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When implementing spiking neural networks into agents acting in virtual environ-
ments, there often exist an underlying problem of incongruity between the level of de-
tail in the (biological) neural model and the agent’s environment, resulting in excessive
network iterations required for functional behavior. This thesis aims to explore a new
spiking neural model specifically made to address this issue, and will be assessed by its
similarity to biological neurons, its cost in computation, and finally its behavioral capa-
bilities when acting as a controller for a virtual creature. The results show that our new
spiking model is significantly cheaper to implement, in addition to outperform other
neural models in certain behavioral tests.
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Chapter 1

Introduction

Over the last two decades in computer science, the development of artificial neural net-
works has been on the rise in several domains. While Google researchers have provided
us with ways to extract extensive classes and styles from images[1] and outplay humans
in classic games [2, 3], others have evolved controllers for virtual creatures to interact
in environments [4, 5]. In addition, several games [6, 7, 8, 9] have incorporated neural
networks to create interesting behavior, either to interact or compete with the player. In
neuroscience, they are often used to simulate large brain areas [10], or smaller networks
of biological organisms [11, 12] to get a better understanding of neural dynamics. Ar-
tificial neural networks are very powerful in their ability to be trained to solve complex
problems that can be hard or troublesome to define specific methods for, especially when
little is known about what the best solution is supposed to be.

In nature, we can witness a vast diversity of intelligent solutions to the problem of
survival. This largely depends on the animal’s morphology and how it interacts with
acquiring resources from the environment. What all animals have in common is a form
of control system to achieve this, varying from a small to large neural networks, the latter
commonly being referred to as a brain when clustered. However, it is the smallest unit of
information processing within these networks, namely the neuron, that will be the main
focus of this thesis. Most of the artificial neurons that were used in the papers mentioned
in the introduction are heavy abstractions of biological neurons, meaning that they tend
to lack rudimentary mechanics used in neuronal computation. Still, most of the time they
have proven their worth, being cheap to implement and trained with ease. However, this
is not always the case for abstractions of biological neurons, as they are often heavy on
computation due to more complex mechanics. Due to these different mechanics, common
training methods generally needs to be revised.

In this thesis, we propose a new neural model which is intended to fill the gap be-
tween heavy and light abstraction of biological neurons, in addition to making it easy
and cheap to implement. Specifically, the model’s main purpose is to act as a controller
for an embodied agent (a creature) within a virtual environment.

1.1 Requirements

In order to validate the quality of our neural model, the three items listed below will be
used for assessment when compared with other contemporary models.

1. Richness
2. Cheapness
3. Functionality

The richness (1) refers to the amount of neuro-computational features (to be explained
in chapter 2) a neuron can output given various inputs. The cheapness (2) is assessed by
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how expensive the model is to simulate computationally. Finally, the functionality (3) is
the quality of solutions the model can produce for behavioral problems.

In order to assess these requirements, the reader will first be introduced to biological
and artificial neurons in chapter 2 which covers background knowledge required for the
next chapters. In chapter 3 the new neural model is introduced, in addition to assessing
its richness and cheapness requirements. In chapter 4 we describe the testbed environ-
ment, involving a virtual creature searching for food. Chapter 5 describes two behavioral
experiments performed in the testbed. Each test will have a local discussion, and will
together be used for assessing the functionality requirements. A final evaluation of the
requirements will take place in chapter 6, along with discussion potential future research
together with the thesis conclusion.
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Chapter 2

Neurons and models

2.1 The biological neuron

FIGURE 2.1: Nerve Cell: Dendrites receive signals from other neurons in
which the cell body reacts to. Given sufficient stimulation, the cell pro-
duces a new signal which travels through the axon to finally propagate

towards other receiving neurons [13]

The nerve cell, or neuron (Figure 2.1), is a specialized unit within a biological sys-
tem which is responsible for processing information from the environment into muscle
control. Neurons generally come in numerous quantities, forming organized networks
which is connected through synapses. To get a perspective, the neural net within the
nematode Caenorhabditis elegans (a roundworm of 1 mm in length) has been precisely
mapped to 302 neurons with roughly 7500 synapses. This network is sufficient to pro-
vide it with abilities such as chemotaxi, learning, memory, and mating behavior [11, 12].
On the other side of the spectrum, the human brain has an estimate of around 86 billion
neurons, complemented with the staggering amount of 1014 synapses connecting them.
The way neurons communicate via the synapses is usually through chemical means by
releasing neurotransmitters, which will be explained in the following sections. Although
there also exist electrical gap junctions between neurons, they will not be focused in this
thesis.

2.1.1 The Action Potential

Perhaps the most typical form of communication among neurons in animals is through
the action potential (AP), its product often referred to as a spike. The event is described by
a sudden peak in the neuron’s membrane voltage, causing it to rise and fall over a course
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of 2ms. This causes a pulse to propagate through the axon, branching throughout termi-
nals towards dendrites of other neurons. In order for a neuron to undergo an AP, it has
to be appropriately stimulated by neurotransmitters released at these terminals. Neuro-
transmitters are the primary stimulus for direct information processing, as well as other
biochemical changes responsible for longer-term processes such as learning. Depending
on the type of neurotransmitter, this will either cause a depolarization for an excitatory
types, or a hyperpolarization for inhibitory types. This tends to make the neuron more
or less likely to undergo an AP, depending on; the type of neuron, the time since the
last AP, and the amount of neurotransmitters released. This is contrary to the myth[14]
that neurons undergo APs after the membrane reaches a certain fixed threshold set in
millivolts.

When a neuron capable of undergoing APs has its membrane directly stimulated with
a DC current, it has a tendency to produce a so called spike train - a distinct succession
of spikes. A spike train can reach a wide variety of patterns and frequencies, its upper
bound usually reaching 200hz1. In order to illustrate the various spike trains (patterns)
biological neurons can produce, a comprehensive map is shown in figure 2.2. External
stimuli is not always required to invoke APs. Pacemaker neurons are well documented
within the cortex[16, 17], able to undergo APs independent of stimulation from other
neurons.

2.1.2 Graded and other potentials

There also exists neurons that do not undergo APs, instead retaining a graded potential
(GP) within the membrane. These neurons do not release any distinguishable spikes,
instead their membrane has a smooth curve of de/hyper-polarization rising and falling
over time. This causes the release of neurotransmitters to neighboring neurons propor-
tional to the current membrane potential. GP neurons are present in virtually all animals,
often associated with sensor neurons transducing an external stimulus, or motor neurons
receiving spikes from inter-neurons to tense muscles.

To give an example of such a process regarding GP, we will explain photoreceptors
which responds to light from our environment. It all starts with rods and cones which are
sensitive to light and color. In response to light, they start releasing the neurotransmitter
glutamate (excitatory) towards neighboring bipolar cells. The amount of neurotransmit-
ters released are directly proportional to the intensity of the stimulus (light). As a result,
the bipolar cells’ membrane become depolarized, and in turn further releases glutamate
towards the final gatekeeper between the brain and eye; the ganglion cell2. A ganglion
cell is considered to undergo receptor potential (or generator potential) because of its abil-
ity to convert the GP received from the bipolar cell(s) into APs (spikes) that propagate
throughout the brain. All the information your brain interprets from visual perception is
exclusively rooted in spike trains originating from these ganglion cells.

Although out the scope of this thesis, it is worth mentioning the existence of some
other forms of graded potential. Plateau potentials for instance, can retain their depolar-
ized state long after the offset of an excitatory synaptic input. This causes the neuron to
remain active until a follow-up inhibitory input turns it inactive. These types of potential
are especially important for spinal motor systems[20], also present in some of C.elegans
neurons, as none of them are able to produce APs[21].

1For a more detailed overview of spiking frequencies, see [15]
2For further reading about the retina, see [19]
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2.1.3 Why different potentials?

A weakness of the GP is that it the signal diminishes along with the distance traveled.
This is not the case for the AP, as the spike gets innervated by the axon as it travels and
propagates to neurons further away. If the ganglion cell did not produce spikes, the
information from our photoreceptors would never reach the rest of our brain. There are
both upsides and downsides to this conversion from GPs to APs from a theoretical stand-
point. The downside is that APs are more expensive to maintain in terms energy usage
compared to GPs. In addition, neurons that spike virtually ignore the input received dur-
ing the APs (≈2ms), resulting in a discrete information loss[22]. This could explain why
some nematodes - like the c.elegans - do not undergo APs. As information does not have
to travel very far within its small neural network, the exclusive use of GP could make
it very energy efficient. Besides the benefit of speed, another upside of the AP is that it
seems to bottleneck excessive information[23], which might be something that’s essential
to higher cognitive states. This could be attributed to spike coding schemes in networks
(to be discussed in section 2.3), providing an upper hand over GPs when it comes to
complex signal integration.
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

FIGURE 2.2: 20 Neuro-computational features (NCFs) of biological neu-
rons produced by Izhikevich [18]. Spikes are shown as sharp peaks in the

membrane potential, resulting from the input current shown below.
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2.2 Artificial networks and neurons

Artificial neurons here are defined as a processing unit adhering to a computational
model, able to take a set of inputs to produce a single output at a discrete point in
time. It commonly resides in numerous amounts within a network architecture which
defines how data is propagated among them. Hence, a neural network can be considered
a processor which is constituted by several micro-processors. Since networks implement
artificial neurons, it is easier to keep the two aspects isolated in terms of elaboration, con-
sidering various types of network architectures and neuron models are often compatible
with each other.

The most common network is of a fully connected layered feed-forward (FF) archi-
tecture, shown in figure 2.3. FF is commonly defined by the data flowing throughout the
network in one direction, while fully connected means there exists a connection between
all the neurons in layer n and layer n+1. Recurrent networks on the other hand are more
liberal with the directions of connections. For example, the last given output could be fed
to the network as input in the following computational step. Interestingly, the neural net
of c.elegans is mostly FF[24]. This gives us a good indication what is possible to achieve
with such a simplistic architecture. Although out of this thesis’ scope, a recent method
worth mentioning is variation of FF architecture called a convolutional network. The gist
of this method involves using a small set of neurons to process a larger set in an iterative
fashion, usually in the form of a mask for a 2D visual field. Convolutional networks re-
ceived a lot of attention in the recent years, often referred to as ’deep’ neural networks [3,
1].

