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Abstract

A BEC can be viewed as a giant matter wave, this means that it can show
interference. By creating a double-well potential we can split a BEC into two
parts. After turning off the potential the BEC will start to expand because of its
chemical potential. As the BEC’s expand and the two matter waves superpose
they show an interference pattern.

In this thesis it is described how to succesfully create such a double-well potential.
The potential created is stable, however not symmetric. The reason why it is not
symmetric is investigated and it can be concluded that for a symmetric potential
an optical dipole potential with a crosssection of around 10 µm is preferable.

A description is given of the interference pattern that arises from different ex-
pansion time and different height of the potential barrier. Because the potential
is not symmetric a dependence arises that causes the interference pattern not
to be constant in space as observed in previous experiments. This might be an
advantage for determining the phase difference between two BEC’s.
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Introduction

1 Introduction

A Bose-Einstein Condensate (BEC) can be viewed as a giant matter wave. An
interesting property of waves is that they can interfere. As waves superpose they
form a wave of greater, lower or the same amplitude. For this the waves need to be
coherent with each other, meaning that they originate from the same source or that
they nearly have the same frequency.

This behaviour has been shown for many types of waves, such as, light, radio, acoustic
and surface water waves. Using a setup in which we can create a BEC it is possible to
show this behaviour for matter waves. For this an experiment needs to be conducted
where two separate condensates come into contact to show matter wave interference.

By creating a double-well potential containing one condensate in each of the wells they
can be let to interfere. When the potential is turned off the BEC will start to expand.
The condensate will expand with a rate depending on its chemical potential. In the
case of a double-well potential we have two condensates which both will expand,
demonstrating an interesting property because at some point the condensates will
start to superpose. From observation of the evolution of the wavefunction we can
learn about the interference pattern.

The interference pattern will start to exist as the two maxima in the combined con-
densate wavefunction move towards each other because of their chemical potential.
It is possible to give a description of the interference pattern based on the shape of
the potential. From the description of the interference pattern we can then extract
the wavelength of the interference, which can be compared with measurements.

From interference measurements we are interested to observe the different proper-
ties of the interference pattern. We are especially interested in the parameters on
which the wavelength depends. Measurements that vary the expansion time and the
distance between the two minima in the potential have been conducted to search
for their dependence. Another parameter of interest is the phase of the interference
pattern.

The phase of a BEC is the argument of a complex number in the macroscopic wave-
function, because of this it is unfortunatly not an observable. It is an interesting
property of a BEC though, because it contributes to the wave like nature of the
system. The relative phase between two BECs is something that can be measured
and will be visible in the interference pattern. From the phase difference we might
be able to learn about how a BEC acquires its phase.
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2 Theory

2.1 The potential

In this research the goal is to split a BEC in order to see how the two parts interfere.
In order to do that it is first needed to create a potential that can split the BEC in
two separate parts, which can be turned off to let the BECs interfere. This potential
consists of the usual cigar-shaped magnetic trap (MT) [1] and an optical dipole force
centered on the magnetic trap, forming a double-well potential.

2.1.1 Optical dipole potential

An optical dipole potential is used to trap the Sodium atoms in the two different
wells. The mechanism depends on the interaction between light and the induced
electric dipole moment in the atom. The light field needs to be far detuned from
atomic resonance to keep scattering of photons by the atoms to a minimum.

The force the atoms feel arises from the dispersive interaction of the induced dipole
moment in the atom with the intensity gradient of the light field. The potential is
thus linear with the intensity of the light field [2],

Udip =
3πc2

2ω3
0

Γ

∆
I, (2.1)

while the scattering rate is given by

Γsc =
3πc2

2~ω3
0

(
Γ

∆
)2I. (2.2)

Here ω0 is the Sodium resonance frequency, Γ is the natural linewidth (FWHM), ∆
is the detuning from atomic resonance and I is the light intensity.

In order to choose the right wavelength for the light field it is important to consider
the detuning. Except for the light intensity the rest of the parameters, ω0=2π·5.088× 1014 Hz
and Γ=2π·9.795× 106 Hz, are already determined by the original setup.

In the setup a laser is chosen with λ = 532 nm giving it a detuning with respect to the
atomic resonance of natrium of (λ0 − λ) = 57 nm, which translates into a detuning
of ∆ = 5.26× 1015 Hz. For a laser with a Imax = 1.6 W the scattering rate is below
≈ 1% and there is sufficient interaction strength.
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2.1.2 Double-well potential

The optical dipole potential is aligned at the center of an axially symmetric magnetic
trap along the z direction. This will give an effective potential for the atoms,

V (x, y, z) =
1

2
mω2
⊥(x2 + y2) +

1

2
mω2

zz
2 +Ae−

1
2
( z
σ
)2 , (2.3)

which is a combination of the magnetic trap and the optical dipole potential. Here
ω⊥ is the trapping frequency in the x and y direction and ωz is the trapping frequency
in the z direction.

A cross-section of the potential along the z direction is shown in figure 2.1. The
atoms will want to seek the minimum in the potential and the BEC will split in two
parts both centered at one of the minima, if the height of the potential is larger as
compared to the chemical potential.

-100 -50 50 100
z HΜmL

2.2 ´10-30

2.4 ´10-30

2.6 ´10-30

2.8 ´10-30

3. ´10-30

3.2 ´10-30

Potential Energy HJL

Figure 2.1: Cross-section of the potential in the z direction showing the magnetic trap in addition with
the optical dipole trap.

2.2 The wavefunction inside the double-well potential

The wavefunction of a BEC obeys the non-linear Schrödinger equation,

(
p̂2

2m
+ V + U0|Ψ|2)Ψ = µΨ, (2.4)
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where p̂ is the momentum operator, V the potential, U0 is a constant that contains
the interactions between atoms in the BEC and µ is the chemical potential of the
BEC.

For a BEC the Thomas-Fermi approximation can be applied,

(V + U0|Ψ|2)Ψ = µΨ, (2.5)

this approximation states that the momentum of the condensate is sufficiently small
compared to the interactions such that it can be neglected. From the Thomas-Fermi
approximation we can derive the density of the condensate,

n(~r) = |Ψ(~r)|2 = max(
µ− V (~r)

U0
, 0), (2.6)

where V (~r) is given by equation 2.3. It is relevant to look at the relation between µ
and V (~r).

In the x and y direction the potential has a minimum in the center of the magnetic
trap. The trap will just fill up with atoms until it reaches the chemical potential.

