
Utrecht University

Tailoring photonic crystal waveguides
to create chiral fields

Author:
I.M. Palstra B.Sc.

Supervisors:
N.D. Kosters M.Sc.

Prof. Dr. L. Kuipers

FOM Institute AMOLF, Amsterdam

NanoOptics Group

July 29, 2016





Abstract

In this work we present a design for a chiral photonic crystal waveguide (PhCW). This
chiral PhCW was achieved by breaking all mirror symmetries of a conventional PhCW by
adding an SiO2 substrate and shifting the positions of the air holes along the waveguide.
The resulting chiral PhCW exhibits a non-monotonic dispersion of the fundamental mode,
shifted field patterns, creation an annihilation of of circular polarization singularities, and
a shift in their position. The near-fields above this chiral PhCW have an integrated optical
chirality with a value that is 0.16 times that of circularly polarized light. As absorption
rates and refractive index in solutions of chiral molecules are chirality-dependent, this
chiral PhCW could be used as a first step towards on-chip measurements of chiral purity
of solutions of chiral molecules.





Contents

1 Chirality in light and matter 1
1.1 Optical rotation and circular dichroism . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The polarization ellipse and polarization singularities . . . . . . . . . . . . . 3
1.3 Chirality of electromagnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Sensing of chiral molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Creating chiral photonic crystal waveguides 8
2.1 Light confinement inside photonic crystal waveguides . . . . . . . . . . . . . . 8
2.2 Chirality in PhCWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Symmetry rules of the optical chirality . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Maximizing the phase shift induced by chiral interactions . . . . . . . . . . . 13

3 Simulation results 14
3.1 Design of a chiral PhCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Band diagrams of achiral and chiral PhCW . . . . . . . . . . . . . . . . . . . 14
3.3 Fields profiles of achiral and chiral PhCW . . . . . . . . . . . . . . . . . . . . 16
3.4 C-points in achiral and chiral PhCWs . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Optical chirality in an achiral PhCW . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Optical chirality of a chiral PhCW . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Outlook 22

5 Conclusions 24

A Computational cells for simulating a PhCW 28

B Optimization of optical chirality 29

C Sample fabrication 30





1 Chirality in light and matter

In nature, chirality is a commonly occurring phenomenon. Any object or system that cannot
be superimposed on its mirror image is called chiral. The word “chirality” is analogous with
the word “handedness”, and has its origin in the Greek χειρ, which means hand, as hands
are one of the the most well-known examples of chiral objects: Left and right hands are each
other’s mirror images, but it is impossible to map all the features onto each other through
rotation and translation alone.

Many (bio-)molecules like DNA, sucrose, fructose, and testosterone are chiral. Their mir-
ror images, called enantiomers, often have quite different chemical properties than the original
[1]. For example: the left-handed enantiomer of methamphetamine is a nasal decongestant
commonly found in vapour inhalers. Its right-handed enantiomer is the street drug known
as crystal meth [2, 3]. This is a clear example of how a single structural difference can lead
to dramatically different chemical properties.

Similarly to molecules, light can also be chiral. The electric field vector of a beam of
circularly polarized light (CPL), for example, will trace out a helix in 3D space. Helices are
chiral objects and can either be left- or right handed, corresponding to left- or right handed
CPL. Chiral molecules and their enantiomers have differences in the orientation and position
of their internal electric and magnetic dipoles. Due to these differences, chiral molecules and
their enantiomers will have a different rates of absorption for different handednesses of light
[4].

The differences in chemical properties of chiral molecules make quantification of the chiral
purity of a compound highly relevant. The chiral purity of a solution of molecules can be
experimentally determined by exploiting the chiral interactions between molecules and light
[4]. These interactions, and how to use them to do sensitive measurements on chiral molecules,
will be the focus of this work.

1.1 Optical rotation and circular dichroism

Absorption of light in a medium is closely related to the refractive index of the medium. In a
homogeneous medium, the refractive index of the medium ñ is a complex quantity ñ = n+ iκ
with real part n and imaginary part κ. A plane wave travelling with a frequency ω through
a homogeneous dielectric medium will have a wave vector that is affected by the refractive
index

E = E0 exp
[
i(ñk · r− ωt)

]
(1)

= E0 exp
[
i(nk · r− ωt)

]
exp

[
− κk · r

]
, (2)

where E is the complex electric field, E0 is the field amplitude, and r and t are the position
in space and time, respectively. This electric field has a phase evolution in space governed
by n, and a damping rate determined by κ. Thus, the phase is affected by the real part of
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Figure 1: Schematic of the relation between the real and imaginary part of the refractive index,
n (in green) en κ (in blue), respectively, as a function of the frequency ω. They are plotted
around the resonance frequency ω0. When ω0 is approached, the absorption increases and the
refractive index of the material changes.
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Figure 2: Schematic of optical activity. (1) A beam of linearly polarized light can be described as
two overlapping beams of CPL with equal amplitudes A1 = A2, and opposite phases φ1 = −φ2,
which gives them opposite handedness. (2) As the light passes through an optically active
medium, both beams have a different absorption (through CD) and a different refractive index
(through OR), leading to a difference in amplitude, A1 6= A2 and phase φ1 6= −φ2. (3) This
leads to a beam of elliptically polarized light, which is rotated with respect to the optical axis
of the original, linear beam.

the refractive index, and the amplitude by the imaginary part. These real and imaginary
parts are related through the Kramers-Kronig relations, which state that the absorption of
light in a medium and refractive index of that medium are coupled [5, 6, 7]. Figure 1 shows
a schematic of the relation between the real and the imaginary part of the refractive index
as a function of the frequency for systems with a single resonance at ω0. As light approaches
the resonance frequency, absorption by the medium increases, and the refractive index felt
by the light changes with respect to the value away from the resonance [7, 4].

A distinctive property of chiral molecules is that they have different rates of absorption
for left and right CPL. This differential absorption is known as circular dichroism (CD).
Through the relation between absorption and refractive index, this difference in absorption
means that beams of opposite handedness will also experience different refractive indices
when propagating through a solution of chiral molecules. This is known as optical rotation
(OR), and molecules that exhibit CD and OR are said to be optically active [4, 8].

A schematic of optical activity is shown in Figure 2. (1) A linearly polarized beam of
light can be described as two overlapping beams of CPL, with equal amplitudes A1 = A2 and
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Figure 3: A schematic of the polarization ellipse. The real part of the electric field vector traces
out the blue ellipse in time. The angle of polarization is given by θ, the ellipticity of the light is
ξ = u/v. For linear polarization, ξ = 0. For circular polarization, |u| = |v|.

opposite phases φ1 = −φ2, so they have opposite handedness. (2) When this beam travels
through an optically active medium such as a solution of chiral molecules, circular dichroism
will cause one handedness to be absorbed more strongly than the other. This will cause
the two beams to obtain different amplitudes, leading to elliptically polarized light. Optical
rotation will cause the two beams to acquire a phase shift with respect to each other, which
rotates the optical axis of the light. (3) The result is a beam of elliptically polarized light,
which is rotated around its centre.

Optical activity changes the polarization state of light. This can be described using the
polarization ellipse, which will be discussed below. After this, a more general description of
chiral interactions between light and chiral molecules will be discussed.

1.2 The polarization ellipse and polarization singularities

In a general description of light, it is always possible to deconstruct a monochromatic elec-
tromagnetic (EM) field in a sum of plane waves. Monochromatic EM fields oscillate with a
fixed frequency, causing an electric field vector at a point r to draw out an ellipse in time [9].
This ellipse is called the polarization ellipse, and it contains information on the polarization
state at r. A schematic of the polarization ellipse is shown in Figure 3. The blue ellipse is
the path traced out by the electric field vector in time, ξ is the ellipticity, which is defined as
the ratio of the semi-minor and semi-major axes u and v. θ is the angle of orientation, and
has values that range from −1

2π ≤ θ ≤ 1
2π, since an ellipse rotated by π is indistinguishable

from the original.

