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Abstract

A computational lensless phase microscope based on coherent diffraction is
developed. Phase imaging with a pixel size limited resolution of 2.2 µm is
achieved without the need for assumptions about the object or mechanically
moving parts. Several diffraction patterns are recorded using an illumination
pattern caused by coherent interference of two beams. This type of image
reconstruction using multiple illumination patterns is called ptychography.
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Chapter 1

Introduction

Coherent diffractive imaging (CDI) is a collection of imaging techniques that
measure coherent diffraction patterns and use computational techniques to
reconstruct images. Interest in CDI is driven by the increasing availability
of coherent light sources in the EUV and X-ray wavelength ranges made
possible by free electron laser (FEL) [1] and higher harmonics generation
(HHG) [2]. For these short wavelength the limited quality of imaging optics
creates a serious complication for any imaging technique that uses optics.
CDI is inherently lensless and therefore it shows great potential to be com-
bined with coherent short-wavelength sources to create a resolution in the
several nanometre regime. Object reconstruction in CDI requires phase
information. However detectors are only sensitive for the intensity of the
incoming electromagnetic light field. Therefore all CDI techniques require
some kind of phase retrieval. Ptychography is an implementation of CDI
that varies the illumination pattern to create constraints such that the phase
can be determined.

Phase retrieval from diffraction data was first demonstrated by Fienup in
1978 [3] who adapted an algorithm developed by Gerchberg and Saxton from
1972 [4] aimed at electron microscopy image retrieval. Phase retrieval algo-
rithms have been further developed by Fienup in 1986 [5, 6] and Sheppard
in 1999 [7]. Rodenburg in 2004 [8–10] made an adaption specific to ptychog-
raphy with a scanning aperture. The feasibility of X-ray diffraction imaging
was first shown in 1999 by Miao [11] who imaged gold particles in trans-
mission. In 2001 Robinson [12] demonstrated the technique in a reflection
geometry. A yeast cell was first imaged in 2005 by Shapiro [13]. Witte [14]
demonstrated in 2014 diffraction imaging using broadband sources allow-
ing for efficient use of luminosity. Other multi-wavelength techniques have
been published by Noom and Witte [15]. Rodenburg [16] demonstrated in
2007 the use of a scanning aperture to perform X-ray ptychography imaging.
A scanning aperture can be used to illuminate all areas at least twice such
that sufficient information is present for phase retrieval. Assumptions on the
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object can be made so supplement information for reconstruction available
from diffraction measurements. However, this is often undesirable as not all
objects satisfy these constraints, limiting the applicability. Using a scanning
aperture object reconstruction can be performed from the diffraction data
barring the need for additional support constraints of the object. The use of
a scanning aperture however is inherently slow as it requires moving either
the aperture or the object. Additionally an aperture makes poor use of avail-
able luminosity. This can be an obstacle for high harmonics sources where
photon yield is precious. Work in this thesis focusses on the development
of an alternative approach that promises a solution to both these problems.
In this case, two coherent beams of light interfere to create a fringe pattern
to illuminate the object, the technique is named interferometric illumina-
tion ptychography. No assumptions on the object are required as multiple
images can be recorded by shifting the position of the interference fringes.
A path delay of one optical cycle in one of the beams shift the fringes by a
full period. Such a path delay can be achieved without mechanically moving
parts. In this work a functional ptychographical setup with interferometric
illumination is presented and explained. Specifically the author of this the-
sis has constructed the setup and developed several important parts of the
reconstruction algorithm.

Four ingredients are required to achieve image reconstruction. Firstly a
setup must be build. In the setup two fibres are used to create the pattern
illuminating the object. The intensity of the diffraction pattern is then
recorded by the camera. Secondly, diffraction of light propagating from the
object to the camera must be understood. This allows for the development
of a numerical tool to invert diffraction. Thirdly, the electric field of the
illuminating electric field must be reconstructed, this illumination field is
called the probe. Lastly an algorithm must be developed that can combine
the intensity information of the diffraction patterns with the electric field
information of the probe to reconstruct the amplitude and phase properties
of the object.

In this thesis theory related to the necessary ingredients is treated, fol-
lowed by an explanation of the methods and a demonstration of the results.
The theory chapter will use diffraction theory to arrive at a mathematical
expression called a propagator that can invert diffraction. The importance
of coherent light and the theoretical resolution of the system will also be
treated. An adaptation on the Gerchberg-Saxton algorithm to reconstruct
the object is treated. Probe reconstruction from measured reference data
and a priori knowledge is explained. A methods chapter will describe how
the experiment was performed with special attention to demands that an
interferometric illumination pattern places on the experiment. Some ex-
perimental tricks will be discussed as well. The results chapter will firstly
discuss the performance of probe reconstruction and object reconstruction
algorithms. Secondly the retrieved images are inspected. A resolution target
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will be imaged to test the resolving power of this technique and a biological
sample will be used to test phase imaging. Lastly an overview of achieve-
ments, problems and future possibilities is given.

6 CHAPTER 1. INTRODUCTION



Chapter 2

Theory

Image formation in a ptychographical setup is governed by the theory of
diffraction. In some experiments [3, 16] diffraction patterns are captured
in the Fraunhofer regime where the relation between an object and a mea-
sured diffraction pattern is straightforwardly given by a Fourier transform.
In other experiments [17, 18] including this work diffraction patterns are
captured in the Fresnel regime and extensive comprehension of diffraction
theory is required to understand image formation. Insight into diffraction
can be used to invert image formation and obtain a representation of the
object. A serious problem is posed by the inability of detectors to measure
phase directly. Phase information present in the object changes the intensity
profile of the diffracted wave. Phase retrieval from diffraction data becomes
an ill-posed inverse problem. Such a problem can be solved for using a phase
retrieval algorithm if appropriate constraints are available. Initially [3] con-
straints are supplied by a single measurement of the Fourier transform of the
image and the knowledge that the object is only present in a limited support
area. Many objects are not localised in a small area, limiting the applicabil-
ity of this technique. An alternative way to obtain necessary constraints is
to measure multiple diffraction patterns. The diffraction patterns should be
sufficiently different such that phase retrieval is possible. For ptychography
this condition is fulfilled by varying the spatial distribution of the illumi-
nation. In this work interferometric illumination is used as it removes the
need for mechanical movement and uses the full luminosity of the source,
two important advantages over scanning aperture type ptychography. The
illumination function is referred to as the probe. It must be known to enable
image reconstruction and it can be considered as prior knowledge added to
the reconstruction. However, the probe function is no longer a well defined
scanning disc, instead it is an interference pattern susceptible to limited co-
herence lengths and variable fringe patterns. A scheme must be developed
to accurately reconstruct the illumination function.
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Figure 2.1: Geometry of propagating the electric field distribution between
perpendicular planes. The diffraction pattern on the right is a result of light
scattering on the left object.

2.1 Imaging theory and transfer functions

Each point in an electromagnetic disturbance can be considered as a point
source. Propagation of an electromagnetic light field can be described by
summing all waves originating from point sources. This is known as the
Huygens-Fresnel principle.It is a specific case of the superposition principle
in physics. Figure 2.1 shows two planes perpendicular to an optical axis
oriented in the z direction. Suppose some object scatters light in a plane
z = 0. The light field is referred to as the exit wave right after it scatters
on the object. The distribution of the electric field at some other plane at
distance z can be calculated from considering all points in the exit wave
as point emitters. This causes the object to blur and fringes to appear.
Mathematically this process can be described as an integral over all point
sources in the object plane with coordinate ~r′ = (x′, y′, 0). The plane where
the electric field is calculated has coordinate ~r = (x, y, z).

E(~r) =
1

iλ

∫∫
D

E(~r′)
z

|~r − ~r′|
exp(ik|~r − ~r′|)
|~r − ~r′| dx′dy′, (2.1)

where E denotes the electric field in a plane perpendicular to the optical
axis, k is the wavevector, λ denotes the wavelength and D is the domain
of integration. This result is for example derived in Goodman chapter 3 of
Fourier Optics [19]. The z/|~r−~r′| therm is caused from calculating the flux
perpendicular to a surface. The dependancy on the inverse distance may be
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understood from energy flow conservation through two concentric spheres.
The surface of a sphere increases with r2 and therefore the energy flow per
unit surface must be scale with r−2. Considering that the energy flow scales
with the electric field squared and the electric field intensity scales with r−1

this condition is indeed fulfilled.
The diffraction formula eq. (2.1) is an integral over a function in ~r′ and a

function that depends only on the difference of ~r and ~r′, so it can be written
as a convolution. This is a restatement of the Huygens-Fresnel principle and
the superposition principle. It is possible to write

E(r) = E(r) ∗ z

iλ|~r|
exp(ik|~r|)
|~r| . (2.2)

The function on the right hand side of the convolution describes the blurring
of a point and is therefore referred to as the point spread function (PSF). The
PSF may also describe the propagation from an object plane to a detector
plane. In this sense it is used as an operator to propagate electric fields. It
can be referred to as a propagator . As the PSF describes image formation,
it is often used to characterize the resolving power of an optical instrument.

2.1.1 Fresnel and Fraunhofer diffraction

For sufficient large distances the spherical wavefront of a point source may
be approximated as a parabola and intensity attenuation is dominated by
the distance z along the optical axis. This is the paraxial or small angle
approximation. The PSF may be written as

PSF (r) =
eikz

iλz
exp

{
ik

(x− x′)2 + (y − y′)2
2z

}
. (2.3)

For z larger still the wavefront may be considered flat. Then the Fres-
nel diffraction equation 2.3 simplifies further to a Fourier transform of the
object. This is called the Fraunhofer regime. A derivation of this property
is straightforward from expansion of the therms of the integral, it is given
in appendix A.4. The approximation is applicable if z � k(x′2 + y′2)max.
The distance z is now so large that the source may be considered as a point.
The Fraunhofer condition condition is often rewritten as

F =
a2

zλ
� 1, (2.4)

where a is the characteristic distance of the object. F is known as the
Fresnel number . Figure 2.2 illustrates the diffraction pattern of objects for
varying Fresnel numbers. The Fresnel number depends on the size of the
structure. For identical propagation distances a small structure has already
entered the Fraunhofer regime and is represented by its Fourier transform.
A large structure on the contrary is still in the Fresnel regime. It resembles
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1.3

0

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Objects (a,c,e) and diffraction patterns (b,d,f) for Fresnel num-
bers 0.1 (a,b), 1 (c-d) and 10 (e-f). Each pattern has been propagated over
the same distance. The small object in (a) is in the Fraunhofer diffraction
regime, indicating that the diffraction pattern is the Fourier transform of the
object. The large structure (e) is in the Fresnel regime where the diffrac-
tion pattern still resembles the object. The intermediate structure (c) shows
properties of both. The PSF is used to calculate the diffraction pattern from
the object and vice versa, see section 2.1.3. The norm (g) and the phase
(h) of the Fourier transform of the PSF is shown. The Colourbar in (a) is
identical for (a-g), the cube root of the amplitude is displayed to increase
readability. (h) has its own colourbar spanning 2π.

its original shape. In the same figure the Fourier transform of the PSF is
also shown. Refer to section 2.1.3 for more detail on the PSF.

