
UNIVERSITEIT UTRECHT

SOGETI

COMPUTING SCIENCE

MASTER THESIS RESEARCH

Automated Grading of Java
Assignments

Author
Nadia Boudewijn
Student Number
3700607

First Supervisor
prof. dr. Johan Jeuring

Second Supervisor
dr. Ad Feelders
Daily Supervisor

Erwin de Gier

July 14, 2016

ii

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Graduate School of Natural Sciences

Master of Science

AUTOMATED GRADING OF JAVA ASSIGNMENTS

by Nadia Boudewijn

This study explores the influence of Java code features on the prediction ac-
curacy of manual grades. In particular, we follow the high level definition
of the proposed feature grammar by Aggarwal and Srikant and provide a
new low level interpretation[45]. Through a series of experiments we ex-
plore the influence of changing the feature granularity. In order to utilize
predictive models the source code of Java solutions has to be converted
into suitable input. In this regard we develop a feature generation tool for
Java code, named JFEX. The grading process of the solutions follows a dis-
tinctive grading rubric which is more solution oriented than the originally
proposed rubric.

We empirically test if the algorithm-oriented features are able to cap-
ture these different grade distinctions and verify if this improves the grad-
ing accuracy in comparison to test case predictions. In the end this work
did not provide significant proof that automated test case based grading
is improved by feature modeling. However, we did demonstrate some en-
couraging evidence that shows the features have the capacity to improve
test case accuracy. A subset of the selected features seemed highly relevant
to the problem at hand. Classification modeling with attention for the ordi-
nal ordering between the grade levels presented itself as the best candidate
to realize the potential of the features.

iii

Contents

1 Introduction 1
1.1 Origin . 1
1.2 Collaboration . 1

1.2.1 Sogeti . 2
1.2.2 Codility . 2
1.2.3 Aspiring Minds . 2

1.3 Motivation . 3
1.4 Research Goals . 4

1.4.1 Research Questions . 5
1.4.2 Research Relevance . 6

2 Related Work 7
2.1 Programming Skill Assessment 7

2.1.1 Early Work . 8
2.1.2 Recent Work . 9

2.2 Automated Program Assessment 9
2.2.1 Dynamic Assessment 10
2.2.2 Static Assessment . 12

2.3 Programming Tutoring Systems 13
2.4 Unsupervised Grade Modeling 14
2.5 One Size Fits All? . 15

3 Application: Feature Derivation 16
3.1 Program Features . 16
3.2 Feature Definitions . 17
3.3 Feature Examples . 19
3.4 Spoon Code Analysis . 22

3.4.1 Querying Source Code Elements 23
3.4.2 Processing Source Code Elements 24
3.4.3 Source Code Transformation 24

4 Data 25
4.1 Codility Dataset . 25

4.1.1 Fish . 25
4.1.2 Automated Scoring: Test-Cases 26
4.1.3 Grading Criteria . 27
4.1.4 Data Analysis . 28

4.2 Aspiring Minds Dataset . 30
4.2.1 EliminateVowel . 31
4.2.2 IsTree . 32
4.2.3 PatternPrint . 33
4.2.4 GrayCheck . 34
4.2.5 TransposeMatrix . 35
4.2.6 Feature Granularity Comparison 36

iv

4.2.7 Concrete Differences 37

5 Predictive Modeling 40
5.1 Learning Setting . 40
5.2 Data Preprocessing . 41
5.3 Feature Selection . 42

5.3.1 Filtering near-zero Variance Predictors 42
5.3.2 Between-Predictor Correlations 43

5.4 Feature Extraction . 44
5.5 Penalized Regression . 44

5.5.1 Ridge Regression . 44
5.5.2 LASSO . 44
5.5.3 Implementation: glmnet 45

5.6 Multinomial Classification . 45
5.7 Ordinal Classification . 46

5.7.1 Implementation: ordinalGMFS 48

6 Experiments 49
6.1 Answering the Research Questions 49
6.2 Research Methodology . 49

7 Results 52
7.1 Impact of Feature Granularity 52

7.1.1 Most Important Predictors 54
7.2 Supervised Modeling . 55

7.2.1 Train-Test Split . 55
7.2.2 Regression Models . 55
7.2.3 Multinomial Classification 59
7.2.4 Binomial Classification 60
7.2.5 Ordinal Classification 60

8 Conclusion 62
8.1 Answering the Research Questions 62
8.2 Future Research . 63

A Appendix: Grade Indicators 65

1

Chapter 1

Introduction

1.1 Origin

When starting the process of writing my master’s thesis the wide range of
fields covered by Computing Science was a blessing in disguise. At first I
was overwhelmed by the seemingly infinite number of directions I could
take. After attending over thirty colloquium presentations I still had not
seen a subject that truly captured my interests. I pondered this problem for
quite some time before it dawned on me that my study allows me to shape
my thesis to my own interests!

Somehow this not-so-bright insight opened a door for me to concretize
my ideas for a research thesis. The one subject that never ceases to amaze
me is Artificial Intelligence. Having a bachelor degree in AI I realize it is
quite idiotic to refer to Artificial Intelligence as a single subject. When nar-
rowing down I arrived at the concept of learning or predicting from data
and/or environmental feedback. Although interesting, this line of subjects
was not quite cutting it for me. I switched from AI to Computing Science
for several reasons; one of the first being my new-found enjoyment of object
oriented programming in my first year of study. No need to ponder any-
more: this is it. I want to combine machine learning with object oriented
programming.

As luck would have it, there was a vacancy for an internship at Sogeti
titled "automated developer hiring test". The very general description cer-
tainly left room for personal interpretation. Mind boggled by questions
as "what defines programming skill" and "how can one measure program-
ming skill" I spent quite some time researching the existing literature. From
knowledge modeling with Bayesian networks to tracing patterns in the pro-
gramming processes of humans, I considered it all. Through some sort of
natural work flow I arrived at my current research niche which I will de-
scribe and motivate in detail in this paper.

1.2 Collaboration

For almost all of my research ideas, including the current one, data from
eligible test candidates has to be collected. This introduces a very high risk
factor of failing to gather enough data needed for a decent analysis within
the time span of a master’s thesis. This risk has been eliminated by a col-
laboration with Codility. The next two subsections introduce Sogeti and
Codility, and their relation to this project. The motivation and details of

2 Chapter 1. Introduction

this thesis will be explicated in detail in the remainder of this chapter and
those to follow.

1.2.1 Sogeti

With a focus on craftsmanship and involvement Sogeti has managed to
become one of the top ten IT-services in the Netherlands. Sogeti designs,
builds, implements, tests, and manages IT solutions. On their quest to pro-
vide tomorrow’s solutions for today’s problems, innovation has become a
core value within Sogeti.

One of the ways this innovative attitude shines through are the offered
internships, graduation projects, and traineeships. This allowed me to trans-
form a Java graduation project at Sogeti into a machine learning experi-
ment. The functional and creative support of Sogeti has truly raised this
project to a higher level.

1.2.2 Codility

Striving to make the hiring process of programmers easier, Codility pro-
vides an on line recruiting platform with a specialized programmer testing
solution. Recruiters are able to create or select programming tests and invite
candidates to do this test online. Upon completion, a detailed test report is
instantly available to be compared with other invited programmers or the
pool of previous Codility assessments. Saving them time and money, the
recruiters invite only the best candidates to a follow-up interview.

Today, more than 1200 companies in over 120 countries have used Codil-
ity, resulting in more than 2,5 million test assessments and counting. One
of the contributing factors to this success has to be the innovative approach
of the company. Besides being a commercial recruitment platform, Codility
offers free training, lessons, and challenges for the programming commu-
nity.

The interest in supporting knowledge and learning at Codility arises
from a scientific background and close bonds with the Warsaw academia.
As a result, Codility is very open to all research activities around their com-
pany leading to our current collaboration in this study. Currently, 16 lessons
and around 70 training tasks are offered for free on the Codility website.
The Java solutions of a subset of these tasks constitute the dataset used in
this study.

1.2.3 Aspiring Minds

Aspiring Minds is one of the world’s leading assessment companies that
helps organizations, governments and institutions measure and identify
talent. The Indian division of Aspiring Minds published the research re-
sults that sparked the development of this thesis. In addition, the authors
Varun Aggarwal and Shashank Srikant kindly shared a subset of their data
with me for a comparative analysis.

1.3. Motivation 3

1.3 Motivation

Today, both in academic and commercial settings, computers play a vital
role in almost every organization. Nearly all aspects of modern life are
touched by information technology (IT). This global digitalization intro-
duces many job openings in computing careers as well as a strong demand
for various computing skills in other fields of work. As such, for most of
the past 20 years, employment in IT related services has grown rapidly. Pro-
jections indicate that the current growth of computing careers continues at
least through 2020 [16]. It is therefore not surprising that the demand for
skilled programmers is increasing on a global scale.

For students or professionals who wish to benefit from these IT career
opportunities it almost becomes a necessity to acquire the skill of computer
programming. However, for most people, developing programming skills
requires a fair amount of effort. World-wide, on average one third of stu-
dents fail their introductory programming course [50]. This stimulates gov-
ernments throughout the world to bring programming into the classroom
environment, addressing the current problem of preparing students for fu-
ture labor demands. However, introducing new basic skills into educa-
tional programs is a process that requires a lot of consideration. Teachers
are concerned that they lack the right skills to deliver new computing cur-
riculum’s and that they will not have enough time to acquire these new
skills [15].

When teachers are successfully prepared for the task of teaching pro-
gramming, another issue comes into play: scalability. There is an old say-
ing “practice makes perfect” and although it may not apply to every situation,
it certainly applies to learning how to program. Having been through this
process myself, I certainly agree with the idea that reading programming
books and studying code examples will only get you to a certain level. In
order to be successful you need to solve programming exercises and learn
from feedback.

It is the assessment and feedback generation of programming exercises
that introduces the scalability issue. While computer and communication
technologies have provided effective means to scale up many aspects of ed-
ucation, the submission and grading of assessments such as homework as-
signments and tests remains a weak link [32]. Automated assessment tools
have the ability to alleviate the burden on teachers, increase the consistency
of markings, improve automated feedback to learners and to expand the
candidate pool considered for hiring. As such, automated program assess-
ment tools are being actively researched (a short overview of closely related
work in this field is provided in chapter two).

Now imagine you are in charge of hiring new Java programmers for a
large software development company. The company just landed a major
project so you do not only need good programmers, you need them fast.
Budgets are tight (not so hard to imagine), so while you cannot afford to
hire the wrong person you are also not in the position to invest a lot of time
in the hiring process.

Naturally, you begin to sweat because there are a lot of “programmers”
who know Java syntax and libraries but are not able to implement simple

4 Chapter 1. Introduction

algorithms or come up with a decent design. Surely you do not want to hire
such a programmer! A quick browse on the Internet seems to indicate that
the perfect solution is just a mouse-click away. Modern commercial tests
allow you to invite candidates to take an online programming test. Candi-
dates are confronted with a set of questions from a pool of programming
tests. You receive a result report that displays the time the candidate used
per task, the results of numerous test cases, and an evaluation of time and
space complexity used by the solution.

At first sight, this seems like a great solution for your problems. And
if even Google and Facebook use it to pre screen candidates, why not you?
But when this approach is used to evaluate a large number of candidates
you will not be able to go through the detailed result report of every candi-
date. The natural evaluation method for this type of automated assessment
is then to look at the subset of candidates that passed the highest number
of test cases. At most companies, passage of a certain number of test cases
is a hard requirement for submissions to even be considered.

There are (at least) two pitfalls associated with this approach. One is
your problem: programs that pass many test cases may be written with
bad programming practices (such as hard coding). Because the source code
at any point in time is included in the result report it is likely that after man-
ual inspection you do not wish to invite this particular candidate. However,
you did waste your time on it! The other pitfall affects both you and the
candidate. Programs that pass a low number of test-cases could be very
efficient or quite close to the correct solution. As these programs are not
manually evaluated, their potential will not be noticed. This causes you to
miss out on a possibly great candidate and denies the candidate the job in-
terview that he or she was hoping for (and quite possibly deserves).

This thesis is dedicated to improving the discussed automated hiring
processes by exploring the added value of semantic source code features.
This approach was proposed in a recent paper by Aggarwal and Srikant[45],
which introduces a feature-grammar to tag Java source code. Solutions to
programming assignments are represented as a vector of features and used
as input for machine learning models. The idea is that the algorithmic struc-
ture of the code can be captured with the features, which allows the models
to detect similarity with other solutions. This similarity is expected to in-
dicate the quality of the code more accurately than test case scores. The
relevance and goal of my research is motivated in the following section.

1.4 Research Goals

The goal of this paper is to further analyze the approach proposed by Ag-
garwal and Srikant to grade programming assignments with machine learn-
ing techniques[45]. Their work concludes that the machine learning ap-
proach provides much better grading than test case based grading. Four
of the five problems Aggarwal and Srikant analyze benefit from the pro-
posed grading method compared to test case rating. The grading of the
fifth problem shows no improvement or deterioration. As these results are
promising, this thesis makes an attempt to verify the reported performance

1.4. Research Goals 5

for different datasets. In addition, experiments are constructed to demon-
strate the influence of altering assumptions on which the approach is based.

One of the points of distinction of this research is the modeling and
definition of the grades. The grading process proposed by Aggarwal and
Srikant follows a five-level rubric based on algorithmic structures[45]. My
grading style is more solution oriented, attempting to more closely resem-
ble real-life applications. It will be interesting to see if the algorithm ori-
ented features are able to capture these different grade distinctions. To
model program grades, Aggarwal and Srikant use simple feature selec-
tion followed by a regression with 3-fold cross validation. However, as the
grades fall into 5 discrete categories, regression modeling is not the obvious
choice. I will therefore cast the method in both a regression and classifica-
tion setting.

In short, an experiment is conducted to validate claims made by the
original authors as well as the influence of adjustments made in this re-
search. In order to utilize a machine learning framework the source code of
Java solutions has to be converted into suitable input for a machine learning
algorithm. Thus, another goal of this project is the development of a feature
generation tool for Java code. This application is called JFEX (an acronym
for Java Feature Extraction) and is introduced in chapter three.

1.4.1 Research Questions

The main research question this study aspires to answer is:

Can we improve automated test-case based grading of programming
assignments with semantic source code features?

To be able to answer this question I developed the JFEX application to de-
rive semantic features from Java source code. Next, we empirically test the
theory by modeling the human grading process. In a supervised learning
setting we test the performance of various classifiers and regression models
on our dataset.

In order to derive source code features we follow the high level defini-
tions of the categories defining a semantic grammar introduced by Aggar-
wal and Srikant[45]. These high level definitions allow many low level in-
terpretations. That is, a single solution has many possible semantic feature
sets. Specific decisions regarding the feature extraction process are docu-
mented and we compare the impact of different interpretations.

In order to answer the research question my thesis will address the follow-
ing specific problems:

• Are dependency and control flow features better grade indicators than
basic keyword counts?

• Does the granularity of semantic feature definitions affect the perfor-
mance of prediction accuracy with respect to human grading?

• Can we improve grading accuracy by modeling the problem with
classification instead of regression?

6 Chapter 1. Introduction

• What are the most influential source code features when classifying a
solution program?

1.4.2 Research Relevance

The added value of this paper is twofold: an academic contribution and
practical results. For the academic world it is important to replicate studies
and validate results in an independent fashion [43]. As is mentioned by
Shull et al.[42], the main goal of replication does not need to be limited
to statistical hypothesis testing and p-values. Testing that a given result is
reproducible and understanding the sources of variability that influence the
results are also valid motivators for replication studies. This study shares
both goals; on the one hand we intend to gain knowledge from a more
thorough analysis of previously made claims. On the other hand we are
exploring possible influences of the used modeling methods and feature
definitions.

Two categories of replication studies can be distinguished[42]: exact
replications, in which the procedures of an experiment are followed as closely
as possible; and conceptual replications, in which the same research question
is evaluated by using a different experimental procedure. This study can be
classified as a conceptual replication where independent research attempts to
replicate a published study using its own experimental design. If the study
succeeds in reproducing results of the original study, this provides a high
degree of confidence that the result is real and significant. However, when
the results of the replication contradict those of the original study there will
be no solid basis for hypothesizing about the cause of the discrepancy.

In terms of practical value we see a direct connection to every day prac-
tice. In our global and digital society people are already being judged with
test-case based grading to see if they deserve a shot on a job interview. Hav-
ing numerous candidates and limited time, recruiters have no other option
but to use this imperfect assessment technique. Small mistakes can be pun-
ished extremely hard leading to good programmers being falsely classified
as unworthy of an interview. On the other hand, candidates who write im-
perfect solutions that manage to produce the right results for specific test
cases might undeservedly be classified as top candidates.

