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Abstract

When does keeping a memory of observations pay off? In this thesis, we use hidden Markov models
to look at phase transitions that emerge when comparing state estimates in systems with discrete states
and noisy observations. We infer the underlying state of the hidden Markov models from the observations
in two ways: through naive observations, which take into account only the current observation, and a
state estimate found through Bayesian filtering, which takes the history of observations into account. We
compare the state estimates by calculating the discord parameter and study the behaviour of the discord.
We then explore a range of different hidden Markov models to investigate how general the behaviour of
the discord is and, in particular the phase transition to non-zero discord. We varied the symmetry of
the system, number of symbols, number of states, and parameters of the system. We find quantitatively
similar behaviour in all the considered systems, and we can calculate the critical point where keeping
a memory of observations starts to pay off. We also explored a mapping from hidden Markov models
to Ising models to get more insight in the emergence of the phase transitions. We only find the phase
transitions when comparing the two state estimates, not when we compare the true, hidden state with a
state estimate.
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Chapter 1

Introduction

1.1 Inference problems

Inference is the act of deriving of logical conclusions from information known (or assumed) to be true. In
statistical inference, properties of an underlying distribution are deduced from the analysis of data. The
data is usually only a sample of a larger population, and statistical methods are used to infer properties
of the total population. Nowadays, inference problems appear everywhere: in neuroscience [1], signal
processing [2], artificial intelligence [3], and many other areas.

There are several established schools or paradigms of statistical inference [4, Chapt. 17]. We will
restrict ourselves to Bayesian inference in this thesis. Bayesian inference is a method of statistical inference
in which probabilities are updated using Bayes’ theorem as more information becomes available. Bayes’
theorem [5] for an event A, given an event B, is

P (A|B) =
P (B|A)P (A)

P (B)
. (1.1)

It relates the posterior probability of an event A given an event B, P (A|B), to the prior probability,
P (A), and the likelihood P (B|A)/P (A) which expresses the impact of the event B on the probability of
A. The prior probability (prior to getting more information) is updated with the likelihood to get the
posterior probability.

Some examples of problems that can be tackled by Bayesian inference include decoding problems
for error-correcting codes, the inferring of clusters from data, interpolation through noisy data, and the
classifying of patterns given labelled examples [6, Part IV]. In exact inference, the conditional probability
distribution of a variable of interest is calculated analytically. In problems that cannot be solved exactly,
approximation techniques are implemented, for example when the exact model parameters are not known
in addition to the variables that one wants to infer.

The conditional dependance structure between random variables can be represented by graphs. Each
node of a graph is associated with a probability function that depends on the parent variables: nodes from
which you can directly get to the node under consideration. The nodes to which you can get in a single
step are called the children of that node. Bayesian networks, or directed acyclic graphs [4, Chapt. 10],
are a common graphical representation. The probability in such graphs can only ‘flow’ in one direction
(an arrow of time), and loops are not allowed. An example of a directed acyclic graph is shown in
Figure 1.1. The joint probability distribution functions of directed acyclic graphs can be factored, which
makes inference possible in a straightforward way. We will look at Markov chains and hidden Markov
models, which are types of directed acyclic graphs. Markov chains are a special case of directed acyclic
graphs, where each node has only one parent and one child node. In Chapter 2, we will present the theory
of these systems.

There are three main types of inference for Bayesian networks: inferring unobserved variables, param-
eter learning, and structure learning [4, Chapt. 10]. The first type assumes that the model parameters are
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Figure 1.1: Randomly generated directed acyclic graph.

known, and the hidden state of the network is inferred from observations. The second uses the realization
of a network and the knowledge of its structure to infer the model’s parameters. In the last case, the
realization of a network is used to infer the structure of the model. We will be concerned with issues
that fall into the first class of problems: inferring the unobserved variables of a model, assuming that
the correct structure and parameters of the model are known. This is a problem that we are faced with
daily, whenever we have to make decisions based on incomplete or uncertain data. For example, deciding
whether or not to take an umbrella based on the weather forecast, determining your next move in a game
without knowing your opponent’s strategy, or tracking objects with a noisy sensor.

Two important, more general, scientific questions about inference are: The question of sufficient
information, Under what conditions can the variables of interest be recovered sufficiently well? And the
question of computational efficiency, Can the inference problem be solved algorithmically efficiently? And,
Can an optimal algorithm be formulated? A particular research interest is defining when an inference
problem is easy, hard or impossible, and developing efficient algorithms to infer the variables with as
little information as possible [5, 7]. These boundaries are still unknown for general inference problems.

1.1.1 Decision making

In many applications of Bayesian inference, simply calculating the probability of the system being in a
certain state is not enough. Often, one needs to make a decision based on the inference outcome. For
example, one might want to act the system based on observations: decide whether or not to bring an
umbrella based the forecast or applying a control signal to a system.

These type of problems are called statistical decision problems and fall in the general area of control
(feedback) theory. They can be thought of as playing a game against nature; this is similar to playing a
game against a strategic player, as is usually done in game theory [8]. In either case, the objective is to
win the game, maximize winnings, or minimize losses. Only, in the case of playing against nature, the
other player is not actively trying to optimize something.

This paragraph is based on [9, Chapt. 14]. The performance of a strategy (inference + decision
making) can be measured by a cost function. It measures the compatibility of the actions that make up
possible strategies with the variable to be inferred. In order to get the best possible result, one tries to
find the optimal procedure for each possible situation: minimizing the expected loss. In situations where
stochastisticity is important, the expectation value of the loss function is also known as the risk function.
In problems where the state of a system is estimated from observations, a commonly used cost function
is 0-1 loss. The loss is 0 when the state coincides with the state estimate from observations, and 1 when
they do not coincide. The strategy that minimizes the expected loss is the posterior mode or maximum a
posteriori (MAP) estimate in this case. We will come back to the MAP estimator later. When inferring
model parameters, the mean-square error is commonly used as risk function. In physics, it is often used
to fit a curve to data. The mean value of a parameter can be found from the minimum of the least-square
cost function. Similarly, the median value of a parameter is found using the absolute value cost function.

Adding a decision-making component to a hidden Markov model results in a partially observed Markov
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decision processes (POMDP) [4, Chapt. 10]. POMDPs are generally not exactly solvable, but approx-
imate algorithms have been developed [10]. Some interesting applications are aircraft collision avoid-
ance [8], and the conservation of the critically endangered and difficult to detect Sumatran tigers [11].

1.1.2 Statistical mechanics and inference problems

So far, we have talked about inference from as an information-theoretical problem. However, it turns out
that many inference problems are essentially the same as some physical systems. Shannon introduced
an entropy as a measure of difference in information content. Though this entropy has the same form
as the traditional statistical mechanical entropy, he did not make a connection between the two. Later,
Jaynes suggested that statistical physics could just be a special case of a more general theory of Bayesian
inference [5], but this is heavily debated [12].

The joint values of random variables in a statistical inference problem can be interpreted as possible
microstates of an imaginary physical system. In neural networks, Ising models and Potts models are
commonly seen in inference problems. The inferring of variables, depending on what exactly one is
inferring and how, can be the same problem as the minimalization of a Hamiltonian. MAP estimation
can be seen as the ground state of a physical system; the minimum of the Hamiltonian of that system.
The problem of graph coloring turns out to be equivalent to studying the zero temperature behaviour
of the anti-ferromagnetic Potts model [13]. Also, there are connections between spin glasses and error-
correcting codes [14]. And, the statistical mechanics of learning with a neural networks is also similar to
that of spin glasses [15–17].

1.2 Phase transitions

A remarkable feature of statistical physics is the possibility to have phase transitions between states
of matter. The term phase transition is often used to indicate transitions between states of matter:
liquid, solid, and gas. However, there are many different kinds of phase transitions, such as the ferro- to
paramagnetic transitions in magnetic materials [18], superconducter to superfluid transitions [19], and
even symmetry breaking transitions in the laws of physics as the early universe cooled [20].

We distinguish between first- and second-order phase transitions [5]: first-order transitions have dis-
continuities in the first derivative of the free energy with respect to some thermodynamic variable, whereas
second-order transitions are continuous in the first derivative of the free energy but have discontinuities
in their second derivatives. An order parameter measures the degree of order across phase transitions.
In liquid-gas transitions, the order parameter is the difference in densities, and in magnetic systems, it is
the net magnetization. The different phases of a system and the phase transitions can be visualized in a
phase diagram.

1.2.1 Phase transitions in inference problems

We have seen that certain inference problems are equivalent to standard physical systems. When a phase
transition is found in a physical system, it makes sense that it also occurs in the analoguous inference
problem. They can be found in parameter estimation problems [21], in state estimation problems in
networks [22], in state estimation in hidden Markov models [23], and in a Maxwell demon system that
is very similar to a hidden Markov model [24]. As we will focus on phase transitions in hidden Markov
models that are relevant to the understanding of similar transitions studied in Maxwell demons, we
present this application in more detail; Maxwell made up a demon to demonstrate the limitations of the
second law of thermodynamics [25]. Consider a chamber filled with gas, divided into two equal sized
chambers, and connected through a trapdoor. An intelligent creature such as a Maxwell demon could
observe the speed of the gas molecules, and open the trapdoor whenever a fast molecule approaches the
door from the left and when a slow molecule approaches the door from the right. The demon sorts the
molecules based on speed, creating a hot and a cold reservoir. The temperature difference between the
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reservoirs could be used to do useful work. However, this violates Clausius’s formulation of the second
law; it is not possible to transfer heat from a colder body to a hotter one, on average, without doing any
work. For decades, the increase in entropy was attributed to the acquisition of information, but we know
now that the erasure of information, not the acquisition, is the source of the entropy increase [26].

A Maxwell demon that can experimentally be realized to convert information into work is a particle
in a double-well potential [24]. Phase transitions are found as the observation error probability is varied
[27], and when the strategies of using memory and not using memory are compared [24]. This phase
transition is found in a ‘discord’ order parameter D as the observation error probability is increased.
These transitions also turn up in symmetric two-state, two-symbol hidden Markov models, which we
will discuss in more detail in Chapters 2 and 4. Interestingly, these transitions are only seen when
comparing the state estimates based on filtering and naive observations, not when comparing the inferred
and underlying state [23].

1.3 Outline

In this thesis, we will explore the phase transitions as seen in hidden Markov models where the states have
to be inferred from observations. We will explore the properties of the phase transitions. In particular, we
will study a range of hidden Markov models to see how general these transitions are and how robust they
are to the details of the model. We will formulate more detailed questions and aims after we introduce
the theory necessary to study these systems.

This thesis is organized as follows: First, we discuss the theoretical background of the systems we
study and start looking at symmetric two-state, two-symbol HMMs, systems in which phase transitions
have been observed [24], in Chapter 2. In Chapter 3, the simulation methods used in generating HMMs
and measuring their properties are discussed. Then, in Chapters 4-6, we study various HMMs and
their phase transitions. Finally, the results will be discussed and the conclusions will be presented in
Chapter 7.
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Chapter 2

Theory

In this chapter, we will build up the theory needed to study discord in hidden Markov models. We will
start with the basics of Markov chains and hidden Markov models. Then, we discuss state estimation,
in particular Bayesian filtering, and we introduce the discord parameter as a measure to compare two
state estimates. Finally, all of this is applied to one of the simplest non-trivial hidden Markov models:
the symmetric two-state, two-symbol hidden Markov model.

2.1 Hidden Markov models

2.1.1 Markov chains

One of the most widely used discrete state-space systems is a Markov chain. Its relatively straightforward
mathematical description has applications to a wide range of topics, from physics [28, 29] to economics
[30, 31] to biology [32, 33] to information science [34, 35]. Discrete-time Markov chains describe the
evolution of a system in discrete time t, with discrete states xt. What makes them special is the Markov
property, which refers to the memorylessness of the process: The next state xt+1 of a system with
Markovian dynamics depends only on the current state xt, and not on past of states,

P (xt+1|xt, xt−1, . . . , x2, x1) = P (xt+1|xt). (2.1)

A graphical presentation of a Markov chain in time is shown in Figure 2.1. It is a simple directed acyclic
graph; each node has only one parent and one child node. We will consider only time-homogeneous Markov
chains, which have time-independent transition probabilities [36]. A common example of a Markov chain
is a simple weather model (Figure 2.2). The state of this system can be either ‘Sunny’ or ‘Rainy’, and the
current state determines the probabilities to transition to another state. For a more realistic (and more
complicated) model, we might want to take into account seasonal changes, a greater variety of states, or
dependence on more past states. Physical systems are often coarse grained when modelled with Markov
chains [37] — a continuum of states is made discrete or the number of states is decreased. Consider, for
example, an ion channel in the cell membrane [38]. Markov chains can be used to describe this system
by coarse graining over appropriate timescales. An ion channel can be open or closed, but it can also be

xt-1 xt xt+1

Figure 2.1: Graphical presentation of a Markov chain. State xt+1 depends only on state xt.
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Figure 2.2: Example of a Markov chain, a simple weather model with two states.

partly open. When the channel is studied at timescales where opening and closing of channels is fast and
the time spent in an intermediate state is neglible, the approximation of two states is fairly accurate. The
coarse-graining timescale should be longer than the correlation time, so that the system can be accurately
described as a Markov process, but it should be short enough to capture all the details of the dynamics.

The dynamics of an n-state Markov chain can be described using an n× n transition matrix A with
elements Aij = P (xt+1 = i|xt = j) [24]. All entries should satisfy 0 ≤ Aij ≤ 1, because they are
normalized probabilities. We use left stochastic matrices, and consequently the columns of the matrix
should sum to 1,

∑
i Aij = 1, to ensure proper normalization in a closed system. In words, the probability

of being in any of the states, given the previous state, is one. The steady-state distribution π of A is
defined as π = Aπ, if the components of π are positive and their sum is finite. The matrix needs to
satisfy certain conditions to make sure a unique stationary state exists. A discrete-time Markov process
has a unique stationary distribution if it is time homogeneous, irreducible and aperiodic. A Markov
process is irreducible if every state can be reached from any state, and aperiodic if the states can be
visited at irregular times. Most of the time, we will study matrices that have only non-zero elements, in
which case all of these conditions are met automatically. If the steady-state distribution exists, then π is
also the limiting distribution for t→∞, and the process is ergodic, since the proportion of time spent in
each state converges to π [36].

In physics, we often demand that a system obey detailed balance. Detailed balance is met when it is
impossible to distinguish between a system going forward or backward in time. Billiard balls or atoms
colliding are systems where this is a natural condition. When a Markov chain satisfies the detailed balance
condition,

Aijπj = Ajiπi, (2.2)

for all components of the vector π and these components sum to unity, the Markov chain is reversible.
If this vector exists, it is the steady-state distribution of the process [36].

2.1.2 Hidden Markov models

Markov chains are convenient for modelling a range of physical processes. However, the process of interest
is often not directly observable. If we are lucky, we can observe a variable that correlates with the desired
quantity. In which case, we can use that variable to infer the state of the hidden process. We can describe
this, the hidden state and the correlated observabed symbol, with a hidden Markov model (HMM). The
structure of such a model is shown in Figure 2.3. To clarify, let us consider the ion channel once again.
An ion channel is so small that we cannot directly observe it, and want to measure the state of the
channel, open or closed. It turns out, measurements of the electrical conductance of ion channels can be
used to infer the state of the channels [39]. When a channel is open, ions can move through the channel,
and there is a flow of charge. When it is closed, there is no flow of ions; when it is partly open, there is
some flow, but less than for an open channel. The measurements will have errors; there may be natural
fluctuations in the system and measurements are usually not perfect. Here, imperfect measurements that
correlate with hidden states make the model a hidden Markov model.

The evolution of the hidden state is described by a Markov chain, as we have seen before, Aij =
P (xt+1 = i|xt = j). The observation of an emitted symbol yt is described by a time-homogeneous m× n
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xt-1 xt xt+1

yt-1 yt yt+1

Figure 2.3: Graphical presentation of the dependence structure of a HMM. The variables x are hidden
states with Markovian dependence; the variables y are observations that correlate with the
underlying, hidden, states.

observation matrix B, with elements Bij = P (yt = i|xt = j). The emission of symbols is described by a
Markov chain that depends on the hidden state. The observations have no memory and depend only on
the current state of the system xt. The number of states n and symbols m does not have to be equal; m
can either be bigger or smaller than n [24]. Usually, one considers m ≥ n, so that the observations can
represent the entire state space. We will refer to an m-state, n-symbol HMM as an m × n HMM. The
simple weather model, in Figure 2.2, has two states and two symbols. The discussed ion-channel model
is slightly more complicated, it has two states and infinitely many symbols (a continuum of possible
observations). The behaviour of a hidden Markov model is governed completely by its transition matrix
A and observation matrix B.

The observations as a function of time P (yt+1|yt) are generally not Markovian: The probability of
an observation conditioned on previous observations P (yt+1|yt, yt−1, . . . , y1) does not depend on only yt.
However, the combined process of P (xt, yt) can be described as a Markov chain: A Markov chain on
the product space of states and symbols {Xt × Yt} [39]. This becomes clear when we rewrite the joint
probability, P (xt, yt) = P (yt|xt)P (xt). Since both xt and yt are determined entirely by xt−1, (xt, yt) can
be written as functions of (xt−1, yt−1). Hence, we can use the properties of Markov chains for hidden
Markov models as well. We just have to be careful to apply them to the right process. In a HMM where
the possible states and emitted symbols are isomorphic, the emitted symbols can be interpreted as noisy
observations of the state.

2.2 State estimation

Two common problems associated with HMMs are inference of the model parameters and inference of
the sequence of hidden states. For simplicity, we assume that we have perfect knowledge of our model
parameters, and we will focus on state estimation. State estimation or optimal filters are traditionally
used in telecommunications [40]. A signal (sequence of states) is transmitted and the receiver wants to
minimize the signal’s distortion due to noise. Algorithms are available to infer the most likely state at
each time or the most likely sequence of states, among other inference tools.

