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Abstract

Quark-Gluon plasma produced in heavy ion collisions allows for the study of exotic
physical effects, one example being the chiral magnetic effect. The generation of
electrical current along the magnetic field creates new effects that can be investi-
gated using electrodynamic and hydrodynamic techniques. The dependence of the
flow parameters on the “chiral conductivity” is a topic for further analysis, and a
framework is presented to investigate this.
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Chapter 1

Background Theory

1.1 Quark-Gluon Plasma

This paper is chiefly concerned with quark-gluon plasma, which is currently a hot
topic in theoretical physics (see [6],[11],[17],[24],[25],[26],[27]). Quarks are fundamen-
tal particles of matter (see Figure 1.3); for example, they make up protons (2 up and
1 down) and neutrons (2 down and 1 up). The interactions between quarks are chiefly
mediated by gluons, the gauge particles responsible for the strong force. The theory
describing these phenomena is quantum chromodynamics (QCD). The “chromo”
refers to a property of quarks called “color”. Quark color is analogous to electri-
cal charge (positive-negative), except there are three opposite pairs (red-antired,
green-antigreen, and blue-antiblue; the anticolors are often denoted respectively by
magenta, cyan, and yellow) instead of the single pair from electrodynamics.

Figure 1.1: Quark Color and Hadron Groupings https://upload.wikimedia.org/wikipedia/

commons/thumb/4/41/Qcd_fields_field_(physics).svg/2000px-Qcd_fields_field_(physics).svg.png

Generally, quarks are found in groups (called hadrons): in quark-antiquark pairs
(mesons) or triplets (baryons). It is important to note that hadrons are always
“color neutral”. A meson will have a color-anticolor pair, while a baryon will be
red-green-blue or anti(red-green-blue). In fact, a solitary quark has never been
observed. The energy required to separate quarks is quite large; so large that the
energy barrier to create a new quark-antiquark pair is reached before a quark can
be freed. This is known as quark confinement. However, it is possible to loosen the
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bonds between quarks. At high temperatures, the quarks can flow freely amongst
each other; the critical temperature at which this occurs is roughly 170 MeV. At
this temperature, the system crosses over into what is known as the quark-gluon
plasma (QGP).

Figure 1.2: Heavy Ion Collision http://images.iop.org/objects/ccr/cern/53/4/18/CCfir5_04_13.

jpg

However, as time progresses the plasma expands and cools, the quarks re“condense”
into hadronic matter: this process is called hadronization. The interactions of quarks
is but part of a larger picture, referred to as the Standard Model of Particle Physics.

Figure 1.3: Standard Model of Elementary Particles https://commons.wikimedia.org/w/index.

php?curid=4286964

1.1.1 Why Is QGP Important to Study?

Quark-Gluon plasma can be studied experimentally using heavy ion collisions. This
is done at places such as the Relativistic Heavy Ion Collider (RHIC) in New York,
the United States, and the Large Hadron Collider (LHC) in Geneva, Switzerland.
These colossal machines accelerate nuclei (gold at RHIC, lead at LHC) to near
luminal velocities and collide them to probe physics on the smallest scales available
to modern science. Heavy ion collisions are able to create the conditions necessary
for QGP to exist, albeit for an incredibly short time (the order of femtoseconds)!
These ions rarely collide perfectly. As stated earlier, the QGP behaves like a fluid;
off-center collisions create a range of interesting flows that will be the topic of interest
in this thesis. There is strong coupling between the particles of QGP; as a result
the best tool to model such a substance will be hydrodynamics. This will be further
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discussed in Chapter 4. Furthermore, it is believed that soon after the Big Bang,
the Universe was in a QGP phase, making understanding of this state of matter
essential in the study of the early Universe.

1.1.2 Heavy Ion Collisions

Coordinates

Here, we will outline the coordinates used to describe the collision. The axes are
oriented as in Figure 1.4:

Figure 1.4: Collision Geometry https://inspirehep.net/record/878251/files/CollisionGeom.png

The z-axis is oriented along the beam, while the xy-plane, referred to as the trans-
verse plane, has the x-axis oriented along the centers of the nuclei. The impact
parameter, b, denotes the distance between the centers of the two nuclei. This de-
termines the “centrality” of the collision, which plays a key role in how the flow of
the QGP develops. The particles which are not part of the collision (blue in Figure
1.4) are called spectators; the interacting particles (orange) are called participants.
Throughout this paper, we shall make use of the coordinate system conventionally
used in the physics of particle collisions. This system reflects the detector layout.
For example, since the tranverse momentum is completely determined by the dy-
namics of the system, it contains valuable information on the inner workings of a
collision. They are related to Cartesian spacetime coordinates as follows:

t = τ cosh(η)

x = x⊥ cos(φ)

y = x⊥ sin(φ)

z = τ sinh(η)

v = tanh(Y )

τ =
√
t2 − z2

η = arctanh
(z
t

)
x⊥ =

√
x2 + y2

φ = arctan
(y
x

)
Y = arctanh

(vz
c

)
(1.1.1)

Here, τ is the proper time, η is called the pseudorapidity (which describes angle
relative to the beam axis), and Y is the rapidity (which is similar to the particle’s
speed). The electromagnetic fields derived in Chapter 2 will be cast into this coor-
dinate system, as will the hydrodynamic flow in Chapter 4. The hadron spectrum
will also be decomposed using the four-momentum in this new coordinate system,
but more on that will follow.
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Lorentz Contraction

It is important to note that the particles in the colliders are given a considerable
amount of energy, and travel near the speed of light. Special relativity tells us that,
as a result, the ions are very Lorentz-contracted in the direction of travel, in the
laboratory frame.

Figure 1.5: Lorentz Contraction http://www.askamathematician.com/wp-content/uploads/2011/01/

tallball.jpg

The Lorentz contraction means that the duration of the collision is shorter than the
rest-radius of the nucleus divided by the speed of light. As a result, directly after
the collision, most of the evolution of the system happens along the beam, and the
system can be considered static in the transverse direction (see [22]).

1.2 The Chiral Magnetic Effect

We have now discussed some of the physics regarding quark-gluon plasma, at least
on a qualitative level. The high energy levels and strong coupling allow for some
exotic physical effects. One that is at the core of this thesis, the chiral magnetic
effect (CME), will be further elaborated in this section. The following review was
made consulting [1] and [19].

1.2.1 Helicity

First, let us examine helicity, which is defined for a particle with momentum, ~p, and
spin, ~s, as:

h =
2~s · ~p
p

The eigenvalues of the helicity are ±1, where the eigenstate with eigenvalue −1 is
called “left-helical”, and the eigenstate with eigenvalue +1 “right-helical”. Note
that convention has an antiquark have the opposite helicity to its respective quark.

