
Utrecht University

Training a name-variant model
using historical data

Author:
Jorik van Kemenade
4167783

Supervisor:
dr. ir. Gerrit Bloothooft

Second Supervisor:
dr. Marijn Schraagen

Bachelor Thesis Artificial Intelligence, 15 ECTS

17 August, 2016

Abstract

One of the main problems in the field of record linkage is the variation in names. A possible approach for
dealing with this variation is to remove name variation. To remove this variation each name in the historical
records has to be converted to a base form. In this study a model is presented that can convert Dutch first
names to their base form. To build this model a subset of a dataset [5] containing 132.140 first names and
their base form will be used to train three different multiclass classifiers: k Nearest Neighbours, Boosted
Decision Trees and Support Vector Machines. Each of the classifiers is compared on accuracy, training time
and classification speed. The best performing classifier, a boosted decision tree, is then selected for training
and testing on the entire dataset. The final model is a boosted decision tree with a learning rate of 1.0 and
200 decision trees with a maximum depth of 17 levels. The validation error of the model, using 10-fold cross
validation, is 84.56%. The accuracy of the final model on the test set, containing 24.576 names and 447 base
forms, is 85.04% with a classification speed of more than 300 samples per second.

Contents

1 Introduction 1
1.1 Problems in record linkage . 1
1.2 Record linkage using name variants . 1
1.3 The data: Dutch first names . 2
1.4 Modelling name variation . 2

2 Multiclass classification methods 3
2.1 Decomposition into binary classification . 3
2.2 k-Nearest neighbours . 4
2.3 Boosting . 5
2.4 Decision trees . 7
2.5 Support vector machines . 8
2.6 Neural networks . 10

3 The data 12
3.1 The Genlias dataset . 12
3.2 Cleaning procedure . 12
3.3 Feature vectors . 13
3.4 The datasets . 14

4 Model selection 15
4.1 k-Nearest neighbours . 15
4.2 Boosted decision trees . 17
4.3 Support vector machines . 19

5 Method 21
5.1 Scaling . 21
5.2 Effects of class imbalance . 21

6 Results 23
6.1 Scaling . 23
6.2 Effects of class imbalance . 24

7 Discussion and conclusion 26

1 Introduction

From 1795 - 1813 the Netherlands was occupied by France. During this so called French period (Dutch: ‘Franse
tijd’) the French officially introduced the ‘Burgerlijke stand’, the Dutch statutory registration service. Since
the introduction of the ‘Burgerlijke stand’ a record of almost every birth, marriage, divorce and death in the
Netherlands exists. All those records combined show us the complex relations between the Dutch citizens.
However, combining all those records is not a trivial task. Many disciplines are involved in all steps that are
necessary to solve this huge task.

One of the approaches of combining the civil records is matching the names of the participants on each certificate.
However due to name variation and transcription errors this approach is not reliable. This problem can be solved
by removing name variation from the record set. To remove this variation we propose to train a model which
can classify a name to a base name. This model will be trained using a dataset containing name variants coupled
to standardised base names. In this thesis three different methods for the design and training of this model are
compared. Each model is assessed on accuracy, classification speed and training time.

In this thesis section 1.1 introduces the field of record linkage and section 1.2 elaborates on the problem of
name variance. Section 2 is an introduction into multiclass classification problems and three methods which
can potentially be used to solve the problem are proposed. The historical records that are used to train the
model are discussed in section 3. In section 4 the three models are implemented and tested to select the most
promising model. In sections 5, 6 and 7 the most promising model is evaluated on the entire dataset.

1.1 Problems in record linkage

In the early days of the statutory registration all registration was based on non unique information. A civil
certificate comprises the event for which the certificate was drafted, the date on which the event happened
and the participants in the event [22]. In order to link two certificates to each other there must be a certain
confidence that the participants mentioned on the certificates are the same. Deciding if two certificates relate
seems trivial. If the names of the participants on both certificates are the same and if the dates on the certificates
are within a reasonable and logical time frame the two certificates are likely candidates for a match. However,
three problems arise when using this technique for matching records.

The first problem is that the names on historical records are inconsistent. There are two main sources causing
this inconsistency. The first source of inconsistency is an absence of standards and conventions in formatting
the applicants names. Although every civil record had to comply to the standard data format of each civil form,
the content of the form was not standardised. As a result a single person can have non matching mentions on
different civil certificates. For example, on one certificate a full name containing three first names can be used
and on another certificate only the first name or a variant of the first name is mentioned.

The second problem are transcription errors. There are two main classes of transcription errors: historical and
modern. First the historical transcription errors. These errors are in the original civil certificates and they arise
when the civil servant misspells a name. The second type, the modern errors, arise when the original certificate
is digitalised. These errors are caused by a transcriber either misspelling or misreading a name.

The first and second problem are not that big of a problem for people who are skilled in linking records. Humans
are capable of linking data despite some of the noise that is introduced due to human error. However due to the
number of records that is digitally available it is almost impossible to verify all possible record combinations
for candidate matches. And this is where the third, and biggest, problem arises. To process that many records
computers are used to automatically link our civil records in a fast and reliable manner. However, in contrast
to humans, computers are not equipped to deal with the noise and errors in the records. Enabling computers to
reliably link records, despite some of the errors, is one of the bigger challenges in the field of record linkage.

1.2 Record linkage using name variants

A common approach of handling variation in records such as described in section 1.1 is to compute the difference
between two names. There are several measures for computing this difference, but each measure is used in a
similar way. If the difference between two names is below a certain threshold the two names are considered to
be a match, if the difference is above the threshold the names are considered to be different.

1

Human record linkers don’t perform a character by character comparison of two names. They consider certain
parts and features of a name to decide whether two names are similar. One of the important factors in deciding
if two names are likely to match is the origin of the name. If two names share the same base name they are
more likely to be compatible than if two names have a different origin.

One approach of making automatic record linkage more human like is to convert all names to their base name.
This way name variation is discarded without some of the problems that arise using threshold based techniques
such as minimum edit distance. While this solves the problem of name variation new problems, or actually
existing, problems arise. Besides handling transcription errors in the data, names have to reduced to their base
form. Although there are some rules of thumb on how to reduce a name to it’s base form this is a non trivial
task.

In this study several approaches for training this model using historical data will be evaluated. Each of the
methods has to solve the same problem: Given any name, find the most likely base name which is associated
with that name. This requires a model that can classify noisy input into many classes and data which can be
used to train the models.

1.3 The data: Dutch first names

For training, verifying and testing the model a data set containing 132.140 variant - base name pairs is used [5].
This dataset is constructed using data from the Genlias project. The Genlias project aims to index all Dutch
civil certificates of the 19th century. Due to legal restrictions preserving the privacy of Dutch citizens not all
civil certificates can be used. Birth certificates have to be at least 100 years old, marriage records need to be
75 years old and death certificates must be 50 years or older. Together with other sources, such as the website
www.WieWasWie.nl, 22 million civil certificates are digitally available.

Bloothooft and Schraagen [6] have found a method that can be used to identify name variants in this data.
This method combines several clustering steps to find first name clusters. Using this technique they identified
a total of 927 name clusters. Each of the 132.140 names is assigned to a cluster. This is done with different
levels of confidence, the confidence of a name-variant pair depends on the procedure that is used to standardize
the name. The dataset that is used in this study is a variant of the dataset from Bloothooft and Schraagen
[5]. For more information on the characteristics of the data and the clustering procedure please refer to chapter
3.

1.4 Modelling name variation

In this study three multiclass classification techniques are used to solve the problems mentioned in sections
1.1 and 1.2. Each of the methods will be assessed on their ability to solve these problems in the context of
record linkage. This means that both accuracy and speed are important for assessing the performance of each
approach. A third, less important, factor is the training time of each approach.

The main goal of this study is to find a reliable approach for removing name variation from a dataset. However
the underlying problem and the methods used to solve this problem relate to a larger and more general field:
multiclass classification. Multiclass classifiers are classifiers which are able to divide samples into one of k-classes
where k > 2. However when k increases, so for cases where k >> 2, it gets increasingly more difficult to train
multiclass classifiers. Each of the approaches that is discussed in section 2 are tested on a maximum of 26
classes. For this specific case the domain consists of over 400 classes. Therefore the conclusions of this study
might not only be interesting for the domain of record linkage but also for the domain of multiclass learning as
well.

2

2 Multiclass classification methods

The underlying problem of standardising a given name to a basic form is a multiclass classification problem.
The aim of a multiclass classification algorithm is to assign a single class from a range of classes to an input
sample. A k-class multiclass problem can be defined as:

Definition 1. Given a training data set of the form (xi, yi), where xi ∈ Rn is the ith sample and yi ∈ {1, ...,K}
is the ith class label, we aim at finding a learning model H such that H(xi) = yi for new unseen samples [4]

There are several approaches for solving a multiclass problem. Aly [4] created an overview of the various
multiclass classification algorithms which are available. Multiclass classification algorithms can be divided into
two main groups. The first group of algorithms decomposes the problem into binary classification problems. The
second group of algorithms are an extension of existing binary classification algorithms to multiclass classification
algorithms.