Generally, the electric field vector of light will always draw out an ellipse over time, which
is a (flattened)helix in 3D space. The handedness of this helix determines the direction in
which the ellipse is traced out. Linearly and circularly polarized light are special cases of the
polarization, where the ellipse is a line (ξ = 0) and a circle (|u| = |v|), respectively. Points
in space where this occurs, are known as polarization singularities, since the handedness (for
linearly polarized light) or the angle of rotation (for CPL) cannot be determined.

There is a special case of polarization singularity, where the light carries orbital angular
momentum. In these points, the light is circularly polarized, and the value of θ is singular.
These singularities of circular polarization occur in lines in 3D space, or in points when the
field is projected on a 2D plane. In these cases, they are referred to as C-lines or C-points,
respectively, and are infinitesimal in size [9]. An example of C-point is shown in Figure 4. A
path integral over θ around such a singularity will return ±π, corresponding to a topological
charge of ±1

2 . If the polarization ellipse rotates clockwise over a clockwise path around the
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Figure 4: An example of a circular polarization singularity or C-point. The colour scale indicates
the value of θ, which is the angle of orientation of the polarization ellipse. In the centre of the
figure, in an infinitesimal point, θ is undetermined, so it is a circular polarization singularity or
C-point. The topological charge is + 1

2 , as θ rotates by over π around the singularity. The sign
is positive because θ increases when a counter-clockwise path is taken around the singularity.
This means that the polarization ellipse rotates clockwise on a clockwise path.

singularity, the sign of the topological charge is positive. Else, it is negative. The sign of
the topological charge is determined by the type of singularity, and is independent of the
handedness of the light in the singularity [10][9].

The polarization ellipse is a useful tool to visualize the polarization state of an EM field.
To understand and quantify the influence of chirality in light on chiral molecules, another
quantity is needed: the optical chirality. Later on it will be made clear that the polarization
state as described by the polarization ellipse and the optical chirality are closely related, but
do not provide equivalent information.

1.3 Chirality of electromagnetic fields

The optical chirality is a measure to quantify how chiral an electromagnetic field is. In-
tuitively, it can be thought of as a measure for how quickly the field lines of an EM field
re-orient themselves in space [11]. In CPL, for example, this re-orientation takes place over
the distance of a single wavelength.

The optical chirality is given by

C(r) =
ε0
2
E(r) ·∇×E(r) +

1

2µ0
B(r) ·∇×B(r), (3)

where E(r) and B(r) are the position-dependent electric and magnetic fields, and ε0 and µ0
are the vacuum permittivity and permeability, respectively. The optical chirality was intro-
duced by Lipkin in 1964 [12], and it was initially thought to have no physical interpretation.
However, it has recently gained attention due to its connection to the asymmetry in excita-
tion of chiral molecules [13]. The asymmetry in the excitation rates of left- and right-handed
enantiomers (γL, γR) is

g(r) ≡ γL − γR
1
2(γL + γR)

, (4)

where g(r) is called the dissymmetry factor. It gives the asymmetry of the excitation rates
of the enantiomers, if they are exposed to the same EM field. The theoretical limits of
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this asymmetry are ±2, corresponding to excitation of one enantiomer, but not the other.
However, since chirality-independent interactions are generally much stronger than chiral
interactions, this limit is not achievable in real molecules [4].

Recently, it was found that the dissymmetry factor scales with the optical chirality:

g(r) =

(
− 4G′′

α′′c

)(
cC(r)

2ωUe(r)

)
(5)

= gmol · gEM(r), (6)

where c is the speed of light, ω is the frequency, α′′ is the imaginary part of the electric
polarizability of the molecules, which is the relative tendency of an electron cloud to be
distorted by en external electric field. G′′ is the imaginary part of the isotropic mixed electric-
magnetic dipole polarizability, which is a measure for the coupling between internal electric
and magnetic dipoles, and is responsible for optical activity [4]. For achiral molecules, G′′ = 0,
as achiral molecules are not optically active. Ue(r) = ε0

4 |E(r)|2 is the time-averaged electric
energy density of the EM field [13].

A notable property of Equation 5 is that it shows a clean separation of terms that depend
only on molecular properties (gmol), and terms that depend only on the properties of the
local EM field (gEM). The former consists of material-dependent constants, while the latter
is a tunable parameter. Together, they determine the asymmetry of the excitation rate of
the molecules in question. This implies that by tuning gEM through the EM fields, one can
tune the asymmetric response of chiral molecules.

We define

gEM =
cC(r)

2ωUe(r)
(7)

form Eqn. 6 as the local optical chirality. It scales with the asymmetric response of a single
chiral molecule that is located at (r) with respect to its enantiomer, if it were illuminated by
the same field, compared with the asymmetry for CPL. The normalisation with the electric
energy density is used because it makes it possible to compare the optical chirality of any
field with the optical chirality of CPL. For CPL, the optical chirality is C = ±2Ueω/c and
gEM = ±1, where the positive signs corresponds to left CPL. For unpolarized or linearly
polarized light, C(r)/Ue(r) = 0 [4].

Recent work has shown that it is possible to construct EM fields where the field lines are
more tightly wrapped than that of CPL, and have gEM > ±1, i.e. the value of CPL. EM
fields with this property are referred to as superchiral fields. Superchirality generally does
not occur in large volumes. Rather, it usually occurs in small hotspots, for instance near a
node of the field, or close to plasmonic structures [13, 14, 15, 16]. In CPL, the EM field lines
re-orient themselves over a much longer length scale than the size of small molecules, so this
“twist” in the field, which is responsible for chiral interactions, is felt only weakly by these
molecules. In a superchiral field, the field lines re-orient themselves over a shorter distance,
which is closer to the scale of the molecules [11]. Due to this, the asymmetry of the excitation
rate of chiral molecules can be greatly enhanced [17, 18, 11, 15].

Currently, the optical chirality C is a frequently-used measure to quantify the chirality
of EM fields [19, 15, 20]. Systems with (super-)chiral fields have been used to engineer the
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direction of the emission of a quantum dot [21], and for the sensitive measurement of chiral
molecules [17]. Since superchiral light enhances the chiral response of molecules, nanostruc-
tures with an enhanced optical chirality could provide a path towards on-chip measurements
of optical rotation. In the following section we present a detection scheme for such a sensor.

1.4 Sensing of chiral molecules

Measurements of optical rotation are typically performed by sending a beam of light with a
controlled wavelength and linear polarization though a cuvette, and measuring the amplitude
and polarization state of the transmitted light. Since the optical activity scales with the chiral
purity, the rotation of a linearly polarized beam can be used to determine the chiral purity
of a sample [4]. The same principle can be applied to create an on-chip method to measure
optical rotation. This could be used for cheaper measurements in a more highly controlled
environment than conventional techniques.

Nanostructures offer a high measure of control over their electric and magnetic near field,
and many nanostructures offer the possibility to be fabricated on-chip [22]. In addition to
this, their small scale would allow for smaller amounts of solution to be used to perform
an accurate measurement than with conventional techniques. This makes them a promising
candidate for on-chip sensors of chiral molecules.

Chiral molecules in the near field of a nanostructure will induce a phase shift in a light
wave travelling through the structure. In order to measure the induced phase shift, we
propose the detection scheme described in Figure 5. The purpose of the proposed sensor is to
determine the chiral purity of a solution of molecules through optical rotation. In the setup,
a beam of a monochromatic laser is split in two at a beam splitter (BS I). Each beam passes
through a nanostructure that is in contact with the molecular solution, which covers both
structures. The interactions with the molecules due to the optical chirality of the structures’
near field will induce a phase shift φC1,C2 in each of the beams. Other phase contributions
due to interactions with the molecules are collected in φrest,1 and φrest,2.