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

FIGURE 2.3: A fully connected feed-forward architecture of an artificial
neural network.

We will now explore the various types of computational models that are commonly
described as artificial neurons, in addition to their applications and limitations.

2.2.1 The Perceptron (MLP)

The perceptron proposed by Rosenblatt in 1928 [25] has had a major influence in the field
of machine learning throughout the recent decades. Since that time it has undergone
substantial refinement, and we will here present the most common model in figure 2.4.

The weight coefficient w modulates the strength of a connection, and can be either
positive or negative. Analogous to the biological neuron, the weight can represent the
synapse strength, with positive values representing excitatory and negative inhibitory
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neurotransmitters. The bias value b (reflexive weight) ensures that the neuron is capable
of producing output regardless in the absence of any input, given b > 0.

The activation function’s role is to normalize or bottleneck the output, avoiding skewed
numerals. Here we have multiple choices. For example, if we are only interested in an
on-off output, we can merely define the activation function to output 1 if it is above a cer-
tain threshold value, 0 otherwise. However, most of the time we are interested in a more
graded non-binary output value. The most common activation functions are sigmoid or
hyperbolic tangent, the latter shown in figure 2.4. The main difference between these two
is that the sigmoid output range is [0:1], where y = 0.5 for x = 0, while the hyperbolic
tangent is [-1:1], where y = 0 for x = 0. The usefulness of this activation function is per-
haps more apparent when we introduce several layers of perceptrons to keep the output
normalized, the end result commonly referred to as multilayer perceptrons (MLP).

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

f(x) = tanhx

−2 0 2

−1

0

1

FIGURE 2.4: A perceptron. Raw inputs xi undergo a weighting coefficient
wi before being summed along with a bias value b. Finally, the sum under-
goes an activation function f which acts as a bottleneck for the final output
y. In this example, the f is a hyperbolic tangent function which transforms

the sum into a value within the range [-1:1].

The great strength of multiple layers opposed to a singular one makes the MLP able
to solve problems that are not linearly separable. Its simplistic processing also makes the
network fairly easy to train as there are few parameters (the weights and bias) in need
of adjustment, often backed up with the powerful back-propagation learning algorithm
[26]. However, this algorithm has limitations which will be further explained in chap-
ter 4.2, as its best understood within the context of an environment. The perceptron’s
simplicity is also double-edged sword. Given that it does not have a state (memory-
less), it will always produce the same output for the same input. Although there are
workarounds for these issues, they are often tailored to fit a specific problem.
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Still, the MLP is probably the most common form of artificial neural network to date,
and it is still the preferred model for contemporary implementations, such as the convo-
lutional networks described in the start of this section.

2.2.2 Spiking models

Contrary to the perceptron, spiking neural models put more emphasis on the underlying
mechanics of biological neurons and spike production. The amount of spiking models
are vast, and only a few relevant ones will be presented here in light of this thesis.

The most noteworthy contribution in this domain is undoubtedly the work of Hodgkin
and Huxley [27] with their conductance based model which accurately describes how
neurons undergo APs. For their extensive work, they both received the Nobel Prize in
1963. However, the HH is rather impractical for engineering purposes, given that large
amounts of neurons are very expensive to simulate on contemporary hardware. Their
model is primarily used for scientific purposes, and serves as a very good control for
future models which attempt to replicate neuronal behavior in a cheaper fashion.

Izhikevich presents a very good review in his paper[18] comparing numerous spik-
ing models based on their NCF and computation price, and we will here try to mention
some of them. Starting with the simplest model, the leaky Integrate-and-Fire (LIF) neu-
ron[28] operates with a capacitor and resistor on input voltage similar to the HH model.
A simplified version of the LIF model[29] is shown below:

τm
du

dt
= −u(t) +RI(t) if u > uthresh, u← ureset

0 10 20 30 40 50 60 70 80 90 100
0

uthresh

Time

Membrane potential

FIGURE 2.5: An example of a LIF neuron under constant input. Spikes
occur when the membrane voltage supersedes the threshold value.Mtau =

10.

Here, the u represents the neuron’s membrane voltage, τm the membrane time con-
stant, R the linear resistor, and I the input voltage. As spikes are not explicitly generated
by the model, a supplementary rule is to have it occur when the membrane reaches a
specific threshold, and then set back to a fixed value (usually 0) as shown in figure 2.5.
The LIF model is an important mention because it replicates the most basic feature of
the biological neuron, integrating time dependent input at varying intensity to release
discrete spike trains. Despite its abstraction, the model can sometimes outperform more
complex models[30](including HH) at replicating spikes of biological neurons. Although
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being very cheap to implement, it comes with grave limitations in regards to the few
neuro-computational features (NCF) it is able to produce (3 out of 20).

Izhikevich’s own model, referred to as the ’simple model’ (SM)[18], is arguably one
of the best with respect to cheap and realistic neuronal behavior. The SM is described by
the two ordinary differential equations below, supplemented with a conditional for spike
events.

v′ = 0.04v2 + 5v + 140− u+ I

u′ = a(bv − u)
if v ≥ +30mV, then

{
u← c

v ← u+ d

Here, v′ and u′ are derivatives of the membrane potential and recovery variable with
respect to time. The values 5v and 140 are specifically chosen so the values represent
time and voltage levels of biological neurons. It is important to point out that the value
+30mV here is not a threshold, but merely a check to detect a sudden spike of membrane
potential which has consequences. By altering parameters, both the SM and HH are able
to replicate all of the NCFs presented in figure 2.2. In comparison however, the SM is
vastly superior due to its extremely cheap implementation (13 FLOPS vs 1200 FLOPS for
1ms simulation[18]).

2.3 Neural information processing

A widely debated topic in computational neuroscience is whether rate or spike-coding
is the core of information processing within biological neural networks. Given that most
neurons in animals elicit spikes as a form of communication, and that the firing rate in-
creases along with stimuli intensity, one could make an assumption that the only impor-
tant information is the rate of which spikes arrive. For example, one could scale a 0-200hz
frequency to [0:1], making it more or less equivalent to our non-spiking perceptron with
an appropriate activation function. However, Maass [31] has shown that spiking neural
networks (SNN) have computational power far beyond these traditional MLP networks,
requiring less amount of neurons for the same problem. Also, Thorpe [32] has made good
arguments for how the discrete timings of individuals spikes arriving in the human vi-
sual cortex explains fast facial recognition. In his philosophical paper on this topic, Brette
[33] illuminates the fact that since rates are rooted in spikes, it is ultimately the spike that
holds any form of causality in information processing. Although outside the scope of this
thesis, a better understanding of neural plasticity - how neurons form connections with
each other to learn and form memories - would undoubtedly shred more light on this
topic.

2.4 Neural implementation for agents

In order to prepare the reader for upcoming chapters implementing neural networks, we
will here address and elaborate upon the challenges it imposes.

In physics simulations, objects tend to get moved and pushed around as a result of
forces. If an object gets pushed with a certain force, we need to calculate its position
throughout time to both track and visualize movement. Hence, we need to decide how
often we want to calculate the object’s new position, referred to as the physics’s timestep.
A common timestep for physics simulation is ≈17ms (60hz), meaning that during the
course of a second the world is updated 60 times.
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Agents can be part of these physics worlds, taking input from the environment to
produce behavioral output. Neural networks can be implemented in these agents to act
as a controller. However, models possessing states (such as membrane potential) are
not always trivial to integrate with the world’s physics. Specifically, we are referring to
models which can produce a different output for the same input.

When working with models such the MLP, which do not have states, it is fairly simple
to update the neural network in lockstep with the physics step. However, when working
with spiking neural networks (SNN) on the other hand, we have to be cautions. The
SM is specifically designed to model real neurons on a 1ms timescale, and is thus highly
out of synchrony with the fast moving world of a 17ms timestep. To form an analogy,
implementing the SM in lockstep with such a world would be as if the reader experienced
their environment in fast forward (17x). Your brain would not be able to keep up with
the rapid input from the environment, and your muscle neuron outputs would be lagging
behind.

To fix these skewed timesteps, we have two choices. Either increase the physics
timestep to 1ms in order to match the SM, or perform several network steps per physics
step while tracking the output neurons’ activation during the interval. The former method
is extremely expensive in terms of computation if the world step is heavier than the net-
work step, and is possibly only an option if one would desire hyper-realism of a real
biological organism. The latter method is more commonly used, with [8] measuring the
output neurons firing rate over 20 timesteps, and [9] over 100 timesteps. Hence, we de-
fine a network cycle to be the process of updating all its neurons according to the rules set
by the model, while a network update means performing a specific amount of cycles. The
optimal amount of cycles for both computational efficiency and behavioral performance
depends largely on both the model and the environment.
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Chapter 3

The Controller Model

3.1 Neuronal capacities

Neurons undergo complex information processing. This implies that neurons are capable
of modulating the output as a result of the input, and that this modulation depends on the
type of neuron. Although different neuron types can produce several NCFs depending
on input, one neuron is not expected to be capable of all. This is because some features
are mutually exclusive [18]. However, the tendency of a neuron to switch firing modes
(from one NCF to another) when operating in a biological system is less clear. It has been
documented that some can switch from spiking to bursting [34, 35]. Therefore, we expect
a proper neuronal model to produce neurons that can - to some degree - switch modes
as a result of differentiated input. We also expect a positive relation between the richness
(NCFs) of a model, and its embodied behavioral capacity.

Axiom 1 If a NCF is useful for a certain behavioral task, we would expect an agent implementing
a model possessing this NCF to outperform others which do not.

3.2 Development

The philosophy behind the spiking neural model about to be presented in this thesis is
taken from a functionalist’s perspective. This means that we will evade mechanics meant
to represent biological realism. Thus, all the variables are left dimensionless as they do
not represent voltage or chemical compositions.

The focus is set on the input-output relations of neurons seen in a temporal dimen-
sion. Inspired by biological neurons, we also want to blend the functionality of both
graded and action potentials while retaining a rich diversity of NCFs.

