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Abstract

We investigate the dynamics of magnons in easy-plane ferromagnetic materials. We use the Boltzmann
and the Gross-Pitaevskii equation to derive the transport coefficients and the hydrodynamic equations
for both thermal and condensed magnon currents in ferromagnetic insulators. Assuming a linear
thermal gradient, we calculate both these magnon currents for the normal state, in which all magnons
are thermal, and for the superfluid state, in which our system obeys the two-fluid model. We also
consider ferromagnetic conductors. We study electron-magnon interactions in order to construct the
transport coefficients and the hydrodynamic equations for magnon currents and electric currents. To
find these currents explicitly, we apply these general results to the particular situation in which the
temperature gradient is linear. Finally, we calculate the Seebeck coefficient for the normal and the
superfluid state.
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Chapter 1

Introduction

Almost 200 years ago Thomas Seebeck [1] discovered the thermoelectric effect, in which a junction
of dissimilar metals produces an electric voltage when exposed to a temperature gradient. Today
this phenomenon is better known as the Seebeck effect and has found a wide range of applications,
including thermocouples, thermopiles, and energy sources for deep space exploration missions. More
recently, Uchida et al. [2] observed that not only an electric voltage but also a spin voltage can
be induced by a temperature gradient. In 2008 they reported their observations and called their
newfound phenomenon the spin Seebeck effect.

Since then, the spin Seebeck effect has been a popular topic of research [3]. Flebus et al. [4] are
currently studying the two-fluid model for the spin Seebeck effect in easy-plane magnetic insulators.
Such an easy-plane magnetic insulator may undergo a phase transition between a magnon Bose-
Einstein condensed and thus spin superfluid state, and a normal state. The two-fluid model, proposed
independently by Tisza [5] and Landau [6], describes the behaviour of a mixture of a normal fluid
and a superfluid. Flebus et al. have succesfully drawn up the hydrodynamic fundaments of both
normal and condensed spin currents. Subsequently, they explicitly calculated these currents induced
by a (linear) thermal gradient, i.e. by the spin Seebeck effect.

In this Thesis, we will broaden the research of Flebus et al. by considering conductors as well as
insulators. In conductors the spin currents are accompanied by an electric current induced by the
‘original’ Seebeck effect. These currents influence one another through a phenomenon called magnon
drag [7]. This causes the hydrodynamic description of a conductor to differ from that of an insulator.

This Thesis is divided in two parts. The first part, Chapter 2, will mostly be a reproduction of the
work of Flebus et al. We will compose a Hamiltonian for our system, and transform it several times to
write it in a more convenient form. After that we will use quantum kinetic theory, the Boltzmann and
the Gross-Pitaevskii equations in particular, to lay the groundwork for the hydrodynamic description
of spin currents in easy-plane magnetic insulators. We will end Chapter 2 with the explicit calculations
of the normal and the condensed spin currents in the case of a linear thermal gradient.

For the second part, Chapter 3, we consider easy-plane ferromagnetic conductors, i.e. we ‘add’ free
electrons to our system. This part is no reproduction and is thus to be regarded as new research. We
begin Chapter 3 with a detailed study of electron-magnon interactions, from which we retrieve a new
set of transport coefficients and hydrodynamic equations. Again, we will apply these general results
to the specific situation in which we are dealing with a linear gradient in temperature. Finally, we
calculate the Seebeck coefficient for the normal and for the superfluid state.

3



Chapter 2

Ferromagnetic insulators

2.1 Model

This section will give a basic outline of the model that we work in. First we will give short introduc-
tions on three of the main themes in this Thesis: superfluidity, the two-fluid model, and magnons.
After that we will construct the Hamiltonian of an easy-plane ferromagnetic insulator, and use several
transformations to write it in a more convenient form.

2.1.1 Superfluidity and the two-fluid model

A Bose-Einstein condensate is a state of matter of a gas of bosons, that occurs at temperatures close
to absolute zero (temperatures below the critical temperature Tc, to be precise). In a Bose-Einstein
condensate a macroscopic fraction of the particles occupies the same quantum state: the groundstate.

A Bose-Einstein condensate often behaves like a superfluid, i.e. a fluid with zero viscosity. This
characteristic enables superfluids to ascend vertical walls and leak through microscopic holes. Because
of these qualities, superfluids often appear to move in ways that defy the forces of gravity and surface
tension.

The two-fluid model describes the behaviour of a mixture of a normal fluid and a superfluid. Here the
normal fluid, which is viscous, carries all the thermal energy of the system, and the superfluid carries
none. Most often, the two-fluid model is used to describe Helium-4, but its use can be extended to a
variety of systems including superconductors, excitons, polaritons, and magnons.

2.1.2 Magnons

Imagine a lattice of spin particles in a ferromagnet with easy-plane anisotropy. When an external
magnetic field is applied in the −ẑ-direction, the spins will tend to align with it. However, when
the magnetic field is weakened the spins will fluctuate from perfect alignment. This is an effect of
the easy-plane anisotropy. Under the right conditions, these fluctuations can propagate through the
lattice and create a spin wave. The quantized version of such a spin wave is a quasiparticle called a
magnon [8].
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5 CHAPTER 2. FERROMAGNETIC INSULATORS

Magnons are bosons, so for sufficiently low temperatures they undergo Bose-Einstein condensation.
In this case, all condensed magnons occupy the single-particle groundstate. A condensate of magnons
behaves like a superfluid: it has zero viscosity. For T < Tc, part of the magnons becomes a superfluid
and the other part remains a normal fluid. Therefore, a Bose-Einstein condensate of magnons can be
described by the two-fluid model.