There are a number of algorithms that try to infer the output sequence of a HMM. Which algorithm is
the most suitable for a particular problem depends on the quantity you want to infer and the information
you have available. In this section, we will review a few of these algorithms. The focus of this work is on
the Bayesian filtering algorithm, which will be discussed in more detail in Section 2.2.1.

• Filtering, P (xt|yt), estimates the probability of being in state xt based on current and past obser-
vations yt ≡ {y1, y2, . . . , yt}. It is interesting for real-time applications, such as feedback systems.
The modelling of a system from noisy data and/or imperfect knowledge of the dynamics can be
formulated as an optimal filtering problem [40].
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Figure 2.4: Realization of a two-state, two-symbol HMM for 50 timesteps. The hidden state is shown
in gray, the emitted symbols in blue open circles and the probability from the Bayesian
filtering equations in blue. Note that the hidden state is actually discrete but is shown as
a line for visibility.

• Smoothing, P (xt|yN ), similar to filtering, estimates the probability of being in state xt based on
past, current and future observations yN ≡ {y1, y2, . . . , yt, . . . , yN}. It is generally more accurate
than filtering; however, it can only be used for post processing. Bayesian smoothing can be used in
any situation where Bayesian filtering is appropriate, excluding real-time applications.

• Maximum a posteriori (MAP) estimation, can be used to find the most likely path given a sequence
of observations P (xN |yN ). Unfortunately, for long sequences this problem is very complex, since all
possible paths xN have to be considered. A commonly used algorithm to find the most likely path
is the Viterbi algorithm [41]. It is used, for example, in speech recognition [42], where a sequence of
events, rather than the individual symbols, contains important information. Also, MAP sequence
estimation has the interesting property that, when mapping a symmetric 2 × 2 HMM to an Ising
model, it is equivalent to minimizing the Hamiltonian H(y, x) = − log(P (y|x)P (x)) [43]. We will
come back to the mapping of HMMs onto Ising models in Sections 2.4.4 and 5.4.

• Kalman filtering, for linear-Gaussian state-space models is analogous to Bayesian filtering for
HMMs. A state-space model is just like a HMM, except that the state space is continuous. A
linear-Gaussian state-space model is a special case where the transition and observation models
are linear, and the noise is Gaussian [4]. Applications include the tracking of airplanes from noisy
measurements, the control of robotic motion, and the reconstruction of images from noisy sensors
in brain imaging methods [40].

Algorithms that estimate the probability to be in a particular state at a given time are never certain
for finite transition and observation probabilities. Even after a long string of identical symbols, there is
always a (small) probability that the state changed and we observe a wrong symbol. Figure 2.4 shows a
realization of a 2× 2 HMM: the hidden state, the observations and the probability P (xt = 1|yt) resulting
from the application of the Bayesian filtering algorithm. The states and symbols can take on the values
‘±1’ and P (xt = 1|yt) = 1− P (xt = −1|yt) in a 2× 2 system. Also, in a real system, the state would be
unknown.

We see that the probability levels off after a long string of identical observations; the state estimate
never exceeds a certain maximum confidence level. The maximum confidence level p∗i is the probability
that the system is in state i given a long sequence of identical observations, yt = i,

p∗i = P (xt = i|yt = i). (2.3)

For a specific HMM, we can calculate p∗i as a function of the model’s parameters. We write it out further
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using Bayes’ theorem and the Markov property,

p∗i = P (xt = i|yt = i) (2.4)

= P (xt = i|yt = i, yt−1 = i)

=
P (yt = i|xt = i,����

yt−1 = i)P (xt = i|yt−1 = i)

P (yt = i|yt−1 = i)

=
1

Zt,i
P (yt = i|xt = i)P (xt = i|yt−1 = i).

Here, yt−1 = i is crossed out because once we know the current state xt, the history of observations does
not add any information to our knowledge of yt. The normalization factor in the denominator is written
as Zt,i. We use similar tricks and marginalization to get an expression in terms of transition probabilities,
observation probabilities and p∗i :

p∗i =
1

Zt,i
P (yt = i|xt = i)

∑
xt−1

P (xt = i, xt−1|yt−1 = i) (2.5)

=
1

Zt,i
P (yt = i|xt = i)

∑
xt−1

P (xt = i|xt−1,����
yt−1 = i)P (xt−1|yt−1 = i)

=
1

Zt,i
P (yt = i|xt = i)

∑
xt−1

P (xt = i|xt−1)P (xt−1|yt−1 = i).

The last term P (xt−1|yt−1 = i) is simply p∗i when xt−1 = i, but can be complicated for xt 6= 1 in HMMs
that are not symmetric or have more states. We will come back to the maximum confidence level in
Section 2.4 and in the analysis of different HMMs.

An interesting property of the filtering equations applied to a HMM is ‘forgetting of the initial con-
dition’. It is a result of the Markovian dynamics of Markov chains and hidden Markov models. Markov
chains with a unique steady-state distribution go to this distribution in the long-time limit, regardless of
the initial condition. The observations as a function of time are not Markovian, but they inherit some
forgetting properties from the hidden chain [39, Chapt. 4.3]. Since the filter depends on the observations,
it consequently inherits these forgetting properties, too. This property might break down when the filter
is not optimal, i.e., when inaccurate model parameters (A and B) are used to calculate the filtering prob-
ability [44]. This will not be a problem here, as we will use the filter only with exact model parameters.
In short, the initial condition does not matter when averaging over sufficiently long times.

2.2.1 Bayesian filtering equations

Bayesian filtering is of interest to us for its real-time applications, such as tracking and control systems.
Also, compared to MAP estimation we get quite a lot of information about our system from filtering;
Through MAP estimation we can calculate the most likely path, but other paths, that are only slightly
less likely than the MAP estimate, could be interesting as well.

The Bayesian filtering equations recursively calculate the probability for the system to be in a state xt
given the whole history of observations yt [24]. It is calculated in two steps: the prediction step P (xt+1|yt),
and then the update step P (xt+1|yt+1). The prediction step can be worked out using marginalization,
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the definition of conditional probability, and the Markov property,

P (xt+1|yt) =
∑
xt

P (xt+1, xt|yt) (2.6)

=
∑
xt

P (xt+1|xt,��y
t)P (xt|yt)

=
∑
xt

P (xt+1|xt)P (xt|yt).

The transition matrix and the previous filter estimate are necessary to predict the next state. To write
out the update step, we use the same tricks as we used to write out p∗i in Equation 2.4,

P (xt+1|yt+1) =
1

Zt+1
P (yt+1|xt+1)P (xt+1|yt). (2.7)

Here, we have again written the normalization factor as Zt+1. It is the same factor as before; the symbols
yt+1 and yt are just not specified explicitly. The normalization factor can be interpreted as a kind of
partition function, since it is a sum over all possible states. We need the observation matrix and the
prediction step to update the probability.

The complete set of Bayesian filtering equations is given by

P (xt+1|yt) =
∑
xt

P (xt+1|xt)P (xt|yt) (2.8a)

P (xt+1|yt+1) =
1

Zt+1
P (yt+1|xt+1)P (xt+1|yt), (2.8b)

with the normalization factor

Zt+1 = P (yt+1|yt) (2.9)

=
∑
xt+1

P (yt+1|xt+1)P (xt+1|yt).

The probability can be calculated recursively from the transition matrix, the observation matrix and the
initial condition P (x1|y0) = P (x1). We use the steady-state distribution of the transition matrix as the
initial condition. Equation 2.8a is the discrete version of the Chapman-Kolmogorov equation [40, Chapt.
4.2], which describes the evolution of continuous-time Markov chains.

2.3 Comparing strategies

In the previous section, we introduced an algorithm that uses a memory of observations to, hopefully,
improve on the naive observations of a HMM. In this thesis, we focus on comparing the strategies of
keeping and not keeping a memory. In particular, we will ask when keeping a memory of past observations
is useful. We will introduce a parameter that quantifies how similar state estimates of two strategies are.

We start by defining our state estimates In essence, we reduce the information P (xt) to a single
number. This kind of condensation is useful in, for example, feedback applications, where one applies a
control signal ut to the system as a function of the (estimated) state. The estimated state based on the
filtering algorithm, we define as

x̂ft ≡ arg max
xt

(P (xt|yt)). (2.10)

It is the most likely state, given the history of observations, at a time t. Similarly, we define the state
estimate based on the current (naive) observations,

x̂ot ≡ arg max
xt

(P (xt|yt)). (2.11)
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Now, to compare the information in sequences of state estimates, there are several measures one could
consider. Some options are: the Kullback-Leibler divergence, relative entropy, or mutual information [45].
The discord order parameter is particularly useful to see when the different strategies give different results,
it is defined as

D ≡ 1− 〈x̂ot x̂
f
t 〉, (2.12)

for a 2× 2 HMM, where 〈. . . 〉 indicates an ensemble average. The state estimates can take on all values
in the state space of the HMM: ‘1’ and ‘-1’. The discord parameter is zero when the state estimates
agree at all times. In such a case, there is no value in keeping a memory of observations. When the state
estimates differ, D > 0 and there is value in keeping a memory. At an observation probability b = 0.5,
the observations are uncorrelated to the actual state, and we find D = 1.

Note that the discord, as defined here, compares the strategies of keeping a memory and not keeping
a memory. It does not necessarily reflect how similar a state estimate and the hidden state are. However,
one can calculate the discord between the filter x̂ft and the actual hidden state xt, or the naive observations
x̂0
t and the hidden state xt. The latter can even be calculated analytically, since we know B, which relates
xt and yt.

2.4 Symmetric two-state two-symbol hidden Markov models

Now, we take a look at symmetric two-state, two-symbol hidden Markov models. The transition and
observation probabilities are the same for each state, reducing the number of independent parameters,
and simplifying the probability matrices. The transition and observation matrix are now doubly stochastic
matrices, given by

A =

(
1− a a

a 1− a

)
and B =

(
1− b b

b 1− b

)
, (2.13)

respectively. The transition matrix depends on a, the probability of transitioning from one state to
another, and the observation matrix depends on b, the probability of observing a symbol i given that the
system is in some other state j. To ensure proper normalization of the probabilities, 0 ≤ a, b ≤ 1. In
practice, we will consider 0 ≤ a, b ≤ 1

2 , for reasons that will become clear in following sections. The two
parameters a and b govern the dynamics of the hidden Markov model. In this section, we will consider a
HMM that can be in hidden states xt = ±1 and the emit symbols yt = ±1.

The steady-state probability of the hidden state px can be found from Apx = px, where px is a vector
with elements P (x = i). The steady state of the emitted symbols py can be found using marginalization,
the definition of conditional probability, and the steady state of the hidden state,

P (y) =
∑
x

P (x, y) =
∑
x

P (y|x)P (x). (2.14)

We find

px =
1

2

(
1

1

)
and py =

1

2

(
1

1

)
, (2.15)

for any symmetric 2× 2 HMMs.
The theory in this section is largely based on [24]; the calculations and simulations were repeated.

We will calculate and discuss the maximum confidence level for a symmetric 2× 2 HMM in the following
section. Then, the behaviour of the discord parameter for this system will be discussed in Sections 2.4.2
and 2.4.3. And finally, we introduce another way of looking at this HMM, by considering a mapping to
an Ising model in Section 2.4.4.

2.4.1 Maximum confidence level

The states of a symmetric HMM are all equivalent; there is no way we can distinguish between them based
on the dynamics of the system. As a result, the maximum confidence levels p∗i are all the same. And,
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Figure 2.5: Maximum confidence level for a 2× 2 symmetric HMM, for several transition probabilities
a, as a function of the observation error probability b.

hence, we need to calculate only one maximum confidence level p∗. We start from the expression for p∗i in
Equation 2.5. For a 2× 2 HMM, the term P (xt−1|yt−1) reduces to either p∗ or 1− p∗, depending on the
combination of states and symbols. Using this, together with the transition and observation probabilities,
we find

p∗ =
(1− b) [(1− a)p∗ + a(1− p∗)]

(1− b) [(1− a)p∗ + a(1− p∗)] + b [ap∗ + (1− a)(1− p∗)]
. (2.16)

Solving for p∗, we get

p∗ =
1− 2b+ a(4b− 3) +

√
a2 − 2a(1− 2b)2 + (1− 2b)2

2(2a− 1)(2b− 1)
. (2.17)

This result is plotted in Figure 2.5, for several values of the transition probability a, as a function of
the symbol error probability b. The filter becomes less confident for higher symbol error probabilities
and for higher transition probabilities. Intuitively, this makes sense, since the filter uses the transition
and observation probabilities as input. When there are more errors, the filter expects this and it is less
confident. When the state transitions are more frequent, it is more likely that there are transitions close
together rather than just some wrongly emitted symbols, and the filter has a hard time distinguishing
between the two.

Perfect information b = 0 corresponds to all emitted symbols’ being the same as the underlying states;
the maximum confidence level equals one here, regardless of the transition rate. The observations and
the filter agree at each time, because the filter knows the observation error probability. When b = 0.5,
p∗ = 0.5 for every transition probability a. At this point, the emitted symbol is wrong 50% of the time:
The observation is no better than a coin flip. The filter cannot decide between the two states and is
‘stuck’ at a probability of 0.5. For low transition rates, the maximum confidence is slowly decreasing
until, at high b, the curve drops rapidly to 0.5. The transitions are rare, and only a sufficiently high
error rate can make the filter significantly less certain. For a transition rate of 0.5 on the other hand, the
decrease in the maximum confidence is constant. At each time step, a transition is just as likely as no
transition, and p∗ is a linear function of b.

2.4.2 Discord parameter

Now we compare the strategies of state estimation through filtering and naive observations by looking
at the discord parameter, which we defined in Equation 2.12. The discord for symmetric 2 × 2 HMMs,
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Figure 2.6: Discord parameter for 2×2 symmetric HMMs as a function of the symbol error probability
b, for several transition probabilities a. Each point is an average over 30,000 timesteps; the
error bars show the standard deviation of the average.

found from simulations, is shown in Figure 2.6. The simulations will be discussed in Chapter 3, and the
relevant code can be found in Appendix A. When the filter’s state estimate perfectly matches the emitted
symbols, b = 0, the discord is zero for all transition probabilities. The strategies lead to the same result,
and there is no advantage in keeping a memory of observations. When the emitted symbols are completely
uncorrelated with the system’s state, b = 0.5, the discord is one. This is exactly as expected from the
definition of the discord. We will not consider b > 0.5, since, we could improve our naive observations
simply by switching all observed symbols −1 ↔ 1 and work with a observation error that is lower than
0.5.

The discord parameter increases for increasing error probability, which is to be expected. In general,
the discord increases for decreasing transition probabilities and fixed error probabilities. In other words,
the discord increases when the dwell time increases and the error rate is fixed. At low transition rates, long
chains of identical symbols are expected, and more wrong symbols are required to ‘fool’ the filter. Hence,
the discord is higher at lower transition probabilities. At sufficiently high a, the discord parameter is zero
everywhere, except at b = 0.5, where it jumps to one. The filter again cannot improve upon the naive
observations in this case. Note that b is the error rate in the state estimate based on naive observations
x̂ot with respect to the state xt. So, to perfectly recreate xt with the filter’s state estimate x̂ft , we need
D = 2b. However, when we find D = 2b, it is not guaranteed that the filter finds the original sequence of
states.

There are several features of the discord’s behaviour that are puzzling at a first glance. For instance,
the discord does not increase monotonously or even continuously everywhere as a function of b. Can we
understand why it behaves this way? More specifically, some questions that we will address are

• At what observation probability b does the discord become non-zero?

• When is this transition to non-zero discord (dis)continuous?

• What causes the small jumps and kinks in the curve at intermediate values of b?

• Why is there a jump at b = 0.5 to D = 1? Can we calculate the discord’s limit as b approaches 0.5?

We will answer the first question in the following section; the remaining questions will be addressed
in Chapter 4. Also, a mapping of the 2 × 2 HMM onto the Ising model is considered in Sections 2.4.4
and 5.4 to investigate the transitions in the discord parameter at various observation probabilities.

16



2.4. Symmetric two-state two-symbol HMMs Chapter 2. Theory

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

a

b
c

D = 0

D > 0

Figure 2.7: Phase diagram of a symmetric 2 × 2 HMM. The critical symbol error probability bc is
shown as a function of the transition probability a. The lines are the analytical solution
from Equation 2.22 and the circles are results found in simulations. The critical error
probability separates the ‘phases’ D = 0 and D > 0.

2.4.3 Critical observation probability

We want to calculate the lowest observation error probability at which the state estimates from obser-
vations x̂ot and the filtering algorithm x̂ft are not the same, D > 0. We call this value of b the critical
symbol error probability bc. The condition defining the critical error probability for a 2× 2 HMM is

P (xt+1 = 1|yt+1 = −1, yt = 1) =
1

2
. (2.18)

In words, given a long string of identical observations followed by a single different observation, When is
the probability that the last observation is (in)correct equal to 1

2? When this probability is lower than 1
2 ,

the state estimate always agrees with the observations and the discord will be zero. Hence, the transition
is exactly where the probability equals 1

2 . And when the probability is greater than 1
2 , the discord is

greater than zero. Note that the states 1 and −1 could be switched to find the same result because of
the system’s symmetry.

This condition can be solved for bc in terms of a. We start by writing out the right-hand side as
before, using Bayes’s theorem, the Markov property, and marginalization:

P (xt+1 = 1|yt+1 = −1, yt = 1) =
P (yt+1 = −1|xt+1 = 1,���yt = 1)P (xt+1 = 1|yt = 1)

P (yt+1 = −1|yt = 1)
(2.19)

=
P (yt+1 = −1|xt+1 = 1)P (xt+1 = 1|yt = 1)∑

xt+1
P (yt+1 = −1|xt+1)P (xt+1|yt = 1)

.