Helicity is rotationally invariant, but it is not invariant under boosts. This is usu-
ally shown via the following example. Imagine a fermion with spin and momentum
in the z-direction. Its helicity is then +1. Now consider another observer, also
moving in the z-direction, but faster than the aforementioned fermion. The spin
is unchanged in the new frame, however, the fermion now appears to move in the
negative z-direction. Now its helicity is −1. Thus, the helicity of a massive fermion
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is not invariant under boosts. However, if the fermion is massless, it will be travel-
ling at lightspeed, making it impossible to boost “past” it. Thus, helicity is Lorentz
invariant for massless fermions.

1.2.2 Chirality

Chirality is closely related to helicity. Indeed, for a massless particle, it is the same.
However, chirality is a more abstract property of a particle, based on how it behaves
under certain symmetry transformations, closely associated with the eigenvalues of
the matrix γ5. First, we will examine the four general gamma matrices (also called
the Dirac matrices), which are defined by the anticommutator relations: {γµ, γν} =
2ηµν . Note that γ5 is not one of these gamma matrices (it must satisfy different
conditions, as we shall see); the index, 5, is a historical artifact, since γ0 used to be
referred to as γ4. For our purposes, we shall use the chiral representation, where the
four gamma matrices are explicitly given by the following 4x4 matrices:

γ0 =

(
0 I2
I2 0

)
γj =

(
0 σj

−σj 0

)
with I2 the two-dimensional matrix identity and σj the Pauli spin matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
We can now discuss the “fifth” gamma matrix, which is defined to satisfy {γ5, γµ} =
0. Furthermore, due to invariance under an overall factor, we have the freedom to
impose:

γ†5 = γ5 (γ5)
2 = 1

This will be important to define the chiral projectors. In our representation, γ5 can
be written as:

γ5 = iγ0γ1γ2γ3 =

(
−I2 0

0 I2

)
Bringing this all together, we can define the projector P± = 1

2
(1 ± γ5). With this

notation, we can delve into the action for a massive fermion; to describe it, we have
the wave function, ψ, which is a complex four-vector. The action is:

S =

∫
d4xψ(i/∂ −m)ψ

Here, the Dirac adjoint is ψ = ψ†γ0 and the Feynman slash denotes /∂ = γµ∂µ. Also
note that we are using natural units, where c = ~ = 1. As desired, the condition of
stationary action, δS

δψ
= 0, yields the Dirac equation of motion:

(i/∂ −m)ψ = 0

Bask in its glory. The projectors allow ψ to be split into two parts, which we call
left- and right-handed chiralities, where ψL = P−ψ and ψR = P+ψ. Note that
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P+ψL = P−ψR = 0. Using the projectors, the action can be decomposed into left-
and right-handed terms:

S =

∫
d4x

[
i ψL/∂ψL + i ψR/∂ψR −m(ψRψL + ψLψR)

]
Note that the mass term “mixes” the chiralities. We shall see that chirality is only
conserved for massless fermions.

1.2.3 Axial Symmetry

Symmetries play a large role in modern Physics. Take special relativity, where
Lorentz invariance is equivalent to CPT -symmetry. The symmetries are:

• C-symmetry is charge conjugation (Aµ → −Aµ and ψ → −i(ψγ0γ2)T )

• P-symmetry is parity transformation (xj → −xj).

• T -symmetry is time reversal (x0 → −x0).

Returning to fermionic theory, when m = 0, there is a symmetry of the action under
rotations of left- and right-handed fermions in opposite directions:

ψ → eiθγ
5

ψ ψ → ψeiθγ
5

Note that since {γ5, γµ} = 0, we can use γµeiθγ
5

= e−iθγ
5
γµ. Indeed:

S →
∫

d4x i ψeiθγ
5

∂µγ
µeiθγ

5

ψ =

∫
d4x i ψeiθγ

5

e−iθγ
5

∂µγ
µψ =

∫
d4x i ψ∂µγ

µψ

as desired. By Noether’s theorem, symmetries of the action yield conservation laws.
We can examine the axial current:

jµ5 = ψγµγ5ψ

Rewriting the Dirac equation of motion and its adjoint:

iγµ∂µψ −mψ = 0 =⇒ γµ∂µψ = −imψ
i∂µψγ

µ +mψ = 0 =⇒ ∂µψγ
µ = imψ

we can compute the divergence of the axial current:

∂µj
µ
5 = (∂µψγ

µ)γ5ψ − ψγ5(γµ∂µψ) = 2imψγ5ψ

For a classical, massless fermion, the axial current is indeed conserved. However,
when quantizing a field theory, processes called “anomalies” emerge, which violate
the classical equations of motion.
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1.2.4 The ABJ Anomaly

In the case of quantizing fermionic theory, the axial symmetry is broken; this is
the Adler-Bell-Jackiw (ABJ) anomaly (also know as the chiral anomaly, see [20]),
where chirality is no longer conserved. QCD gauge field configurations can carry
topological charge. As explained in [8], this is a special gluon configuration to which
a winding number, Qw, can be assigned, which is topologically invariant.

0 1 2-2 -1

E

Qw

Sphaleron

Instanton

Topologically non- trivial

Gluon Fields

Figure 1.6: Potential Energy as Function of Winding Number

The system can undergo transitions that change its winding number, see Figure 1.6.
At low temperatures, there is not enough energy to jump over the potential barrier,
so winding number transitions can only occur via tunnelling. These transitions are
called instantons. At high temperatures, there is enough energy to jump to a max-
imum of the potential energy, and the transitions are no longer suppressed. From
this point, the system can decay to its original state, but can also decay to an adja-
cent winding number. Because this transition comes from the decay of an unstable
maximum in the potential, it is known as a sphaleron, from the Greek sphaleros,
meaning slippery (more on sphalerons in [2],[3],[4]). QGP is thus an ideal phase to
study these transitions.

