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Abstract

Current objective assessments of speech signals show little correlation with the
listener’s perceived voice quality (VQ) , with their quality of experience. To rem-
edy this omission in our knowledge on the voice, a survey was executed, including
102 listeners, who each provided their Self-Assessment Manikin(SAM) on 100 (i.e.,
4× 25) speech samples of two males and two females. These samples were either
high quality or degraded by pink noise, impulse noise, packet loss, or bandwidth
reduction. An repeated measures analysis of variance (ANOVA) on the obtained
SAM , speaker gender, and signal quality revealed that the listeners preferred
one female voice and that degradations influences the SAM . The SAM was also
compared with International Telecommunication Union Telecommunication stan-
dardization sector (ITU-T) ’s Perceptual Objective Listening Quality Assessment
(POLQA) , which showed to handle the degradations excellently; but, was unable
to assess VQ adequately. To resolve POLQA ’s weak spot, we developed initial
computational models, founded on paralinguistic parameters solely. These models
correctly predicted VQ in 87.84% (4 levels) and 70.58% (8 levels) of the cases.
Unknown speaker’s VQ was predicted correctly in 88.71% (4 levels) and 70.42%
(8 levels) of the cases. The results of this empirical study emphasize that VQ
is a complex, multidimensional construct, which is influenced by several types of
common noise. Moreover, it shows that ITU-T ’s POLQA can be provided with
an add-on, which enables it to predict VQ as well. As such, this study provides a
major step towards understanding VQ and including it in ITU-T ’s standards.

Keywords: voice, speech, Quality of Experience, paralinguistics, degradations, subjective, evalu-
ations, Perceptual Objective Listening Quality Assessment (POLQA)

I’ve learned that people will forget what you said, people will forget what you did, but people will
never forget how you made them feel.

Maya Angelou (1928-2014)
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1 Introduction

Whether or not a voice is appreciated remains
hard to determine in advance, as it is still a
largely unknown what factors determine voice
quality. What voice features make us appre-
ciate a voice? When these features are iden-
tified [?, ?, ?], speech recordings and real time
speech transmission could be optimized and for
voice-induced professions quality checks could be
developed. Moreover, biometric profiles could
be enriched using voice features [?,?]. A voice-
based biometric could be used to unlock a mobile
phone or to access Google Home and Amazon
Echo’s services [?,?].

Voice quality is considered to be part of speech
quality [?], in addition to signal quality; that
is, the audio quality involving degradations that
may occur during audio recording or transmis-
sion, such as packet loss and pink noise. Voice
quality is considered to be the paralinguistic as-
pect of speech. It is about “how you say some-
thing rather than what you say” [?] (p. 3). This
can include many factors such as age, gender,
emotion, personality and intoxication.

Over the past few decades, speech signal qual-
ity have been studied exhaustively, which re-
sulted in many algorithms and models for a vari-
ety of purposes. For example, Beerends and Ste-
merdink’s PSQM [?] model, its successors Per-
ceptual Evaluation of Speech Quality (PESQ)
[?, ?], and subsequently, POLQA [?, ?], pre-
dicts listeners’ Mean Opinion Score (MOS) on
distorted voice recordings.

A rich history exists on voice quality studies
have been used to determine dysphonia [?,?]. An
additional aim emerged in detecting speaker’s af-
fective state via his voice, which is considered to
be part of the domain affective computing [?]:
“the scientific understanding and computation

of the mechanisms underlying affect and their
embodiment in machines” [?]. Studies to deter-
mine how the gender and age of speakers and
listeners affect the perceptual evaluations of lis-
teners [?,?,?].

These studies used either sustained vowels or
running speech to evaluate voice quality. Recent
studies suggest that the use of running speech
should be preferred, since incorporates variations
in vocal characteristics, where studies using sus-
tained vowels showed to have either a poor reli-
ability or poor documentation [?,?].

Voice quality has been evaluated mainly using
two types of evaluators: expert or naive listen-
ers. However, when a listener can be considered
to be an expert is not well defined. For example,
in [?], experts were used to predict layperson’s
MOS , where other studies used speech pathol-
ogists, otolaryngologists, and voice teachers as
experts [?, ?]. Sofranko and Prosek [?] showed
that expert’s opinions among these distinct ex-
perts show a low correlation, emphasizing the
absence of something like a generic expert lis-
tener.

Semantics can also significantly influence voice
quality evaluations, as is shown in the field of af-
fective computing [?,?]. Listeners familiar with
the speech sample’s language, may adapt their
evaluations based on semantics [?,?]. Listeners
unfamiliar with the speech sample’s language,
evaluate only voice quality, although a lack of un-
derstanding the speech samples might also trig-
ger participant’s agitation. Moreover, paralin-
guistic aspects between languages vary and can
influence voice quality evaluations. For example,
it has been shown that the assessment of speech
accent is influenced by semantics! [?]. To mit-
igate this issue, the current study includes this
aspect as well, including both native and non-
native listeners as participants.
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Figure 1: Schematic Overview of article’s Milestones.