2.1.2 Taking a shortcut trough Fourier space

The convolution theorem [20] states that Fourier transform of a convolution
of two functions is equal to the product of the two fourier transformed
functions:

F
{
f(x) ∗ g(x)

}
= F

{
f(x)

}
F
{
g(x)

}
. (2.5)

Computationally a Fourier Transform of n points costs n lnn operations
to calculate [21], multiplication of two functions also costs n operations.
Calculating a convolution by performing an integration costs n2 operations.
Obviously, computation time can be greatly reduced by Fourier transform-
ing, multiplying and transforming back since 2n lnn+ n� n2 when n� 1.
To make use of shorter computation time all convolutions are calculated
through Fourier space.

10 CHAPTER 2. THEORY
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2.1.3 Resolution of diffraction imaging in Fourier space

An upper limit to the resolution of an imaging system is set by the Helmholtz
equation. Spatial frequencies higher than the inverse of the wavelength
become evanescent and do not propagate into the far-field. This result
can be derived starting from the Helmholtz equation applied to the Fourier
transform of the electric field A at some position z.

The Helmholtz equation states

∇2E(x, y, z) + k2E(x, y, z) = 0, (2.6)

at all source free points free points. This means

d2

dz2
A(kx, ky, z) + (k2 − k2x − k2y)A(kx, ky, z) = 0, (2.7)

where k2z = k2− k2x− k2y. The ordinary solution to this differential equation
is

A(kx, ky, z) = A(kx, ky, 0) exp(±ikzz), (2.8)

The sign of the exponent determines whether the wave will propagate for-
ward or backward. The square root becomes imaginary for spatial frequen-
cies larger than the wavevector. These spatial frequencies become evanescent
field modes and cannot be measured in the far field. From Fourier transform
of this result and application of the convolution theorem, the right-hand side
function may be recognised as the Fourier transform of the PSF. This ex-
pression describes the transfer of spatial frequencies and is therefore named
the optical transfer function (OTF). In the far field, the OTF is described
as

OTF (kx, ky, z) = exp(ikzz) for k2x + k2y < k2 (2.9a)

OTF (kx, ky, z) = 0 otherwise. (2.9b)

So propagation acts as a spatial frequency filter of the information present
in the object. The OTF of free space propagation is a flat top disc with a
spherical phase in the spatial frequency domain. The radius of the disc is
determined by the norm of the wavevector. The norm depends both on the
frequency of the light and refractive index of the material.

The resolution is further limited by the finite collection surface of the
camera and finite extend of the source. Diffraction patterns spread out and
may fall off the camera. Light falling of the camera contains information
that can not be used for reconstruction. The limitation on the resolution as
a result of the limited collection surface of the camera can be understood by
considering the angular spectrum. Each spatial frequency in an image can

CHAPTER 2. THEORY 11
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camera

(a)

camera

(b)

Figure 2.3: Schematic showing the resolution limitations caused by the finite
extend of the camera. Each spatial frequency in an image corresponds to
a plane wave intersecting the image plane under an angle θ. (a) the plane
wave propagates and is captured by the camera. (b) the angle is too large
to be captured by the camera.

be treated as the projection of an angled plane wave on the image plane.
Figure 2.3 shows a plane wave crossing an image plane under an angle θ.
The projection of the plane wave on the image is a sinusoid whose period
depends on the angle θ through

kx = k sin θ, (2.10)

where k is the wavevector. In the angular spectrum each spatial frequency
in the image corresponds to a plane wave propagation angle. For a finite
source the resolution is now limited by the finite surface of the camera, since
higher spatial frequencies fall off.

This picture may also provide additional insight into the properties of
the OTF, equation 2.9. An image can be propagated by decomposing an
image in its sinusoids, shifting all sinusoids according to their frequency and
summing all sinusoids to reform the propagated image. The shift is created
by the phase evolution in z expressed in kzz. The angular spectrum links
the spatial frequency in the image to the phase evolution in z.

Referring back to figure 2.3, the plane wave propagating under a 30◦ an-
gle falls only partially on the camera. Therefore, only a part of the amplitude
is transmitted to the object. The transfer of spatial frequency amplitude is
now also a function of θ. However, this process is not yet understood fully.
As an approximation, the amplitude is considered to be transferred fully
such that only the phase of spatial frequencies change during propagation.
This treatment is similar to the transfer function of a lens with a numerical
aperture.

12 CHAPTER 2. THEORY
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2.2 From Object to Image

From the description of free space propagation in section 2.1, it is possible
to proceed to a description of how the information available in an object is
mapped to an image. Light originating from the two fibre tips form a fringe
pattern that hits the object. This electric field distribution is called the
probe, denoted P . The process of the probe being scattered by the object
can be described by multiplication of the probe with an object function
denoted obj. This object function characterises the object. The electric
field distribution arriving at the detector is given by

Eimage(x, y) = (obj(x, y) P (x, y)) ∗ PSF (x, y), (2.11)

where PSF is the point spread function discussed in section 2.1 and P is the
probe function. In diffraction microscopy the multiplication of the object
and probe is also often referred to as the exit wave [9]. This formula is
simple enough and many microscopists attempt to make the PSF resemble
a point, since this minimises the blurring properties of the imaging system.
The blurring properties may also be described from inspection of the spatial
frequency domain of the imaging process. Therefore it is interesting to look
at the Fourier transform of equation 2.11

F
{
Eimage

}
(kx, ky) = F

{
obj P

}
(kx, ky) OTF (kx, ky), (2.12)

where the convolution becomes a product according to the convolution theo-
rem. The OTF is the Fourier transform of the PSF. Equation 2.12 provides a
useful framework to obtain additional insight in imaging. A bounded object
is an object that is only non-zero in a finite domain. The bandwidth of a
function is the domain where the function is non-zero. In Fourier theory any
object which is bounded on one domain, has infinite bandwidth in the other
domain. Since all object and probe functions are bounded in the Euclidean
space, they have infinite bandwidth in Fourier space. The product of the
probe and object then also has infinite bandwith. The exit wave still con-
tains all information of the object provided the probe is known. The OTF
is bandwidth limited, see subsection 2.1.3. Therefore propagation through
free space is the bandwidth limiting step in the image formation. Any re-
construction of the object may only contain information already present in
the diffraction patterns.

The diffraction pattern must be back propagated to reconstruct a phase
image. From equation 2.11 back propagation can be achieved by a convolu-
tion with the inverse of the PSF. So, backproagation is performed by inverse
filtering the diffraction pattern with the PSF. The PSF is determined purely
by free space propagation over a distance z. From the discussion in section
2.1.3 the OTF may be considered a flat-top disc as in eq. (2.9). The radius of
the flat-top disc is limited by the numerical aperture kmax = 2π n sin(α)/λ

CHAPTER 2. THEORY 13
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with n the refractive index, α the maximum angle which is still captured by
the imaging system and λ the wavelength of light used. The phase of the
OTF is a spheroid centred at k = 0 with a radius of curvature equal to k.
The spheroid radius increases as the propagation distance z increases. As a
result of its flat-top amplitude profile, the OTF may be inverted by taking
its complex conjugate.

Noise amplification [22,23]is a serious problem when performing inverse
filtering. If the transfer efficiency of a spatial frequency is very low, the
signal of that spatial frequency in the image is likely dominated by noise.
Application of inverse filtering enhances the noise as well as the signal. Due
to the flat-top amplitude profile of the OTF, noise amplification as a result
of inverse filtering is not expected to be a big problem. It is prudent however
to be aware of the possibility of noise amplification.Inverse filtering or

back propagating is
possible due to the

flat-top amplitude of
the transfer function.

This works only for
coherent imaging.

2.2.1 Coherent image formation

Ptychography relies on interference of light to resolve phase information.
Interference is caused by a fixed phase relation of two light sources [24]. If
contributions from two light sources have a fixed phase relation, the sources
are said to be coherent . If the phase relation of two sources is varying
wildly, the light is said to be incoherent and no phase information can be
resolved. The influence of the phase on the camera intensity can be derived
by considering interference from two point sources.

Suppose two sources emitting light that interfere in some point [24]. The
electric field at that point is the sum of the two complex source contributions.
The phase between the two sources determines whether there is constructive
or destructive interference. A camera measures the intensity of the light
averaged over a time much longer than an optical cycle. For the two source
model the intensity is determined by

Icamera = lim
T→∞

1

T

T∫
0

∣∣A1e
iφ1 +A2e

iφ2+φ′(t)
∣∣2dt, (2.13)

where A1,2 denotes the amplitude of the two point sources and φ1,2 the
phase of the two point sources. The φ′(t) variable denotes how the phase
between the two points sources varies over time. φ′(t) will determine whether
the imaging is coherent or incoherent. For a coherent source [25] the phase
relation is fixed. Since the intensity is insensitive to the absolute phase, φ′(t)
is chosen 0. Expression eq. (2.13) is considered for a coherent source:

Icamera = A2
1 +A2

2 + 2A1A2 cos(φ1 − φ2). (2.14)

The time average defaults to unity since there is no more time depen-
dence in the expression. The expression shows that the intensity depends

14 CHAPTER 2. THEORY
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on the phase of the two sources, so there is interference.
For incoherent sources the phase relation varies a lot, such that the phase of
the two points is random. The average over time becomes an average over
the φ′.

Icamera =
1

2π

2π∫
0

A2
1 +A2

2 + 2A1A2 cos(φ1 − φ2 − φ′)dφ′

= A2
1 +A2

2.

(2.15)

The intensity at the camera is independent of the phase of the two sources
and therefore incoherent light cannot be used for phase imaging.

The argument above for two points may be expanded to any number of
points. Coherent imaging can be considered as interference of many coherent
sources. It is now possible to use the above insight to obtain a general
expression for coherent imaging system without having to do a more formal
derivation. The expression for the image on a camera becomes

Icoherent(x, y) =
∣∣[obj(x, y) P (x, y)

]
∗ PSF (x, y)

∣∣2. (2.16)

The intensity on the camera depends on the phase of the object and the
bandwidth of the system is determined by the PSF (x, y).