The beams interfere at a second beam splitter (BS II), and pass to two detectors (A and
B), in a Mach-Zehnder like interferometer. The total phase of the two beams at the detectors
A and B is:

φA,1 = 2ρ+ 2π + φC1 + φrest,1 + φ′ φB,1 = ρ+ 2π + φC1 + φrest,1 + φ′

φA,2 = 2ρ+ π + φC2 + φrest,2 φB,2 = ρ+ 2π + φC2 + φrest,2,
(8)

where ρ is the phase shift acquired when by a beam when it passes diagonally through a
beam splitter, the factors of π result from front reflection off mirrors, and φ′ is a tunable
phase shift. If the nanostructures are identical except for the optical chirality of their near
field, φrest,1 = φrest,2, and the intensities I on the detectors A and B is given by

IA = I1 + I2 + 2
√
I1I2 cos(φA,1 − φA,2)

= I1 + I2 + 2
√
I1I2 cos(φC1 − φC2 + π + φ′) (9)

IB = I1 + I2 + 2
√
I1I2 cos(φB,1 − φB,2)

= I1 + I2 + 2
√
I1I2 cos(φC1 − φC2 + φ′), (10)

6



Chirality in light and matter

nanostructure 1

Laser

BS I

Mirror I

B

A

path 1

path 2

ϕ´

ϕC2

ϕC1

nanostructure 2

BS II

Mirror II

Figure 5: Proposed on-chip detection scheme for chiral molecules. A laser beam is split in two
beams at a beam splitter (BS). The light is sent to two nanostructures, which have opposite
optical chirality distributions, and are both in contact with a solution of chiral molecules. Optical
chirality-dependent interactions with the molecules will induce a phase difference φC1

and φC2

in the two beams, which is measured in the Mach-Zehnder like interferometer; the two beams
interfere at a second beam splitter (BS II) and pass to two detectors. In order to determine
the sign of the phase shift, a tunable phase shift can be added to the lower branch. From the
measured phase difference between φC1 and φC2 , the chiral purity of the solution of molecules
can be determined.

where I1 and I2 are the intensities of the paths, and φ′ can be added to determine the sign
of the phase shift.

The proposed sensor measures only the difference in phase that is induced by the optical
chirality of the structures, and ignores other phase contributions. Ideally, the two nanostruc-
tures have opposite optical chirality, so that nanostructure 1 will have an enhanced interaction
with one enantiomer of a molecular solution, and nanostructure 2 will have the same enhanced
interaction with the other enantiomer. In this case, an equal ratio of both enantiomers in a
solution will yield no difference between φC1 and φC2 . This phase difference increases with
the chiral purity, and can be used to quantify the chiral purity of a solution of molecules.

As the chiral interactions scale with the optical chirality of the nanostructures, the re-
quired nanostructures must have chiral or even superchiral near fields with a preferential
handedness to do sensitive measurements. The nanostructures of the proposed sensor must
be tailored to optimize their optical chirality, and to achieve exactly opposite gEM

A potential candidate for the nanostructure in the proposed detection scheme are photonic
crystal waveguides (PhCW). They have the advantage of having a small scale and being
relatively straightforward to make, using commercially available wafers. Recent work has
shown that there are lines of circular polarization in the near fields above PhCWs [10], which
implies chiral behaviour of the near field. This makes PhCWs a candidate for the proposed
sensor.
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2 Creating chiral photonic crystal waveguides

2.1 Light confinement inside photonic crystal waveguides

In crystals, the periodic potential of charge density affects the motion of electrons through
the material. In photonic crystals, an analogous effect takes place, where a periodic variation
in the dielectric function affects the motion of photons in the material. Many different
implementations of the concept of photonic crystals exist, such as arrays of dielectric pillars
and stacked layers of materials with alternating refractive index. Light that is coupled into
a photonic crystal is strongly influenced by the periodicity in the refractive index, especially
if the periodicity is on the order of the wavelength of the light. A class of photonic crystals
exist called photonic crystal hole slabs. They consist of a thin (O(100 nm)) slab of high-index
dielectric, typically silicon, with a periodic array of air holes perforating the slab, as shown
in Figure 6a [23]. We shall here consider a silicon slab perforated with a triangular lattice of
air holes.

Slabs of dielectric have the ability to confine light. In the ray optics regime, if a beam
propagating through a high-dielectric material has a small enough angle of incidence on a
dielectric-air interface, it is a solution to Snell’s law; the light can couple to free space and
will leave the dielectric. If the angle of incidence is larger than the critical angle, the beam
will undergo total internal reflection, and light is confined to the dielectric.

In thin films, such as a photonic crystal hole slab, ray optics do not hold, and the con-
ditions for confinement are slightly different. Light in a thin film has a frequency given by

ω = c|k| = c
√
k2x + k2y + k2z , where kx and ky are parallel to the slab, and kz is perpendicular

to it. The axes are shown in Fig. 7a. In the case of thin films, light with a finite, real kz
can couple to free space and dissipate quickly; they are leaky. These eigenmodes (modes) of

the system lie above the light line or light cone, which is given by ω ≥ c
√
k2x + k2y. Because

light in modes above the light line dissipates, we will consider only modes that lie beneath it.
Modes that lie beneath the light line have an imaginary value of kz; they do not propagate
perpendicularly to the slab. Therefore, these modes are confined to the slab, and they decay
exponentially away from the it. The part of the light field that “spills” out of the slab is
called the evanescent field. The near field of a system is the part of the field where evanescent
fields have a significant contribution to the total field.

A photonic crystal hole slab that is suspended in air has mirror symmetry in its z = 0
plane, which lies in the slab. This imposes a symmetry on the modes of this system, which
can be either even or odd in z = 0. In the range of relatively low frequencies that will
be considered here, the even modes have an electric field that is mostly polarized in the
plane, and resemble transverse electric (TE) modes. The odd modes have an electric field
that is mostly polarized out of the plane, and resemble transverse magnetic (TM) modes.
Consequently, in the mirror plane that lies in the slab, the electric fields of the even modes
are oriented parallel, and the electric fields of the odd modes are oriented perpendicular
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Figure 6: (a) A photonic crystal hole slab. The blue material represents silicon, which is
suspended in air. (b) The band diagram of a hole slab. The even modes are shown in blue,
and the odd modes in green. The dispersion for light in vacuum is shown in grey, and the band
gap for the even modes is shown in light blue. In this band diagram only values for k in the
x-direction are plotted.

to the plane. The mirror symmetry in the slab ensures that the even and odd modes are
perpendicular to each other, which ensures that they are decoupled. Due to this decoupling,
energy from the even modes cannot dissipate to the odd ones, and vice versa [23].

The presence of the air holes in the slab leads to a different dispersion relation (frequency
ω as a function of wave vector k) for propagating light than can be found in bulk materials.
The dispersion relation, also called a band diagram, for a photonic crystal slab is shown in
Figure 6b. We will only consider non-redundant modes travelling in the positive x-direction
in this dispersion relation. In reciprocal space, this corresponds to 0 < kxa/2π < 0.5, where
kx is the wave vector in the x-direction, and a is the lattice constant of the hole array. The
dispersion relations of Fig 6b can be grouped by whether they have even or odd symmetry
with respect to the centre plane of the slab at z = 0. In the figure, the even modes are shown
in blue, whereas the odd modes are shown in green. The dispersion of light in vacuum is
shown by the diagonal grey line. This is called the light line.

It is clear from this figure that for odd modes, every frequency has one or more possible
values for kx. Due to this, odd modes can always propagate through the hole array, regardless
of their frequency. For even modes, there is a range of frequencies where no values of kx are
possible below the light line. This means that no light of a confined mode within this range
can propagate though the hole array; the array acts as a mirror for even modes in this
frequency range. This region of forbidden frequencies is called a photonic band gap. It is
shown in the light blue band in Fig. 6b. There are even modes in the band gap that lie above
the light line. However, these are standing waves in the z-direction. They are not confined
to the slab, so bound modes can’t couple to them. Therefore, they do not destroy the band
gap. The band gap is the basis for creating photonic crystal systems with strong confinement
of light and enhanced light-matter interactions, when complemented by the use of certain
defects of the crystal. A triangular lattice of air holes is frequently used for such systems
because it has a large band gap for even modes [23]. We will use the band gap of the photonic
crystal slab to confine light, so we will only consider the even modes of the structure from
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Figure 7: (a) A photonic crystal waveguide. (b) The band diagram of a PhCW. Here, only the
TE modes are shown. The bulk modes are shown in blue, while the fundamental mode of the
defect is shown in red.

now on.

