xn, y0(~β, ym), . . . , ym−1(~β, ym), ym)

= h(~x, ~y) = 0,

which contradicts the algebraic independence of ~α, xn, ~β, ym.
We can now deem Res(~x, ~y) as a polynomial in terms of ~α, xn, ~β, ym. Moreover, since every coefficient
xi has a factor xn, and every yi has a factor ym, by the homogeneity property, we get Res(~x, ~y) =
xmn y

n
m Res(f̃~α, g̃~β), where f̃~α := f~α/xn and g̃~β := g~β/ym.

By the foregoing, we can set R(~α, ~β) := Res(f̃~α, g̃~β), as the latter is a polynomial in F [~α, ~β]. Observe that

for every i and j we have f̃
~α
βj
i

(βj) = g̃~β(βj) = 0, hence R(~α
βj
i ,

~β) = Res(f̃
~α
βj
i

, g̃~β) = 0, by Proposition

1.9. Now view R as an element of F [~αi, ~βj ][βj , αi], so that R(βj , βj) = R(~α
βj
i ,

~β) = 0. Since F [~αi, ~βj ] is
an integral domain, we see that Lemma 1.10 implies that αi−βj is a factor of R for every i and j. Since
these factors are all distinct primes by Lemma 1.11, it follows that their product

∏n
i=1

∏m
j=1(αi − βj) is

also a factor of R(~α, ~β).
Now observe that

P (~α, xn, ~β, ym) = xmn y
n
m

n∏
i=1

m∏
j=1

(αi − βj) = xmn y
n
m

n∏
i=1

g̃~β(αi) = xmn

n∏
i=1

g~β(αi). (1.3)

So P can be seen as a polynomial in ~α, xn, ~y. We see that P is then homogeneous in ~y of degree n. On
the other hand we have

P (~α, xn, ~β, ym) = xmn y
n
m

m∏
j=1

n∏
i=1

(−1)(βj − αi) = (−1)nmxmn y
n
m

m∏
j=1

f̃~α(βj) = (−1)nmynm

m∏
j=1

f~α(βj).
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Thus P can also be seen as a polynomial in ~x, ~β, ym. It is again clear that P now is homogeneous in
~x of degree m. So we see that P and Res have the same homogeneity properties, and P divides Res.
Therefore, Res must be a constant multiple of P . To see this, define the function

ϕ(~x, ~y, ~α, ~β) :=
2 Res(~x, ~y)

2P (~α, xn, ~β, ym)
=

2 Res(~x, ~y)

xmn
∏n
i=1 g~β(αi) + (−1)nmynm

∏m
j=1 f~α(βj)

.

Note that this is a polynomial in F [~α, ~β]. Since both the numerator and denominator are homogeneous
in ~x and ~y of the same respective degrees, we see that ϕ(z~x,w~y, ~α, ~β) = ϕ(~x, ~y, ~α, ~β), where z and w are
variables. This means that ϕ is constant as a polynomial in (~x, ~y). Except for permuting components,
changing ~α and ~β implies changing ~x and ~y, respectively (and vice versa). This means that ϕ cannot
depend polynomially on ~α and ~β. But ϕ is a polynomial, so it must be a constant one. Therefore, there
is an s ∈ F such that Res(f~α, g~β) = sP (~α, xn, ~β, ym). To determine the value of s, note that from (1.3)
we see that P has the term xmn y

n
0 with coefficient 1. From the determinant definition of the resultant,

clearly also Res(f~α, g~β) has xmn yn0 with coefficient 1, which comes from the product of the entries on the
diagonal. We conclude that s = 1.

Corollary 1.13: Let f and g be two polynomials over a field F , over which they split. Then Res(f, g) = 0
if and only if f and g have a common root in F .

Proof. Since f and g split, we may write f(z) = an(z−α1) · · · (z−αn) and g(z) = bm(z−β1) · · · (z−βm),
where an, bm, αi, βj ∈ F , i = 1, . . . , n, j = 1, . . . ,m and an, bm 6= 0, and n = deg f and m = deg g.
Assume Res(f, g) = 0. By substituting these roots for the indeterminates in Theorem 1.12, we obtain
amn b

n
m

∏n
i=1

∏m
j=1(αi − βj) = 0. Since amn bnm 6= 0, one of the factors αi − βj equals 0. This means that

αi = βj for some pair (i, j), wherefore f and g have a common root.
The converse is Proposition 1.9.

1.4 A Formula for the Discriminant
As promised earlier we shall have derived a general formula for the discriminant of a polynomial f in
terms of its coefficients by the end of this section. We start with a simple example of the formula for the
discriminant of a quadratic polynomial.

Example 1.14: Let F be a field and ax2 + bx + c ∈ F [x] be a polynomial, a 6= 0. We shall see that the
discriminant equals b2 − 4ac. Let α1 and α2 be the roots of f in some extension field over F . Then f
can be written as f(x) = a(x − α1)(x − α2) = ax2 − a(α1 + α2)x + aα1α2. From this we obtain that
−a(α1 + α2) = b and aα1α2 = c. Now, from the definition of the discriminant, we compute

∆(f) = a2·2−2(α1 − α2)2

= a2((α1 + α2)2 − 4α1α2)

= (−a(α1 + α2))2 − 4a(aα1α2)

= b2 − 4ac,

(1.4)

which is indeed the well-known formula for the discriminant of a quadratic polynomial.

For this simple example we already needed to use a little ‘trick’ in the second line of (1.4). It seems
likely that this becomes very complicated very quickly for discriminants of higher degree polynomials.
It is not even clear whether this is possible! Fortunately, it is and we shall use resultants to show this.
The formal derivative of a polynomial plays a part in the formula. Over R this is the same as the usual
derivative from calculus. More generally, we define it as follows:

Definition 1.15: Let F be a field and let f(x) :=
∑n
i=0 aix

i ∈ F [x], where n ∈ N0. We define the
(formal) derivative of f , denoted by f ′ or Df , by

f ′(x) := Df(x) :=

n∑
i=1

iaix
i−1.

If n = 0, this is the empty sum, which equals 0.
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We verify that we have the standard rules for differentiation, namely

the ‘sum rule’: (f + g)′ = f ′ + g′ and
the ‘product rule’: (fg)′ = f ′g + fg′,

for any f, g ∈ F [x], F a field. Indeed, let f(x) :=
∑n
i=0 aix

i and g(x) :=
∑m
j=0 bjx

j be polynomials over
F . Assume, without loss of generality, that n ≥ m and set bj := 0 for j > m. Then we have

D(f + g) = D

(
n∑
i=0

aix
i +

m∑
j=0

bjx
j

)
= D

n∑
i=0

(ai + bi)x
i

=

n∑
i=1

i(ai + bi)x
i−1 =

n∑
i=1

iaix
i−1 +

m∑
j=1

jbjx
j−1

= Df +Dg.

By repeated application, this also holds for any finite summation of polynomials. We can now derive the
product rule directly:

D(fg) = D

((
n∑
i=0

aix
i

)(
m∑
j=0

bjx
j

))
= D

n∑
i=0

m∑
j=0

aibjx
i+j

=

n∑
i=0

D

m∑
j=0

aibjx
i+j =

n∑
i=0

m∑
j=0

(i+ j)aibjx
i+j−1

=

n∑
i=1

iaix
i−1

m∑
j=0

bjx
j +

n∑
i=0

aix
i
m∑
j=1

jbjx
j−1

= (Df)g + fDg.

We also have the following property of derivatives, related to multiple roots:

Lemma 1.16: Let f ∈ F [x] be a polynomial, F a field. Suppose f has a root α in some extension field
E of F . Then α is a multiple root if and only if f ′(α) = 0.

Proof. For the direct implication, we can factor out (x−α)2. So there exists a polynomial g ∈ E[x] such
that f(x) = (x− α)2g(x). By the product rule for derivatives, we have

f ′(x) = ((x− α)2)′g(x) + (x− α)2g′(x)

= (x2 − 2αx+ α2)′g(x) + (x− α)2g′(x)

= 2(x− α)g(x) + (x− α)2g′(x).

From this we see that f ′(α) = 0.
Conversely, suppose f ′(α) = 0. There exists a polynomial g ∈ E[x] such that f(x) = (x− α)g(x). Thus
we compute directly:

f ′(x) = D((x− α)g(x)) = g(x) + (x− α)g′(x).

Since f ′(α) = 0, we see that g(α) = 0. Hence there exists an h ∈ E[x] such that g(x) = (x − α)h(x).
Consequently, f(x) = (x− α)2h(x).

At last, we have arrived at the following formula for the discriminant:

Theorem 1.17: Let f ∈ F [x] be a polynomial of degree n ≥ 2, F a field with CharF - n. Let an be
the leading coefficient of f . Then

∆(f) = (−1)
1
2n(n−1)a−1n Res(f, f ′). (1.5)

Proof. First consider the case where f has a multiple root. Then ∆(f) = 0. By Lemma 1.16, f and f ′
have a root in common, hence the right-hand side of (1.5) is also zero for Proposition 1.9. Whence the
formula holds.
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Now suppose all roots of f are distinct. Then ∆(f) 6= 0. Lemma 1.16, together with Corollary 1.13,
implies that the right-hand side of (1.5) is also non-zero. Let E be a splitting field of f over F . Let
α1, . . . , αn ∈ E be the roots of f . By (1.3) and Theorem 1.12, we see that

Res(f, f ′) = an−1n

n∏
i=1

f ′(αi). (1.6)

Write f(x) = an(x− α1) · · · (x− αn). We compute the derivative of f :

f ′(x) = an(D(x− α1))

n∏
j=2

(x− αj) + an(x− α1)D

n∏
j=2

(x− αj)

= an

n∏
j=2

(x− αj) + an(x− α1)

(
(D(x− α2))

n∏
j=3

(x− αj) + (x− α2)D

n∏
j=3

(x− αj)

)

= an

n∏
j=1
j 6=1

(x− αj) + an

n∏
j=1
j 6=2

(x− αj) + an(x− α1)(x− α2)D

n∏
j=3

(x− αj)

...

= an

n∏
j=1
j 6=1

(x− αj) + · · ·+ an

n∏
j=1

j 6=n−1

(x− αj) + an

(
n−1∏
j=1

(x− αj)

)
D(x− αn)

= an

n∑
i=1

n∏
j=1
j 6=i

(x− αj).

Note that deg f ′ = n − 1, since CharF - n. Now we see that for each i, there is exactly one term in
the sum that does not contain the factor x− αi. Hence if we substitute αi for x, then all terms bar one
vanish. Consequently, f ′(αi) = an

∏n
j=1
j 6=i

(αi − αj). Combining this with (1.6), we obtain

Res(f, f ′) = an−1n

n∏
i=1

an

n∏
j=1
j 6=i

(αi − αj)

= a2n−1n

∏
i 6=j

(αi − αj).

By (1.1) in the proof of Proposition 1.2, we now see that

(−1)
1
2n(n−1)a−1n Res(f, f ′) = (−1)

1
2n(n−1)a2n−2n

∏
i 6=j

(αi − αj) = ∆(f),

which is the desired formula.

As mentioned in section 1.1, we immediately have the following (already proven) consequence:

Corollary 1.18: Let f ∈ F [x] be a polynomial of degree n ≥ 2, F a field. Then ∆(f) ∈ F .

We end this section with an example, where we again find the discriminant of a quadratic polynomial.

Example 1.19: Let F be a field with CharF 6= 2 and let f(x) := ax2 + bx + c ∈ F [x] be a polynomial,
a 6= 0. Note that f ′(x) = 2ax+ b. We compute the discriminant using Theorem 1.17:

∆(f) = (−1)
1
2 ·2·1a−1

∣∣∣∣∣∣
a b c
2a b 0
0 2a b

∣∣∣∣∣∣
= −a−1(ab2 + 4a2c− 2ab2)

= b2 − 4ac.

This is indeed the same formula we obtained in Example 1.14.
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2 Roots of Third Degree Polynomials
Given a polynomial f(x) := x3 + px+ q over a field F , not of characteristic 2 or 3, we have the famous
formula of Cardano for the roots of f . This formula dates back to the sixteenth century, hence the
methods of deriving it are quite old as well. In this chapter we shall give a more modern approach, using
Galois theory, to derive the formula that has been known for so long. This approach is based on the
notes from [7].
After this we shall also examine the cases where the characteristic of F equals 2 or 3, using the ideas
from [17]. This is where the aforementioned formula fails. The formulas we shall derive are in terms of
the usual radicals, which are roots of xn − a over F , where CharF - n, and radicals that are roots of
xp − x − a over F , where p = CharF . These are the radicals that are normally considered when one
speaks of ‘solvability by radicals’.

Our general approach is as follows. Firstly, we consider a polynomial ax3 + bx2 + cx + d ∈ F [x] with
a 6= 0. To obtain the roots, we need to solve the equation ax3 + bx2 + cx+d = 0 for the indeterminate x.
We can always divide by the leading coefficient, hence we shall only consider monic polynomials. Next
we use some kind of substitution to obtain a polynomial of the form f(x) := x3 + px + q over F . This
is called the depressed cubic. To figure out what kinds of radicals will appear in the final formulas, we
wish to determine what the splitting field E of f over F looks like. Determining the Galois group of E
over F helps with this. Once we have established which radicals we may need, we work out the entire
formula itself.

2.1 Deriving Cardano’s Formula
Let F be a field, not of characteristic 2 or 3. Consider a cubic polynomial y3 +ay2 +by+c ∈ F [y]. To get
rid of the quadratic term, we apply the substitution y = x− 1

3a. Indeed, using the binomial expansion,
we get a term −ax2 from (x − 1

3a)3, which cancels the term ax2, obtained from a(x − 1
3a)2. We now

have the depressed cubic polynomial
f(x) := x3 + px+ q,

where
p = b− 1

3
a2, q =

2

27
a3 − 1

3
ab+ c.

It suffices to find the roots of f : If α satisfies f(α) = 0, then α+ 1
3a is a root of the original polynomial.

Let ω denote a primitive third root of unity over F . This exists by Theorem 0.9, as CharF - 3. We
shall henceforth assume that ω ∈ F . This is justified, as we can simply replace F by F (ω). Assume f is
irreducible over F . Denote by E the splitting field of f over F and let α1, α2, α3 ∈ E be the roots of f .
Since f can be written as f(x) = (x−α1)(x−α2)(x−α3) over E, by expanding this product, we obtain:

f(x) = x3 − (α1 + α2 + α3)x2 + (α1α2 + α1α3 + α2α3)x− α1α2α3.

By matching up the coefficients, we get the following equalities:

α1 + α2 + α3 = 0,

α1α2 + α1α3 + α2α3 = p,

α1α2α3 = −q.
(2.1)

This will be useful later.
Let us investigate what E looks like. By Theorem 0.11, f is separable over F . Indeed, if CharF = 0,
we are done. Otherwise, CharF > 3. Since deg f = 3, there is clearly no polynomial g ∈ F [x] such that
f(x) = g(xCharF ). Thus E is the splitting field of an irreducible, separable polynomial. Whence E/F is
finite Galois by Theorem 0.10. Let ∆ := ∆(f) and

δ :=
∏
i<j

(αi − αj)

so that δ2 = ∆. We now have the following theorem about the Galois group of E over F .
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Theorem 2.1: Let F be a field, not of characteristic 2 or 3. Let f ∈ F [x] be irreducible and separable
and let E/F be its splitting field. Then the Galois group of E over F is isomorphic to S3 if δ /∈ F and
isomorphic to A3 if δ ∈ F . Furthermore, if F contains a primitive third root of unity, then E = F (δ)(ξ),
where ξ is a cube root over F (δ).

Proof. Since deg f = 3, by Theorem 0.12, the Galois group Gal(E/F ) is a subgroup of the symmetric
group S3. By Theorem 0.13, the degree [E : F ] of E over F is a divisor of 6 = |S3|. Because f is
irreducible, we have [F (αi) : F ] = 3, where i ∈ {1, 2, 3}. Obviously F (αi) ⊆ E, so [E : F ] ∈ {3, 6}.
First consider the case where δ /∈ F . Then clearly x2 −∆ ∈ F [x] is irreducible and separable, because
δ 6= −δ as CharF 6= 2 and δ 6= 0. Hence the splitting field F (δ) of this polynomial is a finite Galois
extension over F by Theorem 0.10. Thus [F (δ) : F ] = 2. Clearly δ ∈ E, as it consists of multiplication
and addition of the roots of f , so F ⊂ F (δ) ⊂ E. We saw that [E : F ] 6= 2, so this last inclusion is
indeed strict. Since now [E : F ] = [E : F (δ)][F (δ) : F ] = 2[E : F (δ)] ∈ {3, 6}, we see that [E : F ] = 6.
Therefore, Gal(E/F ) ∼= S3. We have also obtained that [E : F (δ)] = 3.
Now suppose δ ∈ F . We already observed that E ⊇ F (α1) ⊃ F . Now consider Gal(E/F (α1)). Since
[F (α1) : F ] = 3, this group can only have order 1 or 2. Indeed, the F (α1)-automorphisms on E can
either be the identity, or the map τ that swaps α2 and α3. Suppose τ ∈ Gal(E/F (α1)). Then τ(δ) = δ
as δ ∈ F . But we also have

τ(δ) = τ((α1 − α2)(α1 − α3)(α2 − α3)) = (α1 − α3)(α1 − α2)(α3 − α2) = −δ.