However, when considering the cross-section of the potential in the z direction as
shown in figure 2.1, it demonstrates that the optical dipole potential creates a barrier
in the center of the magnetic trap with a maximum height in the potential we call
Vdipole. At the points where µ < Vdipole the density of the condensate will be zero and
atoms will be absent, meaning that the condensate is split. This behavior is shown
in figure 2.2.
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Figure 2.2: Density of the condensate for different values of µ. (a) µ > Vdipole. (b) µ < Vdipole.

2.3 Imaging

In the experiment two different imaging techniques are applied. The techniques used
are absorption imaging and phase-contrast imaging (PCI). Both work by aiming
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light, called probe light, on the atoms which is imaged on a CCD chip. Absorption
imaging allows measurements of the condensate in expansion and PCI allows in-situ
measurements. From in-situ measurements it is possible to extract the shape of the
potential and a value for the chemical potential, µ.

When light interacts with the atoms it gathers information about the atomic density
as it propagates through the condensate. This information is integrated over the
propagation direction. Hence, it is necessary to consider the column density of the
atoms,

ρ(x, z) =

∫
n(~r)dyg =

4

3U0
(µ− V (x, z))3/2, (2.7)

which is equation 2.6 integrated over the probe axis, the y direction.

2.3.1 Absorption imaging

In absorption imaging a beam of resonant light is aimed at the atoms. Resonant
light is absorbed by the atoms and the absorbtion casts a shadow on the image.
In this process the atoms are excited and the measurement therefore destroys the
condensate. The light intensity will behave according to Lambert-Beer’s law,

I = I0e
−

∫
σρdx = I0e

−OD, (2.8)

where σ = Cg,e
3λ2

2π is the cross-section for absorption, ρ is the atomic density and OD
the optical density. Cg,e is the relative transition strength from the ground state g
to the excited state e.

Three measurements are conducted in order to construct the transmission and to
correct for the background. In the first measurement, Iatoms, light is shone on the
atoms. In the second measurement, Iprobe, light is shone through the same path
as the first measurement, but now without atoms present. The last measurement
is done without any probe light, this measurement is called Ibackground. To get the
transmission we divide Iatoms by Iprobe, both corrected for Ibackground,

T =
Iatoms − Ibackground
Iprobe − Ibackground

(2.9)

From the transmittance, the column density ρ(x, z) can be determined,

ρ(x, z) =
1

σ
ln

1

T
(2.10)

2.3.2 PCI imaging

PCI imaging is based on the phase shift light picks up as it travels through the
condensate as a consequence of the refractive index of the condensate. This means
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that it is not necessary to use resonant light, presenting several advantages. Because
the light in not on resonance it is non destructive, meaning several measurements
can be done on the same condensate. It also means that the zeeman shift caused by
the magnetic field is still far from resonance allowing measurements in-situ.

After light has travelled though the condensate and has picked up the phase shift,
it passes through a phase spot. At the phase spot the light that passed through the
condensate is let to interfere with the light that travelled around the condensate.

In the experiment a constant phase shift θ = π/3 is applied at the phase spot. The
intensity of the light then behaves according to

I = I0(2− cosφ+
√

3sinφ), (2.11)

where φ is the induced phase by the condensate. From the induced phase the column
density ρ(x, z) can be determined,

φ(x, y) = k
α

2ε0
ρ(x, z), (2.12)

where k is the wavenumber and α is the polarizability of the atoms. Here the equation
is not inverted because we are only able to determine the phase from all the pixels.

2.4 Interference

When the potential is turned off we want to observe the evolution of the condensate
wavefunction in time. Under normal conditions the condensate will expand with a
velocity depending on its chemical potential. In our case we have two condensates
which both will expand. We are interested in the point where the condensates will
start to overlap. It is expected that the condensates will interfere at this point.

2.4.1 Interference in the atomic density

If there is coherence, in the sense that there is a constant phase difference between
the two BECs, the state may be described by a single condensate wave function [3],

Ψ(~r, t) =
√
N1ψ1(~r, t) +

√
N2ψ2(~r, t), (2.13)

where N is the expectation value for the number of particles. As explained in section
2.2 the quantity we measure is the particle density. This can be calculated from
equation 2.13 and is given by

n(~r, t) = |Ψ(~r, t)|2 = N1|ψ1(~r, t)|2 +N2|ψ2(~r, t)|2 + 2
√
N1N2Re[ψ1(~r, t)ψ

∗
2(~r, t)].

(2.14)
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The quantity of interest is the product of the two wavefunctions, this is where the
phase difference can be observed. So we want to analyze the evolution in time of,

ninterference(~r, t) = Re[ψ1(~r, t)ψ
∗
2(~r, t)], (2.15)

in expansion. This will give a result that we can compare to measurements.

2.4.2 Description of an expanding condensate

The wavefunction of an expanding condensate in a magnetic trap is given by

ψ(~r, t) = e−iβ(t)eim
∑
j r

2
j λ̇j(t)/2~λj(t) ×

Ψ̃[{rk/λk(t)}k=1,2,3, t]√
λ1λ2λ3

, (2.16)

where there is scaling in ~r and e−iβ(t) is a global phase factor [4]. The dynamics
of the expansion of the BEC are contained within the λ parameters. For an axially
symmetric harmonic trap these are given by,

λ⊥(τ) =
√

1 + τ2 (2.17)

and

λz(τ) = 1 + ε2(τarctanτ − ln
√

1 + τ2), (2.18)

where τ = ω⊥t and ε = ωz/ω⊥.

Since the BEC is split along the z direction the interference between the two con-
densates will only be in this direction. In the x and y direction there will be regular
expansion. For describing the interference the only direction of interest is thus the z
direction, which is given by

ψ(z, t) ∝ e−iφeimz2λ̇z(t)/2~λz(t), (2.19)

where we have assumed that the phase β(t) is constant in time.