We now recognize elements of the observation matrix and can write out the other terms further,

P (xt+1|yt = 1) =
∑
xt

P (xt+1|xt)P (xt|yt = 1). (2.20)

Now, we can write the condition in terms of known variables,

bc[(1− a)p∗ + a(1− p∗)]
bc[(1− a)p∗ + a(1− p∗)] + (1− bc)[ap∗ + (1− a)(1− p∗)]

=
1

2
. (2.21)
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We plug in p∗ from Equation 2.17, simplify and solve for bc

bc

(
1− a− 2bc +

√
a2 + (1− 2a)(1− 2bc)2

)
(1− 2bc)

(
1 + a−

√
a2 + (1− 2a)(1− 2bc)2

) =
1

2
(2.22)

(1− 2bc)(b
2
c − bc + a) = 0

bc =
1

2
and bc =

1

2
(1±

√
1− 4a)

The critical error probability is plotted in Figure 2.7, together with the results of simulations. The
simulations and analytical calculations agree perfectly. The area under the curve is the phase space
where the discord is zero, and above the curve, the discord is greater than zero.

2.4.4 Ising model

So far, we have looked at the discord parameter of a symmetric 2× 2 HMM and its behaviour. Although
the model seems simple, the behaviour of the discord is complex and not yet fully understood. Specifically,
the transition to non-zero discord, and the smaller kinks and jumps at intermediate b are still unexplained.
The transition to D > 0 is continuous for some a, whereas it is discontinuous for others. The ‘phase
transition’ is first or second order, depending on the value of the transition probability. This presence of
first- and second-order transitions reminds us of phase transitions in statistical physics. The Ising model
is a relatively simple model in which phase transitions can be found. As it turns out, one can map the
symmetric 2× 2 HMM onto a one-dimensional Ising model [43,46]. Since Ising models have been studied
a great deal, we might be able to use the available literature to shed some light on the behaviour of the
discord and the presence of phase transitions.

We start by defining a mapping, a change of variables, to go from a HMM to an Ising model. Then we
work out the Hamiltonian of our Ising model. The transition and observation probabilities are transformed
by

P (xt+1|xt) =
exp(Jxt+1xt)

2 cosh(J)
, J =

1

2
log

(
1− a
a

)
, (2.23)

P (yt|xt) =
exp(hytxt)

2 cosh(h)
, h =

1

2
log

(
1− b
b

)
.

Using these transformations, we can work out the Hamiltonian,

H = − log
(
P (xN , yN )

)
. (2.24)

We write out the argument of the logarithm using the definition of conditional probability and Markov
property of the transition and observation probabilities,

P (xN , yN ) = P (yN |xN )P (xN ) (2.25)

=

N∏
t=1

P (yt|xN )P (xN )

=

N∏
t=1

P (yt|xt)P (xN )

=

N∏
t=1

P (yt|xt)
N−1∏
s=1

P (xs+1|xs)P (x1).
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Recall that yt is determined completely by xt. Plugging this into Equation 2.24, we get

H = − log

(
N∏
t=1

P (yt|xt)
N−1∏
s=1

P (xs+1|xs)P (x1)

)
(2.26)

= −
N∑
t=1

log (P (yt|xt))−
N−1∑
s=1

log (P (xs+1|xs))− log (P (x1))

The last term can be neglected since it is constant. The other terms can be rewritten using the change
of variables introduced in Equation 2.23,

H = −
N∑
t=1

log (P (yt|xt))−
N−1∑
s=1

log (P (xs+1|xs)) (2.27)

= −
N∑
t=1

log

(
exp(hytxt)

2 cosh(h)

)
−

N−1∑
s=1

log

(
exp(Jxs+1xs)

2 cosh(J)

)

= −
N∑
t=1

[hytxt − log(2 cosh(h))]−
N−1∑
s=1

[Jxs+1xs − log(2 cosh(J))] .

The logarithmic terms can be neglected since they are constant. In the case of periodic boundary
conditions (xN = x1), both sums are over N − 1 terms. For large N , we can approximate that the
sums are both over N , neglecting boundary terms, regardless of the boundary conditions. The resulting
Hamiltonian is

H(y, x) = −J
N∑
s=1

xs+1xs − h
N∑
t=1

ytxt,

which is a one-dimensional Ising model with random local external fields. The transition probability a of
the HMM determines the strength of the coupling constant J between spins in the Ising model. Transition
probabilities 0 ≤ a ≤ 1

2 , correspond to a positive coupling constant, J ≥ 0, giving rise to ferromagnetic
interactions between neighbouring spins. Likewise, the observation probability b determines the coupling
between local external fields and the spins. A local, quenched field of strength hyt tries to align its local
spin along the direction of yt. When b = 0, the strength of the external fields h → ∞: The spins are
forced to align with the local field. In context of the HMMs, the observations are the same as the hidden
states when the error probability is zero. When b = 1

2 , the strength of the external fields h = 0: The
external fields do not couple to the spins. In this case, the observations tell nothing about the underlying,
hidden states.

We can perform another change of variables, to zt = ytxt and τt = ytyt+1. We rewrite the first term
using y2

t = 1,

xtxt+1 =
ztzt+1

ytyt+1
= ytyt+1ztzt+1 = τtztzt+1. (2.28)

Rewriting the second term is straightforward, and we find

H(τ, z) = −J
∑
t

τtztzt+1 − h
∑
t

zt. (2.29)

This Hamiltonian describes a random-bond Ising model in a uniform external field h [43]. Here, the
hidden variables correspond to zt and the observations to τt. The ground state of this Hamiltonian at
zero temperature has an infinite number of transitions at h = 2J/m for m = 1, 2, . . . ,∞ [47]. For field
strengths above the first transition h > 2J , i.e. sufficiently weak noise, the MAP estimation is the same
as the observed chain [43]. As we discussed before, MAP sequence estimation is equivalent to minimizing
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the system’s Hamiltonian. The MAP estimate is not the same as the filter’s state estimate, but perhaps
a similar explanation can be found for the transitions in the discord from Figure 2.6 [24].

In this chapter, we have built up the theory and tools needed to study hidden Markov models. We
then started to explore one of the simplest non-trivial HMMs: symmetric two-state, two-symbol HMMs.
We compared two situations: one where the system’s state is estimated based on naive observations,
and one where we kept a memory of the past observations and used the filtering algorithm to find
a state estimate based on the sequence of observations. We introduced a discord order parameter to
compare two strategies. Despite the simplicity of the model, the behaviour of the discord parameter is
not straightforward. We were able to calculate the transition from zero to non-zero discord, but this
is just a piece of the puzzle. We considered a mapping to the Ising model to get more insight in this
transition, which is sometimes continuous and sometimes not, and others.

We would first like to understand the behaviour of the discord parameter more completely. Therefore,
we will address further aspects of the 2× 2 symmetric HMM in Chapter 4. Then we will generalize the
concepts introduced here and study the discord in more complicated systems. In Chapter 5, more general
2 × 2 HMMs will be considered. We also generalize the mapping to an Ising model such that it is valid
for a 2 × 2 asymmetric HMM. In Chapter 6, we will look at two different symmetric n × n symmetric
HMMs. The first is a straightforward generalization of the 2 × 2 symmetric HMM and the second is a
model of a diffusing particle, which has more obvious real-world applications. The last type of HMMs
that we will consider is two-state, n-symbol symmetric HMMs, also in Chapter 6. First, we will discuss
the methods used in simulating and studying these HMMs in the next chapter.
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Chapter 3

Methods

In this chapter, we will discuss how to simulate trajectories of hidden Markov models. All simulations were
done in Matlab R2015a, and the visualization of simulations and calculations was done in Mathematica
9. In general, the code for each system consists of an initialization part and a measurement part. The
first part sets up the HMM, generating the hidden state, the emitted symbols, and applying the filtering
algorithm. The second part measures or calculates properties of the HMM, such as the discord parameter
or the critical error probability.

3.1 n-state n-symbol hidden Markov models

The initialization of a HMM uses a simple Monte Carlo method to sample the probability distributions of
the states and observations. It generates random trajectories from state to state and from state to symbol
according to the model’s probabilities. The probability distributions are determined by the transition
and observation matrices. The only difference between the symmetric and asymmetric HMMs is in these
matrices. We will number the states and symbols of an n × n HMM with the integers 1 through n
and denote the number of timesteps N . We also need an initial condition, the starting state of Markov
chain, to start the simulation. We set the starting state to 1 in every simulation, since a sufficiently long
sequence of states ‘forgets’ the initial condition (Section 2.2) and we are averaging over a large number of
timesteps. Before the chains can be generated, we first transform the probability matrices into cumulative
probability matrices [48, ch. 16.3]. The first row still contains the probabilities to be in state 1, given the
previous state. The second row contains the probabilities to be in either state 1 or 2, given the previous
state. And so on, until the nth row, which should contain only 1’s, because the probabilities to be in any
state should add up to one, regardless of the previous state.

Now everything is set up to simulate a hidden Markov model. Starting from the initial condition and
cumulative transition probability matrix, we generate the hidden chain. A random number between zero
and one is drawn for each time step. The random number is compared to a column of the cumulative
probability matrix, depending on the state at the previous time step (or initial condition), to determine
the current state. The generation of the observations is done similarly. A random number is drawn to
compare to the cumulative observation probability matrix, depending on the hidden state at the same
time step, to determine the emitted symbol. The function chain() from Appendix A.1 performs all these
steps and outputs sequences of the hidden states and the observations.

Then, the filtering algorithm (Equation 2.8) is applied recursively to the realized sequence of ob-
servations yt. It needs the transition and observation probabilities as input parameters and an initial
condition P (x1). The steady-state distribution of the transition matrix is used as an initial condition.
The algorithm yields the probability of being in a state given the observations up to and including the
current time. The function filtering(. . . ) from Appendix A.1 calculates this probability for a sequence of
observations and returns an n×N array with probabilities P (xt|yt).
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-1 1
States

Symbols

1 2 3 4 5 6

Figure 3.1: Visualization a symmetric 2 × 6 HMM. The errors in observing the two states 1 and −1
are Gaussian distributed (blue curves). There are six possible symbols to observe; the left
three symbols correspond to state −1 and the right three correspond to state 1. The green
line shows the sum of the two observation distributions, which is used to determine the bin
boundaries. The bins are shown in gray (not exact).

The discord parameter, introduced in Section 2.3, can now be calculated from the observations and
filter probabilities. The most likely state according to the filtering algorithm x̂ft is determined first. Next,
the state estimate according to observations x̂ot and the filter’s state estimate are compared. If they are
the same, the contribution to the discord is − 1

N ; otherwise, the contribution is + 1
N . We will use HMMs

of length N = 30, 000 in the discord calculations. Summing up all contributions results in a discord
between zero and two. Usually, our results will be between zero and one, as D > 1 implies a negative
correlation. For the size of the error bars, we use the standard error of the mean: the standard deviation
over the square root of N . One discord curve is calculated for a fixed a and increasing b. Typically, we
calculate the discord for around one hundred values of b between 0 and 0.5: Nstep = 100. The function
discord(. . . ) calculates the discord and the standard deviation of the discord for one HMM (fixed A and
B). It is the calculation of one point in a plot of the discord (Figure 2.6).

To find the lowest observation probability for which the discord is non-zero, we can do a very naive
calculation. Start at an observation probability of zero and some (fixed) transition probability, generate
a trajectory of a HMM, calculate the discord and repeat for increasing b until we find a discord greater
than zero. However, there is a faster way: We use our knowledge of bc, so that we do not need search
the entire plane. Instead of starting at b = 0 for every transition probability a, we start from b =
max (0, bc − 5 · stepsize), where bc the critical error probability found for the previous a, and ‘stepsize’
is the size of the steps in b used in the calculation. The stepsize is taken to be 0.5/Nstep. For higher
resolution, the increments in a and b can be made smaller. We use a threshold of 2/N to determine when
the discord is greater than zero. This is done to rule out a non-zero discord as a consequence of the choice
of the initial condition, causing non-zero discord in the first time step. The discord goes to zero in the
limit of an infinitely long HMM in such a case. The code to find bc and to make a phase diagram for an
n× n HMM can be found in Appendix A.2.

3.2 Symmetric two-state n-symbol hidden Markov models

Simulating 2× n HMMs is very similar to simulating n× n HMMs. However, there are some differences
in the initialization of the system and the calculation of the discord that we will discuss here. The
difference in the initialization of the system is in setting up the observation matrix. Before, we changed
the observation probability b to look at different systems. Now, we have to be careful to define observation
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Figure 3.2: Visualization of the observation error probability in a HMM with two states and Gaussian
distributed observation errors. The observation error probability increases with increasing
standard deviation σ of the Gaussians.

probabilities in such a way that we can still tune a single parameter b. We assume that the observation
probabilities are determined by Gaussian distribution centered on the two states −1 and 1; see Figure 3.1.
The variance of the distributions sets the width of the Gaussians and, consequently, the observation
probabilities of each symbol. Note that observing symbol 1, 2, or 3 corresponds to a state estimate
x̂ot = −1, and likewise, observing symbol 4, 5, or 6 corresponds to x̂ot = 1. So, a ‘correct’ observation of
state 1 is made if a symbol 4, 5, or 6 is observed. Simply by writing out the definition of the observation
probability b for this system, we can relate it to the variance of the Gaussian distributions,

b = P (yt = 1, 2, . . . , or
n

2
|xt = 1) (3.1)

=
1√
2πσ

∫ 0

−∞
exp

(
−(x− 1)2

2σ2

)
dx

=
1

2

[
1− erf

(
1√
2σ

)]
.

This is illustrated in Figure 3.2; the observation error probability increases as the Gaussians become
wider.

Taking similar integrals over each Gaussian with the appropriate boundaries yields the observation
probabilities for each state and symbol. We write down the probability of observing a symbol i, given
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the state is 1,

bi1 = P (yt = i|xt = 1) (3.2)

=
1√
2πσ

∫ `i

`i−1

exp

(
−(x− 1)2

2σ2

)
dx

=
1

2

[
erf

(
`i − 1√

2σ

)
− erf

(
`i−1 − 1√

2σ

)]
.

Symmetry dictates that the probability of observing a symbol i, given the state is −1, equals b(n−i+1)1. To
determine the appropriate boundaries for the integrals, we consider the sum of the Gaussian distributions,
the green curve in Figure 3.1. The distribution is divided into bins of equal probability of 1/n and we
can calculate the boundaries, by solving

1

2
√

2πσ

∫ `i

−∞
exp

(
−(x− 1)2

2σ2

)
+ exp

(
−(x+ 1)2

2σ2

)
dx =

i

n
(3.3)

1

4

[
2 + erf

(
`i − 1√

2σ

)
+ erf

(
`i + 1√

2σ

)]
=

i

n

for `i, where i is an integer between 0 to n. The symmetry of the problem reduces the number of equations
we need to solve: We know that `0 = −∞, `n = ∞, `n/2 = 0, and `(n/2)−j = −`(n/2)+j for integers j
between 1 and n/2− 1 (all for even n).

Now that we have defined an observation matrix, the procedure for initializing the HMM and applying
the filtering algorithm is the same. The only change in the calculation of the discord is that now several
symbols correspond to one state. The critical observation error can be found in the same way as before
with the adjusted discord calculation.

3.2.1 A continuum of observations

In the limiting case of infinitely many observable symbols (i.e. a continuum of observations), the methods
need to be adjusted slightly. We no longer define a number of bins in which the observations fall and
do not calculate the boundaries of these bins. The definition of the observation error probability in
Equation 3.1 is unchanged. We no longer define an observation matrix of 2 × n elements, but we use
the probability distribution functions of the possible observations: Gaussians with mean −1 or 1 and
standard deviation σ, see Figure 3.2.

The main methods of the simulations used in this thesis were discussed in this chapter. If at any point,
we use a different or adjusted method it will be mentioned. The main code can be found in Appendix A
and the complete code is available upon request.
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Chapter 4

Symmetric two-state, two-symbol
hidden Markov models

In Chapter 2, we introduced a symmetric 2 × 2 HMM. After looking at the discord parameter for this
system, we were left with several questions. One question was answered in Section 2.4.3; the others we
will address in this chapter. We will look at the continuity of the discord parameter at the transition to
non-zero discord, the small kinks and jumps at intermediate error probabilities, and the transition at the
observation probability where observations are uncorrelated with the underlying state.

4.1 Continuity of the discord at the critical observation proba-
bility

In Sections 2.4.2 and 2.4.3, the discord (Figure 2.6) and the associated critical-error probability (Fig-
ure 2.7) were studied of a symmetric 2× 2 HMM. We found that the transition to non-zero discord looks
discontinuous for some transition probabilities, because the discord discontinuity is much larger than the
stepsize in b. We will determine the size of this discontinuity more accurately here. We determined the
position of this transition in Figure 2.7, but the plot contains no information on the continuity of the
transition. We will use our knowledge of the positions of the critical points to determine the size of the
discontinuities.

For a given transition probability a, we know the critical-error probability. Suppose the critical
observation error was found on the jth iteration, at bj . We consider the interval [bj−1, bj ]. We pick a
new observation probability bk exactly in the middle of this interval and calculate the discord D(bk). We
determine which interval [bj , bk] or [bk, bj−1] has the greater increase in D. Then we pick a new observation
probability in the middle of this smaller interval and repeat the process. After n iterations, the final
interval in b is of length stepsize × 2−n. We run this algorithm until ∆D = |D(bk) − D(bj/j−1)| < 2

N ,
until it has converged. This method is called the method of bisection [48, Chapt. 9]. The resulting jump
size in the discord, ∆D, as a function of a is shown in Figure 4.1.