Consequently, 2δ = 0. Since CharF 6= 2, we must have δ = 0. But this contradicts the fact that f
is separable. Hence τ /∈ Gal(E/F (α1)), which means |Gal(E/F (α1))| = 1 and so E = F (α1). Hence
[E : F ] = 3.
Since in the latter case F = F (δ), we have now obtained that [E : F (δ)] = 3. The only subgroup of S3 of
order 3 is the alternating group A3. Hence Gal(E/F (δ)) ∼= A3, which is cyclic of order 3. Assume now
that F contains a primitive third root of unity. Since CharF - 3, Theorem 0.17 implies that E = F (δ)(ξ)
with ξ a cube root over F (δ).

The theorem applies immediately to E and f . We saw that Gal(E/F (δ)) ∼= A3, which is cyclic. So let
σ be a generator of Gal(E/F (δ)), which we can choose to correspond to the permutation (1 2 3) on the
indices of the roots α1, α2 and α3. Define

z1 := α1 + ω2α2 + ωα3,

z2 := α1 + ωα2 + ω2α3.

Then we see that σ(z1) = ωz1 and σ(z2) = ω2z2. It now follows that σ fixes z31 and z32 . Since σ generates
Gal(E/F (δ)), all elements of this Galois group fix z31 and z32 . This means that z31 and z32 are in the fixed
field of Gal(E/F (δ)) in E. By the fundamental theorem of Galois theory, this fixed field is F (δ).
Since ω is a root of x3 − 1 = (x− 1)(x2 + x+ 1), we see that ω2 + ω + 1 = 0. Now observe

z1 + z2 = z1 + z2 + α1 + α2 + α3

= 3α1 + (ω2 + ω + 1)(α2 + α3)

= 3α1.

Therefore, α1 = 1
3 (z1 + z2). Similarly,

ωz1 + ω2z2 = 3α2 + (ω2 + ω + 1)(α1 + α3) = 3α2,

ω2z1 + ωz2 = 3α3 + (ω2 + ω + 1)(α1 + α2) = 3α3,

and so α2 = 1
3 (ωz1 +ω2z2) and α3 = 1

3 (ω2z1 +ωz2). Since we know that z31 , z32 ∈ F (δ), we shall now try
to find elements aj , bj ∈ F so that z3j = aj + bjδ for j = 1, 2. We do the computation only for z1, as for
z2 it will be very similar. We expand

z31 = (α1 + ω2α2 + ωα3)3

= α3
1 + ω6α3

2 + ω3α3
3 + 3α2

1(ω2α2 + ωα3) + 3ω4α2
2(α1 + ωα3) + 3ω2α2

3(α1 + ω2α2) + 6ω3α1α2α3

= (α3
1 + α3

2 + α3
3) + 6α1α2α3 + 3ω(α2

1α3 + α1α
2
2 + α2α

2
3) + 3ω2(α2

1α2 + α2
2α3 + α1α

2
3). (2.2)
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We tackle each term individually. Write

t1 := α2
1α3 + α1α

2
2 + α2α

2
3,

t2 := α2
1α2 + α2

2α3 + α1α
2
3

so that
z31 = (α3

1 + α3
2 + α3

3) + 6α1α2α3 + 3ωt1 + 3ω2t2.

We compute the first term. The expansion of (α1 + α2 + α3)3 follows from the same computation as z31
with ω and ω2 both replaced by 1. Using this expansion, we obtain:

α3
1 + α3

2 + α3
3 = (α1 + α2 + α3)3 − 3t1 − 3t2 − 6α1α2α3

= −3(α2
1α2 + α2

1α3 + α1α
2
2 + α2

2α3 + α1α
2
3 + α2α

2
3) + 6q

= −3[(α1 + α2 + α3)(α1α2 + α1α3 + α2α3)− 3α1α2α3] + 6q

= 9α1α2α3 + 6q = −3q.

(2.3)

The term 6α1α2α3 of (2.2) is simply −6q. For the last two terms, we first expand δ:

δ = (α1 − α2)(α1 − α3)(α2 − α3)

= α2
1α2 − α2

1α3 − α1α2α3 + α1α
2
3 − α1α

2
2 + α1α2α3 + α2

2α3 − α2α
2
3

= α2
1α2 + α1α

2
3 + α2

2α3 − (α2
1α3 + α1α

2
2 + α2α

2
3).

(2.4)

Here we recognize the last line to be t2 − t1. From (2.3) we infer −3(t1 + t2) = 6α1α2α3 − 3q and hence
t1 + t2 = 3q. We now have two simultaneous equations:{

t2 − t1 = δ,

t2 + t1 = 3q.
(2.5)

From the first one, we obtain t1 = t2 − δ. Substituting this into the second one yields 2t2 − δ = 3q and
so t2 = 1

2 (3q + δ). Now we see that t1 = 1
2 (3q − δ).

All terms have been treated and we can now rewrite (2.2) as

z31 = −3q − 6q +
3

2
ω(3q − δ) +

3

2
ω2(3q + δ)

= −9q +
9

2
q(ω + ω2) +

3

2
δ(ω2 − ω)

= −27

2
q +

3

2
δ(ω2 − ω).

Here we used that 1 + ω + ω2 = 0, which yields ω + ω2 = −1. An analogous computation shows that
z32 = − 27

2 q −
3
2δ(ω

2 − ω). Now choose a cube root of the polynomial x3 − z31 ∈ F (δ)[x] such that

z1 =
3

√
−27

2
q +

3

2
δ(ω2 − ω).

Since the roots are z1, ωz1 and ω2z1, choosing a different root amounts to permuting the roots of f .
Indeed, choosing ωz1 instead of z1 is just applying σ to z1, which is permuting the roots of f according
to (1 2 3). Similarly, if δ /∈ F , choosing to adjoin −δ to F instead of δ results in swapping z1 and z2.
This ultimately boils down to swapping α2 and α3, which corresponds to the permutation (2 3). Note
that {(1 2 3), (2 3)} generates S3, which we expected the Galois group of E/F to be when δ /∈ F .
Remark 2.2: When using n-th root symbols such as

√
and 3

√
, it is generally unclear which root is

meant. We customarily choose one particular root to be represented by such a symbol and henceforth
related roots are chosen such that they commute with multiplication. For example, let x3− a and x3− b
be polynomials over F . Let 3

√
a and 3

√
b denote any one of their roots, respectively. We note that 3

√
a 3
√
b

is a root of x3 − ab. We shall then, implicitly, let 3
√
ab denote the root 3

√
a 3
√
b. Since ω ∈ F , all these

roots are in F ( 3
√
a, 3
√
b), hence no issues arise.
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Since there are three possibilities for choosing a cube root of z31 and another three for z32 , there are a
total of nine combinations. However, since f only has three roots, merely three of these combinations
are correct. Fortunately, we have the following, so that we can choose the correct combinations:

z1z2 = (α1 + ω2α2 + ωα3)(α1 + ωα2 + ω2α3)

= α2
1 + α2

2 + α2
3 + (ω + ω2)(α1α2 + α1α3 + α2α3)

= α2
1 + α2

2 + α2
3 − p

= (α1 + α2 + α3)2 − 2α1α2 − 2α1α3 − 2α2α3 − p
= −3p.

(2.6)

This restricts our choice for a cube root of z32 to one, once we have chosen one for z31 .

Remark 2.3: It is not immediately clear that we can still choose the cube roots correctly if p = 0.
The following happens: If p = 0, then either z1 = 0 or z2 = 0. Indeed, assuming p = 0, f equals
x3 + q. Now observe that α1, ωα1 and ω2α1 are three distinct roots of f (recall that f is irreducible,
so q 6= 0). Thus, say, α2 = ωα1 and α3 = ω2α1. Then z1 = α1 + ω2(ωα1) + ω(ω2α1) = 3α1 and
z2 = α1 + ω(ωα1) + ω2(ω2α1) = (1 + ω + ω2)α1 = 0. Thus the only choice for the cube root of z32 is 0.
Therefore, any choice for a cube root of z31 is correct. Thus, if z1z2 = 0, we can simply choose any cube
root for one of the z3j ’s and let the other be 0. So the relation z1z2 = −3p still works in this case.

Finally, we will clean up the formula so that it be expressed only in terms of p and q. First we rid the
formulas for zj of the primitive third roots of unity. Observe that

(ω2 − ω)2 = ω4 − 2ω3 + ω2 = ω + ω2 − 2 = −3.

We now see that δ(ω2 − ω) is a root of x2 + 3∆. Write
√
−3∆ for this root. Next we wish to express ∆

in terms of p and q, which can be done by Theorem 1.17. First note that f ′(x) = 3x2 + p. The theorem
provides the formula for the discriminant:

∆ = (−1)
1
2 ·3·2 · 1−1 · Res(f, f ′)

= −

∣∣∣∣∣∣∣∣∣∣
1 0 p q 0
0 1 0 p q
3 0 p 0 0
0 3 0 p 0
0 0 3 0 p

∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
1 0 p q
0 p 0 0
3 0 p 0
0 3 0 p

∣∣∣∣∣∣∣∣− 3

∣∣∣∣∣∣∣∣
0 p q 0
1 0 p q
3 0 p 0
0 3 0 p

∣∣∣∣∣∣∣∣
= −p

∣∣∣∣∣∣
1 p q
3 p 0
0 0 p

∣∣∣∣∣∣− 3

−
∣∣∣∣∣∣
p q 0
0 p 0
3 0 p

∣∣∣∣∣∣+ 3

∣∣∣∣∣∣
p q 0
0 p q
3 0 p

∣∣∣∣∣∣


= −p(p2 − 3p2) + 3p3 − 9(p3 + 3q2)

= −4p3 − 27q2.

If we now pick a cube root of z31 and let the cube root of z32 be determined by z1z2 = −3p, we can
combine this all to find Cardano’s formula for all the roots of f , expressed in terms of its coefficients:

αi =
1

3
(ωi−1z1 + ω1−iz2)

=
ωi−1

3
3

√
−27

2
q +

3

2

√
−3∆ +

ω1−i

3
3

√
−27

2
q − 3

2

√
−3∆, i = 1, 2, 3.

Remark 2.4: The formula holds for any depressed cubic f , not just irreducible, separable ones. If f is
separable, the elements αi above are clearly distinct roots. If ∆(f) = 0, then α2 = α3 yields a root with
multiplicity 2. Now p = 0 if and only if q = 0. If they are both zero, clearly 0 is a triple root, which the
formula supplies. If they are non-zero, then α2 = 1

2 (ω+ ω2)α1 6= α1 and so the formula still provides all
roots of f .
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Remark 2.5: We only needed the primitive third root of unity to be in the field for the derivation of the
formula; not for using the formula.

Lastly, we will illustrate Cardano’s formula with an example.

Example 2.6: Let f(x) := x3 + 9x − 6 ∈ Q[x]. It is already of the depressed cubic form, so we can
apply Cardano’s formula with p = 9 and q = −6. Firstly, we compute the discriminant: ∆(f) =
−4 · 93 − 27 · (−6)2 = −3888. From Corollary 1.5 we see that we will get one real root and two complex
ones. Now −3∆(f) = 11 664 = 1082. We take

√
−3∆(f) = 108. The radicands of the cube roots now

become 27·6
2 ±

3
2 · 108 = 81 ± 162, hence 243 = 35 and −81 = −34, respectively. Let 3

√
243 and 3

√
−81

denote the real cube roots. We then have

3
√

243 3
√
−81 = 3

3
√

9 · −3
3
√

3 = −32
3
√

9 · 3 = −9
3
√

27 = −3 · 9.

Hence these roots are a correctly chosen combination. Note that 3
√

27 = 3, because this is the only real
cube root of 27. The formula now yields the roots 3

√
9− 3
√

3, ω 3
√

9− ω2 3
√

3 and ω2 3
√

9− ω 3
√

3. They lie
in the field Q(ω, 3

√
3).

2.2 A Formula in Characteristic 2
Let F be a field of characteristic 2. Because 2 - 3, by Theorem 0.9, there exists a primitive third
root of unity ω in some extension field of F . As in the previous section, we assume that ω ∈ F . Let
f(x) := x3 + px + q ∈ F [x] be irreducible over F . To derive the roots, it suffices to consider only
polynomials of the depressed form, which we saw in the previous section. Indeed, if we start with a
polynomial y3 + ay2 + by + c ∈ F [y], the same substitution works in characteristic 2: Substituting
y = x− 1

3a now boils down to y = x+ a. We then obtain f with p = a2 + b and q = ab+ c.
Let E be the splitting field of f over F and let α1, α2, α3 ∈ E be the roots of f . By expanding
(x− α1)(x− α2)(x− α3), we obtain the equalities (2.1).
We again define the following quantities:

z1 := α1 + ω2α2 + ωα3,

z2 := α1 + ωα2 + ω2α3,

t1 := α2
1α3 + α1α

2
2 + α2α

2
3,

t2 := α2
1α2 + α2

2α3 + α1α
2
3,

δ :=
∏
i<j

(αi − αj).

By the same calculation as in the previous section, we obtain the equalities (2.5). So we have t2− t1 = q
and t1 + t2 = δ. In fact, because −t1 = +t1, these are equal: δ = q. Therefore, ∆(f) = q2 and hence
the discriminant is always a square. When CharF 6= 2, 3, we saw that this means that Gal(E/F ) ∼= A3.
However, unfortunately, this is generally not the case in characteristic 2.
From (2.2) we obtain z31 = q + ωt1 + ω2t2. Similarly, we find z32 = q + ωt2 + ω2t1.
We try to determine the Galois group of E/F . First note that, by Theorem 0.11, f is separable: There
is clearly no polynomial g ∈ F [x] such that f(x) = g(x2). Now E is the splitting field of an irreducible,
separable polynomial, hence E/F is a finite Galois extension. We know as well that Gal(E/F ) is a
subgroup of S3 by the Theorem 0.12. Note that [F (α1) : F ] = 3, as f is irreducible. If f(x)/(x − α1)
does not split over F (α1), then [F (α1, α2) : F (α1)] = 2. By the relation α1 + α2 + α3 = 0, we see that
E = F (α1, α2). Hence [E : F ] is either 3 or 6, in which cases it is isomorphic to A3 and S3, respectively.
Using the idea from [4], we shall obtain two theorems about Gal(E/F ) and E. First define the polynomial
ρ(x) := (x− z31)(x− z32) = x2 + (z31 + z32)x+ z31z

3
2 . We claim that ρ ∈ F [x]. In fact, ρ(x) = x2 + qx+ p3.

For the linear coefficient we have:

z31 + z32 = q + ωt1 + ω2t2 + q + ωt2 + ω2t1

= 2q + (ω + ω2)(t1 + t2)

= t1 + t2 = q.
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For the constant coefficient we obtain z31z
3
2 = (z1z2)3 = (−3p)3 = p3 by (2.6). The polynomial ρ is

called the quadratic resolvent of f . Example 1.14 shows that ∆(ρ) = q2− 4p3 = q2. This is precisely the
discriminant of f , wherefore we now have the following:

Theorem 2.7: Let F be a field of characteristic 2, containing a primitive third root of unity. Let
f ∈ F [x] be irreducible and separable and let ρ ∈ F [x] be the quadratic resolvent of f . Let E/F be the
splitting field of f . Then the Galois group of E over F is isomorphic to A3 if and only if ρ is reducible
over F .

Proof. Suppose Gal(E/F ) ∼= A3. We know that (1 2 3) generates A3, so we let σ ∈ Gal(E/F ) correspond
to this permutation on the indices of the roots of f . Consider α2

1α3. Applying σ once and twice yields
α2
2α1 and α2

3α2, respectively. Adding these three elements together yields t1. Consequently, σ merely
permutes the terms of t1, which means that σ(t1) = t1. Thus, t1 is fixed by A3, wherefore t1 ∈ F . An
analogous argument shows that t2 ∈ F . It now follows that z31 , z32 ∈ F . Thus ρ splits over F .
Conversely, suppose ρ is reducible over F . The roots of f are distinct, as f is separable and irreducible.
Therefore, ∆(f) 6= 0. As ∆(ρ) = ∆(f), also the roots of ρ are distinct. Let τ ∈ S3 be a transposition.
A direct computation shows that τ(t1) = t2, which means that τ(z31) = z32 6= z31 . Since z31 ∈ F , it follows
that τ /∈ Gal(E/F ) and so Gal(E/F ) � S3. As we noted earlier, the only remaining possibility for the
Galois group of E/F is A3.

The following theorem provides a more useful representation of E.

Theorem 2.8: Let F be a field of characteristic 2, containing a primitive third root of unity. Let
f ∈ F [x] be irreducible and separable and let E/F be the splitting field of f . Then E equals F (z3j )(ξ),
with j ∈ {1, 2} and zj as above, and ξ a cube root over F (z3j ). That is, E is obtained by adjoining either
root of the quadratic resolvent of f and then some cube root.