2.4.3 Combining two expanding wavefunctions

Using equation 2.19 it is possible to describe two BECs, one centered at -d/2 and one
centered at d/2 with respect to the geometric center of the trap in the z direction by,

ψ1(z, t) ∝ e−iφ1eim(z− d
2
)2 ˙λz,1(t)/2~λz,1(t) (2.20)

and

ψ2(z, t) ∝ e−iφ2eim(z+ d
2
)2 ˙λz,2(t)/2~λz,2(t) (2.21)
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From substituting equation 2.20 and equation 2.21 into equation 2.15, we obtain
ninterference in expansion,

ninterference(~r, t) = cos[φ1 +
m

2~
((z − d

2
)2

˙λz,1(t)

λz,1(t)
− φ2 −

m

2~
((z +

d

2
)2

˙λz,2(t)

λz,2(t)
], (2.22)

which is an equation of the form,

cos[kz + ∆φ] (2.23)

from this relation we can thus extract the wavenumber of the interference pattern.
The only terms of interest for the wavenumber are those proportional to z,

k = |m
2~

((z − d)
λ̇z(ε1, t)

λz(ε1, t)
− (z + d)

λ̇z(ε2, t)

λz(ε2, t)
)| (2.24)

and accordingly we can derive the wavelength of the interference,

λ = |2~
m

(
1

(z − d) λ̇z(ε1,t)λz(ε1,t)
− (z + d) λ̇z(ε2,t)λz(ε2,t)

)|. (2.25)

This result can be compared to measurements. As can be observed it depends on the
distance between the two BECs, the two values for ε and the time of expansion. The
distance between the two BECs, d can be measured in-situ and the time of expansion,
t, is known with a precision of the order of 1 µs. For ε = ωz/ω⊥ the transverse trap
frequency, ω⊥, is also precisely known from previous measurements. The values for
the trap frequency in the z direction, ωz, are the only free parameters, which are to
be determined by fitting equation 2.25 to the data.

2.5 Calculating ωz

The expected value for ωz can be been calculated from equation 2.3. For the calcu-
lation the approximation has been made that the potential is still a harmonic trap
of the form,

Vz =
1

2
mω2

zz
2. (2.26)

If this is differentiated twice with respect to z we obtain,

d2

dz2
Vz = mω2

z (2.27)

and we thus have the value for omega

ωz =

√
m
d2

dz2
Vz
. (2.28)

We subsitute the cross-section of equation 2.3 along the z direction into this equation
to arrive at figure 2.3 and we expect a value of around 2π·20Hz for ωz.
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Figure 2.3: Trap frequency calculated for a laser width of 56.7 µm.

2.6 A difference in ωz

The trap frequencies, ωz, are expected to be the same for the two condensates due
to the alignment of the dipole trap with respect to the magnetic trap. However,
experimentally it will be very hard to have an exactly symmetric potential, so it will
most likely be of the form ωz1 ≈ ωz2.

In the case of a symmetric trap, ωz1 = ωz2, indicates that ε1 = ε2 and hence that
λz(ε1, t)=λz(ε2, t). This would simplify equation 2.25, leading to

λ =
4~
md

λz(ε, t)

λ̇z(ε, t)
, (2.29)

which gives a constant interference pattern in the z direction. This is what has been
observed by Andrews et al. [5].

Close examination of equation 2.25 shows that a difference in ωz causes a 1/z de-
pendence in the wavelength. This difference in behavior of the interference pattern
is shown in figure 2.4.

It can also be observed that the center of the interference pattern moves in time when
there is a difference in ωz. It moves to the left, if ωz on the left is smaller and to the
right, if ωz on the right is smaller.
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Figure 2.4: Interference pattern for different values of ωz showing (a) ωz1 = ωz2 and (b) ωz1 ≈ ωz2,
here ωz1=2π·3Hz and ωz1=2π·5Hz.
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3 Experiment

3.1 The experiment

In the experiment a Bose-Einstein condensate is created containing about 107 atoms.
The chemical potential of our condensate is around 3× 10−30 J. The condensate is
created in an axial symmetric magnetic trap. The magnetic trap has a radial trap
frequency of 16 Hz and an axial trap frequency of 95 Hz [1].

After the condensate has been created in the magnetic trap a beam in the form of
an optical sheet is switched on, generating a repulsive optical dipole potential. The
sheet is switched on for about 500 ms, long enough for the condensate to get into
equilibrium with the magnetic and optical forces. It is aligned at the center of the
magnetic trap creating a double-well potential which can be directly observed in
in-situ images in the magnetic trap using PCI.

3.2 The setup

In this experiment the laser used has a wavelength of 532 nm, yielding a detuning
of 57 nm (∆=+5.26× 1015 Hz) from atomic resonance. In this regime the scattering
rate is of the order 10−4 s−1 whilst maintaining a optical dipole potential in the order
3× 10−30 J for output power in the order 1 W. The laser has an adjustable output
power with a maximum of 1.6 W.

λ 532 nm Power 1.6 W

Bandwidth <40 GHz Mode TEM00

Table 3.1: Technical data of the used Laser Quantum ventus laser. [6]

The green laser beam is focused into a thin sheet with a cross section at the BEC
of about 55 µm by 200 µm (1/e2 radii) using a cylindrical lens. The beam profile at
the focus of the cylindrical lens is shown in figure 3.1. The beam profile has been
detected by diverting the beam and placing a camera at the BEC position.

Figure 3.1: The beam profile of the 532nm laser at the focus.
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Figure 3.2 shows the setup. The green laser beam passes through an AOM and is
fiber ported to the setup. It passes through a cylindrical lens with f=50 cm. The
focal length is the distance between the cylindrical lens and the condensate in order
to generate a focused optical sheet in the center of the magnetic trap. After the
cylindrical lens a mirror is placed, which can be used for aligning the beam at the
center of the magnetic trap. The beam then passes through the window into the
experimental chamber.

Figure 3.2: Experimental setup for creating the optical dipole potential and aligning on the BEC.

3.3 Alignment

The setup is aligned on the center of the magnetic trap by observing the interaction
of light with atoms. The size of atomic cloud decreases in the cooling process as the
atoms get pushed further down in the magnetic trap as the temperature decreases. A
BEC has the size of ≈ 250 µm whilst the atomic cloud before reaching BEC measures
≈ 6 mm. Because it is easier to align the beam on a large atomic cloud this procedure
is chosen.

Figure 3.3: Alignment of the beam on the atomic cloud.

The atomic cloud of dimensions described above has a chemical potential of the order
4× 10−27 J. An optical dipole force with a much larger potential is needed to show

12
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effect for a system with such a chemical potential. Our green laser does not have this
power, it only reaches the order of 10−30 J, so it can not be used for this purpose.

In the alignment a workaround is used. Light with a detuning of ∆ = 27 MHz
with respect to the atomic resonance is flashed on the condensate. In figure 3.3 a
measurement is shown in which this near resonance light is used to align the beam
at the center of the magnetic trap.