Although most spiking models use integration over elective time steps with ordinary
differential equations, the first iteration of the new model currently does not. Instead, it is
a discrete system with countable steps executed in a sequential manner. It is specifically
designed to be implemented in agents of virtual environments with large timesteps as a
behavioral controller. As such, for the lack of a better name, it is dubbed the Controller
Model (CM) throughout the rest of this thesis.

During development, the author’s initial starting point for the CM consisted of vari-
ant LIF type neuron. From there, a dynamic threshold was added capable of adapting
to the membrane potential. For final tweaking of the CM’s mechanics, Izhikevich’s com-
prehensive collection of NCFs[18] was used for validation. As a result of tweaking, the
author stumbled upon an emergent behavior resulting exclusively from negative input,
causing oscillating spike trains and delays. Coincidently, this behavior was very similar
to some of the more complex NCFs.
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3.3 Formulating the CM

We let the state of a CM neuron be Ns = {m, t} where m is the membrane potential and
t is the current threshold value. The neuron possesses 3 parameters Np = {a, b, c}, which
are all set in the restricted domain [0:1]. Here a and b are the membrane and threshold
decay coefficients, while c represents the equilibrium point of t. For initialization, m← 0
and t← c.

m′ ← m+ I (3.1)

if m′ ≥ t

{
t′ ← t+ bm′

m′′ ← 0
(3.2a) if m′ < t

{
m′′ ← am′

t′ ← t+ bm′′
(3.2b)

t′′ ← (c− t) · b
2

(3.3)

Input I is added directly to the membrane (3.1), followed by checking whether the
new membrane value exceeds the threshold (3.2a) or not (3.2b).

In the case of 3.2a, a spike occurs along with readjustment to the Ns. First, the thresh-
old adapts to the current membrane value, given that the threshold decay coefficient
b > 01. Specifically, threshold value adapts by increasing for positive, and decreasing for
negative membrane values. Secondly, the membrane snaps to its initial value of zero.

In the other case of 3.2b which produces no spikes, the membrane first decays towards
zero given a > 0, followed by the threshold adapting to it.

Finally, the last step 3.3 causes the threshold to move towards its equilibrium c as a
result of the distance between them. The significance of this move is a fraction of the
threshold decay parameter b, as to ensure the membrane has a higher impact than the
equilibrium.

It is important to notice the order of operations in 3.2a and 3.2b are flipped around
respectfully in terms of implementation. This is because we want the threshold to in-
crease right after a spike has occurred (refractory period) based on the last state of the
membrane, ultimately making it less likely to fire again in the following step(s). In the
latter case (3.2b), we want to move the threshold first prior to decaying the membrane. If
not, preliminary experimentation of the model indicated that the threshold would often
elude the membrane completely.

When implementing the model in a neural network using connections in forms of
weights, there are certain precautions to be aware of. It is convenient to keep the equi-
librium parameter fixed at a certain value2 for all but the input neurons. This is because
the weights of incoming connections are traditionally subjected to mutate, and thus will
adapt themselves relative to the equilibrium. This greatly helps learning algorithms as
they have one less parameter to tune. For input neurons however, we want the equilib-
rium to mutate because the inputs are graded, not spiking. For example, highly sensitive
input neurons often evolve c = 0, meaning that they will be able to detect any form of
micro-perturbations at resting state3. This greatly facilitates the input neurons ability to

1If b = 0, the CM neuron is similar to a LIF neuron given a > 0 as it can produce the same NCFs.
2By default c = 0.5 for weights ranging [-1:1].
3For a good example, see figure 5.6.
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undergo generator potentials; they are the first neurons to transduce arbitrary data into
action potentials.

To explain the dynamic system in a simplified analogous manner, we can view the
membrane as a mechanical spring. The input stretches membrane over time, and will in
turn be more likely to collapse back to its normal state (releasing a spike) if the stretching
exceeds its threshold. The threshold in turn is a two-way spring trying to hold a relative
distance with the membrane and its natural equilibrium.

0 5 10 15 20 25 30 35

0

c

Spikes

Input current
+0.5

0

Time

Membrane
Threshold

FIGURE 3.1: An example of a CM neuron performing a phasic burst output
(spikes) after the onset of a constant input current. Spikes occur when the
membrane value supersedes the threshold value. Npara = {a = 0.5, b = 0.1,

c = 0.5}.

3.4 NCF assessment

Izhikevich himself has not made any explicit methodology for assessing whether or not
an NCF has been successfully replicated by a model. Hence, judgment of the CM’s capa-
bilities will largely consist of an open discussion supplemented with illustrations. Any
successful replication also requires the output to be modulated by the input4. This means
that we expect the neuron to behave differently in a predictable manner by adjusting the
input gradually.

A comprehensive set of graphs are presented in appendix A displaying 13 approx-
imate replications of NCFs comparable with figure 2.2. An extracted example is also
shown here in figure 3.1. The neural behavior shown in these graphs were discovered
with relative ease through gradual tweaking of the a and b parameters. 10 of the repli-
cations behave fairly similar to biological neurons, and will not be further discussed.
Instead, we will address 3 controversial, 3 possibly redundant, and 4 missing replica-
tions.

3.4.1 Controversial : N, T, P

Unlike biological neurons, the rebound burst (N) and the inhibition-induced bursting (T)
replications do not have any intervals between the produced spikes. This is also the case

4Class 2 excitability (H) is an exception to this.
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for bistability (P), which requires a negative input bias in order to function. The lack of
spike interval makes it more appropriate to refer the output as phasic currents.

3.4.2 Possibly redundant : C, S, M

Despite their absence, feature C, S and M might be complemented by others. This is
because the share a similar output behavior with some NCFs when receiving an inverted
input. This inversion is easily achievable by flipping the sign of incoming weight to the
neuron. Tonic spiking (A) is the inverse of rebound spike (M) and inhibition-induced
spiking (S). Inhibition-induced bursting (T) is the inverse of phasic bursting (C). Hence
the features are possibly redundant functionally, unless we require the neuron to switch
between specific firing modes (NCFs) as a result of input differentiation.

3.4.3 Missing : I, J, K, Q

Although spike latency (I) is not present for individual spikes, delayed output is still
possible in the form of rebound bursts (N). It is worth mentioning that generic spike
delays tend to be modulated by weak sub-threshold input [18], and these small delays
might not be relevant for large timesteps.

Subthreshold oscillations (J), and resonator (K) are highly related. This is because
the resonator requires membrane voltage oscillations, making it sensitive to certain fre-
quencies of incoming spike trains [36]. This makes it act as a filter for certain bands
of frequencies. However, these bands are greatly limited when we operate in discrete
timesteps. Even if resonating neurons were possible with the CM, they would be capped
by the large timesteps in virtual environments. The role of resonating neurons in biolog-
ical systems are poorly understood, although a recent paper [37] has shown that it might
relate to differentiate feelings experienced by the cerebral cortex.

Depolarizing after-potential (Q) makes the neuron more likely to fire if it has recently
fired a spike. Although the CM model does not support this, it might be achievable by
inverting the threshold movement relative to the membrane value when spiking.

3.5 Performance assessment

In order to get an idea of how cheap the CM is to implement, we will benchmark it to
compare against MLP and the SM. First however, we will elaborate upon the specific im-
plementations per model as it affects benchmark results. The amount of cycles (explained
in section 2.4) required for a network update is based on a virtual physics environment
operating at 60hz, further described in the next chapter.

3.5.1 Model implementation

The MLP implementation is identical to that of section 2.2.1, using a hyperbolic tangent
function as it is faster to process than the sigmoid function [38]. Considering the MLP
being stateless, it does not require more than 1 cycle for a network update.

The CM implementation is identical to that of section 3.3, with the amount of cycles
set to 3 for a network update. This set amount was a result of preliminary testing in an
environment to be discussed in the next chapter.

Lastly, the SM implementation differs slightly from the one explained in the end of
section 2.2.2. Numerical errors can occur within the SM when the timestep is τ = 1ms
and the input I < −45, causing the voltage v to reach infinity. Izhikevich himself seem
to handle this by using a modified Euler method (midpoint) in his implementation [39],
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although this is more computationally expensive. Since numerical errors are undesired,
the same implementation used by Izhikevich will be used here. The amount of cycles is
set to 20, guided by both preliminary testing and literature [8].

3.5.2 Setup

BenchmarkAmeasures the timings of network updates for the three models. Specifically,
we simulate 1000 randomized networks (multi-threaded) with 1000 hidden neurons each
in a FF architecture. To ensure data flow, the MLP network receives a constant input
value to propagate towards the hidden neurons, while for the SM and CM a single input
neuron receives the same input value (scaled for the SM). The output layer consists of
only 3 neurons.

Benchmark B measure the timings of neuron updates under conditional input, inde-
pendent of connections and spike consequences occurring in networks. The perceptron
(MLP) is excluded from this test as it does not update a neural state. 1000 neurons with
randomized parameters are updated 1000 times, averaged over 1000 trials. Both the mod-
els CM and SM were under the influence of excitatory (0.5, 20), inhibitory (-0.5, -20), and
silent input currents.

All models were implemented with a data-oriented design on the same hardware5,
coded in D.

3.5.3 Performance
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FIGURE 3.2: A shows the results from models each simulating 1000 ran-
domized networks with 1000 hidden neurons each. B shows the results
for the spiking models’ average timings processing 1000 randomized neu-

rons with 1000 updates each under different types of input

The benchmark results are depicted in figure 3.2. A shows the CM and MLP being
roughly 7 times faster than the SM. The explanation for MLPs being on pair with the CM
is because perceptrons will always propagate their data. Propagation is conditional for
spiking neurons, and in our case results in fewer table lookups and overall calculations.
It is worth mentioning that conditionals tend to make code slow, so results in general

5CPU: Intel(R) Core(TM) i7-3610QM @ 2.30ghz
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depend on the number of propagations versus conditionals. Not seen by our data, the
SM has a theoretical advantage per cycle given significantly lower spiking frequencies
than the CM.

B shows the CM was on average 2.2 times faster than the SM at updating its neurons,
with slight variation depending on conditions. We can see that the differences between
the CM and SM are not as extreme when propagation and cycles are absent. The differ-
ences in timings based on conditional input currents show that some cause more stress
than others. For example, idle CM neurons are significantly cheaper to process than ac-
tive ones, which was not the case for SM. This is most likely due to special case CPU
operations when zero is involved.