There are two ways to collect perceptual eval-
uations [?, ?], including ones on speech qual-
ity [?]: with and without a reference sample.
These two evaluations provide clearly distinct
results, as has been shown over and over again
(e.g., [?, ?, ?]), which can be attributed to en-
tirely different cognitive processes: memory-
based recall and perceptual discrimination. The
first paradigm cannot be considered ecologically
valid, as in real life practice in the big majority
of cases, the situation does not concern a percep-
tual discrimination task. Therefore, for the cur-
rent research, we adopted the former paradigm.

MOS are mainly collected via the qual-
ppearing nterval Scale (EAIS) and Visual Analog
Scale (VAS) scales, with VAS being the gener-
ally preferred scale [?]. For The current study,
we used the SAM , which closely resembles VAS
; but, is tailored to subjective experience being
used most for this purpose.

We propose to open up speech quality’s de-
composition and add a third dimension to it. In
addition to i) signal quality, as we have defined,
and ii) voice quality, iii) its affective character
should be considered. We define voice quality as
a complex interaction between vocal tract config-
uration, laryngeal anatomy, and a learned com-
ponent (e.g., an accent) and its affective charac-

ter as the voice, being an indirect affective signal,
reflecting the speaker’s neurophysiological state,
which expresses emotions and moods [?]. Both
voice quality the its affective character influence
listener’s quality of experience (i.e., the level of
appreciation for the voice) [?,?,?], which makes
it inherently hard to untangle. To the authors’
knowledge, no studies have been reported that
assess the influence of non-affective voice char-
acteristics on the listener’s quality of experience.
This article aims to address this scientific lagoon
by way of an large empirical study.

In the next sections, we introduce the meth-
ods of our empirical study, including the par-
ticipants of the survey(Section 2.1), a descrip-
tion of the database used (Section 2.2), the pro-
cedure(Section 2.4), a description of the online
research portal developed (Section 2.3). Next,
Section 3 provides the results of the empirical
study, consisting of an analysis of significant par-
alinguistic factors. In Section 4, the POLQA
model [?, ?] is evaluated in relation to the par-
ticipants’ subjective experienced voice quality.
In Section 5 classifiers to evaluate voice qual-
ity are generated and evaluated, these classifiers
can potentially be used to improve POLQA ’s
assessment of voice quality. Note that these re-
search phases are also shown in Figure 1. We
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end this thesis in Section 6, where we summa-
rize the main results, discuss this research’s pros
and cons, and present ideas for future work.

2 Methods

2.1 Participants

102 participants answered more than 90% of the
demographic questions asked when entering the
online portal. Table 1 provides the descriptive
statistics of these participants. Please note that
24 (23.52%) were native Dutch speakers and 61
(59.80%) were native Greek speakers, with the
remaining 16 participants distributed over 9 dif-
ferent languages. Gender is almost perfectly bal-
anced.

In total, the 102 participants missed 104 an-
swers (i.e., this is 1.01% out of the total answers).
To aid the forthcoming analysis, these missing
answers were completed using expectation max-
imization, with a tolerance and convergence of
0.0001 and a maximum of 25 iterations [?].

2.2 Database

The database used for this research consists of
200 single channel, 16-bit, 48 kHz PCM audio
files of 8 sec. length. This set of audio files con-
sisted of speech samples of two males and two
females, who all read out aloud with a neutral
voice 50 sets of two subsequent Dutch sentences,
separated by a brief pause. This data set was
reduced to 4 × 25 audio files and, subsequently,
these PCM files were converted to MP3 files.
This limited the required network’s bandwidth
for the survey and ensured compatibility with
all browsers.

Moreover, to assess the influence of signal
quality on voice quality, the database was ex-

tended with four degradations of each undis-
torted audio file, namely:

• Pink noise is one of the widest audio degra-
dations used. Pink noise has been used to
test speech recognition algorithms [?], hu-
man memory [?] and voice quality experi-
ments [?]. Moreover, it can be considered as
an enhancement, since pink noise on silent
parts can make the listener feel more natu-
ral [?]. The function addNoise of Matlab’s
Audio Degradation Toolbox [?] was used to
generate pink noise, with a 48 kHz sam-
pling frequency, zero time positions, and 64
signal-to-noise ratio.

• Packet loss is a common signal degradation,
which mainly occurs in programs that en-
able voice-over-IP transmission in real-time
(e.g., Skype) [?]. This degradation results
from packet loss due to poor network con-
ditions and methods [?]. Packet loss was
simulated using 20 ms packets of which 10%
was lost.

• Impulse noise contains instantaneous,
impulse-like sharp sounds (e.g., clicks and
pops), usually caused by electromagnetic
interference, recording disks’ scratches,
and error prone synchronization in digital
recording and communication [?]. A Gaus-
sian noise mixture generator was used to
generate impulsive noise [?] η, which was
added to the speech recordings following:
x + 0.1η × 10−1.5, with x being the orig-
inal speech sample, using 0.05 as mixing
factor per column and respectively 1.00
and 100 for the variance of the Gaussian
non-impulsive and impulsive probability
density functions.
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Table 1: 102 participants’ demographics, as included in the final database.
nationality age level of education gender

Dutch 24 18 – 25 29 elementary school (basisschool) 3 male 53
Greek 61 26 – 30 33 high school (VMBO/HAVO/VWO) 18 female 49
Indian 5 31 – 35 5 bachelor (BA/BSc) 43
Italian 4 36 – 40 6 master (MA/MSc) 32
Romanian 2 40 – 50 5 PhD / doctoral 6
Japanese 1 50 – 60 13
Chinese 1 > 60 11
USA 1
Tibetan 1
Venezuelan 1
German 1

• Bandwidth reduction is a common degra-
dation resulting from narrow bandwidth
used by telecommunication companies. For
this purpose a narrowband filter was imple-
mented on the speech recordings using the
Audio Degradation Toolbox [?]. The func-
tion applyLowpassFilter of Matlab’s Audio
Degradation Toolbox [?] was used to gener-
ate bandwidth reduction, with 8000 Hz as
pass frequency, 0 Hz as stop frequency, and
zero time positions.