2.1.3 Holstein-Primakoff transformation

We consider an easy-plane ferromagnetic insulator with a cubic lattice. An external magnetic field
B > 0 is applied in the −ẑ-direction, and hence our model is described by the Hamiltonian

H = − J

2~2

∑
〈i,j〉

Si · Sj +
K

2~2

∑
i

(Szi )2 +
B

~
∑
i

Szi , (2.1)

where i and j are positions on the lattice, and the notation 〈i, j〉 indicates that sites i and j are nearest
neighbours. Furthermore, J > 0 is the strength of the exchange interactions between neighbouring
spins, and K > 0 is a constant governing the strength of the easy-plane anisotropy. While this
Hamiltonian describes our system quite good, it is not written in a convenient way to study the
behaviour of magnons. To solve this inconvenience, we use the Holstein-Primakoff transformation
[9]. This is a mapping from angular momentum operators (in this case Si) to the bosonic creation

and annihilation operators a†i and ai, which obey the commutation relation [ai, a
†
j ] = δi,j . The

Holstein-Primakoff transformation is given by

S+
i = Sxi + iSyi = ~a†i

√
2S − a†iai, (2.2)

S−i = Sxi − iS
y
i = ~ai

√
2S − a†iai, (2.3)

Szi = ~(a†iai − S), (2.4)

and thus we can rewrite Eq. (2.1) to

H = − J

2~2

∑
〈i,j〉

(
1

2
(S+
i S
−
j + S−i S

+
j ) + Szi S

z
j

)
+

K

2~2

∑
i

(Szi )2 +
B

~
∑
i

Szi . (2.5)

Before we complete the Holstein-Primakoff transformation we use a zeroth-order Taylor expansion in
powers of 1/S to simplify S+

i and S−i :

S+
i = ~a†i

√
2S

√
1− a†iai

2S
≈ ~a†i

√
2S, (2.6)

S−i = ~ai
√

2S

√
1− a†iai

2S
≈ ~ai

√
2S. (2.7)

To make this approximation accurate we must assume 1/S to be small, i.e. S � 1. Substitution of
Eq. (2.6 - 2.7) in Eq. (2.5) yields

H = −J
2

∑
〈i,j〉

(2S(a†iaj − a
†
iai) + a†iaia

†
jaj) +

K

2

∑
i

(−2Sa†iai + a†iaia
†
iai) +B

∑
i

a†iai

+
KNS2

2
− 3JNS2 −BNS, (2.8)
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where N is the number of lattice sites. We neglect constant terms and use our assumption that S � 1
to let 1− 2S ≈ −2S, to find the Bose-Hubbard Hamiltonian:

H = −J
2

∑
〈i,j〉

(2Sa†iaj + a†ia
†
jaiaj) +

K

2

∑
i

a†ia
†
iaiai + (6JS −KS +B)

∑
i

a†iai. (2.9)

2.1.4 Fourier transformation

The Bose-Hubbard Hamiltonian labels magnons by their position in the lattice. In many situations it
will prove more useful to label magnons by their momentum. To this end, we rewrite Eq. (2.9) using
the following Fourier transformation for the creation and annihilation operators:

a†i =
1√
N

∑
k

e−ik·xia†k, (2.10)

ai =
1√
N

∑
k

eik·xiak. (2.11)

We choose our cubic lattice to lie in the cartesian (x, y, z)-space, such that the vector denoting the
location of any lattice site i can be written as xi = liax̂+miaŷ+niaẑ, where a is the lattice constant
and li, mi, and ni are integers depending on i. Furthermore, k = kxx̂+kyŷ+kzẑ are the wavevectors
spanning the momentum space. We use this Fourier transformation to obtain∑

i

a†iai =
∑
k

a†kak, (2.12)

∑
i

a†ia
†
iaiai =

1

N

∑
k,k′,k′′,k′′′

a†ka
†
k′ak′′ak′′′ δk+k′−k′′−k′′′ , (2.13)

∑
〈i,j〉

a†iaj = 2
∑
k

a†kak(cos(kxa) + cos(kya) + cos(kza)), (2.14)

∑
〈i,j〉

a†ia
†
jaiaj =

2

N

∑
k,k′,k′′,k′′′

a†ka
†
k′ak′′ak′′′ δk+k′−k′′−k′′′

× (cos(k′xa) + cos(k′ya) + cos(k′za))(cos(k′′′x a) + cos(k′′′y a) + cos(k′′′z a)). (2.15)

In calculating these terms, we used the notion that a summation over neighbouring lattice sites
〈i, j〉 can be written as a summation over i by considering all six nearest neighbours separately, i.e.
xj = (li ± 1)ax̂+ (mi ± 1)aŷ + (ni ± 1)aẑ. Furthermore, we used the relation

∑
i′
eik·xi′ = Nδk. Now

we can rewrite Eq. (2.9) to

H =
∑
k

(~ωk −KS +B)a†kak +
∑

k,k′,k′′,k′′′

(
K

2N

)
a†ka
†
k′ak′′ak′′′ δk+k′−k′′−k′′′ , (2.16)

neglecting the contribution of Eq. (2.15) in the domain of low energies. The term ~ωk = −2JS(cos(kxa)+
cos(kya) + cos(kza) − 3) is interpreted as the energy of a magnon with wavevector k. In the low-
energy regime we can use a second-order Taylor expansion to write this energy as ~ωk = Jxck

2,
where Jxc ≡ 3JSa2. It follows that magnons, observed as quasiparticles, have an effective mass of
meff = ~2/(2Jxc).
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Now, we can transform our discrete Hamiltonian to a continuous one using

a†k =
1√
V

∫
dx eik·x ψ†(x), (2.17)

ak =
1√
V

∫
dx e−ik·x ψ(x), (2.18)

where V = Na3 is the volume of the lattice. With the relation
∑
k

eik·x = V δx, the transformation of

Eq. (2.16) to the continuous form yields

H =

∫
dx

[
ψ†(−Jxc∇2 − µeq)ψ +

Ka3

2
ψ†ψ†ψψ

]
, (2.19)

where µeq ≡ KS −B is interpreted as the effective chemical potential acquired by the magnons as a
consequence of the competition between the external field and the anisotropy. At fixed temperature,
this chemical potential tunes between condensed (µeq > 0) and non-condensed (µeq < 0) states.

2.2 Quantum kinetic theory

Now that we have a basic understanding of the behaviour of magnons in easy-plane ferromagnetic
insulators, we will use quantum kinetics to research currents of magnons through these materials. For
temperatures above the critical temperature for Bose-Einstein condensation, i.e. for T > Tc, there
will be a single current of magnons Jth, that we will refer to as the thermal spin current. For T < Tc,
however, we will encounter the two-fluid model, in which the thermal spin current is accompanied by
a current of condensed magnons Jc called the superfluid current.

The kinetics of a system like ours is characterized by two important equations: the Boltzmann
equation and the Gross-Pitaevskii equation. We will begin this section by deriving these equations
for the magnons in our system. After that, we will use them to find the transport coefficients of Jth
and the hydrodynamic equations that govern the spin currents in our insulator.