2.3 Inverse problems and reconstruction algorithms

2.3.1 Introduction to ill-posedness of inverse problems

Phase retrieval in ptychography is an example of an ill-posed inverse prob-
lem. For this type of problem an extended theoretical framework exists to
help solve them [26]. Inverse problems appear in pairs. If the solution to
one problem is known, the solution to the other problem can be calculated.
In case of ptychography, the inverse problems are electric fields in different
planes. If the electric field distribution is known in one plane, electric field
distributions in all other planes can be determined from eq. (2.3). Usually
there is some hierarchy in the set of problems determined by cause and re-
sults or the loss of information when transforming from cause to effect. For
ptychography the cause is the object that scatters light and the result is
the diffraction pattern that hits the camera. To calculate the diffraction
pattern from the object is called the direct problem and to calculate the
object from the diffraction pattern is called the inverse problem. Since the
transfer function is bandlimited, see section 2.1.3, the object contains more
information than the diffraction pattern. Specifically, all objects that are
the same in the in-bandwidth domain, but different out of the bandwidth
domain, cause the same diffraction pattern. The problem is ill-posed as

CHAPTER 2. THEORY 15



thesis NTM vd Voort

multiple objects may cause identical diffraction patterns. The search for a
solution to an inverse problem is further hampered by noise. The object no
longer causes a unique diffraction pattern in the presence of noise. Instead,
there is a probability that an object will create a measured diffraction pat-
tern. Ill-posedness can be countered by adding additional knowledge about
the object, this type of knowledge is called a priori or prior knowledge. For
example the object can be assumed to have a certain smoothness. Phase
retrieval is by itself an inverse problem as information is lost when the de-
tector measures the intensity of the incoming wave. Ptychography aims to
cure ill-posedness by measuring multiple different diffraction patterns. An
algorithm is then used to find the object which is most likely to satisfy this
set of constraints. However ambiguity may still remain due to noise and
the systematic absence of information in the measured diffraction patterns.
Section 2.2.1 discusses how phase information of the object is measured on
the camera. The next section will discuss an adaption on the Gerchberg
algorithm aimed at retrieving the phase information of the object.

2.3.2 Nonlinear retrieval through an adapted Gerchberg al-
gorithm

Image formation is non-linear since the camera measures the intensity which
is the absolute square of the electric field, thereby losing phase information
of the incoming electric field, see section 2.2.1. Often non-linear problems
are linearised to make use of the framework of linear algebra.1 The norm
of the electric field is known from the intensity however and Gerchberg de-
veloped an algorithm [27] that can incorporate constraints from multiple
domains to find a solution. This technique has been further developed by
Fienup [5, 6]. For ptychographical retrieval the Extended Ptychographical
Iterative Engine (EPIE) from Rodenburg [8, 9] has been developed to find
the object which satisfies electric field amplitude constraints from various
measurements. The algorithm imposes constraints of diffraction measure-
ments by solving the direct problem of what diffraction pattern is expected
based on the object guess. The object guess is improved by replacing the
amplitude of the diffraction guess with the measured amplitude. If the ob-
ject guess is correct the diffraction guess will match the measured diffraction
pattern. Furthermore already in 1972 [4] it was shown that the original al-

1An example of a non-linear solution method is the inversion of the intensity square by
undoing the autocorrelation in Fourier space. Suppose an electric field (E) with frequency
domain K is squared, from the convolution theorem, the Fourier transform of the intensity
is the autocorrelation of the Fourier transform of E and has domain 2K. The autocorre-
lation maintains the number of degrees of freedom as the domain of the autocorrelation is
twice as big, but also Hermitian. Since both the electric field and the intensity have the
same number of degrees of freedom, a single intensity image can be used to reconstruct a
sharp phase image! Sheppard [7] proposes a method to directly invert the autocorrelation
in case of cylindrical symmetry. If Kobus reads this, he earns a chocolate egg.
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gorithm reduces the root mean square error each iteration. The quadratic
error is defined as the difference between subsequent iterations squared. The
algorithm used for this work is largely based on the work of Rodenburg et al.
Figure 2.4 depicts schematically the steps in the algorithm. For simplicity
the x and y index have been dropped, all elements are understood to be
two-dimensional arrays.

1. Start with a guess of the solution f0 in the object domain O, the
default guess is fO0 = 0.

2. Transform the solution to the domain of measurement j called Mj

using the appropriate propagator.

3. Impose the constraint of the measurement on the solution. For this
type of Gerchberg algorithm the amplitude of the solution at Mj is
known, so the amplitude of the solution guess is replaced by the mea-
surement amplitude.

f̃
Mj

i = |gMj | arg(f
Mj

i ). (2.17)

The constrained object guess is denoted with a tilde (˜). The operation
to replace the amplitude is nonlinear.

4. Propagate the solution guess back to the object domain O.

5. Obtain a new guess i + 1 for the solution in the object domain using
an update function of the form

fOi+1 = fOi + U
(
fOi , f̃

O
i

)
, (2.18)

U being the update function. It will often include a feedback parameter
and may be nonlinear.

The object guess may be represented in the object domain O or the
measurement domain M| without loss of information. Diffraction patterns
should be sufficiently different in order to reduce ambiguity in possible ob-
jects, i.e. reduce ill-posedness. The algorithm attempts to find the object
which is most likely to satisfy all diffraction constraints, therewith limiting
the ill-posedness.

2.3.3 Structured illumination Ptychography retrieval

The illumination function for interferometric illumination ptychography is
created by overlapping two coherent beams under an angle to create a fringe
pattern of alternating constructive and destructive interference. The two
beams act as an interferometer see section A.2. By changing the pathlength
of one arm slightly the fringes shift and the illumination pattern is changed.

The retrieval scheme used for reconstruction implements the algorithm
described in section 2.3.2.
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Figure 2.4: The adjusted Gerchberg reconstruction algorithm as described
in [14, 16]. For a detailed explanation and declaration of symbols refer to
section section 2.3.2.

1. Make a first guess of the object fO0

2. To propagate to the measurement domain Mj multiply the object
guess with the probe function Pj to obtain the exit wave. Then prop-
agate the exit wave over a distance z.

f
Mj

i =
(
fOi Pj

)
∗ PSF (z). (2.19)

The PSF is the same for all measurements as the propagation distance
z and the wavelength are identical for each diffraction pattern.

3. The amplitude of the solution guess in the diffraction domain is re-
placed by the measured data constraint.

f̃
Mj

i = |gMj | arg(f
Mj

i ). (2.20)

4. The inverse propagator is applied to the constrained diffraction guess
to obtain f̂Oi

f̃Oi = P−1j

(
f̃
Mj

i ∗ PSF−1(z)
)
. (2.21)

A division is made by the probe function to obtain the solution guess
in the object domain. Zero-values in the probe cause numerical divide-
by-zero problems. These problems can be circumvented by replacing
zero values with a very low value.
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5. The solution guess is updated using the previous iterations and the
update function. For research done in this thesis the update function
from equation eq. (2.18) takes the form

U
(
fOi , f̃

O
i

)
= ε

|Pj |2
max(Pj)2

(
f̃Oi − fOi

)
. (2.22)

The update function has a large value for strongly illuminated points.
Therefore these points have a big contributions to the correction on
the image. This partly solves the problem of dividing by a zero probe
function. It is interesting to investigate the update function further as
it is an important part of the reconstruction algorithm. The focus of
this thesis is elsewhere however.

2.4 Probe reconstruction

The probe function is the electric field distribution that hits the object. For
interferometric illumination two fibres are used as an interferometer to create
a fringed illumination pattern. The fully characterised probe function must
be available as prior knowledge in order to reconstruct images. However
cameras are only sensitive to the intensity of the electric field. It is possible
to reconstruct the electric field with knowledge of the setup and a reference
intensity measurement. To do this it is necessary to understand how the
probe function is formed.

Light exits single-mode fibres with a 0.12 NA spatial bandwith limited
Gaussian distribution. Therefore the electric field distribution may be de-
scribed as a Gaussian beam in the paraxial regime with the focus at the
end of the fibre, 2 see chapter 6 of Hooker and Webb [28]. The electric field
distribution at distance z from the fibre tip may be written as

E(r, z) = A exp
{
−
[ r

w(z)

]2
+

ikr2

2R(z)

}
(2.23)

Where A is a constant containing any phase and amplitude offset. The
precise value of A is not of interest as the amplitude offset of the electric field
can be directly controlled using the luminosity of the source and the intensity
is insensitive to any phase offset. The amplitude and phase distributions are
much harder to determine from the experiment and therefore it is useful to
consider these theoretically. The system has radial symmetry so r and z
represent the radius and height coordinates in the cylindrical system. w(z)
is the width of the beam at distance z, R(z) is the radius of curvature of the

2The paraxial approximation is extremely good for this setup, for a 0.12 NA fibre the
relative propagation distance error is only 8.4e−6.
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wavefront. These beam characteristics may be approximated if the beam is
far from the focus

w(z) = w(z0)

√
1 +

(z − z0
zR

)2
≈w(z0)

z − z0
zR

, (2.24a)

R(z) = z − z0 +
z2r

z − z0
≈z − z0, (2.24b)

zR =
πw(z0)

2

λ
, (2.24c)

where z0 is the z position of the focus. zR is the Rayleigh range, it may
be estimated as 60µm for a SM fibre, which allows for z − z0 � zR. The
beam used in the ptychography experiment has three variables: Firstly the
position in r of the focus, this can be adjusted by translating r → r − r′.
Secondly the z position, which can be tuned by choosing the appropriate z0.
Thirdly the angle of the beam, as discussed in section 2.1.3, the angle may
be adjusted by multiplying with exp(ikθr) where kθ is the angular frequency
corresponding to the direction of propagation. The electric fields from each
fibre may be written as

E1(r, z) = A1 exp
{(r − r1

w(z1)

)2
+

ik(r − r1)2
2z1

+ ikθ,1

}
= |E1|eif(r) (2.25)

E2(r, z) = |E2|eif(r) exp
{

i(kθ,2 − kθ,1)r +
ik(r − r2)2

2z2
− ik(r − r1)2

2z1

}
= |E2|eif(r))eig(r),

(2.26)

where f(r) and g(r) are parabolic functions with coefficients that can
directly be deduced from above formulas. The function f(r) drops out when
the intensity pattern is calculated:

|E1(r) + E2(r)|2 = |E1|2 + |E2|2 + 2|E1E2| cos g(r). (2.27)

The norm of E-fields |E1,2| can be obtained directly from measuring
each branch of the interferometer separately. The electric field of the probe
can be reconstructed if g(r) is known. g(r) may now be referred to as the
phase function. It can be obtained from the Fourier transform of a reference
probe intensity measurement. Figure 2.5b shows the Fourier transform of
the probe. Three peaks are visible, the outer two peaks relate to the fringes
and the inner peak relates to the intensity distribution from equation 2.27.
In the paraxial approximation g(r) may be written as ar2 +~b · ~r + c. The
electric field can be reconstructed if these parameters are obtained.
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(a) curved probe (b) Fourier transform

Figure 2.5: (a) A probe with strongly curved fringes, visible in (b) as ex-
tended peaks around a main fringe frequency. The red circle in (b) is used as
a mask to determine the central frequency and extract the fringe curvature,
see 2.4.1.