2.3 Online portal

For the acquisition of subjective results, an on-
line, PC and Mac compatible, portal was cre-
ated. The portal was generated using PHP,
HTML, JavaScript, with the subjective evalua-
tions stored in a MySQL database.

The portal’s participants were asked to listen
to each of the 100 speech samples separately and
evaluate it immediately after listening. The in-
structions provided to the participants can be
found at Appendix A.

Using the SAM [?] (i.e., a 1–9 Likert scale used

to assess a participant’s emotional state) they
were able to provide their evaluation (Figure 2).
Participants were able to listen as often to each
speech sample as they wanted. The choice to
either evaluate or reproduce the speech sample
appeared directly after the speech file reproduc-
tion ended. This procedure would repeat until
the participant had evaluated all the 100 speech
files.

Figure 2: The survey’s Self-Assessment
Manikin(SAM) evaluation screen.
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2.4 Procedure

As discussed in Section 2.2, the database con-
tained degraded speech files, in addition to the
original undistorted speech files. In this Sec-
tion, the order in which these speech files are
presented to the listeners is described.

These four degradations were applied on the
complete data set of 4× 24 speech samples. To-
gether with the original data set, this resulted in
5×4×25 speech samples. From these 500 speech
samples, 20 ordered lists of 100 speech samples
were generated using algorithm 1.

Algorithm 1 Generation of ordered lists.

1: generate list
2: for each speaker {f1, f2,m1,m2}, generate

set s of his 25 shuffled speech samples do
3: split s into 5 subsets of 5 samples:

s0, s1, s2, s3, s4
4: apply pink noise to s1
5: apply packet loss to s2
6: apply impulse noise to s3
7: apply bandwidth reduction to s4
8: leave s0 unchanged
9: add s at the end of list

10: end for
11: shuffle list
12: return list

3 Analysis of subjective evalu-
ations

To determine whether or not the participants’
subjective ratings unveiled effects of degrada-
tions (5), speaker gender (2), and speakers per
gender (2), an ANOVA was executed. Table 2
provides the basic statistics of the participants’

MOS for the independent variables just men-
tioned. Table 3 shows the results of the ANOVA
for all factors that did have a significant influ-
ence. The results show that all factors included
do have a significant impact on the subjective
ratings. This includes paralinguistic effects, as
can be inferred from the effects of gender and
speaker.

To control for possible effects of participants’
nationality, age, gender, education level (see Ta-
ble 1), and audio reproduction system, comple-
mentary analysis were conducted.

In general, Dutch participants, provided
higher evaluations than non-Dutch participants.

Moreover, the interaction between speaker’s
gender and participant’s nationality showed to
have a significant influence.

The effect of gender was stronger on non-
Dutch than on Dutch participants F (1, 100) =
7.717, p = 0.007, η2 = 0.072, as shown in Fig-
ure 3. Also, an interaction effect was unveiled
between the participant’s and the speaker’s gen-
der, F (1, 100) = 4.302, p = 0.041, η2 = 0.041,
as denoted in Figure 3. Both genders exhibit
a preference for the female voice; but, females
appreciate the female voice more than males do,
while females appreciate the male voice less than
males do.

4 POLQA’s evaluation

Recently, the ITU-T has defined its third gen-
eration standard on speech quality evaluation:
POLQA [?,?]. POLQA is mainly based on sig-
nal quality aspects. However, as shown in the
previous section, paralinguistic features do play
a significant role as well. This section assesses
POLQA ’s performance on both signal quality
aspects and paralinguistic features. Figure 5
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Table 2: Descriptive statistics of the participants’ Mean Opinion Score (MOS; range 1 – 9).
mean SD SE 95% CI

female 1 5.244 2.211 .093 5.060 – 5.429
female 2 4.755 2.076 .089 4.578 – 4.931
male 1 4.546 2.029 .089 4.369 – 4.722
male 2 4.587 2.035 .087 4.414 – 4.760

Dutch 5.094 2.266 .160 4.778 – 5.411
non-Dutch 4.692 2.050 .086 4.521 – 4.863

undistorted 6.080 1.946 .121 5.839 – 6.321
pink noise 4.952 1.944 .140 4.657 – 5.229
packet loss 3.519 1.905 .142 3.238 – 3.800
impulse noise 3.990 1.812 .130 3.731 – 4.248
bandwidth reduction 5.375 1.853 .121 5.135 – 5.614

Legend: SD: Standard Deviation; SE: Standard Error; and CI: Confidence Interval.