After centering the beam on the atomic cloud the sheet is centered on the magnetic
trap more precisely by using the green laser on the condensate. At this point the
centering can be fine tuned. In figure 3.4 a condensate split in two is shown.

Figure 3.4: The interaction between the BEC and the green laser at 1.6W.

3.4 Controlling the experiment

The beam separating the two condensates and the magnetic trap needs to be switched
off instantly in order to be able to incorperate the theoretical description in the
analysis. A ramp in the potential is problematic as it makes the atoms still feel a
slight potential as the two condensates start moving towards each other in expansion.
As can been seen from figure 3.5 a mechanical shutter has a response time in the
order of ms. The magnetic trap is switched off in time of the order of µs, so the
reaction time from just the mechanical shutter is too low.

In the experiment we complement the mechanical shutter with an Acousto-Optic
Modulator (AOM), which has the response time in the order of ns. An AOM uses
the acousto-optic effect to diffract and shift the frequency of light using sound waves.
The incoming light is diffracted into several orders with an increasing frequency. The
increment of frequency per order is negligible for our purposes. We only use the
different orders for switching faster. The first order of the AOM is coupled into the
fiber port that goes to the setup and this allows us to switch the beam off with ns
precision.

In order to properly synchronize the experiment a program based on Wordgenerator
3.14, developed at MIT, is used [7]. The program allows to time the inhibit of the
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Figure 3.5: Image from an oscilloscope showing a mechanical shutter response time of 12.6 ms. The
orange shows the trigger and the blue/green shows intensity of a beam measured after the shutter.

AOM and trigger for the mechanical shutter with switching off the magnetic trap.

3.5 Include SLM

A next step would be incorperating a Spatial Light Modulator in the setup. A spatial
light modulator (SLM) can be used to control the light field of the green laser. The
type of SLM to be used in this research is a digital mirror device (DMD) and it
comprises of 786,432 small mirrors arranged on a rectangular grid. These mirrors
can be controlled seperately by a computer to be in an on- or off-state (∓12◦ relative
to the DMD plane). Around the active mirrors, a band of 10 mirrors is situated
which are always in the off-state (+12◦) and which cannot be controlled. When light
hits the DMD, the amplitude, phase and direction of the reflected light field can be
shaped. The technical data of the used SLM is presented in table 3.2.

Pixels 1024 x 768 Mirror Reflectivity 88%

Pitch 10.8 · 10−6µm Mirror Fill Factor 92%

Tilt Angle ±12◦ Window Transmitance 97%

Range of λ 420 nm - 700 nm Data Clock Rate 200 MHz

Table 3.2: Technical data of the used Texas Instruments DLP5500 DMD [8].

For the incoming light the many mirrors act as a diffraction grating. The diffracted
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light will have maxima at angles θ given by

mλ = d sin(θ), (3.1)

with m the order of the diffraction, λ the wavelength of the incident light, d the
distance between the mirrors. This can be used to optimize the efficiency of the
SLM [9].

Figure 3.6: Setup of figure 3.2 including a SLM.

The experiment will have almost the same setup as in figure 3.2, but includes the
SLM to mask the center of the laserfield. When using this mask a weak link can be
created in the thin sheet. In this experiment the condensate could be split and come
into contact again through the weak link. This should give interference as the two
condensates come into contact.

Figure 3.7: The cross-sections of the shaped lightfield in both directions. The top figure shows the y
direction. Here the weak link is shown at different sizes, ranging from a row of 25 mirrors turned off on

the SLM to a row of 2 mirrors. The bottom figure shows the x direction which is not shaped.
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4 Results

The expansion time and the power of the green laser are the main free parameters
in the experimental setup. As a consequence measurements for different expansion
time, as well as different green laser power have been done to see if this has an effect
on ωz.

In order to analyse the BEC interference pattern several additional measurements
are done. We need to fix the parameters for the distance between the two BECs,
d, to make sure that the only free parameter in equation 2.25 is the value for trap
frequency in the z-direction, ωz. In order to obtain d in-situ measurements are done.
This has been done for different green laser power, determining d indirectly. After
the in-situ measurements, measurements in expansion are done from which ωz is
determined.

This sums up to the following measurements:

• In-situ measurements at different green laser power, to relate the green laser
power to d;

• Interference of the BECs at different expansion time at a single green laser
power;

• Interference of the BECs at a constant expansion time but with different green
laser power.

4.1 In-situ measurements

We can determine d from the shape of the potential. The geometrical mean of the
system is also of interest, since this is needed to determine the origin of the z-axis for
equation 2.25. Other parameters are also extracted from the in-situ measurements
to assess the stability and performance of the experiment, which can be used for
discussion of the accuracy of the data.

The measurement is done for green laser powers of 700-1600 mW with increments
of 50mW. Each measurement has been repeated 10 times. From the results it can
be seen that with increasing green laser power the distance between the two BECs
increases. The behavior is as expected, a larger green laser power translates to a
larger optical dipole potential, meaning that the minima in the potential are further
apart.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s)

Figure 4.1: In-situ measurements at different green laser power (a) 1600mW (b) 1550mW (c) 1500mW
(d) 1450mW (e) 1400mW (f) 1350mW (g) 1300mW (h) 1250mW (i) 1200mW (j) 1150mW (k)

1100mW (l) 1050mW (m) 1000mW (n) 950mW (o) 900mW (p) 850mW (q) 800mW (r) 750mW (s)
700mW

4.2 Interference at different expansion time

With the values for d known the only free parameters are the values for ωz, which
can be determined from the interference pattern of the BEC in expansion. The
measurement is done for an expansion time of 5-70 ms with increments of 5ms and a
green laser power of 1000mW. Each measurement has been repeated 15 times.
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From the results it can be seen that the BECs start moving towards each other at 5
ms and slowly start to show signs of interference in the region where they overlap.
At 30 ms of expansion time the behavior becomes more distinct.

We can clearly see that the interference pattern is not constant in the z direction,
which indicates a 1/z dependence as discussed in section 2.6. A 1/z dependence
would tell us that the ωz for the two BECs are different. The images are cropped
and are not shown in a coordinate system with the same origin. From the full figures
it can be observed that the condensate is moving towards the left on the CCD. This
would hint that the ωz of the BEC on the right is bigger than on the left.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 4.2: Seperation at a green laser power of 1000mw. (a) 5ms (b) 10ms (c) 15ms (d) 20ms (e)
25ms (f) 30ms (g) 35ms (h) 40ms (i) 45ms (j) 50ms (k) 55ms (l) 60ms (m) 65ms (n) 70ms
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4.3 Interference at different green laser power

We also observed the interference pattern for different green laser power. This will
change the value for d in equation 2.25. It might also give rise to a change of values
for ωz because a steeper potential will increase ωz.