Averaged over many transitions, net topological charge is zero. This is due to the
fact that there is no explicit P or CP breaking in QCD. However, the ABJ anomaly
causes the interactions between the quarks and these configurations to locally break
P and CP parity. This yields fluctuations of topological charge in finite regions of
phase space, generating a difference in right- and left-handed particles [12].
To examine the effects of topological charge on handedness more carefully, take the
QCD action:

S =

∫
d4x

[
ψ(i /D −m)ψ − 1

4
Ga
µνG

µν
a

]
(1.2.1)

with Dµ = ∂µ−igAµ. Here, ψ represents the quark field, and Ga
µν is the gluonic field

strength tensor. With the inclusion of nonzero topological charge, another term is
added to the QCD action. The ABJ anomaly gives this new topological term as the
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spatial integration of the anomalous divergence of the axial current (see [8] or [20]):

d(NR −NL)

dt
=

∫
d3x ∂µj

µ
5 = −g

2Nf

16π2

∫
d3xGµν

a G̃
a
µν (1.2.2)

where NL/R is the number of left-/right-handed particles, Nf is the number of mass-

less quark flavors, and G̃a
µν = 1

2
εµνλσG

λσa. We can see that this topological term
causes the difference in chiralities to change over time, yielding a generation of net
chirality.

Figure 1.7: The Chiral Magnetic Effect in a large homogeneous magnetic field. The
red arrows denote momentum, and the blue arrows denote the spin. The quarks
interact with nonzero Qw (here Qw = −1), switching helicities to right-handed by
aligning the momentum with the spin. Source: [11]

Let us examine this qualitatively using Figure 1.7. During a heavy ion collision,
strong magnetic fields are present. Additionally, the high temperatures present at
the collisions mean we can reasonably neglect the masses of the quarks ([11]), mak-
ing their chirality the same as their helicity. The quarks will naturally align their
magnetic moments with the field, and since they have been assumed to be massless,
their momenta will also align along the field. Thus, quarks with opposing helicities
will move in opposite directions. Furthermore, since magnetic moment depends on
the charge, a quark and antiquark with the same helicity will also move in opposite
directions. At time 1 in Figure 1.7, there is an even distribution of helicities. The up
quarks with left-handed helicity move oppositely to the up quarks of right-handed
helicity, and there is no net current. The same is true for the down quarks. How-
ever, at time 2, when the quarks interact with nonzero winding number (in Figure
1.7 Qw = −1), left-handed helical particles become right-handed. Now there is no
longer a balance in helicities, and there is a net current generated along the magnetic
field at time 3.

In addition to the intrigue of exotic physics, there are also practical applications
of the CME. [8] points out that the CME could help to determine whether heavy
ion collisions generate quark deconfinement. This is because deconfinement is a
necessary requirement for the CME to work; it gives quarks that can separate over
distances greater than the radius of a nucleon.
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Chapter 2

Electrodynamics

Now that we have set up the system we are examining, as well as the new effect
we wish to understand, we will examine how the chiral magnetic effect influences
the electromagnetic fields generated by the moving nuclei. The following derivation
is based on the work of Eric Marcus’ paper on “Magnetohydrodynamics at Heavy
Ion Collisions”[16], and is in a sense a continuation of his work. Furthermore, the
calculations of the electromagnetic fields of a single particle were completed thanks
to the ingenuity of the Chinese team of Li et. al [15].

2.1 Solving the Chiral Maxwell Equations

We wish to describe a charged particle moving in the z-direction through a medium
with electrical and magnetic conductivities, σE and σB. Note that we will work in
the regime of σE � σB. We will use the spacetime coordinates: ~x = (t, ~x⊥, z) and
~x′ = (t′, ~x⊥

′, z′). Here, ~x⊥ and ~x⊥
′ are respectively the locations in the transverse

plane where the field is calculated and where the particle is located.
The Maxwell equations with charge density, ρ(~x) = q δ(z − vt)δ( ~x⊥ − ~x⊥

′), electric

current, ~j(~x) = q v δ(z− vt)δ( ~x⊥− ~x⊥
′)ẑ (note we shall use the notation ~J = (ρ,~j)),

and chiral magnetic term, σB ~B(~x), are:

~∇ · ~E(~x) =
ρ(~x)

ε(ω)

~∇× ~E(~x) = −∂t ~B(~x)

~∇ · ~B(~x) = 0

~∇× ~B(~x) = ∂t ~E(~x) +~j(~x) + σE ~E(~x) + σB ~B(~x)

Note that we have assumed that the permittivity, ε(ω), depends on the frequency
as ε(ω) = 1 + i σE

ω
(as in [15]).

We take the curl of ~∇× ~B and rewrite the equation:

~∇× (~∇× ~B) = ~∇(~∇ · ~B)− ~∇2 ~B = −~∇2 ~B

−~∇2 ~B = ∂t(~∇× ~E) + ~∇×~j + σE(~∇× ~E) + σB(~∇× ~B)

= −∂2t ~B + ~∇×~j − σE∂t ~B + σB(~∇× ~B)

Yielding:
−∂2t ~B − σE∂t ~B + ~∇2 ~B + σB(~∇× ~B) = −~∇×~j

11



Analogously, for the electric field we have:

−∂2t ~E − σE∂t ~E + ~∇2 ~E + σB(~∇× ~E) = ~∇
( ρ

ε(ω)

)
+ ∂t~j

In general, we have an equation of the form

−∂2t ~F − σE∂t ~F + ~∇2 ~F + σB(~∇× ~F ) = ~S

where ~S depends on whether the electric or magnetic field is used (this shall be

denoted with a subscript). So ~F = ~B → SB(~x) = −~∇×~j, and ~F = ~E → SE(~x) =
~∇( ρ

ε(ω)
) + ∂t~j. To solve this, we begin by taking the Fourier image of the equation.

This is useful because the Fourier image of a derivative takes the form: F (∂xf) =
ikF (f) and F (∂tf) = −iωF (f) (because of the Minkowski metric, whose signature
we have chosen to be (-1,1,1,1), the time component picks up a minus sign). For

simplicity we rename ω2 + iσEω − ~k2 = κ. Thus:

κF (~F ) + σB(i~k ×F (~F )) = F (~S)

In matrix form, the equation we wish to solve is:

κ

 F (Fx)
F (Fy)
F (Fz)

+ iσB

 kyF (Fz)− kzF (Fy)
kzF (Fx)− kxF (Fz)
kxF (Fy)− kyF (Fx)


=

 κ −iσBkz iσBky
iσBkz κ −iσBkx
−iσBky iσBkx κ

 F (Fx)
F (Fy)
F (Fz)

 =

 F (Sx)
F (Sy)
F (Sz)


The system is solved to yield:

F (~F ) = (κ− σBkx)(κ+ σBkx) σB(ikzκ− σBkxky) −σB(ikyκ+ σBkxkz)
−σB(ikzκ+ σBkxky) (κ− σBky)(κ+ σBky) σB(ikxκ− σBkykz)
σB(ikyκ− σBkxkz) −σB(ikxκ+ σBkykz) (κ− σBkz)(κ+ σBkz)