Proof. First we show that Gal(E/F (z3j )) ∼= A3. We have two cases.
If ρ is reducible, then F (z3j ) = F and so Gal(E/F (z3j )) = Gal(E/F ). The latter is isomorphic to A3 by
Theorem 2.7.
If ρ is irreducible, then Gal(E/F ) ∼= S3 by Theorem 2.7. We also have [F (z3j ) : F ] = 2. Clearly
F ⊂ F (z3j ) ⊂ E. We now show that f is still irreducible over F (z3j ). Suppose to the contrary that f is
reducible over F (z3j ). Then f splits into a linear and quadratic factor, which means one of the roots of f
lies in F (z3j ). Now, F (z3j ) is a normal extension of F , as its degree is 2. Since f is irreducible over F and
has a root in F (z3j ), it follows that f splits over F (z3j ). However, this conflicts with the fact that deg f = 3.
So this cannot occur and f must be irreducible over F (z3j ). Consequently, [F (z3j )(α1) : F (z3j )] = 3. Since
clearly F (z3j )(α1) ⊆ E, and [F (z3j )(α1) : F ] = [E : F ] = 6, we must have E = F (z3j )(α1). Whence,
[E : F (z3j )] = 3 and so Gal(E/F (z3j )) ∼= A3.
Since A3 is cyclic and CharF - 3, Theorem 0.17 implies that E = F (z3j )(ξ), where ξ is a cube root over
F (z3j ).

Now that we have established what E looks like, we shall continue with expressing the roots of f in
terms of radicals. First we express the roots in terms of z1 and z2.

z1 + z2 = 2α1 + ω(α2 + α3) + ω2(α3 + α2)

= α1(ω + ω2) = α1.

Note that we used the relation α1 + α2 + α3 = 0. Similarly,

ωz1 + ω2z2 = 2α2 + ω(α1 + α3) + ω2(α3 + α1) = α2,

ω2z1 + ωz2 = 2α3 + ω(α2 + α1) + ω2(α1 + α2) = α3.

Next we need to express z3j in terms of radicals. Since f is separable, ∆(f) = q2 6= 0 and so q2 is
invertible. Consider q−2ρ(qx) and observe that

q−2ρ(qx) = q−2[(qx)2 + q(qx) + p3] = x2 + x+ q−2p3 = ℘2(x) + q−2p3.
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Take one of the roots ℘−12 (q−2p3). Using Remark 0.15, we find that q℘−12 (q−2p3) and q℘−12 (q−2p3) + q
are the roots of q−2ρ and hence of ρ. Without loss of generality, z31 = q℘−12 (q−2p3). (Swapping z1 and

z2 ultimately boils down to swapping α2 and α3.) Fix a cube root 3

√
q℘−12 (q−2p3) and use the relation

z1z2 = p to choose the corresponding cube root 3

√
q℘−12 (q−2p3) + q, which still works when p = 0 by

Remark 2.3. We have now obtained the general formula for the roots of f :

αi = ωi−1
3

√
q℘−12 (q−2p3) + ω1−i 3

√
q℘−12 (q−2p3) + q, i = 1, 2, 3.

Remark 2.9: The formula holds for any separable, depressed cubic f . Separability is equivalent to q 6= 0,
because ∆(f) = q2. If q = 0, then f becomes x3 + px. The formula suggests 0 is a triple root, which is
only true if p = 0 (cf. Remark 2.4). Indeed, 0 is a root and √p is the other root, with multiplicity 2. In
this case we would have to allow radicals of the form x` − a, where ` = CharF (cf. Definition 0.14 (i)).

Remark 2.5 applies here, i.e., we do not need the primitive third root of unity in the base field to apply
the formula.
We end this section with an example.

Example 2.10: Consider the polynomial x3 + x + 1 ∈ F2. In this case p = q = 1, thus we first need to
find ℘−12 (1), i.e., a root of x2 +x+ 1. We have seen that ω satisfies the relation ω2 +ω+ 1 = 0, hence we
choose ℘−12 (1) = ω. Next we need to choose cube roots 3

√
1 · ω and 3

√
1 · ω + 1 such that their product

equals 1. Since ( 3
√
ω)9 = 1 and ω 6= 1, it follows that 3

√
ω is a primitive ninth root of unity. We denote

this by ζ9. Observe also that ( 3
√
ω + 1)9 = (ω+ 1)3 = ω3 +ω2 +ω+ 1 = 1, hence this cube root is also a

primitive ninth root of unity. Since 3
√
ω 3
√
ω + 1 must equal 1, we must have that 3

√
ω + 1 = ζ89 , because

then the product ζ9ζ89 = 1. The roots of x3 + x+ 1, which lie in F2(ζ9) ∼= F29 , are now given by

ωi−1ζ9 + ω1−iζ89 , i = 1, 2, 3.

2.3 A Formula in Characteristic 3
Let F be a field of characteristic 3. We start with a polynomial y3 + ay2 + by + c ∈ F [y]. Assume that
a 6= 0. We apply the substitution y = x+ b

a to get rid of the linear term:(
x+

b

a

)3
+ a

(
x+

b

a

)2
+ b

(
x+

b

a

)
+ c

= x3 +
b3

a3
+ ax2 + 2bx+

b2

a
+ bx+

b2

a
+ c

= x3 + ax2 +
b3

a3
+

2b2

a
+ c.

We now have a polynomial f̃(x) := x3 + p̃x2 + q̃, where p̃ := a and q̃ := b3

a3 + 2b2

a + c, which looks rather
similar to the depressed cubic. If we consider F (x) instead of F [x], then x has an inverse. Assume
further that q̃ 6= 0. Define the polynomial f by

f(x) :=
x3

q̃
f̃(x−1) = x3 +

p̃

q̃
x+

1

q̃
.

Now setting p := p̃
q̃ and q := 1

q̃ yields the form of the depressed cubic: f(x) = x3 + px + q. By the
assumption q̃ 6= 0, we see that 0 is not a root of f̃ . Observe that α is a root of f if and only if α−1 is a
root of f̃ . Indeed,

f̃(α−1) = α−3 + p̃α−2 + q̃

= q̃α−3
(

1

q̃
+
p̃

q̃
α+ α3

)
= q̃α−3(α3 + pα+ q).

The last factor we recognize as f(α). Since q̃α−3 6= 0, we see that f̃(α−1) = 0 precisely when f(α) = 0.
In the case that q̃ = 0, the polynomial f̃ becomes x3 + p̃x2. So its roots are −p̃ and 0, with multiplicity 2.
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Assume now that f is both irreducible and separable. Let E be the splitting field of f over F and let
α1, α2, α3 ∈ E be the roots of f . Let

δ :=
∏
i<j

(αi − αj).

We now have the following theorem about E and the Galois group of E over F .

Theorem 2.11: Let F be a field of characteristic 3. Let f ∈ F [x] be irreducible and separable and let
E/F be the splitting field of f . Then the Galois group of E over F is isomorphic to S3 if δ /∈ F and
isomorphic to A3 if δ ∈ F . Moreover, E = F (δ)(ξ), where ξ is a third Artin-Schreier root over F (δ).

Proof. The first part of the proof of Theorem 2.1 works unalteredly to prove the first statement. It also
yields that [E : F (δ)] = 3, which implies that Gal(E/F (δ)) ∼= A3. Since |A3| = CharF = 3, Theorem
0.18 shows that E = F (δ)(ξ) with ξ a third Artin-Schreier root over F (δ).

We can now continue to find a formula for the roots of f using radicals. By expanding the product
(x − α1)(x − α2)(x − α3), we once more have the equalities (2.1). Let us compute the discriminant of
f . Since CharF = 3, it divides the degree of f . So we, unfortunately, cannot use Theorem 1.17 to
determine the discriminant. We will have to do a direct computation in terms of the roots. We again
define the quantities t1 and t2:

t1 := α2
1α3 + α1α

2
2 + α2α

2
3,

t2 := α2
1α2 + α2

2α3 + α1α
2
3.

By (2.5) we have t2 − t1 = δ and t1 + t2 = 3q = 0. It now follows that

∆(f) = δ2 = (t2 − t1)2 = (t1 + t2)2 − 4t1t2 = −t1t2.

Hence it suffices to compute t1t2, which we do directly:

t1t2 = (α2
1α3 + α1α

2
2 + α2α

2
3)(α2

1α2 + α2
2α3 + α1α

2
3)

= α4
1α2α3 + α2

1α
2
2α

2
3 + α3

1α
3
3 + α3

1α
3
2 + α1α

4
2α3 + α2

1α
2
2α

2
3 + α2

1α
3
2α

2
3 + α3

2α
3
3 + α1α2α

4
3

= α1α2α3(α3
1 + α3

2 + α3
3) + 3α2

1α
2
2α

2
3 + α3

1α
3
2 + α3

1α
3
3 + α3

2α
3
3

= α1α2α3(α1 + α2 + α3)3 + (α1α2 + α1α3 + α2α3)3

= p3

We have obtained that ∆(f) = −p3 and hence δ =
√
−p3 = p

√
−p for a suitable chosen square root of

−p (see Remark 2.2). Consequently, δ ∈ F if and only if −p is a square in F . With
√
−p fixed, we can

now determine the formula for the roots of f . We have the following:

f(x
√
−p)− q

−p
√
−p

=
−p
√
−px3 + p

√
−px

−p
√
−p

= x3 − x = ℘3(x).

Now if we plug in α1√
−p , we obtain

℘3

(
α1√
−p

)
=

q

p
√
−p

,

wherefore, with a suitably chosen radical,

α1 =
√
−p℘−13

(
q

p
√
−p

)
.

Using Remark 0.15, we get the other third Artin-Schreier roots. The formula for all the roots is now

αi =
√
−p℘−13

(
q

p
√
−p

)
+ (i− 1)

√
−p, i = 1, 2, 3. (2.7)

The roots of the polynomial f̃ are obtained by inverting the roots: α−1i , i = 1, 2, 3.
Regarding the original polynomial y3 + ay2 + by + c, we assumed that a 6= 0. The case where a = 0 is
now immediate: The polynomial becomes y3 + by + c, which is already a depressed cubic. Hence (2.7),
with p and q replaced by b and c, respectively, yields the roots directly.
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Remark 2.12: Also this formula holds for any separable, depressed cubic. Indeed, since ∆(f) = p3,
separability is equivalent with p 6= 0, which is precisely when we have a problem in the formula. If p = 0,
then the depressed cubic becomes x3 + q, in which case 3

√
−q is the triple root (cf. Remark 2.9).

19



3 Formally Real Fields
In section 1.2 we found some useful properties of the discriminant for polynomials over R. These proper-
ties rely on the facts that R admits an order relation > and that C = R(i) is algebraically closed. Since
R is a rather specific field, we wish to take the properties of R that we need and try to define a type
of field based on these properties alone. That way we make fewer unnecessary assumptions and get a
stronger result. Thus the main objective of this chapter is to generalize the fields R and C. We typically
look at a specific property of R and then consider the fields that share this property. Subsequently we
show that some of those fields are one and the same, resulting in fields with several of the properties
of R. This will yield some interesting results. In particular, we shall find generalized statements of the
fundamental theorem of algebra and Theorem 1.3.

3.1 Ordered Fields
We find it convenient to define an order of a field F in terms of a subset P of F that represents the
positive elements. This subset will yield an order relation >, like the one on Q and R. The converse
is obtained by taking the set of positive elements with respect to >, e.g., Q>0 and R>0. Although we
primarily look at ordered fields, we shall also see an example of an ordered ring. Hence we define an
order for any ring:

Definition 3.1: Let R be a ring with 1 6= 0. An order on R is a subset P satisfying the following
properties:

(i) For each a ∈ R exactly one of the following three possibilities is true: a ∈ P , a = 0 or −a ∈ P ;
(ii) If a, b ∈ P , then also a+ b ∈ P and ab ∈ P , i.e., P is closed under addition and multiplication.

We say that P orders R. We also call P a set of positive elements of R and the elements of P are called
positive. The elements of −P := {−a | a ∈ P} are negative.
If such a subset of R exists, then we call R an ordered ring. If R is a field, then it is called an ordered
field. We shall usually say that (R,P ) is an ordered ring (or field) with the meaning that R is an ordered
ring (or field) and P a set of positive elements of R.

The set P induces an order relation > that satisfies similar properties as > or R. We show this in the
following lemma:

Lemma 3.2: Let (R,P ) be an ordered ring. For a, b ∈ R, define b > a (or a < b) to mean b − a ∈ P .
We show that > satisfies the following properties for all a, b, c ∈ R:

(a) Exactly one of a > b, a = b and a < b is true (trichotomy);
(b) If a > b and b > c, then a > c (transitivity);
(c) If a > b, then a+ c > b+ c;
(d) If a > b and c > 0, then ac > bc.

Proof. By (i), a − b satisfies one and only one of the possibilities a − b ∈ P , a − b = 0 and b − a ∈ P .
These conditions are, respectively, equivalent to a > b, a = b and a < b. Hence trichotomy is satisfied.
If a > b and b > c, then a−b and b−c are elements of P . Since P is closed under addition, (a−b)+(b−c) =
a− c ∈ P . Thus a > c.
If a > b, then a− b ∈ P . Note that (a+ c)− (b+ c) = a− b ∈ P . Thus a+ c > b+ c.
Finally, if a > b and c > 0, then a − b and c are elements of P . Since P is closed under multiplication,
also (a− b)c = ac− bc ∈ P . Thus ac > bc.

We have now seen that a set of positive elements yields an order relation > with the four properties
(a-d). As mentioned above, the converse is also true:

Lemma 3.3: Let R be a ring and let > be a binary relation on R satisfying the four properties (a-d).
Also define P := {a ∈ F | a > 0}. Then P is an order on R.

Proof. For any element a ∈ R, apply the trichotomy property to a and 0 to obtain property (i) from
Definition 3.1: Only one of a > 0, a = 0 or a < 0 holds. The first two immediately yield a ∈ P and
a = 0, respectively. The last one yields a− a < −a by (c) and so 0 < −a, which means −a ∈ P .

20



Let a, b ∈ P , so a > 0 and b > 0. We show that a + b ∈ P . By property (i), −b /∈ P . Clearly −b 6= 0,
hence trichotomy of > implies that 0 > −b. Transitivity of > now yields that a > −b. Using (c), we
have a+ b > −b+ b = 0. Whence a+ b ∈ P .
Let again a, b ∈ P . Since b > 0, property (d) implies that ab > 0b = 0. It follows that ab ∈ P .

From the two lemmas above we conclude that these two notions of an order are indeed equivalent.

Remark 3.4: When an ordered ring (F, P ) is given, we usually assume the order relation > (and <) to
be defined as in Lemma 3.2. We also use the symbol ≥ (or ≤) to mean: a ≥ b if and only if a > b or
a = b. (The relation ≤ is then in particular a total order; see Definition A.2.)

Examples of ordered fields are Q and R. In [14, p. 450], the example R[x] of an ordered ring is mentioned.
We expand on this idea and show that in fact R(x) is an ordered field for any ordered field R.

Lemma 3.5: Let (R,P ) be an ordered, commutative ring. Then R is an integral domain and its field
of quotients is an ordered field, whose order extends P .

Proof. If a, b ∈ R are non-zero, then either ab or −ab is an element of P . Indeed, if a, b ∈ P or −a,−b ∈ P ,
then ab = (−a)(−b) ∈ P . If a,−b ∈ P or −a, b ∈ P , then a(−b) = (−a)b = −ab ∈ P . Since 0 /∈ P , there
are no zero divisors in R.
Let F be the field of quotients of R. Then define the set Q as follows:

Q :=

{
a

b
∈ F

∣∣∣∣ there exist ã, b̃ ∈ P such that
a

b
=
ã

b̃

}
.

We show that Q orders F . First we show that Q is closed under addition and multiplication. Let
a1
b1
, a2b2 ∈ Q. Then there exist elements ã1, b̃1, ã2, b̃2 ∈ P such that a1

b1
= ã1

b̃1
and a2

b2
= ã2

b̃2
. Firstly, for

addition, we have
a1
b1

+
a2
b2

=
ã1

b̃1
+
ã2

b̃2
=
ã1b̃2 + ã2b̃1

b̃1b̃2
.

Since P satisfies (ii) of Definition 3.1, we have ã1b̃2 + ã2b̃1 ∈ P and b̃1b̃2 ∈ P . Consequently, a1b1 + a2
b2
∈ Q.

Similarly, multiplication yields
a1
b1

a2
b2

=
ã1

b̃1

ã2

b̃2
=
ã1ã2

b̃1b̃2
.

Since ã1ã2, b̃1b̃2 ∈ P , also a1
b1
a2
b2
∈ Q.