In this chapter both classes of algorithms will be covered. First section 2.1 will cover the decomposition of
the problem in binary problems. Then sections 2.2 - 2.5 will cover the extensions of binary classification
algorithms to multiclass classification algorithms. Each algorithm will be introduced followed by a short review
of performance and suitability for solving the problem of name standardisation.

2.1 Decomposition into binary classification

As mentioned earlier, solving a multiclass problem is more complex than solving a binary classification prob-
lem. If a multiclass classification problem can be decomposed in several binary classification problems, the
binary problems can be solved using efficient proven classification techniques. There are several approaches
to decomposing a multiclass classification problem to a set of binary classification problems. There are three
main approaches for dividing a multiclass classification problem into binary problems, the one-versus-all (OVA)
approach, the all-versus-all (AVA) approach and encoding. Both the OVA and AVA method are discussed in [4,
19], the AVA method is also discussed in [11] and different encoding strategies are discussed in [3, 4, 12].

In the all-versus-all approach each class is compared to every other class. This requires the training of binary
classifiers that can discriminate between classes. So given an arbitrary input and two classes yi, yj ∈ {1, ...,K}
the binary classifier has to classify the input as either yi or yj . This classification is done for every combination
of classes and the class which gained the most wins out of the K − 1 competitors is the overall winner. This
approach requires K(K − 1)/2 different binary classifiers. With more than 400 different classes this approach
requires over 80.000 binary classifiers thus making it impractical for this study.

The one-versus-all approach requires less binary classifiers. In this approach K binary classifiers are trained,
each classifier has to decide if a sample belongs to class K or any of the other K − 1 classes. The class K with
the classifier that has the highest confidence out of all K classifiers is the winner. Due to the relatively low
number of binary classifiers, in this study approximately 400, this approach might be suitable. However Ou and
Murphy [19] found that class imbalance between the number of positive samples of class K and the number of
negative samples in classes K − 1 has a negative impact on the performance of the binary classifiers.

There are two possible solutions for this class imbalance problem. The first approach by Sun et al. [23] uses
boosting which is discussed in section 2.3. The second approach by Daqi et al. [11] uses a construction called
economic learning sets. An economic learning set is a dataset that only contains samples from the larger dataset
that are most likely to be relevant. This approach is discussed further in section 2.6.

f1 f2 f3 f4 f5 f6 f7
Class 1 0 0 0 0 0 0 0
Class 2 0 1 1 0 0 1 1
Class 3 0 1 1 1 1 0 0
Class 4 1 0 1 1 0 1 0
Class 5 1 1 0 1 0 0 1

Figure 1: Example of an error-correcting output-coding schema. The schema con-
sists of K rows and N columns. Each row represents a codeword and each column
represents a binary classifier,

3

The third approach is based on encoding strategies. Dietterich and Bakiri [12] describe a strategy in which N
binary classifiers can distinguish K classes.This is done using an output strategy with so called error-correcting
output codes. Each of the K classes gets a codeword of length N , the classes and code words can be combined
to a matrix M . An example of an error-code matrix can be found in figure 1.

The code matrix from figure 1 is one of the possible encodings for a 5-class problem. Each row in M corresponds
to a class K, each of the columns in M corresponds to one of the N binary classifiers. When an unseen sample
is tested, each of the N classifiers classifies the sample as either 0 or 1. The classifications of each binary
classification will be used to construct a codeword j. The winning class is the class with the codeword from M
that has the shortest Hamming distance to j. The Hamming distance is computed using the definition in figure
2. For this technique to work it is important that the codewords are carefully selected. Each row needs to have
a sufficient Hamming distance to other rows and the binary classifiers should be uncorrelated. Dietterich and
Bakiri [12] have compared several methods for finding an optimal encoding.

Allwein et al. [3] created an extension to the error-correcting output-codes as proposed by Dietterich and Bakiri.
Instead of constructing a matrix M ∈ {−1,+1}K×N , a matrix M ∈ {−1, 0,+1}K×N is constructed. If fi = 0
the classification of fi is ignored. Experiments with this encoding scheme showed that it is a viable candidate
for replacing other encoding schemes, but there is no clear improvement when compared to for example error-
correcting output-codes by Dietterich and Bakiri.

2.2 k-Nearest neighbours

The most basic (multiclass) classification method is the k-nearest neighbours algorithm (kNN) [1]. The kNN
algorithm is based on the nearest neighbour rule. The nearest neighbour rule is a very simple rule for which
no actual training is required. In definition 1 the training set is defined as being of the form (xi, ui), where
xi ∈ Rn is the ith sample and yi ∈ {1, ...,K} is the ith class label. Consider an unknown data point x for which
a label y ∈ {1, ...,K} has to be predicted. The nearest neighbour rule dictates that the label of the closest data
point xi in the training set is the most likely label for xn, so y = yi. Finding the nearest neighbour is done by
arranging the training set according to distance from x. Define (x[n](x), y[n](x)) as the nth pair with respect
to x. The entire rearranged data set will then be:

(x[1](x),y[1](x)) ≤ (x[2](x),y[2](x)) ≤ ... ≤ (x[N](x),y[N](x)) (1)

The final hypothesis of the nearest neighbour algorithm will be:

g(x) = y[1](x) (2)

Using the nearest neighbour rule the algorithm always returns the class of the datapoint in the training set
which is closest to x. Since only the nearest neighbour is considered this method is susceptible to noise in the
training data. This can be solved by increasing the number of neighbours which will be taken into consideration.
Instead of considering just one neighbour, kNN considers the first k-neighbours. Consider a vector x with an
unknown class y. Similar to the single neighbour approach the training set will be arranged as in equation 1.
The class y which is most common in (x[1](x),y[1](x)), ..., (x[k](x),y[k](x) will be the predicted class for the
unknown datapoint x. Equation 3 is the final hypothesis of the kNN algorithm where [...] is the Iversion bracket
notation: [P] is defined to be 1 if P is true and 0 otherwise.

g(x) = arg max
n∈1,...K

k∑
i=1

[
y[i](x) = yn

]
(3)

There are two factors which influence the performance of a kNN classifier. The number of considered neighbours
and the distance measure. The first factor is the value of k. If k = 1 the resulting hypothesis is very complex,
if k is very large the final hypothesis will have a much lower complexity. The optimal value for k is problem
specific and has to be found by testing several values of k. The second factor is the distance measure that is
used to measure the distance between x and xi. There are several approaches to measuring this distance, some
popular choices can be found in figure 2. The optimal distance measure for a kNN classifier is problem specific,
the best distance metric is selected during the model selection phase.

4

Braycurtis

d∑
i=0
|xi−yi|

d∑
i=0
|xi|+

d∑
i=0
|yi|

Canberra
0∑
i=1

|xi−yi|
|xi|+|yi|

Chebyshev arg maxi |xi − yi| Euclidean

√
d∑
i=0

(xi − yi)2

Hamming

d∑
i=0

[xi 6=yi]

d Manhatten
d∑
i=0

|xi − yi|

Figure 2: Some popular distance measures as used in [20]. d is the dimension of the
input vectors.

kNN has proven to be a simple yet effective method for classification. One of the main advantages is that kNN
requires no training, however kNN is quite susceptible to noise in the ‘trainging data’. Another disadvantage of
kNN is the time and space complexity for larger problems, the memory requirement is Nd and the computational
complexity is O(Nd+N log k) where d is the dimension of the input vectors [1]. However by preprocessing and
storing the data in the appropriate data structures the memory requirements and computational complexity
can be reduced.

2.3 Boosting

Boosting is a general method that can be used to “boost” the performance of any learning algorithm [21]. The
concept of boosting is to take a weak learner, a learning algorithm which performs slightly better than random
guessing, and combine many weak learners to create a single strong learner. There are several methods for using
boosting to boost the performance of multiclass learning algorithms, these methods include: AdaBoost.M1,
AdaBoost.M2, AdaBoost.MH and AdaC2.M1 [21, 23]. Each of these methods is an extension to the original
AdaBoost algorithm as designed by Freund and Schapire [13] which can be found in algorithm 1.

Algorithm 1 The boosting algorithm.

Require: Training set (x1, y1), ..., (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}
Initialize: D1(i) = 1/m

for t = 1, ..., T do
Train a weak learner ht using Dt

εt = Pri∼Dt
[ht(xi) 6= yi]

αt = 1
2 ln(1−εt

εt
)

Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

. Zt is a normalization factor.
end for

Return: H(x) = sign(
T∑
t=1

αtht(X)))

The basic idea of the AdaBoost algorithm is to train a set of weak learners. Each weak learner has a different
distribution of weights over the training set. Initially the weight is distributed equally over all training samples.
But on each round the weight distribution is updated. The weight on the incorrectly classified examples is
increased, the weak learners are forced to focus on the ‘harder’ examples in the training set. The magnitude of
the weight increase depends on the weak hypothesis ht and the method that is chosen to compute αt. Usually
αt is computed using the error εt of ht, this error depends on the number of misclassified samples and their
weights. The error et can be computed using equation 4.