The data is collected from HMMs of length N = 30, 000. The errors (not shown) are on the order of
the size of the plotmarkers; they are the same as the error bars on the corresponding points in Figure 2.6.
At a = 0, the discord as a function of b is a straight line, and hence there is no jump: ∆D = 0. The
jump size slowly increases until a = 0.10, and then decreases again. At these values of a, the jump in the
discord is discontinuous. Around a = 0.23, the jump becomes very small, and it looks like a continuous
transition up to a = 0.25. At this point, the discontinuity’s size jumps to 1. Clearly, the jump in discord
at b = 1

2 to D = 1 is discontinuous, at least for a ≥ 0.25. There are some small dips in ∆D. It is not
clear what the significance of these dips is or where they come from, but they are reproducible.
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Figure 4.1: Size of the discontinuity in discord at transition to non-zero discord, as a function of the
transition probability a.

4.2 Higher-order discord transitions

As we pointed out before, the discord is not a smooth function of the observation probability b. We have
seen discontinuities for a range of transition and observation probabilities, not just at the critical-error
probability b = bc, or b = 0.5. We will use a calculation similar to that of the critical-error probability to
explain the jumps at intermediate values of the observation error. First, we recall how bc is calculated;
then we extend the method to other jumps.

The critical-error probability, bc, is the lowest b at which the state estimate as found from the filtering
algorithm differs from the state estimate based on naive observations. The first place where the filter’s
state estimate will start to differ from the observations’ is after long sequences of identical observations.
Consider, for example yt = {1, 1, . . . , 1}, the probability to be in state 1 at time t reaches the maximum
confidence level p∗, and the high probability of observing xt = 1 given yt is the most difficult place to
get agreement between x̂ot and x̂ft . For sufficiently low b, an observation yt+1 = −1 will lower the filter’s
probability P (xt = 1|yt) below 0.5. The filter thinks it more likely that system has transitioned to another
state, than that there was a wrongly emitted symbol; the filter agrees with the observation. Above b = bc,
the filter’s probability will be lowered below 0.5, resulting in a non-zero discord. To summarize, after
a long sequence of identical observations, the filter reaches the maximum confidence level. We then ask
when a single discordant observation lowers the probability P (xt|yt) to 0.5.

We now consider other sequences of observations, all starting with a chain of identical observations
long enough that the filter’s probabilities reaches the maximum confidence level. We will apply the
filtering algorithm to those observations and find the b that lowers the filter’s probability P (xt = 1|yt) to
0.5. Consider the chain yt = {1, 1, . . . , 1,−1, 1,−1}, for example. We know that the filter’s probability
will be lower than p∗ after the first t− 1 observations. It is easier for the filter to follow the observation
yt (compared to starting from a probability of p∗) in this case. A higher error rate is needed to make the
filter doubt the observation and lower the probability below 0.5. One can think about it as a higher-order
transition in the discord. We find that the probability P (xt = 1|yt) is exactly 0.5 at b = 0.104, for a
transition probability a = 0.05, and this particular yt.

We repeat this procedure for several parameters and sequences of observations. We are in fact cal-
culating where in the discord curve contributions from certain sequences of observations can be found.
Sequences that are more common have a greater contribution to the discord. A jump in the discord can
be caused by very common sequences or when contributions of several sequences are found close together.
In order to explain the entire discord curve, one would have to ‘cut’ the sequences at places where the
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observations yt a = 0.05 a = 0.15 a = 0.20 a = 0.25

{1, . . . , 1,−1} b = 0.053 (b1) b = 0.184 b = 0.276 b = 0.500

{1, . . . , 1,−1, 1, 1,−1} 0.056 (b1) 0.226 0.399 0.500

{1, . . . , 1,−1, 1,−1} 0.104 (b2) 0.354 0.500 0.500

{1, . . . , 1,−1,−1} 0.230 (b3) 0.500 0.500 0.500

{1, . . . , 1,−1,−1,−1} 0.346 0.500 0.500 0.500

Table 4.1: Higher-order critical observation probabilities, for several transition probabilities.
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Figure 4.2: Discord parameter for a symmetric 2 × 2 HMM. The arrows indicate some higher-order
transitions in the curve. The first four sequences in Table 4.1 correspond to these jumps.

filter probability reaches the maximum confidence level, account for all the different sequence and the
frequency with which they occur. We do not have access to this information, and most sequences will
have very small contributions. Therefore, we restrict our calculations to some short chains, some of which
we expect to be quite common, to account for some visible jumps.

Table 4.1 shows these resulting higher-order critical error probabilities, for several transition proba-
bilities. The discord for these transition probabilities is shown in Figure 4.2 for comparison. The arrows
point to discontinuities in the discord for a = 0.05. Some sequences in Table 4.1 correspond to these
jumps. The first jump, labeled b1, corresponds to the position of the critical observation error of the first
two sequences in the table. The position b of the first sequence is also the critical-error probability bc that
we have seen before. The second sequence has some additional observations, {1, 1,−1}, compared to the
first. At low transition probabilities, the additional two 1 observation increase the filter’s probability to
almost p∗, and hence the contribution is close to bc for a = 0.05. We see similar behaviour for the third
sequence (corresponds to jump b2) The only difference with the previous sequence is one less 1 between
the two −1 observations. The contribution is found at higher b, since the one observation 1 does not raise
the filter’s probability as much as the two 1 observations. Also, at lower transition probabilities, the filter
expects longer chains of identical observations. In which case, the second sequence is more likely to occur
than the third, and the contribution to the discord of the third sequence should less. We do see a smaller
jump at b2 than at b1, but it is not possible to separate the contributions of all sequences, and therefore
we cannot directly compare the size of the contributions of different sequences. Another way of looking
at these calculations is asking: How high should the error probability be in order for the filter to think
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Figure 4.3: Realizations of two HMMs with a = 0.15 to illustrate the filter’s behaviour as b→ 1
2 . When

b < 1
2 , the filter’s probability can change from one timestep to the next. However, at b = 1

2
the filter’s probabilities are constant everywhere.

that the last observation in the sequence is a wrong observation rather than a transition? Evidently, the
fourth sequence, yt = {1, . . . , 1,−1,−1}, requires a higher b than the first sequence to make the filter
think this. The contribution is found at the arrow labeled b3. Similarly, the fifth sequence, which has
an additional −1 observation compared to the previous one, requires an even higher b to make it likely
that the last −1 is a wrong observation. Indeed, we find b = 0.346, but we cannot identify a jump at
this point. The sequence is not likely enough te create a discontinuity. As we consider the contributions
of longer chains, the probability of encountering a specific sequence decreases; there are simply more
possible sequences to consider. Only taking into account the length of the chains, the second, third and
last sequence from Table 4.1 should contribute less than the first and fourth sequence. Based on this
very crude estimate, we would expect the jumps at b1 and b3 to be the largest.

The discord at the higher transition probabilities looks smoother than the a = 0.05 curve. This can be
explained partly by the contributions of the sequences that shift towards higher b for increasing a. Once
they reach b = 0.5, they stay there. This might explain why the jump at b = 0.5 is larger for the highest
transition probabilities; the contributions of more and more sequences are located here. In the curve for
a = 0.15, we again recognize a jump at b = bc and a small jump one around a = 0.226. These correspond
to the first two sequences from the table. Another cause of smoother discord at higher a might be that
we need longer (and less probable) sequences to accurately describe the curves. When the HMM has a
higher transition rate, there will be fewer and shorter sequences of identical observations. As a result,
the maximum confidence level will be reached less often, and thus we need longer sequences to describe
the discord.

We have made plausible that some common sequences of observations can explain the higher-order
transitions in the discord curve. We can calculate the position of the contributions of these sequences
in the discord curve but, unfortunately, we are unable to calculate the size of these contributions. The
smoother discord for higher transition probabilities and the increasing size of the discontinuity at b = 0.5,
as a function of a can both be explained in this framework.

4.3 Transition to uncorrelated observations

In this section, we investigate the transition in the discord parameter at b = 1
2 , where D jumps to 1.

We have looked at this transition for several values of a in Figures 2.6 and 4.2. Also, in Section 4.1,
we have seen that the transition is discontinuous, for at least a ≥ 0.25. The transitions at lower a
look discontinuous, too, because there are no jumps to intermediate values of D between the seemingly
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Figure 4.4: Discord parameter for a symmetric 2 × 2 HMM as a function of the transition probability
a, in the limit of b→ 1

2 : Observations uncorrelated with state (b = 1
2 ), however the filtering

algorithm uses the parameter b = 0.4999.

continuous curves, as b approaches 0.5, and the points at D = 1.
The value of D at b = 1

2 can be explained by the behaviour of the maximum confidence level and
its effect on the filtering algorithm. The state space that the filter can explore is limited to the interval
[1 − p∗, p∗] for a symmetric 2 × 2 HMM. When the observations are not correlated with the underlying
state, the maximum confidence level is 0.5, regardless of the transition probability and, hence, the state
space is reduced to a single point; P (xt|yt) = 0.5 for all yt, xt, and t. Consequently, the filter’s state

estimate x̂ft is the same for all times and all possible realizations of the HMM. Recall that the observations
are still 1 or −1 with a 50% chance. So, half the time the filter and the observations agree, and half the
time they disagree. The resulting discord is exactly 1, for any transition probability.

We understand why there is a transition to D = 1 at b = 1
2 . Now, can we understand why this

transition is discontinuous? The state space that the filter can explore is smaller for increasing b, until
it is reduced to a single point at b = 1

2 . The shrinking of the phase space is continuous, because p∗ is a
continuous function of b. For b very close to, but still below 1

2 , the filter’s state estimate can be either
state 1 or −1, and it changes with the observations that are made. The difference between HMMs at
b = 1

2 and a b just below 1
2 is illustrated in Figure 4.3. The ‘amplitude’ of the filter’s probability is

enlarged compared to the scale of the underlying state and observations. When b is just below 1
2 , the

filter moves up and down depending on the chain observations and the state estimate changes accordingly.
Whereas, at b = 1

2 these are constant.
We investigate the discord in limit of b→ 1

2 , but where b = 1
2 is not allowed as input for the filtering

algorithm. To do so, we generate a HMM with b = 1
2 and apply the filtering algorithm with a slightly

different b: b = 0.4999. The generated chain is virtually indistinguishable from one with b = 0.4999, but
there is a clear difference in the behaviour of the filter (Figure 4.3). The discord for this limiting case is
shown in Figure 4.4.

This result confirms our suspicion of a discontinuous transition, since the limiting values of D are the
same as the values at b = 0.495 in Figures 2.6 and 4.2. The discontinuity makes it likely that the jump is
a result of the decision making to go from probabilities to state estimates. The size of the jump depends
on the parameters of the HMM, it varies continuously as a function of a.

In this chapter, we have looked at the behaviour of the discord parameter of a symmetric 2× 2 HMM in
more detail. All features of the discord of this system has been discussed now. The transition to non-
zero discord has been quantified; we have calculated the critical-error probability where this transition
is located and the size of the discontinuity. The transition to a discord of one is explained, and the
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discontinuity and corresponding jump size are resolved by considering the limit of b → 1
2 . We are still

unable to calculate the discord analytically, and as a result we cannot verify the behaviour at intermediate
observation probabilities to a high precision. Focussing on visible kinks and jumps in the discord curve,
we have tried to make our explanation of the behaviour plausible at least. Some simple calculations
support the reasoning, but this is not a guarantee.
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Chapter 5

Symmetry breaking in two-state,
two-symbol hidden Markov models

Now that we have a fairly good understanding of the behaviour of the discord in 2×2 symmetric HMMss,
we are ready to consider more complicated systems. In this chapter, we will look at 2× 2 HMMs where
the symmetry of the transition and observation matrices is broken. We distinguish between three cases
of asymmetric HMMs: HMMs with asymmetric transition matrices, asymmetric observation matrices,
and both asymmetric transition and observation matrices. We will again look at the discord parameter;
the focus will be on the differences compared to the results from Chapter 4.

In contrast with the symmetric matrices, the asymmetric transition and observation matrices have
two independent parameters. We parametrize the probabilities such that only one independent parameter
is left when the transition and observation matrices are symmetric. They given by

A =

1− ā+ 1
2∆a ā+ 1

2∆a

ā− 1
2∆a 1− ā− 1

2∆a

 and B =

1− b̄+ 1
2∆b b̄+ 1

2∆b

b̄− 1
2∆b 1− b̄− 1

2∆b

 . (5.1)

The transition matrix depends on the mean transition probability ā = 1
2 (A21 +A12) and the difference in

transition probabilities ∆a = A21−A12. When the difference between the transition probabilities is zero
(∆a = 0), the transition matrix is symmetric. Similarly, the observation matrix depends on the mean
observation probability b̄ = 1

2 (B21 +B12) and the difference in observation probabilities ∆b = B21−B12.
To ensure that each probability is at least zero and at most one, the parameters have to obey the
conditions

0 ≤ ā ≤ 1, max(−2ā, 2ā− 2) ≤ ∆a ≤ min(2ā, 2− 2ā), (5.2)

0 ≤ b̄ ≤ 1, max(−2b̄, 2b̄− 2) ≤ ∆b ≤ min(2b̄, 2− 2b̄).

Note that ∆a and ∆b are allowed to be negative to cover the entire parameter space. In practise, we
want to make sure that the off-diagonal elements in A and B are smaller than 0.5, just as we did in
the symmetric 2× 2 HMM. To illustrate, if we had an observation probability P (yt|xt) > 0.5, we would
simply use 1−P (yt|xt) to improve our state estimate. Also, we expect more accurate state estimates for
transition probabilities below 0.5, because the filter needs sequences of identical symbols to get to higher
confidence levels.

The steady-state probabilities of the states and observations can be calculated in the same way as
we did in Section 2.4 for the symmetric matrices. The resulting steady states of the hidden states and
observations are generally not symmetric,

px =
1

2

(
1 + ∆a

2ā

1− ∆a
2ā

)
and py =

1

2

(
1 + ∆b+ ∆a

ā

(
1
2 − b̄

)
1−∆b− ∆a

ā

(
1
2 − b̄

)) . (5.3)
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Figure 5.1: Discord parameter of HMMs with asymmetric transition matrices, as a function of the mean
observation probability b̄. Each curve is for a different mean transition probability ā. a-d,
diagrams for different ∆a.

5.1 Asymmetric transition probabilities

In this section, we will consider HMMs with asymmetric transition matrices and symmetric observation
matrices: ∆a 6= 0, ∆b = 0. The discord parameter for several values of ∆a is shown in Figure 5.1. More
details about the simulations can be found in Section 3.1 and Appendix A.1.

Note that some curves are not visible; some are not plotted because they would result in negative
transition probabilities, and some are obscured by other curves. In Figure 5.1a, a small asymmetry
is introduced in the HMM: ∆a = 0.01. The discord of this system is still fairly similar to those of
the symmetric system (Figure 2.6). The most obvious difference is the transition to D = 1; it is no
longer discontinuous at b = 0.5. Also, the position of the transition where the discord becomes non-
zero and of the higher-order transitions shifted. Looking at a somewhat larger asymmetry, ∆a = 0.10,
in Figure 5.1b, these differences are amplified. We will not discuss the higher-order transitions. For
observation probabilities approaching 0.5, the discord is slowly increasing to 1. These ‘plateaus’ are
preceded by a continuous transition to a discord close to 1. This behaviour is even clearer in Figure 5.1c;
the ‘plateaus’ look like linear functions of b̄. The results in Figures 5.1b and d are the same (apart from
errors due to the stochasticity of the system), because we still have symmetric observation probabilities.
It does not matter for the discord which of the two states has the higher (lower) transition probability,
when the observation matrix is symmetric.
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Figure 5.2: Mean critical observation probability of HMMs with asymmetric transition matrices and
symmetric observation matrices (∆b = 0), as a function of ā. Simulated results are shown
as circles and the analytical solutions are solid lines.

5.1.1 Critical observation probability

The condition for calculating the critical observation error is the same for both symmetric and asymmetric
2×2 HMMs; see Equation 2.18. The resulting equation is more complicated though, because of the extra
variables ∆a and ∆b in the transition and observation probabilities. We solve for the mean critical error
probability b̄c and plot it as a function of the mean transition probability ā; see Figure 5.2. Appendix B.1
has more details about the calculation, it ends with the explicit equation that need to be solve to find
b̄c. The complete solutions are omitted because they are so long and tedious to write out. The solutions
agree with simulations, which are shown as circles in the same diagram. The solutions are the same when
we look at ‘negative’ asymmetries, b̄c(∆a) = b̄c(−∆a). We see that the curves for ∆a > 0 never reach
b̄c = 0.5, where we found discontinuities in the discord in the symmetric HMMs. Each curve starts at
b̄c = 0 where ā − ∆a/2 = 0, i.e. the probability of transitioning from one state is zero. The discord
becomes non-zero at lower mean transition probabilities for larger asymmetries.