 F (~S)

κ(κ2 − σB2~k2)

2.1.1 Fourier Image

The Fourier image of the the charge density and current are:

F (ρ) =

∫∫∫∫
ei(ωt−

~k·~x)qδ(z − vt)δ( ~x⊥ − ~x⊥
′) d~x dt = 2πqe−i

~k⊥· ~x⊥′δ(
ω

v
− kz)

F (~j) =

∫∫∫∫
ei(ωt−

~k·~x)qvδ(z − vt)δ( ~x⊥ − ~x⊥
′)ẑ d~x dt = 2πqve−i

~k⊥· ~x⊥′δ(
ω

v
− kz)ẑ

As a result:

F ( ~SB) = −i~k ×F (~j) = −2πiqv e−i
~k⊥· ~x⊥′δ(

ω

v
− kz)

 ky
−kx

0


F ( ~SE) = i~k

F (ρ)

ε(ω)
− iωF (~j) = 2πiqω e−i

~k⊥· ~x⊥′δ(
ω

v
− kz)

 1

ω + iσE

 kx
ky
kz

− vẑ
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Finally, we have:

F ( ~B) =
−2πiqv e−i

~k⊥· ~x⊥′δ(ω
v
− kz)

κ2 − σB2~k2

 kyκ− iσBkxkz
−kxκ− iσBkykz

iσBk⊥
2


F ( ~E) =

2πiqω e−i
~k⊥· ~x⊥′δ(ω

v
− kz)

κ2 − σB2~k2

[
1

κ

(κ2 − σB2~k2

ω + iσE
+ σB

2vkz

) kx
ky
kz

+ ivσB

 ky
−kx
iκ
σB

]
As done by [15], the expression for the electric field can be simplified further using
charge conservation, ∂µJ

µ = 0. The Fourier image of this equation is −iωF (ρ) +

i~k ·F (~j) = 0, which yields the dispersion relation, ω = kz
F (~j)z
F (ρ)

= kzv. Substituting
this into the electric field expression yields:

F ( ~E) =
2πiqω e−i

~k⊥· ~x⊥′δ(ω
v
− kz)

κ2 − σB2~k2

[
κ+ σB

2

ω + iσE

 kx
ky
kz

+ ivσB

 ky
−kx
iκ
σB

]
All that remains is to transform the field equations back to position space. However,
this shall prove the lengthiest part of the calculation.

2.1.2 Relativistic Limit (v = 1)

As an example, we shall calculate the field equations in the relativistic limit. The
other calculations follow analogously, and were performed by [15].

Magnetic Field

We shall use as example the y-component; the other components follow analogously,
and are thus left as an exercise to the reader. To start, taking the limit v → 1 yields
the expression:

By =

∫∫∫∫
d3~k

(2π)3
dω

2π
ei(

~k·~x−ωt) −2πiqe−i
~k⊥· ~x⊥′δ(ω − kz)

(ω2 + iσEω − ~k2)2 − σB~k2
(−kx(ω2+iσEω−~k2)−iσBkykz)

We adopt the notation ~b = ~x⊥ − ~x⊥
′. The expression is integrated over the entire

momentum-space. The kz integral, using the delta function, evaluates to:

By =
−iq

(2π)3

∫∫
d2 ~k⊥ e

i ~k⊥·~b
∫

dω
eiω(z−t)

(
(−iσEkx − iσBky)ω + kxk⊥

2
)

(iσEω − k⊥2)− σB2(ω2 + k⊥
2)

We switch to cylindrical coordinates, making use of the substitution ~k⊥ = k⊥

(
cos(φ)
sin(φ)

)
,

d2 ~k⊥ = k⊥dk⊥dφ, and abbreviating iσEω − k⊥2 → λ(ω, k⊥). Note that, as a result,
we have transformed to computing the φ-component instead of the y-component.
The integral is now:

Bφ =
iq

(2π)3

∫ ∞
0

dk⊥ k⊥
2

∫ ∞
−∞

dω
eiω(z−t)

λ2(ω, k⊥)− σB2(ω2 + k⊥
2)∫ 2π

0

dφ e−ibk⊥ cos(φ)
(
λ(ω, k⊥) cos(φ) + iσBω sin(φ)

)
13



Because sin(φ)e−ibk⊥ cos(φ) is antisymmetric in φ, it integrates to zero. To integrate
the cosine term, we use:∫ 2π

0

dφ cos(φ)e−ibk⊥ cos(φ) =
i

k⊥

∫ 2π

0

dφ
d

db

(
e−ibk⊥ cos(φ)

)
=

i

k⊥

d

db

(
2πJ0(bk⊥)

)
=

2πi

k⊥
J1(bk⊥)

With J0 and J1 as Bessel functions of the first kind. Thus

Bφ =
q

(2π)2

∫ ∞
0

dk⊥ k⊥
2J1(bk⊥)

∫ ∞
−∞

dω
eiω(z−t)(iσEω − k⊥2)

λ2(ω, k⊥)− σB2(ω2 + k⊥
2)

To proceed, we must make use of the residue theorem from complex analysis.
The denominator is quadratic in ω, so finding the poles is straightforward: ω± =
−iσEk⊥2±σBk⊥

√
k⊥

2−(σE2+σB2)

σE2+σB2 . We will make the assumption k⊥ � σE, σB, which

gives the approximation ω± ≈ k⊥
2

iσE±σB
(as done by [15]).

The residues of

f(ω) =
eiω(z−t)

λ2(ω, k⊥)− σB2(ω2 + k⊥
2)
≈ eiω(z−t)

−(σE2 + σB2)(ω − ω−)(ω − ω+)

are Res
(
f(ω), ω±

)
= ∓ eiω∓(z−t)

2σBk⊥
2 .