εt = Pri∼Dt
[ht(xi) 6= yi] =

∑
i:ht(xi)6=yi

Dt(i) (4)

In [13] Freund and Schapire proved some basic properties of the AdaBoost algorithm. The first property is the
reduction of the training error. First the training error εt of ht is defined as 1

2 − γt. The γt measures how much
better the weak hypothesis ht predictions are than random guessing. Using this notation Freund and Schapire
have proven that the training error of the final hypothesis H it limited to:

5

∏
t

[
2
√
εt(1− εt)

]
=
∏
t

√
1− 4γ2t ≤ exp

(
−2
∑
t

γ2t

)
(5)

Equation 5 shows that if the weak hypothesis is slightly better than random, so γt > 0, then the training error
drops exponentially. Freund and Schapire also showed that it is possible to bind the generalization error of the
final hypothesis in terms of the training error, the sample size m, the VC-dimension d of the weak hypothesis
space and the number of rounds T of boosting.

P̂r [H(x) 6= y] = Õ

(√
Td

m

)
(6)

Equation 6 implicates that boosting will overfit if run for too many rounds T . However empirical observations
showed that AdaBoost was not overfitting, even after thousands of iterations. Sometimes it was even observed
that AdaBoost lowered the generalization error after the training error had reached zero. In response to these
findings an alternative bound of the generalization error was given in terms of the margins of the training
examples. The margin of an example (x, y) is defined in equation 7 [21].

y
∑
t
αtht(x)∑
t
αt

(7)

A margin is a number in [−1,+1] and can be interpreted as the confidence of the prediction. It is proven that
larger margins on the training set translate into a superior bound of the training error and that boosting is very
effective in increasing the margins on the training set. Schapire [21] shows that boosting increases the margins
even after the training error has reached zero.

As mentioned earlier the AdaBoost algorithm was originally designed to be used in classification problems with
just two classes. There are several methods of using boosting for multiclass classification problems. The first,
and simplest method, is to reduce the problem to a set of binary problems. Two popular candidates include
the one-versus-all approach and the error-correcting output-codes, both approaches are described in section 2.1.
The second method is to extent the original AdaBoost algorithm to support multiclass classification. Sun et al.
[23] have compared two multiclass boosting algorithms, the ‘straightforward’ AdaBoost.M1 algorithm and the
AdaC2.M1 algorithm.

AdaBoost.M1 differs slightly from the original AdaBoost algorithm as shown in algorithm 1. The main dif-
ferences are a different weight update function and a different final hypothesis. The weight update formula in
algorithm 1 will be replaced by equation 8.

Dt+1(i) =
Dt(i) exp(−αtI [ht(xi) = yi])

Zt
(8)

Where Zt is the normalization factor and I is defined by equation 9.

I [ht(xi) = yi] =

{
+1 if ht(xi) = yi

−1 if ht(xi) 6= yi
(9)

The final hypothesis H(x) of algorithm 1 will be replaced by equation 10.

H(x) = argmax
Ci

(
T∑
t=1

α+ t [ht(x) = Ci]

)
(10)

The training error of AdaBoost.M1 has the same characteristics as the training error of AdaBoost. Therefore if
a weak learner has a better than random performance the training error will drop exponentially. The AdaC2.M1
algorithm has a different approach to the multiclass problem compared to AdaBoost.M1. Instead of just adding
a weight factor to individual samples, a cost function is also feeded into the weight update function.

Consider a k-class classification problem consisting of m samples. Let c(i, j) be the cost for misclassifying an
example of class i to class j. By definition c(i, j) = 0.0 if i = j. Now define the cost of misclassifying samples
of class i as c(i). There are many possible rules for defining c(i), a possible form is given in equation 11.

6

c(i) =

k∑
j

c(i, j) (11)

However in AdaBoost the weight factor is sample based and not class based, so the class based cost function
has to be expanded to a sample-based cost model. Suppose the ith sample is misclassified. If the ith sample
belonged to class j than the misclassification costs would be the costs for misclassifying class j so ci = c(j).
The updated weight update formula 8 for AdaC2.M1 will be:

Dt+1 =
ciDt(i) exp(−αtI [ht(xi) = yi])

Zt
(12)

To lower the training error of the AdaC2.M1 algorithm the objective is to minimize Zt [23]. Minimizing Zt is
done by finding a positive αt. αt is directly dependent on the error εt. In AdaC2.M1 αt is computed using a
cost altered version of the αt in algorithm 1,

αt =
1

2
ln

∑

i,yi=ht(xi)

ciDt(i)∑
i,yi 6=ht(xi)

ciDt(i)

 (13)

To get a positive αt equation 14 should hold. This is similar to the AdaBoost requirement of ‘better-than-
random’ performance. But the main difference between AdaBoost.M1 and AdaC2.M1 is not the upper bound of
the training-error, it is how the weight update functions influence the resampling effect of both algorithms.

∑
i,yi=ht(xi)

ciDt(i) >
∑

i,yi 6=ht(xi)

ciDt(i) (14)

As mentioned earlier the AdaBoost strategy is to increase the weight of false predictions and decrease the weight
of true predictions. The AdaBoost.M1 algorithm increases the weights of all true and false predictions equally.
Therefore large classes with many misclassified samples get relatively the same weight increase as smaller classes
with less misclassified samples. However since AdaBoost.M1 already trains on the many misclassified samples
from the larger class, the weight increase for the larger class is not important compared to the weight increase
of the smaller classes. By altering the ratio of the weight increase the weight of the smaller classes can be
increased while the weight of the larger classes is unaltered. This is implemented by AdaC2.M1. AdaC2.M1
introduces a cost function that can change the weight ratio between classes. Sun et al. [23] showed that this
method performs better in imbalanced class situations than AdaBoost.M1. However finding the optimum cost
function was a time consuming process.

2.4 Decision trees

As mentioned in chapter 2.3 AdaBoost requires a weak learner. Decision trees are known to be used in classi-
fication [16], mutliclass classification [4] and as weak learner in boosting [21, 23]. In the experiments in chapter
4 decision trees will be used to train boosted classifiers.

Decision trees are trees that classify instances by sorting them on feature values [16]. Each node in the decision
tree represents a feature, each branch in the tree represents a possible node value and each leaf represents a
class. Classifying an unknown sample using a decision tree is a simple process. Start at the root of the tree and
evaluate the feature of the root node. Traverse the tree via the correct branch and repeat until a leaf node is
reached. The value of the leaf node is the class of the unknown sample.

Although the concept of a decision tree is straightforward creating an optimal decision tree is not. Constructing
an optimal decision tree is a NP complete problem. A lot of research has been done on finding heuristics for
creating the optimal decision tree. However the basic idea is similar for most heuristics and can be found in
algorithm 2.

7

Algorithm 2 The Decision Tree Algorithm (DTA).

Require: Samples S, AttributeList A
create node N
if all samples in S are of class C then

label N as C
return N

end if
if A = ∅ then

find most common class C in S
label N as C
return N

end if
select a ∈ A with the highest information gain
label N with a
for each v in a do

select subset S1 samples from S where a = v
subtree = DTA(S1, A \ v)
attach subtree to N

end for
return N

An important factor in decision tree performance is tree depth. When a decision tree is allowed to reach an
unlimited depth the decision tree is very sensitive to overfitting. By limiting the depth, and therefore the
number of possible decisions, this can be prevented. Take for example a decision stump, a decision tree with
just 1 level, because of the limited depth only one feature can be considered. When adding more levels, the
number of possible decisions grows exponentially, creating more opportunity for overfitting. The ideal tree
depth is problem specific and is set during the model selection phase.

2.5 Support vector machines

Support vector machines (SVM) are a popular choice for both binary and multiclass classification [2, 4, 7, 14].
As with many classification methods the SVM is originally designed as a binary classification method, however
there are several ways to extend the SVM to a multiclass setting. This section will introduce the concept of the
SVM and will briefly mention several methods of extending it to multiclass classification.

Huang et al. [14] explained the basic concept of a SVM. Figure 3 shows three of many possible decision
boundaries separating two classes. The question that has to be answered is which decision boundary is preferred
over the others. For this particular configuration the decision boundary in figure 3b is preferred over the
boundary in figure 3a. The optimal decision boundary is the boundary in figure 3c. That particular boundary
is optimal because it maximizes the distance between the classes and the decision boundary. As a result of this
distance the classifier is less susceptible to noise, the margin for error is maximized. This boundary is called
the maximum-margin separating hyperplane, the goal of the SVM is to find the maximum-margin separating
hyperplane. If such a hyperplane exists the final hypothesis of a two class SVM can be defined as:

H(x) = sign(wTx + b) (15)

Where w is the weight vector of the hyperplane and b is the bias.

Finding the maximum-margin separating hyperplane is done by solving equation 16. In this equation yn ∈
{−1,+1}, w is the weight vector of the hyperplane and b is the bias. Solving equation 16 is not trivial for
bigger data sets. However equation 16 can be converted to a quadratic programming problem and solved using
already available solvers.

minimize:
1

2
wTw

subject to: yn
(
wTxn + b

)
≥ 1

(16)

8

(a) Small separator (b) Medium separator (c) Optimal separating plane

Figure 3: Three possible planes linearly separating the four data points [2].