5.1.2 Linear discord

We can explain the linear regime in the discord by considering the maximum confidence levels of the
states. In asymmetric HMMs, the maximum confidence levels of each state (p∗1 and p∗−1) are generally
not the same. The state space that the filter can explore is given by 1− p∗−1 ≤ P (xt = 1|yt) ≤ p∗1. Once
either p∗1 < 0.5 or p∗−1 < 0.5, this interval is restricted to probabilities either below or above 0.5, and

consequently the state estimate x̂ft will be constant in time. To clarify, we look at the behaviour of the
filter for three different values of b̄ in Figure 5.3. In the first diagram, with b̄ = 0.20, we can see a clear
difference in the maximum confidence levels of the two states. With increasing b̄, the state space that the
filter explores narrows gradually. In the lower diagram, the filter is ‘stuck’ in state 1: The filter’s state
estimate is independent of the naive state estimate (observations). This causes the linear regime in the
discord diagrams, since the discord parameter now effectively measures how often the observations are
in the same state as x̂ft . The gradual narrowing of the allowed range of probabilities also explains the
continuous transition before the linear regime. We calculate the onset of the linear regime, the b̄ that
lowers one of the maximum confidence levels to 0.5. For a general asymmetric two-state, two-symbol
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Figure 5.3: Realizations of HMMs with asymmetric transition matrices. The parameters used are ∆b =
0, ∆a = 0.2, ā = 0.3, and from top to bottom b̄ = 0.20, 0.35, 0.48. We see that the state
estimate x̂ft becomes constant in the bottom diagram.

HMM, we find

b̄ = min

(
1

2
(1 + ∆a∆b±∆a)

)
. (5.4)

This agrees with the onset of the linear regime in Figure 5.1. We can calculate the value of the discord
in this regime too. We assume the filter is ‘stuck’ in state ±1, and we use the steady-state probability of
the observations from Equation 5.3,

D = 1− 〈x̂ot x̂
f
t 〉 (5.5)

= 1−
∑
x̂o
t ,x̂

f
t

P (x̂ot , x̂
f
t )x̂ot x̂

f
t

= 1−
∑
x̂o
t

±P (x̂ot )x̂ot

= 1∓
(

∆b+
∆a

2ā

(
1− 2b̄

))
.

We find a linear expression for the discord as a function of the mean error probability and the slope
agrees with the slope seen in the discord figures. The upper and lower signs distinguish between a filter’s
state estimate that is stuck in state 1 and −1, respectively.

We see that the behaviour of the discord parameter changes when introducing asymmetries in the
transition probabilities. We can still identify similar transitions as before, especially at small ∆a, and we
can explain the changes in the behaviour.

34



5.2. Asymmetric observation probabilities Chapter 5. Symmetry breaking

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b

D

a = 0.01

0.1

0.2

0.3, 0.4, 0.5

Db = 0.01

a

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b

D

Db = 0.10

b

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b

D

Db = 0.30

c

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b

D

Db = -0.10

d

Figure 5.4: Discord parameter for HMMs with asymmetric observation matrices, as a function of the
mean error probability b̄ for several mean transition probabilities ā. a-d, diagrams for
various ∆b.

5.2 Asymmetric observation probabilities

In this section, we will consider 2 × 2 HMMs with symmetric transition matrices and asymmetric ob-
servation matrices; ∆a = 0 and ∆b 6= 0. We will discuss the main differences between these and the
symmetric HMMs. The discord parameter plots for several ∆b are shown in Figure 5.4. There are no
points plotted for b̄ < |∆b|/2, to avoid negative observation probabilities. The results for a small asym-
metry, ∆b = 0.01, in Figure 5.4a are almost indistinguishable from the results of the symmetric HMMs.
Naturally, for greater asymmetries, the differences are greater. The transition to non-zero discord and
the higher-order transitions change. Also, the discontinuous transition at b̄ = 0.5 is no longer to D = 1,
but to D = 1−∆b. We find this value from the derivation in Equation 5.5, keeping in mind that ∆a = 0.
Since the transition probabilities are symmetric, the states are effectively interchangable, and the results
in Figures 5.4b and d are the same. Interestingly, at fixed ā, the discord curves look ‘noisier’ for higher
∆b. This is particularly clear when comparing the pink curves, ∆a = 0.01.

Once again, we calculate the mean critical error probability as a function of the mean transition
probability. The resulting phase diagram is shown in Figure 5.5, together with the results of simulations.
The simulations and analytical solutions agree very well. We avoided plotting negative observation
probabilities, however for some values of ā the effective observation probability of one state (b̄ + ∆b/2)
exceeds 0.5. This is a situation we would in practise avoid by considering 1 − (b̄ + ∆b/2) to improve
our naive state estimate. Curves with negative ∆b would be the same as the curves with positive ∆b,
b̄c(−∆b) = b̄c(∆b). The mean critical error probability curve moves to the right by 0.025 in ā for every
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Figure 5.5: Mean critical observation probability of HMMs with symmetric transition matrices (∆a = 0)
and asymmetric observation matrices, as a function of the mean transition probability ā.
Simulated results are shown as circles and the analytical solutions are solid lines.

0.10 increase in ∆b.
The changes in behaviour with asymmetric observation matrices are not as clear as with asymmetric

transition matrices, but they are there. The slight changes in the transitions we can explain with similar
calculations that we used before.

5.3 Asymmetric transition and observation probabilities

In this section, we will combine the asymmetric transition and asymmetric observation matrices in 2× 2
HMMs, and study the behaviour of the discord parameter. The discord for some values of ∆a and ∆b is
shown in Figure 5.6.

We recognize behaviour of the discord parameter from the previous sections. The transition at high
∆b is no longer discontinuous and we see a linear regime, just like we had in Section 5.1. The linear
discord is in agreement with the calculations we did in that section too. In the top two figures, the
discord is most similar to that in Section 5.2, which makes sense because the asymmetry in ∆a is small.
The bottom four figures resemble the discord from Section 5.1 more closely. For the bottom two figures,
this makes sense, because the asymmetry in the observation probability is small. However, in the middle
figures, the asymmetries are of the same order, and still the behaviour of the asymmetric transition
matrix dominates.

The mean critical error probability for several asymmetric HMMs is shown in Figure 5.7. The phase
diagram for small ∆a, Figure 5.7a, is quite different from the phase diagram for ∆a = 0, Figure 5.5. At
high b̄c, the curves bend back, which we have not seen before in any phase diagram. Studying the discord
for parameters in this area we find that the discord goes back to zero at sufficiently high b̄ and then at
b̄ = 0.5 it jumps to 1. The analytical solutions and simulations agree very well once again. To find the
points on the backwards bending curves, the simulations were adapted to find a transition from non-zero
to zero discord instead. For slightly larger ∆a, Figure 5.7b, the behaviour is similar and the backwards
bending curves can be found at even lower b̄. This behaviour is only seen in sufficiently asymmetric
systems and at high b̄; when b̄+ ∆b/2 > 0.5. So, in practise, we would not encounter this behaviour. We
do not understand this behaviour completely; Why would the state estimates become equal again at high
b̄? Looking at realizations of HMMs with various asymmetries (not shown), we notice some interesting
behaviour. When the discord becomes non-zero at b̄c, all of the observations that the filter ‘corrects’ are
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Figure 5.6: Discord parameter for HMMs with asymmetric transition and observation matrices, as a
function of the mean error probability b̄ for several mean transition probabilities ā.

in one particular state. For example, x̂ot = x̂ft when x̂ot = 1, but not when x̂ot = −1. In these systems we
are also dealing with an asymmetric transition probability, which causes the filter’s state estimate to be
constant above a certain mean observation error (Equation 5.4). This is reflected in the linear discord
curves at high b̄, and it requires the discord to be non-zero in this regime. The discord going back to
zero before this regime could be caused by the combination of the filter expecting more errors in one
state and then becoming ‘stuck’ in the other state. This happens while the filter’s state space shrinks
continuously. Maybe, at some point, the maximum confidence level of the state where errors are being
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Figure 5.7: Phase diagram of HMMs with asymmetric transition and observation matrices.

corrected gets so close to 0.5, that the filter’s state estimate just follows the observations again. Then, if
we continue to look at higher b̄, we will enter the linear discord regime. Note also, that the backwards
bending behaviour in the analytical solutions is a result of two solutions of b̄c intersecting.

Figures 5.7c and d show the phase diagrams for small asymmetries in the observation probabilities:
∆b = 0.01 and 0.1, respectively. These diagrams are quite similar to phase diagram for symmetric
observation probabilities; see Figure 5.2. The similarity is expected, since the discord parameter itself
did not change much for small asymmetries in the observation matrix.

5.4 Mapping to Ising models

In Section 2.4.4, we examined a mapping from a symmetric 2 × 2 HMM to an Ising model as a way to
understand the ‘phase transitions’ in the discord parameter. Now, we generalize the mapping so that
it is valid for asymmetric 2 × 2 HMMs, as well. Since the derivation of the appropriate Hamiltonian is
similar to the derivation discussed before, we will skip some algebraic steps. We start by defining the
mapping from the transition and observation probabilities to the spin-spin coupling and the spin-field
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coupling constants,

P (xt+1|xt) =
exp(J(xt)xt+1xt)

2 cosh(J(xt))
, J(xt) =


J+ =

1

2
log

(
1− ā+ ∆a/2

ā−∆a/2

)
, if xt = 1

J− =
1

2
log

(
1− ā−∆a/2

ā+ ∆a/2

)
, if xt = −1

(5.6)

P (yt|xt) =
exp(h(xt)ytxt)

2 cosh(h(xt))
, h(xt) =


h+ =

1

2
log

(
1− b̄+ ∆b/2

b̄−∆b/2

)
, if xt = 1

h− =
1

2
log

(
1− b̄−∆b/2

b̄+ ∆b/2

)
, if xt = −1

.

Now, we work out the Hamiltonian H = − log(P (xN , yN )). We start from Equation 2.27 and apply the
mapping from Equation 5.6,

H = −
N∑
t=1

log (P (yt|xt))−
N−1∑
s=1

log (P (xs+1|xs)) (5.7)

= −
N∑
t=1

log

(
exp(h(xt)ytxt)

2 cosh(h(xt))

)
−

N−1∑
s=1

log

(
exp(J(xs)xs+1xs)

2 cosh(J(xs))

)

= −
N∑
t=1

[h(xt)ytxt − log(2 cosh(h(xt)))]−
N−1∑
s=1

[J(xs)xs+1xs − log(2 cosh(J(xs)))] .

Next, we rewrite h(xt) and J(xt) in a convenient way:

h(xt) = h̄+ ∆hxt, where h̄ =
1

2
(h+ + h−) and ∆h =

1

2
(h+ − h−), (5.8)

J(xt) = J̄ + ∆Jxt, where J̄ =
1

2
(J+ + J−) and ∆J =

1

2
(J+ − J−),

When ∆a is zero, we have J+ = J− and consequently, ∆J = 0 and J̄ = J , where J is the coupling
constant we found in the derivation of the mapping from of symmetric 2× 2 HMMs. The same happens
with the h-terms when ∆b = 0. The terms consisting of a logarithm with a hyperbolic cosine are also
rewritten by taking the mean value of the possible terms and a deviation from that mean value. We also
use that x2

t = 1 for each state and we get,

H =−
N∑
t=1

[
h̄ytxt + ∆hyt − log(2 cosh(h(xt)))

]
−

N−1∑
s=1

[
J̄xs+1xs + ∆Jxs+1 − log(2 cosh(J(xs)))

]
=−

N∑
t=1

[
h̄ytxt + ∆hyt −

1

2
log(4 cosh(h+) cosh(h−))− 1

2
xt log

(
cosh(h+)

cosh(h−)

)]
(5.9)

−
N−1∑
s=1

[
J̄xs+1xs + ∆Jxs+1 −

1

2
log(4 cosh(J+) cosh(J−))− 1

2
xs log

(
cosh(J+)

cosh(J−)

)]
.

The terms without any xt or yt can be neglected since they provide a constant shift in the energy. The
terms that depend on a factor yt only, also cause a shift in energy and can be neglected. Higher-order

39



5.4. Mapping to Ising models Chapter 5. Symmetry breaking

terms that depend on a product of these factors still contribute. The full Hamiltonian is then given by

H =−
N∑
t=1

[
h̄ytxt + ∆hyt −

1

2
xt log

(
cosh(h+)

cosh(h−)

)]
−

N−1∑
s=1

[
J̄xs+1xs + ∆Jxs+1 −

1

2
xs log

(
cosh(J+)

cosh(J−)

)]
(5.10)

=−
N∑
t=1

[
h̄ytxt −

1

2
xt log

(
cosh(h̄+ ∆h)

cosh(h̄−∆h)

)]
−

N−1∑
s=1

[
J̄xs+1xs + ∆Jxs+1 −

1

2
xs log

(
cosh(J̄ + ∆J)

cosh(J̄ −∆J)

)]
.

For large N , we can approximate that the sums are both over N , neglecting boundary terms. In this
approximation, we can write ∆Jxs+1 = ∆Jxs, because we are summing over the entire chain. Then we
can rearrange the Hamiltonian such that one sum represents the nearest neighbour interactions and the
other terms an external field.

H =−
∑
t

J̄xt+1xt −
∑
s

[
h̄ysxs −

1

2
xs log

(
cosh(h̄+ ∆h)

cosh(h̄−∆h)

)
− 1

2
xs log

(
cosh(J̄ + ∆J)

cosh(J̄ −∆J)

)
+ ∆Jxs+1

]
=−

∑
t

J̄xt+1xt −
∑
s

[
h̄ys −

1

2
log

(
cosh(h̄+ ∆h)

cosh(h̄−∆h)

)
− 1

2
log

(
cosh(J̄ + ∆J)

cosh(J̄ −∆J)

)
+ ∆J

]
xs (5.11)

=−
∑
t

J̄xt+1xt −
∑
s

h̃j(ys)xs,

where the external field h̃j(ys) consists of a fluctuating term that depends on ys and a constant term,

h̃j(ys) = h̄ys −
1

2
log

(
cosh(h̄+ ∆h)

cosh(h̄−∆h)

)
− 1

2
log

(
cosh(J̄ + ∆J)

cosh(J̄ −∆J)

)
+ ∆J. (5.12)

In the last line of Equation 5.11, it is clear that the Hamiltonian is really just the Hamiltonian of our
familiar Ising model. There is a constant spin-spin coupling term, the strength of which is determined
by the transition probabilities ā and ∆. Then, there is the fluctuating term of the local external fields,
the magnitude is constant and determined by the observation probabilities, but the direction is assigned
randomly through ys. And lastly, there is a constant term in the external fields that depends on both
the transition and observation probabilities. The change of variables that we used in Section 2.4.4 to find
the Hamiltonian of a random-bond Ising model with a constant external field does not help us here. The
mapping would give a random-bond Ising model with an external field that has both a constant and a
random fluctuating part.

We will now write the Hamiltonian in terms of the transition and observation probabilities again, to
get a better picture of its behaviour in the context of the HMMs,

H =−
∑
t

1

4
log

(
4 (ā− 1)

2 −∆a2

4ā2 −∆a2

)
xt+1xt (5.13)

−
∑
s

[
1

4
log

(
4
(
b̄− 1

)2 −∆b2

4b̄2 −∆b2

)
ys −

1

4
log

(
(2ā+ ∆a− 2) (2ā+ ∆a)

(2ā−∆a− 2) (2ā−∆a)

)

−1

4
log

((
2b̄+ ∆b− 2

) (
2b̄+ ∆b

)(
2b̄−∆b− 2

) (
2b̄−∆b

))+
1

4
log

(
(−2ā+ ∆a+ 2) (2ā+ ∆a)

(−2ā−∆a+ 2) (2ā−∆a)

)]
xs.

When ∆a and ∆b are zero, the known Hamiltonian for the symmetric case is recovered. To make this
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more explicit, we Taylor expand for small ∆a and ∆b,

H =−
∑
t

1

4
log

(
(1− ā)2

ā2

)
xt+1xt (5.14)

−
∑
s

[
1

4
log

(
(1− b̄)2

b̄2

)
ys +

(2ā− 1)

4ā(1− ā)
∆a+

(2b̄− 1)

4b̄(1− b̄)
∆b+

∆a

4ā(1− ā)

]
xs +O(∆a2,∆b2)

=−
∑
t

1

2
log

(
1− ā
ā

)
xt+1xt −

∑
s

1

2

[
log

(
1− b̄
b̄

)
ys +

∆a

1− ā
+

(2b̄− 1)

2b̄(1− b̄)
∆b

]
xs +O(∆a2,∆b2).

We have seen that MAP estimation of the hidden state of the two-state, two-symbol HMM is essentially
the same as the minimalization of the appropiate Ising model Hamiltonian. But, how does Bayesian
filtering fit in? The phase transitions found in MAP estimation [23] do not coincide with those found
through Bayesian filtering in symmetric 2×2 HMMs. The equivalent of filtering in the context of an Ising
model would be something like this: Imagine a random string of spin ups and spin downs, the probability
of switching states from one spin to another is still governed by the transition matrix. The observation
of the spins is randomly influenced by the external fields, just as before. However, the question we ask
is different now. Instead of finding the most likely sequence of state, we are inferring just one. Given a
string of observed spins, add one spin at the end randomly, and observe it, What is the most likely state
of the spin that was just added? Repeat this for every added spin. It seems like an odd question to ask
in the context of an Ising model. However, maybe similar methods could be used when asking the right
question.

All in all, we have a reasonable understanding of the behaviour of the discord parameter in 2× 2 HMMs.
In this chapter, we have seen that the transitions in the discord exist not only in 2× 2 symmetric HMMs
but also when we introduce asymmetries in the transition and/or observation matrices. We can calculate
the mean critical error probability for asymmetric systems as well, and they agree with the results
of simulations. A new feature is a linear regime in the discord at sufficiently high mean observation
probabilities. We can explain and quantify the onset and the value of the discord in this regime. Lastly,
we considered the mapping of the 2 × 2 HMM to an Ising model again. We extended the derivation for
symmetric HMMs from Section 2.4.4 to more general asymmetric HMMs.