Now let a
b ∈ F . We show that property (i) of Definition 3.1 holds. If ab = 0, then a = 0 and so neither a

b
nor −ab is an element of Q, because 0 /∈ P . Next suppose a 6= 0. If a, b ∈ P , then clearly a

b ∈ Q. If a ∈ P
and b /∈ P , then −b ∈ P . Thus a

−b = −ab ∈ Q. Similarly, if a /∈ P and b ∈ P , then −ab ∈ Q. Finally, if
both a, b /∈ P , then −a,−b ∈ P and so −a−b = a

b ∈ Q. We are only left to show that Q ∩ −Q is empty.
Since 0 /∈ Q, this statement follows from the fact that Q is closed under addition. Thus we conclude Q
orders F .
Clearly P ↪→ Q via the usual identification R 3 a 7→ a

1 ∈ F , thus Q extends P .

Proposition 3.6: Let (R,PR) be an ordered field. Then R(x) is an ordered field.

Proof. We first show that R[x] is an ordered ring. Define PR[x] on R[x] as follows:

PR[x] := {f ∈ R[x] | the leading coefficient an of f satisfies an ∈ PR}.

Here the leading coefficient of 0 is 0. Since PR is an order, we obtain property (i) from Definition 3.1
for PR[x] immediately. Let f, g ∈ PR[x] and let a and b be their respective leading coefficients. Then
a, b ∈ PR. The leading coefficient of f + g is a, a + b or b, depending on whether deg f > deg g,
deg f = deg g and deg f < deg g, respectively. In any case, the elements a, b, a + b ∈ PR by (ii) and so
f + g ∈ PR[x]. The product fg has, by Lemma 3.5, non-zero leading coefficient ab, which is in PR by
(ii), thus fg ∈ PR[x]. Whence PR[x] is indeed an order on R[x].
Since R(x) is the field of quotients of R[x], Lemma 3.5 implies that R(x) is an ordered field, whose order
P extends the one on R[x].
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Let PR, PR[x] and P be as in the proof of Proposition 3.6. As usual we identify elements in R with
constant polynomials in R[x] and hence in R(x). Then PR[x], and hence P , extends PR. The polynomial
x ∈ R(x) is then ‘infinite’ with respect to the elements of R: For each a ∈ R, we have x > a. To see this,
note that for each a ∈ R, the polynomial x − a has leading coefficient 1 ∈ PR, wherefore x − a ∈ PR[x]

and so x− a = x−a
1 ∈ P . If > denotes the relation induced by P , we see that x > a for every a ∈ R.

In this case we also see that the order PR of the subfield R of R(x) satisfies PR = P ∩ R. In fact, this
always works: A subfield K of an ordered field (F, P ) is ordered by P ∩K. We call the order obtained
by P ∩K the induced order. We prove this in the following theorem:

Theorem 3.7: Let (F, P ) be an ordered field and let K ⊆ F be a subfield. Then P ′ := P ∩K orders K.

Proof. Let a ∈ K and suppose that a 6= 0. We show that either a ∈ P ′ or −a ∈ P ′. Since K is a subfield,
a ∈ F . By (i) from Definition (3.1), we have either a ∈ P or −a ∈ P . This clearly implies that either
a ∈ P ′ or −a ∈ P ′. The fact that P and −P are disjoint immediately implies that P ′ and −P ′ are
disjoint.
Next let a, b ∈ P ′. Then a, b ∈ P and hence a+ b ∈ P . Since K is a field, a+ b ∈ K and so a+ b ∈ P ′.
An analogous argument shows that ab ∈ P ′. We conclude that P ′ is an order on K.

Before we continue, here are some useful properties of ordered fields.

Proposition 3.8: Let (F, P ) be an ordered field. Then the following hold:

(I) If a, b ∈ −P , then ab ∈ P .
(II) For every a ∈ F ∗ the square a2 ∈ P ;
(III) 1 ∈ P ;
(IV) F has characteristic 0;
(V) If a ∈ P , then a−1 ∈ P .

Proof. Let a, b ∈ −P . Then −a,−b ∈ P and so (−a)(−b) = ab ∈ P .
Let a ∈ F ∗. Then either a or −a is an element of P . Either way we have a2 = aa = (−a)(−a) and so
a2 ∈ P . Thus (II) holds.
Since 12 = 1, (II) implies that 1 ∈ P .
Suppose CharF = p with p > 0. Since 1 ∈ P , also

p terms︷ ︸︸ ︷
1 + · · ·+ 1 = 0 ∈ P , which contradicts property (i)

of Definition 3.1. Thus CharF = 0 and (IV) is satisfied.
Finally, let a ∈ P and note that a 6= 0. By (II), the square (a−1)2 ∈ P . Whence a(a−1)2 = a−1 ∈ P .

3.1.1 Order-Isomorphisms

When we wish to compare ordered fields with each other, regular homomorphisms do not suffice, for
they might not translate the order of one ordered field to the other. Thus, to relate ordered fields to one
another, we need kinds of morphisms between them that respect their orders. We define these as follows:

Definition 3.9: Let (K,P ) and (L,Q) be ordered fields. A monomorphism ϕ : K → L is called an
order-monomorphism if ϕ(P ) ⊆ Q. This means that if a > b in K, then ϕ(a) > ϕ(b) in L. Indeed,
a > b means that a − b ∈ P , which implies that ϕ(a − b) ∈ Q. Since ϕ is also a homomorphism,
ϕ(a− b) = ϕ(a)− ϕ(b). Therefore, ϕ(a) > ϕ(b).
If ϕ is also surjective, then ϕ is called an order-isomorphism.
If F is a subfield of K and L, and ϕ the identity on F , i.e., ϕ is also an F -isomorphism, then ϕ is called
an order-F -isomorphism.
Similar terminology applies to other morphisms.

Proposition 3.10: Let (K,P ) and (L,Q) be ordered fields and let ϕ : K → L be an order-isomorphism.
Then ϕ(P ) = Q and ϕ−1 : L→ K is also an order-isomorphism.

Proof. Suppose there is an element b ∈ Q \ ϕ(P ). Since ϕ is surjective and b 6= 0, there is an element
a ∈ −P such that ϕ(a) = b. Then −a ∈ P and since ϕ is order preserving, −b = ϕ(−a) ∈ Q, which is a
contradiction. Thus ϕ(P ) = Q.
From basic field theory we know that ϕ−1 is an isomorphism. We also see that ϕ−1(Q) = P , thus ϕ−1
is also an order-isomorphism.
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Proposition 3.11: Every order-homomorphism is injective.

Proof. Let (K,P ) and (L,Q) be ordered fields and let ϕ : K → L be an order-homomorphism. Since
1 ∈ P , we have ϕ(1) ∈ Q and hence ϕ(1) 6= 0. Therefore, kerϕ 6= K. One of the basic properties of
a homomorphism is that its kernel is an ideal. The only ideals of a field are {0} and the field itself.
Therefore, the only remaining possibility is that kerϕ = {0}. Thus ϕ is injective.

3.2 Formally Real Fields
Instead of looking at the order property R admits, we focus on another property. In R one cannot write
−1 as a sum of squares. We consider fields in which this is also not possible and prove some useful
attributes of them. We mainly lay a basis here for the next section, where these fields will play a role.

Notation: Let F be a field. We denote the set of sums of squares by ΣF . We also write Σ∗F for ΣF \{0}.

Definition 3.12: Let F be a field. We call F formally real if −1 /∈ ΣF , i.e., −1 cannot be written as a
sum of squares.

From the definition we see that every formally real field must have characteristic 0, as otherwise −1 is a
sum of the squares 1 = 12. The definition also immediately implies that every subfield K of a formally
real field F is again formally real. Since if any sum of squares in K equals −1, then clearly this same
sum also equals −1 in F , contradicting the fact that F is formally real.
The following proposition establishes some properties of the sums of squares.

Proposition 3.13: Let F be a field. Then ΣF is closed under addition and multiplication. Furthermore,
if s ∈ Σ∗F , then also s−1 ∈ Σ∗F .

Proof. Let
∑n
i=0 a

2
i and

∑m
i=0 b

2
i be elements of ΣF . We may assume that m = n, because 02 = 0 ∈ ΣF .

Clearly
∑n
i=0 a

2
i +

∑n
j=0 b

2
j =

∑n
i=0(a2i + b2i ) ∈ ΣF , thus ΣF is closed under addition. For multiplication

we have (
n∑
i=0

a2i

)(
n∑
j=0

b2j

)
=

n∑
i=0

n∑
j=0

(aibj)
2.

It now follows that this is an element of ΣF , because ΣF is closed under addition.
Lastly, let s ∈ Σ∗F . Since every non-zero square is in Σ∗F , (s−1)2 ∈ Σ∗F . That fact that ΣF is closed under
multiplication now implies that s(s−1)2 = s−1 is again a sum of squares.

There is also an immediate relation to ordered fields. Namely, we have the following:

Proposition 3.14: Every ordered field (F, P ) is formally real.

Proof. Suppose F is not formally real. Then −1 ∈ Σ∗F . Since P is closed under addition, property (II)
of Proposition 3.8 implies that Σ∗F ⊆ P . Thus −1 ∈ P . But by property (III) of Proposition 3.8, 1 ∈ P .
So this leads to a contradiction. We conclude that F must be formally real.

Interestingly enough, this proposition has a converse. This is proved in the next section: see Corollary
3.35.
Another well-known and useful property of Q and R is that if a sum of squares equals zero, then all
terms must be zero. This is a property that also formally real fields have. In fact, we have the following:

Proposition 3.15: Let F be a field. The following are equivalent:

(i) F is formally real;

(ii) For a0, . . . , an ∈ F , where n ∈ N0, if
∑n
i=0 a

2
i = 0, then ai = 0 for all 0 ≤ i ≤ n.

Proof. Assume F is formally real. We prove (ii) by contradiction. Suppose there exist elements
a0, . . . , an ∈ F , not all zero, such that

∑n
i=0 a

2
i = 0. Without loss of generality, a0 6= 0. Multiply

both sides by a−20 and subtract a20a
−2
0 = 1 from both sides to obtain

n∑
i=1

(
ai
a0

)2
= −1.
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Therefore, −1 ∈ ΣF , which is a contradiction.
For the converse implication, we again argue by contradiction. Suppose there exist elements a0, . . . , an ∈
F such that

∑n
i=0 a

2
i = −1. Taking 1, which is a non-zero square, to the left-hand side yields a sum of

non-zero squares that equals zero. This is a contradiction, so F must be formally real.

3.2.1 Algebraic Extensions

We already saw that every subfield of a formally real field is again formally real. The same is clearly not
true for algebraic extensions: Adjoining a root of x2 + 1 compromises the quality of being formally real.
There is still a large group of algebraic extensions of a formally real field that are formally real. The
following two theorems show this.

Theorem 3.16: Let (F, P ) be an ordered field. Let α be a root of a polynomial x2 − η ∈ F [x], where
η ∈ P . Then F (α) is formally real.

Proof. Note that F is formally real by Proposition 3.14. If α ∈ F , then F (α) = F and we are done.
So suppose α /∈ F . Then [F (α) : F ] = 2. Let n ∈ N0 and let ai + αbi ∈ F (α), where ai, bi ∈ F and
i = 0, . . . , n, such that

n∑
i=0

(ai + αbi)
2 = 0.

We show that each term is zero. Expanding each term (ai + αbi)
2 = a2i + ηb2i + 2αaibi on the left-hand

side and then splitting the sum yields

n∑
i=0

(a2i + ηb2i ) + 2α

n∑
i=0

aibi = 0.

If
∑n
i=0 aibi 6= 0, then

α =
−
∑n
i=0(a2i + ηb2i )

2
∑n
i=0 aibi

∈ F,

which contradicts the fact that α /∈ F . Thus
∑n
i=0 aibi = 0. Hence we have

∑n
i=0(a2i + ηb2i ) = 0. We

rewrite the summation as
∑n
i=0 a

2
i + η

∑n
i=0 b

2
i . Suppose

∑n
i=0 b

2
i 6= 0. Then we have

−η =

∑n
i=0 a

2
i∑n

i=0 b
2
i

.

The right-hand side is an element of P by Proposition 3.8. Thus −η ∈ P . But this is a contradiction, as
η ∈ P . Therefore, we must have that

∑n
i=0 b

2
i = 0. Consequently, bi = 0 for each i by Proposition 3.15,

because F is formally real. In that case, also all ai are zero for the same reason. Therefore, all terms
(ai + αbi)

2 of the original summation are zero. Thus F (α) is formally real by Proposition 3.15.

The proof of the following theorem is based on the proof of Lemma 2 from [12, p. 653].

Theorem 3.17: Let F be a formally real field. Let f ∈ F [x] be an irreducible polynomial of odd degree
and let α be a root of f . Then F (α) is formally real.

Proof. Let n be the degree of f . We prove the statement by induction on n.
If n = 1, then α ∈ F and F (α) = F is formally real. Thus the base case has been taken care of.
Let n > 1. Assume that every extension F (β) of F , where β is the root of an irreducible polynomial of
odd degree less than n, is formally real. This is our inductive hypothesis. We argue by contradiction
that F (α) is formally real. Suppose it is not. The elements of F (α) can be represented by polynomials
over F of degree less than n with α substituted for the indeterminate. Since, by assumption, F (α) is not
formally real, there exist polynomials g0, . . . , gm ∈ F [x], each of degree less than n, with m ∈ N0, such
that

m∑
i=0

gi(α)2 = −1.
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By the isomorphism F (α) ∼= F [x]/〈f〉, there exists a polynomial p ∈ F [x] such that

m∑
i=0

gi(x)2 = −1 + p(x)f(x). (3.1)

Let d := maxi{deg gi} and let I := {i | deg gi = d}. For each j ∈ I, let aj be the leading coefficient of
gj . Then the leading coefficient of the left-hand side of (3.1) is

∑
j∈I a

2
j . Since each aj 6= 0, the sum

is non-zero, for F is formally real. Hence the degree of the left-hand side is 2d, which is even. The
right-hand side has degree 2d = deg(pf) = deg p+ deg f = deg p+n. Since n is odd, it follows that deg p
is odd as well. Because 2d < 2n, it also follows that deg p+ n < 2n and so deg p < n. Therefore, p has
an irreducible factor q ∈ F [x] with odd degree strictly less than n. Now let γ be a root of q. Then

m∑
i=0

gi(γ)2 = −1 + p(γ)f(γ) = −1.

But the left-hand side is the sum of squares of elements of F (γ). Since F (γ) is formally real by the
inductive hypothesis, this leads to a contradiction. Thus F (α) must be formally real.

3.3 Real Closed Fields
To establish properties of formally real fields, it is efficient to consider the ‘largest’ formally real fields in
order that it suffice to prove these properties for them. For then we can extend those properties to their
subfields, which we saw are formally real. However, to be able to say something about every formally
real field, we must show that each of them is contained in such a largest one. We do this in section 3.3.2.
We shall also obtain a generalization of the fundamental theorem of algebra along the way in section
3.3.1. Finally, we generalize the statements we obtained in section 1.2.
We start with the formal definition:

Definition 3.18: Let F be a formally real field. We call F real closed if every proper algebraic extension
of F is not formally real.

We can immediately relate these fields to the ordered fields from section 3.1:

Theorem 3.19: Let R be a real closed field. Then Σ∗R orders R and this order is unique.

Proof. Since R is formally real, every sum of non-zero squares is again non-zero. Hence Proposition 3.13
implies that Σ∗R is closed under addition and multiplication.
Let a ∈ R be non-zero. Suppose a /∈ Σ∗R. We show that −a ∈ Σ∗R. The polynomial x2 − a ∈ R[x] is
now irreducible over R. If α is a root of this polynomial, then R(α) is a proper algebraic extension of R
of degree 2. By definition of R, R(α) is not formally real. Hence there exist elements ai + αbi ∈ R(α),
where ai, bi ∈ R, i = 0, . . . , n and not all bi are zero, such that

n∑
i=0

(ai + αbi)
2 = −1.

By splitting the summation, we obtain
n∑
i=0

(a2i + ab2i ) + 2α

n∑
i=0

aibi = −1.

If
∑n
i=0 aibi 6= 0, then

α =
−1−

∑n
i=0(a2i + ab2i )

2
∑n
i=0 aibi

.

This means that α ∈ R, which is a contradiction. Therefore, we must have that
∑n
i=0 aibi = 0. From

this now follows that
∑n
i=0(a2i + ab2i ) = −1. Solving for −a yields

−a =
1 +

∑n
i=0 a

2
i∑n

i=0 b
2
i

.
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Note that indeed
∑n
i=0 b

2
i 6= 0 as not all bi are zero and R is formally real. By Proposition 3.13, −a ∈ Σ∗R.

Finally, since 0 /∈ Σ∗R, it follows that Σ∗R and −Σ∗R are disjoint. We conclude that Σ∗R orders R.
To show that this order is unique, suppose P also orders R. Property (II) of Proposition 3.8 implies that
Σ∗R ⊆ P . Now let s ∈ P and consider a root

√
s of x2 − s. By Theorem 3.16, R(

√
s) is a formally real

field. Because R is real closed, this cannot be a proper extension of R, which means that R(
√
s) = R.

So s is a square in R, wherefore s ∈ Σ∗R. We conclude that P = Σ∗R.

Corollary 3.20: Let R be a real closed field. Then every sum of squares is again a square.