2.2.1 Boltzmann and Gross-Pitaevskii equation

Analogous to Zaremba et al. [10] we find our Boltzmann equation to be the following differential
equation of the magnon distribution function f(k,x, t):

∂f

∂t
+

2Jxck

~
· ∇f = C12[f ] + C22[f ]. (2.20)

Here C12 and C22 are the contributions to the collision integral. To be precise, C12 represents the col-
lision of a thermal and a condensed magnon that results in two thermal magnons and C22 represents
the collision of two thermal magnons, both of which are conserved in the collision. The collisions are
visualized in Fig. 2.1 and Fig. 2.2.
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k1

Figure 2.1: Feynman diagram representing C12

~vc

2Jxc
k2

k3 k1

Figure 2.2: Feynman diagram representing C22

k k2

k3

The integral forms of C12 and C22 are [10]

C12[f ] =
2g2nc~5

(2π)2

∫
dk1

∫
dk2

∫
dk3 δ

(
~vc
2Jxc

+ k1 − k2 − k3

)
δ(~ωc + ~ωk1

− ~ωk2
− ~ωk3

)

× [δ(k− k1)− δ(k− k2)− δ(k− k3)] [(1 + f1)f2f3 − f1(1 + f2)(1 + f3)], (2.21)

C22[f ] =
2g2~2

(2π)5

∫
dk2

∫
dk3

∫
dk4 δ(k + k2 − k3 − k4) δ(~ωk + ~ωk2

− ~ωk3
− ~ωk4

)

× [(1 + f)(1 + f2)f3f4 − ff2(1 + f3)(1 + f4)]. (2.22)

In these expressions fi = f(ki,x, t) and g ≡ Ka3. Furthermore, nc is the condensate density, vc
is the superfluid velocity, and ~ωc is the energy of a condensed magnon. All of these quantities are
functions of x and t. Since the effective mass of a magnon is ~2/(2Jxc), the term ~vc/(2Jxc) can be
regarded as the wavevector of a magnon in the condensate.

Magnons are bosons, so close to equilibrium we can describe them using equilibrium Bose-Einstein
statistics, i.e. we can take f = nBE(~ωk−µ(x)) and fi = nBE(~ωki

−µ(x)), where nBE(ε) ≡ (eβε−1)−1.
With these distribution functions Eq. (2.22) becomes

C22[f ] =
2g2~2

(2π)5

∫
dk2

∫
dk3

∫
dk4 δ(k + k2 − k3 − k4)δ(~ωk + ~ωk2

− ~ωk3
− ~ωk4

)

×
[
eβ(~ωk+~ωk2

−2µ(x)) − eβ(~ωk3
+~ωk4

−2µ(x))
]
ff2f3f4, (2.23)

so evaluation over one of the integrals in combination with the second δ-function yields C22 = 0. This
reduces our Boltzmann equation (Eq. (2.20)) to

∂f

∂t
+

2Jxck

~
· ∇f = C12[f ]. (2.24)

Now that we have succesfully derived the Boltzmann equation for our system, it is time for the
Gross-Pitaevskii equation. Using the same method as Zaremba et al. [10], we find it to be

i~
∂ψ

∂t
= (−Jxc∇2 + gnc)ψ. (2.25)

Let us take a moment to consider the stationary solutions of this equation, i.e. solutions of the form
ψ = e−

i
~µeqtψ0. Substitution in Eq. (2.25) yields gnc = µeq. This equality will prove to be quite

useful later in this Thesis.
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2.2.2 Transport coefficients

The spin current Jth is driven by parameters of the system, like the thermal magnon chemical potential
µ(x) and the temperature T (x). From now on we will work in the linear-response regime, in which
the thermal spin current is written as

Jth(x) = −σs
~
∇µ(x) + LµQ

∇T (x)

T
. (2.26)

We will take some time to calculate the transport coefficients σs and LµQ explicitly. In this calculation
we assume that Jth(x) does not depend on x via higher orders of µ(x) and T (x). To account for this
mathematically, we will take µ(x) → 0 and T (x) → T , whenever they appear in another form than
∇µ(x) and ∇T (x) respectively.

The thermal spin current can be written as [11]

Jth(x) = ~
∫

dk

(2π)3
f
∂(~ωk)

∂(~k)
. (2.27)

This expression can be identified with Eq. (2.26) to yield σs and LµQ, when we choose a distribution
function f(k,x, t) satisfying the Boltzmann equation. However, we need to modify the Boltzmann
equation in Eq. (2.24) a little before we can use it. Armaitis et al. [12] have shown that the collision
term C12 does not influence the transport coefficients, so for the time being we can leave it out. Now
we add two relaxation terms [4], and obtain the following Boltzmann equation:

∂f

∂t
+

2Jxck

~
· ∇f = −2αkBT

~
[f − nBE(~ωk)]− 1

τ
[f − nBE(~ωk)]. (2.28)

Here α is the Gilbert damping factor, τ is the thermalization time for number-conserving collisions
and kB is the Boltzmann constant (not to be confused with the wavevector k). To find the desired
distribution function, we assume that the solution of the Boltzmann equation is time-independent
and of the form f(k,x, t) = nBE(~ωk − µ(x)) + δf . This ansatz leads to

δf =
2τJxc

2αkBTτ + ~
n′BE(~ωk) k ·

[
∇µ(x) + ~ωk

∇T (x)

T

]
, (2.29)

so substitution in Eq. (2.27) gives

Jth(x) = ~
∫

dk

(2π)3

[
nBE(~ωk) +

2τJxc

2αkBTτ + ~
n′BE(~ωk) k ·

[
∇µ(x) + ~ωk

∇T (x)

T

]]
∂(~ωk)

∂(~k)
.

(2.30)
We already know that the energy ~ωk is quadratic in k and thus we obtain

Jth(x) =
4τJ2

xc

2αkBTτ + ~

∫
dk

(2π)3
n′BE(~ωk)

[
(k · ∇µ(x))k + ~ωk

(
k · ∇T (x)

T

)
k

]
. (2.31)

This expression can be written in the form of Eq. (2.26) with

σs = − 8πτJ2
xc~

6αkBTτ + 3~

∞∫
0

dk

(2π)3
n′BE(~ωk) k4 (2.32)
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and

LµQ =
8πτJ2

xc

6αkBTτ + 3~

∞∫
0

dk

(2π)3
n′BE(~ωk) ~ωk k4. (2.33)

These results express the transport coefficients in terms of the relaxation time, the Gilbert damping
factor, and the temperature.