In academic settings the number of students enrolled in universities at
standard and on-line programming courses is rapidly increasing. MOOC’s
(Massive Open Online Courses) open a whole new world of learning pos-
sibilities, with accurate assessment being the biggest drawback at the mo-
ment. Methods for objective and reliable grading that can also provide sub-
stantial and comprehensible feedback are essential for learning. As such,
automated assessment and feedback generation are currently keen topics
of interest [2], [21], [29], [30].

Besides the direct application of our research to generate more accurate
automated grading, analyzing the influential features in our models could
help to automatically discover important logic elements needed in a correct
solution of a problem. This may support feedback/hints to students on
what constructs to use whilst solving a problem.

7

Chapter 2

Related Work

This chapter discusses some of the work on automated program assessment
and the closely related field of programming tutoring systems. The current
body of research related to automatic diagnosis of programs involves many
different aspects, including: program representation, intelligent program-
ming tutoring systems, automated program assessment, visual feedback
systems, peer review systems, and problem solving strategies. It is by no
means the goal of this chapter to provide a complete overview of these top-
ics, but rather to outline the framework which embodies my research.

2.1 Programming Skill Assessment

The foregoing chapter of this thesis mentioned that one of the motivations
for this research is to improve an approach to assess someone’s level of
programming skill. In companies, one usually wants to assess someone’s
programming skills because they believe it to be an indication of a person’s
performance on a programming job. This can be done trough inspection of
of their education and experience on CVs and through interviews. Some-
times standardized tests of intelligence, knowledge, and personality are
also used. Even though such methods may indicate an individual’s level
of skill, they do not measure programming skill per se.

In academic institutions a similar problem arises when teachers want to
know: what skills do students have and what is their level? With program-
ming the problem is that there is not a simple distribution of ability; some
students noticeably outperform others. A strongly bimodal distribution of
marks in the first programming course is frequently reported anecdotally
and corresponds to experiences in academic institutions [10]. Teachers try
to find ways to help students by analyzing their learning process and lead-
ing them to better results.

The standard practice in research and industry for assessing program-
ming skills is mostly to use proxy variables of skill such as education, ex-
perience, and multiple-choice knowledge tests. There is not yet a broadly
accepted valid and efficient way to measure programming skill. In the work
by Bergersen et al.[9], an instrument is developed to measure programming
skill by inferring skill directly from the performance on programming tasks.
Over two days, 65 professional developers from various countries solved 19
Java programming tasks. Other attempts exist but this work distinguishes
itself with a combination of theory-driven research and a strict definition
of measurement. This enables rigorous empirical testing of the validity of
the instrument, which was found to have satisfactory internal psychome-
tric properties and correlated with external variables in compliance with

8 Chapter 2. Related Work

theoretical expectations. The implicit assumption made is that the level of
performance a programmer can reliably show across many tasks is a good
indication of his programming skill level. This is not a unique idea, the
latest practice in industry is already applying this concept for a couple of
years. The problem is that these test results are expected to predict pro-
gramming skill, but this hasn’t been properly assessed in an attempt such
as the one by Bergersen et al[9]. It is important to address when and how
performance on a combined set of programming tasks can be regarded as a
valid measure of programming skill.

So how does one go about assessing programming skill? If we forget
for a moment about the programming aspect, we are left with one con-
struct: skill assessment. Skill can be defined theoretically as a psychological
variable. Together with motivation and knowledge, skill defines the three
direct influences on the performance of an individual[12]. Other aspects
such as experience, education, and personality, have an indirect influence
on individual performance through their influence on motivation, knowl-
edge, and skill. There is a large body of work done on the theory of skill,
especially in the field of psychology. Over the past few decades different
theories emerged on how humans acquire skills.

2.1.1 Early Work

Much research was done in the 1980’s regarding this subject and also re-
garding programming skills. While most of the earlier studies focused on
motor skills, Anderson et al. devoted much attention to the research on cog-
nitive skills in general during the 1980s[4], and programming skills in par-
ticular[5]. Anderson noted that the errors associated with solving one set
of programming problems was the best predictor of the number of errors
on other programming problems. Another early attempt to predict pro-
gramming success can be traced back to 1985 when Adelson and Soloway
reported that familiarity with the problem domain helps novices to solve
programming problems[1].

Besides the search for predictors of success there was also the more
pragmatic approach of developing techniques or tools to make program-
ming easier for all novices. Ranging from IDE’s to designing whole new
programming languages such as LOGO which was developed in the mid
1960s[22]. Today the language is remembered mainly for its use of "turtle
graphics", in which commands for movement and drawing produced line
graphics either on screen or with a small robot called a "turtle". The lan-
guage was originally conceived to teach concepts of programming related
to Lisp and only later to enable what Papert, one of the creators, called
"body-syntonic reasoning" where students could understand (and predict
and reason about) the turtle’s motion by imagining what they would do if
they were the turtle. Despite all efforts there is no evidence that this has
had any significant impact on the success rate among novices.

2.2. Automated Program Assessment 9

2.1.2 Recent Work

Many studies aim to explore and reveal profiling patterns in the measure-
ment of cognitive and non cognitive characteristics of undergraduate stu-
dents’ programming performances[3]. These studies explore many indica-
tive variables that might affect programming performance including spa-
tial skills, working memory, academic grade point average scores mathe-
matics and science achievement, prerequisite knowledge, success/failure
attribution, perceived programming self-efficacy, encouragement, comfort
level, working style preference, prior experience of programming, prior ex-
perience of computers except for programming, intelligence, computer atti-
tude, cognitive style, learning style, mother tongue, cognitive development,
socio-economic status, creativity, problem-solving skill, and gender.

Studies that report exciting results on new predictors for programming
skills should be handled with caution. "The camel has two humps" by Bornat
and Dehnadi is a popular paper that appeared to have discovered an excit-
ing new predictor of success in a first programming course[17]. However,
after six experiments involving more than 500 students at six institutions in
three countries, the predictive effect of the test has failed to live up to that
early promise[10].

2.2 Automated Program Assessment

Automated program assessment has been researched for more than fifty
years. The review by Douce et al. provides a comprehensive overview of
the history of the field where automated test-based assessment systems are
classified into three generations[18]. These generations range from early
assessment systems to distributed structures with command-line or GUI
clients and finally to the modern assessment platforms with web-based in-
terfaces. A more detailed review of modern assessment systems is provided
by Ihantola et al.[29]. One of the key problems identified in this survey is
that most assessment tools are developed for the purposes of one class or
assignment. Even though some generalized tools are available, many pro-
gramming instructors feel that they have to write their own frameworks to
realize the functionality they require for their courses.

An example of a framework that was developed in-house to fulfill the
need of automatic grading is CodeAsessor [13],[53]. Teachers of CS1 courses
(introductory C/C++) at the University of Tennessee created CodeAssessor
to grade student’s coding problems on exams as they could not find a sat-
isfactory existing solution. The grading component compares the student’s
output on test cases against the instructor’s output and awards credit when
the output matches. This emphasis on program behavior is consistent with
the findings of Ihantola et al.[29], which state that most of the discussed
assessment tools are assessing functionality rather assessing style or per-
formance.

In this research we also focus on automated assessment from the view-
point of program behavior. We try to assess if the programmer understands
the grammar of the programming language and is able to apply common
algorithms and different data structures into a working program. This ap-
proach does not capture the full range of somebody’s programming skills as

10 Chapter 2. Related Work

programming is a complex creative skill which requires a lot of specialized
knowledge[40]. It is therefore important to realize that there are many more
indicators for a good programmer such as: documentation quality, coding
style, testing/debugging skills, and effective use of available programming
tools and libraries.

In the most well-known survey of the field of automated programming
assessment[2], Ala-Mutka describes which features of programming assign-
ments are automatically assessed by different assessment tools. The fea-
tures are organized according to whether they need static of dynamic eval-
uation. The difference is that dynamic evaluation needs program execution
while static evaluation can be performed directly on the source code. The
remainder of this section gives an overview of the properties of these two
approaches.

2.2.1 Dynamic Assessment

Dynamic assessment methods are widely used to assess program function-
ality, which is often viewed as one of the most important evaluation as-
pects. The assessment of functionality depends on a method’s ability to
recognize and discriminate between correct and incorrect program behav-
ior. Many programming assignments can be formulated in such a way that
key aspects of required behavior can indeed be recognized and assessed by
automated methods.

The main problem with dynamic assessment is that it is very sensitive
to all kinds of program errors. Programs containing syntax or contextual
errors cannot be tested. Programs with logic errors may be testable but the
results might be unpredictable and if a logic error causes excessive memory
allocation, or an endless loop, the testing of the program will fail. Features
of programming assignments that can be automatically assessed using dy-
namic assessment are:

• Functionality: does the program function according to the given re-
quirements? In general, the answer to this problem is known to be
undecidable. In practical applications this question depends criti-
cally upon two things: providing test data to the running program,
and evaluating the accuracy of the resulting outputs. Preferably both
without human involvement. Output accuracy is often tested using
comparison against several test data sets for which the desired output
is known. Other approaches rely on unit testing in combination with
scripts or other testing frameworks.

• Efficiency: Measures the program’s behavior (time and space com-
plexity) during execution. Considering the literature, the measuring
of efficiency in automated assessment systems has focused almost ex-
clusively on the time dimension. The analysis of the dynamic memory
footprint of programs has received far less attention[36].

• Testing Skills: Is a programmer able to demonstrate the correctness
and validity of his own program? This is assessed with test cover-
age analysis, where programmers not only submit their solution pro-
grams but also a set of formalized test cases. An example of a frame-
work that relies on this principle is Web-CAT, the Web-based Center

2.2. Automated Program Assessment 11

for Automated Testing[20]. Web-CAT encourages students to write
software tests for their own work. The benefit of these test-driven
learning approaches is that they address the issue of creating an ap-
propriate test suite that validates code behavior[19].

• Special Features: For example dynamic memory management with
C++.

Automated Test Generation A problem with many dynamic testing tools
for code functionality, ranging from scripting and output comparison to us-
ing testing frameworks like XUnit, is that an instructor must write a suite of
tests to validate the behavior of a program. This does not only cost a signif-
icant amount of time but the tests might also fail to take into account odd-
ities of programs. To solve these problems, especially the time consuming
problem, a large amount of work in the area of automated test generation
is done.

When developing automated test generation programs the main crite-
rion is to create test suites that maximize code coverage. This is generally
achieved with some kind of input space exploration, in order to find inputs
which cause particular program-flow paths to be executed.

Many approaches that try to solve the problem of creating test suites
rely on random tests (black-box tests)[37]. Random testing can eliminate
subjectiveness in constructing test data and increase the diversity of test
data. The difficulty encountered is the creation of test oracles that decide
test results. Avila and Cheon propose an automated testing approach for
Java programs based on random testing and assertions[14]. The approach
uses OCL (Object Constraint Language) constraints as test oracles by trans-
lating them to runtime checks written in AspectJ. Experiments and case
studies show that the approach can detect errors in both implementations
and OCL constraints.

More guided approaches take the structure of a program into account
when generating test input (white-box testing). These approaches come in
many forms, of which the majority focuses on the specification of contracts
for methods or objects which can be used to generate tests [11]. An ex-
ample of a white-box approach to test generation in Java is the thesis by
Bell[8], which presents JSymTester. JSymTester utilizes automated test gen-
eration techniques, based on the symbolic execution framework of the Java
PathFinder, to develop a suite of inputs which test student code fully. The
instructor code is used as a test oracle. Its performance was tested on small
assignments for an introductory computer science course and was similar
to existing, more traditional (manual test generation) approaches of unit
testing and output comparison.

Another category of white-box test-generation tools use a technique
called evolutionary testing. Evolutionary algorithms are used to evaluate
the “fitness” of test inputs based off of particular criteria such as statement
coverage, branch coverage, or size of generated tests. These inputs are then
mutated in an attempt to derive a more “fit” set of inputs. This technique
can be used either on method level to explore method inputs or at the class
level to find method call sequences[7], [23].

Despite the large body of work in this area there is still progress to be
made if we want to optimize automated testing. It is unsure how much
progress can be made, as Forisek demonstrates that for some programming

12 Chapter 2. Related Work

tasks it is impossible to design good test inputs[21]. The next section dis-
cusses static assessment, which is recently rediscovered as a tool for assess-
ing functionality.

2.2.2 Static Assessment

Static source code analysis is a common feature in automated grading and
tutoring systems for programming exercises. Static evaluation benefits from
the fact that it can be carried out even when there are problems in the dy-
namic behavior of the program. Different approaches and tools exist, each
with individual benefits and drawbacks. An overview of different princi-
pal approaches and tools for static analysis of Java code are presented in a
review by Goedicke and Striewe[46].

An important feature of a Java code analysis tool is whether the tool
operates on source code or byte code. Source code is written directly by
the programmer whereas byte code is generated from the source code by a
compiler. Although for many tasks these two approaches can perform an
equivalent analysis there are some differences.

Byte code analysis cannot be carried out completely when a program
contains compiler errors. It also has an influence regarding the granularity
of the analysis. For example, all loop statements are represented by GOTO-
statements in byte-code. Although all loop constructs in Java result in typi-
cal byte code patterns, analysis of these patterns is not trivial in all cases. In
source code analysis, this problem does not exist, since every statement can
be recognized from the source code directly. This is one of the main reasons
why we have chosen to work with source code analysis in this study.

Features of programming assignments that can be automatically assessed
using static assessment are:

• Coding Style: The compiler checks for correct syntax, a customized
tool checks for style requirements. In 1982, the groundwork for as-
sessing coding style was laid by Rees[41]. He identified ten sim-
ple metrics through which the quality of Pascal programs could be
judged: line length, comment density, indentation, blank lines, em-
bedded space, program decomposition, reserved words, variety of
identifiers, and labels & gotos. These style metrics are useful across a
wide variety of programming languages.

• Programming Errors Find bugs or "errors" that are syntactically cor-
rect but indicate misunderstood concepts (for example, when in Java
an if-declaration is ended directly with a semicolon instead of a state-
ment or body). As finding and fixing bugs is an important part of
software development, there is a lot of work done in this area.The
approaches range from coding rules, code review and testing to tool
supported error detection. The application of machine learning to
static analysis for program error detection is proposed in the paper
by Hannes et al.[48]. Source code from various open source projects
was studied to find the relevant features to classify an instance of code
as faulty or correct. The results show that this method is a possible ap-
proach for future static analysis tools but the authors note that much
research remains to be done before this area has been sufficiently stud-
ied.

2.3. Programming Tutoring Systems 13

• Software Metrics: general measurements that characterize a com-
puter program. An example of a software metric that has proven es-
pecially useful in teaching environments is the Cyclomatic Complex-
ity measure[35], which estimates the complexity of program control
flow.

• Design: conform to given interface or structural requirements.

• Special features: For example a plagiarism check.

As the above features show, static assessment has traditionally been used
to assess quality, not correctness. However, this paradigm is shifting. New
techniques that focus on using static methods to assess program functional-
ity are being developed. These techniques may reveal functionality issues
that have been left unnoticed (or punished too harshly) by the limited test
case suites. It is exactly this potential that motivated our research to explore
the possibilities of functionality assessment with static techniques.

• Functionality: New methods for assessing functionality shift their fo-
cus from the dynamic to static methods. We can distinguish three
main approaches to static program assessment[52]. They differ with
respect to the ways in which knowledge of correct student programs
are requested and handled.

Source-to-Specification matches against a specification that is a high-
level description of the program’s goals. This approach is complicated
due to the many possible variations. Specification-to-Specification
uses formal specification matching of example and candidate pro-
grams. This is infeasible because formal specifications of programs
cannot always be derived automatically. Source-to-Source matches a
program against a model program stored in the system.

An example of research in the Source-to-Source category is a seman-
tic matching based automatic scoring method [33] [49]. Programs are
converted to the intermediate representation of a system dependence
graph and a semantic equivalence conversion is carried out accord-
ing to a series of standardization rules. The matching degree of the
standardized system dependence graph scores the programs accord-
ing to the matching result and scoring rule. At the moment, it is only
applied to simple introductory programs as the number of possible
solutions grow rapidly with increased program size and complexity.
For the introductory problems the method gets a high grading preci-
sion (90-100 percent) for most cases but sometimes scores very poorly
due to the lacking of appropriate model programs.

