
The concept and automatic generation of the
Curved Nonogram puzzle

by Tim de Jong

Master Thesis

ICA-4123689

Game and Media Technology
Utrecht University

supervised by
Marc van Kreveld

and Maarten Löffler

July 8, 2016

Abstract

In this paper we introduce a variation on the Nono-
gram puzzle that we call the Curved Nonogram. The
rules for colouring are similar, but instead of being
constrained to a grid it is structured by arbitrary
curves that can take any shape. This allows for puz-
zles that feel more unique and can have more beauti-
ful images hidden in them.

Together with the introduction of this new puzzle,
we define classes of solvability for it and provide mea-
surements to judge its aesthetics. We also propose
an algorithm that can generate these Curved Nono-
grams, taking the desired solution image as input.
We test this algorithm on 16 varied input images and
find that all of the outputs have a unique solution
- an important requirement for puzzle-book puzzles,
and at least 10 of them satisfy the aesthetic criteria
sufficiently that they could be used in a puzzle book.

1 Introduction

1.1 Nonograms

Nonograms, also known as Paint-by-numbers puzzles
or Japanese puzzles, are a popular type of pencil-
and-paper puzzle that can be found in puzzle books
around the globe. The goal of the puzzle is to make
a picture appear by colouring the correct cells in a
square grid, according to the given row- and column
descriptions. Figure 1 shows an example of a Nono-
gram. The description of a row or column consists
of a sequence of numbers, which are the lengths of
the sequences of coloured cells that appear in it. For
example, the number 3 on the second row means that
this row will have one uninterrupted sequence of three
coloured cells. The puzzler can use this information
to reason which cells should be coloured and which
should be left empty.

A Nonogram starts as an empty square grid with
descriptions, and ends with an image revealed in the
grid. The discovery of the image acts a reward for
solving the puzzle.

1.2 Curved Nonograms

In this paper we introduce the Curved Nonogram,
a new variant on the classic Nonogram puzzle. A
Curved Nonogram consists of a set of arbitrary curves
enclosed by a border. An example is shown in Fig-
ure 2. The only constraints we impose on the curves
are that (1) they lie completely within the border; (2)
the endpoints of each curve lie on the border; and (3)

1 1 1

1 1 1

3

1

42 21 1

(a) Empty

1 1 1

1 1 1

3

1

42 21 1

(b) Solved

Figure 1: An example of a Nonogram. The puzzler
uses the descriptions at each row and column to fill
cells in the empty puzzle (a) in order to find the image
formed by the solved puzzle (b).

Page 1

that no more than two curves may intersect at the
same point.

Instead of row- and column descriptions, the
Curved Nonogram has a description for both sides
of each curve. In the same way that the descrip-
tions of a classic Nonogram give information about
the sequence of cells that form a row or column, this
description gives information about the sequence of
faces that are incident to that side of the curve. For
example, see the description ”1 1” in Figure 2. Fol-
lowing this side of the curve from start to end, you will
encounter one coloured face, one or more empty faces,
and one coloured face again, in that order. When
reading a description, one should start with the out-
ermost number and end with the innermost number.
For example, in Figure 2, the description on the right
side of the curve that starts at the bottom of the
puzzle should be read as ”2 1 1”.

The purpose of the three constraints given above is
to make the Curved Nonogram clear and easy to grasp
for puzzlers, especially if they already have experi-
ence with classic Nonograms. Having a single border
makes it clear which faces are part of the puzzle. We
require the endpoints of the curves to lie on the border
to make it a clear start- and endpoint when tracing
the faces incident to the side of a curve. The rea-
son for not allowing three or more curves to intersect
in a point is also a practical one. At such a multi-
intersection, some curves and faces are only incident
to each other in a single point. Whether this form
of adjacency counts or not is not clear for the puz-
zler, so it would have to be explicitly defined in the
rules of the puzzle book. Because we want Curved
Nonograms to be understandable without requiring
the memorization of such specific rules, constraint (3)
was added to prevent this situation from occurring.

While the rules of the Curved Nonogram are similar
to those of the classic Nonogram, there are several
things that distinguish the Curved Nonogram from
the classic version.

First of all, because the classic Nonogram consists
of a square grid, the image formed by the solution
is necessarily very pixellated and abstract. A Curved
Nonogram is not limited by such a grid, and the image
that is formed by the solved puzzle can take nearly
any shape. This means that the image can more faith-
fully represent the image that the puzzle designer has
envisioned.

Second of all, the puzzler’s curiosity is triggered
as soon as they see the puzzle and try to visualise
the shape of the solution image hidden between the

1 0

1

1
4

1
1
2

1

1
2 1

1

(a) Empty

1 0

1

1
4

1
1
2

1

1
2 1

1

(b) Solved

Figure 2: An example of a Curved Nonogram. The
descriptions are associated with one side of a curve,
instead of a row or column. Again, the goal is to
start with the empty puzzle (a) and find the image
formed by the solution (b), which shows a house in
perspective with smoke coming from the chimney.

Page 2

curves. This in contrast to a classical Nonogram,
where the only moment of surprise comes at the end,
when the puzzle has been solved and the image has
become clear.

Thirdly, Curved Nonograms offer new challenges to
puzzlers, even if they are already familiar with classic
Nonograms. The one most obvious is that they will
carefully have to trace the path of each curve through
the puzzle to see which faces are incident to it. Less
obvious but more impactful is the information that
can be obtained when one side of a curve comes across
the same face more than once. Such an occurrence
gives the puzzler a new type of clue that is not present
in classic Nonograms. While this aspect may be too
subtle or confusing for the beginning puzzler, it could
be introduced over time in a puzzle book, with only
the hardest puzzles really requiring this information
in order to progress. We choose to allow this situation
in our rules, because we think that its occurrence is
one of the factors that make Curved Nonograms stand
out from classic Nonograms - especially for the more
experienced puzzler. Another interesting difference is
that a cell in a classic Nonogram is referred to in the
descriptions of exactly one row and one column. A
face in a Curved Nonogram, on the other hand, can
be referred to by many more descriptions, namely one
for each curve that bounds it.

1.3 Automated generation of Curved
Nonograms

In addition to the concept of Curved Nonograms,
we will also introduce an algorithm that generates
a Curved Nonogram from a given image in vector
graphics format. This may prove useful for a puzzle
designer, who will only have to draw his envisioned
solution image and let the algorithm do the rest. Our
intent is also to study the output of this algorithm, in
order to get a better understanding of Curved Nono-
grams. We would like to generate Curved Nonograms
that satisfy the following conditions:

1. The generated puzzle should adhere to the three
rules of Curved Nonograms described above

2. The generated puzzle should be visually unam-
biguous

3. The generated puzzle should be aesthetically
pleasing

4. The generated puzzle should have a unique solu-
tion

5. The solution image of the generated puzzle
should look like the input image

6. The outlines of the solution image should be suf-
ficiently obscured in the unsolved puzzle

The first condition is required to generate a valid
Curved Nonogram.

The second condition concerns potential sources of
visual ambiguity such as small faces, intersections at a
small angle, and narrow parts of faces (i.e. where two
curves almost touch). The generated puzzle should be
solvable by a human puzzler, which makes it impor-
tant that the structure of the puzzle is clear to the
naked eye.

The third condition concerns the aesthetics aside
from ambiguity, and is perhaps the hardest to define
mathematically or be solved by a computer. We still
choose to add it to the list, because this condition
would certainly be a goal of a human puzzle designer;
consequently, an algorithm that automates this part
of the designer’s job should be judged by it. Examples
of this criterion include making fluid curves, and not
making large empty faces.

The fourth condition requires the puzzle to have
a unique solution. We will show later that not all
(Curved) Nonograms have a solution, and that it is
also possible that a puzzle has multiple solutions,
none of which is desirable.

The fifth condition requires the generated puzzle to
have a solution image that looks like the input image.
The weight that is given to this condition determines
the level of control that the user has over the output.

The sixth and last condition states that the out-
lines of the solution image should be well hidden in
the unsolved puzzle. The risk that the puzzler can
guess the image before they have solved the puzzle
is inherent to Curved Nonograms. This risk should
be mitigated as much as possible in the generated
puzzles.

The creation of an algorithm that satisfies all of the
conditions is a difficult task that exceeds the scope of
this paper. We choose to focus on the aesthetic side of
the puzzle generation, because this side is the most
new and unique aspect of Curved Nonograms. We
develop an algorithm that generates Curved Nono-
grams that satisfy criteria (1), (2), (3) and (6). We
then experiment with the evaluation function of the
algorithm to learn which terms give the best results
according to these criteria. We also measure the per-
centage of the generated puzzles that have a unique
solution as per criterion (4), and judge how well the
solution images are obscured as per criterion (5).
While we do not optimise for these last two criteria,
the observations may prove useful to indicate if these
criteria require more focus in possible future work.

Page 3

No solution
Multiple solutions

Unique solution

Simple

Figure 3: Relation between the four classes of solv-
ability for (Curved) Nonograms

2 Related work

Nonogram solving Most of the literature on
Nonograms focuses on solving them as efficiently as
possible. Because the problem of solving a Nono-
gram is NP-complete [1], there is no straightforward
solution to this problem. Many different types of al-
gorithm have been applied to solving them, based on
techniques from Discrete Tomography [2], chronolog-
ical backtracking [3] and many others [4][5].

There are also many websites dedicated to solving
Nonograms. Our algorithm uses an adapted version
of the well-documented classic Nonogram solver of
webpbn.com [6] to determine the solvability of Curved
Nonograms.

Classification of Nonograms There is also re-
search on the classification of Nonograms [4][7]. From
this work we can learn that a Nonogram always falls
into one of four classes of solvability : unsolvable, mul-
tiple solutions, unique solution, and simple. Figure 3
shows how these classes relate. A Nonogram is called
simple if it can be solved by working on one row or
column at the time. Most Nonograms found in puz-
zle books are simple, and this subset of Nonograms
is solvable in polynomial time. Because there are no
branching decisions while solving a simple Nonogram,
they always have a unique solution. We will show
that these same classes apply to Curved Nonograms.
Of course, the Curved Nonograms generated by our
algorithm should ideally always have a unique solu-
tion. While we do not implement this feature, we do
determine the class of each generated puzzle in order
to analyse how the generated puzzles are distributed
among the classes.

Puzzle generation Perhaps due to the popularity
of puzzles and puzzle games on mobile devices, a lot
of recent research has been done on the automatic
generation of puzzles. A Nonogram-related example
is [7], which is about generating simple Nonograms
of a given difficulty - roughly defined as the number
of steps required to solve it. The author finds that
changing the solution colour of a single face can have
a large effect on the difficulty of the puzzle. Other
Nonogram-generation related work explores different
questions, such as how to generate them from digital
RGB images [8].

There are, of course, many studies of puzzle genera-
tion for other puzzles than Nonograms. Examples are
the generation of Sudokus [9], Crossword puzzles [10],
and Connect-The-Dots puzzles [11]. The Connect-
The-Dots paper is especially relevant, because it also
deals with ambiguities in a generated puzzle. How-
ever, the specific ambiguities involved are quite dif-
ferent from those in Curved Nonograms, because the
puzzle elements are dots instead of curves, faces and
intersections.

Automated drawing aesthetics One of the
things that we are trying to accomplish in this paper
is to generate clear and aesthetically pleasing Curved
Nonograms. The aesthetics of automated drawing
are much studied in the field of Graph drawing [12],
where the input is a graph, which needs to be em-
bedded in the plane. Many studies have been done
to find a set of aesthetic criteria for such an embed-
ding [13][14][15]. Other papers offer algorithms that
can be used to generate Graph drawings according to
these criteria. An example of an algorithm that uses
force-directed placement can be found in [13].

3 Definitions

We will start by giving our definition of the classical
Nonogram in Section 3.1. This is followed by the
definition of the Curved Nonogram in Section 3.2,
which uses some of the same elements. Section 3.3
then defines the classes of solvability for both types
of Nonogram. Finally, three measurements to judge
the aesthetic of a Curved Nonogram are introduced
in Section 3.4.

3.1 Nonogram

A Nonogram consists of a grid of square cells, which
we will also refer to as the faces, and a description
for each row and column of the grid. See Figure 1a.