Table 3: Results of a repeated measures ANOVA on the effects of the 5 degradations, speaker
gender (2), and the speaker per gender (2) as well as their combinations on participant’s Mean
Opinion Score (MOS).

degradations gender speaker Specification of effect

• F( 4,98) = 37.354, p < .001, η2 = .604
• F(1,101) = 46.292, p < .001, η2 = .314

• F(1,101) = 19.798, p < .001, η2 = .164
• • F( 4,98) = 9.732, p < .001, η2 = .284
• • F( 4,98) = 10.056, p < .001, η2 = .291

• • F(1,101) = 43.662, p < .001, η2 = .302
• • • F( 4,98) = 3.209, p = .016, η2 = .116

provides a scheme of this assessment.

POLQA objective evaluations and the subjec-
tive ones have two notable differences. POLQA
mainly focuses on signal distortions, so as men-
tioned in Section 1 it was trained by providing
both a degraded and a reference sample to the
listeners. In this study we focus in voice qual-
ity therefore our subjective evaluations were col-
lected without providing a reference sample.

Additionally, POLQA ’s assessment was com-
puted for each speech file, using a scale from 1

to 5. Since, the survey’s subjective ratings scale
was 1 – 9, these were re-scaled to 1 – 5 (cf. [?]).

POLQA and participant’s MOS showed high
Pearson correlation for both POLQA v1.1 (r =
0.845, p < 0.001) and POLQA v2.4 (r =
0.840, p < 0.001). Subsequently, an ANOVA
was executed to compare both POLQA ’s results
with the participant’s MOS per speech sample in
more detail, with speakers and degradations as
between subject factors. A significant difference
between the POLQA evaluations and the partic-
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Figure 3: Left: Average valuations of Dutch and non-Dutch listeners, for speakers of different
gender. Right: Average evaluations of male and female listeners, for the equivalent speakers.

ipant’s MOS , also see Table 4. The difference
was also significant, when the factors degrada-
tions (5), speakers (4), and their combination
were included.

At first glance, the ANOVA and Pearson’s cor-
relation seem to contradict each other. How-
ever, when considering the ANOVA ’s η2 val-
ues, this can be well explained. Without includ-
ing degradations, speakers and their combina-
tion as factors, the ANOVA analysis was able
to explain, respectively 71.5% (v1.1) and 79.3%
(v2.4) of the variance between POLQA and par-
ticipant’s MOS . When including degradations
as factor, the explained variance rose to respec-
tively 80.8% (v1.1) and 86.9% (v2.4) (cf. see
Figures 5. Hence, POLQA is able to handle
the various types of noise very well. In con-

trast, when including speakers as factor, the ex-
plained variance dropped sharply to respectively
29.5% (v1.1) and 27.1% (v2.4) (cf. see Figures 5.
Hence, POLQA does not handle paralinguistic
characteristics very well. When both degrada-
tions and speakers are both included as factors,
the explained variance drops to the very low val-
ues of respectively 6.5% (v1.1) and 8.8% (v2.4).
So, POLQA is a generic, robust model; but, data
suggest that it can be improved or extended sig-
nificantly by taking speaker’s paralinguistic fea-
tures into account.

5 Modeling voice quality

In this section, models specifically for voice qual-
ity are created. The process of model develop-
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Table 4: The comparison of the POLQA’s objective evaluations and the participant’s subjective
Mean Opinion Scores (MOS), taking into consideration the factors of degradations and speakers.
All effect have a p<.001.

POLQA Evaluations (v2.4) POLQA Evaluations (v1.1)

F(1,480) = 1202.478; η2 = .715 F(1,480) = 1843.335; η2 = .793
degradations F(4,480) = 794.363; η2 = .869 F(4,480) = 503.316; η2 = .808
speakers F(3,480) = 59.394; η2 = .271 F(3,480) = 67.079; η2 = .295
degradations & speakers F(12,480) = 3.863; η2 = .088 F(12,480) = 2.761; η2 = .065

Pearson s

Correlation

ANOVA

Generation of

Objective

POLQA

Evaluations

Scaling of 

Subjective 

Evaluations

Figure 4: Schematic overview of the POLQA
evaluation. Initially the POLQA objective eval-
uations were generated for the speech files and
the subjective evaluations were scaled to 1–5.
Pearson’s correlation was computed for subjec-
tive - objective evaluations. Furthermore the
average subjective evaluation was computed for
each speech file, POLQA’s objective evalua-
tions were compared against these averages using
ANOVA.

ment is shown in Figure 6. Throughout this pro-
cess, only the voice’s paralinguisitic features are
used. Next, we will discuss each of the process
building blocks.

Table 5: Cross validation over random groups.
The data were randomly separated in 5 groups.
Training was performed excluding one group and
using it for testing. Each row of data represents
the R2, R2

a, Mean Square Error (MSE) and Root
Mean Square Error (RMSE) values computed
each time a group was excluded. The final line
presents the mean scores achieved for each field.