2.3 Programming Tutoring Systems

A robust technology that is able to determine whether programs coded by
a student are correct is essential for programming tutoring systems. When
a student’s program is incorrect the system should be able to pinpoint er-
rors in the program as well as explain and correct the errors. This is at a
deeper level than the program assessment this paper focuses on. Due to
the difficulties that arise on this deeper level of evaluation, no existing sys-
tem performs this task entirely satisfactorily. The recent paper of Jeuring

14 Chapter 2. Related Work

et al. provides a systematic review of automated feedback generation for
programming exercises[30]. It analyses and categorizes the feedback gen-
eration in 69 tools for learning programming. This feedback helps students
to improve their work and is an important factor in learning.

A student program may contain two kinds of errors: syntax errors and
semantic errors. In the context of programming tutoring systems, the prob-
lem of detecting syntax errors in a student program has been solved, mak-
ing use of compilers. However, the problem of detecting semantic errors in
a student program has not been solved satisfactorily yet.

2.4 Unsupervised Grade Modeling

When the main goal for automated assessment is not to grade each assign-
ment on a specific scale but to simply separate good programs from inferior
ones, more options become available. Instead of manual labels, which re-
quire a lot of effort, one could use a set of codes with high test scores for
the purpose of prediction. Aggarwal and Srikant published the following
preliminary investigation of this idea [45].

The threshold for "good programs" is set to be those that pass 80 per-
cent or more of the test-cases, have the right time complexity and follow
programming best practices. Out of five problems this resulted in 443 out
of the 999 programs that were automatically detected to be "good" (ranging
from 27 up to 151 per individual programming task). Of these 443 "good"
programs, 432 were marked as good (grade 4 or 5) by the experts. So the
automatically detected "good" set is indeed of high quality. This is in line
with the findings presented in chapter three.

A simple one-sided distance metric, which penalizes having less of a
feature but ignores having more of a feature, was defined to define the dis-
tance from the good set. This is based on the intuition of the authors that
having more of a particular feature is generally not indicative of an incor-
rect solution. Due to the small size of the available datasets all features kept
the same weight. The underlying assumption is: the larger the distance be-
tween a feature vector representation of a program and (a subset of) the
good set, the lower the score.

Experiments were carried out twice, once for just the basic feature dis-
tances and once for all semantic features including test-case scores. Dis-
tances to all programs in the good set are summed after which the following
measures were considered:

• the mean of these distances, which might be noisy given that the
good set would have codes implementing different strategies.

• the minimum of these distances which is noisy given the presence of
outlier codes.

• the mean of the least 25 percent of the distances which seems to be
a good trade-off of first two approaches. The hypothesis is that this
measure tries to identify the cluster of good programs that the current
program belongs to.

2.5. One Size Fits All? 15

As hypothesized above, taking the mean of the least 25 percent of the dis-
tances to good solutions produced the best results.

A moderate correlation is reported between the expert assigned scores
and the distances. Scores based on all features outperformed those that are
only determined based on basic features. Unfortunately this is not such
a powerful statement because the "all features" set uses test-cases whereas
basic features does not. There are no results based on the semantic features
or test-cases alone, which may have given more insight in the added value
of semantic features in the obtained correlations of 0.58 to 0.83 between the
expert assigned scores and the distances in the feature space.

In their latest work, Aggarwal et al. do provide a more detailed anal-
ysis of the results from the unsupervised models [44]. Contrasted against
the baseline of test-case score predictions the model outperforms it on all 19
problems in the dataset. An important aspect of this research is that all pre-
dictions for the different tasks were made by the same model. The concept
behind this model is explained in the final section.

2.5 One Size Fits All?

The latest research of Aggarwal et al. regarding grade predictions uses
a bigger dataset and attempts to tackle the problem of having to train a
model for every question separately[44]. The so-called question indepen-
dent model that is developed is able to assess an ungraded response of an
unseen question. The main assumption is that the distance from a solu-
tion to the good set in the feature space is an invariant feature (although it
might need normalization) across questions. To demonstrate this a model is
trained using labeled examples for some questions, learning the distances
from a solution to good solutions that correspond to grade categories. Next,
for a new question to be graded one only needs data for a good set, which
can be obtained automatically through test-cases if enough samples are
available. The predetermined distance thresholds are used to predict grades.

For each of 19 questions a specific supervised model is learned from the
feature distances and its performance is compared to the performance of
a question-independent model trained on a subset of the questions in the
dataset. The programming languages used for the solutions in the dataset
are c, c++ and Java with an average of 285 responses per question. When
compared to question specific models the question-independent model pro-
vides comparable performance in correlation values of the predicted grades
but shows a higher bias and average mean error. The authors see this as an
indication that the normalization technique is not able to scale the distances
for the questions perfectly.

16

Chapter 3

Application: Feature
Derivation

This chapter begins with an overview of the different types of features to be
derived from Java solutions. Next, the Spoon library is introduced which
is the main building block of the program that derives the features from
solutions.

3.1 Program Features

To be able to capture program semantics automatically I developed a tool
that extracts a potentially large number of program features from Java code.
The tool is called JFEX, which is an acronym for Java Feature Extraction. In
the current setting, the Java code to be analyzed consists of single-class so-
lutions to various programming problems. For a specific problem, JFEX
dynamically generates all features corresponding to each individual solu-
tion. Then each solution is tagged with the number of occurrences of its
features.

The feature derivation rules are based on two concepts:

• Features should be able to capture algorithmic design.

• Features should be accurate and easy to compute.

Srikant and Aggarwal suggest the following five general categories for Java
code features[45]:

• Basic Features: counts of various keyword and token occurrences.
Basic features indicate if the right constructs appear in the code.

• Expression Features: counts of the occurrences of all particular ex-
pressions that appear in a program. Arithmetic and relational opera-
tions occurring in the program are captured by Expression features.

• Control Context Features: associate Basic and Expression features
with the context of the control flow structures (such as if conditions
of loops in Java) they appear within.

• Dependency Features: counts of Expression features that are depen-
dent on other particular Expression features. A dependency from ex-
pression a on expression b indicates that the value of a variable in a is
influenced by the evaluation of expression b.

3.2. Feature Definitions 17

• Dependency Features in Control Context: associate Dependency fea-
tures with the control flow structures they appear within.

The five categories mentioned above are very general and allow for mul-
tiple interpretations. Per language and application use, decisions have to
be made as to how to define these features. These decisions have to en-
force the capacity of the features to capture the algorithmic design of the
program. In my application, the formal language Java defines which con-
structs are eligible for certain features. However, I have to make choices
regarding the most meaningful scope of the features. The next section de-
scribes the decisions that were made regarding the feature categories and
the accompanying extraction rules.

3.2 Feature Definitions

I: Basic Features Basic features represent simple counts of the following
code constructs:

• Keywords: break, continue, return, case* (*see switches).

• Constants: Java constants are captured based on their explicit value.
For example, when a program contains two strings "hello" and "world",
they are represented as one occurrence of "hello" and one occurrence
of "world" instead of one representation for two String occurrences.

• Variables: variables are represented in a double fashion. One set of
variable count Basic features capture the class of variables that occur
(i.e.: Integer, Double, String, Stack, ArrayList etc.). Another type of
variable count Basic features capture the type of the variables: local
variables, parameter variables, or field variables.

• Loops: loop occurrences are counted based on their type: for, for-
each, do, or while.

• Conditionals: conditional occurrences are also counted based on their
type: if or ternary.

• Switches: simply the number of switch occurrences (the number of
cases is represented in a keyword count).

• Binary Operators: logical and bit and, bit or, bit xor, division, equal-
ity, greater or equal comparison, greater than comparison, InstanceOf
(OO specific), lower or equal comparison, lower than comparison,
subtraction, multiplication, inequality, logical or, addition, shift left,
shift right, unsigned shift right.

• Unary Operators: binary complement, negation, logical inversion,
positivation, decrementation post assignment, incrementation post-
assignment, decrementation pre-assignment, incrementation pre-ass.

• Operator Assignments: Java allows x = x + 5 to be declared as x +=
5. To stress the equality of both definitions we categorize them iden-
tically as PLUS ASS.

18 Chapter 3. Application: Feature Derivation

• Method calls: method call occurrences are uniquely defined by the
name of the method that is called.

• Recursive method calls: when a method is called from within it’s
own body this is categorized as a recursive call defined by the method
name (instead of an ordinary method call).

II: Expression Features Expression features capture the expressions that
occur within all statements in the program. A statement represents a single
expression in the source code of the program. In JFEX, Expression features
are obtained by analyzing all statements that include: binary operators,
unary operators, assignments, declarations, or method calls. In addition
to the operators that occur in the statement, all variables and constants are
represented in the expression.

• Keywords: the counts of keywords that occur within a statement are
represented per keyword type (break, continue, case) in the Expres-
sion feature.

• Constants: all constants that occur in a statement are captured in a
single count for the Expression feature. There is no distinction made
based on explicit values or types.

• Variables: variable occurrences in an Expression feature are counted
based on types: local variables, parameter variables, or field variables.

• Loops, Conditionals, Switches: are not part of Expression features.

• Binary Operators, Unary Operators, Operator Assignments: every
operator occurrence in a statement is represented in the Expression
feature that describes the statement. If an operator occurs multiple
times in a statement this results correspondingly in multiple counts
of the operator in the Expression feature. Operator combinations are
always represented in the same lexical order, regardless of the order
they appear in a statement.

• (Recursive) Method Calls: the counts of specific method calls (based
on the method name) within a statement are part of an Expression
feature.

III: Dependency Features The flow of data within a method can be cap-
tured by data dependencies. A data dependence A to B exists if statement
B references a variable which is defined or modified in statement A. Depen-
dency features represent the most recent dependency of one variable. So
when an Expression feature contains two variables this may result in two
dependency feature counts, one expressing the most recent dependency for
each variable influence.

IV: Control Features Control features map out control and data depen-
dencies between the statements of a Java program. A control dependence
from statement A to B exists, if the execution of a statement B relies on the
execution of statement A. Because it is common practice in Java to nest con-
trol structures, JFEX considers the complete nested depth of a feature. Con-
trol features can consist of Basic Features, Expression features, or Depen-
dency features, appended with the context options listed below. In essence,

3.3. Feature Examples 19

Control features themselves can also be appended with their context be-
cause we assess the complete nested context depth.

• Loops: loop context is defined by loop-type and occurrence of the
feature within a loop. We differentiate between a loop-body and a
loop condition. For-loop conditions are a special case where we dis-
tinguish features based on if they occur in the initialization condition,
expression condition or update condition.

• Conditionals: conditional context is defined by occurrence in the if-
condition, else-condition or then-condition of an if or ternary state-
ment.

• Method context: when a call to a method defined in the program
under analysis occurs within control context, the control context of
the method call statement is appended to all statements within the
called method. Whenever a method is called multiple times but from
within different control contexts, alls statements in the called method
are turned into multiple Control features: one for every surrounding
control context of the method call. The idea behind this is that it re-
duces feature differences between programs with equal functionality.
The next section demonstrates an example of the features that are gen-
erated by JFEX for a method that is called twice from different control
contexts.

3.3 Feature Examples

Figure 3.1 on the next page is an example solution for the Fish task. The
current section introduces some of the features that JFEX derived from this
solution in order to illustrate the feature categories described in the previ-
ous section. The uppercase characters surrounded by dollar signs indicate
the feature category. Next, short-hand notations for feature aspects are fol-
lowed by a colon and a digit that indicates the number of times this feature
occurs. Finally, a short description and/or the line numbers of the occur-
rences are provided in parentheses.

I: Basic Features

• Keywords: Bbreak:1 (line 38), Breturn:1 (line 30).

• Constants: Bc:0:3 (line 10,13,17).

• Variables: Bfv:4 (field variables: line 4,5,6,7), Blv:2 (local vari-
ables: line 13, 14), Bpv:3 (parameter variables: line 9, 33), Bvt:Array:2
(variable usage of type Array: line 14, 15), Bvt:Stack:8 (variable us-
age of type Stack: line 11, 16, etc.).

• Loops: Bwhile:1 (line 34), Bfor:1 (line 13).

• Conditionals: Bif:5 (line 15, 16, 17, 22, 35).

• Binary Operators:BEQ:1 (line 15), BGT:2 (line 17, 35), BLT:1
(line 13), BPLUS:1 (line 30).

20 Chapter 3. Application: Feature Derivation

• Unary Operators: BNOT:1 (line 34), BPOSTINC:3 (line 13, 18, 23)

• Method calls: Bmc:battle:1 (line 21), Bmc:empty:3 (line 16, 22,
34), Bmc:peek:1 (line 35), Bmc:pop:1 (line 36), Bmc:push:1 (line
27), Bmc:size:1 (line 30).

FIGURE 3.1: Fish solution: test case score 100%, grade: 5.

3.3. Feature Examples 21

II: Expression Features

• Keywords: Efv:2_return_op:PLUSmc:size$:1 (a return statement, 2
field variables, addition operator and a method call to size(): line 30).

• Constants: Elv:1_c:1_op:GT$:1 (a local variable, 1 constant and a
greater than operator: line 17).

• Variables: Elv:1pv:1fv:1_op:EQ$:1 (a local variable, parameter vari-
able, field variable and an equality operator: line 15).

• Binary Operators, Unary Operators, Operator Assignments:
Efv:1_op:POSTINC$:2 (post increment unary operator on a field
variable: line 18, 23), Elv:1pv:1_op:LT$:1 (local variable, parameter
variable and a less than operator: line 13).

• (Recursive) Method Calls: Elv:1_op:mc:battle$:1 (method call to
battle() with a local variable: line 21), Epv:1fv:1_op:GTmc:peek$:1
(a parameter and field variable, greater than operator and a peek()
call: line 35).

III: Dependency Features

• DE$lv:1_c:1_op:GT$_@_Elv:2pv:1_op:ASS$:1 (a local variable, con-
stant and greater than operator with a dependency to 2 local variables,
1 parameter variable and an assignment operator: line 17 dependency
to line 14).

• DE$lv:2pv:1_op:ASS$_@_Elv:1_op:POSTINC$:1 (2 local variables,
a parameter variable and assignment operator with a dependency to
a local variable and post increment operator: line 14 dependency to
line 13).

IV: Control Features

• Basic features in control context: BC_mc:battle_con:ForIf_bIf_e$:1
(a battle() call inside an ifelse condition, nested in an if body, nested in
a for-loop body: line 21), BCop:while_con:ForIf_bIf_e_$:1 (a while
operator inside an ifelse condition, nested in an if body, nested in a
for-loop: line 34). This last feature is an example of context that is
added due to the context of the method. Because the battle() method
call comes from within ForIf_bIf_e, this context is added to all features
of the battle method.

• Expression features in control context:
EClv:1_op:POSTINC_con:For_upd$:1 (a local variable and post in-
crement operator, that occur as the update expression of a for loop:
line 13), ECpv:1fv:1_op:GTmc:peek_con:ForIf_bIf_e_While_bIf_c$:1
(a parameter and field variable, greater than operator and a peek()
call, that occur in the condition of an if-statement, inside a while loop,
inside the context of the method call battle: line 35).

• Dependency features in control context:
DEC$lv:1_c:1_op:GT_con:ForIf_bIf_bIf_c$_@_$EC$lv:2pv:1_op:
ASS_con:For$:1 (a local variable, 1 constant and greater than operator

22 Chapter 3. Application: Feature Derivation

inside the condition of an if that is nested inside two other ifs and a
for loop, that has a dependency to 2 local variables and a parameter
variable assignment that occur in the body of a for loop: line 17 with
a dependency to line 14).

3.4 Spoon Code Analysis

The JFEX feature derivation program which derives features of Java source
code is developed with Spoon. Spoon is a library for the analysis and trans-
formation of Java source code [39]. Based on compile-time reflection, Spoon
enables developers to analyze every single program element and allows full
intercession up to the statements and expressions of the language. It can be
used for domain specific analyses, written in plain Java. Spoon achieves
this with:

• A Java meta model for representing Java abstract syntax trees (ASTs),
which allows for both reading and writing.

• Queries and processors for traversing the program under analysis.

FIGURE 3.2: Overview of Spoon: Java programs are trans-
formed and analyzed as instances of the Spoon Java model.

(Image source: [39]-Figure 1.)