Page 4

A colouring C of the Nonogram is an assignment
of colours from the set Σ = {b, w} (black and white)
to its faces.

Each row and column has a sequence of faces in
it. For brevity, we will refer to this as simply the
sequence of a row or column. For a given colouring
C, each of these sequences is associated with a colour
string over the alphabet Σ, which corresponds to the
colours assigned to the faces in the sequence under
C. For a colour string s of a sequence with l faces:

s ∈ Σl. (1)

Note that a Nonogram with an n × m grid has
n+m sequences. The descriptions of the Nonogram
are each associated with the sequence in the corre-
sponding row or column. A description is a string of
positive integers:

d = c1c2 . . . ck. (2)

A description may also be an empty string, which is
displayed in the puzzle as a zero. For a given colour-
ing, the colour string s of a sequence adheres to the
description d if it satisfies the following regular ex-
pression:

s ∈ w∗bc1w+bc2w+ . . . bckw∗. (3)

For readers unfamiliar with regular expressions: w∗

denotes a string of zero or more w’s; w+ denotes a
string of one or more w’s; and bc denotes the string
consisting of c times the b character. In other words,
the pattern describes a sequence that contains k seg-
ments of consecutive black coloured cells, of which
the lengths and order are given by the integers in the
description. These segments are separated by at least
one white cell, and the sequence may start and end
with a segment of white cells.

A colouring C is called a solution of the Nonogram
if each of the colour strings adheres to the descrip-
tion associated with its sequence. In Section 3.3, we
show that a Nonogram may have no solution, a single
solution, or multiple solutions.

3.2 Curved Nonogram

A Curved Nonogram consists of a two-dimensional ar-
rangement induced by curves, together with a collec-
tion of descriptions. See Figure 2a for an example.

One curve is called the puzzle enclosure, which is
a closed curve that encloses the other curves. The
second type of curve are the puzzle curves, defined
as the collection P = {p1, p2, . . . , pn}. These curves

are associated with the descriptions, and their start-
and endpoints lie on the puzzle enclosure. The third
and final type of curve are the background curves,
defined as B = {b1, b2, . . . , bm}. These curves are
not associated with any descriptions, and their only
restriction is that they are contained in the puzzle
enclosure.

Like with a classical Nonogram, a colouring C of a
Curved Nonogram is an assignment of colours from
the set Σ = {b, w} to its faces, which are the faces of
the arrangement.

The two sides of a puzzle curve are each incident
to a different sequence of faces. For this reason, we
conceptually split each puzzle curve into two half-
curves, each representing one side of the curve. A
half-curve is incident to one sequence of faces, which
we call the sequence of the half-curve. Thus, a Curved
Nonogram with n puzzle curves has 2n sequences.

The rest of the definition is analogous to that of
the classic Nonogram. For a given colouring, the se-
quences are associated with colour strings as defined
in (1). Each sequence is associated with a description
as defined in (2). A sequence adheres to a description
if it matches the regular expression in (3). Finally, a
colouring C of a Curved Nonogram is called a solution
if each of the colour strings adheres to the description
associated with its sequence.

3.3 Solvability

The classification of classic Nonograms based on solv-
ability was discussed in Section 2, including the dia-
gram in Figure 3. We will give a more precise defini-
tion of the solvability classes here, and extend them to
the concept of a Curved Nonogram. The definitions
of solvability will be given for both types of Nono-
gram at once, using the word Nonogram to refer to
both.

If all colour strings of a colouring C adhere to their
corresponding descriptions, C is called a solution of
the Nonogram. It is possible that there are multiple
different colourings of the Nonogram for which this is
true. In that case, the Nonogram has multiple solu-
tions.

It is also possible that no colouring C exists for
which all colour strings adhere to their descriptions.
In this case, the Nonogram has no solution.

Finally, if exactly one colouring C exists that is a
solution, the Nonogram is said to have a unique so-
lution. All Nonograms that appear in puzzle books
belong to this class, because they are intended to be

Page 5

solved and the solution should look like a specific pic-
ture, which can usually be looked up at the end of the
book.

For a Nonogram with a solution C, we define the
corresponding solution image as the geometric region
formed by the union of the black-coloured faces in
C. If a Nonogram has multiple solutions it also has
multiple solution images: one for each of its solutions.

Simple Nonograms In [7] the authors define a
fourth class of classic Nonograms called simple. These
Nonograms are a subset of the Nonograms that have
a unique solution. While the complete definition of
a simple Nonogram can be found in the original pa-
per, we provide a succinct definition of the used terms
adapted to our definition of the classical Nonogram
and extend its meaning to Curved Nonograms.

Let there be a Fix operation that operates on a
sequence. This operation assigns a colour to those
faces in the sequence that must have a specific colour,
based on the description and the faces for which the
colour has already been assigned. According to the
definition in [7], a classic Nonogram is called simple
if it can be solved by the following algorithm:

1. apply the Fix operation to the sequence of each
row

2. apply the Fix operation to the sequence of each
column

3. if the Nonogram is not solved, go to step 1

There are several interesting aspects to simple
Nonograms. Firstly, solving a simple Nonogram only
takes polynomial time. The Fix operation can be exe-
cuted in polynomial time with the dynamic algorithm
given in [4]. For a simple Nonogram, the algorithm
given above must determine the colour of at least one
new face in each iteration, or it would be stuck. This
means that a simple classic Nonogram with n rows
and m columns is solved by this algorithm in at most
mn iterations.

Secondly, the given algorithm is similar to the
strategy that most humans use to solve a Nonogram.
This makes simple Nonograms relatively easy to solve
by hand. Because of this property, most Nonograms
found in puzzle books are simple.

Simple Curved Nonograms We give our defini-
tion of a simple Curved Nonogram, and show that it
is also solvable in polynomial time. Re-using the Fix
operation defined in the last paragraph, we define a
Curved Nonogram to be simple if it can be solved by
the following algorithm:

1. apply the Fix operation to each of the sequences
of the Nonogram

2. if the Nonogram is not solved, go to step 1

For a classic Nonogram, this definition is equiva-
lent to the one in the previous paragraph. In order
for a Curved Nonogram to be solved by this algorithm
without getting stuck, the colour of at least one new
face must be determined in each loop. This means
that it can take at most 2n loops to finish for a sim-
ple Curved Nonogram with n puzzle curves, i.e. one
loop per half-curve. Because we already know that
the Fix operation can be performed in polynomial
time, we can conclude that the entire algorithm takes
polynomial time as well.

3.4 Aesthetics measurements

In Section 1.3 we gave six conditions that make for a
good Curved Nonogram. Two of these conditions are
related to the aesthetics of a Curved Nonogram: that
it should be visually unambiguous and that it should
be aesthetically pleasing. In this section, we derive
several concrete measurements that can be used to de-
termine if a Curved Nonogram satisfies these two con-
ditions. The concrete measurements in this section
were derived from a list of informal criteria. These
criteria describe the properties that an unambiguous
and aesthetically pleasing Curved Nonogram should
or should not have, and is based on a combination of
intuition and explorative research. The list of infor-
mal aesthetic criteria that we use is as follows. An un-
ambiguous and aesthetically pleasing puzzle should:

1. not have large, open areas where not much hap-
pens

2. not have convoluted, confusing areas where a lot
of curves and crossings lie close together

3. not have faces with very narrow parts

4. not have curves that intersect at a very small
angle

Each of these informal criteria is represented by at
least one of the concrete measurements defined below.

(a) Minimum vertex distance The first concrete
measurement is the minimum distance between any
two vertices in the arrangement of the Curved Nono-
gram. If this measurement has a high value, there
are no ambiguous areas with close-together vertices.
Thus, this measurement can be used to assess aes-
thetic criterion 2.

Page 6

Let d(v, w) be the Euclidean distance between ver-
tices v and w in the plane. The minimum vertex
distance (ma) is defined as follows:

ma = min
v,w∈V |v 6=w

d(v, w),

where V is the set that contains the vertices of the
puzzle arrangement.

(b) Largest inscribed circle of any face The
second measurement is based on the inscribed circles
of the faces of the arrangement. The inscribed circle
of a face is the largest circle that fits in the inte-
rior of the face. If we take the inscribed circle of all
faces of the arrangement, this measurement is equal
to the area of the largest circle. A high value of this
measurement means that the Curved Nonogram has
at least one face with a large, boring open area in
it, which makes it less interesting from an aesthetic
perspective. Thus it is an ideal measurement for cri-
terion 1. We define the largest inscribed circle (mb)
as follows:

mb = max
f∈F

A(I(f)),

where F is the set that contains the faces of the
puzzle arrangement, I(f) is the inscribed circle of face
f , and A(c) is the area of circle c.

(c) Local geometric dilation The third and final
measurement is based on the concept of geometric
dilation. For this measurement, we interpret the ar-
rangement of the puzzle as a graph G embedded in
the plane. Let p and q be any two points on the
edges of G, with p 6= q. Let d(p, q) again denote the
Euclidean distance between p and q in the plane. Fi-
nally, let dG(p, q) be total arc length of the shortest
path in G between p and q. The geometric dilation
between p and q is then defined as follows:

δ(p, q) =
dG(p, q)

d(p, q)
.

Geometric dilation can also be measured for the
entire graph. The geometric dilation of G is defined
as

δ(G) = sup
p,q∈G

δ(p, q).

A low geometric dilation can be considered a posi-
tive aspect for a puzzle. One reason is that geometric
dilation functions as a lower bound for the intersec-
tion angles of the curves of the puzzle, which can be
used to check criterion 4. To be precise, all angles α
in the puzzle are bound by the following formula:

α ≥ 2 sin−1(
1

δ(G)
).

Because we have not placed any restrictions on the
shape of the curves that form a Curved Nonogram,
they can in principle contain many sharp angles and
other small-scale irregularities that can make the puz-
zle ambiguous. A low geometric dilation also lim-
its how extreme these irregularities can be. Finally,
the geometric dilation is the only measurement of the
three that relates to the narrowness of faces, which
relates to criterion 3. If the arrangement has a face
that is at one part very narrow, or in other words,
there are two curves that come very close at some
point without touching, this causes the geometric di-
lation of the arrangement to be high.

While geometric dilation is a useful measurement,
it should be noted that a lower value is not always
better. An arrangement with minimum geometric di-
lation has very regular faces that start to approximate
circles. What we really want is an arrangement with
angles that are not too small, and faces that are not
so narrow that they become ambiguous. Therefore,
we introduce the concept of local geometric dilation
(mc), an alternative form of geometric dilation that
is only affected by points that are within a certain
distance of one another.

mc = sup
p,q∈G|d(p,q)≤ddil

dG(p, q)

d(p, q)
,

where ddil is a constant that determines how close
a pair of points should be to contribute to the mea-
surement.

4 Algorithm

This section describes the algorithm that we use to
generate Curved Nonograms. The algorithm takes
a coloured line drawing as input, and generates a
Curved Nonogram that has a solution image that is
the same as the input. Because this is the first puz-
zle generation algorithm for Curved Nonograms, the
goal is to generate Curved Nonograms that are not
ambiguous and could thus be used in a puzzle book.
Thus we do not focus on low computation times or
aesthetic aspects that are unrelated to the ambiguity.
The solvability of the puzzle is also not taken into ac-
count. However, because the puzzles are created from
a solution image (the input), they are guaranteed to
have at least one solution.

First, the input for the algorithm is detailed in Sec-
tion 4.1. Following that, Section 4.2 describes the

Page 7

structure of the solutions that our algorithm pro-
duces. A parameterisation of the solution space is
given in Section 4.3. Next, the implementation de-
tails are given that are relevant to this description of
the algorithm, in Section 4.4. The evaluation function
to judge solutions with is then defined in Section 4.5.
Finally, in Section 4.6 we give the pseudo code of the
optimization algorithm that uses the aforementioned
elements to find a good solution.

4.1 Input

The input to the algorithm proposed in this section is
a planar arrangement induced by a set of input curves
and a rectangle R. The faces of this arrangement are
coloured either black or white.

An input curve is a chain of Bézier curves, which
can be either first, second or third order. These types
of chains are widely used in the SVG format, a vector-
graphics format, which has the advantage that any
SVG drawing tool can be used as a graphical interface
to provide input for the algorithm. Another reason
to use these Bézier curves is that they are not very
complex.