According to the residue theorem:∫
C

dω f(ω) = 2πi
n∑
j=1

Res(f, ωj)

The contour of integration, C, is the semicircle of infinite radius taken in the lower
half-plane, since this is where f(ω) decays to zero. Both poles lie in the lower half
plane, yielding:

Bφ =
q

(2π)2

∫ ∞
0

dk⊥ k⊥
2J1(bk⊥)2πi

[ei k⊥
2

iσE−σB
(z−t)

2(iσE − σB)
+
e
i

k⊥
2

iσE+σB
(z−t)

2(iσE + σB)

]
Finally, we use the integral ([23], 6.631.6),∫ ∞

0

dk⊥ k⊥
2e−iak⊥

2

J1(bk⊥) =
−b
4a2

ei
b2

4a

to yield, after simplifying:

Bφ =
qi

4π(iσE − σB)

[
−b(iσE − σB)2

4(t− z)2
ei
b2(iσE−σB)

4(t−z)

]
+

qi

4π(iσE + σB)

[
−b(iσE + σB)2

4(t− z)2
ei
b2(iσE+σB)

4(t−z)

]
=

qb

16π(t− z)2
e
−σEb

2

4(t−z)

[
σE

(
e
iσBb

2

4(t−z) + e
−iσBb

2

4(t−z)

)
− iσB

(
e
iσBb

2

4(t−z) − e
−iσBb

2

4(t−z)

)]
=

qb

16π(t− z)2
e
−σEb

2

4(t−z)

[
σE

(
2 cos

( σBb
2

4(t− z)

))
− iσB

(
2i sin

( σBb
2

4(t− z)

))]
=

qb

8π(t− z)2
e
−σEb

2

4(t−z)

[
σE cos

( σBb
2

4(t− z)

)
+ σB sin

( σBb
2

4(t− z)

)]
14



An analogous process yields the other components. Note, the k⊥ integral form used
to find the z-component is (again using [23], 6.631.6),∫ ∞

0

dk⊥ k⊥ e
−iak⊥2

J0(bk⊥) =
−i
2a
ei
b2

4a

With b = | ~x⊥ − ~x⊥
′| =

√
x⊥2 + x′⊥

2 − 2x⊥x′⊥ cos(φ− φ′), and introducing the elec-

tromagnetic coupling constant, αem = q2

4π
:

q Br =
αem b

2(t− z)2
e
−σE b2

4(t−z)

[
σE sin

( σB b
2

4(t− z)

)
− σB cos

( σB b
2

4(t− z)

)]
q Bφ =

αem b

2(t− z)2
e
−σE b2

4(t−z)

[
σE cos

( σB b
2

4(t− z)

)
+ σB sin

( σB b
2

4(t− z)

)]
q Bz =

αem

(t− z)
e
−σE b2

4(t−z)

[
σE sin

( σB b
2

4(t− z)

)
− σB cos

( σB b
2

4(t− z)

)]
Indeed, these are the same field expressions found in [15].

2.2 Electromagnetic Fields of a Point Source

The remaining fields have been derived by Li et al.[15], in an analogous manner to
the derivation presented above.

2.2.1 Relativistic Electric Field

As stated in [15], the electric field can only be given analytically in the relativistic
limit (v → 1):

q Er = αem

[
γ b

∆3/2

(
1 +

σEvγ

2

√
∆
)
− σEe

−σE
(
t− z

v

)
v b

(
1 +

γ(vt− z)√
∆

)]
eA

q Eφ = σB
αemv

2γ2 b

∆3/2

[
γ(vt− z) + A

√
∆
]
eA

q Ez = αem

[
− eA

∆3/2

(
γ(vt− z) + A

√
∆ +

σEγ

v
∆
)

+
σE

2

v2
e−σE

(
t− z

v

)
Γ(0,−A)

]
(2.2.1)

where ∆ = γ2(vt− z)2 +x⊥
2 +x′⊥

2− 2x⊥x
′
⊥ cos(φ−φ′), A = σEvγ

2

(
γ(vt− z)−

√
∆
)
,

and Γ(a, z) =
∫∞
z

dt ta−1e−t (the incomplete gamma function).

For our purposes, we wish to have the field in particle physics coordinates (described
in Section 1.1.2). We shall only be examining the spectator contribution, since the
participants contribute at most 10% of the field, and often much less [10]. Since
spectators do not participate in the collision, their rapidity does not change, and
we take an average beam rapidity of Y0 ' 8.0. Additionally, we wish to express the
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field in Cartesian components. We can do this using the following transformation:

Ex = (cos(φ)− cos(φ′))Er − (sin(φ)− sin(φ′))Eφ

Ey = (sin(φ)− sin(φ′))Er − (cos(φ)− cos(φ′))Eφ

Ez = Ez

As a result, the relativistic electric field becomes:

q Ex = αem

[
(cos(φ)− cos(φ′))

(cosh(Y0) b

∆3/2

(
1 +

σE sinh(Y0)

2

√
∆
)
− σE e

a

tanh(Y0) b

(
1 +

τ sinh(Y0 − η)√
∆

))
− σB

2
(sin(φ)− sin(φ′))

sinh2(Y0) b

∆3/2

(
τ sinh(Y0 − η) + A

√
∆
)]
eA

q Ey = αem

[
(sin(φ)− sin(φ′))

(cosh(Y0) b

∆3/2

(
1 +

σE sinh(Y0)

2

√
∆
)
− σE e

a

tanh(Y0) b

(
1 +

τ sinh(Y0 − η)√
∆

))
+
σB
2

(cos(φ)− cos(φ′))
sinh2(Y0) b

∆3/2

(
τ sinh(Y0 − η) + A

√
∆
)]
eA

q Ez = αem

[
−eA

∆3/2

(
τ sinh(Y0 − η) + A

√
∆ +

σE cosh(Y0)

tanh(Y0)
∆
)

+
σ2
E e

a

tanh2(Y0)
Γ(0,−A)

]
(2.2.2)

where b = | ~x⊥ − ~x⊥
′|, ∆ = τ 2 sinh2(Y0 − η) + b2, a = −σE τ

(
cosh(η) − sinh(η)

tanh(Y0)

)
,

A = σE sinh(Y0)
2

(
τ sinh(Y0 − η) −

√
∆
)
, and Γ(a, z) =

∫∞
z

dt ta−1e−t (the incomplete
gamma function).