Fig 3.2 on provides an overview of the Spoon model. After an Abstract
Syntax Tree (AST) is generated by a default Java compiler, Spoon simplifies
the AST. This simplified AST is a compile-time instance of the Spoon meta

3.4. Spoon Code Analysis 23

model. The analysis and transformation of programs are written as program
processors and templates which are applied to the Java model by the engine.
A visitor pattern implements the processing. The visitor scans each visited
program element and can apply user-defined processing jobs (processors)
[38]. The Spoon meta model contains all the required information to derive
compilable and executable Java programs and supports Java 8.

The Spoon meta model can be split in three parts. All names are prefixed
by CT which means compile time..

• The structural part:contains the declarations of the program elements,
such as interface, class, variable, method, annotation, and enum dec-
larations.

• The code part: contains executable Java code, such as the one found
in method bodies. There are two main kinds of code elements: ct-
statements and ct-expressions. Ct-statements are untyped top-level
instructions that can be used directly in a block of code. Ct-expressions
are used inside statements. Some code elements implement the inter-
face Ct-invocation and are both statements and expressions.

• The reference part: models the references to program elements such
as a reference to a type. The reference part of the meta model ex-
presses the fact that the program references elements that are not part
of the meta model, they may for example belong to third party li-
braries.

3.4.1 Querying Source Code Elements

The information that can be queried is that of a well-formed typed AST. For
this, a query API is available that is based on the notion of “Filter”. A filter
defines a predicate of the form of a matches method that returns true if an
element is part of the filter.

FIGURE 3.3: Spoon code example on the usage of filters.
(Image source: http://spoon.gforge.inria.fr/filter.html)

24 Chapter 3. Application: Feature Derivation

A filter is given as a parameter to a depth-first search algorithm. During
AST traversal, the elements satisfying the matching predicate are given to
the developer for subsequent treatment. Spoon has multiple built-in filters.

3.4.2 Processing Source Code Elements

Program analysis is a combination of a query and analysis code. This is
combined in a processor, which is a class that focuses on the analysis of
one kind of program elements. The elements to be analyzed are given by
generic typing: the programmer declares the AST node type under analysis
as class generics. The process method takes the requested element as input
en does the analysis. Multiple processors can be used at the same time. The
launcher applies them in the order they have been declared. Processors are
implemented with a visitor design pattern.

3.4.3 Source Code Transformation

Spoon is designed to facilitate source code transformation. Source code
transformation is a program transformation at the source code level, as op-
posed to program transformation performed on binary code. JFEX doesn’t
alter the source code that it analyses so the transformation mechanisms of
Spoon fall outside the scope of this research. The interested reader is re-
ferred to the work of Pawlak et al. [39].

25

Chapter 4

Data

In this chapter an overview is presented of the data that is used in this re-
search. We begin by exploring the characteristics of the Fish dataset, which
will be used in a supervised learning setting to predict manual grades.
Next, the five problems in the dataset from Aspiring Minds are introduced.
The properties of the problem sets are also discussed in some detail as this
may provide clues regarding the differences in comparison with the Fish
dataset properties.

The Aspiring Minds dataset serves to gain insight in the predictive power
of our features compared to those derived by Aspiring Minds. The last two
sections of this chapter are dedicated to a comparative analysis of the fea-
ture sets.

4.1 Codility Dataset

As an online provider of specialized programmer tests, Codility offers train-
ing material on their website. Codility provided us Java solutions for the
Fish assignment, for which I hand-labeled a subset of the solutions with
grades ranging from one to five. The task description is provided below.
The solutions in the dataset are produced by people all over the world.
Most of these people are novices but more experienced programmers may
also have tried this training task in order to prepare themselves for a real
assessment.

4.1.1 Fish

You are given two non-empty zero-indexed arrays A and B consisting of
N integers. Arrays A and B represent N voracious fish in a river, ordered
downstream along the flow of the river. The fish are numbered from 0 to N.
If P and Q are two fish and P < Q, then fish P is initially upstream of fish Q.
Initially, each fish has a unique position.

Fish number P is represented by A[P] and B[P]. Array A contains the
sizes of the fish. All its elements are unique. Array B contains the directions
of the fish. It contains only 0s and/or 1s, where:

• 0 represents a fish flowing upstream

• 1 represents a fish flowing downstream

If two fish move in opposite directions and there are no other (living)
fish between them, they will eventually meet each other. Then only one

26 Chapter 4. Data

fish can stay alive: the larger fish eats the smaller one. More precisely, we
say that two fish P and Q meet each other when P<Q, B[P] = 1 andB[Q] =
0, and there are no living fish between them. After they meet:

• If A[P] > A[Q] then P eats Q, and P will still be flowing downstream

• If A[Q] > A[P] then Q eats P, and Q will still be flowing upstream.

We assume that all the fish are flowing at the same speed. That is, fish
moving in the same direction never meet. The goal is to calculate the num-
ber of fish that will stay alive. The assignment is to write a function:

class Solution { public int solution(int[] A, int[] B); }

that, given two non-empty zero-indexed arrays A and B consisting of N in-
tegers, returns the number of fish that will stay alive.

Assume that:

• N is an integer within the range [1..100, 000];

• each element of array A is an integer within the range [0..1, 000, 000, 000];

• each element of array B is an integer that can have one of the following
values: 0, 1;

• the elements of A are all distinct.

Complexity:

• expected worst-case time complexity is O(N)

• expected worst-case space complexity is O(N), beyond input storage
(not counting the storage required for input arguments)

When a person starts the task he or she has 120 minutes to complete
it. The task can be developed in the provided web editor, or in any IDE
after which the code can be copy-pasted it into the Codility editor. The
code can be run as many times as necessary with custom defined test cases.
Whenever the solution is submitted the code cannot be changed anymore
and the candidate is forwarded to the scoring report.

4.1.2 Automated Scoring: Test-Cases

The total score ranges from 0 to 100 percent. It is represented as two equally
weighed components: Correctness and Performance. The score of these
components is determined from the results of the following test-cases:

• Example: tests the example that is provided in the task description.

• Extreme one (Extreme small): only one fish.

• Extreme two (Extreme small): two fishes.

• Simple one: simple order test.

• Simple two: simple order test.

4.1. Codility Dataset 27

• Small random: average length: 100 fishes.

• Medium random: average length: 5.000 fishes.

• Large random: average length: 100.000 fishes.

• Extreme range one: all except one fish flowing in the same direction.

• Extreme range two: all fishes flowing in the same direction.

All ten test-case results have the following output levels: OK, RUN-
TIME ERROR, WRONG ANSWER, and TIMEOUT ERROR. These outcome
gradations have been transformed to dummy variables in the test case fea-
tures sets.

4.1.3 Grading Criteria

Assigning grades from categories 1 to 5 to solutions for the Fish task is not
trivial. Grading programming solutions is a complex process driven mainly
by subjective evaluation criteria of a given assessor. This is mainly due to
the fact that software quality is not a unitary concept. To answer which of
two different solutions are of higher quality, one must know which quality
factors should be optimized given the purpose of the task. Furthermore,
each assessor is somehow biased; meaning that the assessor is not com-
pletely strict in assigning grades to solutions.

There are also some other factors contributing to bias in grades, for ex-
ample: mistakes or a too rough/fine grained grading scale. In order to
obtain more objective scores it is common practice to use two assessors to
score solutions and let them come to a consensus whenever they disagree.
Unfortunately such resources were not available to this research so all of
the manual labeling was done by me.

It turned out that distinguishing really bad solutions from perfect so-
lutions is quite straightforward but there are many levels in between for
which there is no golden rule. In order to establish the most realistic grad-
ing criteria possible I imagined that I truly am a recruiter. People have to
make this one Fish task for me, and I have to assign a score from categories
1-5. In this score it is reflected that each level up, a person is better than all
grades below.

Grades in categories 4 and 5 indicate a decent solution, and people with
this score are eligible for hiring. Grades in categories 1 - 3 identify solutions
with severe flaws. What are severe flaws? What determines if a solution
scores category 3 or category 4? Well, the answer is: me. The "recruiter" or
"assessor" in the scenario is the one who determines the acceptable mistake
ranges.

The levels have been defined as follows:

• Grade 5: Perfect solution, conform complexity requirements.

• Grade 4: Very good solution, but is not CAT 5 because a minor mis-
take causes test-cases to fail.

• Grade 3: A good algorithmic approach is present but complexity re-
quirements are violated. Or a solution that contains a mistake which
indicates a lower level of understanding of the Java language or data

28 Chapter 4. Data

structures. The presence of this mistake disrupts the otherwise possi-
bly correct flow of the algorithm. The fact that the mistake remains in
the submitted code also indicates that the programmer was not able
to properly test his code.

• Grade 2: The solution contains errors that indicate a misunderstand-
ing of the problem. Any problem having to do with the ordering of
the fish or the arrangement and survival of fights between fish causes
a solution to score no higher than CAT 2.

• Grade 1: Barely a solution. Incomplete logic or a missing algorithm
structure that could resemble a correct solution approach. It could
also be a decent starting algorithm structure but flooded with so many
CAT 2 mistakes that the solution can no longer compete with other
CAT 2 solutions.

For the sake of brevity only the general category descriptions are pro-
vided here. However, to enforce consistency a full list of encountered issues
has been maintained during the grading process. An overview is presented
in the appendix. Coding style does not influence any of the categories un-
less the code is truly chaotic or barely readable. For example a solution with
a test case score of 100% scores no higher than category 4 if the code is really
messy and hard to understand.

4.1.4 Data Analysis

The graded dataset consists of 230 graded Fish solutions. Figure 4.1 dis-
plays the distribution of the test scores in the dataset. The colored levels in-
dicate the distribution of grades for solutions with a specific test case score.
The darkest level indicates solutions that fall in scoring category 1. Grade 1
occurs in solutions scoring between 12% and 55% on the test cases. Grade 2
stretches a bit further, from 11% to 77%. Grade 3 covers almost the complete
range: 12% to 100%. But only one solution in category 3 scored 100%, most
of the category 3 solutions scored 75% to 88%. A very similar pattern is
displayed for grade category 4. Finally, grade level 5 consists almost solely
of solutions that scored 100%.

The overlapping distribution of grades over the test cases cores indi-
cates that test scores alone are not a perfect mapping to a solution’s "true"
score. The concentration of almost all category 5 solutions in the 100% bar
indicates that there are very few solutions (3, to be precise) in our dataset
that are undeservedly recognized as good by the test cases (a hypothesis
was that this might occur due to for example hard coding). Inspection of
these solution shows that the reason for not scoring 5 is usually code that
is unnecessary complicated, or contains entire pieces of wrong code that
aren’t executed because they are shielded by logic conditions that are never
set to true.

Even though the mapping is not perfect, there does seem to be a rec-
ognizable pattern where lower scoring solutions on the test cases are more
likely to fall in a low grade category, and vice versa. This is a desirable ob-
servation because test cases are an established scoring metric. Although it
is a rough metric, the general results it produces are widely recognized as
indicative of program quality. If my grades would have shown no (or even

4.1. Codility Dataset 29

FIGURE 4.1: Bar plot of the test case scores on Fish solu-
tions. Colored levels indicate the distribution of grades per

test case score.

negative) correlation with test case scores this would have been difficult to
defend.

This test-case correlation is an important baseline for us to compare to
the results of our models trained on semantic features. To make the best
predictions from test-cases cores, we simply assign a solution to the most
likely grade category. So we simply define thresholds for the test-scores
that map to grading categories based on the observations in our dataset.
To be able to asses the accuracy of such a prediction technique I randomly
assigned 161 observations (70% of the data) to a training set. Based on the
labeled solutions in the dataset the optimal thresholds resulted in:

• Grade 1: test score ≤ 25%

• Grade 2: test score ≤ 62%

• Grade 3: test score ≤ 88%

• Grade 4: leave out, do not predict.

• Grade 5: test score ≤ 100%

The Pearson Correlation value r for the true grades and scores in the
training set is 0.75 . The correlation in the training set for the true grades
and the predicted scores according to the thresholds mentioned above is
0.83. This are not the results we are going to use as a baseline for compar-
ison. For that we use the test set holding the 69 other observations. These
observations were no part of the definition of the thresholds above. The
correlation in the test set between the scores and true grades is 0.72, which
is comparable to the training set (which is to be expected from a random

30 Chapter 4. Data

subset). When we predict the test set scores with the thresholds the corre-
lation of the predicted grades with the true grades is 0.80. This is similar to
results reported in [45] where the validation r for test-case results was 0.54,
0.80, 0.64, 0.80, and 0.84 for five different problems.

FIGURE 4.2: 49% of the predictions have the correct grade,
90% of the predictions fall within a one grade shift and 10%

have shifted 2 grade categories.

FIGURE 4.3: Illustration of prediction accuracy reported
in [45] versus prediction accuracy of simple test-case score

predictions on our own validation set.

Figure 4.3 illustrates the possible gain in prediction accuracy when us-
ing semantic models instead of test-case results. This is only an indication
as the performance on different problems might not be comparable. But it
seems reasonable to hypothesize that our predictions could be improved by
using semantic features in addition to test-cases as this increased the predic-
tion accuracy for two other problems. To check if the hypothesis also holds
with the Fish task Chapter 6 compares the best model predictions based on
all individual test case information against model predictions using either
just semantic features or a combination with test case information.

4.2 Aspiring Minds Dataset

This section will discuss the tasks that are included in the dataset from As-
piring Minds. I received a complete dataset: solutions that are tagged with
their feature vectors and labeled with the grade consensus of two experts
and a test case score based on Aspiring Mind’s test case suites. Inspection
of the dataset provides a good setting for comparison with the properties
found in the Fish dataset that is tagged and labeled by me. The final part of
this section assesses the influence of the difference in feature granularity in
comparison to our own features.

4.2. Aspiring Minds Dataset 31

4.2.1 EliminateVowel

Task description: Given a string "string", write a program to eliminate all the
vowels (lower or upper cases) from it. The list of vowels (a,e,i,o,u) is pro-
vided. The input to the the method eliminateVowelString of class Elimi-
nateVowel shall consist of a string that will only contain letters from A to
Z in upper or lower cases. The method should return the string without
vowels. Two hints are given:

• The length() method returns the length of a String in Integer format.
Usage: int len = string.length();

• The toCharArray() method converts a String to a Character array. Us-
age: char[] str = string.toCharArray();

Dataset properties: There are 182 graded solutions for the EliminateVowel
problem. Figure 4.4 provides an overview of the distribution of grades per
test cases core. There is a very sharp distinction noticeable in the test case
results: all solutions score either 100% or below 20%. All solutions that
score 100% score category 5, so the test cases correctly identified good so-
lutions. However, the lower scoring subset contains many solutions that
scored 4 or 5, even when test-cases indicated a score of 0% percent. This
has to do with the nature of the assignment: characters and strings are sur-
rounded by single or double quotes. Solutions that precede these quotes
with backslashes trigger a compiler error, which prevents test cases from
assessing code quality.

FIGURE 4.4: Bar plot of the test case scores on Eliminat-
eVowel solutions. Colored levels indicate the distribution

of grades per test case score.

32 Chapter 4. Data

4.2.2 IsTree

Task description: Given an undirected connected graph in adjacency matrix
form, determine if it is a tree or not. In a connected graph, there exists a
path from every node to every other node in it. This path does not need to
be an edge directly connecting the nodes. An adjacency matrix for a graph
with n vertices is a n x n two-dimensional matrix with i,j entry as 1 if there is
an edge from ith vertex to jth vertex and 0 otherwise. The matrix contains
0s and 1s only. The input to the method isTree of class GraphTree shall
consist of an undirected connected graph represented by adjacency matrix
grid. The method should return 1 if the graph is a tree otherwise it returns
0. An example input is provided for which the method should return 1:

0101
1010
0100
1000

Dataset properties: The IsTree dataset contains 124 graded solutions. As
indicated by Figure 4.5, the test scores are spread over the range between
zero and a hundred, with a very large concentration of solutions that scored
0% on the test cases. The grade distribution depicts that almost three quar-
ters of the 0%-scoring solutions are indeed lousy programs. However, some
of the programs have a score of category 4 or 5.

FIGURE 4.5: Barplot of the test case scores on IsTree solu-
tions. Colored levels indicate the distribution of grades per

test case score.

4.2. Aspiring Minds Dataset 33

4.2.3 PatternPrint

Task description: Given an integer N, print N lines in the following manner.
For e.g., if N=6:

1111112
3222222
3333334
5444444
5555556
7666666

The input to method patternPrint of class NumberPattern shall consist of
an integer 1 ≤ N ≤ 100 representing the number of lines to printed. Do
not return anything from the method but print the required pattern using
System.out.println() or System.out.print().