The input curves are enclosed by R. This rectan-
gle will be used as the puzzle enclosure of the out-
put puzzle. While the puzzle enclosure of a Curved
Nonogram can take any shape (as long as it is closed),
we limit the shape to a rectangle in the input of the
algorithm. This simplifies some later steps in the al-
gorithm, like point-inclusion checks and the global
optimization. An example of the input is shown in
Figure 4.

We use the SVG editor Inkscape to create the SVG
files from which our program reads the input. While
other formats could be used to store the input, this
format offers the advantage of the availability of freely
available graphical editing tools. Of course, the input
could be provided in text format or any other format,
as long as the interpretation is the same.

4.2 Solution space

In principle, the only restriction placed on the output
of the algorithm is that it is a valid Curved Nonogram
with puzzle enclosure R. This is a very complex solu-
tion space, with an unbounded dimensionality caused
by the unbounded number of curves of unbounded
complexity that any solution may contain. We choose
to limit the solution space for our algorithm by adding
additional constraints on the structure of the output.

Firstly, we let the input curves be preserved in the
output. This means that we can keep the black and
white coloured areas of the output exactly the same

Figure 4: An example of the input of the algorithm
with four (closed) input curves and one black face.

as those in the input. This allows the algorithm to
perfectly achieve the previously stated goal that the
solution image of the output should be similar to the
input.

To be able to preserve the input curves in the out-
put, those curves must be connected to the puzzle en-
closure at both ends, as per the definition of a Curved
Nonogram. The input curves are chains of Bézier
curves, some of which may be closed. We choose to
cut the input curves, at each point where two consecu-
tive Bézier curves in the chain are not C1-continuous
[16]. An example of this cutting is shown in Fig-
ure 5. This procedure cuts open most of the closed
chains, allowing them to be connected to the puzzle
enclosure. It also serves to make the chains less long,
which we expect to lead to a better puzzle. We call
these new, smaller Bézier chains the puzzle curves,
because each of them will become a puzzle curve in
the output Curved Nonogram.

Note that closed input curves that are C1-
continuous will not be cut open by this method. We
do not connect these curves to the puzzle enclosure,
so they will become background curves in the output.

The second constraint describes how each of the
puzzle curves is connected to the puzzle enclosure.
A puzzle curve may have zero, one or two ends that
already lie on the puzzle enclosure. We call the ends
that do not lie on the puzzle enclosure the extendable

Page 8

Figure 5: An example of how the input curves are
cut. The four input curves are cut into nine puzzle
curves.

curve ends (ECEs). These curve ends are extended
to the puzzle enclosure by a single cubic Bézier curve,
that fits to the chain C1-continuously. An example is
shown in Figure 6.

The advantage of this constraint is that it limits the
complexity of the output to a constant factor times
the number of puzzle curves. The choice for exten-
sion by a single Bézier curve was motivated by early
experimentation revealing that a generated solution
would already become quite complex with this num-
ber of curves added.

4.3 Parameterisation

The output structure described in the previous sec-
tion consists of a set of Bézier chains with extendable
curve ends (ECEs) that are extended to the border by
a single cubic Bézier curve that fits C1-continuously
to the chain. In this section, the corresponding solu-
tion space is parameterised, to allow the problem to
be solved using parameter optimization techniques.

The parameterisation is on a per-curve-end basis.
Take an ECE of a puzzle curve c. This curve end will
be extended by a cubic Bézier curve that fits to it
with C1 continuity. Let Q be the Bézier curve that
is the last in the chain on this end of c. Q is an n-
th order Bézier curve (n can be 1, 2 or 3), described
by its control points q0, . . . , qn. It will be connected

Figure 6: An example of how the puzzle curves are ex-
tended to the puzzle enclosure by a C1-continuously
fitting cubic Bézier curve.

to the puzzle enclosure by cubic Bézier curve B, de-
scribed by b0, b1, b2 and b3. We will show that B has
three degrees of freedom, which will be expressed by
the parameters p0, p1, p2. Firstly, B must start where
Q ends. Assuming Q is directed so that qn is the
endpoint of the chain:

b0 = qn.

Secondly, the first derivatives of Q and B must be
equal where they join to make them C1-continuous.
Let Q(t) and B(t) be parameterisations of the two
curves with t ∈ [0, 1), for which the curves meet at
Q(1) = qn = b0 = B(0). This requirement can then
be written as

Q′(1) = B′(0),

which can be written in terms of the control points
as

b1 = qn + (qn − qn−1).

The third control point of B has two degrees of
freedom, which we parameterise as the x- and y-value
of this point:

b2 =

[
p0
p1

]
.

Page 9

Finally, the fourth control point has one degree of
freedom. This point must lie on the puzzle enclosure,
because it is the endpoint of B. Let R(t) be an arc
length parameterisation [17] of the rectangular puzzle
enclosure curve with t ∈ [0, 1). We parameterise the
fourth control point as follows:

b3 = R(p2), p2 ∈ [0, 1).

Puzzle enclosure constraint According to the
constraints for a valid Curved Nonogram, we must
make sure that B is contained in the puzzle enclo-
sure. An efficient way to do this uses the Convex
Hull property [18] of Bézier curves, which states that
a Bézier curve is enclosed by its convex hull. We will
force the convex hull of the control points of B to be
enclosed by the puzzle enclosure. Because the puz-
zle enclosure is convex (a rectangle), this constraint
is satisfied if all of the control points of B lie within
the puzzle enclosure.

This constraint is already satisfied for b0, which
lies on an input curve, and b3 which lies on the puz-
zle enclosure itself. Point b1 can lie outside the puzzle
enclosure according to the definition given above, de-
pending on the position of q2 and q3. In case this
happens, we instead use the following formula:

b1 = qn + a(qn − qn−1),

where a is chosen so that b1 lies on the puzzle en-
closure. In this case, B is no longer a C1-continuous
extension of Q, but is still a G1-continuous [16] exten-
sion, because the directions of the derivatives of the
curves in their meeting point b0 are still the same.

Finally, to ensure that b2 lies within the puzzle en-
closure, we limit p0 and p1 in the following ways:

p0 ∈ [Rxmin, Rxmax],

p1 ∈ [Rymin, Rymax],

where Rxmin, denotes the x value of the left side of
the puzzle enclosure, etc.

Total number of parameters As shown above,
the cubic Bézier curve extension of one curve end
is described by three parameters. Since each puzzle
curve can have between zero and two ECEs, a solu-
tion with n puzzle curves is described by at most 6n
parameters.

4.4 Implementation details

This section contains implementation details that are
not part of the design of the algorithm, but may be

important to know for anyone wishing to implement
the algorithm for themselves.

Polyline approximation The most important im-
plementation detail is that the arrangements of Bézier
curves described in the previous sections are in fact
approximated by arrangements of polylines. The rea-
son for this approximation is that the code for the ex-
act representation of Bézier curve arrangements was
too unreliable, and also slower than the polyline ap-
proximation. Note that the curves read from the in-
put and written to the output are still Bézier curves:
they are only approximated when an arrangement is
needed to be scored by the evaluation function.

The approximation that we use for a Bézier curve
works as follows. First, we make sure that the Bézier
curve is parameterised in the standard way. For a
Bézier curve B with control points b0 . . . , bn, this is
defined as:

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itibi, t ∈ [0, 1].

We then sample B(t) at values of t uniformly
spread between 0 and 1. These sampled points are the
points of the approximating polyline, and we call the
number of samples min approx points. The advan-
tage of the given parameterisation B(t) is that these
uniformly sampled points lie closer together where
the curvature of B is high, which is where we need
the most samples to be accurate.

In the last step of the approximation, we en-
sure that the distance between two subsequent sam-
pled points is never larger than the pre-defined
max segment length. If two subsequent sampled
points B(sk) and B(sk+1) do not meet this criterion,
we add the sample point B(sk+sk+1

2) between them.
This is done recursively until each pair of subsequent
points fulfils the criterion. The reason for this second
step is that we want to ensure a minimum density
of sample points, even at low-curvature parts of B,
because they are used by the dilation penalty calcu-
lation in the evaluation function, as detailed in the
next section.

4.5 Evaluation function

In this section, we define an evaluation function which
takes a Curved Nonogram puzzle as input, and out-
puts a score that represents how good the puzzle is.
This function is based on the observations from Sec-
tion 3.4, in which we gave informal criteria and three
measurements that can be used to judge the non-
ambiguity and aesthetic merit of a Curved Nonogram.

Page 10

For the evaluation function, the focus is more on the
non-ambiguity of the puzzle than on the aesthetic
merit. The evaluation function is based on three
penalties: the vertex penalty, the dilation penalty,
and the face penalty. For each of these penalties, a
higher value indicates a worse puzzle, and a value of
zero is the best result possible.

Vertex penalty The first measurement given in
Section 3.4 is the minimum vertex distance of the
puzzle’s arrangement. This is a simple way to mea-
sure certain ambiguities. However, preliminary tests
showed that this measurement was too global, which
does not fit well with our optimization algorithm that
mostly makes local changes. Since the minimum ver-
tex distance is typically determined by one pair of
vertices, it does not give any useful information for
making changes to a curve on which neither of these
two vertices lie.

For this reason we use a different measurement for
vertex distance, the vertex penalty ρvert. All pairs
of vertices that lie too close together contribute to
this measurement. The amount that a vertex pair
contributes is based on the distance between them.
To be precise:

ρvert =
∑

v,w∈V |v 6=w∧d(v,w)<dvert

dvert − d(v, w),

where dvert is a constant that denotes the minimum
distance that we wish to have between vertices.

Dilation penalty In Section 3.4 we also introduced
the local geometric dilation measurement. This mea-
surement is useful because there are two important
types of ambiguous situations that cause the dilation
of the arrangement to be high. Firstly, curves that
intersect at a shallow angle, and secondly, curves that
almost touch without actually intersecting. Because
this is also a global measurement, like with the mini-
mum vertex distance, we use a variation on this mea-
surement that we call the dilation penalty ρdil.

The calculation of ρdil is based on the polyline ap-
proximation described in Section 4.4. Let Z be the
collection of sampled points, i.e. the vertices of the
polylines that approximate the Bézier curves. We de-
fine the dilation penalty as:

ρdil =
∑

p,q∈Z|p6=q∧d(p,q)<ddil∧δ(p,q)>δmax

ρdil(p, q),

where ddil is the minimum distance that we would
like to have between points that have a dilation higher

than δmax, and ρdil(p, q) is the dilation penalty con-
tribution of p and q. This contribution is defined as:

ρdil(p, q) = w(p)w(q)[ddil − d(p, q)].

The terms w(p) and w(q) are weights that have to
do with the granularity of the polyline approximation
around p and q. If p has neighbouring vertices pn1 and
pn2 on the polyline, then its weight is defined as:

w(p) =
d(p, pn1) + d(p, pn2)

2
.

These weights prevent that the total dilation
penalty scales with the granularity of the polyline ap-
proximation.

The given measurement ρdil differs from the local
geometric dilation measurement in two ways. Firstly,
all problematic point pairs contribute to the measure-
ment, instead of only the pair with the highest dila-
tion. This helps the algorithm make local changes
that affect the score. Secondly, the penalty for a pair
of points with high dilation that lie close together is
based on the (Euclidean) distance between the points,
instead of their dilation. For such point pairs, the
lower the Euclidean distance, the more it seems like
the respective curves are touching - an ambiguous sit-
uation, while a higher curve distance (the other term
of the dilation) would not increase the ambiguity at
all.

Face penalty The third and final measurement
that contributes to the score is the face penalty ρface.
This measurement does not relate to any of the spe-
cific measurements given in Section 3.4, but it does
solve the ambiguity caused by very small faces, which
is not always solved by the two measurements given
above.

Specifically, during early testing the algorithm pro-
duced many very small faces of which the vertices
were just far enough apart to not contribute to the
close-together vertex penalty. Even though these
faces are very narrow in the absolute sense, they do
not contribute to the high dilation penalty unless they
have a very elongated shape. Thus, the small face
penalty is used to measure the presence of these types
of faces.