The measurement is done for a green laser power of 700-1300 mW with increments
of 25 mW and an expansion time of 40 ms. Each measurement has been repeated 10
times.

At first glance the interference pattern does not seem to change with different green
laser power. This would mean that the green laser power does not effect ωz.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 4.3: Seperation at 40ms of expansion time. (a) 1300mW (b) 1000mW (c) 974mW (d) 950mW
(e) 924mW (f) 900mW (g) 874mW (h) 850mW (i) 826mW (j) 800mW (k) 774mW (l) 750mW (m)

726mW (n) 700mW
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5 Analysis

5.1 In-situ measurements

From the results of the in-situ measurements the parameters of interest can be ob-
tained from,

ρ(x, z) = a ·max[µ− (Vmagnetic(x, z) + Vdipole(z)), 0]3/2, (5.1)

the potentials are given by,

Vmagnetic(x, z) =
1

2
mω2

mag,⊥(x− xcenter)2 +
1

2
mω2

mag,z(z − zcenter)2

Vdipole(z) = gaussheight · Exp[−1

2
(
z − zcenter − gaussshift

gausswidth
)2],

(5.2)

where ωmag,⊥ is 2π · 95.5Hz, ωmag,z is 2π · 16Hz, a is a scaling factor proportional
to U0, xcenter determines the center of the magnetic trap in the x direction, zcenter
determines the center of the magnetic trap in the z direction, gaussheight determines
the height of the optical dipole potential, gaussshift determines the position of the
optical dipole potential with respect to the center of the magnetic trap in the z
direction and gausswidth determines the width of the optical dipole potential.

The parameters xcenter and zcenter should stay constant throughout all the measure-
ments as the center of the magnetic trap does not change. These parameters are a
check on the stability of the experiment. Gaussshift is an additional check on the
stability of the experiment as we do not expect the green laser to move during the
experiment.

(a) (b)

Figure 5.1: (a) Fluctuation of xcenter and zcenter around their mean, representing the position of the
MT. (b) Fluctuation of gaussshift, representing the position of the dipole potential with respect to the

center of the MT.
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The monitoring of xcenter shows a clear movement during the measurement. The
position of the magnetic trap is expected to be constant. From zcenter we can also
determine to origin of the z-axis defining the geometrical mean of the BEC. We will
need this later for fitting the interference pattern of the BEC in expansion.

(a) (b)

Figure 5.2: (a) Width of the dipole potential versus laser power. (b) µ versus laser power.

In figure 5.2 we see the width of the dipole potential, being the width of the green
laser beam, and the chemical potential, µ, of the condensate. The width of the green
laser beam is not expected to change with increased power. It seems to be an artefact
of the fit and hints that something else might be going on. Although the increasing
µ can be expected, both plots show large correlation.

If we put the found parameters into V = Vmagetic + Vdipole and determine the min-
ima, the distance between these points will be our d parameter. In figure 5.3 the d
parameter used in the analysis for expansion is shown.

Figure 5.3: Distance versus laser power.
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5.1.1 Modelling the dipole potential

Another check for consistency of the data is to look if Gaussheight is proportional
to the power of the green laser. Gaussheight can be determined using equation 2.1
where I0 corresponds to the amount of power we put into the green laser. The rest
of the parameters are known, ω0 = 2π · 508.8487162 · 1012 Hz, Γ = 2π · 9.7946 · 106

Hz and ∆ = 5.263 · 1015 Hz.

We first determine I0,

I0 =
P∫∫

e−x2/2σ2
xe−y

2/2σ2
ydxdy

, (5.3)

if we use the values for the beam profile of the green laser, σx = 56.70± 10 µm and
σy = 795± 15 µm and we obtain

I0 =
P

2.83± 0.05 · 10−7
, (5.4)

which we can use to compare to the values of Gaussheight.

Figure 5.4: Dipole potential strenght versus laser power compared to the expected value. The green
area is within 1σ and the yellow area is within 2σ.

From figure 5.4 we can see that the Gaussheight is in good agreement with the ex-
pected value.
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5.2 In expansion

5.2.1 Getting the wavelength

From the data it is not directly possible to extract the wavelength. Assuming the
interference pattern is sinusoidal, we can find the wavelength by determining the
difference between the minima and maxima.

The method used for determining the minima and maxima is by cutting the signal
up into the different regions with a isolated minimum or maximum. The maxima
or minima are found iteratively by looking at three data points on each side of a
datapoint to account for noise. For a maximum this means that it is bound between
datapoints that are lower on the left and right. For the minimum this means that it
is bound between datapoints that are higher on the left and right.

In these regions a parabola is used to model the minimum or maximum,

f(x) = a+ b · (x− c)2, (5.5)

where a is used to scale the height, b is the amplitude and c is the position. The
number of datapoints used for fitting is half the datapoints within the region, with
a minimum of 4 datapoints, in order to have sufficient datapoints for a fit. When c
is known for each minimum and maximum the difference can be calculated and we
arrive at figure 5.5.

(a)
(b)

Figure 5.5: (a) The measured interference pattern after 40 ms of expansion. The top plot shows the
raw signal with a Thomas-Fermi fit. In the plot in the middle the Thomas-Fermi fit is subtracted from
the raw signal and the minima and maxima are determined iteratively. In the bottom plot the minima

and maxima have been divided into isolated regions and a parabola has been fit in each region. (b) The
difference between the position, cj − ci, of the minima and maxima is shown versus the position of the

wavelength at that point, (ci + cj)/2
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5.2.2 Extracting ωz from the wavelength

Once we obtained the distribution for the wavelength, equation 2.25 is used to fit the
interference patterns. In order to extract ωz the following function has been used,

λ = 2π · 2~
m

(
1

(z − zcenter − d) · β(ωz1)− (z − zcenter + d) · β(ωz2)
), (5.6)

where β contains ωz,

β(ωz) =
1 + ( ωzω⊥ )2(ω⊥t · arctan(ω⊥t)− ln

√
1 + (ω⊥t)2)

( ωzω⊥ )2ω⊥arctan(ω⊥t)
, (5.7)

where zcenter and d are known from equation 5.2, t is known in the experiment and
ω⊥ is known from previous measurements. This leaves ωz the only parameter to be
determined.