2.4.1 Probe reconstruction in case of large experimental drift

In some cases, the probe function changes significantly in the time between
a probe reference measurement and recording diffraction measurements. In
these cases it is advantageous to make a separate reconstruction of the offset,
linear and quadratic order terms. Probe reconstruction can be succesful for
drifting probe function if the quadratic term remains constant. The linear
and offset term can then be adjusted for each diffraction pattern separately.
The linear phase term in g(r) determines the central fringe frequency, it is
obtained by taking the weighted average of the area inside the red circle
in figure 2.5b. The quadratic therm and higher order aberration in g(r)
cause the outer peaks to spread out. To obtain the quadratic phase first
the red-circled area is selected using a mask. This way, from expression
2.27 |E1E2| exp(ig(r)) is selected. Subsequently the masked area is placed
in the middle of the image according to the red arrow in the figure. In
real space this corresponds with a multiplication of exp(−i~b~r), such that
|E1E2| exp(i(ar2 + c) is left. The phase is taken from this the expression.
Now the value for a is known. Finally the phase offset c is easily obtained
from taking the phase of the central frequency.

A drawback of this approach is the limited possibility to reconstruct
curved probe functions, i.e. a large quadratic parameter. Possibly, this
may be explained as follows. As curvature increases, the outer peaks spread
outside of the masked area. Quadratic and higher order therms are no longer
well accounted for and reconstruction fails. Another possibility is that also
the quadratic coefficient drifts for strongly curved fringes. In effect this
probe reconstruction method demands that fringes are very straight.
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2.4.2 Probe reconstruction for curved fringes

Generally, interference fringes are curved. Fringes are straight only in the
special case that both interferometer arms have the same curvature, caused
by an equal propagation distance through free space. A second reconstruc-
tion method to reconstruct curved fringes has been developed by the author
of this thesis. This technique makes direct use of the properties derived in
eqs. (2.25) to (2.27). This method works rather straight forward by extract-
ing the function g(r) directly.

Again, from a reference measurement, |E1| and |E2| are known. By
subtracting and dividing these fields from a probe reference measurement
cos g(r) is obtained:

cos g(r) =
|E1(r) + E2(r)|2 − |E1|2 − |E2|2

2|E1E2|
. (2.28)

It is important to subtract any background offset due to e.g. a camera
dark current as errors will propagate into the reconstruction result. Fig-
ure 2.6 shows a detail of cos g(r). Subsequently the phase function g(r) is
obtained by masking out the bottom half of the Fourier transform. Due
to the Hermitian property of the Fourier transform of a real function, no
information is lost during this step. A cosine can be written as a sum of two
complex exponents. The mask in Fourier domain selects a single complex
exponent. Now g(r) modulus 2π can be obtained directly from the phase of
the real space image:

g(r) mod 2π = angle
(
eig(r)

)
. (2.29)

Any change in the phase offset c is obtaining from the phase of the central
frequency as before. The change in c is then added to g(r) to account for
fringe drift. This probe reconstruction is well able to reconstruct curved
fringes robustly in a stable environment. Any drift in the fringe frequency
should be smaller than one oscillation within the field of view.

Now |E1|, |E2| and g(r) are known and the electric field can be recon-
structed directly from eqs. (2.25) and (2.26)

2.4.3 Errors induced by insensitivity to parabolic phase off-
set

It is impossible to reconstruct the residual phase function f(r) from intensity
measurements as the intensity is insensitive to them. Still. It is worthwhile
to consider the effect of this function. Again from the paraxial approxi-
mation f(r) is a parabola. The parameters of the parabola a′, b′ and c′

can be accounted for as follows. A total phase offset is irrelevant so c′ is
ignored. A linear phase term relates to a change in propagation direction,
the object will be reconstructed in a different position if such a phase shift
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(a) Detail of cos g(r). (b) Fourier transform of cos g(r).

Figure 2.6: Probe reconstruction for curved fringes. cos g(r) is obtained from
subtraction and division of reference electric fields E1,2. The red boxed area
in the Fourier transform is replaced by zeros to obtain a single complex
exponent of the cosine. Subsequently g(r) is obtained from the phase of the
real space image.

is applied to both branches. A position shift is mostly not of interest for the
interpretation of the image. So b′ is irrelevant due to propagation direction
invariance. A residual parabolic wavefront c′ creates a divergent beam. As a
result of the divergence, the diffraction pattern is enlarged as it propagates,
creating lensless magnification. Lensless magnification may be desirable as
camera pixel sizes are often much larger than the resolution present in the
diffraction signal.
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Methods

3.1 Introduction

A scanning disc Fourier transfrom ptychography setup [16] can be rather
straightforward. In principle the setup needs only a light source, an aperture,
the object and the collection camera. The probe function is a well defined
disk that is scanned over the object and there is no precise alignment re-
quired. Interferometric illumination ptychography offers several advantages
over scanning-disc aperture ptychography as mentioned in the introduction,
but also brings several complications.

An interferometric illumination is created by interference of two sources.
So, like an interferometer the setup must have two arms. The interferometric
signal is sensitive to vibrations, so the setup must be stable. The setup is
chosen to be fibre based due to the flexibility that fibre optics offer. Any
type of phase imaging must be performed with coherent light, see section
2.2.1. The path length difference may be referred to as the path delay. It
must be smaller than a tolerance provided by the coherence length of the
laser, see section A.2. The coherence length can be estimated to be 200µm
for a 450nm, 1nm bandwidth laser, see equation A.5. The setup should be
aligned within this tolerance.

In case of probe reconstruction for straight fringes, free space propaga-
tion distance should be identical for the two fibres, see section 2.4. The
tolerance for the difference in free space propagation distance is experimen-
tally determined to be 0.1 mm. Finally as discussed in section 2.1.3 the
sample should be placed close to the camera to maximise the numerical
aperture.

A diverging illumination beam is advantageous as it projects a magnified
version of the diffraction pattern on the camera [15], the magnification is
increased if the object is placed closer to the fibre tips or the camera is
placed further away. Whenever possible a higher magnification is desirable.

In this chapter first the setup, built by the author of this thesis, will
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Figure 3.1: Schematic of a interferometric illumination ptychography setup.
See section 3.2 for detailed information.

be described. Attention will be spend to explain how the setup satisfies
various demands mentioned above. Finally, a data collection procedure will
be treated in order to aid reproducibility.

3.2 Setup

To make sure the imaging is coherent, the interferometer branches must
have equal lengths within the tolerance of the coherence length. A branch
length is determined by the sum of the fibre length from the splitter and
the free space propagation distance. The exact coherence length depends
on the spectrum of the laser and therefore on the current and temperature
of the laser. However from early experiments it is clear that the coherence
length is smaller than 0.5 mm. Furthermore the coherence length is an
oscillating function, see appendix A.2. For imaging only the top of the
function at zero path delay where the coherence is unity and constant can
be used. The path delay must less than 0.1 mm to be sufficiently close to
zero displacement. Additionally for sufficient fringe contrast the branches
must also have equal intensity. Figure 3.1 shows a schematic overview of the
setup. 1. A simple fibre-coupled diode laser is used as a light source. Blue
light is guided through a fibre unto a fibre beam splitter. Single-mode fibres
are used to ensure spatial coherence. The fibres have a bare fibre ending
from which a divergent beam is created. 2. The beams overlap and interfere
to create a fringe pattern. This fringe pattern is called the probe. 3. The
probe is scattered by the object to form the exit wave. The scattered light
propagates through free space. 4. At the camera plane a diffracted version of
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the scattered light is recorded by the camera. 5. Several images are needed
to reconstruct an object. A full period shift of the probe fringes is achieved
by changing an interferometer arm length by a single wavelength. The single
wavelength shift requires no moving parts in the setup. Thermal induced
variations in the path delay shift fringes sufficiently to create diffraction
patterns for reconstruction.

In summary, the setup must satisfy the following requirement: Firstly
beams from the fibre tips must overlap on the camera. Secondly the fibre
tips must be close together in order to create the desired fringe frequency.
Thirdly The setup must have equal arm path length for coherence. Lastly
the distance from the fibre tip to the camera must be equal for probe recon-
struction. Figure 3.2 shows a picture of the setup. It contains the following
components:

1. 2x2 light mixer. One arm remains unused so it acts as a 1 to 2 fibre
splitter. For experiments two splitters where used: Thorlabs FC632-
50B-FC with a splitting ratio >20:1 used off spec and Thorlabs FC488-
50B-FC with a splitting ratio of 3.4:1 slightly off spec.

2. Thorlabs ADAFC2 FC/PC to FC/PC mating sleeve. These mating
sleeves can be used to create straight fringes by pulling the fibre head
slightly out of the sleeve. This induces losses that need to be compen-
sated for.

3. SM fibre for 400-680nm with 0.12 NA, Thorlabs serial number SM-
405XP. The end is bare fibre, cleaved manually using Thorlabs XL411.

4. Fixed arm mount, placed directly on the opticle table. Figure 3.3
shows the home made mount. The mounts allow for control over the
φ, θ and y direction, see section 3.2.1.

5. Moving arm mount, it is mounted on two translation stages. Ad-
ditional to the three degrees of freedom offered by the mount, the
translation stages also offer x and z translation.

6. Linear polariser in a rotating mount. The polariser guarantees that
light from both arms are in the same polarisation state. Additionally
it provides an attenuation mechanism.

7. Sample, pressed close to the camera to maximise NA for maximal
resolution.

8. Camera, IDS UI-5482LE-M CMOS mono chip board camera with 2.2
µm square pixels. The camera can be controlled and scripted using
python.

9. pigtailed 450 nm diode laser (shown schematically), Thorlabs serial
number LP450-SF15.
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10. laser driver (shown schematically), operated in constant current mode,
Thorlabs serial number LPC-202C. For later experiments a new laser
driver with additional diode temperature control was used, Thorlabs
serial number CLD1011LP.

11. Digital delay generator ’stanford box’ (shown schematically) serial
number DG645.
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Figure 3.2: picture of the setup. DOF stand for degree of freedom. The
blue arrow indicates where light enters the setup.
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3.2.1 Interferometer arm mounts

Fringes must be spaced close enough to ensure sufficiently different probe
function, but far enough to avoid aliassing, see section section A.3. As a
rule of thumb a fringe period should be 4 pixels, half the nyquist frequency.
The fringe frequency is determined by the distance between the fibre tips.
The displacement in z is not of influence. It is possible to estimate the tip
displacement ∆x

d

λ
=

l

∆x
, (3.1)

where l is the free space propagation distance and d is the fringe period. This
holds true if l is much larger than d. From this the fibre tip displacement
can be estimated ∆x = l λ/d. For l is 5 mm and the fringe frequency is 4
pixels of 2µm size each, this gives an estimate for the tip displacement of
0.5 mm. The plastic coating of the fibres is too thick to allow the fibre ends
to be placed 0.5 mm apart, therefore bare fibres must be used. The fibre
mounts should allow the fibres to be placed close together, while offering
good control over the angle of the fibre. The mount consists of two plates.
The bottom plate is screwed to a lens-mount with two fine adjustment screws
denoted b and c, allowing for translation in the θ and y direction. The top
plate can rotate over the bottom plate around a single screw denoted a in
order to allows for φ translation. The fibre is taped to the mount with
kapton tape over a length of 5 cm for pull relief and the bare fibre extends
less than 5 mm to avoid vibration of the fibre tip. The mounts have been
co-designed and build by Nik Noest.

z x

y

a

b

c

a

b

c y control

d x control

e z control

Figure 3.3: Mount for 5 degrees
of freedom for fibre tip posi-
tion and direction control. (a-
c) shown in this image. (d,e)
translation stages shown in fig-
ure 3.2.