We acknowledge helpful suggestions from Malcolm Kennett. Particularly, for pointing out that some
nasty terms in the Hamiltonian can be ignored because they are, in fact, constants.
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Chapter 6

Symmetric m-state, n-symbol hidden
Markov models

Up to now, we have restricted ourselves to two-state, two-symbol HMMs. We have seen that the tran-
sitions in the discord parameter exist in both symmetric and asymmetric 2 × 2 HMMs. Now, we are
interested to see what happens in a model with more states and symbols. In this chapter, we will general-
ize the symmetric 2× 2 hidden Markov model to a symmetric HMM with an arbitrary number of states:
a symmetric n × n HMM. Then, we will look at another symmetric n × n HMM, a random walk on a
lattice with constant background noise. We will also consider 2× n HMMs, which we have to approach
in a slightly different way since multiple symbols correspond to the same hidden state. We investigate
whether the transitions that we have encountered in the discord parameter exist in these systems and, in
particular, we look at the limiting cases where n→∞.

6.1 Symmetric n-state n-symbol hidden Markov models

In general, an n×n HMM can depend on up to 2n(n− 1) independent variables. To keep the number of
parameters manageable, we will consider symmetric HMMs with doubly stochastic matrices and only two
classes of states: An observation is either correct and the symbol is the ‘same’ as the underlying state,
or an observation is incorrect and the system sends out an ‘other’ symbol). The HMM matrices are

A =



1− a a
n−1 . . . a

n−1

a
n−1 1− a

. . .
...

...
. . .

. . . a
n−1

a
n−1 . . . a

n−1 1− a

 , B =



1− b b
n−1 . . . b

n−1

b
n−1 1− b

. . .
...

...
. . .

. . . b
n−1

b
n−1 . . . b

n−1 1− b


. (6.1)

This system depends on only two parameters for a given number of states n: the transition probability
a, and the observation error probability b. It is a straightforward generalization of the symmetric 2 × 2
HMM that we studied in Chapters 2 and 4. Before, we labeled the states 1 and −1; now we label the
states 1, 2, . . . , n. This transition matrix describes a system that has a probability 1 − a to stay in the
same state and equal probabilities to transition to any other state, a

n−1 . The observation matrix describes
a measurement with constant background noise; there is a certain probability of observing the correct
symbol 1 − b and equal probabilities of observing a different symbol, b

n−1 . Note that the probability of
observing a correct or incorrect symbol does not change when we increase the number of states n; only
the probability of observing a specific incorrect symbol decreases.
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The steady-state probabilities of these systems are

px =
1

n


1
1
...
1

 and py =
1

n


1
1
...
1

 , (6.2)

which makes sense in a system where all states and symbols are equivalent.
One can define a signal-to-noise ratio based on the observation probabilities, the probability of ob-

serving a correct symbol and the probability of observing another symbol:

SNR =
1− b

b/(n− 1)
− 1 =

n− 1− bn
b

. (6.3)

When b = 0 (perfect information), the signal-to-noise ratio goes to infinity. At b = n−1
n , we have

SNR = 0: The signal is completely obscured by noise. Hence, we restrict ourselves to the range of
parameters: 0 ≤ a, b ≤ n−1

n , for an integer number of states, n ≥ 2.
We will take a look at the maximum confidence level and the discord parameter for n = 2, 3, 4, 10 and

discuss the limit of n→∞. Also, we will consider the discord between the actual (hidden) state and the
filter for a direct measure of the filter’s performance.

6.1.1 Maximum confidence level

We start with the calculation of the maximum confidence level, p∗. As in a symmetric 2 × 2 HMM, all
states of a symmetric n× n HMM are equivalent, and thus the maximum confidence levels are the same.
We calculate the maximum confidence for an arbitrary state i, starting from the last line of Equation 2.5,

p∗ =
1

Zt,i
P (yt = i|xt = i)

∑
xt−1

P (xt = i|xt−1)P (xt−1|yt−1 = i). (6.4)

The first two terms in the numerator are known from the transition and observation matrix of the HMM.
The last term is p∗ if xt−1 = i. For xt−1 6= i, we can calculate it by demanding a normalized probability,∑

xt−1

P (xt−1|yt−1 = i) = 1 (6.5)

p∗ + (n− 1)P (xt−1 = j|yt−1 = i) = 1

P (xt−1 = j|yt−1 = i) =
1− p∗

n− 1
.

Plugging all of the terms into Equation 6.4, we are left the equation

p∗ =
(1− b)

[
(1− a)p∗ + a 1−p∗

n−1

]
(1− b)

[
(1− a)p∗ + a 1−p∗

n−1

]
+ b

n−1

[
ap∗ +

(
1− a+ (n− 2) a

n−1

)
(1− p∗)

] . (6.6)

This expression can be solved for p∗ in terms of a, b, and n; the solution is given by Equation B.12 in
Appendix B.2, and it is plotted in Figure 6.1 as a function of b, for a = 0.2 and several n. The behaviour
of the maximum confidence level as a function of a is qualitatively the same for the various n when we
consider 0 ≤ b ≤ n−1

n and 1
n ≤ p

∗ ≤ 1. The pink dashed line indicates the minimum p∗ necessary for the

filter to be useful. At p∗’s lower than this, the state estimate based on the filter, x̂ft , will be negatively
correlated to the observations. We see that at b = n−1

n the maximum confidence levels fall below this
line, see red dots,exactly when the signal-to-noise ratio falls below zero. The filter cannot say anything
useful when it is impossible to distinguish between the signal and the noise.
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Figure 6.1: Maximum confidence level p∗ for symmetric n× n HMMs. The curves are all for a system
with transition probability a = 0.2 and as function of the observation error probability
b. The curve ‘1 − b’ indicates the maximum b and minimum p∗, where it intersects the
maximum confidence levels (red dots), that we will study.

Lastly, we consider the limit of an infinite number of states and symbols (n → ∞). The maximum
confidence level goes to 1 for all 0 ≤ a, b ≤ 1. The probability to transition to any other specific state
becomes vanishingly small, while the probability to stay in the same state is unchanged. The filter
can, theoretically, be 100% certain that the system is in a particular state for a long chain of identical
observations. Depending on the parameters a and b, it might be very rare or even impossible for the filter
to achieve this level of confidence.

6.1.2 Discord parameter

The definition of the discord parameter as introduced in Section 2.3 has to be generalized to accommodate
more than two states and symbols. We will define the discord so that it is still 0 when the filter’s state
estimate and the naive state estimate are the same; x̂ft = x̂ot for all t, 2 when x̂ft 6= x̂ot everywhere, and 1
when they are uncorrelated. The discord is given by

D = 1− 1

N

N∑
t=1

f(x̂ot , x̂
f
t ), (6.7)

where f is a function that depends on the most likely states according to the naive observations and the
filter algorithm;

f(x̂ot , x̂
f
t ) =

{
1, if x̂ot = x̂ft

−1, if x̂ot 6= x̂ft
. (6.8)

When n = 2, this definition reduces to that used for 2×2 HMMs from Section 2.3. The discord parameter
for n states and symbols is shown in Figure 6.2, for 0 ≤ b ≤ n−1

n (∞ ≥ SNR ≥ 0). Both the discord and
the observation probability are scaled to emphasize the similarities between the plots:

D′ = D · n

2(n− 1)
, b′ = b · n

2(n− 1)
. (6.9)

The colours are the same for every subfigure, but some curves overlay each other. The stepsize δb = 0.005
is constant across the subfigures.

44



6.1. n-state n-symbol HMMs Chapter 6. Symmetric m-symbol n-state HMMs

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b'

D
'

2 ´ 2 a = 0.01

0.1

0.2

0.3, 0.4, 0.5

a

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b'

D
'

3 ´ 3

b

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b'

D
'

4 ´ 4

c

0. 0.1 0.2 0.3 0.4 0.5
0.

0.2

0.4

0.6

0.8

1.

b'

D
'

10 ´ 10

d

Figure 6.2: Scaled discord parameter for symmetric n×n HMMs, as a function of the scaled observation
error probability b′ for several transition probabilities a.

Qualitatively, the behaviour of the discord stays the same for an increasing number of states and
symbols. Every curve starts at a discord of zero, becomes non-zero at a certain observation probability,
increases for increasing b < 0.5 and has a jump at b′ = 1

2 (b = n−1
n ). At this point, the filter algorithm

returns a constant probability for all states and the filter is useless. Effectively, the filter now measures
how often we observe a certain symbol, because the filter estimates the same state over and over again,
whereas the observations are negatively correlated to the state. In the limit of an infinite chain, the
system will spend an equal fraction of time in each state and observe each symbol for an equal fraction
of time. We will observe each symbol for a time T = 1/n on average. This corresponds to the jump to

D = 1 − 1−(n−1)
n = 2n−1

n or D′ = 1 that can been seen in the figures. At b = 0.5, observations are still
uncorrelated with the underlying state. This point is shifted for the scaled variables to b′ = 0.375, 0.333
and 0.278 for n = 3, 4 and 10, respectively. At higher b, the observations are negatively correlated to the
underlying state, and we can see the discord decrease for increasing b. Interestingly, for n > 2, the filter
seems to be useful even for b > 0.5 in some cases. Both the observations and the filter are getting less
accurate, but they are inaccurate in the same way. The filter recognizes that it cannot do (much) better
than the naive observations for certain parameters, and the observations predominantly determine the
filter’s behaviour. We have found no other possible explanation for the decreasing discord.

We have seen that there are discord transitions between the filter and naive state estimate, but are
there discord transitions between the filtered state and the hidden, true, state? And, can we get a better
measure of the filter’s performance with this discord? We consider the discord DTF between the hidden
(true) state xt and the filter’s state estimate x̂ft to look at the filter’s performance. The behaviour of DTF
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Figure 6.3: Scaled discord parameter between the hidden state and the filter’s state estimate for sym-
metric n× n HMMs, as a function of the scaled observation error probability b′ for several
transition probabilities a.

(Figure 6.3) also stays qualitatively the same for different numbers of states. The colours indicating the
various transition probabilities are the same as in the previous figure. When DTF = 0, the filter perfectly
follows the hidden state, and when DTF = 1, the filter and the state are uncorrelated. The discord never
exceeds the line DOT = 2b (D′OT = 2b′), which is the discord between the observations and the hidden
states for symmetric HMMs. Hence, the filter never performs worse than the naive observations. The filter
clearly performs best for low transition probabilities and worst for high transition probabilities. Keeping
a and b fixed, we see that the filter is indeed more accurate for higher n. More symbols means a greater
variety in wrong observations, which makes it easier for the filter to distinguish between a sequence of
wrong observations and transitions. At low error probabilities, the discord is a linear function of b, which
corresponds to the parts in Figure 6.2 where the discord is zero.

Interestingly, we see no evidence of phase transitions such as the ones in the discord between the
observations and the filter’s state estimate. This discord looks like a continuous function of b apart
from fluctuations due to noise. The decreasing discord in Figure 6.2 at high b has no clear equivalent in
Figure 6.3 either.

6.1.3 Critical observation probability

The critical observation error, the b where the discord becomes non-zero, decreases with increasing number
of states. In other words, the observations and filter disagree when there are fewer errors in the system.
This is another indication that the filter performs better for higher n. We now quantify the behaviour of
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the critical observation error, as seen in Figure 6.2. We start by defining the threshold where the discord
becomes non-zero for a symmetric n× n HMM:

P (xt+1 = i|yt+1 = j, yt = i) = P (xt+1 = j|yt+1 = j, yt = i) (6.10a)

P (xt+1 = i|yt+1 = j, yt = i) ≥ P (xt+1 = m|yt+1 = j, yt = i). (6.10b)

Equation 6.10 has to hold for all states i ∈ {1, 2, . . . , n}, j 6= i, and m 6= i, j. In words, after observing
a long sequence of symbols i, followed by an observation j, When is the probability of being in state i
equal to the probability of being in state j? Additionally, the probability of being in any other state has
to be smaller than the probability of being in state i. Again, we are just looking for the lowest b at which
the filter’s state estimate starts to disagree with the naive state estimate. In general, we need to obey
these n(n−1)(n−2) equations for n×n HMMs. However, for the symmetric HMM under consideration,
all states are equivalent and the set of equations simplifies greatly. We need only consider one i and one
j; for example, take i = 1 and j = 2. Then there are still n − 1 equations left that need to be satisfied.
Fortunately, the inequalities in Equation 6.10b are automatically satisfied, at least in the symmetric case.
Now we are left with a single equation,

P (xt+1 = 1|yt+1 = 2, yt = 1) = P (xt+1 = 2|yt+1 = 2, yt = 1). (6.11)

For a symmetric 2× 2 system, we can use the normalization of probabilities to write P (xt+1 = 2|yt+1 =
2, yt = 1) = 1 − P (xt+1 = 1|yt+1 = 2, yt = 1), and the condition reduces Equation 2.18. The complete
derivation of the critical error probabilities for symmetric n × n HMMs can be found in Appendix B.2.
The solutions we find are

bc =
1

2(n− 1)

(
(n− 1) + (n− 2)a−

√
(n− 2)2a2 − 2n(n− 1)a+ (n− 1)2

)
, bc =

n− 1

n
. (6.12)

This result is plotted in Figure 6.4 for n = 2, 3, 4 and 10. The figure shows both the analytical results
and the simulated results, which agree quite well, especially for the lower n. The results for n = 2 are
the same results as shown in Section 2.4. The n = 10 curve deviates from the simulations a little bit at
higher a; it is not clear to us why this happens. The area under the curves indicates the parameter regime
where D = 0; where the state estimates with and without memory are in agreement. Above the critical
error probability, the two state estimates differ. There are no discontuities as bc → n−1

n ; the curves are
simply very steep and the simulations are done using a constant stepsize in a.

At small transition probabilities a, the curves are almost indistinguishable. There are few transitions,
and the probability of staying in the same state is equal for all the different HMMs. This means that the
dynamics change very little when the number of states changes, and hence the critical error probabilities
are similar. Eventually, at higher a, each curve reaches a constant value bc = n−1

n . This ‘plateau’
corresponds to the jump from D = 0 to D = 2 1−n

n , as seen in Figure 6.2.
Lastly, we consider the limit of an infinite number of states, n→∞. The probability of transitioning

into another state is still a, but the probability of transitioning to a particular state becomes vanishingly
small. The limit of the critical error probability for an infinite number of states is given by

lim
n→∞

bc = a. (6.13)

This limit is plotted together with the bc’s for finite systems in Figure 6.4. As expected, the critical error
probability in the limiting case is similar to other bc’s at lower a. This result implies that even in the
limit of an infinite number of states, the discord has a transition from D = 0 to D > 0.

6.2 Diffusing particle

In this section, we look at another special case of an n×n hidden Markov model, one with more obvious
real-world applications: A one-dimensional diffusing particle on a lattice of size n with periodic boundary
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Figure 6.4: Phase diagram of symmetric HMMs with n states and symbols. The critical error probability
is shown as a function of the transition probability a. The lines are analytical solutions;
the circles are the results of simulations.

conditions and constant background noise. It is a particular case of a symmetric n×n HMM. The particle
can stay at the same position with probability 1− a, or it can move either one step to the left or to the
right with equal probabilities a/2. The transition matrix has non-zero elements on the diagonal only, the
off-diagonals above and below it and the corners of the matrix.

A =



1− a a
2 0 . . . a

2

a
2 1− a a

2

. . . 0

0 a
2 1− a

. . .
...

...
. . .

. . .
. . . a

2

a
2 0 . . . a

2 1− a


. (6.14)

The observation matrix is as defined at the beginning of the chapter (see Equation 6.1). Note that both
matrices are symmetric and doubly stochastic, just as before. The steady-state probabilities are the same,
too: The probabilities of being in a particular state and the probabilities of observing a specific symbol
are all equal to 1/n in the long run.

We start by looking at the scaled discord parameter in Figure 6.5. The discord parameter and the
observations are scaled in the same way as in the previous section (Equation 6.9). Figures 6.5a and b
show results for a particle hopping over four lattice sites for different transition probabilities; Figures 6.5c
and d are for a particle hopping over ten lattice sites. For a = 1

2 , the particle is equally likely to stay put
or hop; for a = 2

3 , it is equally likely to stay, hop to the left or hop to the right; and at a = 1, the particle
equally likely to hop left or right (no chance of staying put). We still see transitions in the discord as
a function of the observation error probability. The curves seem smoother for an increasing number of
lattice sites. Also, above a certain observation probability, the discord decreases with increasing b. From
the unscaled data, it is clear that this happens only when b > 0.5, that is when the probability of a wrong
observation is greater than the probability of an accurate observation.

The critical observation error for this system can be calculated from the same equation as bc for the
n × n symmetric system. It is zero for most parameters, especially for systems with more lattice sites.
An exception is the curve for a = 0.6 in Figure 6.5b, where the transition to non-zero discord is found at
b′ = 1

2 . Intuitively, we can understand that the discord becomes non-zero at lower b in systems with more
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Figure 6.5: Scaled discord parameter for a particle performing a random walk on a lattice in one dimen-
sion, with constant background noise and periodic boundary conditions. a-b, four lattice
sites. c-d, ten lattice sites.

lattice sites. Let us consider systems at fixed transition and observation probabilities; the probabilities
of not transitioning and of observing a correct symbol are all equal. However, when there are more
lattice sites, the transitions are relatively restricted; the fraction of allowed transitions decreases with an
increasing number of lattice sites. For example, in a system with four lattice sites, at any given time,
three out of four lattice sites can be reached with a single transition. By contrast, in a system with 10
lattice sites, only three out of ten sites can be reached. Thus, for a higher number of lattice sites, the
filter will be able to distinguish between right and wrong symbols more accurately. This is reflected in the
discord curves being closer to a straight line at low b′ (remember, the discord between the true state and
the observations is a straight line D = 2b). We cannot compare Figures 6.5b and d directly to previous
results, because we have not looked at such high transition probabilities before. These high transition
probabilities do make sense in this system, where a = 1 corresponds to the particle being forced to go
either left or right at every timestep. At most high a, we see that the filter does not improve much
over the naive observations. As a → 1, interestingly, the filter’s performance seems to improve a little.
However, from these plots we cannot be sure, because we are not comparing with the hidden state.