2.2.3 Hydrodynamic equations

The final tools that we need to fully understand the kinetics of magnons in easy-plane magnetic
insulators are the hydrodynamic equations. These equations describe the evolution of Jth and Jc
through the material and follow directly from the Boltzmann and the Gross-Pitaevskii equations
found in Section 2.2.1.

First we take Eq. (2.24) and integrate it over k:∫
dk

(2π)3

[
∂f

∂t
+

2Jxck

~
· ∇f

]
=

∫
dk

(2π)3
C12[f ]. (2.34)

When we define

nth =

∫
dk

(2π)3
f (2.35)

as the density of the thermal magnons and let

Γ12[f ] =

∫
dk

(2π)3
C12[f ], (2.36)

we obtain our first hydrodynamic equations as

~ṅth = −∇ · Jth + ~Γ12[f ]. (2.37)

Now we look at the Gross-Pitaevskii equation, Eq. (2.25), with a dissipative term inserted [13]:

i~
∂ψ

∂t
= (−Jxc∇2 + gnc −

i~
2nc

Γ12[f ])ψ. (2.38)

Using the substitutions ψ =
√
nce

iθ and∇θ = ~vc/(2Jxc), we find two more hydrodynamic equations.
Up to linear order they read as

~ṅc = −∇ · Jc − ~Γ12[f ], (2.39)

~v̇c =
2Jxc

~
∇(µeq − µc), (2.40)

where Jc = ~ncvc is the superfluid current and µc = gnc − (Jxc∇2√nc)/
√
nc is the condensate

chemical potential.

Two of our three hydrodynamic equations contain a term with the Γ12-integral, defined in Eq. (2.36).
It will prove fruitful to examine this term more closely. Again we use the fact that magnons are
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bosonic, i.e. fi = nBE(~ωki − µ(x)), and so we find that close to equilibrium

Γ12[f ] =
2g2nc~5

(2π)5

∫
dk

∫
dk1

∫
dk2

∫
dk3 δ

(
~vc
2Jxc

+ k1 − k2 − k3

)
× δ(~ωc + ~ωk1

− ~ωk2
− ~ωk3

) [δ(k− k1)− δ(k− k2)− δ(k− k3)]

×
[
eβ(~ωk1

−µ(x)) − eβ(~ωk2
+~ωk3

−2µ(x))
]
f1f2f3. (2.41)

Integration in combination with the properties of the second δ-function leads to

Γ12[f ] =
(

1− eβ(µ−µc)
)
ncΓ, (2.42)

where

Γ =− 2g2~5

(2π)5

∫
dk

∫
dk1

∫
dk2

∫
dk3 δ

(
~vc
2Jxc

+ k1 − k2 − k3

)
δ(~ωc + ~ωk1

− ~ωk2
− ~ωk3

)

× [δ(k− k1)− δ(k− k2)− δ(k− k3)] [f1(1 + f2)(1 + f3)]. (2.43)

Assuming that the system is close to equilibrium, we simplify Eq. (2.42) even further with a first-order
Taylor expansion in µ− µc:

Γ12[f ] = −Γnc(µ− µc)
kBT

. (2.44)

With this approximation the hydrodynamic equations are given by

~ṅth = −∇ · Jth −
~Γnc(µ− µc)

kBT
, (2.45)

~ṅc = −∇ · Jc +
~Γnc(µ− µc)

kBT
, (2.46)

~v̇c =
2Jxc

~
∇(µeq − µc). (2.47)

We have not yet accounted for Gilbert damping caused by lattice vibrations and other phenomena
that cause magnons to decay, so we manually add a term to compensate for this flaw. When we take
α as the Gilbert damping factor, we obtain

~ṅth = −∇ · Jth −
3α

Λ3
th

δµ− ~Γnc(µ− µc)
kBT

, (2.48)

~ṅc = −∇ · Jc + 2α(µ− µc)nc +
~Γnc(µ− µc)

kBT
, (2.49)

~v̇c =
2Jxc

~
∇(µeq − µc), (2.50)

where we define δµ(x) ≡ µ(x) − µeq. Furthermore, Λ3
th =

√
4πJxc/(kBT ) is the thermal De Broglie

wavelength. Of course, we can also consider the total magnon density ns = nth + nc, which leads to

~ṅs(x) = −∇ · (Jc(x) + Jth(x)) + α

(
2nc(x)− 3

Λ3
th

)
δµ(x)− 2αnc(x)δµc(x), (2.51)

~v̇c(x) =
2Jxc

~
∇(µeq − µc(x)), (2.52)

with δµc(x) ≡ µc(x)− µeq defined analogous to δµ(x).
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2.3 Applications

In this section, we will solve the hydrodynamic equations obtained in the previous section for a
particular situation: we consider an easy-plane ferromagnetic insulator of length L attached on both
sides to a metallic reservoir that acts like a thermal bath. We choose our axes such that the side of the
insulator with length L is aligned with the x-axis. We assume one of the metallic reservoirs (the one at
x = 0) to be set at temperature T and the other at temperature T+∆T . Furthermore, we assume the
temperature gradient in the insulator to be linear in the x̂-direction, i.e. T (x) = T [1 + ∆Tx/(TL)].
Because this temperature gradient is time-independent, we consider the steady-state. Furthermore,
we can forget about the vector properties of Eq. (2.51 - 2.52) because of the symmetry of our system.
Under these assumptions we obtain

0 = −∇(Jc(x) + Jth(x)) + α

(
2nc(x)− 3

Λ3
th

)
δµ(x)− 2αnc(x)δµc(x), (2.53)

0 =
2Jex
~
∇(δµ(x)− δµc(x)). (2.54)

Before we start solving this set of equations, we notice that for α = 0 Eq. (2.53) reduces to the
conservation law of magnons. Since α = 0 implies that there is no Gilbert damping, this is consistent
with our expectations.