The measurement is calculated similarly to the
close-together vertex measurement. All faces that are
too small contribute to it according to their size:

ρface =
∑

f∈F |A(f)<Amin

Amin −A(f),

Page 11

where A(f) is the area of face f , and Amin is a
constant that denotes the minimum area that a face
should have to be considered unambiguous.

Evaluation function The evaluation function that
we use for our algorithm outputs a score that is a
weighted sum of the three penalties:

score = wvertρvert + wdilρdil + wfaceρface,

wvert, wdil, wface ≥ 0,

where wvert, wdil, and wface are the weights for
the three corresponding penalties. Note that a higher
score indicates a worse solution. The best achievable
score is zero.

4.6 Optimization algorithm

Now that we have a parameterisation of the solution
space and an evaluation function for solutions, we can
introduce our optimization algorithm. The algorithm
consists of a pre-processing stage, followed by multi-
ple global and local optimization rounds.

4.6.1 Algorithm structure

The structure of the complete algorithm is shown in
Algorithm 1. In the pre-processing step, the input
curves are cut and the extension curves E are ini-
tialized. The parameters p0 and p1 of each extension
curve are set to a uniformly randomly chosen point
in R and a uniformly randomly chosen point on the
boundary of R, respectively.

The extension curves are then optimized in mul-
tiple global and local optimization rounds. The al-
gorithm can be said to use a Hill climbing strategy,
which means that the evaluation score either stays
the same or improves after each global or local round.
Finally, the output puzzle is created and returned.

In all the pseudo code in this section, constants like
global rounds are shown in cursive with underscore
spacing.

4.6.2 Global optimization

The optimization starts with multiple rounds of
global Hill climbing, as detailed in Algorithm 2. The
optimization happens for one parameter at a time.
The parameter is set to several different values spread
over its range, while the rest of the parameters stay
locked. The value that yields the solution that gets

Algorithm 1 Complete algorithm

function algorithm(inputCurves, R)
puzzleCurves ← cutCurves(inputCurves)
E ← extendRandomly(puzzleCurves)
for i ← 1 to global rounds do

GlobalOpt(E)
end for
for i ← 1 to local rounds do

LocalOpt(E)
end for
puzzle ← BuildPuzzle(puzzleCurves, E, R)
return puzzle

end function

Algorithm 2 Global optimization round

function globalOpt(E)
score ← evaluate(E)
for all e ∈ E do

for all p ∈ {0, 1} do
best = e.getParam(p)
for all v ∈ globalVals(p) do

e.setParam(p, v)
if evaluate(E) > score then

score ← evaluate(E)
best ← v

end if
end for
e.setParam(p, best)

end for
end for

end function

Page 12

the best score from the evaluation function is chosen,
and the algorithm moves on to the next parameter.

The values that are tested for each parameter are
generated by the function shown in Algorithm 3. In
this pseudo code, a function random(a, b) is used
that returns a floating point value from the uniform
random distribution over the interval [a, b).

Algorithm 3 Choose global parameter values

function globalVals(p)
vals ← ∅
if p == 0 then

steps ← steps p0
rangeX ← Rxmax −Rxmin
rangeY ← Rymax −Rymin
offsetX ← random(0, rangeX / steps)
offsetY ← random(0, rangeY / steps)
for i← 0 to steps − 1 do

x ← offsetX + i / steps
for j ← 0 to steps − 1 do

y ← offsetY + j / steps

vals.append(

[
x
y

]
)

end for
end for

else if p == 1 then
steps ← steps p1
offset ← random(0, 1 / steps)
for i← 0 to steps − 1 do

v ← offset + i / steps
vals.append(v)

end for
end if
return vals

end function

The goal of the global optimization rounds is to
quickly move the solution away from the randomized
initial state, which is generally very chaotic and am-
biguous. Because the tested values are chosen glob-
ally, independent of the current values, the influence
of the randomness of the initial state is reduced. The
random offsets are used to prevent all the third and
fourth control points of the extension curves from ly-
ing on the same grid. It also increases the usefulness
of running multiple global optimization rounds.

4.6.3 Local optimization

The local optimization rounds are similar to the
global rounds, in that the parameters are optimized
one by one and in that the best scoring value is al-
ways chosen. The difference is that the tested values

are not chosen globally, but from the neighbourhood
of the current value. In case of a p0 point parame-
ter, the tested values are points that are uniformly
spread over a circle centered on the current value of
p0. For a p1 parameter two values are tested, which
are gained by moving a certain distance clockwise or
counter-clockwise along the puzzle enclosure R from
the current value of p1. The pseudo code of a local
optimization round is shown in Algorithm 4, and the
details of how the values are chosen are shown Algo-
rithm 5.

Algorithm 4 Local optimization round

function localOpt(E)
score ← evaluate(E)
for all e ∈ E do

for all p ∈ {0, 1} do
best = e.getParam(p)
for all v ∈ localVals(p, best) do

e.setParam(p, v)
if evaluate(E) > score then

score ← evaluate(E)
best ← v

end if
end for
e.setParam(p, best)

end for
end for

end function

The goal of the local optimization rounds is to it-
eratively make small adjustments to the extension
curves that move them away from ambiguous situ-
ations. Because only small local changes are made
each round, the local optimization round should be
repeated a larger number of times than the global
optimization.

5 Experiment and results

This section describes an experiment in which the
proposed algorithm is used to make Curved Nono-
grams from a test set of input images. We do this
for several different parameter values that determine
how the penalties of the evaluation function are cal-
culated. The goal of the experiment is to answer the
following two questions:

1. Can simple images be made into unambiguous
and visually pleasing Curved Nonograms?

2. Can simple images be made into Curved Nono-
grams that have a unique solution?

Page 13

Algorithm 5 Choose local parameter values

function localVals(p, v)
vals ← ∅
if p == 0 then

steps ← circle points
r ← step size p0
offset ← random(0, 2π / steps)
for i← 0 to steps − 1 do

point ← + i / steps
for j ← 0 to steps − 1 do

α ← offset + 2πi / steps
point ← pointOnCircle(v, r, α)
vals.append(point)

end for
end for

else if p == 1 then
size ← step size p1
step ← size / boundaryLength
vals.append(v − step)
vals.append(v + step)

end if
return vals

end function

The set-up of the experiment is described in de-
tail in Section 5.1. Following that, the results of all
runs of the algorithm are shown in Section 5.2. The
scores of the output are then broken up into their
three component parts in Section 5.3. This is fol-
lowed by Section 5.4 which contains an analysis of
the influence of the complexity of the input on the
results. We then show a few selected output puzzles
in Section 5.5 and discuss the positive and negative
aspects of them. Finally, the solvability of the gener-
ated Curved Nonograms is discussed in Section 5.6.

5.1 Experiment set-up

Test set To test the performance of the algorithm,
we ran a series of experiments on a test set of 16 in-
put images - see Table 1. The images can be found in
Appendix A. The number of extendable curve ends
for each image is also shown, as this determines the
number of parameters that the algorithm has to opti-
mize. The images were created by us, and are meant
to be representative for simple black-and-white svg
drawings. The drawings are varied in shape and com-
plexity.

Experiment settings For each image from the
test set, the algorithm was run with five different set-
tings, which can be found in Table 2. The difference

Image ECEs
penguin 10
coffee cup 12
lamb 12
butterfly 14
fish 16
monitor 16
rocket 16
mask 18
airplane 22
flower 22
car 24
hut 24
catface 26
church 32
pumpkin 36
space 38

Table 1: The images that were used as a test set, with
the number of ECEs of each image.

between the settings is the strictness of the evalua-
tion function. Setting (a) is the least strict, which
means that only extremely ambiguous situations are
taken into account by the evaluation function. The
strictness increases from setting (a) through setting
(e), which is the most strict.

Subjectively, setting (b) marks the bottom line for
what we find to be visually unambiguous puzzles.
Setting (c) corresponds to puzzles that are comfort-
ably unambiguous, they do not really need to be more
clear than this. Setting (d) is more strict than nec-
essary for removing ambiguity, but this may improve
the aesthetics of the puzzle by forcing a more even
distribution of the curves and vertices over the space.
Setting (a) and (e) are more extreme variants of (b)
and (d) respectively, and serve to test the limits of
the algorithm.

dvert Amin ddil δmax αmin
Setting (a) 5 25 3.75 11.5 10◦

Setting (b) 8 40 6 7.7 15◦

Setting (c) 11 55 8.25 5.8 20◦

Setting (d) 14 70 10.5 4.6 25◦

Setting (e) 17 85 12.75 3.9 30◦

Table 2: The five different settings with which the
algorithm was run. αmin is derived from δmax: it is
the minimum angle at which a curve intersection does
not receive a dilation penalty.

Page 14

Static parameters The parameters of the algo-
rithm that are not included in Table 2 are the same
for each of the five settings. Their values are shown
in Table 3.

Parameter Value
min approx points 100
max segment length 2
wvert 1
wdil 0.04
wface 0.3
global rounds 3
local rounds 20
steps p0 8
steps p1 32
step size p0 10
step size p1 10

Table 3: The parameters of the algorithm that are
the same across the five settings.

Performance While performance was not a goal of
the algorithm’s implementation or design, and it was
thus not thoroughly tested, it may still be valuable
to give a rough idea of the runtime. Most tests were
run on a PC with an Intel R©CoreTMi5-3570 CPU, with
four cores @ 3.40 GHz, and 12 GB RAM. With set set-
up, the algorithm on Setting (c) took 13 hours and 23
minutes to process the car test set image, using a sin-
gle core. The majority of the processing time is spent
on the calculation of the dilation penalty. With some
optimization of the implementation, we expect it to
be possible to cut this time in half, without changing
the design of the algorithm.

5.2 Results per experiment setting

Table 4 shows the evaluation function score of the
outputs of the test set images for each setting of the
experiment. The calculation of the score is explained
in Section 4.5. In short: the perfect score is zero,
and each ambiguity in the puzzle increases the score.
Please note that the scores are not directly compara-
ble between the settings. For example, two vertices
that are at 3 distance from one another would in-
cur a close-together vertex penalty of 2 according to
setting (a), where dvert = 5; the same two vertices
would incur a larger close-together vertex penalty of
5 for setting (b), where dvert = 8. In general, the
same image always receives a higher score according
to the evaluation function of a stricter setting, unless
the score is zero.

From the score table, we can first of all observe
that all images achieved a perfect or very low score
(below 10) on setting (a). The same was achieved
for all but two images on setting (b), and for 10/16
images on setting (c). For setting (d), there are still
9/16 images that achieved a very low score, but both
the number of perfect scores and the average score
are much higher than for setting (c). Only 3/16 im-
ages have a very low score on setting (e), and many
images have a very high score of more than 100 on
this setting.

We can conclude that for most images, setting (a)
and setting (b) are probably not strict enough, be-
cause they achieve a perfect score on these settings,
meaning that they could have been optimized fur-
ther. This is fortunate, because we judge setting (b)
to be the bottom line where puzzles become visually
unambiguous (if they achieve a perfect score).

A final observation is that there is a large differ-
ence between the images in how they score across all
settings. This difference seems to be related to the
number of extendable curve ends of each image. For
example, all images with 18 or less ECEs had a very
low score on settings (a) through (d). At the other
end of the spectrum, the only images that did not
have a very low score on setting (c) were those with
22 or more ECEs. The correlation between the num-
ber of ECEs of the input and the score of the output
puzzle is further analysed in Section 5.4.

Score progression Table 4 only shows the final
scores: the scores of the experiment which correspond
to the output puzzles. In order to get a sense of how
the score progresses through the rounds of the al-
gorithm, see Figure 7. This figure shows the score
progression of four images that are representative for
the test set. The graph shows that all scores have
more or less converged by the end of the algorithm.
In fact, most have converged about halfway through.
This lends weight to the scores in Table 4, because
it means that they cannot be trivially improved by
running the algorithm for a longer period of time.

5.3 Breakdown of the score compo-
nents

In Section 4.5 we introduced the three components
that together make up the evaluation function: the
face penalty, the vertex penalty and the dilation
penalty. In this section we analyse how much each
of these components contributed to the final scores in
Table 4. The distribution of the final score over the
components is shown in Figure 8.