The parameter ωz has been determined for different measurements in expansion.
Both expansion time and the green laser power have been varied.

5.2.3 Interference at different expansion time

For different expansion time, t, equation 5.6 has been fitted to the data. The expan-
sion time, t, is known within ms precision, the distance, d, is known from the in-situ
data and the axial trap frequency, ω⊥, is taken from previous experiments. The only
free parameter to be determined is ωz which is shown in figure 5.6

The trap frequency is smaller on the left side which tells us the condensate moves
to the left. In the data this can be clearly seen, as the condensate has an overal
movement of approximately 5.5 µm/ms.

We have estimated the trap frequency to be around 20 Hz for a 56.7 µm laser width.
The measured trap frequency is smaller than expected. This may be due to the fact
that the condensate is not fully split.

5.2.4 Interference at different green laser power

Equation 5.6 has also been fitted to the data for different green laser power. In the
equation this corresponds to a different value for d. Again t, d and ω⊥ are known.
The free parameter ωz is shown in figure 5.7.

The measured trap frequency at different green laser power is consistent with the trap
frequency at different expansion time. This results demonstrate that the interference
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Figure 5.6: Trap frequency in Hz of the two different wells versus expansion time.

pattern does not change with different green laser power. Or within the region of
dipole strengths in the measurements the change in steepness of the potential may
not be visible. The width of the light sheet is probably a much stronger experimental
parameter for increasing the value of ωz as this will make the potential much steeper.

Figure 5.7: Trap frequency in Hz of the two different wells versus power of the green laser.

25



Discussion

6 Discussion

6.1 Difference in ωz

It has been observed that there is a 1/z dependence in the interference pattern we
measure. This dependence arrises from the relative difference in ωz. In simular
experiments [5] this behaviour has not been observed. One difference between our
experiment and other experiments is the cross-section (1/e2 radius) of the focused
part of the beam profile. In our experiment this is around 55 µm while in other
experiments this is around 12 µm. This causes a difference in the dipole potential.
The difference in the dipole potential can be observed in terms of a different trap
frequency as shown in figure 6.1.
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(a)
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(b)

Figure 6.1: Trap frequency from different cross-sections of the focused part of the beam profile. Figure
(a) shows a cross-section of 56.7 µm and figure (b) of 12 µm.

We can observe whether this difference in trap frequency is the cause of our large
dependence on 1/z by rewriting equation 2.25,

λ = |2~
m

(
1

z( λ̇z(ε1,t)λz(ε1,t)
− λ̇z(ε2,t)

λz(ε2,t)
) + d(− λ̇z(ε1,t)

λz(ε1,t)
− λ̇z(ε2,t)

λz(ε2,t)
)
)| (6.1)

and consequently by scaling the prefactor of z to the prefactor of d,

α(ω) =

λ̇(ω)
λ(ω) −

λ̇(ω+δ)
λ(ω+δ)

− λ̇(ω)
λ(ω) −

λ̇(ω+δ)
λ(ω+δ)

. (6.2)

For constant t and a constant δ of 2 Hz, this factor is shown in figure 6.2. From the
figure we can see that in our case the dependence on 1/z is much larger. At the point
where we get to a trap frequency of 60 Hz we can see that the dependence on 1/z
has become neglegible. This might explain why other experiments did not observe
the same behaviour.
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Figure 6.2: For a constant δ of 2Hz the fraction α is shown. It can be seen that for a larger trap
frequency the contribution of 1/z seems to become neglegible.
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Figure 6.3: The factor of the contribution of 1/z to the wavefunction for two different cross-sections of
the focused part of the beam profile, both for have a δ of 2Hz. Figure (a) shows a beam with a

cross-section of 56.7µm and figure (b) of 12µm.

6.2 ωz is lower than expected

We expect a trap frequency of around 20 Hz from figure 5.5(a) on both sides of
the trap. However, we observe a trap frequency of around 5 Hz (see figure 5.6 and
5.7). The reason for this may be the value for Vdipole used when calculating the trap
frequency of figure 5.5(a).

In the calculation we have used that Vdipole is 2.5× 10−30 J. The measurements of the
interference pattern in expansion have been done at a laser intensity of 1 W, which
according to figure 5.4 would mean a Vdipole of 1.8× 10−30 J. The figure with a Vdipole
of 1.8× 10−30 J resembles the figure of 2.5× 10−30 J.

However, in figure 6.4 a Vdipole of 1.2× 10−30 J has been used. Here, we observe a
condensate that is not fully separated into two parts and the trap frequency in the
center is much lower. The trap frequency shown in figure 6.4 seems to coincide with
the measured trap frequency.

27



Discussion

-100 -50 0 50 100
z HΜmL

5

10

15

20

Trapfrequency HHzL

Figure 6.4: Trap frequency from a crosssection of 56.7 µm with a height of 1.2× 10−30 J.

From the analysis figures 5.2(b) and figure 5.4 we observe that µ > Vdipole for all of
the measurements making the condensate appear not to be fully split. Also from the
fact that a large fraction of the atoms seems to stay in the center in expansion hints
that it is not fully split (see figure 4.2 and 4.3). The case of figure 6.4 thus seems to
give a sensible explanation for the measured trap frequency.

6.3 Increase in µ and laserwidth

The increase in µ in figure 5.2(b) might also be an artefact of the fit. We see an
increase in the laser width with increasing laser power which seems to be strongly
correlated to the increase in µ. Both figures show almost the exact same behaviour.
On top of that an increase in the laser width is something that we do not expect with
increasing laser power. The laser width is expected to stay constant. If the increase
in µ can not be correctly judged from figure 5.2(b) than our comparison to Vdipole is
thus also incorrect.

However, from a phenomenological point of view µ is expected to increase when the
trap frequency increases, which seems to be the case when we increase laser power
and thus Vdipole. Taking this into account, I would judge that the increase in µ is
correct.
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7 Conclusion

It can be concluded that a double-well potential has been created succesfully and
that this potential is stable. There is no great variation in the center of the magnetic
trap and in the position of the dipole potential with respect to the center of the
magnetic trap.

However, in a perfect setup the potential is expected to be symmetric. From the
measurements in expansion it can be concluded that this is not the case. In the
measurements ωz is determined from the interference pattern for both sides of the
potential. For a condensate with similar ωz on both sides a constant wavelength is
expected in the interference pattern. It is clear that there is a 1/z dependence in the
measurements, indicating that the two BECs do not have the same ωz. The right
side of the double-well potential has a higher ωz than the left side.