A particular defect is created by removing a single row of holes from the hole array of a
photonic crystal hole slab to create a waveguide, as shown in Figure 7a. The resulting system
is called a photonic crystal waveguide (PhCW). Defects in the bulk of a photonic crystal have
their own associated modes, called defect modes. The mode that will be considered in this
work is the lowest-frequency defect mode of the row of missing holes. Recently, PhCW
systems have grown into an avidly studied field due to their ability to confine light inside the
row of missing holes [23].

In the band diagram of the PhCW, the band gap for even modes is the same as that
of a photonic crystal hole slab, and is highlighted in blue in Figure 7b. In this figure, far
more modes outside the band gap are visible. The smallest possible unit cell of the photonic
crystal holes slab contained a single air hole. For the PhCW, the unit cell contains many
more rows of holes in the y-direction of Fig. 7a. The extra modes are a consequence of the
resulting periodicity in the y-direction, and will be referred to as the bulk of the modes.
In addition to this bulk, there is an appearance of two modes that lie inside the band gap.
These are eigenmodes of the defect. For the purpose of the biosensor, we will consider only
the lowest-order mode of the defect, shown in red in Fig. 7b.

In PhCWs, there are two mechanisms that confine the light of the defect modes in the
line defect, which are caused by the hole array. The first is called index guiding. PhCWs
mostly operate in the infrared regime (1.4-1.6 nm), where silicon is transparent [24, 25, 26].
At these wavelengths, the hole array is a subwavelength feature, so the light experiences an
effective refractive index, which is a spatial average of the physical refractive indices. The
presence of the air holes lowers the effective refractive index of the hole array with respect
to that of the missing hole row. This confines the mode to the row of missing holes through
the same mechanism of generalized total internal reflection that was discussed above.

The second mechanism of light confinement to the missing hole row is that of the photonic
band gap. Modes that have a frequency in the band gap, can’t propagate into the bulk of
the crystal. This means that they are confined to the defect, and these defect modes decay
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exponentially into the bulk crystal. Through index guiding and defect confinement, the
fundamental mode, which has light in the row of missing holes of a PhCW, is confined to
this line, and the line defect acts as a waveguide. [27, 23]. Due to this guiding of the mode,
real values are only permitted for k|| = kx, which is why we consider only these values of k.

In addition to these properties of confinement, PhCWs can be tuned to slow down the
light travelling through the waveguide [28]. Linear light-matter interactions such as electro-
optic interaction are know to scale linearly with a measure for the “slowness” of light in a
system, known as the slowdown factor [28, 29]. The slowdown factor is defined as the ratio
of the phase velocity over the group velocity: S = vφ/vg. The group velocity is given by the
slope of the dispersion: vg = dω/dk. This means that a flat band in the dispersion relation
corresponds to slow light and a high slowdown factor. By tuning PhCWs, slowdown factors
of 60 or more can be achieved, greatly enhancing light-matter interactions [30]. Enhancement
of light-matter interactions is a desirable property for the biosensor nanostructure discussed
in Section 1.4.

2.2 Chirality in PhCWs

The circular polarization singularities above PhCWs imply chiral behaviour of the near fields.
In every period in the x-direction of the waveguide, there are two C-points on either side of the
waveguide [10]. This gives a strong indication for the presence of chiral fields above PhCWs,
which are necessary for the application of creating the biosensor proposed in Section 1.4,
as fields with a nonzero optical chirality have a preferential interaction with enantiomers of
chiral molecules.

In an EM field, the local intensity may vary, which can make the normalization of C by
the local electric energy density, as was done for gEM, problematic. The absolute excitation
rates of molecules scale, to first order, with the intensity. Therefore, to determine the total
response of an ensemble of molecules in a spatially varying EM field, we must consider C
without the local normalization. Therefore, we define this preferential handedness as the
total optical chirality

gtot =
2c

ε0ω

∫
air C(r)dV∫
air |E(r)|2dV

, (11)

where both the integrals are taken over free space; the air around the slab and inside the
air holes. This is the space that would be occupied by a molecular solution in an optical
rotation measurement. The total optical chirality gives the optical chirality of the entire near
field above the structure, normalized by the electric energy density. For CPL, gtot = ±1.
For the proposed biosensor, we need a PhCW with a nonzero gtot, and another PhCW with
the opposite gtot. In order to find a PhCW with nonzero gtot, the symmetry properties of
PhCWs must be considered.

2.3 Symmetry rules of the optical chirality

To understand the role of symmetries in optical chirality it is useful to consider an alternative
form of C. Through the Maxwell equations and the identity: ∂tB ·E−∂tE ·B = ω Im(E∗ ·B),
we can transform C from Eqn. 3:

C = − ε0
2 ω Im(E∗ ·B). (12)
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Figure 8: Mirror-symmetry properties of
E and B fields. Under mirror symmetry,
E⊥ → −E⊥, E|| → E||,
B⊥ → B⊥, B|| → −B||.
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Figure 9: The mirror planes of a PhCW,
here shown in black lines. These mir-
ror planes need to be broken in order
to achieve nonzero total optical chirality.
This can be done by shifting the a1 and
b1 rows in the x and y directions.

In a system with a mirror symmetry, the EM fields are bound to this symmetry, as is shown
in Fig. 8. An electric field component that is perpendicular to a mirror plane will be inverted
in the mirror image. A parallel E-field component will have the same sign on either side of
the mirror symmetry. For the magnetic field components, these symmetry rules are reversed.
A perpendicular B-field component will keep the same sign, and a parallel component will
be flipped. The inner product of Equation 12 can be decomposed into components: E∗ ·B =
E∗|| ·B|| + E∗⊥ ·B⊥, where || stands for components parallel to a mirror plane of the system,
and ⊥ for those perpendicular to it. Under mirror symmetry, both components will pick
up a sign, so C is anti-symmetric under every mirror plane. To make a system that has
eigenmodes with a nonzero value of gtot, every mirror plane in the PhCW system must be
broken.

In a regular PhCW, there are four symmetry planes per unit cell. One of the symmetries
is the z = 0 symmetry, which lies in the plane of the PhCW. A straightforward way to
break this symmetry is to place a glass substrate beneath the PhCW, using the refractive
index difference between the glass below and the air above the PhCW to break the top-down
symmetry.

The three symmetry planes that remain are shown in the black lines in Figure 9. These
can be broken by changing the position of the rows of holes along the waveguide. For clarity,
the PhCW air holes were labelled a1, a2, and a2 above the waveguide, and b1, b2, and b3
below it, where the a1 and b1 holes are closest to the waveguide. Since the EM field is mostly
localized in the waveguide due to the confinement described above, the rows that will have
the largest impact on the optical chirality when shifted are the two rows adjacent to the
waveguide, i.e. the a1 and b1 rows. It will be these rows of holes that will be shifted. Any
shift of these rows of holes along the waveguide (except a half-period shift in the x-direction)
will break the symmetries in the yz-plane, and shifting the a1 and b1 rows over a different
distance will also break the symmetry in the xz-plane.

The glass substrate beneath the PhCW has a consequence for the system. Since the
refractive index of glass is higher than that of air, the speed of light is reduced and light line
in the band diagram changes ω = ck → ω = ck/nglass. The light line for a PhCW with a glass
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substrate is lower than it was before the addition of a substrate. Since all modes above the
light line are leaky, it is important that the wave vector chosen for this system is sufficiently
high, in order to be far away from the light line to minimize losses.

In addition to this, a flat band of the fundamental mode is also desirable, as these areas
have a small group velocity and therefore a high slowdown factor. In an achiral PhCW, the
fundamental mode becomes more flat towards at high values of k, near the edge of the first
Brillouin zone. Because of this, we choose a wave vector of k = 0.49a/2π, where a is the
lattice constant of the hole array.

In the above sections it was shown that to achieve a nonzero gtot, the mirror symmetries
of the system need to be broken. From the asymmetrical behaviour of the optical chirality,
it is also clear how to create two PhCWs with opposite gtot. Since the optical chirality is
asymmetric under mirror symmetry, so is gtot. If a single PhCW is designed with optimized
gtot, its mirror image will have opposite gtot. These two mirrored PhCWs can form the two
nanostructures required for the proposed biosensor.