The system with only four lattice sites is quite similar to the 4× 4 symmetric HMM from Chapter 6.
The discord parameters of these systems are also quite similar; see Figures 6.5a and 6.2c. The main
difference is the non-zero discord at higher transition probabilities in the current system. Comparing the
discord of the system with ten lattice sites with the 10 × 10 symmetric HMM (Figures 6.5c and 6.2d),
the differences are clearer. The non-zero discord at higher transition probabilities and the decrease in
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Figure 6.6: Scaled discord between the ‘true’ state and the filter’s state estimate for a particle per-
forming a random walk on a lattice, in one dimension, with constant background noise and
periodic boundary conditions. a-b, four lattice sites. c-d, ten lattice sites.

discord are more dramatic.
We look at the discord between the hidden (true) state of the system and the filter’s state estimate;

see Figure 6.6. Again, these results (Figures 6.6a and c) are strikingly similar to the results for symmetric
n× n systems (Figures 6.3c and d). We see that the filter performs best for low transition probabilities.
At high transition probabilities, the discord D′TF approaches the line D′ = 2b′. There is no sign of the
transitions seen in the discord between the observations’ and the filter’s state estimate. The discord
D′TF curves for the diffusing particle are spread out more at the same parameters as those of the n× n
symmetric HMM, and they do not approach D′ = 2b′ as closely; they remain a little more bent. In short,
the discord D′TF of the diffusing particle is a little lower than that of the corresponding n × n HMMs
at the same parameters. From this, we conclude that the filter performs better for the diffusing particle
than the n× n HMMs, just as we argued before.

6.3 Symmetric two-state, n-symbol hidden Markov models

In this section, we consider a different kind of HMM, one with more symbols than states. In Section 2.1,
we discussed the ion channel as a system that can be described by of a HMM with more symbols than
states. It can be described as having two states: ‘open’ and ‘closed’. Experimentally, the state cannot be
observed directly and a correlated observable, the electrical conductance, is measured. The conductance
depends on the state of the system and can take on a continuum of values. We look at systems with
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Figure 6.7: Discord parameter of a symmetric 2× 4 HMM as a function of the observation probability
b, for several transition probabilities a.

only two states and an even number of symbols, and systems with two states and an infinite number of
symbols. The observation probability distributions for a two-state system with Gaussian errors is shown
in Figure 3.2. The calculations and simulations for these systems are described in Section 3.2.

The result of simulations of the discord of a system with four symbols is shown in Figure 6.7. There
are no points at b = 0 and b = 0.5, because that would require simulating infinitely narrow and infinitely
wide Gaussian distributions, respectively. However, we know that for b = 0, the discord is equal to zero,
because the filter’s state estimate follows the observations exactly in the case of perfect information.
And, for b = 0.5, the filter’s probability is once again restricted to P (xt = 1|yt) = 0.5 for all t, and
consequently, the discord should be one. The behaviour of the discord in this system is quite similar
to that of symmetric 2 × 2 HMMs (Figure 2.6). The discord becomes non-zero at lower observation
probabilities for fixed transition probabilities, which could indicate that the filter performs a little better
with the extra information that is available here. For example, in the 2 × 2 system, the discord is zero
for a = 0.30 and b < 0.50, but in this 2× 4 case, the discord is non-zero for b > 0.18. The critical error
probability as a function of the number of symbols, for a fixed transition probability a = 0.30, is shown
on a log-log scale in Figure 6.8. The line is a fit of the data to a function bc(n) = a/n, where a is a
constant. The resulting curve is bc(n) = 0.923/n, which gives a good asymptotic fit to the data. The
behaviour is similar for other transition probabilities, and it suggests that only in the limit of infinitely
many symbols, the (discontinuous) transitions to non-zero discord disappear.

In the n × n symmetric HMMs, Figure 6.2, we saw similar behaviour: The critical error probability
decreases as a function of the number of symbols (and states). However, if we look at the limit of n→∞
of the critical error probability of these HMMs (Figure 6.4), the critical error probability does not go to
zero.

Now, we will study the limiting case of infinitely many symbols in the two-state, n-symbol HMM. For
the generalization to a continuous state space of observations, the filtering algorithm has to be adjusted
slightly, since we cannot generate an infinitely large matrix. Instead of first generating an observation
matrix and using the elements in the filtering algorithm, one uses the probability distribution function of
the appropriate normal distributions. The discord for a HMM with two states and an infinite number of
symbols is shown in Figure 6.9. The behaviour is qualitatively the same as the discord in systems with
two states and more symbols, the similarities are, of course, stronger when looking at a larger number of
symbols. We see that the transition to non-zero discord shifted to lower transition probabilities in this
diagram (except for the curve with a = 0.50, which is zero everywhere). The curves level off more quickly
compared to the 2× 4 HMM, especially at high a. This is behaviour we expect for the discord when we
consider systems with a finite number of symbols. The discord at a = 0.01 is almost linear, only at higher
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Figure 6.8: Log-log plot of the critical observation probability bc of symmetric 2×n HMMs, for a fixed
transition probability a = 0.30, as a function of the number of symbols n. The line is a fit
of the form bc(n) = a/n, where a is a constant.
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Figure 6.9: Discord parameter of a HMM with two states and infinitely many symbols as a function of
the observation probability b, for several transition probabilities a.

observation probabilities does it start to deviate, and therefore, it is quite close to the discord between
the hidden state and the filter’s state estimate. This system has no clear higher-order transitions, except
the transition at b = 0.5,

We have seen that several features in this chapter’s various m × n HMMs that are analogous to those
observed in the discord parameter of 2 × 2 and n × n HMMs: the critical error probability, increasing
discord, intermediate transitions and a jump at b = n−1

n . We were even able to quantify the transitions
from D = 0 to D > 0 and the transition at D = 2n−1

n for n× n HMMs. These transitions were found in
all systems that were considered; they are not exclusive to the dimensionality or symmetry of the HMM.
Also, we explored the performance of the filter as a function of observation error probability by looking
at the discord between the hidden state and the filter’s state estimate. We find that keeping a memory of
observations is most useful at intermediate error probabilities and low transition probabilities. The same
conclusion was reached for symmetric 2× 2 HMMs by Bechhoefer [24]. Moreover, one is never worse off
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keeping a memory of observations compared to not keeping a memory, and the filter performs better for
a higher number of states. No transitions equivalent to those in the discord between the observations’
and filter’s state estimates were seen.
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Chapter 7

Conclusion

In this thesis, we have investigated when keeping a memory of observations pays off. We used hidden
Markov models to look at a relatively simple system with discrete states and noisy observations. We infer
the underlying state of the HMM from the observations in two ways: through naive observations, which
only take into account the current observation, and a state estimate found through Bayesian filtering (and
decision making), which take the history of observations into account. We compared the state estimates
by calculating the discord, D, between the two.

We started by studying the simple symmetric two-state, two-symbol HMM. Our results, simulations
and calculations, agree with those in [24]. We were able to explain some of the behaviour of the discord
parameter, and we confirmed this with calculations. This was done for the critical observation probability
and the transition to D = 1. We suggested a mechanism for the emergence of higher-order transitions
and to explain the jump size at the transition to non-zero discord.

We looked at several other HMMs to investigate how general the behaviour of the discord is, and, in
particular, if the phase transition to D > 0 exists in more complicated systems. We looked at asymmetric
2× 2 HMMs, some symmetric n×n HMMs, and symmetric 2×n HMMs. In all these system we found a
phase transition to non-zero discord, except in the 2× n in the limit of infinitely many symbols, n→∞.
The general features of the discord stayed the same in all these systems: it starts at D = 0 for b = 0; it
becomes non-zero at some critical error probability; and it increases for increasing error probability.

Some new features emerged in the asymmetric HMMs: the transition at b = 0.5 is no longer discon-
tinuous for asymmetric transition probabilities; there is a regime where the discord is linear as a function
of the observation probability; and the transition at b = 0.5 does not always go to 1. At certain values
of a and b, we find that the critical error probability curves backward. We are not sure what causes this
behaviour, but we suggested a mechanism that uses decreasing maximum confidence levels and the asym-
metric steady-state probabilities. We also have extended the mapping of symmetric 2 × 2 HMMs onto
Ising models to include asymmetric 2 × 2 HMMs. The resulting Hamiltonian is of an Ising model with
a field that has both constant and randomly fluctuating components. Although much is known about
solving Ising models, the questions we ask are odd in the context of Ising models. For example, filtering
corresponds to asking the probabilities of the last spin in a chain at zero temperature, as a function of
field. Thus, in mapping to an Ising model, we are trading off asking natural questions in a less-familiar
context (HMMs) or asking strange questions of more familiar (Ising) models. It is not clear whether the
latter will lead to a significant payoff.

We considered two different n × n HMMs: a straightforward generalization of the symmetric 2 × 2
HMM and a HMM describing a diffusing particle. The behaviour is very similar to the 2× 2 symmetric
HMM, especially when introducing a scaling factor that depends on n. The limit of n → ∞, shows a
transition at finite b, for the generalized n× n HMM. We also looked at the discord between the hidden
state and the filter’s state estimate, DTF , to see if similar phase transitions can be found, and as a
measure for the performance of the filter. The filter clearly performs best for low transition probabilities
and low observation probabilities. Moreover, we find that keeping a memory of observations is never
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worse than using the naive observations. We observed no phase transitions in DTF , similar to those in
D. A similar result is found in [23], where the Hamming distance between the true and estimated states
is considered, which is very similar to the discord DTF . An interesting result was found for the critical
observation probability of 2× n HMMs was found: bc, goes to zero for a large number of symbols and a
fixed transition probability.

7.1 Outlook

We are left with several open questions. It is not yet clear why we find a phase transition when looking
at the discord between naive observations and a state estimate based on filtering, but not in the discord
between the true state and the filter’s state estimate. Both parameters depend on the filter’s state
estimate and have the same decision making component. Also, there is a yet unexplained discrepancy in
the critical observation probability at higher n in the n× n HMMs. Is this a problem with the numerics
or the definition of the threshold used in the calculation? Another point we would like to understand
better is the disappearance of the phase transition in the 2× n HMMs as the number of symbols goes to
infinity.

Some other threads that could be worth pursuing are to

• Calculate the discord between the naive observations or the true state and the MAP state estimate,
and verify the transitions seen in these inference problems [23]. Do we see the same difference in
behaviour between D and DTF ?

• Try to describe Bayesian filtering from a statistical mechanical approach, perhaps coming back to
an Ising or Potts model.

• Look at HMMs that describe more realistic systems, such as symmetric n×n HMM with Gaussian
errors, and continuous state-space models. A linear dynamical systems is a continuous state-space
model with linear dynamics and Gaussian noise. Kalman filtering can be used to infer the hidden
state of the system in continuous state-space models [4, Chapt. 18].

We hope that this work motivates further inquiry, both theoretically and experimentally.
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Appendix A

Matlab code

In this appendix, the main code used for the simulations in this thesis can be found. Some simulations
require this code to be adapted, for example if one wants to simulate a two-state, n symbol system.
A description of the methods can be found in Chapter 3. All simulations were done in Matlab, and
visualization was done in Mathematica. In the first section, an n×n hidden Markov model is set up, the
Bayesian filtering algorithm is applied, and the discord between the observations and filter’s state estimate
is calculated. In the second section, these functions are combined to calculate the critical observation
probability of a HMM.

A.1 Discord of n-state, n-symbol HMMs

The function HMMdiscord( ) sets up a HMM with the desired parameters and calculates the system’s
discord as a function of the mean observation error probability b̄. The parameters that one can change
to simulation a different system are:

• M (n in the text), the number of states and symbols of the HMM.

• N, the length or number of timesteps of the generated HMM. This affects the accuracy of the
calculated discord.

• Npoints, the number of points b̄ simulated for one discord curve.

• da (∆a), the asymmetry in the transition probabilities.

• da (∆b), the asymmetry in the observation probabilities.

• alst, list of ā’s for which to calculate the discord (each is a different curve).

These can be found in lines 5-11 of the code below. The transition matrix A (line 16) and observation
matrix B (line 22) are for 2× 2 HMMs, but one can easily use different matrices.

If one wants to simulate two-state, n-symbol HMMs, functions chain(M, N, A, B), filtering(M, N, A,
B, Ostate), and discord(M, N, Ostate, Fstate) need to be modified as well.

1 % function calculates the discord of an n−state , n−symbol HMM
2 function HMMdiscord ( )
3
4 % set parameters for simulation
5 M = 2 ; % number of states and symbols
6 N = 30000; % number of timesteps
7 Npoints = 101 ; % number points per curve
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8 da = 0 . 0 ; % difference in transition prob ’ s
9 db = 0 . 0 ; % difference in observation prob ’ s

10 a l s t = linspace (0 , 0 . 5 , 6) ; % l i s t of mean transition prob ’ s
11 b l s t = linspace (0 , 0 . 5 , Npoints ) ; % l i s t of mean observation prob ’ s
12
13 for j = 1 : length ( a l s t ) % loop over values of a
14 a = a l s t ( j ) ;
15 A = [1−a+da /2 , a+da /2 ; a−da /2 , 1−a−da / 2 ] ; % transition matrix
16
17 f i l e = fopen ( sprintf ( ’ Discord M%d N%d a %1.2 f da %1.2 f db %1.2 f . dat ’ ,

M, N, a , da , db ) , ’w ’ ) ; % save data in different f i l e for every
curve

18
19 for i = 1 : Npoints % loop over values of b
20 b = b l s t ( i ) ;
21 B = [1−b+db/2 , b+db /2 ; b−db/2 , 1−b−db / 2 ] ; % observation matrix
22
23 [ Rstate , Ostate ] = chain (M, N, A, B) ; % generate HMM
24 [ Fstate ] = f i l t e r i n g (M, N, A, B, Ostate ) ; % apply f i l t er ing

algorithm
25 [D, SD] = d i s co rd (M, N, Ostate , Fstate ) ; % calculate discord

between observations and f i l t e r
26 fpr intf ( f i l e , ’ %1.6 f %1.6 f %1.6 f \n ’ , b , D, SD) ; % save data
27 end
28
29 fc lose ( f i l e ) ;
30 end
31 end
32
33
34 % function to generate M−state , M−symbol HMM with N timesteps , transition

matrix A and observation matrix B. function returns an array with the
state of the HMM and an array with the observations .

35 function [ Rstate , Ostate ] = chain (M, N, A, B)
36
37 % allocate memory
38 PcumA = zeros (M,M) ; % cumulative prob . matrix of A
39 PcumB = zeros (M,M) ; % cumulative prob . matrix of B
40 Rstate = zeros (1 ,N) ; % array of the state of the system
41 Ostate = zeros (1 ,N) ; % array of observations
42
43 % f i l l matrices with cumulative probabi l i t ies
44 PcumA( 1 , : ) = A( 1 , : ) ;
45 for i = 2 :M % loop over columns
46 PcumA( i , : ) = A( i , : ) + PcumA( i −1 , : ) ;
47 end
48
49 i f abs (PcumA(M, : ) −1.) > 0 .001 % check that columns sum to 1
50 error ( ’ Columns o f matrix A must sum to 1 ’ )
51 end
52
53 PcumB( 1 , : ) = B( 1 , : ) ;
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54 for i = 2 :M
55 PcumB( i , : ) = B( i , : ) + PcumB( i −1 , : ) ;
56 end
57
58 i f abs (PcumB(M, : ) −1.) > 0 .001
59 error ( ’ Columns o f matrix B must sum to 1 ’ )
60 end
61
62 % generate hidden markov model
63 Rstate (1 ) = 1 ; % in i t i a l condition
64
65 for i = 2 :N % f i l l array with states as described by A
66 r = rand ( ) ; % random number between 0 and 1
67 j = M − 1 ;
68
69 while j > 0 % compare r to cumulative prob ’ s , i f state is found ,

assign state and break loop
70 i f r > PcumA( j , Rstate ( i −1) )
71 Rstate ( i ) = j +1;
72 j = −1;
73 else % if state not found , try next
74 j = j −1;
75 end
76 end
77 i f j == 0
78 Rstate ( i ) = 1 ;
79 end
80 end
81
82 for i = 1 :N % f i l l array with observations as described by B
83 r = rand ( ) ;
84 j = M − 1 ;
85 while j > 0
86 i f r > PcumB( j , Rstate ( i ) ) % prob of observing symbol j at time

i depends on the state at time i (Rstate( i ))
87 Ostate ( i ) = j +1;
88 j = −1;
89 else
90 j = j −1;
91 end
92 end
93 i f j == 0
94 Ostate ( i ) = 1 ;
95 end
96 end
97 end
98
99

100 % function to apply f i l t er ing algorithm to array of observations . function
returns an M by N array of prob ’ s to be in state M at time N

101 function [ Fstate ] = f i l t e r i n g (M, N, A, B, Ostate )
102
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103 Fstate = zeros (M,N) ; % array of P( x t |yˆt )
104 V = s t e a d y s t a t e (A) ; % in i t i a l condition , steady−state prob
105 Fstate ( : , 1 ) = V( : ) ;
106
107 % f i l t e r calculation
108 for i = 2 :N % loop over chain length
109 pxxy = zeros (1 ,M) ; % P(x i |yˆ{i−1})
110
111 for k = 1 :M
112 pxxy ( : ) = pxxy ( : ) + A( : , k ) ∗Fstate (k , i −1) ;
113 end
114
115 Zk ( : ) = B( Ostate ( i ) , : ) .∗ pxxy ;
116 Fstate ( : , i ) = Zk ( : ) /sum(Zk) ; % Fstate( j , i ) = P( x i = j |yˆi )
117 end
118 end
119
120
121 % function calculates the discord between the state estimates based on

observations and f i l tered observations . function returns the discord and
the standard deviation of the mean of this discord

122 function [D, SD] = d i s co rd (M, N, Ostate , Fstate )
123
124 % find state estimate based on f i l t e r prob ’ s
125 MLS = zeros (1 ,N) ; % Most Likely State = \hat{x}ˆ f t
126 for i = 1 :N
127 num = 1 ; j = 1 ;
128 maxP = Fstate (1 , i ) ;
129 while j < M
130 i f Fstate ( j +1, i ) > maxP
131 maxP = Fstate ( j +1, i ) ;
132 num = j +1;
133 end
134 j = j +1;
135 end
136 MLS( i ) = num;
137 end
138
139 D = 0 ; % calculate discord
140 SD = 0 ; % calculate standard deviation of the mean discord
141 for i = 1 :N
142 i f MLS( i ) == Ostate ( i )
143 D = D + 1 ;
144 SD = SD + (D∗D) ;
145 else
146 D = D − 1 ;
147 SD = SD + ( (D−2)∗(D−2) ) ;
148 end
149 end
150 D = 1 − (D/N) ;
151 SD = sqrt (SD) /N;
152 end
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153
154
155 % function returns steady state vector V of a prob matrix A
156 function [V] = s t e a d y s t a t e (A)
157
158 opts . v0 = ones ( length (A) ,1 ) / length (A) ;
159 [V, ˜ ] = e i g s (A, 1 , ’LM’ , opts ) ; % find eigenvector corresponding to

eigenvalue 1
160 V = V/sum(V) ;
161 end

A.2 Phase diagram of n-state, n-symbol HMMs

The function Phasediagram() makes a ‘phase diagram’ of an n×n HMM; it determines the critical error
probability bc as a function of the transition probability a. It uses all functions from the previous section,
except the main HMMdiscord(). The parameters to change to simulate a different HMM are very similar
to those in the previous section:

• N, the length or number of timesteps of the generated HMM. This affects the accuracy of the
calculated discord and the critical error probability.