Page 15

0

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4 rocket .svg

Set t ingu(a) Set t ingu(b) Set t ingu(c) Set t ingu(d) Set t ingu(e)

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4 m ask.svg

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5 airplane.svg

10 -1

10 0

10 1

10 2

10 3

10 4

10 5 space.svg

Algorithm urounds

Lo
g

1
0

uo
fu

sc
o

re

0

0

Figure 7: The progression of the score through the rounds of the algorithm of several test set images, for each of
the experiment settings. The black vertical lines indicate the start of a global optimization round, and the grey
vertical lines indicate the start of a local optimization round.

Page 16

(a) (b) (c) (d) (e)
0
5

10
15
20
25
30
35
40

penguin.svg

(a) (b) (c) (d) (e)
0
2
4
6
8

10
12
14
16

coffee_cup.svg

face_score vertex_score dilation_score

(a) (b) (c) (d) (e)
0.00

0.01

0.02

0.03

0.04

0.05

0.06
lamb.svg

(a) (b) (c) (d) (e)
0

5

10

15

20

25
butterfly.svg

(a) (b) (c) (d) (e)
0
2
4
6
8

10
12
14
16

fish.svg

(a) (b) (c) (d) (e)
0.00

0.01

0.02

0.03

0.04

0.05

0.06
monitor.svg

(a) (b) (c) (d) (e)
0

1

2

3

4

5

6

7
rocket.svg

(a) (b) (c) (d) (e)
0

5

10

15

20

25

30

35
mask.svg

(a) (b) (c) (d) (e)
0
5

10
15
20
25
30
35
40

airplane.svg

(a) (b) (c) (d) (e)
0

50

100

150

200

250

300
flower.svg

(a) (b) (c) (d) (e)
0

10

20

30

40

50

60

70
car.svg

(a) (b) (c) (d) (e)
0

10

20

30

40

50

60

70
hut.svg

(a) (b) (c) (d) (e)
0

20
40
60
80

100
120
140
160

catface.svg

(a) (b) (c) (d) (e)
0

20

40

60

80

100

120
church.svg

(a) (b) (c) (d) (e)
0

20

40

60

80

100

120

140
pumpkin.svg

(a) (b) (c) (d) (e)
0

20

40

60

80

100

120
space.svg

Setting

S
co

re
 c

o
n
tr

ib
u
ti

o
n

Figure 8: Breakdown of the puzzle’s scores into their three components, after they have been weighed. The sum
of these components is the total score of the puzzle.

Page 17

Image ECEs Setting (a) Setting (b) Setting (c) Setting (d) Setting (e)
penguin 10 0.0 0.0 0.0 6.31973 61.7625
coffee cup 12 0.0 0.0 0.0 0.87834 19.2688
lamb 12 0.0 0.0 0.0 0.0 0.0
butterfly 14 0.0 0.0 0.0 0.0 24.4548
fish 16 0.0 0.0 0.0 2.37818 26.7813
monitor 16 0.0 0.0 0.0 0.0 0.0
rocket 16 0.0 0.0 0.130708 1.1384 6.76382
mask 18 0.0 0.0 0.0 0.0 35.1045
airplane 22 0.0 0.0 0.0 20.1173 54.1086
flower 22 0.0 0.0 16.1588 129.103 373.143
car 24 0.0 4.98756 17.5392 74.9453 94.2376
hut 24 0.100717 0.0 29.3772 5.78301 123.141
catface 26 0.0 0.0 26.4015 66.2723 262.231
church 32 0.0 22.1669 0.0 56.5003 155.865
pumpkin 36 0.0 32.0071 91.3201 219.049 258.504
space 38 4.96683 0.716458 48.6102 116.422 194.859

Table 4: Final score for each test set image for each experiment setting. The number of ECEs is also shown for
each image.

The figure shows that the contribution of the score
types is relatively well balanced overall. Of the three
components, the face penalty is most often absent
or relatively low. It can also be observed that most
outputs that have a face penalty, also have a ver-
tex penalty that is equal to it or higher. This can
be explained by the fact that the vertices incident to
a small face typically lie close together, resulting in
a vertex penalty. The result is that the function of
the face penalty and the vertex penalty partly over-
lap. The face penalty is mostly useful to prevent the
specific case of small, narrow faces that are only inci-
dent to two edges and two vertices. These cases are
very prevalent if the algorithm is run without a face
penalty, which is why we feel that it is not superflu-
ous.

5.4 Relationship between image com-
plexity and score

In this section, we will explore if there is a correlation
between the score of the output image and the com-
plexity of the input image. We also give the number
of faces in each output puzzle, as a measure of the
complexity of the output.

To start off with, Figure 9 shows a point plot for
each setting, in which each point represents an output
puzzle. The horizontal placement of the point is de-
termined by the number of extendable curve ends of
its input image, and the vertical placement shows the
score. Note that there are many overlapping points
around a score of zero, which unfortunately cannot

be seen clearly in the plots.

We expect the number of ECEs of an image to be
a reasonable indication of the complexity of an input
image, in terms of how difficult it is to handle for
the algorithm. It determines the number of extension
Béziers that are added to the puzzle, which, assuming
that the input image is (almost) unambiguous, are the
main cause of ambiguities that the algorithm needs
to resolve. Because of this, we expect that there is a
positive correlation between the number of ECEs of
the input image and the score of the output image.

Correlation Figure 9 also shows the correlation co-
efficient and regression line for each setting. Because
the number of data points in each plot is much too
low for statistic significance, we can only pose an hy-
pothesis that may be researched in future work.

Our hypothesis is that there is a positive, but not
linear, correlation between the score of the output
puzzle and the number of ECEs of the input image.
The data seems to support this, as all correlation co-
efficients are positive, but not very close to 1, and the
lines do not fit very well.

The reason that we do not expect a linear correla-
tion is that the score formula is non-linear, and can-
not go below zero.

Observations Looking at Figure 9, the test set can
be split into three categories. The images with less
than 20 ECEs all have very low scores compared to
the other images. The only setting for which some

Page 18

10 15 20 25 30 35 40
1

0

1

2

3

4

5
Setting (a) (r= 0. 529)

10 15 20 25 30 35 40
5
0
5

10
15
20
25
30
35

Setting (b) (r= 0. 619)

10 15 20 25 30 35 40
20

0

20

40

60

80

100
Setting (c) (r= 0. 76)

10 15 20 25 30 35 40
50

0

50

100

150

200

250
Setting (d) (r= 0. 784)

10 15 20 25 30 35 40
0

50
100
150
200
250
300
350
400

Setting (e) (r= 0. 674)

Number of ECEs

S
co

re

Figure 9: Point plots of the final scores from Table 4 versus the number of ECEs of the input images. The plot
of each setting also shows the regression line as well as the correlation coefficient r for the points in that plot.

Page 19

of them ended with a score significantly above zero is
setting (e).

The group of images that have between 20 and 30
ECEs start showing some significant score at setting
(c). This group also contains some images that have
an exceptionally high score for their number of ECEs,
most notably flower and catface. These images are
difficult to handle for the algorithm, for other reasons
than their number of ECEs. Both of these images
have many ECEs that lie close to one another, e.g.,
where the petals and leaves of the flower meet in the
center, and at the multitude of facial features in cat-
face. These cases show a weakness of the method of
extending each ECE to the boundary. When ECEs
lie close together, and oriented towards each other, it
may be a better idea to connect them to each other
instead.

Finally, the group of images with more than 30
ECEs has cases where even setting (b) causes a sig-
nificant score. It also has a lot of images with high
scores overall, and a very low percentage of (near)
perfect scores.

The differences between these groups suggest that
the algorithm is limited in the number of ECEs in an
input image that it can successfully handle, depend-
ing on the setting. Note that the input images in
the third group, although they are the most complex
ones of the test set, still look relatively simple. This
strongly suggests that a different method is required
to handle complex images. Again, a similar method
that connects some of the ECEs to each other in-
stead of to the puzzle enclosure is a possible solution
to handle images with many ECEs.

Output complexity Table 5 shows the number of
faces of each of the generated output puzzles. The
numbers range from 40 to 239, with an average of
112 faces (rounded). We can compare these numbers
to the number of faces that we typically see in classic
Nonograms. In our experience, the classic Nonograms
found in puzzle books typically have a 10x10 grid (100
faces), a 15x15 grid (225 faces) or a 20x20 grid (400
faces). We can observe that most of the generated
Curved Nonograms have a number of faces that is
close to that of a 10x10 or 15x15 classic Nonogram.
Of course, these numbers are not directly comparable,
but they suggest that the numbers of faces are in the
right range for the puzzle to be fun.

Image ECEs (a) (b) (c) (d) (e)
penguin 10 52 43 40 48 48
coffee cup 12 74 80 62 58 52
lamb 12 59 60 63 54 49
butterfly 14 69 63 59 52 47
fish 16 137 104 88 93 67
monitor 16 114 95 109 78 84
rocket 16 112 108 100 92 80
mask 18 137 103 96 78 80
airplane 22 127 119 107 106 88
flower 22 167 136 157 118 130
car 24 145 124 113 103 110
hut 24 128 108 114 94 95
catface 26 153 131 147 117 130
church 32 184 159 137 127 121
pumpkin 36 237 210 212 209 172
space 38 239 206 190 221 194

Table 5: The number of faces in each of the generated
output puzzles, for settings (a) through (e).

5.5 Qualitative analysis of
output puzzles

This section contains several output puzzles from the
experiment. Because there is not enough room to
show all 16 times 5 output images, we focus on a
subset of output images that most clearly show the
workings and shortcomings of the algorithm. To get
a better impression of the full set of images, please
refer to Appendix B.

rocket The first image that we will discuss is rocket
(see Figure 12, of which the output for all five settings
is shown in Figure 10 and 11). This image had a very
low score for all settings, making it a good example
of an image that the algorithm can handle well. In
fact, the only penalty that the image receives is a di-
lation penalty on settings (d) and (e) which cannot be
helped by the algorithm. These penalties are applied
because an input curve intersects the puzzle bound-
ary at an angle that is too small for settings (d) and
(e). This shows a potential drawback of our approach
to not modify the input curves: ambiguous situations
that only involve input or boundary curves cannot be
improved.

Another consequence of this approach is that the
algorithm cannot cut G1-continuous curves, not even
at points of high curvature. For an example of this,
see the tail of the rocket’s middle fire trail, in the
bottom-center area of the output images. At such a
point, it might be desirable to change the input curve
slightly and create a point that is not G1-continuous,

Page 20

9

9

9

92
5

52

8

8

6

6

9

9

8736

6378
6188

8186

3
5
1
2
1

1
2
1
5
3

1
2
12
3

3
12
2
1

12

12

5

5

7

7

8

8

17

17
11 5

5 11

2 19

19
2
7
11
2

2 11 7

14

14

22

2
2

77

7
7
18

18

(a) Setting (a)

10

10

13

3
1

1
6

61

6

6

5

5

12

12

10538

83510
81710

10178

7
3
1
2
1

1
2
1
3
7

1
2
11
7

7
11
2
1

5
1

15

5

5

10

10

7

7

11

11
5 5

5
5

2 16

16
2
5
10
2

2 10 5

11

11

31

1
3

34

4
3
12

12

(b) Setting (b)

10

10

8

86

6

7

7

6

6

11

11

1637

7
3
6
1

7
17
1

1177

4 3 1 1 1

1 1 1 3 4
1 1 9 4

4 9 1 1

12

12

6

6

8

8

7

7

17 1

1 17
1 10 4

4 10 1

1 8

8
1

6
1
1

1 1 6

12

12

4

4

66

6
6
16

16

(c) Setting (c)

8

8

5

57

7

4

4

5

5

1 8

8
1

3537

7
3
5
3

7
16
3

3167

3 2 1 1 1

1 1 1 2 3
1 1 8 3

3 8 1 1

8

8

3

3

5
1

1 5

8

8

15 1

1 15
1 7 6

6 7 1

5

52
1

12

9

9

5

5

5 1 1

1
1
5

1
11

11 1

(d) Setting (d)

Figure 10: Output puzzle of test set image rocket for settings (a), (b), (c) and (d).

Page 21

6

6

7

79

9

5

5

5

5

13

13

3 4 2

2
4
3

14
3

3 14

1
2
2
3

3
2
2
1

3
8
1

1
8
3

11

11

2

2

10

10

7

7

15

15
9 5

59

4 41
2

2
1

7

7

6

6

115

5
1
1

8
1

18

Figure 11: Output puzzle of test set image rocket for
setting (e).