2.2.2 General Magnetic Fields of Point Sources

Magnetic Field

Li et al. give the general magnetic field as:

q Br = −σBαem
vγ2 b

∆3/2

(
γ(vt− z) + A

√
∆
)
eA

q Bφ = αem
vγ b

∆3/2

(
1 +

σEvγ

2

√
∆
)
eA

q Bz = σBαem
vγ

∆3/2

(
γ2(vt− z)2

(
1 +

σEvγ

2

√
∆
)

+ ∆
(

1− σEvγ

2

√
∆
))

eA
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The field equations in the form we would like to use are thus:

q Bx = −αem
sinh(Y0) b

∆3/2

((
cos(φ)− cos(φ′)

)σB cosh(Y0)

2

(
τ sinh(Y0 − η) + A

√
∆
)

+
(

sin(φ)− sin(φ′)
)(

1 +
σE sinh(Y0)

2

√
∆
))

eA

q By = αem
sinh(Y0) b

∆3/2

((
sin(φ)− sin(φ′)

)−σB cosh(Y0)

2

(
τ sinh(Y0 − η) + A

√
∆
)

+
(

cos(φ)− cos(φ′)
)(

1 +
σE sinh(Y0)

2

√
∆
))

eA

q Bz = σB
αem

2

sinh(Y0)

∆3/2

(
τ 2 sinh2(Y0 − η)

(
1 +

σE sinh(Y0)

2

√
∆
)

+ ∆
(

1− σE sinh(Y0)

2

√
∆
))

eA

(2.2.3)
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Chapter 3

Numerics

3.1 Nuclear Integration

The equations derived in Chapter 2 are for a single point source. Since heavy
ion collisions are made of many contributing particles, we must integrate over a
nucleus made of many point sources. For both spectators and participants, there
are two beams (in the ±ẑ direction), meaning ~Btotal = ~B+

s + ~B−s + ~B+
p + ~B+

p . Here,
the subscript indicates the spectator/participant contribution, and the superscript
indicates the beam direction. We shall integrate over a distribution of particles which
models the nucleus as a hard sphere of continuously distributed sources. Again, we
shall only model the spectator contribution. The hard sphere model is based on the
one used in [10].

Figure 3.1: Collision Geometry https://inspirehep.net/record/825229/files/tr_plane.png

More specifically, each nucleus is modelled by a sphere with radius, R, and center at
(x, y) = (± b

2
, 0), moving in the z-direction. Keep in mind that the b used here is the

impact parameter (see Figure 3.1). We shall examine the probability distribution of
finding a particle in the transverse plane. This is given by:

ρ±(x⊥) =
3

2π

√
R2 −

(
x⊥2 ± b x⊥ cos(φ) +

b2

4

)
(3.1.1)

We can simplify the calculation using the symmetry of the spheres:

q ~Btotal = q ~B+(τ, η, x⊥, π − φ) + q ~B+(τ,−η, x⊥, φ) (3.1.2)
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Note that we only need to use ρ− in the calculation now. The integral over the two
crescent-shaped pieces that comprise the spectators is:

q ~Bs(τ, η, x⊥, φ) = −Z
∫ π

2

−π
2

dφ′
∫ xout(φ′)

xin(φ′)

dx′⊥ x
′
⊥ ρ−(x′⊥) (3.1.3)(

q ~B+(τ, η, x⊥, π − φ) + q ~B+(τ,−η, x⊥, φ)
)

(3.1.4)

The values used in our numerical calculations are:

b = 7 fm

R = 7 fm

Z = 82 p+

αem =
1

137
e−

2

σE = 0.023 fm−1

Y0 = 8.0

with b the impact parameter, R the radius of the nuclei, Z the charge of the nucleus
(equal to the number of protons; in this case we are using lead nuclei), αem the
electromagnetic coupling constant, σE the electrical conductivity, and Y0 the average
beam rapidity.

3.2 Total Electromagnetic Field

3.2.1 Electromagnetic Field as Function of τ

We can now proceed to compute the integrals numerically. Firstly, we shall examine
the τ dependence of the electromagnetic fields for varying values of σB.

Magnetic Field
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Figure 3.2: By(τ), with φ = π
2

For By, which is the most significant component of the magnetic field in the absence
of the CME [10], the CME causes a delay in the emergence of By. Furthermore,
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a greater value of σB yields a lower maximum, and a lower rate of field strength
decay.
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Figure 3.3: Bx(τ), with φ = 0

In Figure 3.3, we see that the CME causes the magnetic field in the x-direction
to reach a greater maximum. The duration of the field’s strength is not affected.
Note that Bx is zero for σB = 0. If we look at the point-source field expression
from Equation 2.2.2, we see that for σB = 0 only the sin(φ)− sin(φ′) term remains.
Since this is the x-component, we take φ = 0, leaving only − sin(φ′). Since sin(φ′)
is integrated from −π

2
to π

2
, we indeed expect the field component to evaluate to zero.

If we try another value for φ, such as π
2
, we find the following:
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Figure 3.4: Bx(τ), with φ = π
2

As in Figure 3.4, Bx behaves much more similarly to By (see Figure 3.2). However,
increasing values of σB yield the opposite effect as with By, causing the field to peak
sooner and decay more quickly.
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Figure 3.5: Bz(τ), with φ = π
2

With Bz, the influence of the CME is clear: with σB = 0, there is no magnetic field
in the z-direction. With the CME present, the z-component behaves similarly to
the x-component, although it is weaker in magnitude.

Electric Field
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Figure 3.6: Ex(τ), with φ = π
2

With regards to the electric field, Ex is the most significant (see [10]). Here, we
see behavior similar to By. That is to say, the CME causes a decrease in the field
maximum and in its decay.
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Figure 3.7: Ey(τ), with φ = 3π
2

Interestingly, Ey is negative for φ = π
2
. Thus, to plot its behavior, φ = 3π

2
was used.

Ey responds to σB analogously to Ex, however, the shift in the field is less for a
given increase in σB.
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Figure 3.8: Ez(τ), with φ = 0

The z-component of the electric field is independent of σB. It behaves similarly to
By and Bx, is the sense that there is a sudden spike in the field strength, followed
by a gentle decay.

3.2.2 Conclusions

Overall, the chiral magnetic effect has noticeable influence on the total electromag-
netic field. For the primary components, By and Ex, the CME smooths out the field
over time, decreasing the initial surge in strength in favor of a more prolonged field
presence. Additionally, the CME introduces a z-component to the magnetic field,
as well as strengthens the hitherto less significant Bx and Ey.
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Chapter 4

Looking Ahead: Hydrodynamics
and Flow Parameters

While the electromagnetic field is a readily observable property of the quark-gluon
plasma being studied, it does not reveal the whole picture. Hydrodynamics can be
used to calculate the flow of the plasma in the absence of external electromagnetic
forces. When this is coupled to the electrodynamics discussed in Chapters 2 and
3, the various flow parameters of the system’s hadron momentum spectrum can be
approximated. Since these spectra are directly measurable in particle colliders, this
theory provides a framework for experimentally testing the validity of the chiral
magnetic effect.