To summarize the benchmark results, we can see that the SM is very expensive to
simulate compared to the other two modes. The SM’s greatest toll is the amount of cycles
necessary for a network update. Improving the model’s neuron update efficiency, as
done by other researchers[40], would most likely not improve overall timings in a very
significant manner.

The expensive implementation of the SM is not a problem when dealing with few
neurons, but it does become a real problem with larger as it scales linearly. Even though
GPU implementations greatly boost the speed of MLP networks, the same is not always
the case for SNNs [41] due to memory usage and conditionals. Also, using the GPU
for these tasks would limit graphical rendering for ordinary desktop computers. This is
especially unfitting if neural simulation were to be implemented for game clients.
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Chapter 4

Testbed environment

FIGURE 4.1: Testbed environment and GUI.
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4.1 Overview

In order to test neural models for their behavioral capabilities, a testbed was created using
dbox, a D programming language ported version of Box2D, a two-dimensional physics
engine. This gives us the possibility of building a world in which a creature able to
move and interact with objects. Several behavioral tests were designed, all of which
sharing common mechanics to be specified in this chapter. However, only two tests will
be highlighted in this thesis, with their specificity explained in the next chapter. Excluded
tests are described in appendix D.

The main goal for a creature in any test is survival. It has a basic metabolism which
burns energy, in addition to burning even more by performing motor actions. Collecting
food restores energy, and it is up to the neural network to process information from the
creature’s sensors to direct its motors for navigation. Hence, the most successful creatures
are those that collect food using minimal amount of energy. In order for us to train these
neural networks based on how well they act as a controller, we will simulate evolution
on a population of networks over several generations. We do this by subjecting each
network to a test trial, injecting it into a creature and give it a limited amount of time to
survive. For perspective, the network can be seen as a brain, while the creature is a body
burning fuel.

4.1.1 The creature, food, and energy.

Any trial starts with the creature’s energy pool set to a test specific reward value E ← R,
and ends when E = 0. As the creature stands still or moves around in the world, a
basic metabolic rateEmeta decrements energy together with overall motor activation. The
actuators (motors) and their impact on the creature are shown in 4.2, and they are shared
for all tests. Energy consumption for activating either of the two actuators is up to 5 times
the basic metabolic rate, depending on their degree of activation [0:1]. The new energy
value as a result of expenses is shown by:

E′ ← E − (Emeta + 5Emeta(Al +Ar))

As an example with Emeta being 1, fully activating Al would result in an energy drain
of 6. In order for be able to collect more energy, a pickup zone (Figure 4.2) of a fixed radius
is attached to the center of the creature. Whenever this zone overlaps a food object, a
successful pickup is said to happen. Pickups increments a counter p, followed by adding
energy to the creature’s pool. At any time, there is always one food object present in the
world. When this food is picked up it will disappear to make another spawn at a different
location. Given that we want every trial to be of finite time, a discount factor δ is set which
ensures that the reward decrements exponentially per pickup. Pickup consequences are
shown by:

if pickup

{
p′ ← p+ 1

E′ ← E +R · δp′

where δ = 0.8 for all tests performed in this thesis.
For visuals, the creature’s shape is formed like an arrow to indicate which direction it

is facing. It also leaves behind a colored history trail, blending from green (most recent)
to red. This makes it easy for the testbed user to track its movement and momentum
throughout time. The creature also has a set of sensors S, which are defined in chapter 5
as they are test dependent.

http://box2d.org
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~Al
~Ar

Pickup zone

Ar MovementAl Movement

Al+Ar Movement

FIGURE 4.2: Creature anatomy. Food gets picked up when it is overlap-
ping with the circular pickup zone. Arrows show force vectors applied to
the rigid body (slightly below center of gravity) as a result of the actuators

Al and Ar which are activated by a neural network.

4.2 Evolutionary algorithm

As our intentions are to evolve a network capable of adapting to behavioral task with
minimal knowledge of an optimal solution, we employ an evolutionary algorithm which
is set to explore a multitude of solutions through a population of networks. Just like
Darwinian evolution, we aim to increase the fitness of the population by recombining
and mutating ’genes’ between individuals in order to produce offspring. In our case,
the genes would be the weights and parameters belonging to the neural model. These
offspring networks are commonly referred to as solutions, as they evolve towards solving
a problem under a specific context. In our testbed, the problem is maximizing fitness
according to a fitness function in conjunction with the environment.

4.2.1 Fitness evaluation

In order to rank networks by performance, a simple fitness function is employed. As a
trial ends as a result of zero energy, the network gets awarded with a score of pickups p
in addition to a normalized value [0:1] reflecting the distance traveled from last pickup
(or starting location) to the next. This extra distance-bonus is of great help in the start of
a population, awarding networks that can at least move in the right direction.

4.2.2 Selection and Crossover

In order to combine genes, we select two parent networks based on fitness to produce
an offspring. For our implementation, we use Stochastic Universal Sampling (SUS)[42]
for selecting parents. The benefits with this method is that it respects the relative dif-
ferences in fitness within the population, instead of just the ranks. This means that the
best solutions of any generation will be the ones most probable to produce one or mul-
tiple offspring. As the parent networks are selected, a crossover occurs, meaning neurons
(holding parameters and weights) mix at a uniform probability in order to construct an
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offspring network. After the offspring is produced, there is a chance of mutation set to
happen which will be described in the next section.

4.2.3 Mutation

Considering the networks in this thesis operates with fairly few neurons, the mutation
rate is set to be 5% across all parameters. This is to keep the chance of duplicates in our
population low. If a parameter is selected to mutate, it will undergo various forms of
mutation operators. The CM model’s operators are listed in 4.1, while the MLP borrows
its weight mutation operator (including bias). For Izhikevich’s SM network, the mutation
operations are identical to those used in [9], with a few alterations based on preliminary
testing. Specifically, the input is scaled to [0:20], weights range narrowed to [-50:50],
while the delay parameter is discarded as connections bare no temporal delays. These
alterations were done to make it perform and evolve better in our testbed.

Parameter Gaussian Rand [0:1] Rand [-1:1] setTo : 0 setTo : 1
mDecay, tDecay 50 % 25 % 12.5 % 12.5 %
equilibrium 50 % 25 % 25 %
weight 50 % 25 % 25 %

TABLE 4.1: Mutation probability distribution for the Controller Model.
Chance for any parameter to mutate is set to 5% across all tests. If mu-
tation occurs, one mutation operator will be selected stochastically to alter

the parameter. Gaussian probability distribution σ = .05.

4.3 Neural Network integration

In order to isolate the neural model as the dependent factor for behavioral performance,
all models operate with a fully connected FF architecture. Preliminary testing of models
with recurrent and/or delayed connections did not show any significant benefits, and
thus these features were excluded. The weights of connections in the SNN models signify
the spike’s strength as a fixed input value. The weights for MLP on the other hand is a
coefficient on the input value traversing throughout the network, as shown in figure 2.4.

For the SNNs, an extra input neuron was given to act as a pacemaker, having a reflex-
ive weight subjected to mutation. This ensures that the creature is still able to perform
behavior independent of its sensors. This is comparable with the bias already embedded
in MLP.

Specific model implementations were identical to those used in our earlier bench-
marks (section 3.5.1).

4.3.1 Input / Output

For inputs, the MLP network operates according to figure 2.3. For the SNNs however,
each of the creature’s sensors/actuators have their own dedicated neuron. For neural
identifiers, Nx resembles the neuron associated with Sx or Ax. During a network update,
each sensor value is fed to its associated sensor neuron at every cycle.

The network’s output decides the degree of activation of the creature’s actuators. This
is trivial for the perceptron, as it already outputs a graded value [0:1]. The SNNs however
produce spikes, which can be interpreted as binary activations 0 and 1. For simplicity, Ax
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activation is set to 1 if at least one spike occurred in the motor neuron during the of a net-
work update. This gives a slight advantage to the MLP in terms of actuator control per
timestep, as it can for example throttle the actuator at 50% force (and energy consump-
tion). However, preliminary testing did not show this to be a significant factor for the
functionality related to behavior. This might be explained by the SNNs ability to regulate
the creature’s speed by the frequency of spikes in the motor neurons. This is because
inertia persists throughout the world’s timesteps as we are moving a physical object (the
creature).

4.4 Runtime cycle

Figure 4.3 gives an overview of the evolutionary cycle of our testbed. At every iteration
of the main loop in our program, networks are tested in the same scenario, awarded a
fitness based on their performance, and finally evolve into a new generation. Population
size is set to 100 networks for all tests, and the top 10% is considered the elite. The elite
gets a free pass to join the next generation, which are retested in the next scenario. This
way we can keep an aggressive mutation rate without risking to lose the best solutions.

A striking feature of our testbed is its simulation speed. With the help of CPU1 multi-
threaded worlds, simulation time per generation ranged from 50ms to 500ms. This range
is due to the trained networks (creatures) surviving longer, hence getting more simulation
time. This high speed greatly facilitated preliminary testing, as the author could get quick
feedback while tweaking variables.

1CPU: Intel(R) Core(TM) i7-3610QM @ 2.30ghz
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/* Initialize an array of networks of a set size, and
randomize their parameters */

population← blankPop(populationSize);
population← randomize(population);

/* Start main training loop */
while true do

/* Randomize scenario parameters to make every trial
unique. (Spawning locations etc.) */

S ← createScenario();

foreach network in population do
world← newWorld(network, S);
runTest(world);

end

population← sortByFitness(population);
elite← getBestSolutions(population, eliteSize);

/* Initialize an array for offspring */
offspring← blankPop(population.length− eliteSize);

/* Create new networks from the old generation */
foreach network in offspring do

parents← getParents(population);
network←makeChild(parents);
network←mutate(network);

end

/* Replace old gen with new gen */
population← offspring + elite;

end

FIGURE 4.3: Pseudo-code for the evolutionary algorithm within the
testbed. Blue text are arrays of networks.
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Chapter 5

Behavioral experiments

In this chapter we propose two tests which aim to measure the performance of three
different neural models as controllers. The first model is the MLP, acting mostly as a
control due to being time-tested. The second and third are of the spiking kind, namely
Izhikevich’s SM and lastly our CM. The SM was chosen due to its richness (NCFs), as
it forms the basis of the CM. In addition, the SM has been shown to be functional for
other behavioral implementations [8, 9]. The LIF model was also considered, but was
ultimately excluded as preliminary tests did not show any promising results.