Proof. Clearly 0 ∈ ΣR is a square, hence we are left to prove that every element of Σ∗R is a square. Let
s ∈ Σ∗R and let

√
s be a root of x2 − s. Since (R,Σ∗R) is an ordered field, Theorem 3.16 implies that

R(
√
s) is formally real. By definition, R(

√
s) cannot be a proper extension of R, hence R(

√
s) = R.

Thus s is a square in R.

Note in particular the analogy with R, in that also in R every positive element is a square. Indeed, as
we shall see later, R is a real closed field.

3.3.1 A Generalization of the Fundamental Theorem of Algebra

In order to continue proving that every formally real field is contained in a real closed one, we need
another type of field. The idea of these fields arose from Theorems 3.16 and 3.17: We want an ordered
field that is maximal with respect to those theorems in the sense that all squares of positive elements
and all roots of odd polynomials have been adjoined. Of course, for each square root that we adjoin, we
need to adjoin another square root, so this is an unending process. We therefore directly define a field
that captures this maximality:

Definition 3.21: Let R be a field. We call R virtually real if it admits an order P ⊆ R and satisfies the
following two conditions:

(A) Every element p ∈ P is a square;
(B) Every polynomial over R of odd degree has a root in R.

Note that every virtually real field is formally real by Proposition 3.14, as it is an ordered field. Not
coincidentally is R again an example (see also the first part of the proof of Theorem 3.30).
The term ‘virtually real’ is not standard terminology, nor does there seem to be standard terminology
for this kind of field. Fortunately, we shall show that they are equivalent to real closed fields, hence the
non-standard terminology will not be necessary for long. We start with one implication:

Proposition 3.22: Every real closed field R is virtually real.

Proof. By Theorem 3.19 and Corollary 3.20, R admits an order and satisfies (A).
Let f ∈ R[x] be a polynomial of odd degree. Then f has an irreducible factor g of odd degree. Let α
be a root of g. Then, by Theorem 3.17, R(α) is formally real. Since R is real closed, R = R(α) and so
α ∈ R, yielding (B).

The converse implication is proved in Corollary 3.27. It is a consequence of a generalization of the
fundamental theorem of algebra. We first need a couple of lemmas before we can prove that theorem.

Lemma 3.23: Let F and K be fields and let ϕ : F → K be a monomorphism. Let f ∈ F [x] be a
polynomial. Then α is a root of f if and only if ϕ(α) is a root of ϕ(f), where ϕ(f) is the polynomial f
with ϕ applied to each coefficient.

Proof. Since ϕ is in particular a homomorphism, we obtain ϕ(f)(ϕ(α)) = ϕ(f(α)). Using the fact that
ϕ(0) = 0 and ϕ is injective, we see that ϕ(f)(ϕ(α)) = 0 if and only if f(α) = 0.

Lemma 3.24: Let R be formally real and let i be a root of x2 + 1 in an algebraic closure of R. Then
the map that sends i to −i on R(i) is an R-automorphism.

Proof. Clearly i /∈ R, for otherwise R were not formally real. Thus x2 + 1 is irreducible over R and thus
[R(i) : R] = 2. Observe that R(i) is the splitting field of the separable polynomial x2 + 1, so R(i)/R is
a Galois extension by Theorem 0.10. Since i and −i are the roots of x2 + 1, the Galois group of R(i)
over R contains the identity and the map that sends i to −i. Thus this is an R-automorphism.
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Notation: If R is a formally real field, we will henceforth denote a root of x2 + 1 in an algebraic closure
of R by i. By analogy with C = R(i), we also denote the R-automorphism that sends i to −i on R(i)
by · , e.g., i = −i.

Lemma 3.25: Let (R,P ) be a virtually real field. Then every element of R(i) is a square. Moreover,
R(i) does not have any algebraic extension of degree 2.

Proof. Let > denote the order induced on R by P . If a ∈ R and a ≥ 0, then a is a square by assumption.
If a < 0, then −a > 0 and hence there exists a b ∈ R such that b2 = −a. Then (bi)2 = −a(−1) = a.
Now let a + bi ∈ R(i), a, b ∈ R with b 6= 0. We want elements c, d ∈ R such that (c + di)2 = a + bi.
Expanding the left-hand side yields c2 − d2 + 2cdi and hence we have the simultaneous equations{

c2 − d2 = a,

2cd = b.

Since b 6= 0, it follows that d 6= 0. Hence the second equation yields c = b
2d . We substitute this into the

first equation to obtain b2

4d2 − d
2 = a, which in turn yields

d4 + ad2 − b2

4
= 0.

We have a quadratic equation in d2. The discriminant is a2−4 · (− b
2

4 ) = a2 + b2. This is clearly positive,
hence this is a square itself. Let

√
a2 + b2 denote the positive square root of a2 + b2. From the quadratic

formula we obtain that

d2 =
−a+

√
a2 + b2

2

is a solution. Suppose −a+
√
a2 + b2 < 0, then certainly −a < 0 as

√
a2 + b2 > 0. Thus a+

√
a2 + b2 > 0,

hence we may multiply the first inequality with this element due to property (d) on page 20. We obtain
−a2 +(

√
a2 + b2)2 < 0 and so b2 < 0, which is a contradiction. Therefore, −a+

√
a2 + b2 > 0. Since also

1
2 > 0, d2 has a square root in R. Now c2 = a+ d2 = a+

√
a2+b2

2 . We show that a+
√
a2 + b2 is positive.

Suppose −a−
√
a2 + b2 > 0. Then, again by property (d), (−a+

√
a2 + b2)(−a−

√
a2 + b2) > 0 and so

a2 − a2 − b2 = −b2 > 0, which is a contradiction. Thus c2 > 0, wherefore also c2 has a square root in R.
Thus we have found solutions c and d in R. We conclude that every element of R(i) has a square root.
For the second statement, let f(x) := x2 + px+ q ∈ R(i) be a polynomial. By the foregoing, there is an
element r ∈ R(i) such that r2 = p2 − 4q. Then

f

(
−p+ r

2

)
=
p2 + r2 − 2pr

4
+ p

(
−p+ r

2

)
+ q = 0.

Thus any quadratic polynomial is reducible over R(i) and hence there cannot be an algebraic extension
of R(i) of degree 2.

We are now ready to state and prove a generalization of the fundamental theorem of algebra. The proof
is based on the proof of Theorem 5.2 from [11].

Theorem 3.26 (Generalized Fundamental Theorem of Algebra): Let R be a virtually real field. Then
R(i) is algebraically closed.

Proof. Let C := R(i). We need to show that every polynomial in C[x] splits over C. If f ∈ C[x], then ff
is a polynomial over R. Indeed, ff = ff = ff , hence ff is fixed by · . Since this is an R-automorphism
by Lemma 3.24, it follows that ff ∈ R[x]. Thus if α ∈ C is a root of ff , then α is a root of f or f .
If f(α) 6= 0, then α is a root of f . Therefore, by Lemma 3.23, α is a root of f = f . Thus it suffices to
consider polynomials over R.
Let f ∈ R[x] be a non-constant polynomial. If deg f is odd, then f has a root in R by the assumption
that R is virtually real. Thus assume that f has even degree. Let E be the splitting field of f(x)(x2 + 1)
over R. Because i is a root of f(x)(x2 +1), the splitting field contains C. Since CharR = 0, f(x)(x2 +1)
is separable. Hence, by Theorem 0.10, E/R is a Galois extension. By assumption, the degree is even.
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Thus write [E : R] = 2nk with n ∈ N and k odd. Then the Galois group of E/R has order 2nk. By the
first Sylow theorem, Gal(E/R) has a subgroup G of order 2n. Let F be the fixed field of G in E. Since
R ⊆ F ⊆ E, we now have [E : F ] = 2n and [F : R] = k. If k > 1, then there is an irreducible polynomial
g over R with odd degree. However, this contradicts the fact that odd polynomials have a root in R.
Hence k = 1. Consequently, F = R and [E : R] = 2n.
We shall now show that n = 1. Suppose n > 1. Then Gal(E/C) has order 2n−1, which is divisible by 2.
Whence, by Cauchy’s theorem, Gal(E/C) has a subgroup H of order 2. The corresponding fixed field
CH then has degree 2 over C. But this contradicts Lemma 3.25. Thus n = 1 and hence [E : C] = 1.
Since C ⊆ E, we conclude that E = C.

As a consequence of this theorem, we obtain the converse of Proposition 3.22. The proof is based on the
proof of Theorem 11.2 from [12].

Corollary 3.27: Let (R,P ) be a virtually real field. Then R is real closed.

Proof. Theorem 3.26 yields that C := R(i) is algebraically closed. Thus C is an algebraic closure of
R, which means that every algebraic extension of R can be embedded in C, i.e., we can deem algebraic
extensions of R as subfields of C. Thus if E is a proper algebraic extension of R, then E ⊆ C and so
[E : R] = 2. Consequently, E = C and hence not formally real. Whence R does not have a proper
algebraic extension that is formally real, wherefore R is real closed.

Although we have proven the generalized fundamental theorem of algebra, we have not actually proven
the fundamental theorem of algebra itself. By Corollary 3.27, it suffices to show that R is virtually
real. In Proposition 1.6 we already proved that (B) from Definition 3.21 holds for R. However, here we
already used that all roots are contained in C, i.e., that C is algebraically closed. Thus, lest our proof
be circular, we cannot use this theorem. The approach we use is by analogy with the intermediate value
theorem. We consider fields in which a similar property is true—on R they coincide—and show that they
are equivalent to virtually real fields. We then, for completeness sake, give an analytical proof of the
intermediate value theorem for R, which yields the desired result.

Definition 3.28: Let F be an ordered field. We say that F has the intermediate value property if the
following holds: If f ∈ F [x] and a, b ∈ F , with a < b, such that f(a)f(b) < 0, then there exists a c ∈ F
such that f(c) = 0 and a < c < b.

The following theorem shows the equivalence between fields with this property and virtually real fields.
The proof of the first implication is based on the proof of Proposition 3.9 from [3, p. 315].

Theorem 3.29: Let (R,P ) be an ordered field. Then R is virtually real if and only if it has the
intermediate value property.

Proof. Suppose that R is virtually real. By Theorem 3.26, R(i) is algebraically closed. Let f ∈ R[x] be
a polynomial and let a, b ∈ R, with a < b, such that f(a)f(b) < 0. Since f splits entirely over R(i) and
[R(i) : R] = 2, f splits into irreducible quadratic and linear factors over R. Any such quadratic factor is
of the form g(x) := x2 + px+ q. Completing the square yields g(x) = (x+ p

2 )2 + q − p2

4 . If q − p2

4 < 0,

then p2

4 − q has a square root
√

p2

4 − q in R and so −p2 +
√

p2

4 − q is a root of g in R, which contradicts

the irreducibility of g. Hence q − p2

4 > 0. Now for every α ∈ R we have g(a) = (a + p
2 )2 + q − p2

4 > 0.
Thus if f consisted of only quadratic factors, then f(a)f(b) > 0, which is false. Thus f must have a
linear factor x − c with a < c < b, and therefore a root c ∈ R. Whence R has the intermediate value
property.
For the converse implication assume R has the intermediate value property. Let a ∈ P and consider
g(x) := x2 − a ∈ R[x]. We have g(0) = −a < 0 and g(a+ 1) = a2 + a+ 1 > 0, thus g(0)g(a+ 1) < 0 and
so g has a root by the intermediate value property. This means that each positive element is a square in
R.
Now let f(x) := xn +an−1x

n−1 + · · ·+a1x+a0 ∈ R[x] be a polynomial of odd degree bigger than 1. Let
|·| : R → P ∪ {0} be defined as follows: For a ∈ R, set |a| := a if a ∈ P ∪ {0} and |a| := −a otherwise.
Observe that |ab| = |a| |b| and

∣∣a−1∣∣ = |a|−1 for all a, b ∈ R. Consider h : R∗ → P ∪ {0} defined by:

h(x) :=

∣∣∣∣f(x)− xn

xn

∣∣∣∣ =
∣∣∣an−1
x

+ · · ·+ a1
xn−1

+
a0
xn

∣∣∣ .
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Choose p ∈ P such that p > nmax{1, |a0| , . . . , |an−1|}. Then h(p) < 1 and so |f(p)− pn| < |pn| = pn.
If f(p) < 0, then |f(p)− pn| = −(f(p)− pn) = pn− f(p). The inequality pn− f(p) < pn now yields that
−f(p) < 0, which is a contradiction. Thus f(p) > 0.
Next notice that also h(−p) < 1. Thus |f(−p)− (−p)n| = |f(−p) + pn| < |(−p)n| = pn. If f(−p) > 0,
then |f(−p) + pn| = f(−p) + pn < pn, which implies that f(−p) < 0. Hence we have a contradiction.
Thus f(−p) < 0. Consequently, f(p)f(−p) < 0 and hence, by the intermediate value property, f has a
root c in R with −p < c < p.
We conclude that R is virtually real.

Theorem 3.30 (Fundamental Theorem of Algebra): The complex numbers C are algebraically closed.

Proof. Since C = R(i), it suffices to show that R has the intermediate value property. For then Theorem
3.29 implies that R is virtually real. Subsequently, Theorem 3.26 shows that R(i) is algebraically closed.

Remark 3.31: The intermediate value property for R is exactly the intermediate value theorem for
polynomials. The proof given here involves some analysis. It uses the completeness of R: Every subset
of R that is bounded above has a least upper bound. We also use that polynomials are continuous. That
is to say, a function f : R→ R is continuous at ξ ∈ R if for each ε > 0 there exists a δ > 0 such that, if
r ∈ (ξ − δ, ξ + δ), then f(r) ∈ (f(ξ)− ε, f(ξ) + ε). Now f is called continuous if it is continuous at each
point.

Let f ∈ R[x] and let a, b ∈ R, with a < b, such that f(a)f(b) < 0. Without loss of generality, we assume
that f(a) < 0 < f(b). We show that f has a root between a and b. Let N := {r ∈ (a, b) | f(r) < 0}.
Clearly b is an upper bound of N , hence there exists a least upper bound u of N . We show that f(u) = 0.
We argue by contradiction and have two cases.
First suppose f(u) > 0. Settings ε := f(u), by continuity, we obtain a positive δ such that, for each
r ∈ (u− δ, u+ δ), we have f(r) ∈ (f(u)− ε, f(u) + ε). This means in particular that f(r) is positive for
u− δ < r < u+ δ. This implies that if n ∈ N , then n ≤ u− δ, because n < u and n /∈ (u− δ, u) by the
foregoing. This, however, contradicts the definition of u, because now u− δ is a smaller upper bound of
N . Thus f(u) cannot be positive.
For the second case we suppose that f(u) < 0. Now set ε := −f(u) > 0. By continuity, there exists a
δ > 0 such that, for each r ∈ (u− δ, u+ δ), we have f(r) ∈ (f(u)− ε, f(u) + ε). In particular, f(r) < 0
for u − δ < r < u + δ. Clearly now u 6= b, so u < b. Thus (u, b) ∩ (u, u + δ) is non-empty. Let η be an
element of this intersection, then η ∈ N while η > u. This again contradicts the definition of u.
By trichotomy, the only remaining possibility is f(u) = 0. Since we also see that a < u < b, we have the
desired result.

Because we have introduced various, eventually equivalent, fields, we sum up the equivalences in the
following theorem:

Theorem 3.32: Let R be an ordered fields. Then the following are equivalent:

(i) R is real closed;

(ii) R is virtually real;

(iii) R(i) is algebraically closed;

(iv) R has the intermediate value property.

Proof. We have already seen that (i) ⇐⇒ (ii) ⇐⇒ (iv) and (ii) =⇒ (iii). We have proven the
implication (iii) =⇒ (i) in the proof of Corollary 3.27. This yields the implication (ii) ⇐= (iii).

3.3.2 Real Closures

We are now ready to show that every formally real field is contained in a real closed one, which is
algebraic over it. As mentioned above, we can then deduce that every formally real field admits an
order. After this we obtain a more general statement, which says that every ordered field has a real
closed, algebraic extension that extends its order and is unique up to order-isomorphism. The latter will
allow us to generalize the statements about discriminants in section 1.2. For the first statement we need
a lemma.
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Lemma 3.33: Let F be a field and let C be a set of algebraic extensions of F that is totally ordered by
inclusion, i.e., C is a chain. Then

⋃
C is an algebraic extension of F .

Proof. We first show that
⋃
C is a field. Let a, b ∈

⋃
C. Then there exist C,C ′ ∈ C such that a ∈ C

and b ∈ C ′. Since C is a chain, without loss of generality, C ′ ⊆ C, hence a, b ∈ C. Now let addition and
multiplication of a and b in

⋃
C be defined via the addition and multiplication in C. This makes

⋃
C

into a field.
By definition of C, F ⊆

⋃
C. Now let a ∈

⋃
C. Then a ∈ C for some C ∈ C. Since C is an algebraic

extension of F , a is algebraic over F . So each element of
⋃
C is algebraic over F , which means that

⋃
C

is an algebraic extension of F .