2.3.1 Transport in the normal state

For T > Tc there is no Bose-Einstein condensate of magnons. This entails that Jc = 0, nc = 0, and
that we only use the hydrodynamic equation for the magnon density, and thus we find

0 = −∇Jth(x)− 3α

Λ3
th

δµ(x). (2.55)

To solve this equation, we substitute Eq. (2.26). By realizing that ∇µ(x) = ∇δµ(x) and ∇2T (x) = 0,
we obtain a differential equation for δµ(x):

0 =
σs
~
∇2δµ(x)− 3α

Λ3
th

δµ(x). (2.56)

Solving Eq. (2.56) leads to

Jth(x) = − σs
~`1

(C1e
x
`1 − C2e

− x
`1 ) +

LµQ
L

∆T

T
, (2.57)

where `1 ≡
√
σsΛ3

th/(3α~) is the thermal magnon propagation length and C1,2 are constants yet to
be determined by the boundary conditions. We use the boundary conditions derived by Flebus et
al. [4]:

JLth =
3g↑↓L

4πsΛ3
th

(µLs − δµL), (2.58)

JRth =
3g↑↓R

4πsΛ3
th

(δµR − µRs ). (2.59)
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In these expressions, g↑↓L = i=g↑↓L +<g↑↓L and g↑↓R = i=g↑↓R +<g↑↓R are the complex-valued spin-mixing
conductances characterizing the left and right interface respectively and s = S/a3 is the spin density.
Furthermore, µLs and µRs are the spin accumulations in the boundaries of the metallic reservoirs that
are connected to the ferromagnetic insulator, where the superscript L stands for the left and R for the
right interface. We assume that the spin-mixing conductances are akin, so we take g↑↓ ≡ g↑↓L ∼ g↑↓R
and neglect their real part. The expression that we obtain when we put our boundary conditions in
Eq. (2.57), is too cumbersome to enter here.

2.3.2 Transport in the superfluid state

Now that we have examined our system under conditions for which there is no condensate of magnons,
we can look at temperatures T < Tc. In this case there are currents of both thermal and condensed
magnons, i.e. our system can be described by the two-fluid model. For simplicity, we assume that
nc is homogeneous in the material. In this case µc(x) = µeq, because of the equality we found at the
end of Section 2.2.1. Consequently, δµc(x) = 0 and Eq. (2.54) reduces to ∇δµ(x) = 0, i.e. thermal
magnon chemical potential fluctuations are suppressed. It follows that δµ(x) is independent of x
(from now on we will just denote it by δµ to indicate this finding). Furthermore, the current of
thermal magnons is constant throughout the material,

Jth(x) =
LµQ
L

∆T

T
, (2.60)

so Eq. (2.53) yields

0 = −∇Jc(x) + α

(
2nc −

3

Λ3
th

)
δµ. (2.61)

Integrating Eq. (2.61) over x returns

Jc(x) =

[
α

(
2nc −

3

Λ3
th

)
δµ

]
x+ C3, (2.62)

with C3 the constant of integration. The boundary conditions derived by Flebus et al. [4] for this
situation are

JLs =
g↑↓L
4πs

[(
2nc +

3

Λ3
th

)
µLs +

(
2nc −

3

Λ3
th

)
δµ

]
, (2.63)

JRs = −
g↑↓R
4πs

[(
2nc +

3

Λ3
th

)
µRs +

(
2nc −

3

Λ3
th

)
δµ

]
, (2.64)

where Js = Jc + Jth denotes the total spin current. We assume once more that the spin-mixing
conductances at the interfaces are similar, i.e. g↑↓ ≡ g↑↓L ∼ g↑↓R . Taking Jc(0) + Jth(0) = JLs and
Jc(L) + Jth(L) = JRs , we can determine the values of the constants δµ and C3, and we find the
superfluid current as

Jc(x) =
g↑↓
(

2nc + 3
Λ3

th

)
4πs

[
µLs −

g↑↓(µLs + µRs )

2g↑↓ + 4πsαL

]
−
αg↑↓(µLs + µRs )

(
2nc + 3

Λ3
th

)
2g↑↓ + 4πsαL

x− LµQ
L

∆T

T
. (2.65)

In the absence of spin accumulation in the boundaries, i.e. for µLs = µRs = 0, Eq. (2.65) reduces to

Jc(x) = −LµQ
L

∆T

T
. (2.66)

Evidently, the condensate spin current flows opposite to the thermal spin current (Eq.(2.60)), and
thus the total spin current is cancelled out.



Chapter 3

Ferromagnetic conductors

3.1 Electron-magnon interactions

When we consider a conductor instead of an insulator, we are confronted with free electrons in our
system. As it turns out, these electrons interact with magnons, so our quantum kinetic calculations
of Section 2.2 need to be altered.

We start by deriving the new Boltzmann equations: one for the (thermal) magnons and two for the
electrons (a distinction is made between spin-up and spin-down electrons). After that, we will take
a closer look at the Gilbert damping caused by electron-magnon interactions. With these results we
will derive the transport coefficients for Jth, Je,↑, and Je,↓, and a hydrodynamic equation for the
electron density.

3.1.1 Boltzmann equations

We take f = f(k,x, t), h↑ = h↑(p,x, t) and h↓ = h↓(p,x, t) as the distribution functions of the
thermal magnons, the spin-up electrons and the spin-down electrons respectively. The Boltzmann
equations for these distribution functions are then given by

∂f

∂t
+

2Jxck

~
· ∇f = Γfme −

2αkBT

~
[f − nBE(~ωk)]− 1

τm
[f − nBE(~ωk)], (3.1)

∂h↑
∂t

+
p

m
· ∇h↑ + E · ∇ph↑ = Γ

h↑
me −

1

τ↑
[h↑ − nFD(εp,↑)], (3.2)

∂h↓
∂t

+
p

m
· ∇h↓ + E · ∇ph↓ = Γ

h↓
me −

1

τ↓
[h↓ − nFD(εp,↓)]. (3.3)

Here m is the electron mass, E is the electric field, and εp,↑ and εp,↓ are the energies of a spin-up and
a spin-down electron. In terms of the momentum p these energies are given by εp,↑ = p2/(2m)+∆/2
and εp,↓ = p2/(2m) − ∆/2 respectively, where ∆ is simply defined as the difference between the
two. Furthermore, τm, τ↑ and τ↓ are the relaxation times for the particles in our system, and

nFD(ε) ≡ (eβε + 1)−1 is the Fermi-Dirac distribution. The terms Γfme, Γ
h↑
me and Γ

h↓
me represent the

collision visualized in Fig. 3.1.