3.2.2 Alignment for straight fringes and maximal fringe con-
trast

Initially, only the reconstruction technique fro straight fringes was available.
Fringes are straight if the free space propagation distance is equal. As an
additional demand, the path length of the arms should be equal within the
coherence length in order to do coherent imaging. An experimental difficulty
is created as the bare fibre ends can be cut to length with a precision of
roughly 1 mm. Probe reconstruction for straight fringes can be successful
up to a free space length difference of 0.1mm. The laser has multiple modes
and therefore the coherence shows a sinusoidal signal, see section A.2. The
tolerance of equal length arms is experimentally determined to be 0.1 mm.
Over this length, the coherence is stable and close to unity, see appendix
A.2. To compensate unequal fibre lengths an alignment procedure has been
created. The procedure aims to create a zero path delay and equal free space
propagation length. As a consequence, the setup is destabilised, which has
detrimental effects on the repeatability of the experiment.

The path delay can be adjusted by pulling the fibre end out of the FC/PC
to FC/PC mating sleeve. Consequently, firstly the connection is destabilised.

28 CHAPTER 3. METHODS



NTM vd Voort thesis

Secondly the intensity in that specific arm is attenuated by several orders
of magnitude. To compensate for the attenuation, the combination of a
linear polariser and stress induced birefringence, see section A.1 is used to
attenuate the other arm as well. This is experimentally challenging since
the attenuation from the connector sleeve is easily 20dB. To compensate,
the other arm must be sent almost perpendicular polarised through the
polarizer. This destabilises the setup, as slight variations in stress may
induce large variation in arm intensity. In this case it can be helpful to have
an unequal fibre splitter 1, denoted in figure 3.2. The shorter arm can be
attached to the brighter splitter output to counter attenuation. It is not
viable to induce losses by bending, since for 452nm light the bending radius
is similar to the breaking radius of the fibre.

The alignment procedure looks as follows:

1. Use the Fourier image to find the point where fringes are straight, by
moving in z using the translation stage.

2. Find the arm length difference by translating z up to the zero path
length difference point. This length can be used as a guide for steps 3
and 4. For a laser lasing at multiple modes it can be hard to find this
point since the fringe modulation as a function of z oscillates. In this
case, it is useful to lower the laser current below the diode threshold
so that the diode acts as a lamp with a short coherence length and
the point of zero path delay can be found easily. It may be necessary
to increase collection times of the camera to compensate for the lower
laser brightness.

3. Pull the fibre end out of the sleeve slightly.

4. adjust the beam intensity to be equal using stress induced birefringence
and a polariser.

5. Repeat steps 3 and 4 until you are at zero path length difference. Use
the fringe modulation to judge this point.

3.2.3 Setup drift

The setup suffers from thermal and mechanical drift. Figure 3.4a shows the
fringe position expressed as a phase offset for sequentially recorded images
in a thermalised setup. Temperature variations change the refractive index
of the fibres. A path delay of a single oscillation is sufficient to shift fringes
by one period.1 Fringe shift is always determined modulo 2π. The figure
shows jumps of 2π in the determination of the phase around frame 20 and
30 as a result of this modulo. From the image fringes shift over one full

1The effect of heat on the path delay is easily demonstrated by placing a heat source
near a fibre. Fringes will shift several periods. This was first observed by Nik Noest.
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Figure 3.4: Probe function characteristics drift for sequentially recorded
images in a stable thermalised setup.

period as a result of natural drift occurring in the time it takes to record 50
images. Therefore the thermal drift is used to shift diffraction patterns. No
additional active shift mechanism is required.

Figure 3.4b shows the central fringe frequency for sequentially recorded
images. A cause of the fringe frequency variation is the vibration of un-
supported bare fibre. For probe reconstruction, the central fringe frequency
cannot be considered constant if the variation on the fringe frequency is
larger than one full period over the illumination region. Sometimes thermal
variations do not cause a full period drift or fringe frequency variation is
rather large. In those cases, python scripting allows for direct analysis of
the recorded diffraction patterns. Thanks to the analysis, a decision to keep
or reject the measurement can be made immediately.

3.2.4 Lensless magnification and resolution

A parabolic wavefront is created from the fibre tips. As a result the beam
diverges as it propagates from the object to the camera. The diffraction
pattern is recorded magnified by the camera, [15], see section 2.4.3. This
is a very useful property as a telescope cannot be build without optics and
pixels are generally bigger than half the period of the transmitted spatial
resolution. Ray optics [29] can calculate the magnification using two similar
triangles both having one point at the fibre tips and the opposite edge at
the object and camera plane respectively. The magnification is then the
ratio of the triangles. As discussed in section 2.1.3 the resolution decreases
as the distance from the camera to the object increases. So for maximal
resolution, the sample must be placed close to the camera. If additionally
lensless magnification is desired, the fibre tips must be placed close to the
object as well. This combination requires the setup to be very compact.
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(a) thumbnail diffraction
pattern of group 6, ele-
ment 1 of a USAF resolu-
tion test target. [30]. Bar
is 100 µm.

(b) The probe function of
the area shown in figure
3.5a. Bar is 100 µm.

(c) Gaussian intensity dis-
tribution of a single beam.
Bar is 500 µm

Figure 3.5: Images recorded during data collection. See appendix B for large
scale images of measurement and reconstruction data.

3.3 Data collection

After alignment, firstly both arms of the interferometer have the same
length, such that coherence is optimal. Secondly, the intensity of both arms
is fairly equal to create a good modulation contrast. Thirdly, in case of
reconstruction using straight fringes, free space propagation distance is also
equal. A data set can now be acquired. The data acquisition can be scripted
using python libraries2. This is important as it minimises the number of op-
erations required to do a measurement and helps to standardize and improve
quality of data sets. A data set contains

• Multiple diffraction patterns of the object. Usually 50 images are
recorded in order to cover a full period drift, see section 3.2.3. Figure
3.5a shows a thumbnail of a captured diffraction pattern.

• A probe reference measurement. The sample is shifted to an empty
area on the sample in order for the light to have the same optical path
length. This image is needed for the probe reconstruction. Figure
3.5b shows a thumbnail of a recorded probe. The image shows straight
fringes and an intensity gradient.

• The image of each interferometer arm separately. That is, with the
other beam blocked and without interference. This data is also neces-
sary to reconstruct the probe. Figure 3.5c shows a full size image of
the Gaussian intensity distribution of a single probe beam.

2Credit goes to Marco Konijnenburg for writing a python c wrapper for the IDS camera.
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• A background image, to be used for background substraction. This
is particularly important if the camera is operated in rolling shutter
mode, since in that case the background is uneven.

• A single beam diffracted image of the object. This data is used to eas-
ily determine the back propagation distance discussed in section 2.1.
In principle this is also possible with a striped probe function illumi-
nation, however here it is much harder to recognize sharp structures.
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Chapter 4

Results

4.1 Introduction

In order to demonstrate the results of interferometric illumination ptychog-
raphy, first the ingredients necessary for image reconstruction are demon-
strated. The propagation ability of the OTF will be shown by finding the
correct back propagation distance to refocus a diffracted object. A probe
reconstruction is shown and inspected. Next, the performance of interfero-
metric illumination ptychography has been tested on a usaf 1951 [30] test
target to determine the resolving capabilities of the system. Furthermore,
cells of a plant stem have been imaged to test applicability to biological
samples and investigate the capability to recover phase information. Both
samples have been imaged using straight and curved fringe illumination. A
post-reconstruction technique is shown that may be incidentally useful.

4.2 Back propagation distance

The reconstruction algorithm needs the back propagation distance z to
transform from the object domain to the measurement domain, see equa-
tion 2.9. Although the phase information is missing from the camera images,
an intensity image can still be used to find the back propagation distance.
Figure 4.1 shows an intensity image at propagation distances z. Features
will become recognizably sharp at the right back propagation distance. No
method exists to recognize sharp features automatically yet, so this step
must be performed manually.

4.3 Goodness criteria for probe reconstruction

Goodness criteria can be used to determine whether the reconstructed probe
fits the object diffraction pattern. Only the intensity is measured and there-
fore the reconstructed probe can only be compared with the intensity value
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(a) Diffracted image. (b) Almost sharp. (c) Sharp.

Figure 4.1: The electric field amplitude image is back propagated and man-
ually inspected to find the back propagation distance z. (a) no back propa-
gation (b) image almost in focus at z = 1.8mm, (c) sharp at z = 1.91mm.
Group 6 element 1 as well as group 7 elements 4 to 6 from the USAF tar-
get [30] are shown.

of the electric field. Thus the goodness criteria are insensitive to the phase
of the reconstructed probe function which can be considered as a drawback.
Two methods are used to judge the goodness of the reconstructed probe.
The first method uses the normalised inner product

c{~f,~g} =
~f · ~g
‖~f‖‖~g‖

(4.1)

as a goodness criterion, where the measured intensity and the probe function
intensity are used for f and g. The normalised inner product will never be
unity as the diffraction pattern differs from the probe function by the object.

A second way to test the goodness of the probe reconstruction is by
visual inspection of the difference between the diffraction pattern and the
probe. Figure 4.2 shows a visual inspection of the goodness of a probe
reconstruction. The difference of the reconstructed probe and the diffracted
object is very close to zero for all places, except if the diffraction pattern
of an object is present. Occasionally, probe reconstruction fails in certain
areas. Visual inspection immediately makes this insightful.

4.4 Object reconstruction

If probe reconstruction is successful, the object can be reconstructed. For
reconstruction a sequence of images is selected such that they have a linear
increase in fringe phase and the reconstructed probe has a high goodness
criterion c, equation 4.1. Usually 10 images are selected. These are then used
in the reconstruction algorithm described in section 2.3.2. Figure 4.3 shows
the application of a constraint during an iteration cycle . The object guess is
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(a) Diffraction pattern. (b) Reconstructed probe. (c) Difference of 4.2a and
4.2b.

Figure 4.2: Visual inspection of the probe function reconstruction. (a)
diffraction detail of group 6 element 1 of the USAF target. (b) reconstructed
intensity probe function. (c) difference of (a) and (b).

transformed to the measurement domain, where the amplitude constraint is
supplied. The applied constraint influences the object guess after it has been
transformed back. The update of the object guess often follows a striped
pattern as can be seen on the top-right of the image.

4.4.1 Convergence

As a measure for convergence the normalised inner product equation 4.1 for
two consecutive iterations can be taken. If this comes close to unity it is
an indication that the current object guess is stable. The convergence is
shown in figure 4.4a. It is clear that for this measurement object guesses
become increasingly alike. Additionally the convergence criterion shows a
10 cycle repetitive shape, this is related to 10 images being used for recon-
struction. There will always be some difference between iterations as noise
is not accounted for in the model and will thus be included in the object
guess.