Theorem 3.34: Let F be a formally real field. Then there exists a real closed, algebraic extension of
F .

Proof. For this proof we use Zorn’s lemma. Let F be an algebraic closure of F and let F be the set of
all formally real, algebraic extensions of F that are contained in F . The reason why we need to limit
ourselves to formally real, algebraic extension in an algebraic closure is that otherwise F might not be
a set (see [1]). Let C ⊆ F be a non-empty chain. By Corollary A.7, it suffices to show that

⋃
C is a

formally real, algebraic extension of F . Lemma 3.33 shows that
⋃
C is an algebraic extension of F .

We are left to show that
⋃
C is formally real. Let a0, . . . , an ∈

⋃
C such that

∑n
i=0 a

2
i = 0. For each i

there is a Ci ∈ C such that ai ∈ Ci. Because {C0, . . . , Cn} ⊆ C is a finite chain, the sets can, possibly
after relabeling, be ordered by inclusion: C0 ⊆ C1 ⊆ · · · ⊆ Cn. Hence ai ∈ Cn for all i. Now

∑n
i=0 a

2
i is

a sum of squares in Cn that equals zero. Since Cn is formally real, we must have that ai = 0 for each i.
By Proposition 3.15,

⋃
C is formally real.

We conclude that
⋃
C ∈ F . Therefore, by Zorn’s lemma, F contains a maximal element R. By construc-

tion, R is real closed.

We now obtain the converse of Proposition 3.14:

Corollary 3.35: Every formally real field F admits an order.

Proof. By Theorem 3.34, there exists a real closed, algebraic extension R of F . By Theorem 3.19, (R,Σ∗R)
is an ordered field. Finally, Theorem 3.7 yields that the induced order Σ∗R ∩ F orders F .

Next we work toward extending the result of the previous theorem to any ordered field such that the
real closed field extends its order.

Definition 3.36: Let (F, P ) be an ordered field. We call a field R a real closure of F if R is a real
closed, algebraic extension of F , whose order extends the order of F .

Example 3.37: The set of real numbers R is not a real closure of Q: Despite the fact that R is a real
closed extension of Q, whose order extends the order of Q, it is not algebraic over Q. In Example 3.42
we shall see that any real closure of Q is isomorphic to the field of elements of R that are algebraic over
Q, i.e., Q ∩ R, where Q is an algebraic closure of Q.
We shall first show that every ordered field has a real closure and then that these closures are unique up
to order-isomorphism. We first need the following lemma:

Lemma 3.38: Let (F, P ) be an ordered field. Take for each p ∈ P a square root √p and let E :=
F ({√p | p ∈ P}). Then E is formally real.

Proof. We prove by contradiction. Suppose E is not formally real. Then there exist elements a0, . . . , an ∈
E such that

∑n
i=0 a

2
i = −1. Then this sum shows that F (a0, . . . , an) is not formally real. However, since

F (a, . . . , an) is a finite extension of F , repeatedly applying Theorem 3.16 shows that F (a0, . . . , an) is
formally real. Thus we have reached a contradiction. Whence E must be formally real.

The idea of the proof of the following theorem came from the proof of Theorem 179 from [2].

Theorem 3.39: Every ordered field (F, P ) has a real closure.

Proof. Let (F, P ) be an ordered field and let E := F ({√p | p ∈ P}), where √p is either square root of p.
By Lemma 3.38, E is formally real. Thus, by Theorem 3.34, there exists a real closed field R containing
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E. Then R is a real closed, algebraic extension of F , so we are left to show that the order of F extends
to R. Let Q := Σ∗R ∩ E be the induced order on E. Let p ∈ P . By definition of E, p is a square in E
and so p ∈ Q. Since Q ⊆ Σ∗R, also p ∈ Σ∗R. Therefore, P ⊆ Σ∗R. Thus the order of R extends P . We
conclude that R is a real closure of F .

Theorem 3.40: Let (F, P ) be an ordered field and let R1 and R2 be two real closures of F . Then there
exists an order-F -isomorphism ϕ : R1 → R2.

Proof. Using Zorn’s lemma, we shall construct a real closed field contained in R1 that is mapped via an
order-F -monomorphism into R2. We then argue that this field must be R1 itself and that the order-F -
monomorphism is surjective, yielding the desired statement.
Let ι : F → R2 be the inclusion. Let F be the set of pairs ((E,Q), f) with F ⊆ E ⊆ R1, P ⊆ Q ⊆ Σ∗R1

and f : E → R2 an order-F -monomorphism. Define a partial order � on F by setting ((E1, Q1), f1) �
((E2, Q2), f2) if and only if

E1 ⊆ E2, Q1 ⊆ Q2 and f2|E1
= f1

From the reflexive and antisymmetric properties of the inclusion we find that � is reflexive and antisym-
metric as well. For transitivity, from the inclusions E1 ⊆ E2 ⊆ E3 and Q1 ⊆ Q2 ⊆ Q3 clearly follow
E1 ⊆ E3 and Q1 ⊆ Q3. Furthermore, we see that if f3 extends f2 and f2 extends f1, then f3 extends
f1. Thus � partially orders F .
Note that ((F, P ), ι) ∈ F , so F 6= ∅. Let C := {((Ei, Qi), fi) | i ∈ I} be a non-empty chain in F , where
I is some index set. Define E :=

⋃
i∈I Ei and Q :=

⋃
i∈I Qi. By Lemma 3.33, E is an algebraic extension

of F , which is clearly contained in R1. Next we show that Q orders E .
We first show that Q is closed under addition and multiplication. Let a, b ∈ Q. Then there exist i, j ∈ I
such that a ∈ Qi and b ∈ Qj . Since C is a chain, without loss of generality, Qj ⊆ Qi. Hence a, b ∈ Qi.
Since Qi is an order for Ei, it follows that a+ b and ab are elements of Qi. Consequently, a+ b, ab ∈ Q.
We now prove that for any c ∈ E , either c = 0, c ∈ Q or −c ∈ Q, and that these are mutually exclusive.
Let c ∈ E . Then there exists a k ∈ I such that c ∈ Ek. If c 6= 0, then either c ∈ Qk or −c ∈ Qk.
Therefore, c ∈ Q or −c ∈ Q. Observe that 0 /∈ Qi for every i ∈ I, hence 0 /∈ Q. Since Q is closed under
addition, it follows that Q and −Q are disjoint. We conclude that Q orders E .
We now define f : E → R2. Let a ∈ E . Then there exists an i ∈ I such that a ∈ Ei. Now set
f(a) := fi(a). To see that f is well-defined, suppose we used some other index j ∈ I with a ∈ Ej .
Because C is a chain, either fi extends fj or vice versa. Either way, fi(a) = fj(a). Hence the choice of
the index is inconsequential.
We just need to show that f is an order-F -monomorphism. First we show that f extends ι. Let e ∈ F .
There is some k ∈ I such that e ∈ Ek. Then, by the definitions of f and fk, f(e) = fk(e) = e.
Now let a, b ∈ E . Then there are again i, j ∈ I such that a ∈ Ei and b ∈ Ej . Then, without loss of
generality, Ej ⊆ Ei and fi|Ej = fj . Because fi is a homomorphism, f(a+b) = fi(a+b) = fi(a)+fi(b) =
f(a) + f(b) and similarly f(ab) = f(a)f(b). We show that f preserves order. Let p ∈ Q. Then p ∈ Qi
for some i ∈ I. Since fi is order-preserving, we obtain f(p) = fi(p) ∈ Σ∗R2

. Therefore, f(Q) is contained
in Σ∗R2

. Thus we see that f is an order-F -homomorphism into R2. By Proposition 3.11, f is an order-
F -monomorphism.
We have now obtained that ((E ,Q), f) ∈ F . By construction, it is an upper bound of C. Therefore, by
Zorn’s lemma, F has a maximal element ((K,O), ϕ).
We show that K is real closed via contradiction. So suppose K is not real closed. By Corollary 3.27,
either some element in O is not a square, or there is a polynomial of odd degree over K that has no
root in K. Either way, we obtain a proper algebraic extension L := K(α) of K, where α is (1) a root
of a polynomial x2 − o ∈ K[x], where o is not a square in K, or (2) a root of an irreducible polynomial
of odd degree over K. Let p ∈ K[x] be the minimal polynomial of α over K. Consider ϕ(p) ∈ R2[x].
Since R2 is real closed, Proposition 3.22 implies that ϕ(p) has a root β in R2. Lemma 3.23 implies
that β /∈ imϕ, for otherwise p were reducible over K. Since p is irreducible and ϕ : K → imϕ is an
isomorphism, by Theorem 4.6.1 from [6], ϕ extends to an isomorphism ϕ̃ : L → im(ϕ)(β), sending α
to β. Hence ϕ̃ : L → R2 is an F -monomorphism. Next we define an order on L. Let O be the set
ϕ̃−1(Σ∗R2

∩ im ϕ̃). That is, the induced order when identifying L with its image under ϕ̃. Thus O orders
L by Theorem 3.7. We still need to show that O extends O. Observe that imϕ ⊆ im ϕ̃. In particular,
ϕ(O) ⊆ im ϕ̃. Moreover, since ϕ is an order-monomorphism, imϕ ⊆ Σ∗R2

. Hence ϕ(O) ⊆ Σ∗R2
∩ im ϕ̃.

Therefore, O ⊆ O. We can now conclude that ((L,O), ϕ̃) ∈ F , while ((K,O), ϕ) ≺ ((L,O), ϕ̃). But this
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contradicts the fact that ((K,O), ϕ) is a maximal element of F . Therefore, K must be real closed.
By the construction of K, R1 is a formally real, algebraic extension of K. Therefore, K = R1 and hence
O = Σ∗R1

by Theorem 3.19. Also, ϕ : R1 → R2 is an order-F -monomorphism. All that remains is to
show that ϕ is surjective. Consider the ordered subfield (imϕ,ϕ(Σ∗R1

)) of R2. Note that every element
in ϕ(Σ∗R1

) is a square. Let q ∈ (imϕ)[x] be a polynomial of odd degree. Then there exists a polynomial
q̂ ∈ R1[x] such that q = ϕ(q̂). Since R1 is real closed, q̂ has a root γ ∈ R1. By Lemma 3.23, ϕ(γ) is a
root of q. Thus q has a root in imϕ and so, by Corollary 3.27, imϕ is real closed. It now follows that
R2 = imϕ. Therefore, ϕ is an order-F -isomorphism between R1 and R2.

Notation: We can now unambiguously write F̃ for the real closure of an ordered field (F, P ).

Example 3.41: We exemplify here that two real closures of an ordered field need not be equal, but are
merely order-isomorphic. Pick a square root

√
2 of 2 and consider Q(

√
2). Since Q is formally real, so

is Q(
√

2) and hence admits an order. There are two choices: Either
√

2 is a positive element or
√

2 is a
negative element. Let P+ be the order on Q(

√
2) where

√
2 is positive and P− where it is negative. Let

R+ be the real closure of (Q(
√

2), P+) and R− the real closure of (Q(
√

2), P−). Since R+ and R− both
extend the order of Q, they must both be real closures of Q. These real closures are distinct:

√
−
√

2 is
an element of R−, but not of R+, for −

√
2 is not positive there. They are still order-Q-isomorphic by

Theorem 3.40. In fact, the restriction of this order-Q-isomorphism to Q(
√

2) must send
√

2 to itself or
−
√

2. The former is not order-preserving, hence it must be the Q-automorphism that sends
√

2 to −
√

2.

Example 3.42: The real closure Q̃ of Q is isomorphic to the field of elements of R that are algebraic over
Q. That is to say, Q̃ ∼= Q ∩ R, where Q is an algebraic closure of Q. Let QR := Q ∩ R. The induced
order from R orders QR, which clearly extends the order of Q. We show that QR is virtually real. Let
α ∈ QR be positive. Let f ∈ QR[x] be such that f(α) = 0. Then consider g(x) := f(x2) ∈ QR[x]. Any
square root

√
α is a root of g and hence lies in QR. Now let h ∈ QR[x] be of odd degree. Since R is real

closed, h has a root β ∈ R. Now QR(β) is algebraic over QR, which in turn is algebraic over Q. Thus, by
Theorem 4.4.4 from [6], QR(β) is algebraic over Q, which implies that QR(β) = QR. Consequently, h has
a root in QR. We see that QR is real closed and hence a real closure of Q. Thus QR

∼= Q̃ by Theorem
3.40.

3.3.3 Discriminants

In section 1.2 we obtained some properties of the discriminant specifically for polynomials over R. There
we used the facts that R admits an order and C is algebraically closed. Since we now have generalized
this to real closed fields, we also obtain generalizations of these statements. First we introduce some
terminology by analogy with R and C.

Definition 3.43: Let R be a formally real field and let C := R̃(i). We call an element in R̃ formally real
and an element in C formally complex. An element in C \ R̃ is then called non-real formally complex.
For an element a + bi ∈ C, where a, b ∈ R̃, we define Re(a + bi) := a and Im(a + bi) := b. These are
called the formally real and formally imaginary parts of a+ bi, respectively.
The map · is called formally complex conjugation, the element a is called the formally complex conjugate
of a, with a ∈ C, and the pair a, a is called a formally complex pair.

Remark 3.44: We may occasionally drop the word ‘formally’ if the meaning remains clear.

Definition 3.45: Let (R,P ) be an ordered field. We define the signum function sgn : R → {−1, 0, 1}
by

sgn(r) :=


1 if r ∈ P ,
0 if r = 0,
−1 if −r ∈ P .

Lemma 3.46: Let R be a formally real field and let f ∈ R[x]. The formally complex roots of f come
in complex pairs. That is to say, α ∈ R̃(i) is a root of f if and only if α is a root of f .

Proof. By Lemma 3.24, formally complex conjugation is an R-automorphism on R(i). Then, since f = f ,
Lemma 3.23 implies the desired result.

32



Theorem 3.47 (Generalized Theorem 1.3): Let R be a formally real field. Let f ∈ R[x] be a polynomial
of degree n ≥ 2 with distinct roots α1, . . . , αn ∈ R̃(i). Let r be half of the number of formally complex
roots of f (note that r ∈ N0 by Lemma 3.46). Then sgn(∆(f)) = (−1)r.

The proof is entirely analogous to the proof of Theorem 1.3.
We also get generalizations of Corollaries 1.4 and 1.5. The proofs of these are also analogous to the
proofs of the original corollaries.

Corollary 3.48 (Generalized Corollary 1.4): Let R be formally real and let f ∈ R[x] be a polynomial
of degree 2. Let α1 and α2 be the roots of f in R̃(i). Then the following hold:

• ∆(f) = 0 if and only if α1 = α2;

• ∆(f) > 0 if and only if α1, α2 ∈ R̃ and α1 6= α2;

• ∆(f) < 0 if and only if α1, α2 ∈ R̃(i) \ R̃ and α1 = α2.

Corollary 3.49 (Generalized Corollary 1.5): Let R be formally real and let f ∈ R[x] be a polynomial
of degree 3. Let α1, α2 and α3 be the roots of f in R̃(i). Then the following hold:

• ∆(f) = 0 if and only if αi = αj for some i 6= j;

• ∆(f) > 0 if and only if α1, α2, α3 ∈ R̃ and are all distinct;

• ∆(f) < 0 if and only if one root is formally real and the other two form a formally complex pair.
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4 Polynomials with Formally Real Roots
In this chapter we take an in-depth look at polynomials over a formally real field R, whose roots lie in
R̃. In particular, we look at cubic polynomials with positive discriminants. Corollary 3.49 states that
there indeed are three distinct formally real roots. Yet we shall see that the cube roots in Cardano’s
formula are non-real formally complex. When such a polynomial is irreducible over R, we shall see that
it is impossible to express these roots using only radicals of formally real elements and so the complex
radicals are necessary. This is the casus irreducibilis.
After this we generalize this concept to polynomials of higher degrees over R, whose roots are all formally
real. We shall see that there are only very specific cases where the roots could be expressed using radicals
of formally real elements only.

4.1 The Casus Irreducibilis
Let R be a formally real field with an order relation > and let C := R̃(i) be its algebraic closure, where
i is a root of x2 + 1. Consider a third degree polynomial f(x) := x3 + px + q ∈ R[x] in the depressed
cubic form. We may apply Cardano’s formula to find the roots:

ωi−1

3
3

√
−27

2
q +

3

2

√
−3∆ +

ω1−i

3
3

√
−27

2
q − 3

2

√
−3∆, i = 1, 2, 3,

where ∆ := ∆(f) = −4p3 − 27q2, ω is a primitive third root of unity and the product of the cube
roots equals −3p. Looking at the radicand −3∆ of the square root, we observe that if the discriminant
of f is positive, then the radicand is negative. Thus

√
−3∆ does not lie in R̃, because every square

in R̃ is non-negative. This means that the radicand of each cube root is non-real formally complex
and, consequently, the cube roots themselves must also be non-real. The latter is true, because R̃ is
closed under multiplication, which means that the cube of a formally real element is again formally
real. The peculiar part is that Corollary 3.49 asserts that all roots of f are formally real, despite
their being expressed using formally complex radicals (i.e., radicals of formally complex elements). If
specifically f ∈ Q[x] is reducible over Q ⊆ R, then these complex radicals are overly complicated: One
can use the rational root test to find a root of f in Q. The other two roots can then be found with the
quadratic formula, which uses only formally real radicals. However, when f is irreducible over Q, the
casus irreducibilis states that the roots of f cannot be expressed using formally real radicals alone.
We start with an old example of a reducible polynomial, which we got from [5, p. 18].