14
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p2

Figure 3.1: Feynman diagram representing Γ
f,h↑,h↓
me

p1

k

Here the continuous lines represent electrons and the dashed line represents a magnon. Without loss
of generality, we assume that the electron with momentum p1 is spin-up and the one with momentum
p2 is spin-down. Again we can write our collision terms as integrals:

Γfme = − 2π

~

∫
dp1 dp2

(2π)6
δ
(
~ωk + εp1,↑ − εp2,↓

) ∣∣Vk,p1,p2

∣∣2
× [f(k)h↑(p1) (1− h↓(p2))− (1 + f(k)) (1− h↑(p1))h↓(p2)] , (3.4)

Γ
h↑
me = − 2π~3

~

∫
dk dp2

(2π)6
δ
(
~ωk + εp1,↑ − εp2,↓

) ∣∣Vk,p1,p2

∣∣2
× [f(k)h↑(p1) (1− h↓(p2))− (1 + f(k)) (1− h↑(p1))h↓(p2)] , (3.5)

Γ
h↓
me =

2π~3

~

∫
dk dp1

(2π)6
δ
(
~ωk + εp1,↑ − εp2,↓

) ∣∣Vk,p1,p2

∣∣2
× [f(k)h↑(p1) (1− h↓(p2))− (1 + f(k)) (1− h↑(p1))h↓(p2)] . (3.6)

The term |Vk,p1,p2
|2 denotes the strength of the electron-magnon coupling. These cumbersome

expressions can be simplified using a method similar to the one used to make an approximation
of Γ12 in Section 2.2.3. If we now use the equilibrium functions for bosons and fermions, i.e.
f(k) = nBE(~ωk − µ(x)), h↑(p1) = nFD(εp1,↑ − µe,↑(x)), and h↓(p2) = nFD(εp2,↓ − µe,↓(x)), we
obtain

Γfme =
µ(x) + µe,↑(x)− µe,↓(x)

kBT

∫
dp1 dp2 Γme, (3.7)

Γ
h↑
me =

µ(x) + µe,↑(x)− µe,↓(x)

kBT

∫
dk dp2 ~3Γme, (3.8)

Γ
h↓
me = − µ(x) + µe,↑(x)− µe,↓(x)

kBT

∫
dk dp1 ~3Γme, (3.9)

with

Γme ≡ −
δ
(
~ωk + εp1,↑ − εp2,↓

) ∣∣Vk,p1,p2

∣∣2 eβεp2,↓

~(2π)5
(
eβ~ωk − eβµ(x)

) (
eβεp1,↑ − eβµe,↑(x)

) (
eβεp2,↓ − eβµe,↓(x)

) . (3.10)

The terms µe,↑(x) and µe,↓(x) are the chemical potentials of the spin-up and spin-down electrons
respectively.
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3.1.2 Electron-induced Gilbert damping

In Chapter 2, we have accounted for Gilbert damping caused mainly by lattice vibrations. In conduc-
tors, however, the Gilbert damping is dominated by a far greater contribution: that of the electron-
magnon interactions. Here we will neglect all other phenomena that cause Gilbert damping and
calculate the Gilbert damping factor α for this specific contribution explicitly.

Taking the approximation 1 + f(k) ≈ f(k), we find the contribution of this Gilbert damping to the
Boltzmann equation for magnons to be

df

dt
= − 2πf(k)

~

∫
dp1 dp2

(2π)6
δ
(
~ωk + εp1,↑ − εp2,↓

) ∣∣Vk,p1,p2

∣∣2
×
[
nFD(εp1,↑ − µe,↑(x))− nFD(εp2,↓ − µe,↓(x))

]
. (3.11)

We now assume |Vk,p1,p2
|2 to be independent of k, and we use the equalities 1 =

∫
dε δ(ε − εp1,↑)

and 1 =
∫
dε′ δ(ε′ − εp2,↓) to rewrite Eq. (3.11) to an integral over ε and ε′:

df

dt
= −2πf(k)

~

∫
dε dε′ δ(~ωk + ε− ε′) [nFD(ε− µe,↑(x))− nFD(ε′ − µe,↓(x))] ξ(ε, ε′). (3.12)

Here ξ(ε, ε′) is a function defined as

ξ(ε, ε′) ≡
∫
dp1 dp2

(2π)6
δ(ε− εp1,↑) δ(ε

′ − εp2,↓)
∣∣Vp1,p2

∣∣2 . (3.13)

Now we can evaluate the integral over ε′ in Eq. (3.12), and so we find

df

dt
= −2πf(k)

~

∫
dε [nFD(ε− µe,↑(x))− nFD(~ωk + ε− µe,↓(x))] ξ(ε, ~ωk + ε). (3.14)

Under the assumption that µe,↑(x) = µe,↓(x), and that the magnon energy is low we use a first-order
Taylor expansion and obtain

df

dt
= 2πf(k)ωk

∫
dε n′FD(ε− µe,↑(x)) ξ(ε, ~ωk + ε). (3.15)

Identification with the usual form of a Gilbert damping term in a Boltzmann equation yields

α = −π
∫
dε n′FD(ε− µe,↑(x)) ξ(ε, ~ωk + ε). (3.16)

This is the Gilbert damping factor that we use in Eq. (3.1).

3.1.3 Transport coefficients and hydrodynamic equations

Here we will follow the method of Section 2.2.2 to find the transport coefficients for Jth, Je,↑, and Je,↓.
Now the driving forces are ∇µ(x), ∇µe,↑(x), ∇µe,↓(x), E(x), and ∇T (x). Again, we will work in the
linear-response regime and take µ(x), µe,↑(x), µe,↓(x) → 0 and T (x) → T , whenever they appear in
another form than in a single differential.
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First we need to find solutions of the Boltzmann equations, Eq. (3.1 - 3.3). For this we use first-order
perturbation theory. To derive the zeroth-order solution, we use the following ansatzes:

f (0)(k,x, t) = nBE(~ωk − µ(x)) + δf , (3.17)

h
(0)
↑ (p,x, t) = nFD(εp,↑ − µe,↑(x)) + δh↑, (3.18)

h
(0)
↓ (p,x, t) = nFD(εp,↓ − µe,↓(x)) + δh↓. (3.19)

In zeroth-order we can ignore the Γme-terms in the Boltzmann equations, and so we find

δf =
2τmJxc

2αkBTτm + ~
n′BE(~ωk) k ·

[
∇µ(x) + ~ωk

∇T (x)

T

]
, (3.20)