4.4.2 Post filtering

Often a reconstructed image shows residual fringes. This is often due to an
error in the estimation of the fringe modulation estimation. Additionally
fringes need many iterations of the algorithm to disappear, while the object
otherwise has taken shape. Figure 4.5a shows a reconstruction result after
30 iterations. All objects are recognisable, but the reconstruction shows
residual fringes. Residual fringes can be filtered by masking out the fringe
frequencies in Fourier space. Fringes appear in localised places in Fourier
space due to their well defined fringe frequency. The absolute value of the
electric field is used in reconstruction. When the absolute value is taken neg-
ative values are flipped, creating discontinuities in the signal. Multiples of

CHAPTER 4. RESULTS 35



thesis NTM vd Voort

Figure 4.3: The fourth iteration cycle of a Gerchberg type reconstruction
detailed in section 2.3.3. The object guess still shows a striped pattern which
will disappear in later iterations.
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(a) Convergence for subsequent iterations. c denotes the normalised inner product
from subsequent iterations, see equation 4.1.

(b) Frame 5. (c) Frame 20. (d) Frame 90.

Figure 4.4: (a) convergence behaviour for reconstruction with 10 diffraction
patterns. Red-dashed lines indicate the frames shown in (b-d).

CHAPTER 4. RESULTS 37



thesis NTM vd Voort

(a) Unfiltered, bar is
100µm.

(b) Fourier mask, bar is
100 cycles / mm.

(c) Filtered, bar is
100µm.

Figure 4.5: Post-reconstruction filtering. (a,c) detail showing group 6 ele-
ment 1 and group 7 elements 4 trough 6 with and without post filtering. (b)
Fourier space mask. Colour scale white: 1, black: 0.

the fringe frequency are required to describe the discontinuities. As a result,
residual fringes appear in Fourier space as peaks at any integer multiple of
the fringe frequency. Figure 4.5b shows a mask that can be used in Fourier
space to filter out residual fringes. This post-filtering technique can be used
to remove residual fringes after reconstruction or even reduce calculation
times. Figure 4.5c shows the result of post-filtering a reconstruction after
30 iterations. It is not advisable to use this filtering technique however as
the clipped frequencies also contain information on the image. This loss of
information induces artefacts that deteriorates the image. For example, ob-
jects with spatial frequencies contained by the mask are now invisible after
reconstruction. Additionally, a discontinuity in Fourier space also affects
the smoothness in real space. Caution is advised when implementing this
filter.

4.5 Image reconstruction for straight fringes

The probe function showed significant instability in the initial state of the
experiment. Software was available to reconstruct unstable fringes under
the condition that the fringes are very straight, see section 2.4.1. Results
achieved with this technique are detailed below.

4.5.1 USAF target

The result of the usaf 1951 target reconstruction is shown in figure 4.6c. El-
ements of this reconstruction are used as illustrations throughout the thesis.
The measured probe function used in this reconstruction is shown in figure
4.6a. Groups 6 and 7 from the usaf target are shown in figure 4.6b. Figure
4.2 shows a detail of a reconstructed probe and the corresponding difference
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with the diffraction pattern. Firstly, from the reconstructed image it can be
immediately seen that all groups are reconstructed sharp. Secondly, little
evidence of shadow images remains. Thirdly, the image shows very little
residual fringing. No post-filtering has been applied to achieve this image.
The lensless magnification is obtained from a measurement of the largest
structures visible in the image. The length of bars in group 4 element 1
is determined to be 93 ± 1 pixels. This corresponds to a physical length
of 204.6 ± 2.2µm. From literature the length of the bars is exactly 156.25
µm. The lensless magnification is now taken from the ratio of the two. It is
determined M = 1.309± 0.014

From comparison of the reconstructed object and the probe measurement
it can be seen that reconstruction is possible also for areas with relatively
low illumination intensity. The background of the image is rather noisy, to
quantify this the histogram of an area with sufficient illumination is taken
and shown in figure 4.7. From the image of the theoretical object it is clear
that the object is binary; either light passes undisturbed or it is absorbed
completely. The histogram shows a double peak, a high peak at high pixel
value indicating that the majority of pixels are white and a lower peak for
lower pixel value belonging to areas filled with black bars. Both peaks are
quite broad where for the theoretical object they would be very sharp. This
indicates that there is significant noise on the image.

The inset in figure 4.6c shows the smallest bars available in the object,
from the image it is not clear if also these smallest structures can be resolved
since there is a lot of noise on the pixels. To determine the resolving power of
this imaging technique 5 rows of pixels indicated by the letter b in the image
have been averaged over, reducing noise while maintaining the resolving
properties of the instrument, the result is shown in figure 4.8. The theoretical
position and width of the bars shows that often a single pixel is partly
covered by a bar. This reduces the contrast of the pixels. The Rayleigh
criterion for resolution may be used to judge resolvability [31]. According
to this criterion, two sources are resolved if the intensity midway the two
sources is 0.735 the intensity at the source.1 Resolution loss due to pixelation
and noise are also accounted for with this criterion. Clearly, the intensity
at the position of all bars is lower than 0.735 of the bright areas. Therefore
the maximum demonstrated resolution is the width of the smallest bar, 2.2
µm.

The usaf is not a phase sample, so the reconstructed phase is expected
to be flat. Figure 4.9 shows a detail of the reconstructed phase. The phase
image shows the outlines of element 2 and 3 of group 6 on the usaf target.
The background is zero with some residual stripes and noise. The amplitude
of the electric field is close to zero wherever there is an object. If the ampli-

1The rayleigh criterion was initially developed to test the resolvability of two airy disks.
However it is general enough to also provide a reliable measure in this case.

CHAPTER 4. RESULTS 39



thesis NTM vd Voort

(a) Probe function intensity mea-
surement used in reconstruction,
bar is 0.5 mm.

(b) Picture of smallest two groups
of usaf target. Image taken from
Thorlabs, Inc. website.

a

b

(c) Object guess of usaf target after 100 iterations. Area a indicates the area taken
for the histogram. Area b indicates the area which is inspected to determine the
highest resolution, the short axis is summed over to decrease noise. Bar is 0.5 mm.

Figure 4.6
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Figure 4.7: Pixel value histogram of area denoted with a in figure 4.6c. The
object has only black and white values while the histogram of the recon-
structed object shows broad peaks, indicating the noisiness in the recon-
struction.

tude is close to zero the phase cannot be determined accurately. Therefore
phase variations in the reconstruction of the usaf target may be considered
a result of a numeric artifact rather than have a physical interpretation.

Figure 4.9: Detail of phase re-
construction for USAF target.
Low electric field norm areas
have varying phase. Bar is 100
µm, colourbar from to π radi-
ans.

4.5.2 Biological sample

A biological sample is imaged to test the phase imaging capabilities as well
as the performance of this imaging technique on more complicated samples.
The stem of a sea anemone is used as a sample. The result of the reconstruc-
tion is shown in figure 4.10a. An image recorded with a widefield optical
microscope is shown in figure 4.10b. Part of the image is dominated by noise
and structures can not be clearly distinguished. Other parts can be recon-
structed to recognizable shapes, here also the contrast is rather low and the
image is quite noisy. Considering this it can be said that the reconstruction
is not very successful. The low contrast may be explained by considering
that the biological sample scatters light more weakly, i.e. not so much light
is scattered by the object or the signal from the object is not so strong. In
the presence of noise it is difficult to distinguish shapes.

Visual inspection of the reconstruction of the probe function may explain
some of this behaviour. As discussed in section 4.3 the difference between
a measured diffraction pattern and the reconstructed probe should be the
signal generated by the object. The difference is shown in figure 4.10c, there
is a large band which shows a striped pattern clearly not originating from
the object. From this it is clear that the probe reconstruction failed in some
areas and that these areas become noisy in the reconstruction result.
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Resolvability of smallest detail

Figure 4.8: Resolvability of 3 smallest sets of bars. Five rows of pixels along
the length of the bars have been averaged over to reduce noise. Grey bars
indicate the theoretical position and width of the bars, based on literature
and measured lensless magnification. For even the smallest bars there is
clear separation between bright and dark areas.

An important goal of ptychography is to do phase imaging. The USAF
target is a binary target and thus exhibits no phase behaviour. Figure 4.11
shows a detail of the reconstructed phase of the biological sample. Similar to
the reconstruction of the usaf target the phase reconstruction for the biolog-
ical sample shows phase variations in places of low electric field amplitude.
The phase image outlines cell walls. The same cell walls are also visible in
the amplitude reconstruction as low amplitude areas. Phase reconstruction
of the usaf sample has demonstrated that phase reconstruction in low ampli-
tude areas is random. Considering the overlay of low amplitude and phase
variations in the biological sample, it is possible that the reconstructed phase
variations are induced by amplitude variations. Additionally, a sample of
several tens of microns thick may scatter the incoming blue light several
times [32]. In conclusion it is not possible to demonstrate phase imaging
from this reconstruction: phase reconstruction may have failed for this ob-
ject, or the object may not be suitable for phase imaging.

Figure 4.11: Detail of phase re-
construction for biological sam-
ple. The phase outlines cell
walls and shows no further
structures. Bar is 100 µm.

4.6 Image reconstruction for curved fringes

At a later stage in the experimental development, several experimental im-
provements were made to improve the stability of the probe function. Firstly
the bare fibres were taped to mounts for a long stretch for pull relief. Sec-
ondly the bare fibre extends only a few millimetres in free space to reduce
vibrations. Lastly the FC/PC fibre sleeves were no longer used to compen-
sate for unequal fibre lengths. Fixed fibre sleeves also allow also for much
better control over the relative intensity of the branches. However, the path

42 CHAPTER 4. RESULTS



NTM vd Voort thesis

(a) Reconstruction of stem of sea anemone using straight fringes. Re-
construction shows a very noisy signal. Some areas of the image are
completely dominated by noise. The inset shows a detail of the image,
also shown in a reference widefield image shown in 4.10b. Bar is 0.5
mm.

(b) Optical Widefield microscope im-
age of sample detail. Green box indi-
cates area of detail.

(c) Difference of probe and diffraction
shows striped residu indicating flaws
in the probe reconstruction. Bar is
0.5 mm.

Figure 4.10
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length of both arms needs to be equal for coherence. Unequal fibre lengths
lead can be compensated for with unequal free space propagation, which
in turn leads to curved fringes. A new probe reconstruction method for
stable curved fringes was developed, see section 2.4.2. Furthermore, a Gaus-
sian filter was implemented into the algorithm to suppress noise from image
reconstruction. The results are shown in this section.