Dataset properties: There are 176 graded solutions in the PatternPrint
dataset. Figure 4.6 displays the grade levels of the test case score distri-
bution. Most solutions score less than 10%, and the grade levels indicate
that for the majority of these solutions this score is justified. A small subset
of the solutions that should have scored higher have grade 4 or 5, the rest
has grade 3. Once again, solutions that score100% have earned this score.
A few solutions score in the midrange section of the test case predictions.
There does not seem to be a clear pattern in the grade distribution amongst
them.

FIGURE 4.6: Bar plot of the test case scores on PatternPrint
solutions. Colored levels indicate the distribution of grades

per test case score.

34 Chapter 4. Data

4.2.4 GrayCheck

Task description: Given two bytes as input, your task is to find out if they
can be placed successively in a gray code sequence. If they can be placed,
return 1 else return 0. In a gray code sequence, two successive values differ
in only one bit. Input to the method GrayCheck of class GrayCheck shall
consist of two bytes term1 and term2 and should return an integer. The fol-
lowing hints are given:

• ˆ operator is a bitwise XOR operator, & is a bitwise AND operator and
| is a bitwise OR operator

• << and >> are shift left and shift right operators

• 0x is used to represent data in hexadecimal form.

• To assign hex code to a byte use: byte ch = (byte)0x03;

Dataset properties: The GrayCheck dataset consists of 175 graded solu-
tions. With an exception for a small subset that scores around 60%, all of the
category 1 programs have been scored less than 40% by the test case suite. It
also performed well for the good programs: all solutions that scored above
70% are category 4 or 5 solutions. However, a substantial amount of the cat-
egory 4 solutions have been assigned a score below 70%, and a few category
5 solutions scored 0%.

FIGURE 4.7: Barplot of the test case scores on GrayCheck
solutions. Colored levels indicate the distribution of grades

per test case score.

4.2. Aspiring Minds Dataset 35

4.2.5 TransposeMatrix

Task description: Given values m and n as the dimensions of an increment
matrix and an initial value s, multiply the original increment matrix with
its transpose. An increment matrix is the matrix whose elements are the
incremented values of the initial values s. The input of the method trans-
poseMultMatrix of class TransposeMult shall consist of the initial value s
and the dimensions of the increment matrix m and n (all values are pos-
itive integers). The method should return a 2-dimensional matrix repre-
senting the multiplication matrix. For example, if the initial values are
s = 1,m = 3, n = 3:

increment matrix transpose matrix multiplication matrix
123 147 14 32 50
456 258 32 77 122
789 369 50 22 94

The following hint is provided: to declare a matrix of dimension m and n
use: int[][]matrix = newint[m][n];

FIGURE 4.8: Barplot of the test case scores on Transpose-
Matrix solutions. Colored levels indicate the distribution of

grades per test case score.

Dataset properties: There are 182 graded solutions in the TransposeMatrix
dataset. Solutions scoring above 80% are correctly identified as good solu-
tions. Solutions scoring below 70% have scattered grades among the test
case scores. Except for half of the 0% scoring solutions there doesn’t seem
to be much agreement between the test case scores and assigned grades.

36 Chapter 4. Data

FIGURE 4.9: Counts of unique features in the Aspiring
Mind (AM) feature set and our own feature set (JFEX), per

feature category for all problems.

4.2.6 Feature Granularity Comparison

Figure 4.9 provides some insight into the differences between the features
generated by Aspiring Minds and our own features. The unique gener-
ated features are displayed per feature category for all five problems in the
Aspiring Mind dataset. We see that both approaches generate roughly the
same amount Basic features (B). For the PatternPrint (PP) problem the num-
ber of Basic Context features (BC) is nearly equal as well. However, for the
other four problems the AM approach generates 158 more unique Basic
Context features. We see an opposite pattern for Expression features (E),
where JFEX produces on average 90 more unique features than the AM ap-
proach.

We have seen that the addition of context to basic features caused the
AM dataset to generate more Basic Context features than JFEX. An identi-
cal influence seems to affect the Expression features when context is added,
because the number of Expression Context features (EC) in both feature sets
are approximately equal. The only exception is once again the PatternPrint
problem, which is consistent with the observations in the Basic Context fea-
ture category.

The difference between the two feature sets for Expression Dependency
features (ED) is not as clear as in the previous categories. The GrayCheck

4.2. Aspiring Minds Dataset 37

and IsTree problems generate roughly the same amount of Expression De-
pendency features. EliminateVowel and TransposeMatrix trigger more Ex-
pression Dependency features in our feature set than in the feature set of
AM. The opposite is the case for the PatternPrint problem. Once again we
see that the addition of context to a feature category generates more fea-
tures in the AM feature set than in our own feature set: for all problems,
including PatternPrint, the AM Expression Dependency Context features
outnumber their counterparts in our feature set.

Super Basic features (SB) is a class that is not specially defined in our
feature set. The super basic features in the AM dataset have some overlap
with our basic features. The following section provides some clarification
on the exact differences between the feature sets for all encountered feature
categories. Chapter 7 discusses the influence of the feature differences on
prediction accuracy.

4.2.7 Concrete Differences

Figure 4.10 shows the source code of a solution to the EliminateVowel as-
signment. I have added some indentation to make the code more read-
able, as the original solution contained all if conditions right below each
other. However, I did not alter the indentation correctly: the placement
of the else statement seems to suggest that it belongs to the first if state-
ment. This was probably the intuition of the programmer. However, Java
connects an else clause to the closest if statement, which in this example is
if(string.charAt(i) ==′ U ′). But as the test case score of 0 might indicate,
this is not the only issue. The code will always return the memory address
of the empty character vector s.

The Aspiring Mind feature approach generates 167 features for this par-
ticular solution, and JFEX generates 122 features. We will now discuss the
most notable differences.

Basic features: The AM feature set contains 11 Basic features that de-
scribe nested control structures: BASIC@Loop_IF:2, all the way up to BA-
SIC@Loop_IF_IF_IF_IF_IF_IF_IF_IF_IF_IF:2. The JFEX Basic feature set does
not include information about nested control flow structures. The intuition
behind this is that these features are redundant because all their informa-
tion is captured in the Context features. We also notice that all features that
occur within a loop structure have double feature counts. This pertains to a
loop-unrolling step done in the Aspiring Minds approach. JFEX skips this
step as the result seems to be a constant increase of feature counts.

The Basic features from JFEX that count the variable types (for example
String or int) and variable categories (such as local or parameter variable)
are not present in the AM set.

Context features: The AM features do not differentiate between the po-
sition within a for loop condition, whereas JFEX features do capture these
differences. Another difference is that AM distinguishes the method body
as a context type, which is not the case in JFEX. So the return statement on
line 26 in Figure 4.10 is not part of the JFEX Basic Control features, but it is
part of the AM Basic Control feature set as BASIC_CNTRL@return()@m:1.
Our decision not to include the method body as context is once again mo-
tivated by the wish to reduce the number of features that capture the same

38 Chapter 4. Data

information. This was also our motivation to not include loop unrolling,
which introduces many extra features in the AM set, such as
BASIC_CNTRL@Loop_IF@m_Loopb1:2 up to BASIC_CNTRL@Loop_IF_IF
_IF_IF_IF_IF_IF_IF_IF_IF@m_Loopb1_IFb1_IFb1_IFb1_IFb1_IFb1_IFb1_IFb
1_IFb1_IFb1:2. Which is basically just the whole control sequence in the as-
signment, in the context of itself. Notice the numbers that are mentioned in
the context part of the AM feature. These numbers indicate the position of
the control structure. There is only one loop so Loopb1 doesn’t need any ex-
plaining. However, the number of ifs are all referred to as 1 which doesn’t
seem to very informative. In JFEX there is no such enumeration for control
structures.

Expression features: JFEX generates more expression features as it dif-
ferentiates between variable categories whereas the AM featureset regards
all variables as type VAR. For the operators JFEX is also more expressive,
specific types of operators are mentioned in the features whereas the AM
features separate features based on their type (such as a relational or arith-
metic operator). This is also the case for method calls: they are explicitly
captured by name in JFEX, and only as type FNCALL in AM.

We have now seen a concrete example of the feature differences. The
feature sets demonstrate decisions to include more or less details were made
based on different opinions. The effect of these decisions is discussed in
Chapter 7.

4.2. Aspiring Minds Dataset 39

FIGURE 4.10: Solution to the EliminateVowel problem from
the Aspiring Minds dataset. Test case score: 0%. Grade: 2.

40

Chapter 5

Predictive Modeling

This chapter discusses the different modeling techniques that have been ap-
plied to the Fish dataset. We begin with an explanation of the overall setup
and a motivation for the chosen predictive modeling techniques. Next, we
pay attention to preprocessing steps for the data. The nature of the dataset
has been explored in the previous chapter, and the high sparsity of the fea-
tures may benefit from preprocessing. In the final part we discuss the pre-
dictive modeling techniques that are used in the experiments to model the
Fish grades. The results of the modeling process are presented in the chap-
ter seven.

5.1 Learning Setting

The data for our supervised experiments consists of a set of Java solutions
for the Fish assignment. Each solution is represented as a vector of program
features Xp: the predictor variables. We want to obtain the relationship
between these predictor variables and the response variable Y, the grading
category. This relationship is unknown to us. Therefore, our best option
is to approximate this relationship and try to determine the quality of the
relationship that we defined. This is not as straightforward as it sounds,
because how does one determine the quality of an approximation when the
original is unknown? This is a question that has been faced many times by
researchers and as a result a mature but ever improving body of work on
statistical learning and validation has arised.

Before we do any modeling of the relationship between the outcome
and predictor variables we have to decide if we analyze our problem as a
regression or classification problem. For regression problems, the outcome
variable Y is quantitative. In classification problems Y takes values from a
finite set.

The levels of the Fish grading rubric are coded as consecutive integers
from 1 to 5. We are dealing with ordinal variables: we can rank the cat-
egories but we can not assume the distance between the categories to be
equal. Unlike real-valued regression labels, ordinal class labels do not carry
metric information. Ordinal labels are also different from the labels of mul-
tiple unordered classes due to the existence of ordering information. Ordi-
nal classification deals with these kind of problems by trying to exploit the
monotone relationships between the ordinal levels (see section 5.7).

5.2. Data Preprocessing 41

The grading process can thus be defined as: assigning an ordered class
label to an unlabeled observation. Based on our training data we want to:

• Accurately predict the grade categories of unseen solutions.

• Understand which inputs affect the prediction and how.

• Assess the uncertainty in each prediction.

Traditional methods for modeling an ordinal response (such as best sub-
sets, forward selection, and backward elimination procedures) often as-
sume independence among the predictor variables and require that the
number of samples (N) exceeds the number of predictors (P) included in the
model. This is obviously not the case four the Fish dataset where N = 230
and p = 5705. These thousands of feature predictors make our data high-
dimensional.

Penalized models are known to have excellent performance for high-
dimensional datasets in fitting linear and logistic models. We will therefore
apply Ridge and Lasso regression to the data. As noted before, modeling
five discrete classes with a regression approach has certain shortcomings.
First of all, as the predicted value are real values, one has to decide if a
prediction of 2.45631 belongs to category 2 or category 3. A cutoff point
at 2.5 seems a reasonable suggestion. However, the ordinal labels carry no
metric information so a cutoff point at 2.5 is completely arbitrary. Fitting
the cutoff points to levels where they best predict the training set might
make the model vulnerable to overfitting. Secondly, there could be multiple
sets of cutoff points that generate the same prediction accuracy, in which
case one would still have to randomly select one. In addition, penalized
methods have not been fully extended to the ordinal response setting.

To benefit from possible information that is captured by the ordering
of the classes we also apply ordinal classification (also known as ordinal
regression) to the data. In order to assess if there is indeed hidden informa-
tion in the label ordering we contrast the results with the predictions of a
multinomial classification model. Multinomial classification makes no as-
sumptions on the ordering of labels.

We now first discuss the options for preprocessing the data, as this may
improve the prediction accuracy of our models. In the remainder of the
chapter the modeling techniques for the regression and classification set-
tings are explained.

5.2 Data Preprocessing

Data preprocessing refers to adding, deleting or transforming the data in
the training set. Data preprocessing can profoundly influence the predic-
tion accuracy of models. Some models might be more sensitive to different
types of predictors than other models. It may also be of interest how the
predictors enter the model.

A straightforward first step in the preprocessing of the predictors is to
center and scale them, two techniques that may improve the numerical sta-
bility of some model calculations. Centering shifts a predictor’s variable to

42 Chapter 5. Predictive Modeling

a zero mean by subtracting the average predictor from all the values. For
scaled predictors, each variable is divided by its standard deviation which
results in a common standard deviation of one.

Many of the modeling algorithms applied in this research handle the
centering and scaling of predictors for us. In addition, given our large set
of predictors, we will focus on feature selection and extraction techniques
that generate a smaller set of predictors.

5.3 Feature Selection

The process of feature or variable selection aims to identify a subset of fea-
tures that are relevant with respect to a given task. In regression and clas-
sification tasks this usually comes down to the subset of variables with the
highest predictive power. Motivations for performing feature selection are:
improving performance of the predictive model, avoid the cost associated
with measuring all features and provide a better understanding of the pre-
dictive model.

For the Fish dataset we have 230 observations of 5705 features. This
typically means that we will be able to find a function that can classify the
examples in the training set pretty well, without this necessarily meaning
that it will have good performance for the test set. The underlying problem
is overfitting. A simple guarding rule against overfitting is to choose a sim-
ple function over complicated functions.

High dimensional data introduces what is known as the curse of dimen-
sionality: the volume of the feature space increases so fast that the avail-
able data becomes sparse, and it gets very hard to find reliable clusters.
The concept of distance becomes less precise as the number of dimensions
grows. There might also be irrelevant features which may obscure the ef-
fect of the relevant ones. Furthermore, given a large number of features, it is
likely that some of them are correlated. This is known as (multi)collinearity,
which increases the variance of all coefficients and degrades the predictabil-
ity of the model.

A distinction that is often made in feature selection techniques is be-
tween scoring/filtering and wrapper methods. Scoring/filtering methods
involve ranking the features by a given criterion. Each feature is scored by
itself, and the selection of features does not depend on other features. We
apply filtering by selecting features that occur in at least 21 and at least 77
solutions, resulting in two different feature sets to be used for modeling.
Wrapper methods pick new features by how much they impact the classi-
fier given the features already selected.

5.3.1 Filtering near-zero Variance Predictors

Features that only occur in a minority of solutions are unlikely to have a
large positive impact on the predictive power of a model. When resam-
pling techniques are used is is very likely that the resampled sets do not
contain any solutions with this particular feature. To identify these features
we look at the frequency of their occurrences. The problem is indicated
by severely disproportionate frequency of the feature occurrences. To filter

5.3. Feature Selection 43

these features from our predictor set we follow the rule of thumb for detect-
ing near-zero variance predictors proposed by Johnson and Kuhn[31]:

• The fraction of unique values over the sample size is low (say 10%)

• The ratio of the most common frequency to the second most common
frequency is large (say around 20)

As this is an heuristic method, there is no golden standard for the levels
that are suggested. For our application we have to raise these levels con-
siderably. When analyzing the frequency ratio of the Fish predictors we
observe the following distribution:

FIGURE 5.1: Histogram of the frequency ratios of all Fish
features.

The clear split in Figure 5.1 makes it easier to decide on the discrimi-
nating frequency ratio level. A total of 3212 features have a frequency ratio
of 214 or higher. The highest ratio of 229 is observed for 3085 features. A
ratio of 229 most likely indicates in our situation that the feature occurs in
one solution only (technically it is also possible that the feature occurs in all
except one solution). Removing these features from the fish dataset results
in 2.493 remaining features.

5.3.2 Between-Predictor Correlations

When a pair of predictors have a are substantially correlated this is known
as collinearity. Collinearity affects the variance of all coefficients and de-
grades the predictability of the model. To detect highly correlated pairs of

44 Chapter 5. Predictive Modeling

predictors we extracted them from the correlation matrix of the predictors.
This was done for the cutoff point of a between-predictor correlation of 0.80,
0.85. 0.90, and 0.99.

5.4 Feature Extraction

Feature extraction is the process of combining multiple predictors in sin-
gle variables. Dimensionality reduction is an alternative path to reduce
the number of features. A method such as Principal Component Analysis
(PCA) is applied to the entire dataset matrix. The original matrix is trans-
formed into a new, low dimensional matrix with the same number of rows
but a reduced number of columns. Predictors are combined in linear com-
binations (called the components), that capture the most variability of all
possible components. Then, subsequent components are derived such that
these linear combinations capture the most remaining variability while also
being uncorrelated with all previous PC’s. It is not guaranteed to improve
results, partially because most reduction techniques ignore class labels in
their criteria. This may cause the PCA approach to be misled by high but
non-systematic variance. Partial least squares (PLS) methods are basically
supervised versions of PCA, where the components are in the direction of
the highest covariance with the outcome.