δh↑ =
τ↑
m
n′FD(εp,↑) p ·

[
∇µe,↑(x) + εp,↑

∇T (x)

T
−E(x)

]
, (3.21)

δh↓ =
τ↓
m
n′FD(εp,↓) p ·

[
∇µe,↓(x) + εp,↓

∇T (x)

T
−E(x)

]
. (3.22)

First-order perturbation theory now reveals f (1), h
(1)
↑ , and h

(1)
↓ to be solutions of the following

equations:

2Jxck

~
· ∇f (1) = Γfme

[
f (0), h

(0)
↑ , h

(0)
↓

]
− 2αkBT

~
f (1) − 1

τm
f (1), (3.23)

p

m
· ∇h(1)

↑ + E · ∇ph
(1)
↑ = Γ

h↑
me

[
f (0), h

(0)
↑ , h

(0)
↓

]
− 1

τ↑
h

(1)
↑ , (3.24)

p

m
· ∇h(1)

↓ + E · ∇ph
(1)
↓ = Γ

h↓
me

[
f (0), h

(0)
↑ , h

(0)
↓

]
− 1

τ↓
h

(1)
↓ . (3.25)

We assume that the gradients on the left-hand sides of these equations are 0, and thus

f (1) =
~τm

2αkBTτm + ~
Γfme

[
f (0), h

(0)
↑ , h

(0)
↓

]
, (3.26)

h
(1)
↑ = τ↑ Γ

h↑
me

[
f (0), h

(0)
↑ , h

(0)
↓

]
, (3.27)

h
(1)
↓ = τ↓ Γ

h↓
me

[
f (0), h

(0)
↑ , h

(0)
↓

]
. (3.28)

This concludes our first-order perturbatory calculations and we find the distribution functions to be

f = f (0) + f (1), h↑ = h
(0)
↑ + h

(1)
↑ , and h↓ = h

(0)
↓ + h

(1)
↓ . The currents of magnons and electrons are

given by

Jth(x) = ~
∫

dk

(2π)3
f
∂(~ωk)

∂(~k)
, (3.29)

Je,↑(x) = −|e|
∫

dp

(2π~)3
h↑

∂εp,↑
∂p

, (3.30)

Je,↓(x) = −|e|
∫

dp

(2π~)3
h↓

∂εp,↓
∂p

, (3.31)
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in which we substitute the distribution functions f , h↑, and h↓. This approach leads to

Jth(x) = −σ
′
s

~
∇µ(x)− LD,↑∇µe,↑(x)− LD,↓∇µe,↓(x)− LFE(x) + L′µQ

∇T (x)

T
, (3.32)

Je,↑(x) = −L′D,1∇µ(x)− σ11∇µe,↑(x)− σ12∇µe,↓(x)− L′F,1E(x) + Le,1
∇T (x)

T
, (3.33)

Je,↓(x) = −L′D,2∇µ(x)− σ21∇µe,↑(x)− σ22∇µe,↓(x)− L′F,2E(x) + Le,2
∇T (x)

T
, (3.34)

where

σ′s = − 8πτmJ
2
xc~

6αkBTτm + 3~

∞∫
0

dk

(2π)3
n′BE(~ωk) k4

×
[
1− 2πτm

2αkBTτm + ~

∫
dp1 dp2

(2π)6
δ
(
~ωk + εp1,↑ − εp2,↓

) ∣∣Vk,p1,p2

∣∣2 [nFD(εp1,↑)− nFD(εp2,↓)]

]
.

(3.35)

The other transport coefficients are similar in structure: cumbersome integrals over the wavevector
of the magnons and the momenta of the (spin-up and spin-down) electrons. It would be ponderous
to enter all 15 of them here, so we continue.

If we consider the total electric current, i.e. if we omit the distiction between spin-up and spin-down
electrons, we are left with a much more compact system of transport-coefficients:

Jth(x) = −σ
′
s

~
∇µ(x)− LD∇µe(x) + L′µQ

∇T (x)

T
, (3.36)

Je(x) = −L′D∇µ(x)− σ∇µe(x) + Le
∇T (x)

T
. (3.37)

Here µe is the electro-chemical potential. So far, we have only considered thermal magnons. When
we manually insert terms to account for the superfluid current of magnons, we obtain

Js(x) = −σ
′
s

~
∇µ(x)− LD∇µe(x) + L′µQ

∇T (x)

T
+ ~ncvc(x), (3.38)

Je(x) = −L′D∇µ(x)− σ∇µe(x) + Le
∇T (x)

T
+ γncvc(x), (3.39)

where γ is a dimensionless constant.

The electrons in our system are conserved. This fact is expressed in the following formula:

ρ̇e = −∇ · Je. (3.40)

We add this conservation law to our system of hydrodynamic equations (Eq. (2.48 - 2.50)) to describe
the dynamics of the electron current.

3.2 Applications

Similarly to Section 2.3, we will solve the hydrodynamic equations of our system exactly. We will
make the same assumptions (including the one of a linear thermal gradient in the x̂-direction). The
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only difference with the situation in the previous chapter is that we now consider a ferromagnetic
conductor. We find the full hydrodynamic equations for the steady-state as

0 = −∇(Jc(x) + Jth(x)) + α

(
2nc(x)− 3

Λ3
th

)
δµ(x)− 2αnc(x)δµc(x), (3.41)

0 = −∇Je(x), (3.42)

0 =
2Jex
~
∇(δµ(x)− δµc(x)). (3.43)

Broadly, this section will follow the structure of Section 2.3. First we will calculate the currents
Jth and Je for T > Tc, and then we will calculate all of the currents in our system (including the
superfluid current of magnons) for T < Tc. Finally, we will calculate the Seebeck coefficient for both
states.