Example 4.1: Consider the polynomial g(x) := x3 − 15x − 4 ∈ Q[x]. The discriminant is −4(−15)3 −
27(−4)2 = 13 068 > 0, so there are three distinct real roots. We compute −3∆(g) = −39 204 = (198i)2.
We choose 198i for a square root of −3∆(g). The radicands of the cube roots in Cardano’s formula are
now − 27

2 (−4)± 3
2 · 198i = 54± 297i = 33(2± 11i). With suitably chosen cube roots, a root of g is

1
3

3
√

33(2 + 11i) + 1
3

3
√

33(2− 11i) =
3
√

2 + 11i +
3
√

2− 11i,

where the latter cube roots are chosen such that 3
√

2± 11i = 1
3

3
√

33(2± 11i). In 1550 Bombelli observed
that (2± i)3 = 2± 11i. Note that 3(2 + i) · 3(2− i) = 45 = −3(−15), hence these are correctly chosen
cube roots. Therefore, we obtain the root 1

3 · 3(2 + i) + 1
3 · 3(2 − i) = 4 of g. Of course this root could

have more easily been obtained via the rational root test.

In this example we notice that the cube roots are each other’s complex conjugates. This is always the
case when there are three real roots of f ∈ R[x], where f is again as before. Since each cube root in
Cardano’s formula is then non-real, their formally imaginary parts must be equal in size and opposite
in sign in order that they cancel when adding them together. That is to say, if a + bi and c + di are
correctly chosen cube roots in Cardano’s formula, then a+ bi + c+ di ∈ R̃ and hence d = −b. Because
the cube roots are correctly chosen, (a+ bi)(c− bi) = −3p and so a(−b) + bc = 0 as p ∈ R̃. Then b 6= 0
implies that a = c. Thus c+ di = a− bi = a+ bi.
One may wonder, why we do not just compute a and b above to find the cube root via cubing a + bi
and equaling this to the radicand of the cube root. This works well for square roots after all. In fact,
we did just that in the proof of Lemma 3.25, where we showed that every element of C is a square. The
following proposition shows why this attempt is futile for cube roots.

34



Proposition 4.2: Let R be a formally real field and let f(x) := x3 + px + q ∈ R[x] be an irreducible
polynomial with positive discriminant ∆ = −4p3 − 27q2. Then solving the equation

1

3
3

√
−27

2
q +

3

2

√
−3∆ = a+ bi (4.1)

for a, b ∈ R̃ amounts to finding a root of f .

Proof. First we cube both sides of (4.1) to obtain

1

27

(
−27

2
q +

3

2

√
−3∆

)
= a3 − 3ab2 + i(3a2b− b3).

Let
√

3∆ be the square root such that i
√

3∆ =
√
−3∆ and rewrite the left-hand side as follows:

1

27

(
−27

2
q +

3

2
i
√

3∆

)
= −q

2
+

i
√

3∆

2 · 9
= −q

2
+ i

√
−p

3

27
− q2

4
.

Note that the radicand of the last square root is positive and hence the square root lies in R̃. For

convenience, write ς :=
√
−p327 −

q2

4 . Thus we obtain the simultaneous equations a3 − 3ab2 = −q
2
,

3a2b− b3 = ς.

We shall need to divide by a, hence we need to show that a 6= 0. If a = 0, then q = 0 and so f(0) = 0,
which means that f is not irreducible. This is a contradiction, so a 6= 0. As suggested in [16], we solve
for b2 and b. This yields

b2 =
a3 + q

2

3a
, b =

b3 + ς

3a2
. (4.2)

To find b3, we multiply these two together:

b3 = b2b =
a3 + q

2

3a

b3 + ς

3a2
=
b3(a3 + q

2 ) + ς(a3 + q
2 )

9a3
.

Solving for b3 now yields

b3 =
ς(a3 + q

2 )

8a3 − q
2

.

We can now express b in terms of a by plugging b3 into (4.2):

b =

ς(a3+ q
2 )

8a3− q2
+ ς

3a2
=
ς(a3 + q

2 ) + ς(8a3 − q
2 )

3a2(8a3 − q
2 )

=
9a3ς

3a2(8a3 − q
2 )

=
6aς

16a3 − q
.

By squaring this equation, we obtain another expression for b2. Combining this with (4.2), we obtain:

b2 =

(
6aς

16a3 − q

)2
=

36a2ς2

256a6 − 32qa3 + q2
=
a3 + q

2

3a
.

We reduce the last equality as follows:

(256a6 − 32qa3 + q2)(a3 + q
2 ) = 3a · 36a2ς2

256a9 + 96qa6 − 15q2a3 + q3

2 = 108a3(−p
3

27 −
q2

4 )

256a9 + 96qa6 + (4p3 + 12q2)a3 + q3

2 = 0

(2a)9 + 3q(2a)6 + (p3 + 3q2)(2a)3 + q3 = 0.
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Next substitute (2a)3 = y − q to obtain the depressed cubic form in y:

(y − q)3 + 3q(y − q)2 + (p3 + 3q2)(y − q) + q3 = 0

y3 + p3y − p3q = 0.

Observe that p 6= 0, for otherwise ∆ = −27q2 ≤ 0. Thus we can divide by −p3:

y3

−p3
− y + q = 0.

Finally substitute y = −pz to obtain

(−pz)3

−p3
− (−pz) + q = z3 + pz + q = 0.

Thus we see that we need to find a root of the original polynomial to solve (4.1).

We now move on to formally stating and proving the casus irreducibilis over formally real fields.
Recall that an algebraic extension E of a field F is a radical extension of F if there exists a field tower

F = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E, (4.3)

such that Ei = Ei−1(ri) with ri a radical over Ei−1 for each i. An element that is contained in a radical
extension is expressible by radicals. A polynomial f ∈ F [x] is solvable by radicals if its splitting field over
F is contained in a radical extension of F . The corresponding definitions for formally real radicals are
as follows:

Definition 4.3: Let R be a formally real field. We call a radical extension E of R a formally real radical
extension if E ⊆ R̃. An element contained in such an extension is expressible by formally real radicals.
A polynomial f ∈ R[x] is solvable by formally real radicals if its splitting field over R is contained in a
formally real radical extension of R.

In this chapter we shall generally only work with formally real fields, which have characteristic 0. Thus
all radicals are roots of polynomials of the form xn − a ∈ F [x] for some n ∈ N. In fact, we only need
radicals of prime degree, i.e., when n is a prime number. The following proposition shows this.

Proposition 4.4: Let F be a field of characteristic 0. Let d := p1 · · · pk, where k ∈ N and each pi ∈ N
is prime. Suppose F (rk) is a proper radical extension of F , where rk is a root of xd − r0 ∈ F [x]. Then
there exists a tower of radical extensions F = E0 ⊂ E1 ⊂ · · · ⊂ Ek = F (rk) such that Ei = Ei−1(ri),
where ri is a root of xpi − ri−1 for 1 ≤ i ≤ k.

Proof. If k = 1, then we are done. So suppose k > 1. Define ri := r
pi+1···pk
k for each 1 ≤ i < k. Then ri

is a root of xpi − ri−1 for 1 ≤ i ≤ k, because (rpi+1···pk)pi − ri−1 = rpi···pk − rpi···pk = 0. Then setting
E0 := F and Ei := Ei−1(ri) for 1 ≤ i ≤ k yields the tower of radical extensions

F = E0 ⊂ E1 ⊂ · · · ⊂ Ek.

Note also that Ek = F (rk), hence we have the desired field tower.

By applying Proposition 4.4 to each extension of (4.3), we see that every radical extension can be realized
as a tower of radical extensions, where each extension is obtained by adjoining a radical of prime degree
to the preceding extension.
Before we can state the main theorem of this section, we need some properties of the polynomials that
realize the radicals: the polynomials of the form xp − a. We have the following proposition about their
reducibility, whose proof is based on that of Proposition 4.2.6 from [5].

Proposition 4.5: Let F be a field of characteristic 0 and let p be a prime number. If f(x) := xp−a ∈ F [x]
is reducible over F , then f has a root in F .
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Proof. If a = 0, then clearly 0 ∈ F is a root. So suppose a 6= 0. Let α be a root of f in some extension
field of F . We know that the remaining roots are ζα, . . . , ζp−1α, where ζ is a primitive p-th root of
unity. Thus in the splitting field E of f over F we have f(x) = (x − α)(x − ζα) · · · (x − ζp−1α). We
assume that f is reducible over F and prove it has a root in F . There exists an irreducible polynomial
g ∈ F [x] such that f = gh, where h ∈ F [x]. If the leading coefficient of g is b, then the leading coefficient
of h is b−1 as f is monic. Thus we can multiply g by b−1 and h by b to obtain a product of monic
polynomials without changing the resulting product, i.e., we may assume, without loss of generality, that
g is monic. Let m be the degree of g and note that m < p. Then there are numbers n1, . . . , nm ∈ Z/p
such that ζn1α, . . . , ζnmα are the roots of g. Since factorization is unique in E, g must be equal to
(x− ζn1α) · · · (x− ζnmα). Because g ∈ F [x], the constant term ζn1 · · · ζnmαm must lie in F as well. Let
ξ := ζn1+···+nm and notice that ξp = 1. The gcd(m, p) = 1, for p is prime. Thus there exist s, t ∈ Z such
that sm+ tp = 1. We now find

ξsα = ξsαsm+tp = (ξαm)s(αp)t.

Because ξαm ∈ F and αp = a ∈ F , we see that ξsα ∈ F . Now observe that (ξsα)p = 1sa = a, thus ξsα
is a root of f lying in F .

We also need the following two lemmas.

Lemma 4.6: Let R be a formally real field. There is no primitive p-th root of unity contained in R,
where p is an odd prime.

Proof. We prove by contradiction. Suppose ζ ∈ R is a primitive p-th root of unity. Since ζ = (ζ
p+1
2 )2,

we see that ζ > 0. If ζ > 1, then ζ2 > ζ > 1. This implies that ζ2 > 1. From there we obtain that
ζ3 > ζ and so ζ3 > 1. Repeating this argument eventually yields that ζp > ζp−1 > 1 and so ζp > 1.
But ζp = 1, therefore 1 > 1, which contradicts the trichotomy. An analogous argument yields the same
contradiction if ζ < 1.

Lemma 4.7: Let R be a formally real field. Let p be a prime number and let α ∈ R̃ such that αp ∈ R.
If α /∈ R, then xp − αp is irreducible over R. Furthermore, [R(α) : R] = p.

Proof. By Proposition 4.5, it suffices to show that there is no root of xp−αp contained in R. Suppose that
there is a root β ∈ R. Since α /∈ R, we see that α 6= 0. Thus β

α ∈ R̃. Now observe that (βα )p = βp

αp = 1

while β
α 6= 1. Thus β

α is a p-th root of unity. If ζ is a primitive p-th root of unity, then 〈ζ〉, the group
generated by ζ, is a group of p elements: the p-th roots of unity. Hence each element has either order 1
or order p, for p is prime. Since β

α 6= 1, it must have order p in this group. Therefore, it is a primitive
p-th root of unity. If p is odd, then this contradicts Lemma 4.6. Thus p = 2 and so β

α = −1, which
implies that β = −α, contradicting the assumption that α /∈ R. Therefore, we see that R does not
contain a root of xp − αp and hence this polynomial is irreducible over R. We immediately obtain that
[R(α) : R] = p.

We can now state and prove the casus irreducibilis over any formally real field. The idea of the proof
came from [15, p. 178].

Theorem 4.8 (Casus Irreducibilis): Let R be a formally real field and let f ∈ R[x] be an irreducible
polynomial of degree 3 with positive discriminant. Then f is not solvable by formally real radicals.

Proof. Let ∆ := ∆(f). Since ∆ is positive, the radical extension R(
√

∆) is formally real. Moreover,
[R(
√

∆) : R] ∈ {1, 2}, depending on whether ∆ is a square in R. Since deg f = 3, f is still irreducible over
R(
√

∆). Let E be the splitting field of f over R. From Theorem 2.1 we find that [E : R(
√

∆)] = 3—note
that this part of the proof of this theorem does not require that the field contain a primitive third root
of unity. Moreover, if α is a root of f , then [R(

√
∆, α) : R(

√
∆)] = 3. Thus we see that E = R(

√
∆, α),

because E contains R(
√

∆, α) and both extensions are of degree 3 over R(
√

∆). We assume that f is
solvable by formally real radicals to reach a contradiction. We obtain a tower of algebraic extensions

R ⊆ R(
√

∆) = E0 ⊂ E1 ⊂ · · · ⊂ Ek−1 ⊂ Ek,

where Ei = Ei−1(ri) with ri a formally real radical over Ei−1 of prime degree pi for each i. Note that,
by Lemma 4.7, [Ei : Ei−1] = pi for each i. We claim that there is such a tower, such that f has no
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root in Ei for each i < k, but f splits over Ek. Moreover, we claim that Ek is obtained from Ek−1 by
adjoining a cube root of a non-cube element of Ek−1.
Firstly, we simply take sufficiently few radical extensions so that f splits only over the last one, which
will be Ek. Secondly, suppose Ei contains a root α of f , but Ei−1 does not. We show that i = k. We
have Ei−1 ⊂ Ei−1(α) ⊆ Ei. Since f is irreducible over Ei−1, we see that [Ei−1(α) : Ei−1] = 3 and
therefore we find pi = [Ei : Ei−1] = 3[Ei : Ei−1(α)]. Since pi is prime, we must have that pi = 3 and
hence Ei = Ei−1(α). Since Ei ⊇ R(

√
∆, α), we see that f splits over Ei. This means that i = k, by the

assumption that f only splits over the extension Ek.
Finally, as the foregoing showed that pk = 3, we find that Ek is obtained from Ek−1 by adjoining a cube
root of some a ∈ Ek−1. Furthermore, Ek is the splitting field of f over Ek−1, whence it is a normal
extension. Therefore, Ek contains all roots of x3 − a ∈ Ek−1[x]. These roots are 3

√
a, ω 3
√
a and ω2 3

√
a,

where ω is a primitive third root of unity. Because a 6= 0, this means that ω = ω 3
√
a

3
√
a
∈ Ek, which

contradicts Lemma 4.6. Therefore, we can conclude that no such tower exists and hence f is not solvable
by formally real radicals.

The classical casus irreducibilis is the case where R = Q considered as a subfield of R.

4.2 A Generalization to Higher Degree Polynomials
In the previous section we have only considered the case of polynomials of degree 3 with formally real
roots. We know from the quadratic formula that any polynomial of degree 2 with distinct formally real
roots is solvable by formally real radicals: One extends the base field with the square root of the positive
discriminant. As it turns out, if a polynomial is solvable by formally real radicals, then those radicals
are all square roots. This is one of the main statements that we shall prove in this section. We primarily
follow Cox’s approach (see section 8.6 A-B of [5]).
We shall first generalize Theorem 4.8 to extensions of degree p for any odd prime, not just 3. To do this,
we need to define a notion of combining two subfields:

Definition 4.9: Let M be a field with subfields K and L. We define the compositum of K and L to be
the smallest subfield of M that contains both K and L, denoted by 〈K,L〉. Formally, this is defined by
the intersection of all such subfields:

〈K,L〉 :=
⋂

F a field
K,L⊆F⊆M

F.

We immediately have the following property of the compositum.

Proposition 4.10: Let K and L be subfields of a field M . Then 〈K,L〉 = K if and only if L ⊆ K.

Proof. The direct implication is trivial, as L ⊆ 〈K,L〉 = K. Now we prove the converse implication.
Note that K ⊆ K and L ⊆ K. Hence, since 〈K,L〉 is the smallest subfield of M that contains both K
and L, it follows that 〈K,L〉 ⊆ K. Because K ⊆ 〈K,L〉 by definition, we see that 〈K,L〉 = K.

We also have the following relation to radical extensions.

Proposition 4.11: Let F , K, L and M be fields such that F ⊆ K,L and K,L ⊆M and K is a radical
extension of F . Then 〈K,L〉 is a radical extension of L. Moreover, if

F = E0 ⊂ E1 ⊂ · · · ⊂ Ek = K,

where Ei = Ei−1(ri) and ri a radical over Ei−1 for 1 ≤ i ≤ k, is the tower corresponding to the radical
extension K/F , then 〈K,L〉 = L(r1, . . . , rk).