Group R2 R2
a MSE RMSE

1 .608 .574 .321 .567
2 .353 .335 .268 .518
3 .568 .543 .348 .590
4 .562 .531 .320 .565
5 .452 .429 2.752 1.659
Mean .509 .482 .802 .780

5.1 Validation

Assume we can train a model, using a part of
the available data set. This training process op-
timizes the classifier’s parameters, such that it
fits the training data. To prevent overfitting,
the model’s performance is validated using an
independent data sample [?,?]. Here, we employ
so-called cross validation, which deviates from
the general validation scheme since it enables the
classifier validation, without the need of an ex-
plicit validation set. As such, it optimizes the
data set’s use for training. Leave-One-Out Cross
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High Quality Pink Noise Packet Loss Packet Loss Bandwidth Reduction
average(AVE) (Standard Deviation (SD) ) AVE (SD ) AVE (SD ) AVE (SD ) AVE (SD )

female 1 6,74 (1,80) 5,39 (1,99) 3,68 (2,10) 4,44 (1,94) 5,98 (1,78)
female 2 5,96 (1,91) 4,85 (1,98) 3,57 (1,95) 4,07 (1,85) 5,32 (1,78)
male 1 5,74 (1,98) 4,79 (1,83) 3,31 (1,78) 3,75 (1,70) 5,15 (1,81)
male 2 5,88 (1,94) 4,77 (1,91) 3,52 (1,76) 3,71 (1,65) 5,05 (1,91)

Figure 5: Left: The mean of all subjective evaluations, for all speakers over all degradations. The
table contains analytically the descriptive statistics of this figure. Right: The mean of the POLQA
version 2.4 objective evaluations, for all speakers over all degradations. The subjective evaluations
were collected in a 1-9 scale, while POLQA produces evaluations in a 1-5 scale. Hence, the different
scales in the 2 figures.

Validation (LOOCV) is one of the most used
cross validation methods to estimate estimate
of the classifiers true generalization ability. As
such, it provides a excellent model selection cri-
terion.

Assume we want to assess a classifier’s perfor-
mance on a particular data set, containing sub-
sets xi with known labels cli, then we can apply
Algorithm 2. Such a subset can be a random
sample or can consist of all data gathered of one

speaker. This enables an accurate estimation of
the classification error E on this unknown per-
son.

All results reported in this article are deter-
mined through LOOCV . More specifically, 5-
fold cross validation on random groups was per-
formed. Additionally, 4-fold cross validation was
performed to assess how the model’s generalizes
over the distinct speakers. For more informa-
tion on cross validation, LOOCV in particular,
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Figure 6: This is the procedure of the generation and validation of the classifiers. The pattern
space was generated from the original speech files. This pattern space was reduced using two
methods general linear model significancies and PCA . Using the resulted pattern spaces voice
quality evaluators were trained using SVM , k-NN and RF . The performance of these models was
evaluated using cross validation.

Algorithm 2 The algorithm for Leave-One-Out
Cross Validation (LOOCV), adopted from [?].

1: for all i train classifier Ci with the complete
data set x, except subset xi. do

2: for all i classify subset xi to class ci, using
classifier Ci. do

3: Compute Ci’s average error through

1

D
argmax

c∈C

D−1∑
i=0

γ(ci, c
l
i),

where D is the number of subsets and
γ(.) is a Boolean function that returns
1 if ci = cli and 0 otherwise.

4: end for
5: end for

we refer to [?].

5.2 Feature extraction

With the data gathered, we have spanned up
our measurement space. Next, one type of
preprocessing is needed: removal of speech’s
silent intervals, as these contain no signal, only
noise, which could influence the feature values
extracted. The following 10 features were ex-
tracted:

• Speaker’s fundamental frequency of pitch
(F0) [?,?];

• First formant (F1) [?,?,?] indicates the oral
cavity’s degree of closing versus opening, in-
versely related to vowel height;

• Second formant (F2) [?, ?, ?] indicates the
tongue’s back displacement versus front dis-
placement;

12



Table 6: Cross validation over speakers. The
data were separated in 4 groups, each one con-
taining all but one speaker. The first column
contains the speaker excluded. Each row demon-
strates the R2, R2

a, Mean Square Error (MSE)
and Root Mean Square Error (RMSE) values
computed for each group. The final line presents
the averages values for each field.

Speaker R2 R2
a MSE RMSE

Female 1 .194 .170 .605 .778
Female 2 .518 .496 .382 .618
Male 1 .445 .421 .115 .339
Male 2 .572 .545 .314 .561
Mean .432 .408 .354 .574

• Third formant (F3) [?, ?, ?], which is in-
volved in the differentiation between be-
tween rounded and unrounded vowels (e.g.,
between [i] and [y]);

• Fourth formant (F4) [?, ?, ?], a higher for-
mant, reported to significantly influence
voice quality;

• Intensity [?];

• Mel Frequency Cepstral Coefficient
(MFCC) [?, ?, ?]: a representation of
sound’s short-term power spectrum, based
on a linear cosine transform of a log power
spectrum on a nonlinear Mel frequency
scale; and

• Harmonics-to-Noise Ratio (HNR) [?,?,?].

• Jitter, known to influence a voice’s attrac-
tivity [?,?,?,?];

• Shimmer, known to influence a voice’s at-
tractivity [?,?,?,?];

Specifications on the features selection is pro-
vided in Appendix B.