5.1 Temporal Edge Detection
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FIGURE 5.1: Creature input for the TED test with triple-rays. The figure
shows the upper part of the square box with the creature in the center. The
black rays return a normalized distance between the creature and the first

object (wall or food).

An original behavioral test was designed with spiking neural networks in mind,
dubbed the Temporal Edge Detection (TED) test, shown in figure 5.1.

For sensors, the creature is equipped with a frontal ray that provide feedback regard-
ing the distance of the first object it touches. To form an analogy, the ’eye’ can thus only
see the distance in form of intensity on a min-max scale, much like a color spectrum.

We hypothesize that the creature can only detect the edge of food in relation to a
background wall, as there is a sudden peak in sensor intensity during a ray sweep. Con-
sidering the MLP is stateless, it is not expected to perform this task as it cannot compare
the last state with the next. Therefore, a variation of this test include additional rays
(triple) as sensors, offering a different form of edge detection which is independent of
states (non-temporal). This is possible by merely comparing the input of one ray relative
to another.
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The creature and food are spawned within a square box, the box having sides (walls)
of length s. In order to prevent spawning inside the walls, and to not make it too difficult
to detect food up against them, the spawn zone is set to be 80% of the original square box
originating from the center. The ray sensor value is set to 1− d

dmax
where d is the Euclidean

distance between the hit object and the creature, and dmax is
√
2 · s. This normalizes

the sensor to a range of [0:1] depending on proximity of the hit object. A sensor value
of 1 is up close, while 0 is out of reach. For triple-rays, the additional rays had their
angle set to 3◦ left and right of the center ray. In order to train faster and eliminate
possible exploitation of the triple-ray scenario, the SNNs sensory neurons have shared
parameters. If not, one of these extra neurons could evolve to be non-adaptive and only
respond to avoid bumping into walls, which is an unintended advantage.

Neural architecture for the SNNs is set to an input neuron per sensor (ray) in addition
to our pacemaker, fully connected to our two motor neurons. For the MLP, the only
difference is that each sensor data is fed to all the hidden neurons. The number of hidden
neurons was equal to the amount of sensors.

For any model to be qualified as functional for behavior, the requirement is for its
solution to collect more than 2 food on average during its lifetime. The food’s size is
equal to the creature’s pickup radius.

5.1.1 Results

Table 5.1 shows the results for the TED test, while supporting graphs are shown in figure
5.2. The CM’s final solutions were on average significantly better than the SM (unpaired
two-tailed t-test p = .003). Results with error-bars are shown in appendix B.1, while a
typical behavioral strategy by the CM is shown in appendix C.1.

The spiking neural networks both evolved a technique which consisted of biased cir-
cling turning driven by the pacemaker, causing the ray to scan across walls. At moments
with a sudden deviation in the sensor’s intensity, such as the ray hitting food, the sensory
neuron fires to cause a slight counter-turn. This caused a feedback loop in which the crea-
ture jitters its ray between the food and the background wall while moving forward. The
MLP network was only functional for triple-rays, where its behavior consisted of biased
turning and moving towards food dead center.

Network Rays Mean σ Best Functional?

CM 1 6.31 2.13 9 D

SM 1 5.72 2.21 7.7 D

MLP 1 1.08 0.06 1.2
CM 3 5.08 1.74 8 D

SM 3 5.42 2.77 8.2 D

MLP 3 4.26 0.96 5.7 D

TABLE 5.1: TED results

5.1.2 Discussion

As hypothesized, the MLP network was unable to evolve any functional behavior for the
one-ray test. This is due to its absence of stored temporal data, something the spiking
neurons do within the membrane. It is only when the MLP utilizes triple-rays that it is
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able to find the food, underpinning a non-TED strategy. Although not tested, double-rays
are also believed to be sufficient performing the same function.

The spiking neural networks were both successful at detecting and moving to food.
For both the one-ray and triple-ray tests, they had a strong preference for sticking to the
same behavior of performing jitters. With our methods, it is hard to verify if the SNNs
were able to perform non-TED strategies considering evolving TED was faster with one-
ray. After all, the architecture of the one-ray test can be a subset of the triple-rays network.
This because the weights from additional sensor neurons (rays) could evolve to be zero.
If redundant sensors are present, we might not be surprised seeing the faster learning
rate for the one-ray SNNs compared to triple-rays. This is because fewer weights need to
be tuned.
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FIGURE 5.2: Results from the TED test showing different neural network
models training 20 populations each. Graph shows the running mean of

the best solutions over the last 100 generations.
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5.2 Chemotaxi
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FIGURE 5.3: Creature input for the ’Chemotaxi’ test. As the creature’s elon-
gated nose (marked by a dashed circle) approaches the large food on the

left, Son increases while Soff decreases.

A very common behavior of animals - especially invertebrates - involves navigating
towards the source of chemicals. The chemotaxi test described here aims to assert our
creature’s ability to perform the same task by being able to smell the food. The method
used here is inspired by the work of Izquierdo & Lockery [43], who were able to produce
a minimalistic neural circuit of the c.elegans performing chemotaxis. In their methods,
they used different artificial neurons operating under GPs, which is similar to c.elegans’s
neurons as they do not produce APs[21]. Another paper[44] also showed the possibility
of using LIF neurons responding to GP from specialized sensory neurons.

Our creature starts at spawn0, where every spawnn is pre-generated to be positioned
at a random distance between 0 and dmax from spawnn−1 at a random angle. dmax is a
fixed value which is fine tuned together with the energy reward for pickup. Associated
with each spawn, there is also a coefficient value α within a randomized range [0:1].
This value is related to the intensity of the food’s chemical emission. This forms a neatly
chained proximal path of spawns, ensuring that the creature has a decent chance reaching
them before energy runs out.

Similar to [43], we will use two of c.elengans’s sensory neurons that activate to either
the increase or decrease in salt concentration from the environment. Our sensors are thus
labeled Son and Soff , the names representing on or off target (salty food in our case). The
sensor values are

Son = α(1− d

dmax · 1.1
)

Soff = 1− Son

where d is the Euclidean distance between the creature’s nose and food. The nose is
located at the tip of an elongated antenna sticking out the front of the creature, shown
in figure 5.3. The fixed coefficient value 1.1 is to ensure that the sensor range is 10%
larger than dmax. This is to provide the creature with some sensory leeway under the
unlucky scenario where food spawns close to dmax. In the case where d > dmax, Son = 0
(out of range). Much like the TED test, the SNNs sensory neurons are set to have shared
parameters due to their similar nature of opposite behavior.

Although odor concentration is usually of Gaussian distribution, leaving creatures
to train in such an environment can lead to unintended exploitative strategies. This is
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because the concentration value relates to the proximity of the source, as pointed out
by Izquierdo & Lockery [43]. To control for this, we borrow their technique in our own
methods. This technique includes the randomized α coefficient, which alters the max
concentration intensity at the center of the food. As a result the creature agnostic to the
proximity of the food source, something it could have exploited otherwise. For example,
preliminary testing showed that it sometimes used one of the sensory neurons to produce
a counter-turn whenever the sensor reached a specific value.

To assert whether the creature has generalized the behavior of always moving to-
wards higher concentration agnostic of distance, the best trained network will be cherry-
picked for a sub-test. This sub-test involves the creature being exposed to a food source
emitting odor of a Gaussian distribution, instead of a linear one.

Considering this Chemotaxi experiment is a close replication to the work of Izquierdo
& Lockery, the most important differences will be made explicit in this paragraph. While
our sensors output raw distance to the neurons, theirs activated based on derivative op-
erator measuring the difference in concentration within an interval. The motor neurons,
modeled by simple first order nonlinear dynamics, also received inputs from both an os-
cillating central pattern generator to facilitate undulations - which is to move in a snake-
like fashion. In fact, their creature was enforced to perform undulations as a requirement
for realistic movement. This restriction was not active in our test, as the author was cu-
rious whether or not undulation was able to naturally evolve as a chemotaxi strategy.
In order to facilitate this, our creature has its nose (holding the sensors) at the tip of an
extended antenna. Undulation would thus cause the antenna to sweep left and right to
sample the environment, which could emulate the head of the creature. Lastly, while
their trial consisted of moving to one food only, ours follow the testbed environment
where a new food spawns when the former is picked up. This offers us the chance to
observe whether or not the creature has problems adapting to a sudden change in sensor
value after pickup.

Neural architecture for the SNNs are set to include one sensory neuron per sensor
(Son and Soff ) in addition to our dedicated pacemaker for the input layer. The hidden
layer consists of two neurons, followed by one motor neuron per actuator (Al and Ar).
MLP differs by feeding the sensors to an extra first hidden layer of 2 neurons. The fully
connected FF architecture is similar to c.elegans as it has been shown to have very little
recurrent connections [24]. However, in c.elegans the hidden neurons are questionably
redundant given that they seem to merely forward information rather than process it [11].
Our method will include them none the less, just in case some models might put them
into use. A sub-test seeks to explore the minimal amount of neurons required to perform
chemotaxis for our creature, stripped of the hidden layer. The dependent variables for
this test are the various combinations of a pacemaker, Son and Soff sensors.

For any model to be qualified as functional for behavior, the requirement is for its
solution to collect more than 2 food on average during its lifetime. The food’s size is 10
times the creature’s pickup radius.

5.2.1 Results

Table 5.2 shows the results for the chemotaxi test, while supporting graphs are shown in
figure 5.4. Results with error-bars are shown in appendix B.3, while typical behavioral
strategies by the CM is shown in appendix C.2. For naturalistic Gaussian based concen-
tration levels, reliable behavior of the CM is shown in figure 5.5.

Both the ON and OFF neurons evolved significantly better with a supporting PM
neuron (paired two tailed t-test p = .008 and p = .018 respectively). Several solutions
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Model Mean σ Best Functional?