The maximum-margin separating hyperplane as defined in equation 16 has one critical problems: it is assumed
that the data is linearly separable. By assuming linearly separable data the SVM is limited to only a small
class of problems. Both noisy problems, which are not separable due to data points at the ‘wrong side’ of the
decision boundary, and problems with a non linear decision boundary are problematic for this SVM.

The problem with the noisy data can be solved by defining a soft-margin SVM. A soft-margin SVM is similar to
the hard-margin SVM as defined in equation 16 however it allows violations of the margin and even classification
errors. A soft-margin SVM is defined as:

minimize:
1

2
wTw + C

N∑
n=1

ξn

subject to: yn
(
wTxn + b

)
≥ 1− ξn

(17)

Where yn ∈ {−1,+1}, w is the weight vector of the hyperplane, b is the bias, ξn is the allowed margin violation
and C is the penalty parameter. The margin violation ξn is the amount of margin violation for a data point,
ξn = 0 if a point is classified correctly, 0 < ξn ≤ 1 if the point violates the margin and ξn > 1 if the point is

misclassified. By minimising 1
2wTw the maximum margin is found, by minimising

N∑
n=1

ξn the least violating

margin is found. The parameter C can be used to compromise between finding a large margin and allowing
errors. If C is large equation 17 is similar to a hard-margin SVM. If C is small violations of the margin are
less important and the margin will be larger. Finding the right balance between a large margin and allowing
boundary or classification errors is crucial for the performance of soft-margin SVM’s.

There still is a problem which isn’t addressed by either equation 16 or 17, the linear margin. By transforming
the data into a higher dimension it is possible to create non-linear maximum-margin separating hyperplanes.
An efficient method for transforming to a higher dimensional space is using a kernel function. A kernel function
uses a non-linear transform φ : X → Z such that z = φ(x). There are several types of kernels which can be used
to train a SVM. As with all previous techniques the optimal kernel function is problem specific and is selected
during the model selection phase. Figure 4 shows some of the popular kernel functions which are commonly
used in SVM classification.

linear γ 〈x, x′〉
polynomial (γ 〈x, x′〉+ r)d

radial based function exp(−γ
∣∣∣x− x′

∣∣∣2 where γ > 0

sigmoid tanh(γ 〈x, x′〉+ r)

Figure 4: Populair kernel functions as used by [20].

The soft-margin SVM as defined in equation 17 is a two-class classification algorithm. However several extensions
from a two-class to a multiclass SVM have been proposed. The most basic extension is to use a decomposition
to binary one-against-one or one-against-all problems as discussed in chapter 2.1. Cheong et al. [7] propose a
multiclass SVM with binary tree structure requiring N − 1 SVMs to be trained and a classification complexity
of log2N , making this approach faster than one-against-all classification strategies while maintaining the same
accuracy. Another approach is expanding the SVM algorithm to include multiclass support as done by Crammer
and Singer [10] and Huang et al. [14].

9

2.6 Neural networks

Due to problems as described in sections 1.1 and 1.2 the model that is used to standardise names has to deal with
incomplete and noisy data. One of the main sources of noise are transcription errors and spelling mistakes. Karen
Kukich published a survey on techniques that automatically record words in text [17]. According to Kukich
“Neural nets are likely candidates for spelling correctors because of their inherent ability to do associative recall
based on incomplete or noisy input”.

In the same survey Kukich refers to her own research in which she used a standard back-propagating neural
network to correct spelling mistakes in 183 surnames. The output layer of that network consisted of 183 nodes,
one for each name. The input layer was constructed using 450 nodes in 15 sequential blocks of 30 nodes each.
Each 30-node block contained one node for each character in a 30-character alphabet. As a result of that names
with a maximum length of 15 characters could be corrected. The net was trained using artificially single-error
misspellings of the 183 names. The final neural network achieved a near perfect accuracy on names with single
spelling errors.

Experiments performed by Cherkassky and Vassilas confirmed Kukich’s findings [8, 9]. Cherkassky and Vassilas
trained different neural nets with different input strategies on a 24-100 name lexicon and they too found a
near 100% correction rate. However they found that the learning rate and the number of hidden units made
significant differences in the performance of the networks.

Ou and Murphey [19] endorse the findings of Cherkassky and Vassialas. According to Ou and Murphey many
classification systems were developed for two-class classification problems and the extension from two-class to
multiclass classification is non-trivial. In line with the experiments of Cherkassky and Vassialas this often leads
to unexpected complexity or weaker performance. In their research Ou and Murphey compare the performance
of different system architectures on a variety of multiclass problems. The two major system architectures used
in their research are a single neural network system and a system of multiple neural networks. The multiple
neural network approach can be divided into three different competition schemes: one-against-one, one-against-
all and P-against-Q. The OvO and OvA schemes are discussed in section 2.1, the PvQ scheme lies somewhere
between the OvO and the OvA scheme. In the PvQ scheme P classes are tested against Q other classes. All
neural networks are trained using the back propagation algorithm. Besides measuring the performance of each
network on multiclass datasets the network’s learning capabilities are also evaluated with respect to imbalanced
training data, the number of classes and the size of the training set.

Ou and Murphey concluded that performance wise the one-against-one approach is very effective on data sets
with a large number of classes and a large number of training samples. However due to the quadratic increase
with K in the number of networks that have to be trained this method seems to be impracticable for over 400
classes. The next best approach was the one-against-all approach. However this approach suffers greatly from
imbalanced class distribution. Daqi et al. [11] introduce two concepts which, when combined, can solve the
problem of class imbalance in multiclass classification problems.

Figure 5: Creating an economic subset containing samples from wj and a subset of
the samples from w∼j [11].

10

The first concept are so called economic learning subsets. In a one-against-all situation the set containing the
negative examples has many distant samples. These distant samples are far away from the decision boundary
and are less relevant for constructing the decision boundary. By removing the more distant samples the negative
class gets smaller while maintaining the interesting samples. Selecting the closer samples instead of the more
distant samples is done drawing an initial ellipsoid around the training samples. Then this ellipsoid is expanded
as shown in figure 5. As the ellipsoid extends the training sets contains more and more samples from class w∼j .
The ellipsoid is expanded until the number of samples from wj and w∼j is at an acceptable ratio.

The second improvement proposed by Daqi et al. is the reinforcement of thin distribution regions. The samples
of class wj and w∼j have a different density throughout the feature space. If the density of class wj is locally
much lower than the density of class w∼j a local imbalance between the number of samples in wj and w∼j is
formed. Due to the local class imbalance and the use of the back propagation algorithms the decision boundaries
in those regions tend to move away from class w∼j and towards wj . By adding virtual samples to those regions
this problem can be solved. A similar problem arises when the number of misclassified samples is much smaller
than the number of correctly classified samples. As a result of that the update function of the back propagation
algorithm will change if there are to many correctly classified samples compared to the number of incorrectly
classified samples.

The improvements proposed by Daqi et al. have shown to improve training times as well as performance in
datasets with 10 and 26 classes. And therefore the improvements proposed by Daqi et al. might be viable for
the training one-against-all neural nets for the standardisation of names.

The research above had one conclusion in common. Increasing the number of classes, increases the complexity
of the networks, increases the training time, increases the classification time and increases the amount of data
required for training the networks. Due to the availability of computational resources, the availability of data
and the performance requirements of record linkage Neural Networks will not be considered in this study.

11

3 The data

In chapter 1.3 a dataset created by Bloothooft and Schraagen was mentioned. The process of creating this
dataset as well as some of the data’s characteristics are discussed in [5, 6]. Section 3.1 will briefly cover the
creation of the dataset and the quality of the data, section 3.2 covers the cleaning procedure, section 3.3 will
elaborate on the conversion of names to feature vectors and the final datasets and characteristics will be discussed
in section 3.4.

3.1 The Genlias dataset

In the early 90s the Genlias project was founded. The goal of the Genlias project was to digitalise all the records
of the Dutch civil archive from the 19th century. Thanks to the efforts of all the volunteers that entered the
names of all newborn children and their parents, married couples and their parents, and the names of deceased
citizens and their partners, Genlias is now the biggest database of Dutch names from that period. This data
is publicly available on WieWasWie.nl and the 2011 version consists of 4.170.416 birth certificates, 3.039.236
marriage certificates and 7.657.298 death certificates, 611.650 pleadings of succession, 173.917 baptismal entries,
8.976 marriage listings and 579 funeral listings.

All certificates in the Genlias database contain 49.990.511 first name fields resulting in 1.368.070 unique, gender
dependent, first name references. There are 593.200 male references, 665.489 female references and for 109.362
references the gender could not be determined. Since a first name reference can consist of multiple single first
names, e.g. Johannus Wilhelmus Franciscus, the total number of unique first names, e.g. Johannus, Wilhelmus,
Franciscus, is less than the number of unique first name references. To create a dataset with unique first names
Bloothooft and Schraagen cleaned the first name references in several steps which will be discussed shortly in
this section.