Figure 12: Input image rocket.

(a) Setting (d)

(b) Setting(e)

Figure 13: Close-ups of Figure 10d and Figure 11
focused on the window of the rocket. The red circles
highlight ambiguous bends in the curve very close to
an intersection.

Page 22

so that it can be cut.

The output puzzles of rocket are also a good exam-
ple of how the outputs are shaped by the different set-
tings. While the initial curve-extension parameters
were randomized, we used the same seed for each of
the settings. This means that any difference between
the output images is purely the result of the strictness
of each setting. To start off with, Figure 10a looks
quite ugly, and contains some very small faces that
are hard to see.

Figure 10b has some curves that are in exactly the
same place as the first figure, but those in the most
ambiguous regions have been moved by the algorithm.
This is most visible at the lower center region of the
image, where there are a lot fewer intersections close
together.

In Figure 10c a lot of intersections and small faces
have disappeared, which helps both the aesthetic
quality and the ambiguity. This makes it the first
of the images that looks like an enjoyable puzzle. At
the upper center region of the image, where the win-
dow of the rocket is, are three strange looking faces
that consist of one curve pulled slightly over another
curve. As explained in Section 5.3, these are a good
example of the face penalty at work, which is the rea-
son that they have not been made too small by the
algorithm. However, from an aesthetic perspective,
the puzzle would look better if it had fewer of these
types of faces. These kinds of faces are quite prevalent
in the output, because it is hard for the Hill climbing
algorithm in the local phase to pull the two curves
across one another and make the face disappear. A
small step in this direction will at some point incur a
face penalty, and possibly a vertex or dilation penalty
as well, causing it to not be chosen by the algorithm.

Figure 10d seems to be a relatively smaller step up.
The last faces that might be considered too small are
gone, and the curves are spread more equally over the
image. Finally, Figure 11 is the output of the strictest
setting. Compared to the other outputs, it looks very
clean and aesthetically pleasing.

On the subject of aesthetics, one of the weak points
of these five output puzzles is that they all contain
a number of large faces that are not very interest-
ing. This is most visible in the top right corner of
each of the output puzzles. The measurement mb

that we introduced in Section 3.4 - a measurement
for the largest inscribed circle of any face - can be
used to this aesthetic weak point. This measurement
is not included in the algorithm because of the fo-
cus on removing ambiguity over improving aesthetics.
However, it could be included in future work that fo-

cuses more on the aesthetic aspects, to penalise large,
empty faces such as these.

Curve bends near intersections The final obser-
vation that we wish to make about the rocket puzzles
is shown in Figure 13. This figure shows a close-up of
the area around the rocket’s window for the output
puzzles of setting (d) and setting (e). In these close-
ups, a total of three more or less ambiguous areas are
shown. The problem with each of these is that there
is high curvature (a bend in the curve) very close to
an intersection. This type of ambiguity appears in
multiple output puzzles, and is important to high-
light because it is the only type of ambiguity that did
not receive a penalty from the evaluation function.

First of all, this shows a weak point in the evalua-
tion function, since it should penalize all ambiguities
that can appear. Secondly, there are two reasons why
this type of ambiguity is created relatively often by
our algorithm. The first of these reasons is that it
is encouraged by the dilation penalty. Especially on
the stricter settings, curves need to intersect at large
angle, which can be achieved by bending the curve
just before the intersection. The second reason is
that our algorithm has no control over the placement
of the second control point of an extension Bézier
curve, because we enforce C1-continuity. This leads
to many cases where the second control point lies very
close to the intersection point (which is the first con-
trol point), which can result in very high curvature
around these points. A solution would be to only
enforce G1-continuity, which gives the second control
point one degree of freedom. This degree of freedom
can either be used to simply place the second control
point a set distance away from the first control point,
or it could be given as an extra degree of freedom for
the algorithm to optimize.

hut Figure 14a shows the output puzzle of the hut
image on setting (c). This is a good example of a
puzzle with a non-zero score that is easy to correct
by hand. The puzzle contains two ambiguous areas,
one on the lower left and one just right of the center,
both of which are the result of the algorithm getting
stuck in a local minimum.

We focus on the lower left area, shown enlarged in
Figure 14b. This area contains one face that is too
small, coloured pink; two vertices that lie too close to
each other, marked with yellow circles; and a number
of sampled point pairs that lie too close while having
dilation that is too high, marked by blue lines. This
situation is a local minimum in the evaluation func-
tion. First of all, some of these curves are part of the

Page 23

8

8
5

5

6

6 0

0

2 5 7

752
72

2 7

7

7
1

1

4 2 6

6
2
4

2
4

4 2

3 2 6 1

1
6
2
3

1
1
2
3

3 2 1 1

9
5

5 9
5 1 5

5
1
5

451

1 5 4
1 5 1 1

1151

8

8
4 1

1
4

18

188
8

8
8

1
1
7

711
91

1
9

12

2
1
10

10

(a) whole puzzle (b) zoomed in (c) possible fix

Figure 14: Output puzzle of test set image hut on setting (c). The image on the right shows the ambiguous area
around the bottom left at a larger scale. Ambiguities that contribute to the score have been marked.

input drawing (see Appendix A), which means that
they cannot be manipulated. The curve that goes to-
wards the top left cannot easily be moved out of the
way, because this would increase its dilation with the
bottom curve. It would be ideal to make it go straight
down and cross the bottom curve, but any incremen-
tal changes in that direction have the same problem
of increasing the dilation. Making the small face more
elongated to separate the vertices increases the dila-
tion within the face. Enlarging the face towards the
left would introduce a dilation penalty with the curve
left of it.

This situation is easy to fix by hand, for exam-
ple see Figure 14c. This fix was created simply by
changing the position of the third control point of two
extending Bézier curves, which solved all of the ambi-
guities highlighted in Figure 14b without introducing
them anywhere else in the puzzle. The conclusion
that can be drawn from this is that these situations
can be fixed by our method of extending curves and
manipulating the control points of those extensions,
but not by the used search algorithm.

Finally, an observation that can be made when
looking at Figure 14a as a whole is that the in-
put image is relatively easy to spot. The hut im-
age consists mostly of straight lines, which makes the
high-variation curves added by the algorithm stand
out. This could be prevented by basing the extension
curves on the input curves of the image. For exam-
ple, the extension curves could be built by copying
and scaling (parts of) the input curves.

5.6 Solvability results

In Section 3.3 we defined the four classes of solvability
for (Curved) Nonograms. Of the 80 output puzzles
that were produced by the experiment, 75 fall in the
simple class of solvability. The other 5 puzzles (fish
on settings (c), (d) and (e) and car on settings (b)
and (d)) had multiple solutions. These five puzzles
all have multiple solutions because they have a closed
background curve that is not intersected by any puz-
zle curves. In this situation, the face inside the back-
ground curve is not associated with any descriptions,
so in any solution of the puzzle it can be either black
or white. Fortunately, this special case can be fixed
by adding an additional rule to the Curved Nono-
gram, that a face should be left white if there is no
information available for it. In other words, the user
is asked to find a minimal solution, where as few faces
as possible are coloured black. Re-running the exper-
iment with this added rule resulted in 80/80 puzzles
that were simple.

The fact that all output puzzles are simple, while
the algorithm does not take the solvability into ac-
count, is a good sign. It suggests that the solvability
does not need to be a primary concern when gener-
ating these kinds of puzzles, which makes it easier to
focus on the aesthetic aspects.

A possible concern is that the produced puzzles
may be too easy. Some of the harder puzzle book
Nonograms require the puzzler to think a few steps
ahead, meaning that they are not simple solvable,

Page 24

but close to it. Fortunately, making a puzzle harder
is easy to achieve. One way to do this is by removing
descriptions from the puzzle until it has the desired
difficulty. Of course, this must be done in such a
way that the puzzle keeps a unique solution, instead
of multiple solutions. Combining a pure-aesthetics
algorithm like the one we proposed with such a post-
processing step may be a good way to generate good
puzzles in the future.

6 Conclusion

In this paper we have introduced a new type of
pencil-and-paper puzzle called the Curved Nonogram,
which is a variation on the existing Nonogram puz-
zle. Where a classical Nonogram consists of a square
grid of rows and columns, a Curved Nonogram is
built from arbitrary curves which make it free to take
any shape. This property gives the puzzle designer
more artistic freedom in shaping the solution image
as they want. In addition, much more variety is pos-
sible in the shape of the unsolved puzzle, while clas-
sic Nonograms only differ in the number of rows and
columns. This gives a unique feel to each Curved
Nonogram even before it is solved. Both of these dif-
ferences make Curved Nonograms more visually ap-
pealing and interesting. New puzzle mechanics are
also introduced. For example, a new situation arises
when one side of a curve comes across the same face
more than once. This gives a new form of informa-
tion about the face, which the puzzler will sometimes
have to use in order to solve the puzzle.

After introducing the Curved Nonogram itself, we
also introduced ways to classify and judge these puz-
zles. First, we defined the four classes of solvability
to which a Curved Nonogram can belong: no solu-
tion, multiple solutions, unique solution and simple.
Secondly, we gave three measurements to judge its
aesthetics and level of ambiguity: the minimum ver-
tex distance, the minimum edge length, the largest
inscribed circle of any face, and the local geometric
dilation.

Next, we proposed an algorithm that takes a
coloured line drawing as input, and makes a Curved
Nonogram whose solution image matches the draw-
ing. The algorithm cuts the input curves where
they are not smooth and extends the resulting curve
pieces to the puzzle enclosure, which results in a valid
Curved Nonogram. The goal of the algorithm is to
make these extensions in a way that minimizes the
ambiguity in the puzzle. This is achieved by intro-
ducing an evaluation function that measures ambigu-
ity in the puzzle. The evaluation function has three

terms, based on some of the three measurements de-
fined earlier: the vertex penalty, the dilation penalty
and the face penalty. A simple optimization algo-
rithm is used to find a puzzle with a low evaluation
score (lower is better), ideally zero.

Finally, we conducted an experiment in which we
ran the algorithm on a test set of 16 simple images, for
five different settings of the algorithm. The settings
impacted the level of ambiguity that the algorithm
would tolerate, ranging from very forgiving (setting
(a)) to very strict (setting (e)). We found that a very
low score (under 10) was achieved for 14/16 of the
images on setting (b), for 10/16 images on setting (c)
and for 9/16 images on setting (d). This means that
a nice puzzle was created for at more than half of
the images, and that only two images did not achieve
a good result on setting (b), which results in only
barely unambiguous outputs. We also found that the
scores of the output puzzles seemed to have a positive
correlation with the number of extendable curve ends
of the input images, although our data sample was
really too small for proper analysis.

In the last part of the experiment we classified the
output puzzles by solvability, and found that 75/80
puzzles were simple. The other five are a special
case of multiple solutions: they contain faces that
are only adjacent to background curves, which means
that they have no descriptions associated with them,
so they could be either colour. While solvability was
not a concern of the algorithm, it is good to know
that the puzzles produced this way are likely to be
simple. This is the desired solvability class for all but
the hardest puzzle book puzzles, and making them
harder to solve can be as easy as removing some of
the descriptions.

In conclusion, by introducing Curved Nonograms
together with a generation algorithm for these puz-
zles, we were able to produce a set of puzzles that
may serve as an example of what this kind of puz-
zle looks like. While the generated puzzles are not
perfect, they are at least mostly unambiguous and
simply solvable. In our opinion, the produced puz-
zles look interesting enough that we hope that the
Curved Nonogram concept is expanded upon in the
future. With this goal in mind, we have presented
many ways in which our algorithm can be adjusted
and improved, which are summarized and expanded
upon in Section 7.

7 Future work

Since the Curved Nonogram is a new type of puzzle,
and the proposed algorithm is the first algorithm that

Page 25

generates this type of puzzle, there are many improve-
ments and alternatives that could be part of future
work. In this section we will repeat the suggestions
that are already mentioned in the thesis, and add new
ideas as well.