5.5 Penalized Regression

5.5.1 Ridge Regression

The concept of ridge regression was introduced by Hoerl and Kennard[26].
Ridge regression involves constraints on the coefficients. The Ridge solu-
tion is chosen to minimize the penalized sum of squares (Equation 5.1). The
shrinkage penalty λ

∑P
j=1 β

2
j is small when the coefficient values are close

to zero, as the total equation is minimized this has the effect of shrinking
the coefficient estimates towards 0. The value of the tuning parameter λ is
chosen by computing the estimators for a range of λ values and plotting the
results against λ. This continuous process yields statistical models having
coefficients with non-zero estimates for important covariates, while many
coefficients are shrunken towards zero. It doesn’t provide variable selection
as the penalty enforcement does not force coefficients to be exactly zero.

n∑
i=1

(Yi − α−
P∑

j=1

xijβj)
2 + λ

P∑
j=1

β2j (5.1)

Ridge regression is capable of reducing the variability and improving
the accuracy of ordinary least squares models. These gains are the largest
in the presence of multicollinearity.

5.5.2 LASSO

Lasso (Least Absolute Shrinkage and Selection Operator) is similar to ridge
regression in it’s regularization process but in addition it also performs vari-
able selection. It was introduced in 1996 by Tibshirani and is now a widely

5.6. Multinomial Classification 45

used method to generate a compact model for high-dimensional data[47].
Lasso penalizes the sum of the absolute value of the unknown regression
parameters (Equation 5.2). A tuning parameter λ is included as a constraint
in the least-squares estimates. Lasso yields sparse models which only in-
clude a subset of the variables. This causes Lasso to generate better results
than Ridge regression in terms of model interpretation and model size.

n∑
i=1

(Yi − α−
P∑

j=1

xijβj)
2 + λ

P∑
j=1

|βj | (5.2)

5.5.3 Implementation: glmnet

For the implementation of the Ridge and Lasso models I used the glmnet
package for R[24]. The glmnet package uses the elastic net family of penal-
ties: ridge and lasso and hybrids in between and solves the penalized resid-
ual sum of squares. The regularization path for the lasso is computed at a
grid of values for the regularization parameter lambda. It solves the lasso
problem by coordinate descent: optimize each parameter separately, hold-
ing all the others fixed. This cycles around until coefficients stabilize. It
does this on a grid of lambda values, from max to min (uniform on log
scale), using warm starts. Lambda max is now represented by the smallest
value of lambda for which all coefficients are still non-zero. When lambda
min gets close to zero we get close to the unrestricted fit of the model. Glm-
net can repeat the fitting process with a variety of loss functions and addi-
tive penalties.

5.6 Multinomial Classification

We mentioned before that there are some downsides to using regression
predictions to predict categorical class labels. With some adjustments, re-
gression techniques can easily be used for classification. We could perform
a regression for each label, altering the output to 1 for training predictions
that get this label and to 0 if they do not get this label. The result is a lin-
ear expression for the label. Then, given a test example with an unknown
label, we calculate the value of each linear expression and select the one
that is largest. This scheme is known as multi-response linear regression.
Multi-response linear regression often yields good results in practice. But
unfortunately the membership values it produces are not proper probabili-
ties because they can fall outside the range 0 to 1.

A related statistical technique called logistic regression does not suf-
fer from these problems. Logistic regression facilitates linear regression to
model a binary response. The binary response is transformed to a con-
tinues value via a link function. For logistic regression the link function
is the logarithm of the odds ratio between the responses (the log-odds or
logit). The motivation for modeling the log-odds is the outcomes between
[0:1] can directly be interpreted as probabilities. The model parameters are
chosen to maximize the log-likelihood. A threshold can be applied to dis-
cretize the modeled log-odds to class predictions. There are several meth-
ods for solving this maximization problem. A simple one is to iteratively
solve a sequence of weighted least-squares regression problems until the

46 Chapter 5. Predictive Modeling

log-likelihood converges to a maximum, which usually happens in a few
iterations[51].

Several ways have been defined to generalize logistic regression to >2
classes. One possibility is to proceed in the way described above for multi-
response linear regression by performing logistic regression independently
for each class. Unfortunately, the resulting probability estimates will not
sum to 1. To obtain proper probabilities it is necessary to couple the indi-
vidual models for each class. Direct comparison of the classes is replaced
by a set of binary comparisons. This yields a joint optimization problem,
and there are efficient solution methods for this.

Multinomial logistic regression is a generalization approach that assumes
no ordering between the class labels. One of the classes is selected to be the
reference class and the log-odds of all other classes to that reference class
are calculated. These log-odds are then modeled with logistic regression.
The coefficients are iteratively calculated to maximize the log-likelihood.

5.7 Ordinal Classification

The encoding from category 1 to 5 makes it tempting to analyze the ordinal
outcomes with a linear regression model (LRM). But because an ordinal de-
pendent variable carries no metric information it violates the assumptions
of the LRM. Therefore, this approach may lead to incorrect conclusions. It
is more appropriate to use models that avoid the assumption that the dis-
tances between categories are equal.

The ordinal information carried in the discrete classes seem to introduce
two properties[34]:

• Closeness in rank space: the cost for assigning the wrong label de-
pends on the “closeness” of the prediction. Accordingly, most cost
vectors are v-shaped: increasing equally on both sides as one gets fur-
ther from the original class label. This condition can be made stronger
with convex cost vectors: pay increasingly more if the prediction gets
further from the real class.

• Structure in feature space: the total order within the predictor vari-
able and the target function introduces a total order in the feature
space. Compared to nominal classification, the order between class
labels makes that two different class label observations can always be
compared using the defining order relation.

As indicated in Figure 5.2, there are several approaches to ordinal re-
gression problems in the domain of machine learning:

• Naive approaches: make assumptions in order to simplify classifi-
cation tasks into other standard problems. An example is mapping
the labels to real values and then use standard regression techniques.
Other approaches assign different misclassification costs according to
the ordering in the classes to predict. The cost matrix is usually re-
lated to the absolute difference between true and predicted classes.
When more training data is available it is also possible to use nominal
classification, thereby ignoring any ordering information.

5.7. Ordinal Classification 47

FIGURE 5.2: Proposed taxonomy of ordi-
nal regression methods in [25], image source:

http://www.uco.es/grupos/ayrna/index.php/orreview

• Ordinal binary decompositions: decompose the ordinal classifica-
tion task into several binary classification subtasks. This is in a similar
fashion to multi-class classification problems which are decomposed
into a set of binary tasks using One-vs-One or One-vs-All schemes.
Ordering information can be incorporated in these decompositions,
for example by stating that if an observation belongs to category 3 for
example, it also belongs to category 1 and 2.

• Threshold models: are based on the assumption that all ordinal class
labels originate from an unobservable latent variable. A mapping is
generated together with a set of thresholds that divide the projection
into intervals that each represent a class.

There are more complex classifiers such as nonlinear SVM’s or artifi-
cial neural networks which take interactions between features into account.
This corresponds to being able to have a nonlinear decision surface. They
do not always provide a significant advantage in practical performance and
in this study the datasets are too small to learn complicated relationships
between features.

Traditional ordinal response models are usually simpler to interpret than
multinomial models. Multinomial models generate different sets of slope
coefficients for the log-odds of each prediction. Most ordinal response mod-
els assume proportional odds and therefore only have one set of slope co-
efficients regardless of the prediction levels.

An experimental study by Huhn and Hullermeier [28], explores to what
extent existing techniques and learning algorithms for ordinal classification
are able to exploit order information, and which properties of these tech-
niques are important in this regard. They found that learning techniques

48 Chapter 5. Predictive Modeling

specifically designed for ordinal classification are indeed able to exploit or-
der information about classes and that the less flexible the learner is, the
more it benefits from the ordinal structure of the data.

5.7.1 Implementation: ordinalGMFS

The ordinalgmifs R package can fit various ordinal response models when
the number of predictors exceeds the number of observations. It extends the
penalized approach we have seen before for Ridge regression and LASSO
to an ordinal response setting.

The package is based on an adapted version of the Incremental For-
ward Stagewise (IFS) algorithm. IFS can be used to obtain solutions for
LASSO and elastic net penalized models. It is a penalized strategy that en-
forces monotonicity in a regression setting. The adaptation of IFS is called
GMIFS, which is an acronym for Generalized Monotone Incremental For-
ward Stagewise method[6].

The ordinalgmifs function can be used to fit traditional and penalized
cumulative link, forward continuation ratio, and backward continuation
ratio models using either a logit, probit, or complementary log-log link. It
can also be used to fit adjacent category and stereotype logit models. The
ordinal.gmifs function allows the user to specify a model formula, identify
the matrix of covariates to be penalized and specify the model type and link
function.

49

Chapter 6

Experiments

This chapter presents the setup of the experiments. We start by discussing
in what way the experiments provide answers to the research questions.
Next, the set-up of the individual experiments is explained. Section 1.2 of
this report states the goals of this project. The research value of the pro-
posed project is motivated in the current chapter.

6.1 Answering the Research Questions

Once the features are defined and extracted for each program we are able to
continue searching for the answer to our research question. As explained
in Chapter 1, we will guide this process by answering the following sub
questions:

• S1: Are dependency and control flow features better grade indicators
than basic keyword counts ?

• S2: Does the granularity of semantic feature definitions affect the per-
formance of prediction accuracy with respect to human grading?

• S3: Can we improve grading accuracy by modeling the problem with
classification instead of regression?

• S4: What are the most influential source code features for classifying
when classifying a solution program?

Relevant source code features (S4) are determined by the feature selection
step for the predictive models and can be analyzed manually. To determine
if dependency and control flow features add value over basic keyword
counts (S1), we need to check the ratio of these selected advanced features
to the selected basic- and test-case features. The influence of feature gran-
ularity (S2) will be assessed by comparing predictions for five problems
using two feature sets that differ in granularity. The difference in grad-
ing accuracy between classification and regression (S3) can be measured if
we discretize the regression predictions. The experiments to answer these
questions as well as the main research question are described in the rest of
this chapter.

6.2 Research Methodology

We want to test if regression against expert grades can provide better grad-
ing than test-case based grading on its own. We also research if a classifi-
cation approach, which seems to suit the domain, outperforms a regression

50 Chapter 6. Experiments

approach. Experiments will be used to validate the proposed measures.
The experiments will be done on four sets of features:

• Basic Features (B): Basic + Expression Features

• Complete Features (C): B + Control Context Features + Dependency
Features + Dependency Features in Control Context

• Test Case Features (T): The percentage of test-cases passed.

• All Features (CT): C + T

These feature sets make it possible to reason about the main research ques-
tion as well as S1. The two different feature sets needed to answer S2 are
established for five different programs. One feature set follows our feature
definitions whereas the other feature set is generated by Srikant and Ag-
garwal [45]. The differences between these feature sets are highlighted in
chapter four.

Comparison of the performance of different learning algorithms is nec-
essary to find one that suits this task best. Performance comparison of
learning algorithms is done based on grading accuracy relative to manual
grades. Following the GQM template for goal definition by Basili [27] we
can describe the research goal as:

Analyze test-case based and semantic feature based metrics
for the purpose of evaluation

with respect to grade prediction accuracy
from the point of view of the human grader

in the context of professional and student programmers performing an
online programming task.

The independent variables are the counts of feature-occurrences and the de-
pendent variable is the grade. To answer the research question we contrast
the performance of two different treatments: test case features (T) and all
features including test case features (CT). The performance measure is an
experimental estimation of prediction accuracy.

It is important to identify the sources of variation that must be con-
trolled by each experiment. We can distinguish four important sources of
variation:

• Random variation in the selection of the test data that is used to eval-
uate learning algorithms. On any particular randomly drawn test
data set one classifier may outperform another even though on the
whole population the two classifiers would perform identically. This
is a particularly pressing problem for small test data sets.

• The second source of random variation results from the selection of
the training data. On any particular randomly drawn training set one
algorithm may outperform another even though, on the average, the
two algorithms have the same accuracy. Even small changes to the
training set (such as adding or deleting a few data points) may cause
large changes in the classifier produced by a learning algorithm.

6.2. Research Methodology 51

• A third source of variance can be internal randomness in the learn-
ing algorithm. When an algorithm is initialized with a set of random
weights on which it then improves, the resulting learned weights de-
pend critically on the random starting state. In this case, even if the
training data are not changed, the algorithm is likely to produce a
different hypothesis if it is executed again from a different random
starting state.

• The last source of random variation we address is random classifi-
cation error. If a fixed fraction of the test data points is randomly
mislabeled, the learning algorithm can achieve an error rate of less
than this fraction.

To account for test data variation and the possibility of random classi-
fication error, the statistical procedure must consider the size of the test set
and the consequences of changes in it. To account for training data varia-
tion and internal randomness the learning algorithm will be trained mul-
tiple times on different training sets. The variation in accuracy of the re-
sulting classifiers is an indicator of the influence of training data variation.
Whether we have to take into account internal randomness will depend on
the chosen learning algorithm.

The main hypothesis can be defined as:

• H0: For a randomly drawn training set R of fixed size, learning al-
gorithms based on test-case features or semantic- and test-case fea-
tures will have the same error rate on a randomly drawn unseen test
example, where all random draws are made according to the dataset
distribution.

• HA: For a randomly drawn training set R of fixed size, learning algo-
rithms based on test-case features or semantic- and test-case features
will not have the same error rate on a randomly drawn unseen test
example, where all random draws are made according to the dataset
distribution.

The two obvious goals are:

• Model selection: estimating the performance of different models in
order to choose the best one.

• Model assessment: having chosen a final model, estimate its predic-
tion error (generalization error) on new data. Unfortunately I do not
posses enough labeled data to estimate prediction error on a separate
validation set. To obtain an indication of the generalization error I
will apply cross-validation.

A third goal, introduced in S3 is:

• Learning method selection: determine whether the estimated perfor-
mance of regression models differs from the estimated performance
of classification models. Comparing classification estimates (discrete)
vs. regression estimates (continuous) is not completely straightfor-
ward. One approach would be to discretize the continuous regression
outcomes to classification categories.

52

Chapter 7

Results

This chapter provides an overview and discussion of the experiment re-
sults. The first section discusses the feature granularity experiment results.
The second part of this chapter is focused on the results of the different
modeling approaches for the Fish task. Insights in the most important fea-
tures are discussed for every model.

7.1 Impact of Feature Granularity

To investigate the influence of different feature generation rules I analyzed
the five problems in the dataset from Aspiring Minds using Ridge and
Lasso models. In the work of Aggarwal and Srikant the predictive power
of ridge models is assessed with the correlation coefficient of the predicted
regression grades and the original ordinal label[45]. To clarify what this
entails, I follow the same approach when assessing models based on the
Aspiring Mind feature set and our own feature set generated by the JFEX
program.

FIGURE 7.1: Averaged results based on one hundred 10-
fold cross validation runs.

Figure 7.1 reports the correlation values for the train and test sets as well
as the standard deviations for all five problems. The left-hand side of the

7.1. Impact of Feature Granularity 53

tables show the results of the Aspiring Minds (AM) features, the right-hand
side reports the results of the JFEX featuers. The cross validation approach
used on the training set uses random folds which may introduce some vari-
ance in the resulting λ parameter estimate. To reduce this effect the reported
results are the average of 100 models for which the lambda parameter was
determined through cross validation on the training set. The r values seem
to indicate that the different feature sets have roughly the same predictive
power.

To ensure that the quality of the predictions reflects the influence of the
feature set there are no test-case results included in the models in the up-
per table. The bottom results were generated by models that used all fea-
tures and the test cases cores. There is no substantial increase in perfor-
mance gained from the test case scores. The test r reported by Aggarwal
and Srikant for Ridge regression models using all features but no test case
scores ranges from 0.56 to 0.90, which is comparable to the 0.61-0.88 range
reported in Fig. 7.1. The question is what information we gain from these
results. A linear correlation between the predicted and the true grade is
certainly expected in good predictions. But different datasets can have the
same r, of which the most straightforward example is when two datasets
differ by a constant value for each observation.