Proof. We first show the last equality. Since F (r1, . . . , rk) = K ⊆ 〈K,L〉, we see that L(r1, . . . , rk) ⊆
〈K,L〉. Because F ⊆ L, we see that K ⊆ L(r1, . . . , rk). Because also L ⊆ L(r1, . . . , rk), it follows that
〈K,L〉 ⊆ L(r1, . . . , rk) by the definition of the compositum. Now define L0 := L and Li := Li−1(ri) for
1 ≤ i ≤ k. We see that Lk = L(r1, . . . , rk) = 〈K,L〉 and hence we have the tower

L = L0 ⊂ L1 ⊂ · · · ⊂ Lk = 〈K,L〉 ,

wherefore 〈K,L〉 is a radical extension of L.
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With the notation as in the proof above, it follows immediately that if M is formally real and K is a
formally real radical extension of F , then also 〈K,L〉 is a formally real radical extension of L.
Using the foregoing, we now have the following generalization of Theorem 4.8 thanks to [5, p. 221]:

Theorem 4.12: Let R be a formally real field and let L ⊆ R̃ be a Galois extension of R of degree p,
where p is an odd prime. Then L is not contained in a formally real radical extension of R.

Proof. Let r ∈ R̃ be a formally real radical of prime degree q over R, i.e., r /∈ R and rq ∈ R. By Lemma
4.7, the degree [R(r) : R] is equal to q. We first show via contradiction that r /∈ L. Suppose r ∈ L. Then
we have p = [L : R] = [L : R(r)][R(r) : R] = q[L : R(r)]. Since p is prime, we must have that p = q,
which means that q is odd. Note that xq − rq is irreducible over R by Lemma 4.7 and that L/R is a
normal extension. Because L contains a root of xq − rq, it follows that xq − rq splits over L. Therefore,
L must contain a primitive q-th root of unity. But q is an odd prime and L is formally real, so this
contradicts Lemma 4.6. Whence r /∈ L.
Lemma 4.7 implies that [L(r) : L] = q. Since both L and R(r) are intermediate fields of L(r)/R, we
have the equality [L(r) : L][L : R] = [L(r) : R(r)][R(r) : R]. From this we find

[L(r) : R(r)] =
[L(r) : L][L : R]

[R(r) : R]
=
q[L : R]

q
= [L : R] = p. (4.4)

This means that adding any formally real radical of prime degree to both L and R does not affect the
degree. Now let K be any formally real radical extension of R. By Proposition 4.4, we may assume that
K can be obtained by adding radicals of prime degree. That is to say, we have the tower

R = E0 ⊂ E1 ⊂ · · · ⊂ Ek = K,

where Ei = Ei−1(ri) with ri a formally real radical over Ei−1 of degree pi, where pi is prime. Since
K and L are contained in R̃, we can use the compositum of K and L. Proposition 4.11 implies that
〈K,L〉 = L(r1, . . . , rk). Since K = R(r1, . . . , rk), we can apply (4.4) repeatedly to obtain

[〈K,L〉 : K] = [L(r1, . . . , rk) : R(r1, . . . , rk)]

= [L(r1, . . . , rk−1) : R(r1, . . . , rk−1)]...
= [L : R] = p.

This shows that 〈K,L〉 is a proper extension of K. Thus K 6= 〈K,L〉, which implies that L * K for
Proposition 4.10. We conclude that L is not contained in any formally real radical extension of R,
because K was an arbitrary one.

To see that this theorem indeed generalizes Theorem 4.8, let f be an irreducible cubic polynomial over
a formally real field F with positive discriminant. Take R := F (

√
∆(f)) and L the splitting field of f

over R. We see that L is a Galois extension of R of degree 3, hence L is not contained in a formally
real radical extension of R by the theorem above. Thus f is not solvable by formally real radicals. So
Theorem 4.12 indeed implies Theorem 4.8.
As we mentioned at the start of this section, there is an even stronger version of the casus irreducibilis
for polynomials of higher degrees. For this we shall need a lemma, which is based on the following
well-known generalized statement of the first Sylow theorem (see also Theorem 2.15.3 from [6]):

Theorem 4.13 (Sylow): Let G be a group of order n ∈ N and let p be a prime dividing n. Then G
contains a subgroup of order pk for each k ∈ N0 such that pk | |G|.

Lemma 4.14: Let p be a prime number, n ∈ N and let G be a group of order pn. Then there exists a
chain of subgroups

{e} = Gn < Gn−1 < · · · < G1 < G0 = G

such that |Gi| = pn−i for each i.

Proof. Since pn−1 divides |G|, there is a subgroup G1 of G of order pn−1. Now pn−2 divides the order of
G1, so it contains a subgroup G2 of order pn−2. Repeating this argument, and setting G0 := G, yields
the desired chain of subgroups.
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We also need the following lemma:

Lemma 4.15: Let R be a formally real field. If E/R is a formally real extension of degree 2, then
E = R(

√
a) for some positive a ∈ R.

Proof. Since E/R is finite, it is algebraic. Then E = R(α) for some α ∈ E. The minimal polynomial of
α over R is of the form f(x) := x2 + px + q. Since CharR 6= 2, the quadratic formula shows that we
need only adjoin the square root of the discriminant to R. Since E is formally real, the roots of f are
formally real, wherefore ∆(f) > 0. Thus E = R(

√
∆(f)), as desired.

Finally, we state and prove a generalization of the casus irreducibilis as it is done in [5, p. 222]. The
original results were proved by Hölder ([9]) in 1891 and Isaacs ([10]) in 1985, independently.

Theorem 4.16 (Generalized Casus Irreducibilis): Let R be a formally real field and let f ∈ R[x] be an
irreducible polynomial, whose splitting field L is contained in R̃. Thus f has only formally real roots.
The following are equivalent:

(i) Some root of f can be expressed by formally real radicals over R;

(ii) All roots of f can be expressed by formally real square roots over R;

(iii) L is a formally real radical extension of R;

(iv) [L : R] is a power of 2.

Proof. We prove the following implications:

(iv) =⇒ (iii) =⇒ (i) =⇒ (iv) =⇒ (ii) =⇒ (i).

The implications (iii) =⇒ (i) and (ii) =⇒ (i) are immediate.
Assume (iv). We show that both (iii) and (ii) hold. Note that f is separable, as R has characteristic 0.
Since L is the splitting field of f , it is a Galois extension of R. Therefore, |Gal(L/R)| = [L : R] = 2n for
some n ∈ N. By Lemma 4.14, we get a chain of subgroups of Gal(L/R)

{e} = Gn < Gn−1 < · · · < G1 < G0 = Gal(L/R)

such that |Gi| = 2n−i for each i. By the fundamental theorem of Galois theory, we obtain a chain of
subfields

R = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L,

where Li := LGi , the fixed field of Gi in L, for each i. By the Galois correspondence, Gi = Gal(L/Li) for
each i. Thus [L : Li] = |Gi| = 2n−i. Since [L : R] = [L : Li][Li : R], we have [Li : R] = [L:R]

[L:Li]
= 2n

2n−i = 2i.
Consequently, [Li : Li−1] = 2 for every i. Therefore, by Lemma 4.15, each extension Li/Li−1 is obtained
by adjoining a formally real square root of an element of Li−1. We conclude that L is a formally real
radical extension of R, in which only square roots appear. Thus (iii) and (ii) hold.
The only implication we are left to prove is (i) =⇒ (iv). Let α be a root of f , which is contained in
a formally real radical extension K of R. We prove by contradiction. So suppose that [L : R] is not
a power of 2 and let p be an odd prime dividing [L : R]. Thus p divides |Gal(L/R)|. To arrive at a
contradiction, we shall use an element of Gal(L/R) of order p that does not fix α. We now show that
such an element exists.
By Cauchy’s theorem, there exists an element σ ∈ Gal(L/R) of order p. Let n := deg f and let α =:
α1, α2, . . . , αn ∈ L be the roots of f . Since L = R(α1, . . . , αn) and σ is not the identity, we see that
σ(αi) 6= αi for some i. Because f is irreducible over R, by Theorem 0.5, there exists an R-automorphism
ϕ : L→ L sending α to αi. Then ϕ−1σϕ has order p in Gal(L/R) and

ϕ−1σϕ(α) = ϕ−1σ(αi) 6= ϕ−1(αi) = α.

Thus we have ψ := ϕ−1σϕ ∈ Gal(L/R) of order p that does not fix α. We can now derive a contradiction.
Let M := L〈ψ〉, the fixed field of the group generated by ψ in L. By the fundamental theorem of Galois
theory, M ⊆ L and

[L : M ] = |Gal(L/M)| = |〈ψ〉| = p.
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Thus, by Theorem 4.12, L does not lie in a formally real radical extension of M .
Because ψ(α) 6= α, it follows that α /∈M . Since L is the splitting field, α ∈ L. We have

p = [L : M ] = [L : M(α)][M(α) : M ].

Since p is prime and [M(α) : M ] > 1, it follows that [M(α) : M ] = p and [L : M(α)] = 1. Consequently,
L = M(α). Because both K and M are contained in R̃, we have the compositum 〈K,M〉 of K and
M . As L = M(α) and α ∈ K, we see that L ⊆ 〈K,M〉. Since R is contained in K and M , and K is
a formally real radical extension of R, by Proposition 4.11, 〈K,M〉 is a formally real radical extension
of M . Thus L is contained in a formally real radical extension of M , which contradicts our previous
argument. We conclude that [L : R] must be a power of 2.

We immediately obtain that the polynomials that could be solvable by formally real radicals are the ones
whose degrees are a power of 2:

Corollary 4.17: Let R be a formally real field and let f ∈ R[x] be an irreducible polynomial that splits
over R̃. If deg f is not a power of 2, then f is not solvable by formally real radicals.

Proof. Let L ⊆ R̃ be the splitting field of f over R and let α ∈ L be a root of f . Because f is irreducible
over R, [R(α) : R] = deg f and hence deg f divides [L : R]. If deg f is not a power of 2, neither is
[L : R]. The equivalence (i) ⇐⇒ (iv) shows that none of the roots of f are expressible by formally real
radicals.

We also have a relation to the constructibility with compass and straightedge of the roots of polynomials
over Q. Recall that an element ρ ∈ R is constructible if and only if there exists a tower of extensions
Q = E0 ⊂ E1 ⊂ · · · ⊂ Ek such that ρ ∈ Ek and [Ei : Ei−1] = 2 for each i.

Corollary 4.18: Let f ∈ Q[x] be an irreducible polynomial, whose splitting field E lies in R. If f has
at least one root that is expressible by real radicals, then all roots of f are constructible with compass
and straightedge.

Proof. From the implications (i) =⇒ (iv) =⇒ (ii) of Theorem 4.16 we obtain, as in the proof, a chain
of extensions

Q = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E,

where [Ei : Ei−1] = 2 for each i. Thus each root of f is constructible with compass and straightedge.

4.3 Non-Algebraic Real Solutions to Cubic Polynomials
Let f be an irreducible polynomial over a subfield of R, whose discriminant is positive. In section 4.1
we saw, in particular, that we need complex numbers to express the roots f by radicals. Although in
this case complex radicals are necessary, there is a way to express the roots in purely real quantities:
using trigonometric functions. This is of course not an algebraic solution. The solution is based on the
triple-angle formula for the cosine:

4 cos3(θ)− 3 cos(θ) = cos(3θ) (4.5)

for all θ ∈ R. This means that cos(θ) is a root of the polynomial 4x3 − 3x − cos(3θ) ∈ Q(cos(3θ))[x].
Suppose the discriminant of this polynomial is positive, so that there are three real roots. If we substitute
θ + 2kπ

3 for θ with k ∈ Z, then we see that cos(θ + 2kπ
3 ) is a root of

4x3 − 3x− cos(3(θ + 2kπ
3 )) = 4x3 − 3x− cos(3θ + 2kπ) = 4x3 − 3x− cos(3θ).

Therefore, all roots are given by cos(θ + 2kπ
3 ) with k = 0, 1, 2. We shall use this to derive the roots of

any depressed cubic polynomial with distinct real roots.
Let F be a subfield of R and let f(x) := x3 + px+ q ∈ F [x] be a polynomial with positive discriminant.
Thus −4p3 − 27q2 > 0. First we note that p < 0, for otherwise ∆(f) ≤ 0 as q2 ≥ 0. The idea, which
originally comes from François Viète, is to substitute u cos(θ) for x with suitably chosen u in order that
the equation f(x) = 0 reduce to the triple-angle identity (4.5). The constant term shall then coincide

41



with − cos(3θ), yielding a solution. Executing this substitution yields u3 cos3(θ)+pu cos(θ)+ q. Looking
at (4.5), we get the simultaneous equations {

u3 = 4,

pu = −3.

From the second equation we find 4 = − 4p
3 u. Combining this with the first equation yields u3 = − 4p

3 u.
Lest the polynomial become constant, we require that u be non-zero. Thus we obtain u2 = − 4p

3 . Since

p < 0, the right-hand side is positive and so we can take a real square root u :=
√
− 4p

3 = 2
√
−p3 ∈ R.

By applying the substitution, we obtain the equation

−8p

3

√
−p

3
cos3(θ) + 2p

√
−p

3
cos(θ) + q = 0.

Since p 6= 0, we can divide both sides by − 2p
3

√
−p3 to obtain

4 cos3(θ)− 3 cos(θ)− 3q

2p
√
−p3

= 0.

From (4.5) follows that cos(3θ) = 3q

2p
√
− p3

. To see that such a θ in fact exists, we need to show that the

right-hand side lies in [−1, 1]. We show, in fact, that it lies in (−1, 1) by showing that |3q| <
∣∣2p√−p3 ∣∣.

We start by squaring both sides. We obtain:

9q2 < 4p2 · −p
3

27q2 < −4p3

0 < −4p3 − 27q2.

The latter is true, because the right-hand side is precisely the discriminant of f . Thus we see that 3q

2p
√
− p3lies in the image of the cosine. We take arccos : [−1, 1]→ [0, π] as usual, which yields

θ =
1

3
arccos

(
3q

2p
√
−p3

)
.

Finally, we invert the substitution x = u cos(θ) with u = 2
√
−p3 to find all three roots of f , which are

displayed in (4.6).

Theorem 4.19: Let f(x) := x3 + px + q ∈ R[x] be a polynomial with positive discriminant. Then the
roots of f are given by the following expression:

2

√
−p

3
cos

(
1

3
arccos

(
3q

2p
√
−p3

)
+

2kπ

3

)
, k = 0, 1, 2, (4.6)

which is entirely real throughout.

To exemplify this formula, we use the example from the Introduction:

Example 4.20: Let f(x) := x3 − 3x + 1 ∈ Q[x]. As we saw in the Introduction, the discriminant of f is
81 and f is irreducible over Q. Thus we are in the situation of the casus irreducibilis and so we apply
the formula from Theorem 4.19 with p = −3 and q = 1. We find for the arccosine

arccos

 3 · 1

2 · −3
√
−−33

= arccos

(
−1

2

)
=

2π

3
.

From here we obtain the exact solutions 2 cos( 2π
9 ), 2 cos( 8π

9 ) and 2 cos( 14π
9 ).
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Appendix A Zorn’s Lemma
Definition A.1: Let S be a set. We call a binary relation ≤ on S a partial order if it satisfies the
following properties for all a, b, c ∈ S:

(i) a ≤ a (reflexivity);

(ii) If a ≤ b and b ≤ a, then a = b (antisymmetry);

(iii) If a ≤ b and b ≤ c, then a ≤ c (transitivity).

A set that admits a partial order is called partially ordered. We usually say that (S,≤) is a partially
ordered set.

Definition A.2: Let S be a set. We call a partial order ≤ a total order if for every a, b ∈ S we have
a ≤ b or b ≤ a. A set that admits a total order is called totally ordered. We then say that (S,≤) is a
totally ordered set.

Remark A.3: We may write b ≥ a for a ≤ b.

Definition A.4: Let (S,≤) be a partially ordered set. A subset C ⊆ S is called a chain if (C,≤) is
totally ordered.

Definition A.5: Let (S,≤) be a partially ordered set and let C ⊆ S be a chain in S. We call u ∈ S an
upper bound of C if c ≤ u for every c ∈ C.

Definition A.6: Let (S,≤) be a partially ordered set. A maximal element of S is an element m ∈ S
such that, if s ∈ S satisfies s ≥ m, then s = m.

We now have the follow result from set theory. We shall not give a proof here, as it is equivalent to one
of the axioms of set theory (namely, the Axiom of Choice). The following formulation of Zorn’s Lemma
is based on the formulation in [14, p. 880].

Zorn’s Lemma: Let (S,≤) be a non-empty, partially ordered set. If every non-empty chain has an
upper bound in S, then S contains a maximal element.

Corollary A.7: Let S be a set and let S be a non-empty set of subsets of S. Then (S,⊆) is a partially
ordered set. If for every non-empty chain C in S the union

⋃
C =

⋃
C∈C C is an element of S, then S

contains a maximal element.

Proof. The properties of a partial order are immediate for ⊆. Let C be a non-empty chain in S. Let
C ∈ C. For each c ∈ C, obviously c ∈

⋃
C. Hence C ⊆

⋃
C and so

⋃
C is an upper bound of C. Since, by

assumption,
⋃
C ∈ S, we see that every non-empty chain has an upper bound in S. Whence, by Zorn’s

lemma, S contains a maximal element.
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