2.4 Maximizing the phase shift induced by chiral interactions

In the proposed biosensor, measurement of the phase difference between the two paths will
give information on the chiral purity of the sample. Since optical activity effects are typically
weak [4], it is important to maximize the phase shift induced by the molecules. There are
some quantities that can be expected to scale, to first order, with the phase shift, such as
the total optical chirality of the system, and the concentration and rotating power of the
molecules. This gives the following scaling relation for the phase shift from a single chiral
PhCW:

∆φ ∝ [α]20λ · ρ · gtot · L · S. (13)

Here, [α]20λ is the rotatory power of the molecules at 20◦C at a wavelength λ. ρ is the
concentration of the molecules, gtot is the total optical chirality of the near field, L is the
length of the waveguide, and S is the slowdown factor.

The typical operating wavelength of PhCWs is in the 1.4-1.6 µm range, although molecular
resonances are typically in the visible or ultraviolet regime [4]. The Drude equation gives
an estimate of how the rotatory power of molecules changes as the excitation wavelength is
brought further from their resonance:

[α]20λ =
∑
j

Aj
λ2 − λ2j

, (14)

where the sum is over all the resonances of the molecule j, Aj is a constant appropriate to
the absorption at λj , and λ is the wavelength used to excite the atoms. The further λ is away
from resonance, the smaller the chiral interaction [4].

To achieve a maximum phase shift, the PhCW must be as long as possible while still
keeping a measurable transmission. The PhCW must be optimized to operate at a wavelength
that is as close as possible to the resonance frequency of the chiral molecules, and to have
a high slowdown factor and a high total optical chirality. We will focus on optimizing the
PhCW to achieve a high optical chirality.
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3 Simulation results

3.1 Design of a chiral PhCW

For the design of the photonic crystal waveguide, the silicon slab was chosen to be 220 nm
thick. The lattice constant a of the air holes is 420 nm, in a triangular lattice. The air holes
are cylindrical, and have a radius of 120 nm. These parameters of the PhCW yield a large
band gap, which is desirable when confining light [23]. A row of missing holes forms the
waveguide, as discussed above.

To determine the complex components of the electromagnetic near fields of PhCWs, the
eigenfrequencies and field components of the PhCW defect mode were numerically calculated
using the MIT Photonic Bands (MPB) package [31]. In these simulations, a computational
cell contains a single period a in the x-direction (along the waveguide), 22 rows of holes in
the y-direction, and the height of the cell in the z-direction is 4 times the thickness of the
silicon slab; the (x, y, z) dimensions of the cell are (a, 11

√
3a, 880 nm), where a=420 nm. A

full description of the computational cells can be found in Appendix A.
MPB assumes periodic boundary conditions (PBC) in all directions, which is undesirable

in the y and z-directions. To circumvent this problem, the unit cell is taken to be sufficiently
large in the y and z directions. Since the field decays exponentially away from the slab and
the defect, the effect of PBC will be small far away from these areas.

To determine the best position of the air holes to achieve the highest total optical chirality
gtot, a four-dimensional parameter sweep was done for the positions of the rows of holes on
either side of the waveguide. For each position of the holes, the EM field components were
computed. The total optical chirality was calculated for every point in this parameter space,
and the one with the highest value was selected. The values of the parameter sweep can be
found in Appendix B. The final design of the waveguide is shown in Fig 10a. For comparison,
a top view of the achiral and chiral PhCW are shown in Figs. 10b and 10c. They contain
two unit cells of the PhCW side by side, and show three rows of holes on either side of the
waveguide. In this chiral PhCW, the first row of holes above the waveguide, the a1 row, was
shifted in the x and y directions by (0.29, 0.20)a, respectively. The first row of hole below
the waveguide, the b1 row, was shifted only in the x-direction by +0.60a. For this optimized
structure, we will examine the calculated modes in more detail.

3.2 Band diagrams of achiral and chiral PhCW

The band diagrams of the achiral and chiral PhCW are shown in Figures 11a and 11e,
respectively. The band structure of the achiral PhCW are known from literature [23], but
the dispersion of the chiral PhCW is somewhat different. To investigate the difference between
the achiral and chiral PhCW band diagrams, several band diagrams were calculated, for hole
shifts in between those of the chiral and achiral PhCW, with equidistant fractions ζ of the
total shift, where ζ has values from zero to one: ζ = (0, 0.25, 0.5, 0.75, 1). For example,
at ζ = 0.5, the holes are halfway in between the positions of the achiral and chiral PhCW.
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Figure 10: (a) Design for a chiral photonic crystal waveguide. There is a glass substrate
beneath the 220 nm silicon slab, which is not shown here. (b) An achiral PhCW and (c) a chiral
PhCW. The range between the a3 to the b3 rows are shown, with two unit cells side by side.

(a) ζ=0, achiral (b) ζ=0.25 (c) ζ=0.5 (d) ζ=0.75 (e) ζ=1, chiral

Figure 11: Band diagrams of a PhCW for different positions of the two rows of holes adjacent to
the waveguide. Here, k̃ is the dimensionless wave vector k̃ = kxa/2π and ω̃ is the dimensionless
frequency ω̃ = ωa/2πc. The band gap is shown in light blue. The blue lines outside the band
gap indicate the bulk of the modes. The lines inside the band gap are the defect modes, of
which the red line is the fundamental mode. The silicon light line is given by the grey, diagonal
line. As ζ increases, the shape of the fundamental mode changes, and it leaves the band gap
between 0.5 ≥ ζ ≥ 0.75.

Although every waveguide with ζ 6= 0 is chiral, only the PhCW with ζ 6= 1 will be referred
to as the chiral PhCW. The band diagrams for 0 < ζ < 1 are shown in Figures 11b-11d.

The defect mode of the achiral waveguide (the red band in Fig. 11a) starts as a monotonic,
decreasing function, but as the holes are shifted to the position of the chiral waveguide, the
mode becomes non-monotonic, exhibiting a bump near the silica light line, after which it
decreases, and becomes flat near the edge of the Brillouin zone. Remarkably, the fundamental
mode is partially outside the band gap for ζ = 0.5 and ζ = 0.75.

As ζ is increased, two higher-order defect modes appear inside the band gap. They to
have dropped down out of the bulk of modes above the band gap. In addition, another band
has appeared below the fundamental mode, which is only above the bulk for k̃ > 0.42.
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3.3 Fields profiles of achiral and chiral PhCW
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Figure 12: Simulated field intensities of the electric field components of the electric and
magnetic field for the chiral PhCW, 20 nm above the surface of the slab. In every frame, the
range of the a3 to the b3 rows is shown, with two unit cells side by side, and the intensities are
all normalized to one.
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Figure 13: Simulated field intensities of the electric field components of the electric and
magnetic field for the chiral PhCW, 20 nm above the surface of the slab. In every frame, the
range of the a3 to the b3 rows is shown, with two unit cells side by side, and the intensities are
all normalized to one.

Measurements of the near fields of PhCWs typically occur several tens to a few hundreds
of nm above the surface of the silicon [32]. We will consider the field profiles of our PhCWs
20 nm above the surface of the silicon. The field intensities of the chiral and achiral PhCWs,
as found in simulations, can be seen in Figures 12 and 13. The free space wavelength of the
fundamental mode was found to be 1570 nm at kx = 0.49. In these figures the range of the
a3 to the b3 rows is shown, with two unit cells side by side. As the relative field intensities
are not important here, all field components are normalized to 1.

The fields of the achiral PhCW are known from literature. In this system, the symmetry
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Figure 14: Simulated profile of |Ex|2 in the transition from an achiral to a chiral PhCW. Every
frame is taken for a different position of the holes, progressing from the achiral PhCW (left), to
the chiral PhCW (right)

planes of the PhCW are imposed on the intensity profiles, which are symmetrical in these
planes [23]. In the chiral PhCW, these symmetry planes no longer exist, which is reflected in
the intensity profiles; these do not exhibit any symmetries. In addition, the regions of high
intensity have shifted to the region of the a1 to a3 holes, whereas the relative intensity in
the b1 to b3 region has decreased. In contrast, for the achiral PhCW, the fields were mostly
confined to the region between the a2 and b2 holes. As discussed above, the light is confined
to the missing hole row by index guiding and the guiding due to the band gap. In the achiral
PhCW, the defect was only a single row wide. When the holes were shifted, the defect became
three rows wide. This leads to a wider distribution of the field in the y-direction.