4.6.1 Usaf target with curved fringes

Figure 4.12 shows a reconstruction of the usaf target for curved fringes. The
reconstruction successfully reconstructs large scale structures and shows lit-
tle artefacts over a large field a view. Figure 4.13 shows a part of the
diffraction pattern as well as the difference of the diffraction pattern and
the reconstructed probe. The latter image clearly outlines diffraction pat-
terns of the objects, whereas fringes in empty areas of the object are almost
completely suppressed. This behaviour is visible over the entire range of
the reconstruction (not shown). An enlarged view of the central smallest
structures as well as the effects of a Gaussian filter is given in figure 4.14.
The lensless magnification for this recording is unity. As a consequence the
smallest structures visible in the reconstruction are close to the Nyquist
sampling frequency, see appendix A.3, limiting the resolution.

A histogram is used to inspect the noisiness of the image. A perfect re-
construction of a binary object shows only two very sharp peaks. A measure
for the noisiness can be obtained from the variation around these peaks. For
no Gaussian filtering the noisiness is comparable to the reconstruction using
straight fringes of the usaf target, see figure 4.7. The peaks are recognis-
able as separate, however there is no minimum in between the two peaks.
A Gaussian filter was implemented in the algorithm. Each iteration a rel-
ative weak filter was applied to the current object guess. This method
aims to suppress random noise, as these are suppressed by sequentially ap-
plied filters. Signal is added again each iteration, such that it is suppressed
only very weakly. For a balanced filter with a standard deviation of a half
with respect to the pixel size, the histogram shows a clear minimum be-
tween the peaks. Stronger filtering with a standard deviation of a pixel
mostly sharpens both peaks. A Gaussian filter may also improve resolv-
ability through noise suppression. Structures are more clearly recognisable
in case of medium filtering. A set of bars is considered resolved if all six
bars, horizontal and vertical, of an element can be recognised individually.
Element 2 of group 7 is the smallest element where this is still possible, cor-
responding to a bar width of 3.5 µm. Stronger filtering reduces noisiness,
but also blurs structures. Therefore, a suitable standard deviation for the
Gaussian filter is determined to be around half a pixel.
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Figure 4.12: Reconstruction of usaf 1951target with curved fringe illumina-
tion. Groups 4 to 6 are shown. Element 2 of group 7, corresponding to a bar
width of 3.5 µm is the smallest resolvable element. This can be seen from
the enlargement of the red box in figure 4.14. The lensless magnification is
effectively unity, significantly smaller than the result of figure 4.6c. Bar is
500 µm.
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(a) (b)

Figure 4.13: Probe reconstruction for curved fringes illuminating the 1951
usaf target, elements 4 to 6 of group 4 are visible as well as elements 4 to 6
of group 6 in the top-right corner. (a) shows a measured diffraction pattern
displayed as the norm of its electric field. (b) shows the difference between
the measured diffraction pattern and the reconstructed probe. The residu
is clearly recognisable as diffraction patterns and very little fringes remain.
Bar is 500 µm, the scale is equal for both images.
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Figure 4.14: Results of a Gaussian filter implementation in the reconstruc-
tion algorithm. The usaf target is a binary object. Therefore, the width of
the two peaks in the histogram is an indication of the noise present in the
image. The standard deviation σ relates to the width of a pixel. (a,d) No
filtering. (b,e) medium filtering for σ = 0.5. (c,f) heavy filtering for σ = 1.
Bar is 100 µm, the scale is identical for (a-c).
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4.6.2 Biological sample with curved fringes

A second reconstruction of the biological sample was performed using curved
fringes and a σ = 0.5 Gaussian filter. It was hoped that under more stable
circumstances, also the more challenging biological sample can be imaged.
Surprisingly, the phase of the reconstructed object allows for the best in-
terpretation of the image as its shows the least noise. Figure 4.15 shows a
large scale image of a sea anemone stem also imaged in 4.10a. Cell walls as
well as dark speckles are clearly resolvable over the entire field of view. It
is unclear what the black speckles are, they might simply be specks of dirt
trapped in the sample during preparation. The phase reconstruction shows
concentric rings around the top-left corner. These rings are also visible in
the probe reference measurement shown in figure 4.15b. The probe reference
is measured by recording an ampty part of the sample. However, for this
sample all areas contain at least a small amount of dirt, limiting the quality
of the probe reference measurement.

The phase reconstruction shows large scale phase variations at the bot-
tom of the image. Figure B.8 in appendix B shows the difference of the
reconstructed probe and the measured diffraction pattern. Large areas in
the image show significant fringing. It is remarkable that image reconstruc-
tion is successful in placed with large residual fringing. A solution can
be found from the large scale phase variations in the reconstructed object.
These variations cause fringes to shift with respect to a reference measure-
ment, creating residual fringing. Earlier attempts at reconstruction of this
biological sample were unable to arrive at a solution with large scale phase
variations. Instead, areas with residual fringing were reconstructed badly.

A numerical artefact is visible in the top part of the reconstruction. This
is a consequence of the periodic boundary condition of discrete Fourier trans-
form: as a numerical propagation is performed, parts of the structure diffract
outside of image. Due to the periodic boundary condition, the diffraction
pattern enters the image from the other side. This creates interference and
noise, see section A.3 for more information on properties of discrete Fourier
transforms.

In figure 4.16 an amplitude and phase detail of the reconstruction is
shown. The phase image again resembles the amplitude image closely. Con-
trary to the reconstruction from straight fringes, see section 4.5.2, image
quality is now sufficient to recognise uninterrupted black structures as cell
walls in the phase image. This is an indication that phase imaging is indeed
possible. This hypothesis is supported by the phase image histogram in fig-
ure 4.15. If all low amplitude area would have a random phase, this would
appear in the histogram as a noisy DC offset over the entire phase domain.
This is clearly not visible in the histogram as the phase signal is almost
completely limited within one radian considering the logarithmic scale. As
a further indication of phase imaging, a bright spot is visible in the top right
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of the phase reconstruction in 4.16. Whereas the bright spot is not visible in
the amplitude reconstruction. Although the author has insufficient biologi-
cal knowledge to predict the presence of optically active cells, the specificity
of the shape and uniqueness in position indicate that the signal is caused by
an object, rather than an artefact in reconstruction.
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Figure 4.15: Reconstructed phase of a biological sample, obtained with
curved fringe illumination and σ = 0.5 Gaussian filtering. (a) large scale
image of the reconstructed phase of the stem of a sea anemone. Cell walls
of various cells are clearly visible. A numerical artefact from propagation
is visible at the top of the image. The black box is enlarged in figure 4.16.
Concentric rings visible in the top-left corner are also visible in the electric
field of the probe reference, shown in (b). (c) shows a histogram of the
reconstructed phase. A single peak around zero phase is visible. Bar is 500
µm for (a,b).
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(a) amplitude (b) phase

Figure 4.16: Detail of sea anemone reconstruction using a σ = 0.5 Gaussian
filter. (a) electric field amplitude. Individual cells are recognisable. The
background shows significant large scale variations as well as a striped residu
of the probe function. (b) the phase of the electric field. Noise is much less
prominent and cell walls are clearly visible as solid lines. Cells in the interior
show lower phase contrast, making them harder to distinguish. In the right
(circle) an object with strong phase is visible. Bar is 100 µm. Scale is
identical for both images.
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Chapter 5

Conclusion and discussion

A ptychographical setup has been built and the tools to do reconstruction
have been developed by others and enhanced by the author of this thesis.
Tools for reconstruction include a method for back propagating, a probe
reconstruction method and an object reconstruction method. A usaf res-
olution test target has been successfully reconstructed with a structure of
2.2 µm still clearly resolvable. The resolution is limited by the pixel size
of 2.2 µm. To investigate the theoretical limits of this imaging technique
it is necessary to either increase the lensless magnification or get a camera
with smaller pixel size. Successful reconstruction of a biological was possible
after the development of a new probe reconstruction technique. Probes with
curved fringes can now be reconstructed, allowing for a more mechanically
stable setup. A stem of a sea anemone has been successfully imaged over
a field of view of 2 mm. Cell walls are clearly outlined in the amplitude
and phase image. Proof of the phase imaging capabilities of this system
is given by the line quality of reconstructed cell walls, the limited domain
of reconstructed pixel phase values and the appearance of objects in the
phase image, that are not present in the amplitude image. These three ob-
servations indicate that structures visible from the phase reconstruction are
actual and not a consequence of an undetermined phase in low amplitude
areas. Several issues remain. Firstly, a biological sample of several tens of
microns thick is likely to be bothered by multiple scattering [32] especially
for short-wavelength blue light. Secondly, a biological sample influences the
phase and the amplitude of the prove weakly. Signals resulting from noise or
unwanted interference effects may be comparable in strength to signal from
the image, hampering reconstruction. To investigate further, a sample with
low thickness and multiple 2π phase variation may be imaged.

Presently, a robust imaging method is available with good control over
experimental parameters. This can be used as a starting point for further
development. In particular, the propagation distance from the object to the
camera can be varied in a controlled way. The resolution is expected to
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increase as more diffraction angles are captured by the camera. It is unclear
however how the resolution increases as there is no Fourier transform rela-
tion between the object and the camera plane. A variation of propagation
distance would give insight into this problem.

The current reconstruction result is rather noisy and this degrades the
image quality. A Gaussian filter is introduced to reduce noise and as a
result image quality improves. Contrary to the noisy reconstruction result,
measurements of diffraction patterns and probe reconstructions are smooth.
It may be worthwhile to investigate the noise enhancement properties of the
reconstruction algorithm.

A large amount of literature [6,24,26] has been written on a variation of
image reconstruction techniques. Several approaches for specific problems
have been brought forward. By contrast, scientists in the field of coherent
diffractive imaging (CDI) seem to prefer variations of the Gerchberg method
in most cases [11, 16, 18]. It may proof useful to make a study of available
literature and asses the possibility to implement available reconstruction
literature in the field of CDI.

An important aim of this work is to pave the way for interferometric
illumination ptychography using higher harmonic sources. This work shows
the feasibility of interferometric illumination ptychograph. Several issues re-
main however. Reconstructed images are rather noisy even with a Gaussian
filter and pixel size is a serious limitation on the achievable resolution in
the Fresnel regime. To implement interferometric illumination ptychogra-
phy for higher harmonics requires operation in vacuum, where experimental
problems are more prone to appear. Probably it is useful to continue this
experiment in the visible regime to solve for problems originating from the
principle of interferometric illumination ptychography.
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Appendix A

Theory for practical
problems

A.1 Light propagation in fibres

Single-mode optical fibres can guide light in an easy and flexible way. Only
the lowest order mode can exist in a single-mode fibre. The lowest order
mode is a Gaussian amplitude distribution with a flat phase profile. Upon
entering free space, light is no longer contained in the fibre and will diffract.
The diffracted light can be described by the focus of a Gaussian beam, with
the focus located at the bare fibre exit.

Furthermore, fibres show stress induced birefringence. That is, the re-
fractive index along a material axis changes as a result of the stress on that
axis. So if a fibre is stressed by e.g. bending it, the polarisation of the light
will change. Applying stress on a fibre in combination with a polariser is
a useful way to attenuate your beam. For phase imaging, light must be
in the same polarisation state to interfere. It is likely that stress induced
birefringence occurs unintentionally while guiding fibres. This creates partly
orthogonally polarised light. To be sure of identical polarisation in a fibre
based interferometric setup, a linear polariser is advisable.