CM 8.66 2.42 11.5 D

SM 1 0.05 1.1
MLP 0.72 0.05 0.8
SM* 8.96 1.73 11 D

Neurons Mean σ Best Functional?

ON+PM 9.40 1.70 12.5 D

ON 8.21 2.58 12.3 D

OFF+PM 5.97 2.26 10.5 D

OFF 4.93 2.07 9.5 D

TABLE 5.2: Results for the ’Chemotaxi’ test. Lower table shows the CM
using different input neuron combinations.

by the CM produced undulating behavior. The evolved creatures showed no issues re-
adjusting to the sudden new input value post-pickup.

Undulation was successfully achieved using a minimalistic network compromised
of only 3 neurons (Sensor neuron Non and motor neurons Nl and Nr). Behavior of Non

is shown in figure 5.6. Nl received a weak weight from Non, causing it to spike tonically
(A). This resulted in a biased forward-turn. Nr received a stronger inhibitory weight from
Non, causing it to release a rebound burst (N) once Non’s activation halted full frequency
spiking. This gave Nr the role of counter-steering whenever it was off course.

5.2.2 Discussion

Although it was expected that the MLP network would be dysfunctional, the same can-
not be said for the SM. In order to investigate further, a custom SM network (SM*) was
made where the input neurons were CM neurons. Given that this custom network was
functional, this indicates that the SM has issues with adaptive generator potentials. More
precisely, it has problems with macro-adaption opposed to the micro-adaption required
in the TED test. Different forms of input scaling was also attempted under the suspicion
that our default input range might be too artificial for the more biological-based model.
The most likely explanation for SM’s failure could be rooted in the fact that it is intended
for modeling cortical spiking neurons, not sensory neurons of graded potentials. Another
interesting find was that SM* never showed any solutions with undulations. This might
be explained by the different NCFs available in the motor neurons. The rebound bursts
made by the CM can be extremely long, even when it is compressed over 3 cycles.

Unlike the TED test which always ended up with one strategy, the various solutions
for the chemotaxi test were quite diverse. The best solutions produced undulating be-
havior, where the creature continuously sweeps its sensor left and right to sample the
environment. There were also other reliable strategies (as shown in appendix C.2), how-
ever energy inefficient. Several of these involved biased turning with pirouettes, which
is coincidently very common for c.elegans[45]. From observations, it was quite clear that
once the population evolved into this form of strategy, it was nearly impossible to mutate
into an undulating one. This is because the solutions reach a local maxima, where small
mutations will not be able to produce radically different behavior. This is quite common
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problem in learning algorithms with multiple peaks in the solution space. Considering
there is no competition in our environment, these sub-optimal solutions will never be
wiped out by a better population.

Since only the CM qualified as being functional, it was also the only one tested for
minimal circuitry. Here we find the absolute best solutions of chemotaxi behavior for our
testbed environment, showing a significant benefit when the network is facilitated with
a pacemaker neuron. However, this does not mean that the pacemaker was required for
optimal behavior, seeing as the best solutions had very similar fitness (12.5 and 12.3).
The results also showed that the Son sensor was undoubtedly better compared to the
Soff neuron. This is most likely due to the Soff neuron being mostly dormant when the
creature approaches food, barely producing any spikes at all to elicit behavior. This might
explain why we see a facilitating pacemaker evolving faster, along with a better final
solution for the OFF+PM condition (10.5 over 9.5). If the pacemaker is able to produce a
biased forward movement, the Soff only has to signal when the creature is off course.

The discrepancy in efficiency between Son and Soff in these results are the complete
opposite of the findings in [43]. However, there are many reasons to explain this con-
trast, the main one being that the implementations are fundamentally different. In their
version, sensory neurons assisted to correct motor neurons which received an oscillating
input from a central pattern generator [46]. Discussed in their paper, the Noff neuron is
better at correcting wrong trajectories when the creature is already moving forward.

As described in our methods, the best evolved creature (a CM network) was placed
in a custom scenario for illustrative purposes (shown in figure 5.5) with a Gaussian con-
centration distribution. The results confirmed its evolved strategy to always move up the
gradient, independent of the non-linear increase of input. The creature made biased tra-
jectories to come in from one side of the food. Other solutions did display a more direct
trajectory using wider undulations, but they were less efficient. Interestingly, increasing
the length of our creature’s antenna resulted in a more direct path. This was because the
sensors underwent bigger fluctuation during the sweeps caused by the undulation, re-
sulting into the motor neurons to adjust earlier. In contrast, making it shorter produced
wider undulations as a result of the sweeps sampling less spacial data.

As explained in a paper[44], sensory neurons in c.elegans generates a heavy wave of
GP when the concentration increases or decreases, only settling to a resting state when
there is no change. The CM seems to be able to emulate this neural behavior by going
straight from input to adaptive APs, independent of a GP sensory neuron. This is in-
dicative by the resulting figures 5.5 and 5.6, giving insight to how well the CM neuron
interprets rise and fall of concentration levels, even at extremely small numerical pertur-
bations.
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FIGURE 5.4: Results from the ’Chemotaxi’ test, showing different neural
network models training 20 (50 for minimal network) independent popu-
lations each. Graph shows the running mean of the best solutions over the

last 100 generations. SM* is assisted with CM input neurons.
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FIGURE 5.6: The evolved input neuron Non for the CM network shown
in figure 5.5. An artificial sinusoidal input is fed to the neuron, showing
the discrete output spikes as vertical bars below. The neuron elicit full
spiking frequency whenever the input increases, while dropping to a lower

frequency otherwise. Npara = {a = 0.33, b = 1, c = 0}.
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Chapter 6

Evaluation and Conclusions

6.1 Evaluation by requirements

As mentioned in the introduction, the CM will be evaluated according to the require-
ments listed in section 1.1.

The first requirement, richness (1), is evaluated in section 3.4 by comparing it to a list
of NCFs. The CM was far richer than the LIF model, ranking very close to the SM.

The second requirement, cheapness (2), is evaluated in section 3.5. In the case of
typical network implementations, the CM was up to 7 times faster compared to the SM,
being on par with the MLP. Also in the case for individual neuron updates, the CM was
2.2 times faster than the SM.

The final requirement, functionality (3), is evaluated based on the behavioral experi-
ments in chapter 5. For the TED test, the CM was on par with the SM. For the chemotaxi
test however, CM was the only network that could perform.

6.2 Future research and possible applications

As the CM is new, the author hopes it might be further developed. For example, a desir-
able trait for a spiking neural model is to have a variable timestep. The fact that our CM
does not support this, means that a trained network could behave differently if we were
to alter the physics step.

Related to the topic of timesteps is the concept of network cycles. The relation be-
tween behavioral performance and the amount of cycles in the CM network update is
not fully understood, as it was originally intended to operate with just one cycle. Further
investigation of this topic might reveal interesting insight of network mechanics.

Shifting our focus to networks, preliminary tests did not show any advantage in
performance based on architecture other than the FF kind. However, network architec-
ture is an interesting topic in general, as connections are rather sparse within biological
brains[47, 48]. What behavior cannot FF networks perform? Interestingly, one of the
excluded tests of this thesis, listed in appendix D.1, was impossible for the creature to
achieve without recurrent connections.

As for evolution, one might try to improve the learning speed by building the network
of a fixed amount of neuron types that share parameters. Not only would this be more
realistic in terms of biological neurons, but it would also reduce the evolutionary search
space, leaving the main focus on mutating weights. This might reveal classes of neurons
which are useful as a starting point for building any network.

In some papers[4, 5], researchers evolve the creature’s morphology (bodies and sen-
sor/actuator locations) alongside the neural network. Implementing the CM for these
types of creatures might render it able to utilize morphology for a behavior which was
unsupported by another neural model. This behavior (following the axiom in 3) could
require a specific NCF in which only our CM would be capable of.
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As we have shown the CM’s capability to adapt to a wide range of numerical values in
the chemotaxi test, this might be useful for evolving a controller for a virtual car. In racing
games, the CM might utilize temporal dynamics of ray sensors reading the proximity of
nearby walls or cars. This could be used for indicating impending collisions where cars
up front suddenly breaks. Although [8, 9] made comparisons between the SM and MLP
for racing games, they did not get significant results showing the SM to be better. Since
our result show that the SM has problems with certain types of adaption, this raises
potential benefits using our CM.

Although for our implementation we associated one neuron for each sensor, future
implementations should consider giving it to multiple. For example, if one was inter-
ested in registering a set threshold (H) and acceleration of a sensor value (Son in 5.6), one
neuron would not be enough.

Finally, it is worth mentioning that the CM has been used at MeinMein[49], where the
author did his internship. Here, the CM was successfully used for evolved controllers in
creatures simulated in 3D physics environments.

6.3 Conclusion

In this thesis, we have explored the capabilities of a new spiking neural model created as
a controller for virtual environments. We have shown that it is able to replicate most of
NCFs of biological neurons, while also being cheap to implement for runtime environ-
ments with large timesteps. For its evolved functionality, it is equivalent to the SM for
the TED test, while being a the only model that could show chemotaxi behavior. It was
identified that the SM is restricted regarding adaption to wider numerical ranges of input
current. The CM had such problem, and was in turn able to evolve different chemotaxi
strategies using only 3 neurons. This network was also able to perform undulating behav-
ior independent of a central pattern generator. We also showed that a pacemaker neuron
with constant input may facilitate both functionality and learning speed of the CM. For
both behavioral tests done in this paper, it is clear that the SNNs have an advantage over
the more traditional MLP due to temporal dynamics of neuron states.
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Appendix A

Neuro-computational features of the
Controller Model
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NCF a b Input
A 0.9 0.8 +0.5
B 0.1 0.5 +0.5
C - - -
D 0.5 0.1 +0.5
E 0.4 0.3 +1
F 0.8 0.1 +1
G 1 0 +0.003t
H 0.65 0.5 +0.03t
I - - -
J - - -
K - - -
L 0.8 0.5 +0.45 : t[20,22,40,44]
M - - -
N 0.99 0.2 -1
O 0.8 0.5 +0.45 : t[20,45], -0.45 : t[40]
P 0.5 0.4 -1, +1 : t[40,80]
Q - - -
R 0.5 0.25 +0.01t : t[0:100], +0.55 : t[150]
S - - -
T 0.95 0.85 -1

TABLE A.1: CM parameter settings for replication of neuro-computational
features. c = 0.5 for all cases.
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Appendix B

Test results with error bars

B.1 Temporal Edge Detection : one-ray
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B.2 Temporal Edge Detection : triple-rays
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B.3 Chemotaxi
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Appendix C

Evolved creature behavior using the
Controller Model

C.1 Temporal Edge Detection

FIGURE C.1: Temporal Edge Detection (one-ray) strategy. The behavior of
triple-rays was more or less identical.