There are several similarities between the field profiles of the chiral and achiral PhCW.
However, when ζ is varied in steps, it becomes clear that the field profiles exhibit a complex
behaviour. The intensity profile of Ex, as the holes are shifted in steps, is shown in Figure 14.
The same values of ζ were taken as in Figure 11. In Fig. 14, lobes of the field connect
diagonally with the smallest shift in hole position from the achiral PhCW. The reason for
this is not easily explained, and requires further investigation to understand.

3.4 C-points in achiral and chiral PhCWs

With the calculated field components, the polarization singularities can be found. In thin
films, the polarization ellipse is often considered parallel to this film [24]. This is an approx-
imation that is only completely true in the centre plane of the film. Away from this plane, a
small out-of-plane component of the electric field slightly tilts the polarization ellipse. Here
we will consider the polarization ellipse parallel to the slab of the PhCW.

The C-points were found by plotting maps of θ, shown in Figure 15, for a chiral and an
achiral PhCW, and for three equidistant steps in between, with the same values of ζ as in
Figures 11 and 14. The C-points were found by eye at the points where lines of constant θ
intersect. In each figure, the range between the a3 to the b3 rows is shown, with two unit
cells side by side, and the C-points are indicated on the left of the two by white dots. In both
the chiral and the achiral PhCW, there are points around which θ changes by ±2π in stead
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Figure 15: Location of polarization singularities in a chiral and achiral PhCW. The C-points
are indicated with white dots on the left of the two unit cells shown. As ζ increases, the position
of the C-points changes, and they are created and annihilated.

of ±π, within the resolution of the calculations. At this resolution, this means that there
must be two C-points within 13 nm of each other, illustrating the infinitesimal size of these
singularities.

When the a1 and b1 rows of holes are shifted with respect to their initial positions, the
positions of the C-points in the unit cell changes. In addition to this, the number of C-points
is not constant. It is possible for C-points to be created and annihilated with each other, if
they have the correct geometry and topological charge [9, 32]. It appears that C-points of
the PhCW are created and annihilated as the holes are shifted. When ζ = 0.25, there are
eight less C-points in the unit cell than in the achiral PhCW. The C-points near the a2 and
a3 rows have annihilated with each other, as have the C-points near the b2 and b3 rows. At
ζ = 0.5, four new singularities have appeared: one pair is close to the a2 holes, and the other
inside the b2 holes. When ζ goes from 0.75 to 1, several more C-points appear in the region
between the b1 and b3 rows.

The shift of C-points in the plane above the chiral PhCW and the altered intensity profiles
give an indication that the near field of the chiral PhCW is itself chiral. However, for the
desired biosensor, the C-points do not give enough information to determine the asymmetric
response of chiral molecules. For this, the optical chirality of the chiral PhCW must be
considered.

3.5 Optical chirality in an achiral PhCW

Using the six field components, the optical chirality C and the local optical chirality gEM
are calculated, using Eqns. 7 and 12. The results for the local optical chirality of the achiral
PhCW are shown in Fig. 16a. The colour scale is taken to be linear for a range around zero,
and symmetrically logarithmic outside that range. The linear range is −0.03 < gEM < 0.03
and is indicated in the colour scale. In this figure, the positive(negative) values correspond
to left(right)-handed optical chirality, and the C-points are indicated with black dots.

Next to the a1 and b1 holes, on the side that is farthest from the waveguide, hotspots
of superchiral light are visible, in pairs of opposite handedness. Each hotspot extends, with
decreasing gEM, to the edge of the line defect. The highest value for the optical chirality
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Figure 16: gEM and C of an achiral (a,b) and a chiral (c,d) PhCW. Positive(negative) values
correspond to left(right)-handed optical chirality. The colour scale is linear in the range indicated
by the black lines, and symmetrically logarithmic outside it. The range between the a3 to the
b3 rows is shown, with two unit cells side by side. C-points are indicated by the black dots on
the left unit cell.

in the fields at 20 nm above the PhCW is gEM = 10, which is 10 times higher than CPL.
The highest value of the local optical chirality in the air above the PhCW can be found at
the silicon-air interface. Here, every superchiral hotspot next to the a1 holes has a value of
gEM = ±24.

Whereas the local optical chirality gEM is normalized by the local electric energy density,
the optical chirality C, as given in Eqn. 3, is unnormalized. Therefore, it takes into account
that the contribution of a volume at r, to the total chiral response of an ensemble of chiral
molecules, scales with the intensity of the EM field at r. So if we want to visualize the
differential rate of absorption, we must consider a map of C, shown in Figure 16b. This
figure also uses a symmetrical logarithmic colour scale. As C scales with the intensity, is
has been normalized to ±1, and the linear scale is taken in the range −10−2 < C < 10−2

The relative contribution of the area’s close to the waveguide has increased, due to the high
relative intensity.

A notable feature in the field maps of gEM and C of the achiral PhCW are the planes
of anti-symmetry in every mirror plane of the system, which were predicted in Section 2.3.
Every field component with right-handed optical chirality is paired with a component with
left-handed optical chirality on the other side of a mirror plane. These parts exactly cancel
each other out, so that the total optical chirality of the system, gtot, is zero. This confirms
the prediction that an achiral PhCW is not suitable for the detection of chiral molecules,
even though strong superchiral hotspots are present in the near fields.

Initially, the C-points in the near fields of Figure 15 seemed like a promising lead to the
chiral behaviour of the near fields of PhCWs, since the light at the C-points is circularly
polarized. However, the optical chirality map of the achiral PhCW show that the C-points
are positioned on the symmetry planes of the PhCW. So, remarkably, these singularities with
circular polarization apparently have zero optical chirality. The solution to this paradox lies
in the definition of chiral objects and the behaviour of evanescent fields.

In a true evanescent field, the out-of-plane component (z) of the EM fields is purely imag-
inary, so there is no phase evolution in the z direction. A polarization ellipse perpendicular
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to this evanescent component will not draw out a helix in the z-direction, but a (flattened)
cylinder, which is not a chiral object. This means that elliptical or even circular polarization
in an evanescent field in no guarantee of optical chirality.

3.6 Optical chirality of a chiral PhCW

In the process of shifting the holes to obtain a chiral PhCW, the field map of the local
optical chirality has changed, as shown in Figure 16c. The symmetrical pairs of (super)chiral
hotspots have disappeared. Instead, strong right-handed (negative sign) superchiral hotspots
appear below the a1 holes, and another one above the a2 holes. A strong hotspot with left
handedness connects the two. At 20 nm above the slab, the strongest values of right- and left-
handed optical chirality are gEM = −24 and +19, and are positioned just above the a2 holes
and below the a1 holes, respectively. The highest value for the local optical chirality of the
chiral PhCW in air has a value of gEM = −62. It is directly above the point with gEM=−24,
at 200 nm above the silicon. Compared to the achiral PhCW, the superchiral hotspots of the
chiral PhCW in the region of a1-a3 have grown stronger, whereas the hotspots on the b1-b3
half are weaker with respect to the achiral PhCW.

In the achiral PhCW, the C-points occurred on the nodes of the local optical chirality
field. In the chiral PhCW, they are not exactly in the nodes any more, but off to one side of
it. All of them are close to a node, except one, which is in the centre of a strong superchiral
hotspot to the left of the a1 holes. This is an example of a C-point with a high optical
chirality The rest of the C-points have a relatively low gEM.

The total optical chirality of the chiral PhCW has a value of gtot = 0.16, so over the
range of this photonic crystal, an ensemble of molecules would have an excitation asymmetry
that is 0.16 times the value if they were illuminated with a beam of left CPL with the same
intensity. This shows that it is possible to create a PhCW of which the near-fields have a
nonzero optical chirality.