From the first 8 of 10 features, the follow-
ing parameters were calculated: mean, minimum
(min) , maximum (max) , and SD . From jit-
ter, the following parameters were calculated:
the average absolute difference between consec-
utive periods, divided by the average period
(jitter-local) , the average absolute difference
between consecutive periods, in seconds (jitter-
local-absolute) , the Relative Average Pertur-
bation, that is the average absolute difference
between a period and the average of it and its
two neighbours, divided by the average period
(rap) , the five-point Period Perturbation Quo-
tient, that is the average absolute difference be-
tween a period and the average of it and its
four closest neighbours, divided by the average
period (ppq5) , and the average absolute dif-
ference between consecutive differences between
consecutive periods, divided by the average pe-
riod (jitter-ddp) . From shimmer, the following
parameters were calculated: the average abso-
lute difference between the amplitudes of consec-
utive periods, divided by the average amplitude
(shimmer-local) , the average absolute base-10
logarithm of the difference between the ampli-
tudes of consecutive periods, multiplied by 20
(shimmer-local-db) , the average absolute dif-
ference between consecutive differences between
the amplitudes of consecutive periods (shimmer-
ddp) , the 3, 5, 11 point Amplitude Perturbation
Quotients, which are the average absolute differ-
ence between the amplitude of a period and the
average of the amplitudes of it and 3, 5, 11 re-
spectively closest neighbours, divided by the av-
erage (apq3, apq5, apq11). This resulted in a
pattern space consisting of 42 parameters.

Next, we will discuss how the dimensionality
of the pattern space was reduced.
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5.3 Pattern space reduction

To reduce the dimensionality of the pattern
space either feature selection or a pattern space
transformation can be conducted. Multiple Lin-
ear Regression(MLR) is one of the most straight
forward approaches is to conduct a feature selec-
tion. Here, we applied a MLR using a stepwise
method. Two types of models were generated:
an average model and a speaker model, which
were cross validated as described in Section 5.1.
This resulted in an adapted R2 of .482 (Root
Mean Squared Error (RMSE) = .780) and .408
(RMSE = .574) for respectively the average and
the speaker model, in both cases using only 3
parameters and a constant. For the average ...

As an alternative to feature selection, a trans-
formation of the pattern space can result in a
reduction of its dimensionality. Such a trans-
formation, defines a new set of components, us-
ing the original pattern space. For this purpose,
we adopted PCA [?]. PCA which employs the
correlations between the features of the original
pattern space. Our pattern space was efficiently
reduced from 42 to 9 dimensions, with 79.3% of
the original pattern space variability explained.
The way to select the amount of the reduced
dimensions is not strictly defined [?](p. 10).
Via an analysis of Scree plot and the eigen val-
ues, the number of components was determined.
The oldest criteria is the Guttman-Kaiser Cri-
terion [?,?], which includes components as long
as their Eigen value is great than 1(1.06 for 9th

component). Guttman-Kaiser Criterion has re-
ceived much criticism [?]. However, in this data
seems to perform good unlinke other criteria,
such as the Scree test [?], which chooses compo-
nents based on the Scree plot (Figure 7), scree
test in our pattern space would lead to fewer
components being chosen, which would not ex-

plain the variability sufficiently. The implemen-
tation of PCA was performed in R using “prin-
comp” and “factanal”. Princomp scores and cor
parameters set to TRUE and the rest assigned to
their default values, and factanal lower was set
to 0.00000005, the rotation selected being vari-
max, the factors selected being 9, the scores of
Bartlett, and the rest of the parameters assigned
their default values.

Figure 7: The Scree-plot for the 15 first compo-
nents. Although the scree plot after 4th compo-
nent seemingly does not contribute to the vari-
ance explained, choosing 9 over 4 components,
increases the cumulative proportion of variance
explained from 62.2% to 79.3%.

5.4 Classifiers

To build our model, three well-known classifiers
were chosen:

• The k-NN method was the 1st machine
learning method to be used [?] and is of-
ten used as baseline method, although it
can also perform very well. R’s library
“CLASS” was used with k = 4 (random
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groups) and k = 7 (speakers) and its de-
fault values.

• SVM [?] was executed using R’s e1071 li-
brary, using a sigmoid kernel. The scale pa-
rameter was turned off. The kernel’s need
cost and gamma parameter were set to re-
spectively 1 and 1/data dimension. For all
other parameters, the library’s default val-
ues were chosen.

• One of Random Forest’s [?] appealing fea-
tures is that it includes features selection.
Hence, MLR and PCA were not used to
reduce the pattern space, before executing
the Random Forest. R’s library random-
Forest was used with forest sizes 100 up to
2500, with step size 100. With each split,
the number of variables used was the square
root of the total number of features. For all
other parameters, the library’s default val-
ues were chosen.

The classifiers main results are presented in
Table 7. Additionally, we note that with both
k-NN and SVM , pattern space reduction using
PCA resulted in better classification than when
MLR was used. Moreover, for all three classi-
fiers, results on random group cross validation
were comparable with speaker cross validation.

6 Discussion

Voice quality is considered to be part of speech
quality [?], in addition to signal quality; that
is, the audio quality involving degradations that
may occur during audio recording or transmis-
sion, such as packet loss and pink noise. Voice
quality is considered to be the paralinguistic
aspect of speech. It is about “how you say
something rather than what you say” [?] (p.