Lastly an optical fibre may leak light if the bending radius becomes very
small. In this case light from the core of the fibre can couple to modes in
the fibre cladding and leak out. In practice unwanted losses from bend-
ing are easily avoided and controlled bending provides an opportunity for
attenuating fibre conducted light.

A.2 Coherence

In an interferometer light from a single source is split into two pathways and
then recombined. By changing the length of one pathway, it is possible to
interfere light from the same source at two different points in time.
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I(τ) = lim
T→∞

1

T

T∫
0

∣∣E(t) + E(t− τ)
∣∣2dt (A.1)

I(τ) = lim
T→∞

1

T

T∫
0

|E(t)|2 + |E(t− τ)|2 + 2 Re
[
E(t)E(t− τ)

]
dt. (A.2)

The Fourier transform of the intensity as a function of time gives the
spectrum of the intensity. Additionally the integration time can be assumed
to be much greater than the delay time τ .

Î(ω) = 2 〈E〉 δ(ω) + 2 Re
[
E(ω)2

]
. (A.3)

This states the well known results that the Fourier transform of an inter-
ferometer signal is the absolute autocorrelation of the spectrum of the light
source. The third therm in the integral A.2 can be written as the product
of a carrier frequency ωc and a modulation function,

lim
T→∞

1

T

T∫
0

2 Re
[
E(t)E(t− τ)

]
dt. = C(τ)sin(ωcτ), (A.4)

where the function C can now be recognised as the coherence function.
The shape of the coherence function depends on the spectrum of the signal.
Often the coherence length is used as a characteristic length of the coherence
function. This is useful if the coherence function is a well localised function
such as a Gaussian. The definition of coherence length can be problematic
if the coherence function is oscillatory as in the case of a laser lasing at
multiple modes.

It may be intuitive to consider a heuristic argument for the coherence
length of a Gaussian spectrum. The coherence of a Gaussian is also shaped
like a Gaussian. Consider two frequencies separated by ∆λ and carrier
wavelength λ̄at full-width-half-max (FWHM) of the spectrum. Each period
the two wavelengths go ∆λ/λ̄ out of phase and after they go a full period
out of phase the signal becomes incoherent. So λ̄/∆λ cycles of length λ
pass before the signal becomes incoherent. The coherence length can be
estimated as

Lc =
λ̄2

∆λ
(A.5)

With Lc the coherence length. For phase imaging the light source must
be coherent section 2.2.1. For a 450nm, 1nm bandwidth blue laser diode,
this coherence length is in the order of 400µm. For an interferometric setup
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(a) (b)

Figure A.1: Aliasing of a circular spectrum onto a rectangular sampling
domain. (a) The theoretical spectrum has zero intensity in one of its quad-
rants to illustrate the shifting property. (b) The clipped intensities shift as
if there are periodic boundary conditions. This is clear from where the zero
intensity quadrant appears.

the coherence should be large and uniform over the path delay of the sample,
from eqs. (A.2) and (A.3) the interferometric signal is the Fourier transform
of the intensity spectrum, such that the length of large uniform interference
is inversely related to the broadest structures available in the spectrum. If
a laser is lasing at multiple modes, the effective bandwidth is the distance
between the outer edges of the modes.

A.3 The Nyquist criterion

The Nyquist criterion states that a Fourier component must at least be
sampled twice each oscillation in order for it to be measured by a discrete
detector. For some Ω bandwidth limited signal, the Nyquist distance is then
half the period of Ω. All information transmitted by the imaging system is
digitalised if the sampling is done according to the Nyquist criterion. If the
sampling is finer, the stored dataset is larger than it need be. If it is smaller
information is lost due to aliasing . Suppose some sampling frequency 2ωs,
it is impossible to distinguish the sampled signal of ωs + δω and −ωs + δω,
this follows directly from

0 1 2 3 4 5 6

x/π

−1.0

−0.5

0.0

0.5

1.0
aliassing

Figure A.2: Illustration of
aliasing. Sampling a frequency
sin(1.6x) (red) higher than half
the sampling frequency results
in it being reconstructed as
a lower frequency sin(−0.4x)
(blue, dashed).

exp
(
i2π(ωs + δω)x

)∣∣∣
x= n

2ωs

= exp
(
−i2π(ωs − δω)x

)∣∣∣
x= n

2ωs

−1n exp(iπδω) = −1n exp(iπδω).

(A.6)

The higher frequency is counted as a lower frequency and information is
lost, see figure A.2. The spectrum shifts unto itself as if there where periodic

56 APPENDIX A. THEORY FOR PRACTICAL PROBLEMS



NTM vd Voort thesis

boundary conditions. The transfer function of a microscope is usually a circle
due to cylindrical symmetry. On the other hand, most chips are rectangular
and consequently the boundary frequency where aliasing occurs is a square.
Figure A.1 shows the effect of aliassing in case a circular frequency signal is
measured by a rectangular pixel grid.

A.4 Derivation of Fraunhofer diffraction

Starting from the Fresnel diffraction equation 2.3, the Fraunhofer diffraction
equation can be proven straightforwardly by expansion of therms under the
assumption z � k(x′2 + y′2)max.

E(x, y, z) =
exp
(

ikz + ik
z (x2 + y2)

)
iλz∫∫

D

dx′ dy′E(x′, y′, 0) exp

(
ik
−xx′ − yy′

2z

)
exp

(
ik
x′2 + y′2

2z

)
.

(A.7)

In the Fraunhofer approximation the last phase therm in the integral
generates an almost flat wave front and it can be ignored. The intensity
is insensitive to phase offsets so the exponential before the integral can be
ignored. What is left has exactly the shape of a Fourier transform

E(x, y, z) = C

∫∫
D

dx′ dy′E(x′, y′, 0) exp

(
ik
−xx′ − yy′

2z

)
, (A.8)

where the prefactor has been named a constant C and the result shows
a direct Fourier transform relation between electric fields at planes perpen-
dicular to the optical axis.

APPENDIX A. THEORY FOR PRACTICAL PROBLEMS 57



Appendix B

Raw data

For the purpose of repeatability and completeness of results it is useful to
include raw data of diffraction measurements. Furthermore the performance
of probe reconstruction is also shown. Several issues may cause probe re-
construction to be faulty. In turn, faulty probe reconstruction is in many
cases the cause of a failed object reconstruction. The success of a probe
reconstruction can best be assessed by subtracting the reconstructed probe
from the corresponding diffraction measurement.
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Figure B.1: Diffraction measurement for usaf 1951 resolution target reconstruction using straight fringes.
See section 4.5.1 for reconstruction.
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Figure B.2: Difference of reconstructed probe and measured diffraction pattern for usaf 1951 resolu-
tion target reconstruction using straight fringes. Reconstruction is almost completely successful. Low
intensity residual fringing is visible. See section 4.5.1 for reconstruction.
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Figure B.3: Diffraction measurement of a sea anemone stem using straight fringe illumination. See
section 4.5.2 for reconstruction results.
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Figure B.4: Difference of reconstructed probe and measured diffraction pattern for a sea anemone stem
using straight fringe illumination. The image shows residual fringing in the central part. Reconstruction
for this image failed as a result of bad probe reconstruction, see section 4.5.2 for reconstruction results.
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Figure B.5: Diffraction measurement for a usaf 1951 resolution test target using curved illumination.
See section 4.6.1 for reconstruction results.
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Figure B.6: Difference of the reconstructed probe and measured diffraction using curved fringes. Very
little residual fringing remains over the entire domain. The residual signal is recognised as the diffracted
objects. See section 4.6.1 for reconstruction results.
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Figure B.7: Diffraction measurement of the stem of a sea anemone using curved fringes. Small cir-
cular rings can be recognised after reconstruction as black spots, probably dirt. See section 4.6.2 for
reconstruction results.
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Figure B.8: Difference of reconstructed probe and measured diffraction pattern of a sea anemone stem
using curved illumination. The Difference shows a great amount of residual fringing. Surprisingly, image
reconstruction was still successful. See section 4.6.2 for reconstruction results and a discussion on the
presence of residual fringes.
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a priori knowledge, see prior knowl-
edge

aliasing, 56
angular spectrum, 11

back propagation, 13, 18, 33
back propagation reference measure-

ment, 32
background measurement, 32
bandwidth, 13
bare fibre, 28
beam attenuation, 54
biological sample reconstruction, 41,

47
bounded object, 13

coherence function, 55
coherence length, 24, 55
coherent diffractive imaging (CDI), 4
coherent imaging, 15
coherent source, 14
constraint, 17
convergence behaviour, 35
convolution theorem, 10

diffraction, 9
diffraction pattern measurement, 31
direct problem, 15

exit wave, 8, 25
Extended Ptychographical Iterative

Engine, 16

fibre based setup, 24
Fourier space mask, 35
Fourier transform ptychography, 24
Fraunhofer approximation, 9

Fraunhofer regime, 9
free electron laser (FEL), 4
free space delay tolerance, 24
free space propagation length, 24, 28
Fresnel number, 9
fringe frequency, 26, 28, 30
fringe pattern, 5
fringes, curved, 22, 28, 44
fringes, straight, 21, 38

g(r), see phase function
Gaussian beam, 19
Gaussian filter, 44
Gerchberg algorithm, 16
goodness criteria, 33

Helmholtz equation, 11
Hermitian property, 22
higher harmonics generation (HHG),

4
home made fiber mounts, 28
Huygens-Fresnel principle, 8

ill-posed inverse problem, 15
ill-posed problem, 15
illumination function, see probe
incoherent source, 15
interference, 14
interferometer, 55
interferometric illumination ptychog-

raphy, 5, 24
interferometric setup, 24
inverse filter, see back propagation
inverse problem, 15
iteration cycle, 34

lensless imaging system, 4
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lensless magnification, 24, 30, 39
linear phase term, 22

mechanical drift, 29
multiple scattering, 42

noise, 39
noise amplification, 14
non-linear problem, 16
normalised inner product, 34
numerical aperture, 12
Nyquist criterion, 56

object function, 13
optical transfer function (OTF), 11

paraxial approximation, 9
path delay, 28
path delay tolerance, 24, 25
phase function, 20, 22
phase imaging, 42, 47
phase retrieval, 4
point spread function (PSF), 9
post filtering, 35
post selection, 34
prior knowledge, 16, 19
probe, 5, 13, 19, 25
probe drift, 21
probe reference measurement, 31
propagation direction invariance, 23
propagator, 9
ptychography, 4

Rayleigh criterion, 39
Rayleigh range, 20
reconstruct curved fringes, 22
resolution, 11

scanning disc probe, 4, 24
setup, 25
single beam reference measurement,

31
single-mode fibre, 54
small angle approximation, see parax-

ial approximation

stress induced birefringence, 54
superposition principle, 8
support constraints, 5

thermal drift, 29

update function, 17, 19
usaf 1951 target reconstruction, 38,

44

visual probe inspection, 34
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