3.2.1 Transport in the normal state

For temperatures higher than the critical temperature for Bose-Einstein condensation, there is no
current of condensed magnons. This enables us to simplify Eq. (3.41 - 3.43) to

0 = −∇Jth(x)− 3α

Λ3
th

δµ(x), (3.44)

0 = −∇Je(x). (3.45)

Substitution of our expressions for Jth and Je, Eq. (3.36) and Eq. (3.37) respectively, yields

σ′s
~
∇2δµ(x) + LD∇2µe(x) =

3α

Λ3
th

δµ(x), (3.46)

L′D∇2δµ(x) + σ∇2µe(x) = 0, (3.47)

which leads to

Jth(x) =

(
− σ′s
~`2

+
LDL

′
D

σ`2

)(
C1e

x
`2 − C2e

− x
`2

)
− LDC3 +

L′µQ
L

∆T

T
, (3.48)

Je(x) = −σC3 +
Le
L

∆T

T
. (3.49)

In these expressions, `2 ≡
√

Λ3
th(σσ′s − ~LDL′D)/(3ασ~) is the thermal magnon propagation length

and C1,2,3 are constants that we will determine using the boundary conditions. For the spin current
we use the same boundary conditions as before (Eq. (2.58 - 2.59)) and for the electric current we use
JLe = JRe = 0. With these boundary conditions we determine the constants C1,2,3. The electron
current turns out to be Je(x) = 0 and for the magnon current we find an expression that is too
cumbersome to include in this Thesis.

3.2.2 Transport in the superfluid state

For T < Tc we are dealing with the two-fluid model. Again, we assume that nc is homogeneous and
so we find that δµc(x) = 0. This reduces Eq. (3.41 - 3.43) to

0 = −∇(Jc(x) + Jth(x)) + α

(
2nc −

3

Λ3
th

)
δµ, (3.50)

0 = −∇Je(x). (3.51)
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We substitute our expressions for the spin current and the electric current, Eq. (3.38) and Eq. (3.39),
and obtain

~nc∇vc(x)− LD∇2µe(x) = α

(
2nc −

3

Λ3
th

)
δµ, (3.52)

γnc∇vc(x)− σ∇2µe(x) = 0. (3.53)

We solve this system of differential equations and find

vc(x) =
σα
(

2nc − 3
Λ3

th

)
nc (~σ − γLD)

δµ x+ C4, (3.54)

µe(x) =
γα
(

2nc − 3
Λ3

th

)
2 (~σ − γLD)

δµ x2 + C5 x+ C6, (3.55)

which leads to

Js(x) = α

(
2nc −

3

Λ3
th

)
δµ x+ ~ncC4 − LDC5 +

L′µQ
L

∆T

T
, (3.56)

Je(x) = γncC4 − σC5 +
Le
L

∆T

T
. (3.57)

Again we take JLe = JRe = 0 as the boundary condition for the electric current and the boundary
conditions derived by Flebus et al. [4] for the spin current. The latter are given by Eq. (2.63) and
Eq. (2.64). With this approach, we find the currents in a ferromagnetic conductor as

Js(x) =
g↑↓
(

2nc + 3
Λ3

th

)
4πs

[
µLs −

g↑↓(µLs + µRs )

2g↑↓ + 4πsαL

]
−
αg↑↓(µLs + µRs )

(
2nc + 3

Λ3
th

)
2g↑↓ + 4πsαL

x, (3.58)

Je(x) = 0. (3.59)

Note that this spin current is equal to the one that we found for a ferromagnetic insulator in the
superfluid state. It follows that the spin current is zero in the absence of spin accumulation in the
boundaries, i.e. for µLs = µRs = 0.

3.2.3 Seebeck coefficients

In both the normal and the superfluid state, we found that Je(x) = 0 everywhere in our conductor.
This is not surprising, since we chose our boundary conditions as JLe = JRe = 0. However, the absence
of an electric current does not mean that there is no electro-chemical potential. We find

µe,n(x) = −L
′
D

σ

(
C1e

x
`2 + C2e

− x
`2

)
+ C3 x, (3.60)

µe,s(x) =
γα
(

2nc − 3
Λ3

th

)
2 (~σ − γLD)

δµ x2 + C5 x, (3.61)
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where µe,n and µe,s denote the electro-chemical potential in the normal state and in the superfluid
state respectively. From these expressions we can calculate the Seebeck coefficient for both states:

Sn = − µe,n(L)− µe,n(0)

T (L)− T (0)
=
L′D
σ

(
C1

∆T

(
e

L
`2 − 1

)
+

C2

∆T

(
e−

L
`2 − 1

))
− C3

∆T
L, (3.62)

Ss = − µe,s(L)− µe,s(0)

T (L)− T (0)
= −

γα
(

2nc − 3
Λ3

th

)
2 (~σ − γLD)

δµ

∆T
L2 − C5

∆T
L. (3.63)

We already derived the constants C1,2,3,5 and δµ with the boundary conditions for Js and Je above.
It follows that spin superfluidity in an easy-plane magnetic conductor can be measured as a change in
the Seebeck voltage, and also that spin superfluidity results in a qualitative change of the dependence
of this voltage on the system size.



Chapter 4

Conclusion

In this Thesis, we extensively studied spin currents in easy-plane ferromagnetic insulators and conduc-
tors and developed their hydrodynamic description. In insulators we found the dynamics of magnons
to be described by Eq. (2.48 - 2.50) in combination with Eq. (2.26). In conductors, however, we had
to take electron-magnon interactions into account. Doing so, we obtained an extra hydrodynamic
equation as Eq. (3.40) with the magnon and electron currents given by Eq. (3.38) and Eq. (3.39).
These are the central results of this Thesis.

We also made explicit calculations of spin currents and electric currents in both these materials under
the assumption of a linear thermal gradient. Here we distinguished between the normal state and the
superfluid state. An interesting result is that, in the superfluid state, there is no difference between
the total spin current in conductors and in insulators. We also calculated the electric voltage and
the associated Seebeck coefficient that the linear thermal gradient induces in easy-plane magnetic
conductors in the normal state and in the superfluid state.

To find the explicit expressions of the magnon and the electron currents, we solved the hydrodynamic
equations. In these calculations we worked in the linear-response regime. Of course, these approxima-
tions slightly misrepresent the reality. In future research the results could be obtained more precisely
by solving the Boltzmann equation directly. A disadvantage of this approach is that the boundary
conditions, that we used in this Thesis, would no longer be appropriate. Therefore, a new set of
boundary conditions would need to be derived.

So far, spin superfluidity has been a purely theoretical phenomenon. Future experimental research
could use our results to confirm the existence of this state of matter, as we found substantial changes
in, for example, the voltage between the normal and the superfluid state. Nevertheless, a problem
arises: we assumed a linear thermal gradient and started working in one dimension. Experiments
concerning temperature gradients almost always take place in two or three dimensions, so for that
purpose the calculations in Sections 2.3 and 3.2 would need to be redone, using a more realistic
temperature gradient.
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