It does not seem natural to assess the correlation between quantitative
predictions and ordinal labels. What is the correct interpretation of a pre-
dicted score of 2.734? Is it grade category 2 or 3? There is no correct answer
to this question as ordinal levels contain no distance metrics. One could
pick a threshold at any arbitrary point between two and three. A more
guided approach used by Aggarwal and Srikant is to determine the thresh-
olds by approximating the grade distribution in the training set as close
as possible. However, as the test set is selected taking care that the grade
distribution remains equal this approach might contribute to overfitting.

Overfitting is very well disguised by the reported r values. There are
over a factor hundred more variables than observations in the datasets.
Many of these variables uniquely belong to one or two single solutions.
Fitting a model with so many variables to a small training set is not very
hard: it can easily account for all variance.

A commonly used measure to gain some more insight in the differences
between the predicted and observed values is the root-mean-square error
(RMSE). The RMSD (Equation 7.1) represents the sample standard devia-
tion of the prediction errors.

RMSE =

√√√√ 1

n

[
n∑

i=1

(Ŷi − Yi)
2

]
(7.1)

Fig. 7.2 on the next page reports the RMSE for the models whose correla-
tions are depicted in Fig. 7.1. The RMSE values of the two different feature
sets do not display severe diversions. There is no indication that the two
feature sets differ substantially in their potential predictive power. In fact,
both feature sets are not able to produce very accurate results: the RMSE’s
on the test sets range between 0.95 and 1.35 (on a five point grading scale).

54 Chapter 7. Results

FIGURE 7.2: Averaged results based on one hundred 10-
fold cross validation runs.

7.1.1 Most Important Predictors

We have discussed the results of the predictions on the AM dataset pro-
duced by Ridge regression. Modeling the grades with LASSO did not yield
any improvements. However, LASSO has a big advantage over Ridge re-
gression in terms of model interpretability. We will now inspect the pre-
dictors with non-zero coefficient values in the LASSO models as this may
provide more insight into the consequences of the feature differences.

For the TM problem, the AM set has a lower train RMSE but as Fig 7.3
on the next page indicates, it uses more predictors to obtain this result. This
seems to be a case of overfitting as the test RMSE is not as good. For the
PP problem we see the same pattern, but now for the JFEX features. For the
IT problem JFEX uses 31 features versus only only an intercept on the AM
dataset. Many of the selected features in the JFEX model have a context that
refers to a specific for-condition expression, something that is not captured
by the AM dataset.

For the EV problem we see that some code properties are captured by
AM features but not by JFEX features. This results in a higher accuracy for
the AM features. For both problems sets the most contributing feature is
a Basic feature for the string "bcdfgh". This constant is used in hard coded
solutions that return a string with the vowels removed by hand. This is
not scalable to other inputs and explains the big negative coefficient value.
The selected AM coefficients also contain an expression dependency feature
that states that a variable and one function call are dependent on an input
parameter. Most of the assignments with this particular feature declared a
variable to refer to input.size() or input.toCharArrary(). These code properties
are captured by more specific features in JFEX, which are not selected in the
model. Instead, a number of basic features that describe constants or simple
expressions are selected.

7.2. Supervised Modeling 55

FIGURE 7.3: Number of non-zero coefficients in the LASSO
models for the Aspiring Minds problems.

7.2 Supervised Modeling

This section discusses the results of predicting the manually assigned grades
of the Codility Fish task. First the division of the data into a training and test
set is motivated. Next, the performance of multiple modeling approaches
is discussed.

7.2.1 Train-Test Split

The overall grade distribution is as follows:

• Grade 1: 6%

• Grade 2: 35%

• Grade 3: 20%

• Grade 4: 16%

• Grade 5: 23%

The data is divided into two random subsets, ensuring the grade distribu-
tions in both sets to remain equal. The distribution of the grades has two
outlier classes: grade category 2 dominates the dataset whereas grade cate-
gory 1 is significantly smaller than the other grade categories. The training
set holds 154 (67%) of the observations and the test set contains 76 observa-
tions (33%).

7.2.2 Regression Models

The results for two penalized regression approaches are shown in Fig. 7.4.
Top-down the results are displayed for the four different feature sets: all
features without test cases, all features including test cases, only the basic
features without test cases and only test case results. The standard devi-
ations are omitted because they amounted to 0.00 rounded at two digits.
Such small deviances are not of interest for grade prediction on a scale of
1 to 5. The LASSO and Ridge model performance is comparable. How-
ever, for the complete feature set including test cases LASSO clearly out-
performs Ridge regression on the test set. In addition, the LASSO models
provide a better interpretation of the predictors. Therefore we will focus on
the LASSO model properties.

56 Chapter 7. Results

FIGURE 7.4: Averaged results based on one hundred 10-
fold cross validation runs.

All features without test cases achieve an average test RMSE of 1.25.
This can be regarded as a high error, especially when compared to the error
of 0.75 from test case predictions only. Combined, the features together
with the test case results produce an average test error of 0.73. Is there
information captured by the additional features that could no be caught by
test cases alone? Fig. 7.6 shows prediction plots that may help answer this
question.

The first plot for all features without test cases is clearly less precise than
the two plots that include test case results. The distinction between test
case only and all features combined with test cases is less obvious. When
features are added to the test case results we see that the prediction range
widens from 1.35-4.22 to a more accurate 1.12-4.90. The predicted values for
each grade categories also become more clustered towards their true values.
For grade category 5 , the prediction range is now 3.73-4.90 instead of 4.22
for every prediction based on test cases only. Even though the range has
become wider for category 5, the average prediction error has gone down
from 0.79 to 0.75.

The included predictors from the features without test cases are:

FIGURE 7.5: LASSO non-zero coefficient values for all fea-
tures without test case scores.

The most influential predictor is a Dependency feature for 2 local vari-
ables and a parameter variable with a less than operator, that is dependent
on a local variable post increment. This feature occurred in four solutions
in the dataset, and all have been assigned grade 1. The feature can be inter-
preted as follows. A for loop traverses all fishes in the river. The if statement

7.2. Supervised Modeling 57

handles a fish going up or down, and the nest if statement says that if the
size of some local variable indicates that a fish is smaller than the current
fish, a fight is triggered. This only handles the first fight, and is not accus-
tomed to the fact that either of the fishes may win and has to fight again.
Combined with other errors, the solutions that contained this approach did
not produce an algorithm able to handle all situations, and hence they were
assigned grade 1.

The same feature is also selected including context. Positive predictors
are related to data structures: Stack and push procedures. A while loop
is also recognized to be a positive contributor, which makes sense because
while a fish is alive it might encounter different enemies. The other positive
coefficient describes a dependency of the addition of a method call to size()
on a local variable assignment. It occurs 17 times in the dataset. Almost
all occurrences have grade 4 or 5, one solution has grade 2 and one has
grade 3. It turns out that all of the solutions with these feature use a stack
based approach, adding the number of alive fishes on stack (.size() call) to
a counter of alive fishes. However, the two solutions that scored below 4
have some very specific problems with the usage of the stack. The other
predictors have a very small influence on the predicted score.

The model based on the basic features has an intercept of 3.20 and one
non-zero coefficient of -0.08 for the basic feature that describes a "not equal
to" operator. This basic features occurs in 69 solutions of which the majority
has a grade below 4. However, plenty of the solutions with this feature
have received grade 4 or 5. Which is not surprising as this basic feature can
be applied in many contexts, and on its own is not expressive enough to
capture the context properties.

The test case only model has an intercept of 2.41 and 10 non-zero coef-
ficients. Two of these are very close to zero. Out of the other eight, the test
case features "Medium Random Wrong Answer" with -0.43 and "Large Ran-
dom Wrong Answer" with -0.53 are the most influential predictors. Wrong
answers and timeout errors for five other test cases are also negative con-
tributors. "Small Random Wrong Answer" is a positive contributor with
coefficient value 0.19 which is odd. This may have been the best fit to the
training set to balance the other negative predictors.

When all features are added to the test cases this results in 61 predictors
and an intercept of 2.31. Only four test cases predictors are left, which are all
"Wrong Answer" results for test cases with a negative coefficient value. The
other non-zero coefficients belong to features are from all categories. While
and stack related features are amongst the most positive predictors and the
feature of line 7 from Fig. 7.5 is once again amongst the more influential
negative contributors.

58 Chapter 7. Results

FIGURE 7.6: Predicted vs. True grades.

7.2. Supervised Modeling 59

7.2.3 Multinomial Classification

Fig. 7.7 reports the multinomial classification results. Errors of type 2 should
be avoided at all costs, as they indicate a misclassification from grade 4 or 5
to 1,2, or 3 (and vice versa). The highest accuracy and lowest type 2 error is
achieved by test cases only. The various levels of feature selection based on
between-predictor correlation and occurrences in the dataset did not yield
any improvements over the feature-ratio filtered feature set. The bottom
table shows the results of the feature sets that are filtered by removing all
solutions that occurred in less than 76 solutions and removing all predictors
that have a correlation above 0.90 with other predictors.

It seems as if the feature selection has a positive impact on the prediction
accuracy of all features combined with the test cases. However, the features
are reduced from 2.493 to 53 predictors. So the increase in performance is
more likely to be attributed to the accuracy of the test cases only, which is
now no longer interfered by the features. Inspection of the model predictors
supports this assumption as more test cases were included and they have
bigger absolute coefficient values.

FIGURE 7.7: Prediction accuracy for multinomial models.
Error type 1 indicates a misclassification between 1,2 and 3
or between 4 and 5. Error type two indicates a misclassifi-

cation between these two grade sets.

An interesting observation for the multinomial model predictors is that
for each grade category, the features only set provides less non-zero pre-
dictors than the feature set that includes all features as well as test cases.
When test cases are removed the basic features become the most dominant
features. This can be explained by basic features being far less sparse than
advanced features. However, basic features on their own are unreliable
quality predictors. All basic features seem to have occurrences both in high
and low graded solutions. I tried removing all basic features to leave only
the advanced features, as the basic features might be preventing the sparser
advanced features from being selected. After all, every advanced features is
"shielded" by one or more basic features that refer to the same code expres-
sion. Removing the basic features yielded a slight performance increase,
but is still outperformed by predictions based on test-cases only. Advanced
features on their own did not provide enough information for a multino-
mial model to converge.

60 Chapter 7. Results

7.2.4 Binomial Classification

Since type 2 errors outweigh type 1 error in our application, we consider
using a binomial model. Important information about specific grade levels
gets lost, but when this yields an increase in accuracy and a significant drop
in type 2 errors it may be worthwhile. All grades 4 and 5 are transformed
to have value 1, and grades 1,2, and 3 to value 0. As a consequence, a
prediction is either correct or a type 2 error. Fig. 7.8 reports the differences
in type 2 errors obtained by binomial and multinomial models.

FIGURE 7.8: Type 2 errors obtained by binomial and multi-
nomial models.

The binomial model for all features including test case results contains
55 non-zero predictors: 5 test case results and 50 features. The features
are from all categories but the majority belongs to the basic features. Un-
fortunately, removing the basic features does not yield an increase in per-
formance. The same test case predictors are still the most important non-
zero coefficients. At the moment, models based solely on test case features
achieve the highest accuracy. Personally, I feel that the small drop of 2

7.2.5 Ordinal Classification

Until now the reviewed modeling approaches did not show any increase
in accuracy over test case predictions by adding the semantic features. In a
final attempt to discover their predictive power we resort to ordinal models.
The ordinal modeling approach achieved the following accuracy on the test
set:

• features only: correct: 78% , error 1: 12%, error 2: 10%.

• all features + test case: correct: 79%, error 1: 14%, error 2: 7%.

Accuracy on the training set was 100% for all features including test case
results, and there was 1 misclassification for the features without test case
results. The solution was predicted to have grade 5 while it should have
been grade 4. It was a correct solution but it used lists to function as stacks,
removing and adding from the front of the list. This is not computationally
efficient and causes a time-out error in the larger test-cases. However, the
model based on features only was not able to learn the difference between
two correct algorithms where one uses a stack and the other a list, as there
were very few occurrences of this event in our dataset.

There was no convergence for test cases only and advanced or basic fea-
tures only. The accuracy of 100% on the training set is comparable to the
reports resulted by the authors of the algorithm[6].The ordinal model tries

7.2. Supervised Modeling 61

to exploit features that are monotonically associated with the ordinal re-
sponse. Fig. 7.9 depicts the grade correlations for all features in the feature-
ratio filtered set. We see that the correlations are centered around 0, and
have a small range from -0.27 to 0.30. As we may expect from these low
correlation values, inspection of the individual features shows that there
is no feature that has a noteworthy monotone relationship to the grade all
by itself. If there were, this would have been very remarkable due to the
nature of the features.

It is very unlikely that here is a code construct that doesn’t decrease code
quality at some point when the code construct occurrence starts increasing.
I suspect the features to have a monotone relationship with the grades in
the following way: for a certain group of features, the lower the value of
the combined features, the lower the grade.

FIGURE 7.9: Grade correlation for all features in the
Feature-Ratio filtered set.

62

Chapter 8

Conclusion

In this study I have explored the influence of Java code features on the pre-
diction accuracy of manual grades. A feature derivation program has been
developed which has been used to tag 230 solutions to a Java programming
task. These solutions have been manually graded following a tailored grad-
ing approach. The grading rubric has been designed to mimic real world
applications and does not take the feature properties into account. I was
interested to see if the features would be able to capture specific grading
information that seems to be impossible to capture with test cases alone.

8.1 Answering the Research Questions

The key aspects of this research have been the definition of the features, the
exploration of applicability to a more solution oriented grading style and
finally the analysis of a classification approach versus regression analysis.
The main research question I aspired to answer is: can we improve auto-
mated test case based grading of programming assignments with semantic
source code features? To provide a sensible answer to this question several
subquestions have been defined.

The first question asked if dependency and control flow features have
more predictive power than basic keyword counts. The results of section 7.1
indicate that the performance of basic features is definitely improved by the
more advanced features The advanced features have shown promising re-
sults in the multinomial model. However, the other modeling approaches
required the addition of the basic features in order to reach convergence.
My hypothesis is that this has to do with the sparsity of the advanced fea-
tures.

The second question that was answered is if the granularity of the fea-
ture definitions affects the performance with respect to human grading.
Section 4.2.6 of this thesis discussed the main differences of our features
compared to the proposed features by Aggarwal and Srikant[45]. Note-
worthy to mention is that JFEX defines more detailed expression features.
This causes our advanced features to become even sparser, and may have a
negative influence on feature based predictions for our small dataset. I do
not believe that the solution to this issue is to dumb down the features as
this would decrease their ability to capture minor deviations from a correct
solution.

8.2. Future Research 63

The last question considers if the problem benefits from classification
modeling instead of a regression approach. Binomial, multinomial and or-
dinal models for high-dimensional data have been considered and com-
pared with Ridge and LASSO regression models. Figure 4.3 (page 30) indi-
cated that simple test case predictions have a grade accuracy of 49%. Multi-
nomial modeling increased the test case accuracy to 67%, this couldn’t be
improved with the addition of feature predictors. But for an ordinal model
setting the features outperformed this score and achieved a prediction ac-
curacy of 78%. This was further improved by adding test case information,
which dropped the type 2 error from 10% to 7%.

To conclude, this work has not provided significant proof that auto-
mated test case based grading can be improved with semantic source code
features. However, it did demonstrate some encouraging evidence that
shows the features have the capacity to improve test case accuracy. A sub-
set of the selected features seemed highly relevant to the problem at hand.
Classification modeling with attention for the ordinal ordering between the
grade levels presented itself as the best candidate to realize the potential of
the features.

8.2 Future Research

The definition of the features is one of the aspects that could benefit from
further research. Performing several steps of code normalization before
generating the features may increase the expressiveness of the features.
Clustering the features also seems a fertile future direction. Especially as
the number of features grows with the number of analyzed solutions. When
3800 Fish tasks were given as input to JFEX, it found over 22.000 unique
code features. This is hardly scalable.

Aggarwal and Srikant have chosen to tackle this problem with feature
transformation in their newest work[44]. A distance function is used to
calculate the distance in the feature space from a solution to a set of good
solutions. The downside of this approach is that the expressiveness of the
features gets completely lost in at most one number per feature category. A
promising direction for new research is to research a scalable distance met-
ric between feature representations of solutions, that is still able to capture
very small deviations. Perhaps some work in the area of feature clustering
can provide a good start.

Another option would be to redefine the features in such a way that less
features are needed to capture the same amount of information. If a non-
linear modeling approach is used features can be made more interactive. So
instead of "2 variables and an assignment operator" and "3 variables and an
assignment operator" being two different features, they could both be in-
stances of the same feature but with different values plugged in. Obviously
this is not as straight forward when multiple constructs start to play a role
in the feature. Defining the interaction between the feature components
would have to be one of the first things to be considered.