The first step consisted of cleaning the first name references, the details of this cleaning procedure are discussed
by Bloothooft [5], and resulted in 1.055.195 cleaned first name references. These first name references were
divided into 189.672 singleton names. A second cleaning iteration was initiated to clean the singleton names
and this resulted in 187.000 different singleton names. However most of the 187.000 singleton names were very
rare. This means that the singleton name is almost never used at the first position of a combined name. From
the singleton names only 40% is found more than once on the first position of a first name reference, 39% only
once and 21% is never found on the first position of a first name reference. If the names which are found more
than once on the first position of a combined name are considered to be commonly used names the Genlias
project has a total of 76.104 first names.

Since this study focusses on standardising names for record linkage the 189.672 singleton names, the dataset
before the second cleaning iteration, is more relevant than the cleaned 76.104 commonly used names. Bloothooft
and Schraagen [6] propose a method for finding name variants using civil records. Bloothooft and Schaagen
identify name variants by matching the name and date fields of civil records. Whenever they encounter an
inexact match this match is labeled as a name-variant pair. The matching method they used for finding inexact
matches is the so called 4/5-matching. If 4 out of 5 names and the dates on a group of certificates are a direct
match the non-matching pair is considered to be a name-variant pair. Then the name-variant pairs are clustered
and each cluster was labelled with the most common name in that cluster.

The dataset that is used to create the clusters contained 189.176 singleton names. From the singleton names
132.140 names were extracted with different procedures and different levels of confidence related to that pro-
cedure. Information regarding the exact procedures and levels of confidence can be found in figure 6. Using
these procedures each of the 132.140 names could be reduced to any of the 927 name clusters.

3.2 Cleaning procedure

In section 3.1 a dataset containing 132.140 variant - base name pairs was introduced. Before this dataset can
be used to train and test the models the dataset has to be prepared. This preparation consists of two stages.
The first stage is cleaning and preparing the data for modelling first names. The second stage is creating the
feature vectors which are used for the actual machine learning.

The goal of the cleaning procedure is to remove noise from the data which might cause overfitting. This can be
done by simplifying the singleton names. This simplification consists of three steps. Step 1 is replacing all upper
case characters with lower case characters. Then all accents are removed from the letters, e.g. à is replaced by

12

Level Procedure
1 The name is found using inexact matching of records.
2 The name has a semi phonetic form similar to a name from 1.
3 The name has to meet all of the following requirements:

a) The name is longer than 5 characters.
b) At least two names from type 2 have the same initial with Levenstein distance of exactly 1.
c) There is only one name as defined by 3b with frequency ≥ 100.
d) There is only one name as defined by 3b but the base form is similar to one found by 4.

4 The beginning of a semi phonetic form of a name has at least four characters in common with
a name from 1 or 2.

Figure 6: Procedure for finding name variants. Level 1 has the highest confidence,
level 4 the lowest [5].

a. The last step consists of replacing all non letter characters by a single non letter character, e.g ! and : are
replaced by #.

After simplifying the given names the base forms are analysed. It turns out that there are several single letter
classes: w, f, b, m, h, s, j and a class where every other characters is followed by a period. Because each of the
classes contains 10 or less entries these classes are removed from the dataset.

The last step of the cleaning process is to remove the classes that have to few samples to be used for machine
learning. For this series of experiments the threshold was set to 50 samples. All classes containing less than 50
samples, 468 in total, are removed from the dataset. The cleaning and removing of minority classes from the
dataset resulted in 447 classes with 122.403 singleton names.

3.3 Feature vectors

After the cleaning procedure the singleton names have to be converted to feature vectors. The first problem is
the length of the singleton names. Each of the singleton names had a different length, however feature vectors
have to have an identical length. Lewellen [18] has tested several implementations for converting words to
equally sized feature vectors. Lewellen proposes three methods and each of the methods is tested using an
artificial neural network. The three methods tested by Lewellen can be found in figure 7.

Left l u c a s
Split l u c a s
Bi-D l u c a c u a s

Figure 7: Example of name representations in a feature vector with length 8 [18].

The first method is quite simple, the name is extended to the correct length by adding extra trailing whitespace
characters. The split method also adds additional whitespace characters. However instead of adding the
whitespace to the end of the name, the whitespace is added in the middle. As a result of that the letters at
the beginning of the name get the same emphasis as letters at the end of the name. Only the middle letters
of long names get less emphasis. The third and last approach, the bi-directional approach, tries to solve this
problem by filling the middle part with letters from the beginning and end of the name. However by shorter
names in long feature vectors the name might be repeated several times within one feature vector. As a result,
the emphasis will move towards the middle part of the names instead of the begin and end. Since for the
classification of Dutch first names the beginning and ending of a name are more important than the center this
is an undesirable effect.

Lewellen found that Split and Bi-D outperformed the Left method on all types of position-altering and position-
maintaining errors. However Split showed the best overall performance. Since the longest name in the dataset
consists of 20 characters, all feature vectors will be 20 characters long and the Split method will be used to
create a distributed representation.

Since the Scikit-learn [20], that is used to perform all experiments, has native support for feature vectors con-
taining integers or boolean-values, two feature strategies will be tested. The first feature strategy converts letters
to integers. A white space is converted to 0, a-z is represented by the integers 1-26 and the non-alpha character is
converted to 27. So estien with base form esther has feature vector: [5, 19, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 5, 14].

13

The structure of the boolean-based vectors is similar to the structure used by Lewellen [18]. The feature vector
will consist of 20 groups of 28 booleans. Each boolean in a group of 28 represents either the empty character.
one of 26 letters, or the special character.

3.4 The datasets

With the data cleaned and the feature vectors formed it is time to construct the datasets. For this study two
datasets will be constructed. A dataset that will be used for model selection, and a dataset containing all the
variant - base name pairs used for experiments with the final model.

The dataset that will be used for model selection is ideally not too large, but also not too small. Model checking
involves trying a lot of different settings and models. A smaller dataset reduces the computational time required
for the model verification. But the dataset must consist of enough classes and samples to see which models are
likely candidates.

Figure 8 shows the distribution of class sizes. The first thing that is apparent when looking at the class
distribution is the unequal distribution of class size. The smallest class consists of just 50 samples while the
largest class contains 3520 samples. For the smaller subset that is used for model selection the 51 classes in the
200-300 range will be used. Using these classes has three advantages.

50-100

100-200

200-300

300-400

400-500

500-600

600-700

700-800

800-900

900-1000

1000+

0

50

100

150

200

Number of samples per class

N
u

m
b

er
of

cl
as

se
s

Distribution of class sizes

Figure 8: The distribution of class sizes over the dataset. The majority of the classes
contains less than 100 samples. The largest class, hendrik consists of 3520 samples.

The first advantage is the number of classes, with 51 classes this group is unquestionably in the multiclass
classification range. The second advantage is the class size, with class size ranging from 200-300 samples it is
possible to reserve 50 samples for verification and 150-250 samples for training. The 150-250 sample range is
a common range in the distribution of class sizes and the total number of items used for training is just 9495.
The third and final advantage is that by taking an entire range the data has a class imbalance. This imbalance
has a negative impact on the performance of most classification algorithms, but is inherently present in this
dataset. By performing model selection with imbalanced data the chosen model is more likely to be able to
handle the imbalanced data of the entire dataset.

14

4 Model selection

In chapter 2 several techniques for multiclass classification were discussed. To select the most suitable technique
for training the model, each of the multiclass classification techniques from chapter 2 will be tested on the 51
class subset which is discussed in chapter 3. All experiments will be performed on a 64-bit Linux computer with
a 3.1 GHz quad-core and 16GB of RAM using Python 2.7 and Scikit-learn 0.17. Methods will be evaluated on
both training time and performance and the most promising techniques will be used for training on the entire
data set.

4.1 k-Nearest neighbours

All kNN experiments are performed using the nearest neighbours algorithms of Scikit-learn [20]. As mentioned
in chapter 3.3 there are two main strategies for converting the data into features. The integer-based strategy
and the boolean-based strategy. For kNN both strategies were tested on training and testing time and accuracy
for different distance measures and k = 10. The integer-based kNN classifiers scored upwards of 90% with a
train and test time of less than 1 second. The boolean-based strategy had similar, although lower, scores. But
the train and test time of all classifiers exceeded the 15 seconds with a maximum of almost 30 seconds.

Based on these scores the preferred feature-strategy for kNN will be integer-based. But there is a third possible
feature-strategy which is not mentioned in chapter 3.3. This feature-strategy is only applicable to kNN and
uses an unedited version of the singleton names, e.g. ‘estien’ or ‘estieu’. This feature-strategy is combined
with the Levenshtein edit distance. The Levenshtein edit distance can be computed by counting the minimum
number of insert, delete and substitute operations that is required to transform string a intro string b [15]. This
strategy is not supported by Scikit-learn and is therefore tested on a custom, unoptimised kNN implementation.
Due to the costs of computing the Levenshtein distance and the unoptimised kNN algorithm the train and test
time was approximately 15 seconds. However the Levenshtein-strategy outperformed both the boolean- and
integer-based strategies and therefore the integer- and Levenshtein-based strategies will be considered.