• M (n in the text), the number of states and symbols of the HMM.

• Npoints, the number of points ā and b̄ simulated. This affects the number of points at which bc is
calculated and the stepsize with which bc is determined.

• da (∆a), the asymmetry in the transition probabilities.

• db (∆b), the asymmetry in the observation probabilities.

These variables can be found in lines 4-8. The matrices A and B can be changed too, in lines 30 and 33.

1 % function to calculate the cr i t i ca l error probability b c as a function of
a for fixed da and db .

2 function Phasediagram ( )
3
4 N = 30000;
5 M = 2 ;
6 Npoints = 101 ;
7 da = linspace ( 0 , 0 . 5 , 6 ) ;
8 db = 0 ;
9

10 for i = 1 : length ( da )
11
12 f i l e I D = fopen ( sprintf ( ’bc M%d N%d da %1.3 f db %1.3 f . dat ’ , M, N, da ,

db) , ’w ’ ) ;
13 c r i t i c a l b (N, M, Npoints , da ( i ) , db , f i l e I D ) ; % cri t ica l points b c

in M dimensions at fixed da and db
14 fc lose ( f i l e I D ) ;
15 end
16 end
17
18
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19 % function that calculates b c as a function of a, i t uses functions from
Appendix A.1

20 function c r i t i c a l b (N, M, Npoints , da , db , f i l e I D )
21
22 a = linspace (abs ( da /2) , (M−1)/M, Npoints ) ; % values of a where to

calculate b c(a)
23 Dlst = zeros (1 , Npoints+1) ; % l i s t to save D’ s
24 Dlst (1 ) = 0 ;
25 b = abs (db/2) ; % starting value of b
26 step = ( (M−1)/M − abs (db/2) ) / Npoints ; % stepsize in b
27
28 for i = 1 : Npoints % loop over values of a
29 j = 2 ; % starting values for while loop
30 A = [1−a ( i )+da /2 , a ( i )+da /2 ; a ( i )−da /2 , 1−a ( i )−da / 2 ] ) ;
31
32 while (b <= 1) % try values of b unti l the b c is reached
33 B = [1−b+db/2 , b+db /2 ; b−db/2 , 1−b−db / 2 ] ;
34 [ ˜ , Ostate ] = chain (M, N, A, B) ; % generate HMM
35 [ Fstate ] = f i l t e r i n g (M, N, A, B, Ostate ) ; % apply f i l t e r
36 [ Dlst ( j ) , ˜ ] = d i s co rd (M, N, Ostate , Fstate ) ; % calculate

discord
37
38 i f Dlst ( j ) − Dlst ( j − 1) > 0 .001
39 fpr intf ( f i l e I D , ’ %1.6 f %1.6 f \n ’ , a ( i ) , b ) ;
40 b = max(b − 2∗ step , db/2) ;
41 break ;
42 else
43 b = b + step ;
44 j = j + 1 ;
45 end
46 end
47 end
48 end
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Appendix B

Calculation of the critical error
probability

We used Mathematica to calculate the critical error probability analytically. In this appendix, we show
the calculation for asymmetric 2× 2 HMMs and symmetric n× n HMMs.

B.1 Asymmetric two-state, two-symbol HMMs

We start off by calculating the maximum confidence levels p∗1 = P (xt = 1|yt = 1) and p∗−1 = P (xt =
−1|yt = −1), which are distinct for asymmetric transition and/or observation probabilities. We start
from Equation 2.5 to calculate p∗1. The calculation of p∗−1 is essentially the same, and we will not do it
explicitly.

p∗1 = P (xt = 1|yt = 1) (B.1)

=
1

Zt,1
P (yt = 1|xt = 1)

∑
xt−1

P (xt = 1|xt−1)P (xt−1|yt−1 = 1).

We work out the normalization factor,

Zt,1 =P (yt = 1|yt−1 = 1) (B.2)

=
∑
xt

P (yt = 1|xt)P (xt|yt−1 = 1)

=
∑
xt

P (yt = 1|xt)
∑
xt−1

P (xt|xt−1)P (xt−1|yt−1 = 1)

=

(
1− b̄+

∆b

2

)[(
1− ā+

∆a

2

)
p∗1 +

(
ā+

∆a

2

)
(1− p∗1)

]
+

(
b̄+

∆b

2

)[(
ā− ∆a

2

)
p∗1 +

(
1− ā− ∆a

2

)
(1− p∗1)

]
,

and write out the equation in terms of ā, b̄, ∆a, ∆b and p∗1:

p∗1 =

(
1− b̄+ ∆b

2

) [(
1− ā+ ∆a

2

)
p∗1 +

(
ā+ ∆a

2

)
(1− p∗1)

](
1− b̄+ ∆b

2

) [(
1− ā+ ∆a

2

)
p∗1 +

(
ā+ ∆a

2

)
(1− p∗1)

]
+
(
b̄+ ∆b

2

) [(
ā− ∆a

2

)
p∗1 +

(
1− ā− ∆a

2

)
(1− p∗1)

]
(B.3)
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Isolating p∗1, we find

p∗1 =

√(
ā
(
−8b̄+ 2∆b+ 6

)
− 2(∆a− 2)b̄+ ∆a− 2

)2 − 4 (2ā− 1)
(
2b̄− 1

)
(2ā+ ∆a)

(
2b̄−∆b− 2

)
4 (2ā− 1)

(
2b̄− 1

)
(B.4)

+
8āb̄− 2ā∆b− 6ā+ 2b̄∆a− 4b̄−∆a+ 2

4 (2ā− 1)
(
2b̄− 1

) .

The only difference between p∗1 and p∗−1 is the sign of ∆a and ∆b.
Now we can work out the critical error probability. The conditions defining the critical error proba-

bility are

P (xt+1 = 1|yt+1 = −1, yt = 1) = P (xt+1 = −1|yt+1 = −1, yt = 1) (B.5)

P (xt+1 = −1|yt+1 = 1, yt = −1) = P (xt+1 = 1|yt+1 = 1, yt = −1). (B.6)

We need the solutions to both equations to find a complete set of solutions that agree with our simulations.
We will work out Equation B.5 further. The left- and right-hand sides can rewritten using Bayes’ theorem,
the Markov property and marginalization,

P (xt+1 = ±1|yt+1 = −1, yt = 1) =
P (yt+1 = −1|xt+1 = ±1,���yt = 1)P (xt+1 = ±1|yt = 1)

P (yt+1 = −1|yt = 1)
(B.7)

=
P (yt+1 = −1|xt+1 = ±1)P (xt+1 = ±1|yt = 1)∑

xt+1
P (yt+1 = −1|xt+1)P (xt+1|yt = 1)

.

Also, we write out the upper left terms and the denominator,

P (xt+1 = 1|yt = 1) =
∑
xt

P (xt+1 = 1|xt)P (xt|yt = 1) (B.8)

= (1− ā+
1

2
∆a)p∗1 + (ā+

1

2
∆a)(1− p∗1)

P (xt+1 = −1|yt = 1) =
∑
xt

P (xt+1 = −1|xt)P (xt|yt = 1), (B.9)

= (ā− 1

2
∆a)p∗1 + (1− ā− 1

2
∆a)(1− p∗1),

P (yt+1 = −1|yt = 1) =

(
b̄− 1

2
∆b

)
P (xt+1 = 1|yt = 1) +

(
1− b̄− 1

2
∆b

)
P (xt+1 = −1|yt = 1) (B.10)

=

(
b̄− 1

2
∆b

)[
(1− ā+

1

2
∆a)p∗1 + (ā+

1

2
∆a)(1− p∗1)

]
+

(
1− b̄− 1

2
∆b

)[
(ā− 1

2
∆a)p∗1 + (1− ā− 1

2
∆a)(1− p∗1)

]
.

Then, we plug all these terms into Equation B.5,(
b̄− 1

2∆b
) [

(1− ā+ 1
2∆a)p∗1 + (ā+ 1

2∆a)(1− p∗1)
](

b̄− 1
2∆b

) [
(1− ā+ 1

2∆a)p∗1 + (ā+ 1
2∆a)(1− p∗1)

]
+
(
1− b̄− 1

2∆b
) [

(ā− 1
2∆a)p∗1 + (1− ā− 1

2∆a)(1− p∗1)
]

=

(
1− b̄− 1

2∆b
) [

(ā− 1
2∆a)p∗1 + (1− ā− 1

2∆a)(1− p∗1)
](

b̄− 1
2∆b

) [
(1− ā+ 1

2∆a)p∗1 + (ā+ 1
2∆a)(1− p∗1)

]
+
(
1− b̄− 1

2∆b
) [

(ā− 1
2∆a)p∗1 + (1− ā− 1

2∆a)(1− p∗1)
] .
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Bringing everything to the left-hand side of the equation, reduces the equality to

1
2

(
2(∆b− 1) (2p∗1 − 1) ā+ 2b̄−∆a∆b+ ∆a+ ∆b− 2p∗1∆b+ 2p∗1 − 2

)(
b̄− 1

2∆b
) [

(1− ā+ 1
2∆a)p∗1 + (ā+ 1

2∆a)(1− p∗1)
]

+
(
1− b̄− 1

2∆b
) [

(ā− 1
2∆a)p∗1 + (1− ā− 1

2∆a)(1− p∗1)
] = 0.

Plugging in p∗1 from Equation B.4 leaves us with an equation for b̄ = b̄c in terms of ā, ∆a and ∆b.
The resulting equation can be solved for b̄ in Mathematica. The resulting solutions are lengthy and we
will not give them here explicitly. One can repeat the same calculations for p∗−1 and the condition from
Equation B.6 to find the full set of solutions.

B.2 Symmetric n-state, n-symbol HMMs

The calculation of the critical observation probability for symmetric n× n, follows the same steps as the
previous calculation. We, again, start by calculating the maximum confidence level from Equation 6.6:

p∗ =
(1− b)

[
(1− a)p∗ + a 1−p∗

n−1

]
(1− b)

[
(1− a)p∗ + a 1−p∗

n−1

]
+ b

n−1

[
ap∗ +

(
1− a+ (n− 2) a

n−1

)
(1− p∗)

] (B.11)

We rewrite this in the form of a polynomial in p∗ of degree two on one side and zero on the other side,(
abn2 − an2 + an− bn2 + bn+ n2 − 2n+ 1

)
p∗2 +

(
−abn2 + an2 − a+ bn2 − bn− n2 + 2n− 1

)
p∗

+ (abn− ab− an+ a) = 0

We can solve this for p∗ in terms of a, b and n. This leaves us with two solutions, but we are only
interested in the solutions that takes on positive values for 0 ≤ a, b ≤ 1 and n > 1 an integer. We find

p∗ =
1

2(an− n+ 1)(bn− n+ 1)

(
(a− 1)(b− 1)n2 + a+ (b− 2)n+ 1 (B.12)

+

√(
(n− 1)(bn− n+ 1)− a ((b− 1)n2 + 1)

)2 − 4a(b− 1)(n− 1)(an− n+ 1)(bn− n+ 1)

)

Now we have everything we need to calculate the critical error probability. We start from Equa-
tion 6.11,

P (xt+1 = 1|yt+1 = 2, yt = 1) = P (xt+1 = 2|yt+1 = 2, yt = 1). (B.13)

Writing out the left- and right-hand sides of the equation,

P (xt+1 = 1|yt+1 = 2, yt = 1) =
P (yt+1 = 2|xt+1 = 1,���yt = 1)P (xt+1 = 1|yt = 1)

P (yt+1 = 2|yt = 1)
(B.14)

=
1

Zt+1
P (yt+1 = 2|xt+1 = 1)P (xt+1 = 1|yt = 1),

P (xt+1 = 2|yt+1 = 2, yt = 1) =
P (yt+1 = 2|xt+1 = 2,���yt = 1)P (xt+1 = 2|yt = 1)

P (yt+1 = 2|yt = 1)

=
1

Zt+1
P (yt+1 = 2|xt+1 = 2)P (xt+1 = 2|yt = 1).
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Now, we write out the individual terms of the equation.

P (xt+1 = 1|yt = 1) =
∑
xt

P (xt+1 = 1|xt)P (xt|yt = 1) (B.15)

= (1− a) p∗ + (n− 1)
a

n− 1

1− p∗

n− 1

= (1− a) p∗ + a
1− p∗

n− 1
,

P (xt+1 = 2|yt = 1) =
∑
xt

P (xt+1 = 2|xt)P (xt|yt = 1) (B.16)

=
a

n− 1
p∗ + (1− a)

1− p∗

n− 1
+ (n− 2)

a

n− 1

1− p
n− 1

=
a

n− 1
p∗ +

1− p∗

n− 1

(
1− a

n− 1

)
,

Zt+1 = P (yt+1 = 2|yt = 1) (B.17)

=
∑
xt+1

P (yt+1 = 2|xt+1)P (xt+1|yt = 1)

=
b

n− 1
P (xt+1 = 1|yt = 1) + (1− b)P (xt+1 = 2|yt = 1) + (n− 2)

b

n− 1
P (xt+1 = 2|yt = 1)

=
b

n− 1
P (xt+1 = 1|yt = 1) +

(
1− b

n− 1

)
P (xt+1 = 2|yt = 1)

=
b

n− 1

[
(1− a) p∗ + a

1− p∗

n− 1

]
+

(
1− b

n− 1

)[
a

n− 1
p∗ +

1− p∗

n− 1

(
1− a

n− 1

)]
.

After plugging all these terms into Equation B.13 and taking some steps to simplify, we have

b
n−1

[
(1− a) p∗ + a 1−p∗

n−1

]
b

n−1

[
(1− a) p∗ + a 1−p∗

n−1

]
+
(

1− b
n−1

) [
a

n−1p
∗ + 1−p∗

n−1

(
1− a

n−1

)] (B.18)

=

(
1− b

n−1

) [
a

n−1p
∗ + 1−p∗

n−1

(
1− a

n−1

)]
b

n−1

[
(1− a) p∗ + a 1−p∗

n−1

]
+
(

1− b
n−1

) [
a

n−1p
∗ + 1−p∗

n−1

(
1− a

n−1

)]
bp∗+p∗−1

n−1 − a(1+b)(np∗−1)
(n−1)2

b
n−1

[
(1− a) p∗ + a 1−p∗

n−1

]
+
(

1− b
n−1

) [
a

n−1p
∗ + 1−p∗

n−1

(
1− a

n−1

)] = 0

(bp∗ + p∗ − 1)(n− 1)− a(1 + b)(np∗ − 1)

b [(1− a) (n− 1)p∗ + a(1− p∗)] + (n− 1− b)
[
ap∗ + (1− p∗)

(
1− a

n−1

)] = 0.

We need to plug in the p∗ that we just found (Equation B.12) and solve for b = bc. This is quite hard to
do for a general n. So, instead of directly finding the solutions for general n, we first calculated them for
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n = 2, 3, 4 and 10,

bc =
1

2

(
1−
√

1− 4a
)
,

bc =
1

4

(
2 + a−

√
a2 − 12a+ 4

)
,

bc =
1

6

(
3 + 2a−

√
4a2 − 24a+ 9

)
,

bc =
1

18

(
9 + 8a−

√
64a2 − 180a+ 81

)
,

bc =
1

2
,

bc =
2

3
,

bc =
3

4
,

bc =
9

10
,

(B.19)

respectively. We then wrote down the solutions for general n based on these solutions, and checked that
it is indeed a solution of Equation B.18. In the end, we find the critical error probability bc as a function
of a and n,

bc =
1

2(n− 1)

(
(n− 1) + (n− 2)a−

√
(n− 2)2a2 − 2n(n− 1)a+ (n− 1)2

)
, bc =

n− 1

n
(B.20)
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