Building upon this research it may also be exciting to utilize the pro-
gram transformation functionality that is offered by Spoon. I expect a pro-
gram with a minor deviation from a good solution to perform well on the

64 Chapter 8. Conclusion

test cases if this minor deviation is transformed to correct constructs. Ap-
plying code transformation based on the features can also provide a way
to distinguish less important features from the relevant ones, by measuring
the effect of the transformation on the test case performance.

65

Appendix A

Appendix: Grade Indicators

TABLE A.1: Fish Grade Indicators

Grade Code Description

1 CWL Completely Wrong Logic: A combination of many CAT2
mistakes, that are combined in completely wrong logic. As
a consequence, these mistakes cannot be categorized in iso-
lation as a CAT2 and the code results in CAT 1.

1 ICL Incomplete logic: the right set-up is there but it is not com-
plete enough to compete with CAT2 efforts.

1 MAS Missing Algorithm Structure: even though the right datas-
tructures might be present there is not a decent structure in
the algorithm to solve the problem at least partially or with
some good first steps.

1 Too many CAT2 or other violations of which the combina-
tion cannot compete with the regular type2 errors.

2 CD Casual death: a fish following a fish in the same direction
is not registerd on the live stack.

2 DW Dead Winner.
2 FO Fish Order, for example when an upstream fish is compared

against the highest downstream fish instead of the lowest
(the one right above), or when a fish fights enemies even
when there are predecessors that should fight first.

2 FU Fishes Upstream: example: for a downstream fish it consid-
ers upstream swimming fishes both below and above the
fish. While those above are never encountered.

66 Appendix A. Appendix: Grade Indicators

TABLE A.2: Fish Grade Indicators

Grade Code Description

2 LE Logical Error.
2 OFE Only First Enemy: checks to see the first encountered fish

but when we eat it we forget to check for the next encoun-
tered fish.

2 OFF Only First Fish: checks for a contrarian fish when found it
stops never checking for others.

2 SDE Same Direction Enemy: treat fishes going in the same direc-
tion as you as enemies .

2 WD Walking Dead: fishes stay alive that should be killed (for
example when only checken on stack enemies if they are
smaller and not if they are bigger and kill us).

2 WP Wrong Push: Pushes the wrong fishes on stack based on
invalid criteria.

3 1WC One wrong condidition wrecking the algorithm, if it would
have been the correct condition the algorithm was good.

3 BSF Big sized fish (size above 9) cause problems.
3 CT Cubic time.
3 DC, WLTW Dead code and Wrong logic that works: when entire logic

algorithm steps are wrong, but the algortihm executes cor-
rectly because the wrong algorithmic parts are dead code
this is a severe mistake resulting in level 2. It shows a mis-
understanding of the assignment as well as little insight in
ones own code.

3 ER Early Return: correct algorithm but it doesn’t completely
execute because of an early return that’s not supposed to
be there.

3 ESERRORCM Empty stack error may occur Covering Mistake: there is no
case for when a fish encounters an empty stack. If there was
the algoritm would be perfect.

3 MB Missing Break: a certain clause misses a break statement
which would have solved the issue.

3 ORP Object Reference Problem: forgetting to return an object
from a helper method.

3 PP Pop - Peek problem (treating pop action as if it was a Peek).
3 PPE Pop - Peek problem (treating pop action as if it was a Peek):

Edge case. Manually fixes the PP by pushing back fishes if
necessary but doesn’t handle the edge cases properly (the
last fish, that leaves behind an empty stack when popped).

3 QT Quadratic Time: If algorithm correct no higher than CAT 3
can be achieved (also goes for complexities between O(n)
and quadratic.

3 ZSF Zero sized fishes cause problems.
3 1SF One sized fishes cause problems (uses size 1 to indicate

dead fishes).

Appendix A. Appendix: Grade Indicators 67

TABLE A.3: Fish Grade Indicators

Grade Code Description

4 BR Break Reach: assuming a break will break the outer loop
without a label , otherwise algorithm would be correct.

4 DSTO Data structure time out.
4 DC Dead code: silly mistake resulting in a level 4. But when

hiding bad logic is may result in CAT 2 (see dc - wltw).
4 ESE Empty stack error may occur because a defined nullcheck

doesn’t cover every stackcall.
4 II Index Issue: usually when people simulate a stack with

lists, and update the pointer by hand there might occur an
index out of bounds issue. Which if it would be caught
leaves a perfect algorithm. Also defined an index issue for
an algorithm that timed out on the front of list and when
updated to use back of list as stack top person forgot to
change one index definition from 0 to list.size-1.

4 L1 Lists of size one are caught and returned with 0 survivors.
Actual algorithm that is not reached without this catch
would have treated it right.

4 LI1 loop instantiation 1: starts from second fish without possi-
bly pushing first fish.

4 OM Operator Mistake: for example greater than instead of
greater or equal than.

4 OR Operator Reach: for example a NOT operator that reaches
the whole expression while it was supposed to enclose the
first argument.

4 SOE Stack overflow error for special cases due to bad recursion-
call.

4 UC Unnecessary Complicated: i do not think it’s right to award
full credits for these solutions as they are just bad solutions
that, although they deliver the right behavior, need to be
distinguished from truely good ones.

4 UPDOWN Up and down are switched, otherwise algorithm would be
ok.

4 WA Wrong array, mistakenly switch an A-B array read or index-
value read.

4 WLO Wrong List Operation: push /add mix-up.
4 WSO Stack.firstElement retrieves the bottom of the stack should

be stack.pop() then algorithm would be perfect.

5 Sysout Perfect algorithm but Sysout causes time-outs: it is still
worth a 5.

68

References

[1] Beth Adelson and Elliot Soloway. “The role of domain expenence
in software design”. In: Software Engineering, IEEE Transactions on 11
(1985), pp. 1351–1360.

[2] Kirsti M. Ala-Mutka. “A survey of automated assessment approaches
for programming assignments”. In: Computer science education 15.2
(2005), pp. 83–102.

[3] Arif Altun and Sacide Guzin Mazman. “Identifying latent patterns in
undergraduate Students’ programming profiles”. In: Smart Learning
Environments 2.1 (2015), pp. 1–16.

[4] John R. Anderson. “Acquisition of cognitive skill.” In: Psychological
review 89.4 (1982), p. 369.

[5] John R. Anderson, Frederick G. Conrad, and Albert T. Corbett. “Skill
acquisition and the LISP tutor”. In: Cognitive Science 13.4 (1989), pp. 467–
505.

[6] Kellie J. Archer et al. “ordinalgmifs: An R package for ordinal re-
gression in high-dimensional data settings”. In: Cancer informatics 13
(2014), p. 187.

[7] Luciano Baresi, Pier Luca Lanzi, and Matteo Miraz. “Testful: an evo-
lutionary test approach for Java”. In: Software testing, verification and
validation (ICST), 2010 third international conference on. IEEE, 2010, pp. 185–
194.

[8] Karl Bell. Automated Student Code Assessment with Symbolic Execution
and Java PathFinder. 2012.

[9] Gunnar R. Bergersen, Dag Sjoberg, and Tore Dyba. “Construction and
validation of an instrument for measuring programming skill”. In:
Software Engineering, IEEE Transactions on 40.12 (2014), pp. 1163–1184.

[10] Richard Bornat and Saeed Dehnadi. “Mental models, consistency and
programming aptitude”. In: Proceedings of the tenth conference on Aus-
tralasian computing education-Volume 78. Australian Computer Society,
Inc., 2008, pp. 53–61.

[11] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. “Ko-
rat: Automated testing based on Java predicates”. In: ACM SIGSOFT
Software Engineering Notes. Vol. 27. ACM, 2002. Chap. 4, pp. 123–133.

[12] John P. Campbell et al. “A theory of performance”. In: Personnel selec-
tion in organizations 3570 (1993), pp. 35–70.

[13] Yoonsik Cheon and Carmen Avila. “Automating Java program test-
ing using OCL and AspectJ”. In: Information Technology: New Gen-
erations (ITNG), 2010 Seventh International Conference on. IEEE, 2010,
pp. 1020–1025.

REFERENCES 69

[14] Yoonsik Cheon and Carmen Avila. “Automating Java program test-
ing using OCL and AspectJ”. In: Information Technology: New Gen-
erations (ITNG), 2010 Seventh International Conference on. IEEE, 2010,
pp. 1020–1025.

[15] D. Crookes. Educators call for reform in how programming is taught in
schools. 2013.

[16] Lauren Csorny. “Careers in the growing field of information technol-
ogy services”. In: Beyond the numbers 2.9 (2013).

[17] Saeed Dehnadi and Richard Bornat. “The camel has two humps (work-
ing title)”. In: (2006).

[18] Christopher Douce, David Livingstone, and James Orwell. “Auto-
matic test-based assessment of programming: A review”. In: Journal
on Educational Resources in Computing (JERIC) 5.3 (2005), p. 4.

[19] Thomas Dvornik et al. “Supporting introductory test-driven labs with
WebIDE”. In: Software Engineering Education and Training (CSEEandT),
2011 24th IEEE-CS Conference on. IEEE, 2011, pp. 51–60.

[20] Stephen H. Edwards and Manuel A. Perez-Quinones. “Web-CAT: au-
tomatically grading programming assignments”. In: ACM SIGCSE
Bulletin. Vol. 40. ACM, 2008. Chap. 3, pp. 328–328.

[21] Michal Forišek. “On the suitability of programming tasks for auto-
mated evaluation”. In: Informatics in Education-An International Journal
Vol 51 (2006), pp. 63–76.

[22] Logo Foundation. 2015.

[23] Gordon Fraser and Andrea Arcuri. “Evosuite: automatic test suite
generation for object-oriented software”. In: Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foun-
dations of software engineering. ACM, 2011, pp. 416–419.

[24] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “glmnet: Lasso
and elastic-net regularized generalized linear models”. In: R package
version 1 (2009).

[25] Pedro Antonio Gutiérrez et al. “Ordinal regression methods: survey
and experimental study”. In: IEEE Transactions on Knowledge and Data
Engineering 28.1 (2016), pp. 127–146.

[26] Arthur E. Hoerl and Robert W. Kennard. “Ridge regression: Biased
estimation for nonorthogonal problems”. In: Technometrics 12.1 (1970),
pp. 55–67.

[27] Mahfuzul Huda, Yagya Dutt Sharma Arya, and Mahmoodul Hasan
Khan. “Metric Based Testability Estimation Model for Object Oriented
Design: Quality Perspective”. In: Journal of Software Engineering and
Applications 8.04 (2015), p. 234.

[28] Jens C. Huhn and Eyke Hullermeier. “Is an ordinal class structure
useful in classifier learning?” In: International Journal of Data Mining,
Modelling and Management 1.1 (2008), pp. 45–67.

[29] Petri Ihantola et al. “Review of recent systems for automatic assess-
ment of programming assignments”. In: Proceedings of the 10th Koli
Calling International Conference on Computing Education Research. ACM,
2010, pp. 86–93.

70 REFERENCES

[30] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. “Towards a Sys-
tematic Review of Automated Feedback Generation for Programming
Exercises–Extended Version”. In: (2016).

[31] Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer,
2013.

[32] Andrew S. Lan et al. “Mathematical Language Processing: Automatic
Grading and Feedback for Open Response Mathematical Questions”.
In: arXiv preprint arXiv:1501.04346 (2015).

[33] Jinrong Li et al. “Design and implementation of semantic matching
based automatic scoring system for C programming language”. In:
Entertainment for Education. Digital Techniques and Systems. Springer,
2010, pp. 247–257.

[34] Hsuan-Tien Lin. In: From ordinal ranking to binary classification (2008).

[35] Thomas J. McCabe. “A complexity measure”. In: Software Engineering,
IEEE Transactions on 4 (1976), pp. 308–320.

[36] Kevin Alexander Naudé. In: Assessing program code through static struc-
tural similarity (2007).

[37] Carlos Pacheco and Michael D. Ernst. “Randoop: feedback-directed
random testing for Java”. In: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications com-
panion. ACM, 2007, pp. 815–816.

[38] Renaud Pawlak. “Spoon: Compile-time annotation processing for mid-
dleware”. In: IEEE Distributed Systems Online 7.11 (2006), p. 1.

[39] Renaud Pawlak et al. “SPOON: A library for implementing analyses
and transformations of Java source code”. In: Software: Practice and
Experience (2015).

[40] Nancy Pennington and Beatrice Grabowski. “The tasks of program-
ming”. In: Hoc et al 307 (1990), pp. 45–62.

[41] Michael J. Rees. “Automatic assessment aids for Pascal programs”.
In: ACM Sigplan Notices 17.10 (1982), pp. 33–42.

[42] Forrest J. Shull et al. “The role of replications in empirical software
engineering”. In: Empirical Software Engineering 13.2 (2008), pp. 211–
218.

[43] Fabio QB Da Silva et al. “Replication of empirical studies in software
engineering research: a systematic mapping study”. In: Empirical Soft-
ware Engineering 19.3 (2014), pp. 501–557.

[44] Gursimran Singh, Shashank Srikant, and Varun Aggarwal. “Question
Independent Grading using Machine Learning: The Case of Com-
puter Program Grading”. In: ().

[45] Shashank Srikant and Varun Aggarwal. “A system to grade computer
programming skills using machine learning”. In: Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2014, pp. 1887–1896.

[46] Michael Striewe and Michael Goedicke. “A Review of Static Analysis
Approaches for Programming Exercises”. In: Computer Assisted As-
sessment. Research into E-Assessment. Springer, 2014, pp. 100–113.

REFERENCES 71

[47] Robert Tibshirani. “Regression shrinkage and selection via the lasso”.
In: Journal of the Royal Statistical Society.Series B (Methodological) (1996),
pp. 267–288.

[48] Hannes Tribus, Irene Morrigl, and Stefan Axelsson. “Using Data Min-
ing for Static Code Analysis of C”. In: Advanced Data Mining and
Applications. Springer, 2012, pp. 603–614.

[49] Tiantian Wang et al. “Semantic similarity-based grading of student
programs”. In: Information and Software Technology 49.2 (2007), pp. 99–
107.

[50] Christopher Watson and Frederick WB Li. “Failure rates in introduc-
tory programming revisited”. In: Proceedings of the 2014 conference on
Innovation and technology in computer science education. ACM, 2014,
pp. 39–44.

[51] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[52] Songwen Xu and Yam San Chee. “Transformation-based diagnosis of
student programs for programming tutoring systems”. In: Software
Engineering, IEEE Transactions on 29.4 (2003), pp. 360–384.

[53] Brad Vander Zanden and Michael W. Berry. “Improving automatic
code assessment”. In: Journal of Computing Sciences in Colleges 29.2
(2013), pp. 162–168.

	Introduction
	Origin
	Collaboration
	Sogeti
	Codility
	Aspiring Minds

	Motivation
	Research Goals
	Research Questions
	Research Relevance

	Related Work
	Programming Skill Assessment
	Early Work
	Recent Work

	Automated Program Assessment
	Dynamic Assessment
	Static Assessment

	Programming Tutoring Systems
	Unsupervised Grade Modeling
	One Size Fits All?

	Application: Feature Derivation
	Program Features
	Feature Definitions
	Feature Examples
	Spoon Code Analysis
	Querying Source Code Elements
	Processing Source Code Elements
	Source Code Transformation

	Data
	Codility Dataset
	Fish
	Automated Scoring: Test-Cases
	Grading Criteria
	Data Analysis

	Aspiring Minds Dataset
	EliminateVowel
	IsTree
	PatternPrint
	GrayCheck
	TransposeMatrix
	Feature Granularity Comparison
	Concrete Differences

	Predictive Modeling
	Learning Setting
	Data Preprocessing
	Feature Selection
	Filtering near-zero Variance Predictors
	Between-Predictor Correlations

	Feature Extraction
	Penalized Regression
	Ridge Regression
	LASSO
	Implementation: glmnet

	Multinomial Classification
	Ordinal Classification
	Implementation: ordinalGMFS

	Experiments
	Answering the Research Questions
	Research Methodology

	Results
	Impact of Feature Granularity
	Most Important Predictors

	Supervised Modeling
	Train-Test Split
	Regression Models
	Multinomial Classification
	Binomial Classification
	Ordinal Classification

	Conclusion
	Answering the Research Questions
	Future Research

	Appendix: Grade Indicators