As mentioned in chapter 2.2 there are two factors that influence the performance of a kNN classifier, the number
of neighbours k and the distance metric that is used. To find an optimal value for both k and the distance
metric we will use a grid search with 3 parameters on the small data set with just 51 classes. k will be sampled
with values ranging from 1 - 49, there will be 7 different distance measures (including Levenshtein) and two
methods for weighing data points. The total number of evaluated kNN classifiers is 686.

C
hebyshev

Euclidean

C
anberra

B
raycurtis

M
anhattan

H
am

m
ing

Levenshtein

0

20

40

60

80

100

co
rr

ec
t

(%
)

Average performance for different distance measures

Figure 9: A comparison of different distance measures. The performance is the
average performance of all kNN classifiers with that distance measure and with
k = [1...49] and two different weight metrics.

Figure 9 shows the average performance for all 686 kNN classifiers per distance measure. It is clear that the
distance measure has a considerable effect on the performance of the classifiers. With almost 20% difference
between the best and second best distance measure it is clear that the Hamming and Levenshtein distance are
the best measures for this data set.

15

For the next experiment kNN classifiers with Hamming and Levenhtein distance have been tested with two
different weight measures, ‘uniform’ and ‘distance’. The difference between the ‘uniform’ and ‘distance’ weight
measure is that with the ‘uniform’ weight measure all points in each neighbourhood are weighted equally and
with the ‘distance’ weight measure points have a weighting which is the inverse of their distance to x. Figure
10 shows the performance of the kNN classifiers for different k for each weight measure. For this dataset the
‘distance’ weight measure is clearly superior for both Hamming and Levenshtein distances and the optimum
value for k is approximately 10.

0 10 20 30 40 50

85

90

95

k

co
rr

ec
t

(%
)

Hamming distance

distance
uniform

0 10 20 30 40 50

85

90

95

k

co
rr

ec
t

(%
)

Levenshtein distance

distance
uniform

Figure 10: Comparison of the performance of two different distance measures. Each
distance measure is tested with varying values of k and with uniform and distributed
weight for neighbours.

When analysing the mistakes made by the Hamming distance classifier the first thing that is noticable is that in
48 of the 51 classes the classifier made one or more mistakes. Figure 11 shows the distribution of the number of
errors made per class. The classes with the most mistakes: wine, siebren and wieger contribute with each class
to approximately 12% of the mistakes. This is approximately twice as much as expected, however the mistakes
seem to be distributed evenly across the classes.

Looking at the actual mistakes there seem to be three types of mistakes. The first type of mistake is a mistake
you could expect a human to make, for example is classifying Lucun as Lucius instead of Lucas. The second type
is when the classifier goes entirely wrong, for example classifying Esterdiena as Sibren instead of Esther. The
third type is a mistake that is to be expected from a kNN algorithm with Hamming distance but is not human
like. An example is classifying Hensterina as Rens instead of Esther. In both cases all letters are present, thus
making it likely that the Rens and Esther examples are all close to Hensterina in Hamming distance. So although
the two names are not alike for humans, they are similar for the mechanisms used for classification.

The Levenshtein distance based classifier performed slightly better than the Hamming distance based classifier.
As a result of that, only 43 out of 51 classes had one or more errors and there are fewer classes with a high
number of mistakes. When looking into the actual mistakes only two types of mistakes are clearly recognisable:
the human like errors and the kind of errors where the classifier is entirely wrong.

Ultimately the kNN classifier gained a score of approximately 90% and 95% on a problem containing 51 classes
for two different feature strategies. The errors were almost uniformly distributed across all 51 classes and the
training and classification time was in the order of 1 and 15 seconds for two different feature strategies. Due
to the reasonable performance and training times for both candidates the kNN classifier seems to be a viable
candidate for testing on the entire dataset.

16

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

Number of mistakes

N
u

m
b

er
of

cl
as

se
s

Hamming distance

(a) 48 out of 51 classes created 1 or more errors.

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

Number of mistakes

N
u

m
b

er
of

cl
as

se
s

Levenshtein distance

(b) 43 out of 51 classes created 1 or more errors.

Figure 11: The distribution of number of errors over each of the 51 classes for two
different weight measures. The Levenshtein distance based classifier has a better
performance and fewer high error classes than the Hamming distance based classifier.

4.2 Boosted decision trees

All AdaBoost experiments are performed using the AdaBoost and decision tree algorithms of Scikit-learn [20].
There are several factors that influence the performance of AdaBoost. The most important factor is to find a
base learner which has sufficient performance to be boosted. Figure 12 shows the performance of 100 boosted
decision tree classifiers with varying tree depth for two different feature strategies. Both feature strategies seem
to have similar performance. The integer-based strategy is a stronger performer on shallow trees. The boolean-
based strategy ultimately outperforms the integer-based strategy using deeper trees. The same figure shows
the time needed for training each of the classifiers. The boolean-based strategy clearly requires more training
time to get an increase in accuracy of less than 1%. So for this experiment decision trees with a integer-based
feature strategy and a maximum depth 6 - 20 are the preferred boosted classifiers. Therefore the rest of the
model selection uses decision trees with a integer-based feature strategy and depths ranging from 6 - 20.

0 5 10 15 20 25
0

20

40

60

80

100

max tree depth

co
rr

ec
t

(%
)

Performance of boosting for different tree depths.

integer-based
boolean-based

0 5 10 15 20 25
0

20

40

60

max tree depth

tr
ai

n
in

g
ti

m
e

(s
)

Training time for different tree depths.

integer-based
boolean-based

Figure 12: The performance of the boosted classifier for different tree depths and
feature strategies. Each boosted classifier consisted of 100 decision trees with varying
maximum depth and a learning rate of 1.0

17

A second factor in AdaBoost performance is the number of weak learners. In chapter 2.3 the number of weak
learners was briefly discussed. When more weak learners are introduced the classifier might be more susceptible
for overfitting. However empirical experiments have shown that AdaBoost is not really susceptible for overfitting.
However, many weak learners are a higher computational burden, increasing both training and classification
time. So the second AdaBoost experiment focusses on the error of the boosted classifier in relation to the depth
of the decision trees and the number of decision trees. Figure 13 shows the results of this experiment. A decision
tree with a depth of 8 outperforms the deeper decision trees in all possible configurations scoring approximately
95%.

0 100 200 300 400
70

75

80

85

90

95

number of classifiers

co
rr

ec
t

(%
)

Performance for different maximal tree depths and number of classifiers.

6
8
10
15

Figure 13: The performance of boosted decision tree classifiers with a different
number of classifiers and a varying maximum depth. The learning rate for each
classifier is 1.0.

The last experiment of the AdaBoost model selection is used to investigate the relation between the learning
rate and the number of classifiers. The learning rate is a factor which shrinks the contribution of each additional
weak learner. Figure 14 shows the results of this experiment. As expected a low learning rate suppresses the
additional weak learners to much, the new specialised learners have too little influence. A high learning rate
has the opposite effect, the new specialised weak learners have a lot of influence, this results in over fitting. The
optimum learning rate is approximately 0.3.

0.2 0.4 0.6 0.8 1
90

91

92

93

94

95

learning rate

co
rr

ec
t

(%
)

Performance for different number of classifiers and learning rates

100
250
500

Figure 14: Performance of boosted decision tree classifiers for a different number of
trees, a maximum depth of 15 and learning rates varying from 0.1 to 1.0.

When analysing the mistakes made by the classifier the first thing that is noticed is that in just 39 of the 51
classes the classifier made a mistake. Figure 15 shows how many mistakes were made by how many classes.

18

If 15 is compared to figure 11 it clearly shows that the boosted classifier performs better and has significantly
more classes making just a few mistakes.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Number of mistakes

N
u

m
b

er
o
f

cl
a
ss

es

Number of classes making a number of mistakes

Figure 15: The distribution of number of errors over each of the 51 classes. 39 out
of 51 classes created 1 or more errors.

When looking at the actual mistakes there are still the three types which were discussed in section 4.1. However,
the distribution of the three types is different. There are more human like errors, for example classifying Cijbe
as Seije instead of Sibren. And errors where there are a lot of matching characters such as classifying Lucias
as Lucas instead of Lucius. There are less errors where the classification was entirely wrong, one of the few
examples is #Aagje# which was classifued as Seije instead of Agatha.

After the first experiments it can be concluded that AdaBoost outperforms kNN on the number of correct
classifications. The training time of AdaBoost compared to kNNm is longer. But since the training time of
AdaBoost classifiers has been < 5 seconds per boosted classifier and the time complexity is lower compared to
kNN, AdaBoost is also a viable candidate for the full experiments.

4.3 Support vector machines

All SVM experiments are performed using the SVM algorithms of Scikit-learn [20]. Scikit-learn supports two
main SVM implementations, SVC and LinearSVC. LinearSVC is supposedly a faster implementation of the
SVM algorithm than SVC. However the LinearSVC implementation had structurally lower accuracies than
the SVC implementation, < 30%. Therefore all experiments are performed using the SVC implementation of
Scikit-learn.