It can be seen that when the green laser power is increased the distance between the
two BECs increases as expected. We expect this from the potential, because when
we increase the height of the potential the minima move further apart.

Finally, it can be concluded that interference has been observed. The observation
has been made at different expansion times and at different power of the green laser.
In all cases the same ωz for the different wells has been observed. A difference in
power of the green laser does not give a change in ωz. The parameters stay constant
in all the measurements. However, possibly the difference in dipole strengths that we
are probing is not sufficient for showing a change in ωz. Despite minor aberrations,
the experiment demonstrates unmistakingly that interference has taken place.
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8 Outlook

8.1 Smaller cross-section of the focused part of the beam

In order to determine whether the 1/z behaviour is caused by the 56.7 µm cross-
section of the focused part of the beam it would be interesting to try the same
experiment with a 12 µm cross-section as in experiments, where a constant inter-
ference pattern was observed. If we observe that the 1/z behaviour disappears we
can conclude that we understand this correctly and that we have correctly probed a
different part of the equation for interference in a BEC.

A better focused laser should result in a constant interference pattern. This is some-
thing which might be desirable as a lot of the analysis becomes more straightforward.
The 1/z dependence can be neglected making the equation for interference in a BEC
much simpler. It would also mean that we are able to determine the parameters of the
equation of the interference a lot better. For example it would no longer be necessary
to determine the center of the interference pattern as it is constant throughout.

A smaller cross-section can be implemented in setup by using a larger beam that goes
through the cylindrical lens in the setup. For this a larger cylindrical lens is needed
as well.

8.2 Determine phase difference

A constant interference pattern might make it easier to determine the phase difference
between the two BECs. As we can now look at the shift of the interference pattern
by using all the points. However an adventage of the 1/z behaviour is that the center
is well defined. A well defined center gives other advantages if we want to determine
the phase. A simplified expression for the interference pattern can be given by,

I = Cos[k · z + φ]. (8.1)

If we were to look at the center of the interference pattern where z=0 we can deter-
mine the phase by,

φ = Cos−1[I] (8.2)

Determining the phase difference between the condensates is of great interest. From
this we can see how the phase difference is distributed, whether this is a random
process or that there is some underlying mechanism. It is not clear how a BEC
acquires phase. From the phase difference we might get a handle on this process.
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8.3 Incorporate a SLM in the setup

In section 3.5 the use of a SLM in the setup is explained. In the setup the beam
profile shown in figure 3.1 contains a weak link in the center. In appendix B a python
code that can be used to control the SLM is shown. Basically, all the ingredients to
do the experiment have been looked into apart from the theory side.

It is expected, that similar behaviour will be observed as in research done by Brantut
et al. [10]. In this experiment fermions are let to diffuse through a narrow channel.
The proposed experiment would be the bosonic analog of this experiment.

8.4 Dragging the condensate through the beam profile

Another approach can be to drag the condensate through the light field. The goal
in this case is to look at tunneling through the laserfield. An experimental challenge
is the width of the sheet in the focussed direction, this width needs to be sufficiently
narrow (< 10 µm). By precise tuning of the magnetic field the condensate can be
dragged through the light field at different speeds, which should have an impact on
the rate of tunneling.
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Appendix A Interference in the MT

Figure A.1: Interference in MT
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Appendix B SLM python code

import pyg l e t
import numpy as np
from pyg le t . window import key
import matp lo t l ib . pyplot as p l t
import time
import f l y c ap tu r e2 as f c2
import cv2

#func t i on s
de f i n i t i a l i z e c am ( ) :

p r in t ” I n i t i a l i z i n g camera”
#get the r e l evan t p r op e r t i e s
auto exp = c . ge t p rope r ty ( f c2 .AUTO EXPOSURE)
gamma = c . ge t p rope r ty ( f c2 .GAMMA)
pan = c . ge t p rope r ty ( f c2 .PAN)
t i l t = c . ge t p rope r ty ( f c2 .TILT)
shut = c . ge t p rope r ty ( f c2 .SHUTTER)
gain = c . ge t p rope r ty ( f c2 .GAIN)
f rame rate = c . ge t p rope r ty ( f c2 .FRAMERATE)
temp = c . ge t p rope r ty ( f c2 .TEMPERATURE)

#turn o f f a l l the auto s t u f f
auto exp [ ’ on o f f ’ ]=True
auto exp [ ’ auto manual mode ’ ]= False
auto exp [ ’ abs value ’ ]=0
c . s e t p r ope r t y (∗∗ auto exp )

gamma[ ’ on o f f ’ ]= False
gamma[ ’ auto manual mode ’ ]= False
c . s e t p r ope r t y (∗∗gamma)

pan [ ’ on o f f ’ ]= False
pan [ ’ auto manual mode ’ ]= False
c . s e t p r ope r t y (∗∗pan )

t i l t [ ’ on o f f ’ ]= False
t i l t [ ’ auto manual mode ’ ]= False
c . s e t p r ope r t y (∗∗ t i l t )

gain [ ’ on o f f ’ ]=True
gain [ ’ auto manual mode ’ ]= False
gain [ ’ abs value ’ ]= 0 #(−5)#(−5.630) #−5,630 − 24
c . s e t p r ope r t y (∗∗ gain )
p r in t ” gain =”, gain [ ’ abs value ’ ]

f r ame rate [ ’ on o f f ’ ]= False
f rame rate [ ’ auto manual mode ’ ]= False
f rame rate [ ’ abs value ’ ] = 15
c . s e t p r ope r t y (∗∗ f r ame rate )

shut [ ’ on o f f ’ ]=True
shut [ ’ auto manual mode ’ ]= False
shut [ ’ abs value ’ ]=18 #30#88#71 #use t h i s v a r i ab l e ( shut t e r time ) to prevent f l i c k e r i n g
c . s e t p r ope r t y (∗∗ shut )
p r in t ” shut t e r time = ” , shut [ ’ abs value ’ ]

de f d iagona l ( s ta r t , end ) :
#de f i n e the array s i z e
l en x=1024
l en y=768
r e s t = f l o a t ( ’ nan ’ )