Pre-processing the input First of all, there are
many other ways to do the pre-processing of the input
image. If the algorithm is allowed to change the input
curves, it would be possible to cut the curves at G1

continuous points that have high curvature. This may
look more natural, because those points often do not
look smooth at all. In this case, the curve should be
changed slightly to create a cutting point that is not
G1-continuous, so that the separated curves intersect
at an angle greater than zero.

Another possibility would be to give the algorithm
the power to change all the input curves, using force
directed placement like [13] uses for Graph drawing to
encourage but not enforce that the curves stay similar
to the input.

An option that is closer to our algorithm is to let
the optimization algorithm change the input curves
until they have a score of zero, before extending them.
This would solve the problem that we found where
ambiguous input curves made it impossible to achieve
a perfect score.

The initial extension curves An area in which
big improvements can be made is how the curves are
initially extended, i.e. the start state of the optimiza-
tion algorithm. Our method of spreading the control
points of the extension Béziers uniformly random cre-
ates extremely chaotic start states, which makes it
harder to optimize. The first step to improving the
extension curves would be to enforce a minimum dis-
tance between the first and second control point. The
experiment outputs show many cases where ambigu-
ity is caused by high curvature at the start of the
extension curve. A bigger change to avoid the chaos
is to extend each curve to the puzzle enclosure with
a straight line. A variation on this is to use a ran-
domized Bézier curve that is allowed to deviate a set
amount from that line.

Another option that we discussed is to copy pieces
of the input curves, and use those to build the ex-
tending curves instead of always using a cubic Bézier
curve. Although this is a more complicated process,
the advantage is that the solution image should be
better hidden in the puzzle, because the properties of
the generated curves will be similar to those of the in-
put curves (e.g., many straight lines and 90◦ angles).

The algorithm can also be changed to handle inputs

with many extendable curve ends better, by connect-
ing some of those curve ends to each other instead
of to the boundary. In this variation, an extra step
could be added to the algorithm in which it deter-
mines the best pairs of ECEs to connect, based on
smoothness, distance or the resulting ambiguities.

Evaluation and optimization If the previously
given suggestion of cutting high-curvature points is
implemented, it would also be interesting to add a
penalty term for curve pieces with high curvature to
the evaluation function. Many of the problems that
remained in the output puzzles of the experiment in-
volved such high-curvature pieces.

Another measurement that can be added is the
Largest inscribed circle of any face, introduced in Sec-
tion 3.4. We expect that adding (a variant of) this
measurement to the evaluation function would greatly
improve the aesthetics of the puzzle, by forcing a more
equal distribution of the curves over the puzzle. This
should especially help for the faces adjacent to the
puzzle enclosure, which were somewhat large, empty
and uninteresting for many of the generated output
puzzles.

For the optimization of the evaluation function, we
used a simple Hill climbing algorithm. This often
resulted in the algorithm getting stuck in a local op-
timum. It would be interesting to see how well the
algorithm performs with a more sophisticated search
heuristic, such as Simulated Annealing. What would
be even more interesting to research is if (parts of) the
evaluation function could be formulated as a math-
ematical function and solved analytically. Although
this might require a different evaluation function, it
would certainly give us more insight into the opti-
mization problem than any search heuristic.

Solvability and difficulty In Section 5.6 we found
that the only output puzzles that were not in the
simple class of solvability, were those with one or
more faces that were not associated with any descrip-
tion. The result is that it can have either colour,
which gives the puzzle multiple solutions if it has
any. For cases like these, a rule can be added to
the Curved Nonogram definition that only a mini-
mal solution is considered correct. That is to say, a
solution should have the minimum amount of black-
coloured faces, and a maximum amount of white-
coloured faces. With this rule added, such problem-
atic disconnected faces must be coloured white and
the problem is solved.

An interesting study into the solvability of Curved
Nonograms would be to see how many descriptions

Page 26

can be removed from the puzzle curves before the
puzzle is no longer simple. This could be used as
a tool to bring the puzzle to a desired level of diffi-
culty. This process could even continue if the puzzle
has become uniquely solvable but no longer simple,
in which case the difficulty could be defined as the
maximum search depth (i.e. the maximum number
of concurrent assumptions that must be made on the
face colours) that is required to find the solution. For
such a study, it would be interesting to see how many
descriptions can be removed before the puzzle starts
to have multiple solutions.

User studies Finally, while we have not touched
on the subject of user studies in this paper, there are
multiple interesting user studies that can be done on
Curved Nonograms. Before Curved Nonograms can
be included in actual puzzle books, user studies need
to be done on whether the rules and puzzle concept
are clear enough for the general public. Similarly, a
study could be done to determine the desired level of
complexity of a Curved Nonogram in a puzzle book,
e.g. in terms of the number of curves, or the maxi-
mum number of faces adjacent to one side of a puzzle
curve.

A different topic that is also interesting for a user
study is how well the solution images of (generated)
Curved Nonograms are hidden in the puzzle. Some
of the test set images surely seem to be too clearly
visible in the output puzzle. It would be especially
interesting to find a way to measure how well-hidden
the solution image is for a given puzzle. A user study
would be needed to find such a measurement and
prove that it works.

References

[1] N. Ueda and T. Nagao, “NP-completeness re-
sults for NONOGRAM via parsimonious reduc-
tions,” preprint, 1996.

[2] K. Batenburg and W. Kosters, “A discrete to-
mography approach to Japanese puzzles,” in
Proceedings of the 16th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC),
pp. 243–250, 2004.

[3] C.-H. Yu, H.-L. Lee, and L.-H. Chen, “An effi-
cient algorithm for solving nonograms,” Applied
Intelligence, vol. 35, no. 1, pp. 18–31, 2011.

[4] K. J. Batenburg and W. A. Kosters, “Solving
Nonograms by combining relaxations,” Pattern
Recognition, vol. 42, no. 8, pp. 1672–1683, 2009.

[5] S. Salcedo-Sanz, E. G. Ort́ız-Garćıa, A. M.
Pérez-Bellido, A. Portilla-Figueras, and X. Yao,
“Solving Japanese puzzles with heuristics,” in
Computational Intelligence and Games, 2007.
CIG 2007. IEEE Symposium on, pp. 224–231,
IEEE, 2007.

[6] J. Wolter, “The ’pbnsolve’ paint-by-
number puzzle solver.” Available at
http://webpbn.com/pbnsolve.html.

[7] K. J. Batenburg, S. Henstra, W. A. Kosters, and
W. J. Palenstijn, “Constructing simple Nono-
grams of varying difficulty,” Pure Mathematics
and Applications (Pu. MA), vol. 20, pp. 1–15,
2009.

[8] E. G. Ortiz-Garćıa, S. Salcedo-Sanz, J. M. Leiva-
Murillo, A. M. Pérez-Bellido, and J. A. Portilla-
Figueras, “Automated generation and visual-
ization of picture-logic puzzles,” Computers &
Graphics, vol. 31, no. 5, pp. 750–760, 2007.

[9] M. Hunt, C. Pong, and G. Tucker, “Difficulty-
driven sudoku puzzle generation,” Journal of
Undergraduate Mathematics and Its Applica-
tions (UMAPJournal), p. 343, 2007.

[10] A. M. Smith, E. Butler, and Z. Popovic, “Quan-
tifying over play: Constraining undesirable solu-
tions in puzzle design.,” in Foundations of Digi-
tal Games conference, 2013, pp. 221–228, 2013.

[11] M. Löffler, M. Kaiser, T. van Kapel, G. Klappe,
M. van Kreveld, and F. Staals, “The connect-
the-dots family of puzzles: design and automatic
generation,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, p. 72, 2014.

[12] G. D. Battista, P. Eades, R. Tamassia, and I. G.
Tollis, Graph drawing: algorithms for the visual-
ization of graphs. Prentice Hall PTR, 1998.

[13] T. M. Fruchterman and E. M. Reingold, “Graph
drawing by force-directed placement,” Soft-
ware: Practice and Experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[14] H. C. Purchase, R. F. Cohen, and M. James,
“Validating graph drawing aesthetics,” in Graph
Drawing, pp. 435–446, Springer, 1996.

[15] H. C. Purchase, “Metrics for graph drawing aes-
thetics,” Journal of Visual Languages & Com-
puting, vol. 13, no. 5, pp. 501–516, 2002.

Page 27

[16] B. A. Barsky and T. D. DeRose, Geometric con-
tinuity of parametric curves. Computer Science
Division, University of California, 1984.

[17] R. T. Farouki, “Arclength parameterization,”
Pythagorean-Hodograph Curves: Algebra and
Geometry Inseparable, pp. 369–380, 2008.

[18] G. Farin, Curves and surfaces for computer-
aided geometric design: a practical guide, p. 35.
Elsevier, 2014.

A Test set

This appendix contains the 16 test set images that
were used in the experiment, shown in Figure 15
through Figure 30.

Figure 15: Test set image penguin.

Figure 16: Test set image coffe cup.

Figure 17: Test set image lamb.

Page 28

Figure 18: Test set image butterfly.

Figure 19: Test set image fish.

Figure 20: Test set image monitor.

Figure 21: Test set image rocket.

Page 29

Figure 22: Test set image mask.

Figure 23: Test set image airplane.

Figure 24: Test set image flower.

Figure 25: Test set image car.

Page 30

Figure 26: Test set image hut.

Figure 27: Test set image catface.

Figure 28: Test set image church.

Figure 29: Test set image pumpkin.

Page 31

Figure 30: Test set image space.

Page 32

B Experiment output
on setting (c)

This appendix contains the output puzzles that
were produced in the experiment by running the
algorithm on the test set on setting (c). Of each
output puzzle, the empty puzzle is shown next to
the solution. These outputs are shown in Figure 37
through Figure 46.

Page 33

9 90 0 66 00

1
6
1

161
1311

1
1
3
1

8 8 1
6

6
1

6
1

1 6
1 2 2

2
2
1

2
1

12
6

6

8 1 2

2
1
8

2
1
1
4

4 1 1 2

9 90 0 66 00

1
6
1

161
1311

1
1
3
1

8 8 1
6

6
1

6
1

1 6
1 2 2

2
2
1

2
1

12
6

6

8 1 2

2
1
8

2
1
1
4

4 1 1 2

Figure 31: Output puzzle of penguin on setting (c).

7
4

4
7

1

1

77 5
6

6
5
6
4
5

5
4
6

2
1
8

8
1
2

10
1
2

2
1
10

26

6
2

14
14

3

3

17 1

117
139

9 3 1

11 2

2
11

2
2
6

6 2 2

7
4

4
7

1

1

77 5
6

6
5
6
4
5

5
4
6

2
1
8

8
1
2

10
1
2

2
1
10

26

6
2

14
14

3

3

17 1

117
139

9 3 1

11 2

2
11

2
2
6

6 2 2

Figure 32: Output puzzle of coffee cup on setting (c).

Page 34

3 34 4 7

7

1

1

22

151

1
5
1

13
1

113

1
1
6
1

1
6
1
1

1
6
7

7
6
1

4
1
2

2
1
4

4
4

4
4

5

5

4

4

3
3

3 3
11

11

66 3 34 4 7

7

1

1

22

151

1
5
1

13
1

113

1
1
6
1

1
6
1
1

1
6
7

7
6
1

4
1
2

2
1
4

4
4

4
4

5

5

4

4

3
3

3 3
11

11

66

Figure 33: Output puzzle of lamb on setting (c).

612

12
6
21

21

7 7

7
7
20

20

9
6

69
16

16

7
2

2 7
13

13

6 7

7 6
16

16

5 4

4
5
10

10

612

12
6
21

21

7 7

7
7
20

20

9
6

69
16

16

7
2

2 7
13

13

6 7

7 6
16

16

5 4

4
5
10

10

Figure 34: Output puzzle of butterfly on setting (c).

Page 35

254

4
5
2

4
2

24

2
4
7
4
1

1
4
7
4
2

1
17
2

2
17
1

14
2

214
256

6
5
2

94

49
415

514

4
2
2

2
2
4

2
13

13
2

2
2
2

2
2
2

5
2

2
5

2 1 2

2
1
2

2
7

7 2

4
1
4

4
1
4

4
7

7
4

254

4
5
2

4
2

24

2
4
7
4
1

1
4
7
4
2

1
17
2

2
17
1

14
2

214
256

6
5
2

94

49
415

514

4
2
2

2
2
4

2
13

13
2

2
2
2

2
2
2

5
2

2
5

2 1 2

2
1
2

2
7

7 2

4
1
4

4
1
4

4
7

7
4

Figure 35: Output puzzle of fish on setting (c).