The SVC implementation offers 4 different types of kernels: linear, polynomial, radial basis and sigmoid. Each
of the 4 kernels is tested with two feature strategies. The sigmoid kernel is the worst performing kernel, for both
feature strategies, with scores of approximately 2%. The other kernel types combined with the boolean-based
feature strategy scored similarly to the integer-based feature strategy, however training times are significantly
longer, exceeding 600 seconds.

Figure 16 shows the accuracy of different kernel types for different values of C on a dataset with an integer-based
feature strategy. Although the polynomial kernel has a higher accuracy the training times, with a lower bound of
60 seconds and more than quadratic complexity, are to long to consider this technique for full scale experiments.
The linear kernel has similar training times. The radial based kernel has a more reasonable training time, lower
bound of 10 seconds, and is therefore a viable candidate for further optimisation.

19

0.01 0.1 1 10 100 1,000 10,000100,000
0

20

40

60

80

C

co
rr

ec
t

(%
)

Performance of different kernels for different C

rbf
linear
poly

Figure 16: The performance of a SVM with different kernels, one-versus-all scheme
for different values of C.

Figure 17 shows the results of further optimisation of the radial basis kernel SVM. The radial basis function
kernel has a second value, γ, which can be optimized. γ is a weight factor influencing the range of influence
of a training sample. Figure 17a shows the performance of the radial basis kernel for different values of γ
with constant C. This clearly shows the influence of γ on the accuracy of the classifier. Figure 17b shows
the optimisation process of the radial basis function kernel for different values of γ and C. Finding the right
combination of γ and C resulted in accuracies approaching 80%. However an accuracy of 80% and training
times of more than 10 seconds, with quadratic complexity, are insufficient when compared to kNN and boosted
decision trees.

0.0001 0.001 0.01 0.1 1
0

20

40

60

80

γ

co
rr

ec
t

(%
)

Performance of ‘rbf’ kernel for different γ

(a) The performance of SVM with C = 1.0 for different
values of γ

10−2.5

10−2

100
102

104
106

60

70

80

γ

C

co
rr

ec
t

(%
)

Performance of ‘rbf’ kernel for different γ and C

(b) A γ - C optimisation. A low γ with higher C seems
to be the best performer with scores of 75% or higher.

Figure 17: The performance of a SVM with rbf kernel, one-versus-all scheme for
different values of γ and C.

20

5 Method

In chapter 4 various approaches for creating the name-variant model were examined. From the various ap-
proaches boosted decision trees have been the best performing approach, both on accuracy, training and testing
time. As a result of that boosted decision trees will be used to test whether learning a name-variant model is
feasible.

As discussed in chapter 3 using this dataset creates three problems. The first problem is the number of classes,
with 447 different classes there are many classes to choose from. For each of the 447 classes the model has
to learn the features that separate each class from the other classes. This requires disjoint classes and enough
data to capture all variance within each class, and that is where the second and third problem come in. The
dataset suffers greatly from class imbalance. AdaBoost has a natural mechanism for dealing with class imbalance,
however AdaBoost does perform better on balanced classes. The third problem is probably the biggest problem,
the availability of data. In order for the model to capture all variance in a name cluster, each name cluster has
to provide enough samples to learn this variance. If a name cluster has only a handful of samples the model
won’t be able to learn all variance which will result in more classification errors.

The final experiments of this study will focus on different aspects of these three problems. The first experiment,
section 5.1, will be on a subset of the data and is aimed at finding out how the method scales when more
samples will be added to the training data. The second experiment, section 5.2 will be on the entire dataset
and is aimed at finding the relation between class imbalance and learning variance.

5.1 Scaling

The first experiment is to measure the potential of this method. As discussed earlier two problems are expected.
The first problem is the imbalance in data and the other problem is the number of different classes. As discussed
in section 2.3 boosting has a natural mechanism for training many classes and dealing with class imbalance.
However, the source of the imbalance is more of a problem than the balance itself. Most classes in the dataset
are really small, they might be even to small to capture the variance in names. As a result of that the dataset
might be insufficient for creating a true name-variance model. The goal of this experiment is to find out if the
model can be scaled when more data becomes available.

The dataset for this experiment is contains all classes that consist of 200 samples or more. The total number of
base names meeting this requirement is 151. From each of the 151 classes 150 samples will be randomly selected
for training the model. The final training set contains 22.650 samples. The rest of the data will be used for
testing the final model. Each class will have at least 50 test samples and the entire test set contains 69.162
samples.

The process of tuning the final model will have a similar structure to the procedure used in chapter 4.2. However
instead of using a validation set, the model will be validated using 10-fold cross validation. For the parameter
selection the same experiments as in section 4.2 will be used.

The first parameter optimisation will consist of indexing the influence of depth. This is done by performing
a grid search with a maximum depth of 1 to 35 levels in alternating intervals of 2 and 3. The boosting
algorithm uses 100 weak learners and a learning rate of 1.0. The second parameter optimisation is the number
of classifiers. This is done by validating boosted classifiers with 25 to 250 weak learners. The learning rate of
the boosting algorithm is set to 1.0 and the weak learners have a varying maximum depth which is based on
the first optimisation. The last optimisation is the learning rate. The optimum learning rate will be decided
by grid searching with learning rates of 0.1 to 1.5 in steps of 0.1. The grid search will be performed on boosted
classifiers containing 100 weak learners with varying depth. After the optimal parameters have been selected
the model will be tested on accuracy and classification time.

5.2 Effects of class imbalance

To get an idea of how the model behaves when interacting with many different base names and unbalanced and
insufficient data the last experiment will be on the entire data set. The experiment will consists of two parts,
each part using a different version of the entire dataset.

For the first experiment the data set used in section 5.1 will be extended with all the smaller classes. All samples
of the smaller classes are added to training set. The final training set contains the first 50 to 150 samples of
each class resulting in 51.947 training samples. The training set contains the remaining 70.456 samples from
the classes that contain more than 150 samples. The goal of this experiment is to measure the effects of smaller

21

classes, a maximum of 150 instead of 200 samples, and to see what happens when the number of classes is
increased from 141 to 447.

The second experiment uses the entire dataset, all 447 classes. From each class 80% of the samples is selected for
training and 20% of the samples is selected for testing. This creates a training set of 97.836 samples and a test
set containing 24.576 samples. By choosing this division the class imbalance from the dataset is maintained, but
the larger classes have more material available for learning variance. The goal of this experiment is to measure
the effects of increasing the class imbalance. AdaBoost has a natural mechanism for handling class imbalance,
therefore it is expected that increasing the class imbalance does not negatively impact the performance of the
classifier, however the extra training samples might positively impact the performance of the classifier.

The two training sets will be used to train a classifier which has the same configuration as the classifier used in
section 5.1. First the boosted classifiers are validated using 10-fold cross validation. After that the classifiers
are tested using the test set to measure accuracy and classification time.

22

6 Results

As discussed in chapter 5 there will be two different tests using the boosted classifier. Section 6.1 will discuss
the potential of the boosted classifier and 6.2 will discuss the performance of the boosted classifier on the entire
dataset.

6.1 Scaling

Figure 18 shows the influence of the maximum depth of the weak learners on classification accuracy. The results
are similar to what has been concluded in the model selection stage. The main difference between the results of
this experiment compared to the model selection stage is that the validation accuracy is lower and that deeper
trees, maximum depth of 12-20, are preferred. The preference towards deeper weak learners can be explained
by the increased complexity of the problem. By adding more base names and samples the number of choices
that has to be considered increases.

0 10 20 30 40
0

20

40

60

80

100

depth

co
rr

ec
t

(%
)

Performance of boosting for different tree depths

Figure 18: Performance of boosting for different tree depths. The performance is
measured using 10-fold cross validation.

50 100 150 200 250
80

81

82

83

84

85

number of weak learners

co
rr

ec
t

(%
)

Performance for different number of classifiers.

12
15
17
20

(a) Learning rate: 1.0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
76

78

80

82

84

86

learning rate

co
rr

ec
t

(%
)

Performance for different learning rates

12
15
17
20

(b) Number of weak learners: 100.

Figure 19: The performance of the boosted classifier for different number of weak
learners and learning rates. The weak learners have different maximum levels of
tree depth. The performance is measured using 10-fold cross validation.

23

Figure 19 shows the results of the second and third parameter optimisation step. The optimum number of
weak learners is approximately 200 and the optimum learning rate is 1.0. In all cases the weak learner with a
maximum depth of 17 was among the best performing classifiers.

The final configuration for this experiment was a boosted classifier consisting of 200 weak learners with a
maximum depth of 17 and a learning rate of 1.0. The training time of the classifier with a training set of
22650 items was 49.76 seconds on a 64-bit Linux machine with a 3.1 GHz quad-core processor and 16 GB of
RAM. The classification time was 69.82 seconds for 69192 samples. The validation accuracy was 84.72% and
the accuracy on the test set was 82.62%. Figure 20 shows the fraction of the test set the classifier had wrong
for each class. The errors are approximately equally distributed around the 18% mark. This suggests that the
number of mistakes in bigger and smaller classes is also equally distributed.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Fraction of test set wrong (%)

N
u

m
b

er
o
f

cl
a
ss

es

Division of fraction wrong among all classes.