3). This can include many factors such as age,
gender, emotion, personality and intoxication,
which makes it vary hard to formally specify.
Consequently, it lacks a solid foundation and
even its definition is debated. This is in sharp
contrast with signal quality, which is exhaus-
tively studied, including speech quality [?,?].

Available voice quality models are founded on
either single paralinguistic factors [?, ?] or are
limited to features on sustained vowels, ignor-
ing consonants, semantics, and language-related
paralinguistics [?,?]. Recent work confirmed the
limitations of these studies [?] and a multidimen-
sional perspective on voice quality is proposed.
This study followed this suggestion, taking a
holistic approach, exploring a plethora of par-
alinguistic features likely influencing voice qual-
ity, taking into account differences among speak-
ers and gender, and assessing the influence on
distortions no perceived voice quality.

The research reported here consists of three
parts: i) an analysis of variance on the subjec-
tive evaluations, using listener’s Mean Opinion
Scores (MOS ); ii) a comparison of the ITU-T ’s
Perceptual Objective Listening Quality Assess-
ment (POLQA ) and the MOS ; and iii) a com-
putational model for voice quality assessment.
Next, for each of these parts, the results will be
summarized and discussed. Subsequently, a gen-
eral discussion will be presented, including the
research’s pros and cons. We close with our con-
clusions.

First, we analyzed listeners’ MOS , in rela-
tion to the speakers, gender of speakers, type
of degradation. Each of these factors showed to
influence listener’s MOS significantly. The fe-
male voices were evaluated more positively than
the male voices. However, this can be mainly at-
tributed to one of both female voices, who’s voice
quality was judged significantly better than the
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Table 7: The results (in %) for cross validation on both random groups and speaker (i.e., one
speaker excluded when training), for Random Forest (RF), Support Vector Machines (SVM) and
k-Nearest Neighbors (k-NN), using Principal Component Analysis (PCA). to reduce the pattern
space. Results for 4 and 8 levels (or classes) of voice quality are reported.

Method RF SVM (PCA) k-NN (PCA)
classes / levels 4 8 4 8 4 8

random groups 88.84 53.05 88.84 57.11 87.84 70.58
speakers 80.38 49.96 88.71 60.25 88.71 70.42

other three. This finding contradicts previous re-
sults [?,?]. Hence, a detailed analysis of the par-
alinguistic factors that resulted in this finding is
needed. Another interesting result was that the
speaker’s appreciation was dependent on his/her
gender and the listener’s gender. Also, it should
be noted that Dutch listeners’ MOS was higher
(5.094) than non-Dutch listeners’ MOS (4.692).
This can be attributed to a combination of se-
mantics and typical Dutch paralinguistic factors,
which could potentially be ignored if only vow-
els were examined. So far, voice quality stud-
ies focussed on sustained vowels [?, ?], which is
a remnant of studies related to dysphonia [?].
However, as this study suggest, voice quality ap-
pears to be multidimensional [?]; consequently,
voice quality assessment founded on vowels only
has a poor reliability [?]. Last, we note that the
degradations had a major impact on the evalu-
ations. Packet loss had the strongest impact on
the evaluations, while bandwidth reduction the
lightest.

Second, the subjective MOS were compared
with the objective POLQA ratings (Section 4).
POLQA is ITU-T ’s standard for speech qual-
ity evaluation, which again showed to be very
good in predicting signal quality. However, it
failed in predicting voice quality and in differen-
tiating between distinct speakers. This can be

partly explained by POLQA ’s timbre optimiza-
tion, which eliminates voice quality differences.
Although this works excellently, for signal qual-
ity assessment, it is counter productive for voice
quality assessment. To remedy this conflict, the
development of a complementary model is ex-
plored next.

Third, the complementary model for POLQA
is developed. Paralinguistic features were se-
lected taking the first part of this study in mind.
This way, a full pattern space was generated.
Subsequently, this space was reduced to aid the
pattern recognition process. The resulting mod-
els were cross validated in two ways:

• Random group cross validation: Standard
cross validation protocol, which resulted in
a correct prediction of experienced voice
quality of 87.84% and 70.58%, on respec-
tively 4 and 8 levels of voice quality.

• Speaker cross validation: Cross validation
protocol over speakers, validating on data of
one unseen speaker. This resulted in a cor-
rect prediction of experienced voice quality
of 88.71% and 70.42%, on respectively 4 and
8 levels of voice quality.

Using three classifiers, the models were develop:
k-NN , SVM , and RF , which gave similar cor-
rect prediction rates. However, k-NN slightly
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outperformed both SVM and RF . This can be
explained by the relative low number of features
used (i.e., < 100). Then, k-NN is capable of
forming reliable neighbourhoods [?], where SVM
and RF benefit from a higher number of fea-
tures [?, ?]. So, in feature research a substan-
tially larger pattern space could be considered,
to boost SVM ’s and RF ’s performance.

Another issue that remained not discussed so
far is context. It has been shown that context
influences voice’s paralinguistic features. For ex-
ample, in [?] and [?] it was shown that both
the speech signal and biosignals are influenced
by the context in which they are recorded (i.e.,
lab versus living room environment). Moreover,
Campell and Mokhtari [?] showed that the same
speakers voice show different paralinguistic fea-
tures depending on context, more in particular
depending on the social context the speaker is
in. This is considered as one if not the biggest
challenge in affective computing, ambient intelli-
gence and artificial intelligence at large [?,?,?,?].
So, par excellent, this is a direction follow-up re-
search could and should explore.