In this chapter we shall examine Gubser’s flow, an analytic model to describe the
dynamics of the expansion of the QGP without the effects of the background electro-
magnetic field. The result will be a velocity field, uµ which is a basis for describing
the QGP. This will then be used in the Cooper-Frye freeze-out procedure to pro-
duce a model for the hadron spectrum of a heavy ion collision. After discussing the
model of the hadron spectrum, we shall proceed to discuss how one might couple
electromagnetic interactions to the hydrodynamic flow. The goal of this is to yield a
velocity field, V µ, which is the relativistic sum of the velocity due to electromagnetic
effects, vµ, and due to hydrodynamics, uµ. The total velocity field, V µ, could then
be used to determine the effects of the chiral current on the flow parameters. This
is important, as a measurable effect on flow parameters will allow experimenters at
heavy ion collisions to more easily determine if the chiral magnetic effect is present.

4.1 Gubser Flow

An early model of hydrodynamic flow in QGP was Bjorken’s model, which is based
on the assumption of approximate boost invariance (in the beam direction), and
translation and rotation invariance (in the transverse plane) [9]. Gubser’s solution
is a refinement of this model, and is found assuming a finite size plasma produced
in a central collision.

In order to move towards a more realistic description of the QGP, Gubser works
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with a different set of symmetries; transverse translation invariance, for example, is
not a very realistic description of a heavy ion collision. The symmetries are boost
invariance (along the beam), rotational invariance (in the transverse plane), and
two conformal invariances perpendicular to the beam. The result is a fluid flow that
preserves a SO(1, 1) × SO(3) × Z2 subgroup of the full 4-dimensional conformal
group. The Z2 group comes from invariance under the beam direction, z ↔ −z
(equivalently, η ↔ −η) [10].

The flow found by Gubser [9] is:

uτ =
1 + (qτ)2 + (qx⊥)2

2qτ
√

1 + g2
(4.1.1)

u⊥ =
qx⊥√
1 + g2

(4.1.2)

with

g =
1 + (qx⊥)2 − (qτ)2

2qτ

Here, q is a constant with dimension 1
length

, such that the transverse length of the

plasma is proportional to 1
q
.

Gubser has also derived an expression for the temperature of the plasma [9]:

T =
1

τf∗
1/4

[
T̂0

(1 + g2)1/3
+

H0g√
1 + g2

(
1− (1 + g)1/6

)
F2 1

(1

2
,
1

6
;
3

2
;−g2

)]
(4.1.3)

Note that F2 1 is a hypergeometric function of the form:

F2 1 (α, β; γ; z) =
∞∑
n=0

(α)n(β)n

(γ)n
zn

n!

where the rising Pochhammer symbol is used: (x)n = x(x + 1)...(x + n − 1). Fur-
thermore, T̂0 is an integration constant which corresponds to the ideal fluid term.
f∗ relates energy density to temperature via ε = f∗T

4. H0 is a constant which is
involved in viscous dissipation. Using conformal invariance, Gubser concludes with:

p =
ε

3

η = ε
3
4H0

with ε the energy density and η the shear viscosity. We take f∗ = 11 and H0 = 0.33
([5],[9],[14],[18],[21]).

While Gubser flow is certainly an improvement on Bjorken flow, it still has some
drawbacks. The most significant is that rotational invariance means that the model
can never describe an off-center collision to full detail; nonetheless it can still pro-
vide insight into the system’s dynamics. According to [10], Gubser’s solution yields
reasonable results for collisions with an impact parameter of around 7− 8 fm. More
accurate results can be obtained via numerical analysis, but this will not be handled
here.
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4.2 Cooper-Frye Freeze-out

Hydrodynamic theory gives fluid properties such as energy density, fluid velocity, and
pressure. However, the detectors used in experimental physics measure other degrees
of freedom, such as momentum. Thus, we want a method to connect hydrodynamic
theory with kinetic theory. This is known as freeze-out, and occurs when a QGP-
phase system cools. As it does, its viscosity increases, rendering a hydrodynamic
description invalid. Since this can be quite tricky to model correctly, the process
is simplified using a three-dimensional hypersurface, Σ. This has a normal vector,
dΣµ, which is parameterized as:

dΣµ = εµαβγ
∂Σα

∂x

∂Σβ

∂y

∂Σγ

∂z
dx dy dz (4.2.1)

As a starting point, we require the energy-momentum tensors to be equal:

T µνkin =

∫
dχ pµpνf(~p, t, ~x) = T µνhydro (4.2.2)

Here f(~p, t, ~x) represents the particle distribution function from kinetic theory. We
shall use the relativistic Boltzmann distribution: f = exp(p

µuµ
Tf

), with Tf the “freeze-

out temperature”. Using this distribution allows the derivation of an analytic ex-
pression. The total number of particles after freeze-out is given by the particle
current leaving the hypersurface:

N =

∫
dΣµn

µ =
∑
i

∫
d3p

1√
mi

2 + ~p2

(
p0

dN

d3p

)
i

(4.2.3)

where

Si =

(
p0

dN

d3p

)
i

=
di

(2π)3

∫
dΣµp

µf(~p, t, ~x) di = (2si + 1)(2gi + 1) (4.2.4)

Here, 4.2.4 is the Hadron spectrum for the ith species, as derived in [22]. Note
that si and gi are the spin and isospin of the ith particle; thus in practice di is its
degeneracy. With the f as the Boltzmann distribution, the spectrum is:

Si = − di
(2π)3

∫
dΣµ p

µe
pµuµ
Tf (4.2.5)

To write out the expression for the spectra, we will need to reparameterize the
four-momentum:

p0 = mT cosh(Y )

px = pT cos(φp)

py = pT sin(φp)

pz = mT sinh(Y )

(4.2.6)
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where we have a “transverse mass”: mT =
√
pT 2 +mi

2. It is important to note
that pT is not the same as p⊥, the perpendicular coordinate of the four-momentum
in the transformed system, as will be apparent. The transformed coordinates can
be found using pµ = ηαβ(∂µx

α)pβ, resulting in:

pτ = −mT cosh(Y − η)

pη = mT τ sinh(Y − η)

p⊥ = pT cos(φp − φ)

pφ = x⊥ pT sin(φp − φ)

(4.2.7)

In our coordinate system,

dΣµ = −εµνλρ
∂Σν

∂η

∂Σλ

∂x⊥

∂Σρ

∂φ

√
−g dη dx⊥dφ (4.2.8)

In this equation,
√
−g is the determinant of the metric we are using, which is

ds2 = −dτ + τ 2dη2 + x⊥
2dφ2 + dx⊥

2. Thus,
√
−g = x⊥ τf . Now we wish to rework

the hypersurface area element. To do this, we must make use of:

dT =
∂T

∂x⊥
dx⊥ +

∂T

∂τ
dτ = 0

Rf = − ∂τf
∂x⊥

=
∂T/∂x⊥
∂T/∂τ

|Tf

The area element is:

dΣµ = (−1, 0, Rf , 0)x⊥ τf dη dx⊥dφ (4.2.9)