4

4
27

72

1 6

6
1

1 3 5

5
3
1

42

24

2317

7132
1132

2311

10

10

7
3
1

1 3 7

1
11
1

1
11
1

1
2
5
1

1
5
2
1

2
1

1 2

1
3
5
7
3
1

1 3 7 5 3 1
1 3 1 2 5 3 1

1
3
5
2
1
3
1

2 3 11 5

5
11
3
2

5
1
3
3
2

2 3 3 1 5

5 10 1

1105
1515

5 1 5 1

420

20
4
2
5
4

452

4

4
27

72

1 6

6
1

1 3 5

5
3
1

42

24

2317

7132
1132

2311

10

10

7
3
1

1 3 7

1
11
1

1
11
1

1
2
5
1

1
5
2
1

2
1

1 2

1
3
5
7
3
1

1 3 7 5 3 1
1 3 1 2 5 3 1

1
3
5
2
1
3
1

2 3 11 5

5
11
3
2

5
1
3
3
2

2 3 3 1 5

5 10 1

1105
1515

5 1 5 1

420

20
4
2
5
4

452

Figure 36: Output puzzle of monitor on setting (c).

Page 36

10

10

8

86

6

7

7

6

6

11

11

1637

7
3
6
1

7
17
1

1177

4 3 1 1 1

1 1 1 3 4
1 1 9 4

4 9 1 1

12

12

6

6

8

8

7

7

17 1

1 17
1 10 4

4 10 1

1 8

8
1

6
1
1

1 1 6

12

12

4

4

66

6
6
16

16

10

10

8

86

6

7

7

6

6

11

11

1637

7
3
6
1

7
17
1

1177

4 3 1 1 1

1 1 1 3 4
1 1 9 4

4 9 1 1

12

12

6

6

8

8

7

7

17 1

1 17
1 10 4

4 10 1

1 8

8
1

6
1
1

1 1 6

12

12

4

4

66

6
6
16

16

Figure 37: Output puzzle of rocket on setting (c).

11
2

211
261

1
6
2

14

14
55

5
5

1212 1
4

4
1

3
15
3

3153
3263

3
6
2
3

8 2

2 8
2 5 1

1 5 2

3 9 3

3
9
3

3
3
4
3

3 4 3 3

0

0
5

5

3
4
1
1

1
1
4
3

1
7
1
4
3

3
4
1
7
1

322

2 2 3
2 2 3 9

9322

11
2

211
261

1
6
2

14

14
55

5
5

1212 1
4

4
1

3
15
3

3153
3263

3
6
2
3

8 2

2 8
2 5 1

1 5 2

3 9 3

3
9
3

3
3
4
3

3 4 3 3

0

0
5

5

3
4
1
1

1
1
4
3

1
7
1
4
3

3
4
1
7
1

322

2 2 3
2 2 3 9

9322

Figure 38: Output puzzle of mask on setting (c).

Page 37

2
11

112
2

2

14

14
6

64

4
3

3 4

4
0

0

9

9
9

9

4

4 4

4

2

2 2

2

5

55

5

4
1
1
5

5 1 1 4
8 1 4

4
1
8

3
3

3 3
9

9 4
1
3

3
1
4

3
7

7
3

2
11

112
2

2

14

14
6

64

4
3

3 4

4
0

0

9

9
9

9

4

4 4

4

2

2 2

2

5

55

5

4
1
1
5

5 1 1 4
8 1 4

4
1
8

3
3

3 3
9

9 4
1
3

3
1
4

3
7

7
3

Figure 39: Output puzzle of airplane on setting (c).

12

12

7
1

17

29

92
132

231

2
1
7
1

1
7
1
2

1
7
9

9
7
1

3
4
4
5
1

1 5 4 4 3
1 5 17 3

3
17
5
1

2
4
1

1 4 2
1 11

11
1

2
8
5
7

7
5
8
2

7
20
2

2
20
7

1 8 19

19
8
1

12
5
8
1

1 8 5 12

17

7
1

12

12

8
1
2
1
2

2
1
2
1
8

2
1
6
1
8

8
1
6
1
2

217

7 1 2
7 1 6

617

7
6
1
1

1 1 6 7
1 1 1 7

7
1
1
1

6

6
1

1

12

12

7
1

17

29

92
132

231

2
1
7
1

1
7
1
2

1
7
9

9
7
1

3
4
4
5
1

1 5 4 4 3
1 5 17 3

3
17
5
1

2
4
1

1 4 2
1 11

11
1

2
8
5
7

7
5
8
2

7
20
2

2
20
7

1 8 19

19
8
1

12
5
8
1

1 8 5 12

17

7
1

12

12

8
1
2
1
2

2
1
2
1
8

2
1
6
1
8

8
1
6
1
2

217

7 1 2
7 1 6

617

7
6
1
1

1 1 6 7
1 1 1 7

7
1
1
1

6

6
1

1

Figure 40: Output puzzle of flower on setting (c).

Page 38

12

12
23

3
2

4

4
1

1

1
16
2
1

1
2
16
1

1
2
6
1

1
6
2
1

1
1
7
1

1711
11211

1
1
2
1
1

12

125
2

25

1 8
8
1

1
3
1

1 3 1

18

8
1
1
6
1

161

9
1

1
9
1
1
5

5
1
1

4
10

10
4
5
2
4

4
2
5

9

93
4

4
3

12 1

112
152

2 5 1

12

12
23

3
2

4

4
1

1

1
16
2
1

1
2
16
1

1
2
6
1

1
6
2
1

1
1
7
1

1711
11211

1
1
2
1
1

12

125
2

25

1 8
8
1

1
3
1

1 3 1

18

8
1
1
6
1

161

9
1

1
9
1
1
5

5
1
1

4
10

10
4
5
2
4

4
2
5

9

93
4

4
3

12 1

112
152

2 5 1

Figure 41: Output puzzle of car on setting (c).

8

8
5

5

6

6 0

0

2 5 7

752
72

2 7

7

7
1

1

4 2 6

6
2
4

2
4

4 2

3 2 6 1

1
6
2
3

1
1
2
3

3 2 1 1

9
5

5 9
5 1 5

5
1
5

451

1 5 4
1 5 1 1

1151

8

8
4 1

1
4

18

188
8

8
8

1
1
7

711
91

1
9

12

2
1
10

10

8

8
5

5

6

6 0

0

2 5 7

752
72

2 7

7

7
1

1

4 2 6

6
2
4

2
4

4 2

3 2 6 1

1
6
2
3

1
1
2
3

3 2 1 1

9
5

5 9
5 1 5

5
1
5

451

1 5 4
1 5 1 1

1151

8

8
4 1

1
4

18

188
8

8
8

1
1
7

711
91

1
9

12

2
1
10

10

Figure 42: Output puzzle of hut on setting (c).

Page 39

16

169
3

39

18
5

5
18

5
7
7

7
7
5

4 10

10
4

4
1
4

4 1 4

1
10

101
411

1
1
4

12

12 7
3

3 7

11

11 7
3

3 7

12

12 7
3

37

914

14
9
26

26

42254

4
5
2
2
4

4
5
29
4

42954

1
3
7

731
75

5
7

6
3
6

636
106

6
10

1
1

1
1

4 4

5 1 5

5 1 5
5 8

8 5

16

169
3

39

18
5

5
18

5
7
7

7
7
5

4 10

10
4

4
1
4

4 1 4

1
10

101
411

1
1
4

12

12 7
3

3 7

11

11 7
3

3 7

12

12 7
3

37

914

14
9
26

26

42254

4
5
2
2
4

4
5
29
4

42954

1
3
7

731
75

5
7

6
3
6

636
106

6
10

1
1

1
1

4 4

5 1 5

5 1 5
5 8

8 5

Figure 43: Output puzzle of catface on setting (c).

6

6

4

4

5

5

3

3 10

10

4

4
41

14

2

23

3

1
7

7
1

10

10

3

3
4

4 1 1

11
111

1 1 1

223 3

5
1
5

5
1
5

5
7

7
5

7

7 9

9

1

11
1

1 1

6

6
11

11

1 1

1 1
6 1

1 6

4 2
2 4
4 4

4 4

6

6

6

6
6 4

4
6

9 1

19
149

9 4 1

6

6

4

4

5

5

3

3 10

10

4

4
41

14

2

23

3

1
7

7
1

10

10

3

3
4

4 1 1

11
111

1 1 1

223 3

5
1
5

5
1
5

5
7

7
5

7

7 9

9

1

11
1

1 1

6

6
11

11

1 1

1 1
6 1

1 6

4 2
2 4
4 4

4 4

6

6

6

6
6 4

4
6

9 1

19
149

9 4 1

Figure 44: Output puzzle of church on setting (c).

Page 40

15

15

4

4

2

2

121

1
12

1
15

151

0
0
1

1

3

38

816

16

13 1

113
154

4 5 1

2 21

21
2
11
5
2

2 5 11

12
4

4
12

4
4
6

6
4
4

213

13
2
8
3
2

238

23
3

3 23
3 10 9

9
10
3

9
1

1
9
1
1
4

4
1
1

9
5
4

459
458

8
5
4

2 2 5 6

6
5
2
2

6
5
2

2 5 6

4 6 5

5
6
4

5
4
4

4 4 5

6 15

15
6

3
5
6

6 5 3
319

19 3
5 2 3

325
4 16

164
774

4 7 7

16
2

2
16

2
3
12

12
3
2

1
5
1
1

1
1
5
1

1
1
1
2
1

1
2
1
1
1

15

15

4

4

2

2

121

1
12

1
15

151

0
0
1

1

3

38

816

16

13 1

113
154

4 5 1

2 21

21
2
11
5
2

2 5 11

12
4

4
12

4
4
6

6
4
4

213

13
2
8
3
2

238

23
3

3 23
3 10 9

9
10
3

9
1

1
9
1
1
4

4
1
1

9
5
4

459
458

8
5
4

2 2 5 6

6
5
2
2

6
5
2

2 5 6

4 6 5

5
6
4

5
4
4

4 4 5

6 15

15
6

3
5
6

6 5 3
319

19 3
5 2 3

325
4 16

164
774

4 7 7

16
2

2
16

2
3
12

12
3
2

1
5
1
1

1
1
5
1

1
1
1
2
1

1
2
1
1
1

Figure 45: Output puzzle of pumpkin on setting (c).

1
15

151
121

1
12

57

7
5

7
4

47

2
10

102
72

2
7

7 10

10
7

10
5

5 10

8
3
2

2
3
8

2
1
8

8
1
2

12
4

4 12
4 8

8
4

76

6
7
2
7

72

34

43
41

14

4
3
7
1

1734
1724

4
2
7
1

5
5
2
1

1255
1253

3
5
2
1

6
9
3
2

2
3
9
6

88

8
8

4
4
2

2 4 4
2 4

4
2

1 7 3

3 7 1
3 1

1 3
6 8 6

6
8
6

6
6

6 6

8
8

88

2
3
6

6
3
2

3
2
1

123
13

3
1

7423

3
2
4
7

3
2
7

723

5
1
1

1 1 5
1 5

5
1

3
1
1

1
1
3

1
3

3
1

1
15

151
121

1
12

57

7
5

7
4

47

2
10

102
72

2
7

7 10

10
7

10
5

5 10

8
3
2

2
3
8

2
1
8

8
1
2

12
4

4 12
4 8

8
4

76

6
7
2
7

72

34

43
41

14

4
3
7
1

1734
1724

4
2
7
1

5
5
2
1

1255
1253

3
5
2
1

6
9
3
2

2
3
9
6

88

8
8

4
4
2

2 4 4
2 4

4
2

1 7 3

3 7 1
3 1

1 3
6 8 6

6
8
6

6
6

6 6

8
8

88

2
3
6

6
3
2

3
2
1

123
13

3
1

7423

3
2
4
7

3
2
7

723

5
1
1

1 1 5
1 5

5
1

3
1
1

1
1
3

1
3

3
1

Figure 46: Output puzzle of space on setting (c).

Page 41