With 4 speakers included in the database,
the generalizability of this study can be chal-
lenged. Complementary studies, including addi-
tional speakers or a database with speech sam-
ples of a substantially larger number of speakers
would relief this issue. For example, this would
enable a more detailed assessment of paralinguis-
tic features that influence perceived voice qual-
ity. Ultimately, it could result in prototypical
paralinguistic profiles of speakers and their char-
acterization in terms of voice quality and sensi-
tivity to noise (cf. [?]). Then, also speaker cross-
validation would probably wield better results,
since there would be more speakers with similar
features to the one(s) excluded. Then, a reliable
model could be constructed to evaluate a new

speaker’s voice quality.
Taken together, this article explored the ef-

fect of voice quality on speech quality, using
an extensive listeners panel. It has been shown
that voice quality significantly affects perceived
speech quality. In some occasions, it affected
speech quality even more than signal quality did.
Moreover, many paralinguistic features showed
to influence voice quality. An initial extension
of ITU-T ’s standard POLQA gave promising
results. So, if anything, this study both illus-
trated the complexity of voice quality assessment
as well as its feasibility in the near future.
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Appendices

A Survey Instructions

Throughout this survey, you will hear four people reading sentences. Consequently, you will need to
have headphones or speakers to be able to participate in this survey. You are asked to evaluate
how pleasant you feel each speech segment is. We are only interested in your honest
opinion. So, there is not a right or a wrong answer in the ratings that you can give.
Each audio segment consists of two sentences.Please listen to both sentences before evaluating the
audio segment. You may listen to a segment as many times as you want, using the “repeat” button.
Once you have evaluated a segment, press the “submit” button to continue. The “submit” and
“repeat” buttons will appear only after the audio file has been played. The time needed to complete
the survey is approximately 20 minutes. You can see these instructions again at any time during
the survey by pressing the “instructions” button. The survey has been tested to Google Chrome,
Mozilla Firefox, Microsoft Edge, Internet Explorer, Opera and Safari. It is advised use one of these
browsers. Press the “next” button to start the survey.

B Feature Extraction

In section 5.2 it was mentioned that praat [?] software was used to extract the voice features used
in this article. In this section the praat specifications used for each voice feature extracted are
described. For each audio voice recording the features were extracted by the following steps:

1. An Intensity Object (IO) was created. The minimum pitch was set 100 Hz and the time step
at 0.0. The option to subtract mean was deselected, since the database voice recordings were
clearly recorded, without environmental noise. Then a Textgrid (silences) Object was create.
The silence threshold was set at -35 dB, the minimum allowed silent interval was set at 0.1
seconds and the minimum sound interval duration was set at 0.05 seconds. Using this object
the parts that contained sound were extracted and concatenated to a file, which did not contain
silent intervals greater than 0.1 second.

2. Using the IO created the mean, minimum, maximum and standard deviation of intensity were
extracted.

3. A Pitch Object (PO) was created for voice recording. The timestep was set at 0.0, pitch
floor 75 Hz and pitch ceiling 600 Hz. Using this object the mean, minimum, maximum and
standard deviation of pitch were computed. The unit used for these features was Hertz, for
the minimum and maximum the interpolation used was the parabolic one.

4. A harmonicity object was created, using the cross correlation method. The time step was set
at 0.01, the minimum pitch at 75 Hz, the silence threshold at 0.1 and the periods per window
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at 1.0. Using this object the minimum, maximum, mean and standard deviation HNR for each
object were extracted. For minimum and maximum, the parabolic interpolation was selected.

5. A formant object was created using praat with the Burg method. The time step was set to 0.0,
the window length was set at 0.025 and the max number of formants was set at 5, the maximum
formant Hz was set at 5500 Hz for female speakers and 5000 for male speakers as suggested
by praat and the pre-emphasis was set from 50 Hz. The mean value, the maximum value and
the standard deviation for the first four formants were extracted from this object. The unit
used for the measurements was Hertz and for the minimum and maximum the interpolation
was set to parabolic.

6. A MFCC object was created. The number of coefficients was set at 12, the window length
was set at 0.015, the time step was 0.005. The position of the first filter (mel) was 100, the
distance between filters (mel) was 100 and the maximum frequency (mel) was 0.0. Using this
object the MFCC matrix was generated for each audio file from which the mean, minimum,
maximum and standard deviation for each object was generated.

7. A Point Process Object (PPO) was created for each audio file. To create this object the cross
cross-correlation method was used and the initial audio file and its PO were combined. Then
the original audio file, the PPO and the PO were combined to generate the voice-report for
the audio file. The voice report was defined for the whole time of the voice recording, for
pitch ranging from 75 to 600 Hz, maximum period factor 1.3, maximum amplitude factor 1.6,
silence threshold 0.03 and voicing threshold 0.45. This report contains 5 jitter features (local,
local-absolute, rap, ppq5, ddp), as well as, 6 shimmer features (local, local-db, apq3, apq5,
apq11, dda). All these features for Jitter and Shimmer were extracted.
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