C.2 Chemotaxi
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FIGURE C.2: Chemotaxi strategy - Sharp turns

FIGURE C.3: Chemotaxi strategy - Gradual turns
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FIGURE C.4: Chemotaxi strategy - Undulation
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Appendix D

Excluded tests

This appendix includes tests that were excluded from this thesis due to scope limitation.

D.1 Tracker

The ’Tracker’ tests involved an immobile creature staring at a moving ball with limited
peripheral vision. The task was for the creature to turn in the direction it last saw the ball
(on its left or right). This was the only test in which feedback connection were essential,
where connections from the motor neurons went back to the hidden layer. This made the
network able to switch internal states of its turning bias, triggered by sensory neurons
(rays). This means that if the creature last saw the ball on its left side, it would keep on
turning left forever, vice versa. Solutions for this problem was successfully evolved for
all tested models.

D.2 Blind Pathfinder

The ’Blind Pathfinder’ aimed at evolving a fixed action pattern, independent of any sen-
sory input. Here a predetermined race track was made, challenging the creature to nav-
igate through it "by heart". This test was merely intended to explore sequential coding
schemes of SNNs, where the CM vastly outperformed the SM. Using 100 hidden neurons
fueled by a single pacemaker of constant input, it was possible for the network to learn
tracks with multiple sharp turns.

D.2.1 Junction

An extended version of the blind pathfinder was the ’Junction’ test. Here there was one
main track which eventually branched into two, yet only one of these tracks was currently
active. Before arriving at the branching junction, a conditional input spike was fed to the
creature when it moved over a specific location. This gave the creature a signal of which
track was active, making it possible for the network to evolve internal branching. As a
result, when fully trained it was able to finish either of the tracks based on the scenario,
implying both sequences were stored inside the same neural network. This was most
likely possible due to the bistability NCF (P). Although the SM might be able to perform
the same after enough brute force training, the author never witnessed it being able to
pass the junction. This might be related to how input is fed as a constant current over the
course of network cycles.



46

Bibliography

[1] Quoc V Le. “Building high-level features using large scale unsupervised learning”.
In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE. 2013, pp. 8595–8598. DOI: 10.1109/ICASSP.2013.6639343.

[2] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489. DOI: 10.1038/nature16961.

[3] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv
preprint 1312.5602 (2013). URL: https://www.cs.toronto.edu/~vmnih/
docs/dqn.pdf.

[4] Karl Sims. “Evolving 3D morphology and behavior by competition”. In: Artifi-
cial life 1.4 (1994), pp. 353–372. URL: http://www.karlsims.com/papers/
siggraph94.pdf.

[5] Dan Lessin, Don Fussell, and Risto Miikkulainen. “Adapting morphology to mul-
tiple tasks in evolved virtual creatures”. In: ALIFE 14: The Fourteenth Conference on
the Synthesis and Simulation of Living Systems 14 (2014), pp. 247–254. URL: http:
//nn.cs.utexas.edu/?lessin:alife14.

[6] Stephen Grand, Dave Cliff, and Anil Malhotra. “Creatures: Artificial life autonomous
software agents for home entertainment”. In: Autonomous Agents and Multi-Agent
Systems 1.1 (1998), pp. 39–57. URL: http://link.springer.com/article/
10.1023/A%3A1010042522104.

[7] Mänttäri and Joonatan. “Applications of Artificial Neural Networks in Games; An
Overview”. In: IRCSE ’11: IDT Student Workshop in Research Methods Mälardalen
University, Sweden (2011). URL: http://www.idt.mdh.se/kurser/ct3340/
ht11/MINICONFERENCE/FinalPapers/ircse11_submission_5.pdf.

[8] Elias Yee and Jason Teo. “Evolutionary spiking neural networks as racing car con-
trollers”. In: International Journal of Computer Information Systems and Industrial Man-
agement Applications ISSN 2150-7988 Volume 5 (2013), pp. 365–372. DOI: 10.1109/
HIS.2011.6122141.

[9] Urszula Markowska-Kaczmar and Mateusz Koldowski. “Spiking neural network
vs multilayer perceptron: who is the winner in the racing car computer game”. In:
Soft Computing 19.12 (2015), pp. 3465–3478. DOI: 10.1007/s00500-014-1515-2.

[10] T. Yamazaki and J. Igarashi. “Realtime cerebellum: A large-scale spiking network
model of the cerebellum that runs in realtime using a graphics processing unit”.
In: Neural Networks 47.0 (2013), 103––111. URL: http://www.sciencedirect.
com/science/article/pii/S0893608013000348.

[11] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. “The structure of the
nervous system of the nematode caenorhabditis elegans”. In: Philosophical Transac-
tions of the Royal Society of London. B, Biological Sciences 314.1165 (1986), 1––340. DOI:
10.1098/rstb.1986.0056.

[12] W.R. Schafer. “Deciphering the neural and molecular mechanisms of C. elegans
behaviour”. In: Current Biology 15.17 (2005), R723–729. DOI: 10.1016/j.cub.
2005.08.020.

http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://dx.doi.org/10.1038/nature16961
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://www.karlsims.com/papers/siggraph94.pdf
http://www.karlsims.com/papers/siggraph94.pdf
http://nn.cs.utexas.edu/?lessin:alife14
http://nn.cs.utexas.edu/?lessin:alife14
http://link.springer.com/article/10.1023/A%3A1010042522104
http://link.springer.com/article/10.1023/A%3A1010042522104
http://www.idt.mdh.se/kurser/ct3340/ht11/MINICONFERENCE/FinalPapers/ircse11_submission_5.pdf
http://www.idt.mdh.se/kurser/ct3340/ht11/MINICONFERENCE/FinalPapers/ircse11_submission_5.pdf
http://dx.doi.org/10.1109/HIS.2011.6122141
http://dx.doi.org/10.1109/HIS.2011.6122141
http://dx.doi.org/10.1007/s00500-014-1515-2
http://www.sciencedirect.com/science/article/pii/S0893608013000348
http://www.sciencedirect.com/science/article/pii/S0893608013000348
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1016/j.cub.2005.08.020
http://dx.doi.org/10.1016/j.cub.2005.08.020


BIBLIOGRAPHY 47

[13] Brett Szymik. “A Nervous Journey”. In: ASU - Ask A Biologist (2011). URL: http:
//askabiologist.asu.edu/neuron-anatomy (visited on 03/25/2016).

[14] Jonathan Platkiewicz and Romain Brette. “A threshold equation for action potential
initiation”. In: PLoS Comput Biol 6.7 (2010), e1000850. DOI: 10.1371/journal.
pcbi.1000850.

[15] Unknown. 2014. URL: http://www.physiologyweb.com/lecture_notes/
neuronal_action_potential/neuronal_action_potential_frequency_
coding_in_the_nervous_system.html.

[16] JGR Jefferys and HL Haas. “Synchronized bursting of CA1 hippocampal pyramidal
cells in the absence of synaptic transmission”. In: Nature 300 (1982), pp. 448–450.
DOI: 10.1038/300448a0.

[17] Jan-Marino Ramirez and Andrew K Tryba and Fernando Peña. “Pacemaker neu-
rons and neuronal networks: an integrative view”. In: Current opinion in neurobiol-
ogy 14.6 (2004), pp. 665–674. URL: http://www.ncbi.nlm.nih.gov/pubmed/
15582367.

[18] Eugene M. Izhikevich. “Which model to use for cortical spiking neurons?” In: IEEE
transactions on neural networks 15.5 (2004), pp. 1063–1070. URL: http://www.
izhikevich.org/publications/whichmod.pdf.

[19] Ellen Covey. n.d. URL: http : / / courses . washington . edu / psych333 /
handouts/coursepack/ch13-Information_processing_in_retina.
pdf.

[20] Svirskis G, Gutman A, and Hounsgaard J. “Electrotonic structure of motoneurons
in the spinal cord of the turtle: inferences for the mechanisms of bistability”. In: J
Neurophysiol. 85.1 (2001), pp. 391–398. URL: https://www.ncbi.nlm.nih.gov/
pubmed/11152739.

[21] Lockery S, Goodman M, and Faumont S. “First report of action potentials in a C.
elegans neuron is premature”. In: Nature neuroscience 12.4 (2009), pp. 365–366. URL:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951996/.

[22] Biswa Sengupta, Simon Barry Laughlin, and Jeremy Edward Niven. “Consequences
of converting graded to action potentials upon neural information coding and en-
ergy efficiency”. In: PLOS Comput Biol 10.1 (2014). DOI: 10 . 1371 / journal .
pcbi.1003439.

[23] Lars Buesing and Wolfgang Maass. “A spiking neuron as information bottleneck”.
In: Neural computation 22.8 (2010), pp. 1961–1992. URL: http://www.gatsby.
ucl.ac.uk/~lars/papers/NeCo_BuesingETAL2010b.pdf.

[24] Jifeng Qian, Arend Hintze, and Christoph Adami. “Colored Motifs Reveal Compu-
tational Building Blocks in the C. elegans Brain”. In: PLoS ONE 6.3 (2011), pp. 1–8.
DOI: 10.1371/journal.pone.0017013.

[25] Frank Rosenblatt. “The perceptron: a theory of statistical separability in cognitive
systems (Project Para)”. In: Cornell Aeronautical Laboratory (1958).

[26] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning repre-
sentations by back-propagating errors”. In: Cognitive modeling 5.3 (1988). DOI: 10.
1038/323533a0.