Finally, our formula for the hadron spectrum is:

Si =
di

(2π)3

∫ xf

0

dx⊥ τf (x⊥)

∫ ∞
−∞

dη e
−mT u

τ

Tf
cosh(Y−η)

(4.2.10)∫ 2π

0

dφe
pT u

⊥
Tf

cos(φp−φ)(
mT cosh(Y − η) +Rf pT cos(φp − φ)

)
(4.2.11)

Now, we wish to expand the hadron spectrum in terms of momentum; this is where
we will get our flow parameters. The hadron spectrum can thus be rewritten using
a Fourier decomposition [13]:

Si =

(
p0

d3N

d3p

)
i

=
d3Ni

pT dpT dY dφp

=
1

2π

d2N

pT dpT dY

(
1 + 2

∞∑
n=1

vn cos
(
n(φp −ΨR)

))
= v0

(
1 + 2v1 cos(φp − π) + 2v2cos(2φp) + ...

)
(4.2.12)

where ΨR is the reaction plane angle. The parameters, vj, are called the flow
parameters. v1 represents direct flow, v2 represents elliptic flow, then triangular
flow, and so forth.
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4.2.1 The Pure Flow Parameter: v0

Without an external electromagnetic field, only the v0 term remains. It turns out
that, since |~v| � |~u|, we can use the pure term in higher order flow parameters as
well, since hydrodynamics will remain the dominant contributor. This term was
already found in [16]:

Si =
di

2π2

∫
dx⊥ τ(x⊥)

[
mT K1

(mTu
τ

Tf

)
I0

(pTu⊥
Tf

)
+Rf pT K0

(mTu
τ

Tf

)
I1

(pTu⊥
Tf

)]
(4.2.13)

where di = 2 is the degeneracy for pions and protons. The spectrum is finalized
by choosing the constants q and T̂0, and doing the x⊥ integral numerically. The
constants chosen by [16] were q = 1

6.4fm
and T̂0 = 10.8.
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Figure 4.1: Proton and Pion spectra from [16], using data from the ALICE collab-
oration [7]

4.3 A Proposal for the Electrodynamic Equation

of Motion

The Cooper-Frye freezeout procedure has given us a model to derive flow parameters
from a velocity field. For a more accurate model, we wish to incorporate both
hydrodynamic and electrodynamic flows. To find the electrodynamic flow, we will
first need an equation of motion. To start, we must boost to the fluid rest frame,
so that only electrodynamic effects are present. The fluid is moving with velocity,
~u from the Gubser model (Equation 4.1), so we will boost with Λ(−~u), where in

general a boost of ~β is given by:
γ −γβx −γβy −γβz
−γβx 1 + (γ − 1)βx

2

β2 (γ − 1)βxβy
β2 (γ − 1)βxβz

β2

−γβy (γ − 1)βyβx
β2 1 + (γ − 1)βy

2

β2 (γ − 1)βyβz
β2

−γβz (γ − 1)βzβx
β2 (γ − 1)βzβy

β2 1 + (γ − 1)βz
2

β2

 (4.3.1)
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Furthermore, the field tensor in the lab frame is:
0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (4.3.2)

Here, the electromagnetic fields are those found in Chapter 3. Combining 4.3.1 and
4.3.2, the electromagnetic field tensor in the fluid rest frame will be given by

F ′
µν

= Λµ
αΛν

βF
αβ (4.3.3)

With the electromagnetic fields in the fluid rest frame, we can solve for the electro-
dynamic flow. The equation of motion is

m∂t~v
′ = q ~E ′ + q ~v′ × ~B′ − µm~v′ = 0 (4.3.4)

Here, the first two terms come from the Lorentz force, while the third term repre-
sents the effects of viscous drag.

For further research, we propose the additional term, q5 ~B. Here, q5 is the “axial
charge”, which can be decomposed into q5 = χ5 µ5. χ5 is the “chiral susceptibility”,
which can be computed using lattice QCD. µ5 is the chiral potential discussed in [8]
and [12], however, there is yet no theoretical method to calculate this.
The equation to solve is then:

m∂t~v
′ = q ~E ′ + q ~v′ × ~B′ − µm~v′ + q5 ~B

′ = 0 (4.3.5)

This can be solved using straightforward matrix algebra. In matrix form the modi-
fied equation of motion is: −µ q Bz

′ −q By
′

−q Bz
′ −µ q Bx

′

q By
′ −q Bx

′ −µ

 vx
vy
vz

 =

 −q Ex′ − q5Bx
′

−q Ey ′ − q5By
′

−q Ez ′ − q5Bz
′

 (4.3.6)

Solving yields: vx
vy
vz

 =
1

µ(q2 ~B2 + µ2)

 q2Bx
′2 + µ2 q2Bx

′By
′ + qµBz

′ q2Bx
′Bz
′ − qµBy

′

q2Bx
′By
′ − qµBz

′ q2By
′2 + µ2 q2By

′Bz
′ + qµBx

′

q2Bx
′Bz
′ + qµBy

′ q2By
′Bz
′ − qµBx

′ q2Bz
′2 + µ2


×

 qEx
′ − q5Bx

′

qEy
′ − q5By

′

qEz
′ − q5Bz

′


(4.3.7)

After solving for ~v, we transform it back to the lab frame with Λ(~u). Relativistic

addition of velocities yields ~V , the total flow velocity. Plugging this into the hadron
spectrum will allow one to calculate the flow parameters with chiral magnetic effect.
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Chapter 5

Conclusions

In this thesis, we have examined the new topic of the chiral magnetic effect, partic-
ularly in the context of quark-gluon plasma. The CME is a quantum effect which
emerges as a result of nonconservation of chirality in a system due to topologi-
cal charge transitions. We have delved into how it influences the dynamics of the
electromagnetic fields present in heavy ion collisions, and have worked through the
solution of the Maxwell equations with an additional chiral current. After running
numerical calculations, we were able to see how the CME changes the dynamics of
the fields, by “smoothing out” the decay of the most prominent field components,
and increasing the magnitude of the remaining components (Ez, however, is unaf-
fected by this new term).

Looking forward to potential additional research to further the theoretical under-
standing of the CME, we examined how, using hydrodynamics, we might be able to
study the influence of the CME on flow parameters. Expressions for these parame-
ters in terms of the chiral conductivity, σB, provide an experimental framework with
which to measure and test the theories discussed in this thesis. We leave this final
topic, the modified electrodynamic equation of motion (with q5 term) as an open
area for further research.
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