Figure 20: The distribution of errors over each of the 151 classes. 149 out of 151
classes created 1 or more errors.

6.2 Effects of class imbalance

For the first experiment with the full dataset the training set consists of 51947 training samples divided in 447
classes. Each of the classes contains a maximum of 150 samples. The rest of the samples, 70456 divided in 201
classes, are added to the training set.

The cross validation error of the boosted classifier, containing 200 weak learners with a maximum depth of 17
levels and a learning rate of 1.0, achieved a cross validation accuracy of 75.84%. This is lower than the scores
in both sections 4.2 and 6.1. However considering the increase in classes, from 51 and 151 to 447, and the loss
of samples, from at least 150 and 150 to at most 150, this is a reasonable score.

The final boosted classifier was trained with a training set of 51947 items in 370.09 seconds on a 64-bit Linux
machine with a 3.1 GHz quad-core processor and 16 GB of RAM. The prediction time for 70456 samples was
206.67 seconds and the accuracy was 77.47%. Figure 21 shows how the fraction of the error is distributed across
al 201 tested classes. The errors seem to be distributed around 15% mark, this is lower than expected. This is
a result of the classifier making relatively more mistakes in the smaller classes compared to the mistakes made
in larger classes. This combined with the lower overall accuracy suggest that the smaller classes require more
samples.

For the second experiment the 80% of each class in the full dataset is reserved for training, the other 20% is used
for testing. This results in a training set containing 97.836 samples and a test set containing 24.576 samples.
The cross validation error of the boosted classifier, containing 200 weak learners with a maximum depth of 17
levels and a learning rate of 1.0, achieved a cross validation accuracy of 84.58%. This is comparable to the
accuracy of the classifier in section 6.1.

24

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

Fraction of test set wrong (%)

N
u

m
b

er
of

cl
a
ss

es

Division of fraction wrong among all classes.

Figure 21: The distribution of errors over the 201 tested classes. 192 out of 201
classes created 1 or more errors.

The final boosted classifier was trained with a training set containing 97.836 items. Training the model took
525.98 seconds on a 64-bit Linux machine with a 3.1 GHz quad-core processor and 16 GB of RAM. The prediction
time for 24.576 unknown samples was 71.08 seconds and the accuracy on this test set was 85.04%. Figure 22
shows the distribution of the error across all 447 classes. The error is distributed around the 15% mark. This
suggests that the larger classes are equally distributed around the 15% mark, but slightly to the lower end, and
that the smaller classes are at the higher end of the distribution. The distribution is similar to figure 21 but
more extreme. This combined with a similar accuracy as the classifier in section 6.1 shows that class size has
more effect on the performance of the boosted classifier than the number of classes.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

Fraction of test set wrong (%)

N
u

m
b

er
of

cl
as

se
s

Division of fraction wrong among all classes.

Figure 22: The distribution of errors over the 447 tested classes. 429 out of 447
classes created 1 or more errors.

25

7 Discussion and conclusion

In this thesis several methods for building a variant-base name model were evaluated. The model selection
phase showed that boosted decision trees are superior to kNN and SVMs on pure accuracy and speed. As a
result of this boosted decision trees were selected to build the final model. The final model is a boosted decision
tree model with a learning rate of 1.0 and 200 decision trees with a maximum depth of 17 levels. The final
model has a validation error of 84.58%. The accuracy on a test set with 24.576 samples divided in 447 classes
is 85.04% and the classification speed is more than 300 samples per second.

This study shows that the main problem is the availability of data. When the training set contained 150-200
samples per class the validation accuracy was 94.21%. When the training set contained 150 samples per class
the validation accuracy was 84.72%. When the available samples for training were lowered to a maximum of
150 samples per class and a minimum of 50 samples per class the validation accuracy was 75.84%. This clearly
shows that performance is limited by the number of samples available for training. Having more data available
is crucial for the performance of this model. This can be done by finding extra data or by creating dummy
data.

This study also shows that AdaBoost is good at handling multiclass classification problems with class imbalance.
Increasing the number of classes from 151 to 447, while increasing the class imbalance from 150 - 250 training
samples per class to 50 - 3520 samples per class, has no significant influence on the overall accuracy of the
classifier. The only measurable effect is that the number of classes that have more than 25% of the test set
incorrect increased dramatically. However this is mainly caused by the addition of many small classes with
insufficient samples to learn all variation within the class.

In future work the most important part is to find or, reliably, generate more data. Extra data is required to
improve the accuracy of the model and might get the accuracy to 95%. More accuracy can also be achieved by
studying the errors made by the classifier more closely. Are errors mainly made on very rare names or are the
errors mainly made on very common names. What kind of mistakes are hard, insertion errors, deletion errors
or substitutions. What is the effect of manually creating those mistakes to the training material.

Improving kNN with Levensthein distance might also be an improvement of the current model. The main reason
boosted decision trees are preferred over kNN with Levenshtein distance are the computational demands for
kNN with Levenshtein distance. One of the main issues with kNN is that the time complexity depends on the
number of samples and the time required for calculating the edit distance. The time complexity of kNN can be
reduced by using optimised data structures and by optimising the edit distance algorithm. If the computational
demands of kNN with Levenshtein edit distance can be lowered to a reasonable speed for record linkage than
kNN might be a fierce competitor.

26

References

[1] Yaser Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin. Learning from data. Amlbook.com, 2012.
Chap. 6.

[2] Yaser Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin. Learning from data. Amlbook.com, 2012.
Chap. 8.

[3] Erin L Allwein, Robert E Schapire and Yora1m Singer. “Reducing multiclass to binary: A unifying ap-
proach for margin classifiers”. In: Journal of machine learning research 1.Dec (2000), pp. 113–141.

[4] Mohamed Aly. “Survey on multiclass classification methods”. In: Neural Netw (2005), pp. 1–9.
[5] Gerrit Bloothooft. Persoonsnamen in de 19e eeuw. 2015.
[6] Gerrit Bloothooft and Marijn Schraagen. “Learning Name Variants from Inexact High-Confidence Matches”.

In: Population Reconstruction. Springer, 2015, pp. 61–83.
[7] Sungmoon Cheong, Sang Hoon Oh and Soo-Young Lee. “Support vector machines with binary tree archi-

tecture for multi-class classification”. In: Neural Information Processing-Letters and Reviews 2.3 (2004),
pp. 47–51.

[8] Vladimir Cherkassky and Nikolaos Vassilas. “Back-propagation networks for spelling correction”. In:
Neural Net 1.3 (1989), pp. 166–173.

[9] Vladimir Cherkassky and Nikolaos Vassilas. “Performance of back propagation networks for associative
database retrieval”. In: Neural Networks, 1989. IJCNN., International Joint Conference on. IEEE. 1989,
pp. 77–84.

[10] Koby Crammer and Yoram Singer. “On the algorithmic implementation of multiclass kernel-based vector
machines”. In: Journal of machine learning research 2.Dec (2001), pp. 265–292.

[11] Gao Daqi, Li Chunxia and Yang Yunfan. “Task decomposition and modular single-hidden-layer perceptron
classifiers for multi-class learning problems”. In: Pattern Recognition 40.8 (2007), pp. 2226–2236.

[12] Thomas G. Dietterich and Ghulum Bakiri. “Solving multiclass learning problems via error-correcting
output codes”. In: Journal of artificial intelligence research 2 (1995), pp. 263–286.

[13] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-line learning and an
appliction to boosting”. In: Journal of Computer and System Sciences 55.1 (1997), pp. 119–139.

[14] Guang-Bin Huang et al. “Extreme learning machine for regression and multiclass classification”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42.2 (2012), pp. 513–529.

[15] Daniel Jurafsky and James H Martin. Speech and language processing. 2000. Chap. 3.
[16] Sotiris B Kotsiantis, I Zaharakis and P Pintelas. Supervised machine learning: A review of classification

techniques. 2007.
[17] Karen Kukich. “Techniques for automatically correcting words in text”. In: ACM Computing Surveys 24.4

(1992), pp. 406–410.
[18] Mark Lewellen. “Neural Network Recognition of Spelling Errors”. In: Proceedings of the 36th Annual Meet-

ing of the Association for Computational Linguistics and 17th International Conference on Computational
Linguistics - Volume 2. Association for Computational Linguistics. 1998, pp. 1490–1492.

[19] Guobin Ou and Yi Lu Murphey. “Multi-class pattern classification using neural networks”. In: Pattern
Recognition 40.1 (2007), pp. 4–18.

[20] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[21] Robert E Schapire. “A brief introduction to boosting”. In: Ijcai. Vol. 99. 1999, pp. 1401–1406.
[22] Marijn Schraagen. “Aspects of Record Linkage”. PhD thesis. Leiden: Universiteit Leiden, 2014. Chap. 2,

pp. 22–26.
[23] Yanmin Sun et al. “Cost-sensitive boosting for classification of imbalanced data”. In: Pattern Recognition

40.12 (2007), pp. 3358–3378.

27