# lengths o f the l i s t s a f t e r r o t a t i on ( which w i l l be used f o r mapping ) , and append
len1 = np . arange (1 , l en y + 1)
len2 = np . l i n s pa c e ( len y , l en y , l en x − l en y )
l en3 = np . arange ( l en y − 1 , 0 , −1)
l engths = np . concatenate ( ( len1 , len2 , l en3 ) )

# SLM as a rec tang l e , f i l l e d with ones ( a l l p i x e l s on ) , i n i t i a l input
SLM rect = np . ones ( [ l en y , l en x ] )

# Number o f a r rays needed f o r the t rans fo rmat ion ( becomes length in y−d i r e c t i o n )
n l i s t s = l engths . shape [ 0 ]
# Length o f l onge s t arrays , made an i n t e g e r ( becomes length in x−d i r e c t i o n )
max length = in t (np . amax( l eng ths ) )

# New SLM, rotated over 45 degrees , a l l va lues s e t to nan
SLM rotated = r e s t ∗ np . z e ro s ( ( n l i s t s , max length ) )
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f o r i in range (0 , n l i s t s ) :
f o r j in range (0 , i n t ( l eng ths [ i ] ) ) :

i f i < l en y :
SLM rotated [ i , j ] = SLM rect [ i−j , j ]

e l s e :
SLM rotated [ i , j ] = SLM rect [ l en y −1 − j , j + ( i − l en y + 1 ) ]

SLM rotated [ s t a r t : end ] = 0
SLM new = np . ones ( [ l en y , l en x ] )

f o r i in range (0 , n l i s t s ) :
f o r j in range (0 , i n t ( l eng ths [ i ] ) ) :

i f i < l en y :
SLM new [ i−j , j ] = SLM rotated [ i , j ]

e l s e :
SLM new [ l en y −1 − j , j + ( i − l en y + 1 ) ] = SLM rotated [ i , j ]

r e turn SLM new

def background func ( ) :
window . d i spa t ch even t s ( )
window . sw i t ch to ( )
window . c l e a r ( )
ones = np . ones ( (1024 ,768) )
ones255 = ( ones ∗255) . astype ( ’ uint8 ’ )
image data = ones255 . data . s t r ( )
image = pyg le t . image . ImageData (1024 , 768 , ’L ’ , image data )

#take snapshot
whi le True :

image . b l i t (0 , 0 )
window . f l i p ( )
camdatapoint=np . array ( c . r e t r i e v e b u f f e r ( f c2 . Image ( ) ) )
cv2 . imshow ( ’ t e s t ’ , camdatapoint )
k=cv2 . waitKey (1)
i f k==32:

break

background=np . sum( camdatapoint [ : , : , 0 ] , 1 ) . astype (np . in t32 )
p l t . p l o t ( background )
p l t . show ( )

return background

de f mappingpoint ( begin , end , background ) :
##################
##f i r s t d iagona l##
##################
#pr in t i n f o
p r in t ” Pos i t i on %d” % begin

#pyg le t s t u f f
window . d i spa t ch even t s ( )
window . sw i t ch to ( )
window . c l e a r ( )

#c r ea t e pattern
ones = diagona l ( begin , end )
ones255 = ( ones ∗255) . astype ( ’ uint8 ’ )
image data = ones255 . data . s t r ( )
image = pyg le t . image . ImageData (1024 , 768 , ’L ’ , image data )

#take snapshot
whi le True :

image . b l i t (0 , 0 )
window . f l i p ( )
camdatapoint=np . array ( c . r e t r i e v e b u f f e r ( f c2 . Image ( ) ) )
cv2 . imshow ( ’ t e s t ’ , camdatapoint )
k=cv2 . waitKey (1)
i f k==32:

break
datapoint=np . sum( camdatapoint [ : , : , 0 ] , 1 ) . astype (np . in t32 )

#proce s s data
minimum=0
subt rac t=np . subt rac t ( datapoint , background ) . astype (np . in t32 )
f o r x in range ( 0 , 9 60 ) :

i f ( subt rac t [ x]==np . amin ( subt rac t ) ) :
minimum=x

pr in t ”Minimum %d” % minimum

#plo t r e s u l t s
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p l t . p l o t ( background )
p l t . p l o t ( datapoint )
p l t . p l o t ( subt rac t )
p l t . show ( )

return minimum

#connect to the camera
c=fc2 . Context ( )
c . connect (∗ c . get camera f rom index ( 0 ) )
i n i t i a l i z e c am ( )
c . s t a r t c ap tu r e ( )
im0=fc2 . Image ( )
img0 = np . array ( c . r e t r i e v e b u f f e r ( im0 ) )

#cr ea t e a SLM
#get the r i gh t s c r een
plat form = pyg le t . window . ge t p l a t f o rm ( )
d i sp l ay = plat form . g e t d i s p l a y ( ’ : 0 . 0 ’ )
s c r e en s = d i sp l ay . g e t s c r e e n s ( )
window = pyg le t . window .Window( sc reen=sc r e en s [ 1 ] , f u l l s c r e e n=True )

##################
##s t a r t mapping###
##################
mapping array=np . z e ro s ( ( 1 0 , 2 ) )
background=background func ( )
mapping array [0 ,0 ]=700
mapping array [0 ,1 ]= mappingpoint (700 ,705 , background )
mapping array [1 ,0 ]=750
mapping array [1 ,1]==mappingpoint (750 ,755 , background )
mapping array [2 ,0 ]=800
mapping array [2 ,1]==mappingpoint (800 ,805 , background )
mapping array [3 ,0 ]=850
mapping array [3 ,1]==mappingpoint (850 ,855 , background )
mapping array [4 ,0 ]=900
mapping array [4 ,1]==mappingpoint (900 ,905 , background )
mapping array [5 ,0 ]=950
mapping array [5 ,1]==mappingpoint (950 ,955 , background )
mapping array [6 ,0 ]=1000
mapping array [6 ,1]==mappingpoint (1000 ,1005 , background )
mapping array [7 ,0 ]=1050
mapping array [7 ,1]==mappingpoint (1050 ,1055 , background )
mapping array [8 ,0 ]=1100
mapping array [8 ,1]==mappingpoint (1100 ,1105 , background )
mapping array [9 ,0 ]=1150
mapping array [9 ,1]==mappingpoint (1150 ,1155 , background )

#save array
np . save (”mapping ” , mapping array )

#ex i t the event loop
@window . event
de f on key pre s s ( symbol , mod i f i e r s ) :

i f symbol == key .Q:
pyg l e t . app . e x i t ( )
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