[27] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of membrane
current and its application to conduction and excitation in nerve”. In: The Journal of
physiology 117.4 (1952), pp. 500–544. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1392413/.

http://askabiologist.asu.edu/neuron-anatomy
http://askabiologist.asu.edu/neuron-anatomy
http://dx.doi.org/10.1371/journal.pcbi.1000850
http://dx.doi.org/10.1371/journal.pcbi.1000850
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_frequency_coding_in_the_nervous_system.html
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_frequency_coding_in_the_nervous_system.html
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_frequency_coding_in_the_nervous_system.html
http://dx.doi.org/10.1038/300448a0
http://www.ncbi.nlm.nih.gov/pubmed/15582367
http://www.ncbi.nlm.nih.gov/pubmed/15582367
http://www.izhikevich.org/publications/whichmod.pdf
http://www.izhikevich.org/publications/whichmod.pdf
http://courses.washington.edu/psych333/handouts/coursepack/ch13-Information_processing_in_retina.pdf
http://courses.washington.edu/psych333/handouts/coursepack/ch13-Information_processing_in_retina.pdf
http://courses.washington.edu/psych333/handouts/coursepack/ch13-Information_processing_in_retina.pdf
https://www.ncbi.nlm.nih.gov/pubmed/11152739
https://www.ncbi.nlm.nih.gov/pubmed/11152739
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951996/
http://dx.doi.org/10.1371/journal.pcbi.1003439
http://dx.doi.org/10.1371/journal.pcbi.1003439
http://www.gatsby.ucl.ac.uk/~lars/papers/NeCo_BuesingETAL2010b.pdf
http://www.gatsby.ucl.ac.uk/~lars/papers/NeCo_BuesingETAL2010b.pdf
http://dx.doi.org/10.1371/journal.pone.0017013
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/


BIBLIOGRAPHY 48

[28] Richard B Stein. “Some models of neuronal variability”. In: Biophysical journal 7.1
(1967), p. 37. DOI: 10.1016/S0006-3495(67)86574-3.

[29] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, pop-
ulations, plasticity. Cambridge university press, 2002. URL: http://icwww.epfl.
ch/~gerstner/SPNM/node26.html.

[30] Romain Brette. “What is the most realistic single-compartment model of spike ini-
tiation?” In: PLoS Comput Biol 11.4 (2015), e1004114. DOI: 10.1371/journal.
pcbi.1004114.

[31] W. Maass. “Networks of spiking neurons: The third generation of neural network
models”. In: Neural Networks 10.9 (1997), 1659––1671. DOI: 10.1016/S0893-
6080(97)00011-7.

[32] Simon Thorpe and Arnaud Delorme and Rufin Van Rullen. “Spike-based strategies
for rapid processing”. In: Neural networks 14.6 (2001), pp. 715–725. URL: http://
www.ncbi.nlm.nih.gov/pubmed/11665765.

[33] Romain Brette. “Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of
the Brain”. In: Frontiers in systems neuroscience 9 (2015). DOI: 10.3389/fnsys.
2015.00151.

[34] Corinne Beurrier et al. “Subthalamic nucleus neurons switch from single-spike ac-
tivity to burst-firing mode”. In: The Journal of neuroscience 19.2 (1999), pp. 599–609.
URL: http://www.ncbi.nlm.nih.gov/pubmed/9880580.

[35] Eunji Cheong et al. “Tuning thalamic firing modes via simultaneous modulation of
T-and L-type Ca2+ channels controls pain sensory gating in the thalamus”. In: The
Journal of Neuroscience 28.49 (2008), pp. 13331–13340.

[36] Eugene M. Izhikevich. “Resonate-and-fire neurons”. In: Neural networks 6.14 (2001),
pp. 883–894. URL: http://izhikevich.org/publications/resfire.pdf.

[37] David LaBerge and Ray Kasevich. “The cognitive significance of resonating neu-
rons in the cerebral cortex”. In: Consciousness and cognition 22.4 (2013), pp. 1523–
1550. DOI: 10.1016/j.concog.2013.10.004.

[38] Yann A et al LeCun. “Efficient backprop”. In: Neural networks: Tricks of the trade
(1998), pp. 9–48. URL: http://yann.lecun.com/exdb/publis/pdf/lecun-
98b.pdf.

[39] Eugene M. Izhikevich. “Simple model of spiking neurons”. In: IEEE Trans. Neu-
ral Networks 14 (2003), 1569––1572. URL: http : / / www . izhikevich . org /
publications/spikes.pdf.

[40] Arash Ahmadi and Mark Zwolinski. “A modified Izhikevich model for circuit im-
plementation of spiking neural networks”. In: First IEEE Latin American Symposium
on Circuits and Systems (LASCAS) (2010), pp. 192–195. DOI: 10.1109/LASCAS.
2010.7410243.

[41] Romain Brette and Dan FM Goodman. “Simulating spiking neural networks on
GPU”. In: Network: Computation in Neural Systems (2012). URL: http://romainbrette.
fr/WordPress3/wp-content/uploads/2014/06/BretteGoodman2012.
pdf.

[42] James E. Baker. “Reducing Bias and Inefficiency in the Selection Algorithm”. In:
Proceedings of the Second International Conference on Genetic Algorithms and their Ap-
plication (1987), pp. 14–21.

http://dx.doi.org/10.1016/S0006-3495(67)86574-3
http://icwww.epfl.ch/~gerstner/SPNM/node26.html
http://icwww.epfl.ch/~gerstner/SPNM/node26.html
http://dx.doi.org/10.1371/journal.pcbi.1004114
http://dx.doi.org/10.1371/journal.pcbi.1004114
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://www.ncbi.nlm.nih.gov/pubmed/11665765
http://www.ncbi.nlm.nih.gov/pubmed/11665765
http://dx.doi.org/10.3389/fnsys.2015.00151
http://dx.doi.org/10.3389/fnsys.2015.00151
http://www.ncbi.nlm.nih.gov/pubmed/9880580
http://izhikevich.org/publications/resfire.pdf
http://dx.doi.org/10.1016/j.concog.2013.10.004
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://www.izhikevich.org/publications/spikes.pdf
http://www.izhikevich.org/publications/spikes.pdf
http://dx.doi.org/10.1109/LASCAS.2010.7410243
http://dx.doi.org/10.1109/LASCAS.2010.7410243
http://romainbrette.fr/WordPress3/wp-content/uploads/2014/06/BretteGoodman2012.pdf
http://romainbrette.fr/WordPress3/wp-content/uploads/2014/06/BretteGoodman2012.pdf
http://romainbrette.fr/WordPress3/wp-content/uploads/2014/06/BretteGoodman2012.pdf


BIBLIOGRAPHY 49

[43] Izquierdo E.J. and Lockery S.R. “Evolution and Analysis of Minimal Neural Cir-
cuits for Klinotaxis in Caenorhabditis elegans”. In: The Journal of neuroscience : the
official journal of the Society for Neuroscience 30.39 (2010), pp. 12908–12917. DOI: 10.
1523/JNEUROSCI.2606-10.2010.

[44] Shibani Santurkar and Bipin Rajendran. “A neural circuit for navigation inspired
by C. elegans Chemotaxis”. In: arXiv 1410.7881 [cs.NE] (2014). URL: http : / /
arxiv.org/pdf/1410.7881v1.pdf.

[45] Jonathan T Pierce-Shimomura, Michael Dores, and Shawn R Lockery. “Analysis of
the effects of turning bias on chemotaxis in C. elegans”. In: Journal of Experimental
Biology 208.24 (2005), pp. 4727–4733. DOI: 10.1242/jeb.01933.

[46] Eve et al. “Invertebrate central pattern generation moves along”. In: Current Biology
15.17 (2005), R685–R699. URL: http://www.ncbi.nlm.nih.gov/pubmed/
16139202.

[47] Song et al. “Highly nonrandom features of synaptic connectivity in local cortical
circuits”. In: PLoS Biol 3.3 (2005), e68. URL: http://journals.plos.org/
plosbiology/article?id=10.1371/journal.pbio.0030068.

[48] Nicolas Brunel. “Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons”. In: Journal of computational neuroscience 8.3 (2000), pp. 183–
208. URL: https://galton.uchicago.edu/~nbrunel/pdfs/brunel00JCNS.
pdf.

[49] Meindert Kamphuis. MeinMein. 2016. URL: www.meinmein.com.

http://dx.doi.org/10.1523/JNEUROSCI.2606-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.2606-10.2010
http://arxiv.org/pdf/1410.7881v1.pdf
http://arxiv.org/pdf/1410.7881v1.pdf
http://dx.doi.org/10.1242/jeb.01933
http://www.ncbi.nlm.nih.gov/pubmed/16139202
http://www.ncbi.nlm.nih.gov/pubmed/16139202
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030068
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030068
https://galton.uchicago.edu/~nbrunel/pdfs/brunel00JCNS.pdf
https://galton.uchicago.edu/~nbrunel/pdfs/brunel00JCNS.pdf
www.meinmein.com

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Requirements

	Neurons and models
	The biological neuron
	The Action Potential
	Graded and other potentials
	Why different potentials?

	Artificial networks and neurons
	The Perceptron (MLP)
	Spiking models

	Neural information processing
	Neural implementation for agents

	The Controller Model
	Neuronal capacities
	Development
	Formulating the CM
	NCF assessment
	Controversial : N, T, P
	Possibly redundant : C, S, M
	Missing : I, J, K, Q

	Performance assessment
	Model implementation
	Setup
	Performance


	Testbed environment
	Overview
	The creature, food, and energy.

	Evolutionary algorithm
	Fitness evaluation
	Selection and Crossover
	Mutation

	Neural Network integration
	Input / Output

	Runtime cycle

	Behavioral experiments
	Temporal Edge Detection
	Results
	Discussion

	Chemotaxi
	Results
	Discussion


	Evaluation and Conclusions
	Evaluation by requirements
	Future research and possible applications
	Conclusion

	Neuro-computational features of the Controller Model
	Test results with error bars
	Temporal Edge Detection : one-ray
	Temporal Edge Detection : triple-rays
	Chemotaxi

	Evolved creature behavior using the Controller Model
	Temporal Edge Detection
	Chemotaxi

	Excluded tests
	Tracker
	Blind Pathfinder
	Junction


	Bibliography