3.7 Discussion

In the numerical simulations presented above, it was assumed for simplicity that, although the
substrate broke the z = 0 symmetry, the modes are still perfectly even and odd in the z = 0
plane. Due to the small difference in refractive index between the air and glass compared
to that of silicon, this is a credible assumption. If the proposed biosensor were realized, the
surface of the PhCW used would be covered in an aqueous solution. Since the refractive
index of water is close to that of glass (εH2O = 1.7), the z = 0 symmetry would increase, and
the assumption would improve.

The chiral PhCW presented above could form the basis of on-chip biosensor measure-
ments. A PhCW has the benefit of slowing down light passing through it, which could
enhance light-matter interactions by an order of magnitude [33, 34]. However, the optical
chirality of the near fields of the chiral PhCW are an order of magnitude smaller than that of
CPL. In addition to this, silicon PhCWs are typically operated in the infrared (λ ∼ 1.5µm),
where silicon is transparent [32, 35, 23]. The resonance of chiral molecules is usually in the
visible or in the near-infrared. Through the Drude equation, shown in Eqn. 14, the phase
shift will shrink by an order of magnitude due to this mismatch in frequencies.

Due to the problems associated with the current chiral PhCW, the phase shift of the light
in a chiral PhCW will be smaller than that in conventional OR measurements, potentially
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making it unmeasurably small. Scaling down the PhCW and using a material that is trans-
parent for visible light would allow one to approach the resonance frequency further. Tuning
the PhCW to have a higher slowdown factor and a higher optical chirality would also increase
the sensitivity of the sensor.

The goal of finding a structure with chiral near fields was to induce a phase difference be-
tween two paths when the structure is brought into contact with a solution of chiral molecules.
For this, a PhCW was needed of which the total optical chirality is nonzero. The numerical
results show that such a chiral PhCW is theoretically possible, but they are yet to be con-
firmed experimentally. It has been demonstrated experimentally that the field components
of a PhCW can be determined using a phase-sensitive near-field scanning optical microscope
(NSOM) [25, 32]. The same method could be used to find the near field components of the
chiral PhCW presented here.
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4 Outlook

In order to approach a chiral PhCW that is suitable for the proposed biosensor, it is neces-
sary to increase the total optical chirality gtot of the near fields. Since sweeping the entire
4D parameter space of the positions of the air holes is computationally expensive, a global
optimization technique is preferable to optimize the positions of the a1 and b1 rows of holes.
In order to achieve higher values of gtot, other parameters, e.g. the radii of the a1 and b1
holes could be varied.

The simulation predictions in this thesis have not yet been experimentally confirmed. We
propose near field optical scanning microscope (NSOM) measurements in order to experi-
mentally determine the field components of the presented design of a chiral PhCW. Recent
work has shown that, using a polarization-sensitive NSOM, the different field components of
a near field can be separated to come to a full vectorial mapping of the EM fields [25, 32].
We propose the following sample design suitable for such an NSOM measurement.

Although we do not present measurement results here, the three types listed below were
fabricated on a silicon wafer. More information on the fabrication process can be found in
Appendix C.

In order to excite the fundamental mode of the PhCW, light is coupled into the silicon
film using end fire coupling. In order to minimize noise by light scattering from the edge of
the sample, the PhCWs are placed at least 1 mm away from the edge of the substrate. A
1570 nm laser spot is focused on the end of a rectangular waveguide is 3 µm wide, 220 nm
high and 1.3 mm long, and is connected to the PhCW.

In order to be able to separate the x and y components of the fields, the NSOM needs to
be calibrated with the fields of an achiral PhCW [25]. To minimize misalignment that could
occur when moving the probe towards the achiral PhCW, the two types of PhCWs must
be paired close to each other on the sample. We propose three types of PhCW that can be
etched on the sample. These three types are shown in Figures 17a, 17b and 17c.

Type 1 consists of two PhCWs, an achiral PhCW (above) and a chiral PhCW (below),
connected by a Y-junction, as shown in Figure 17a. This junction is connected to a single
incoupling rectangular waveguide. The entrance of the Y-junction is 0.5 µm, and the end
of the rectangular waveguide tapers from 3 µm to this width over the last 70 µm before
connecting to the Y-junction. The design of this junction was taken from the work of Zhang et
al. [36]. An enlarged view of the Y-junction is shown in Figure 18a. An s-shaped rectangular
waveguide of 0.5 µm, with a bending radius of 90 µm, connects the ends of the Y-junction to
the start of the PhCWs. The last 20 µm before the PhCW, the waveguide tapers to fit the
width of the PhCWs missing line. The connection between the rectangular waveguide and
the PhCW is shown in Figure 18b.

The second type has a rectangular waveguide for the incoupling with the same dimensions
as the type 1. After the light is transmitted through an achiral PhCW, it passes through a
second rectangular waveguide (dimensions: 220 nm×500 nm), which is connected to a chiral
PhCW. The distance between the two PhCWs is 40 µm.
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Outlook

achiral PhCW

chiral PhCW
20 μm

(a) Type 1

achiral PhCW chiral PhCW

20 μm

(b) Type 2

achiral PhCW

chiral PhCW
20 μm

(c) Type 3

Figure 17: Proposed types of incoupling waveguides. The blue area indicates where the silicon
would be etched away. The light blue areas are the chiral and achiral PhCWs.

The third type consists of two parallel rectangular waveguides of 3 µm wide and 220 nm
high, which each taper to connect to a PhCW, an achiral and a chiral one. The two waveguides
are 10 µm apart. This type does not rely on successful fabrication of a Y-junction as type 1
does, or on a high transmission of the light, as type 2 does. However, when the light has been
coupled into the achiral PhCW in order to calibrate the setup, the sample must be moved
by 10 µm, with the risk of misaligning the sample for the end fire coupling.

For every type, at the end of the last PhCW, a rectangular waveguide guides the light
away from the structure over 20 µm, after which it flares out to a width of 10 µm over a
distance of 70 µm. In this way, light is dumped into the bulk of the silicon, in order to
minimize back-scattering of the light which could add noise to measurements.

1 μm

(a)

2μm

(b)

Figure 18: Details of elements used in the incoupling waveguides. The blue area indicates
where the silicon would be etched away. (a) Y-splitter used to divide the incoupling wave in
two, as used in type 1. (b) Waveguide that connects a rectangular waveguide to a chiral PhCW.
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5 Conclusions

In this work, we have presented a first design for a chiral photonic crystal waveguide, based
on numerical simulations, that could be used for on-chip optical rotation measurements. This
chiral PhCW requires an optimized optical chirality of its near fields to maximize the chiral
interactions with molecules. In order to achieve nonzero optical chirality in the near fields of
a PhCW, every symmetry in the system needed to be broken. This was achieved by adding
a glass substrate below the silicon slab, and by shifting the two rows of air holes adjacent to
the waveguide.

In the well known achiral PhCW, the dispersion of the defect mode is concave and mono-
tonic. As the air holes are shifted to the position of the chiral PhCW, the dispersion becomes
non-monotonic. In addition to this, two higher-order modes are pulled down out of the bulk
of modes above the waveguide into the band gap. When the holes of the achiral PhCW are
shifted in small steps to the positions of the chiral PhCW, the calculated intensity profiles of
the fields undergo erratic changes.

We found that the optical chirality of a system is anti-symmetric under mirror reflection.
On every mirror plane of an achiral PhCW, the optical chirality was found to be zero. The
C-points of these PhCWs were all located on these symmetry planes. Although the light at
a C-point is circularly polarized, the optical chirality there is zero. We showed that circular
polarization of light does not always correspond to chiral light when at the nanoscale.

The achiral PhCW was found to have superchiral hotspots, one of each handedness next
to every air hole along the waveguide. At 20 nm above the silicon, they had a value of
gEM = ±10. At the air-silicon interface, these same hotspots had a value of ±24. The chiral
PhCW also exhibited strong superchiral hotspots at 20 nm above the surface, with maximum
values of gEM = −24 and +19. At 200 nm above the surface, the highest value of the local
optical chirality in free space was found, with a value of gEM = 62, which is 62 times the
value for CPL.

The total optical chirality, which was found by integrating the optical chirality in the air
above the chiral PhCW and in the air holes, and normalizing by the electric energy density
integrated over the same volume, was found to be 0.16. Thus, it is possible to create a
photonic crystal waveguide with chiral near fields. This nanostructure is possibly the first
step towards sensitive, on-chip measurements or the optical rotation of chiral molecules.
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A Computational cells for simulating a PhCW

A top-down view of the computational cells of the achiral and chiral PhCW is shown in
Figure 19. Both slabs consist of 220 nm thick silicon, with bulk SiO2 filling the half-space
beneath them, and vacuum above them and inside the holes of the PhCW. The array of air
holes is triangular, and has a lattice constant a of 420 nm. The air holes themselves have a
radius of 120 nm. The computational cell contains 22 rows of holes in the y-direction, and a
single period in the x-direction. The height of the cell is four times the slab thickness, so the
resulting cell is (a, 11

√
3a, 880 nm). For the chiral PhCW, the a1 row was moved in the x

and y direction by (0.29, 0.20)a, respectively. The b1 row, was shifted only in the x-direction
by +0.60a.
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Figure 19: The computational cells for the (a) achiral and (b) chiral PhCWs. Both slabs
consist of 220 nm thick silicon, with bulk SiO2 filling the half-space beneath them, and vacuum
above them and inside the holes in the slab. The array of air holes is triangular, and has a lattice
constant a of 420 nm. The air holes themselves have a radius of 120 nm. The computational
cell contains 22 rows of holes in the y-direction, and a single period in the x-direction. The
height of the cell is four times the slab thickness, so the resulting cell is (a, 11

√
3a, 880 nm). For

the chiral PhCW, the a1 row was moved in the x and y direction by (0.29, 0.20)a, respectively.
The b1 row, was shifted only in the x-direction by +0.60a.
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B Optimization of optical chirality

In order to find an optimal value of the total optical chirality gtot from Eqn. 11, a parameter
sweep was done for different positions of the two rows of air holes of the PhCW on either side
of the waveguide. This encompassed a sweep of a 4D parameter space. The results of this
sweep are shown in Figure 20. The outer axes indicate the different positions of the b1 row of
holes. For every different combination of x and y positions of this row of holes, a 2D sweep
of different x and y shifts of the a1 row of holes was done. For each of these combinations
of parameters, gtot was calculated. The result of the sweep shows the highest value of gtot
around an (x,y) shift of the a1 holes of (0.33, 0.14)a and (-0.40, 0.00)a for the b1 holes in the
parameter space explored here, where a is the lattice constant of the hole array. A random
walk in parameter space of the a1 holes yielded a value that was somewhat higher than the
one found in the 4D sweep, at (∆a1,x, ∆a1,y)=(0.29, 0.20)a, and (∆b1,x, ∆b1,y)=(-0.40,0)a,
with a total optical chirality gtot = 0.16.

0.16

0.0

0.8

0.4

0.12

g t
ot

Δ
a 1

,y
(a

)

Δ
b 1

,y
(a

)

0.26 0.33 0.40

0.60 0.67 0.74

0.00

0.07

0.14

Δa1,x(a)
0.26 0.33 0.40 0.26 0.33 0.40

0.00

0.07

0.14

0.00

0.07

0.14

0.00

0.07

0.14

Δb1,x(a)

Δa1,x(a)Δa1,x(a)

Δ
a 1

,y
(a

)
Δ
a 1

,y
(a

)

Figure 20: 4D parameter sweep of the position of the first two rows of air holes. The colour
scale shows the total optical chirality gtot of the PhCW. The outer axes show the relative shift
of the b1 row of holes in x and y, the inner axes show different positions for the a1 row.
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C Sample fabrication

The achiral and chiral PhCWs were fabricated on a Soitec silicon on insulator (SOI) wafer
piece with 220 nm silicon on 1 µm of SiO2, layered on bulk silicon. The process of fabricating
the structures is shown schematically in Figure 21.

The Soitec wafer was sawed to approximately 12×12 mm with a dicing saw. After that,
the sample was cleaned with acetone and a small scratch was made on the sample. This
scratch will later be used to cleave the sample. To remove any organic material, the sample
was treated with base piranha (5:1:1 mixture of H2O, NH4OH 30% and H2O2 30%) and
exposed to an oxygen plasma.

After cleaning, the sample was primed with 1,1,1,3,3,3-Hexamethyldisilazane (HMDS),
which was spin coated (Fig. 21a). Then, undiluted Chemically Semi-Amplified Resist (CSAR
62 AllResist CSAR AR-P 6200.09) was spin coated (Fig. 21b). After spin coating, the
substrate was cleaved with an edge cleave-tool. This cleaved edge will form a straight end
facet for end fire coupling.

The areas of the silicon that needed to be etched away were illuminated with a electron
beam (Fig. 21c), which wrote the desired pattern into the resist. The incoupling waveguides
were written up to the cleaved edge. After exposure to the electron beam, the resist was
developed in pentyl acetate. The development of the resist was stopped in a mix of 4-methyl-
2-pentanone and 2-propanol (9:1). Finally, the sample was rinsed in 2-propanol and dried.
During this development step, the illuminated resist is removed (Fig. 21d).

In order to remove the oxide layer that forms naturally on the silicon wafer, the sample
was etched with a Cl2 plasma. This is necessary as the plasma used for the next etching
step do not etch SiO2 well. For the etching step, the two cleaved halves of the wafer were
laid down with the broken sides adjoining, to reduce effects of the cleaved edge. Then the
wafer was etched with HBr and O2 plasma (Fig. 21e). In this step, the silicon under the
removed resist is etched away. The remaining resist is removed by submerging the sample
base piranha, and cleaned by rinsing it with water (Fig. 21f).

This fabrication technique was successful. Several scanning electron microscope (SEM)
images of the fabricated sample are shown in Figure 22.
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Sample fabrication
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Figure 21: Schematic illustration of the fabrication process (not to scale). (a) Start with a
cleaned and primed 220 nm wafer of Si on 1 µm of SiO2, on a 1 mm Si substrate. (b) Resist
was spin coated on. (c) The structures were written into the resist using a focused electron
beam (e-beam). (d) The illuminated resist was developed in pentyl acetate. (e) The oxide layer
on the silicon was removed with Cl2 plasma, and the Si under the removed resist was etched
with HBr O2 plasma. (f) The remaining resist was removed with base piranha.
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Sample fabrication

(a) (b)

(c) (d)

Figure 22: SEM images of the fabricated sample. (a) The connection between the rectangular
waveguide and the chiral PhCW. (b) The Y-junction of the type 1 PhCW. (c) The achiral and
chiral PhCWs above each other, where the achiral PhCW is above the chiral PhCW. (d) The
array of type 1 waveguides on the sample.

32



Acknowlegdements

Many people have contributed to the production of this thesis, and I am grateful to every
one of them. Kobus, your boundless enthusiasm for my project and vast knowledge of the
workings of light at the nanoscale has made our weekly meetings a pleasure, which I always
left with new energy and inspiration. Dolfine, as my direct supervisor and office mate, you
helped me with my long-term planning, and were always prepared to help me work out the
knots in my brain into organized narratives. I had fun in the lab with you, even if we haven’t
been able to make everything work yet, and none of it is in my thesis. Filippo, thank you
for helping me lay down the mathematical foundations on which I built my thesis. Without
your help, many more of my results would have remained unexplained. All of the NanoOptics
group, I had a wonderful year working with you, in a friendly and welcoming atmosphere
in the group. Whenever I would go to someone for advice, I would receive the answer: “Of
course I’ll help you! How about right now?” You are great to work with, and you made
me feel at home from day one. To Dimitry, Hans and Andries, thank you for the time you
took with me to figure out how to best fabricate my sample. Special thanks to Dimitry for
putting in many hours to discover the right method of fabricating my sample. I hope that in
the future, we will be able to do measurements on it. Last but not least, thank you Gordian,
for being at my side, for listening to my troubles and my triumphs, for reminding me to
look after myself, and always helping me put my worries into perspective. Thank you all for
helping me with my thesis. It’s been a great year.

33


