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Abstract

The (automated) multiloop renormalization of the top quark mass and field in quantum chromodynam-
ics is discussed, which involves calculating fermion propagator type Feynman diagrams. First a theoretical
description is given of renormalization at multiloop order, after which the building blocks are discussed of
an automated setup which calculates Feynman diagrams contributing to the quark propagator. Large sets
of Feynman integrals are reduced to a small set of so-called master integrals using integration-by-parts
identities.

The alpha-parametrization is introduced as a powerful way of turning Feynman integrals into scalar
integrals. Mathematical techniques are studied to evaluate alpha-parametrized integrals either analytically
or as Laurent series around d = 4 in terms of ε (d = 4− 2ε). To derive a Laurent series of a divergent
integral one first has to do a finite integral expansion to rewrite the divergent integral in terms of finite
integrals, which is possible for on-shell integrals. The poles of the divergent integral are captured in the
coefficients in front of the finite integrals. Care has to be taken that the finite integral expansion does not
contain ’spurious poles’, which are poles that drop out due to non-trivial cancellations of the coefficients of
the power series in ε of the finite integrals.

A new method called the ’projective trick’ is introduced for deriving finite integral expansions, and
rules of thumb are developed to derive finite integral expansions without spurious poles for the 2- and
3-loop on-shell integrals with one mass scale considered in this thesis. These finite integrals are then
expanded as power series up to the desired order in ε, and the series coefficients are evaluated. It was
possible for almost all integrals to evaluate the coefficients exactly using the Maple package HyperInt [1].
Alternatively, the coefficients can be calculated with a numerical integrator.
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I. Introduction

The Standard Model contains numerous free parameters for which numerical values cannot
be derived within the theory itself, e.g. mass parameters and coupling constants. Only when
comparing the predictions of the theory for certain processes to experimental results found in
large colliders can these parameters be fitted to their experimental value. This in turn allows the
theory to make predictions about different processes using the previously fitted values for the
parameters. If the theory is consistent it should not matter which scattering process is used to
measure the parameters in the Standard Model as the result should be the same.

Furthermore, any deviations in measurements or experimental observations which are not
theoretically predicted give rise to new physics (defined as not yet described by the Standard
Model). Hence to check consistency of the theoretical framework, or to test whether new physics
is at play, high precision experiments and calculations are needed to check the significance of
the measurements. In a sense the focus in this thesis is on making higher precision theoretical
calculations, which can then be compared to high precision measurements later on. Calculations
in quantum field theories are done perturbatively in the coupling constants and the order of
the perturbative calculation increases with the number of loops in Feynman diagrams that
describe interactions between particles. Calculating past leading order allows for higher precision
calculations, but the calculations themselves become increasingly difficult to do.

Additional difficulties in quantum field theories are that they need to be renormalized to get
finite results. When working with the ’bare’ theory, which is the most straightforward theory
that satisfies the required symmetries observed in nature, loop diagrams give divergent integrals.
These infinities can be absorbed within the parameters in the theory in a consistent manner
so that predictions for physical processes are finite. The process of making the theory finite is
called renormalization, leading to the renormalized theory. Hence higher order perturbative
calculations do not only involve calculating multiloop Feynman diagrams, but also require a
proper bookkeeping to subtract infinities from these multiloop Feynman diagrams. The essence of
the approach in this thesis is to discuss multiloop renormalization and to calculate renormalization
constants in an automated manner, which then leads to a finite theory for which multiloop
calculations can be done.

Because calculations in the Standard Model become so involved it is common to focus on
subsets of the Standard Model. This thesis will discuss in particular the renormalization of the
top quark (meaning the renormalization of the top quark mass and field) within pure quantum
chromodynamics (excluding the rest of the Standard Model). This will involve calculating
multiloop 2-point Feynman diagrams and doing the multiloop renormalization. Many techniques
and concepts involved in that are also applicable to renormalization of other parameters in for
example the complete Standard Model. For this reason the treatment will be tried to kept general
wherever possible. The renormalization of the top quark is considerably more difficult than the
renormalization of a simple scalar field ’toy-model’ Lagrangian, but not so involved as to require
a team of people to work on each Feynman diagram. A full renormalization will be done up to
next-to-next-to leading order (NNLO), meaning up two loop Feynman diagrams. Furthermore
parts of the N3LO renormalization will be done.

A method will be presented for rewriting on-shell Feynman integrals into linear combinations
of integrals which are finite as ε → 0, where d = 4 − 2ε is the complexified dimension in
dimensional regularization. It turns out that in doing this one has to avoid creating so-called
’spurious poles’ which are non-trivial integrals which evaluate to zero but show up in the Laurent
expansion of the Feynman integral. Rules of thumb will be developed which generally seem to
allow one to do finite integral expansions without spurious poles and with a manageable size of
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finite integrals. The strength of a finite integral expansion lies in the fact that one can create power
series of the finite integrals by expanding the integrand in ε. The series coefficients can then be
evaluated numerically using general purpose numerical integration software up to the desired
order in ε, and often also exactly using HyperInt [1].

II. Summary of quantum chromodynamics and conventions

In this section a short introduction is given to quantum chromodynamics (QCD). This introduction
is aimed at the reader who is already familiar with non-abelian gauge theories like QCD. Some
topics will be treated more extensively than others, especially those to which a typical graduate
student might still have been underexposed. Furthermore the mathematical conventions used for
the rest of the text will be established.

Quantum chromodynamics is the theory which describes the strong force. It is a non-abelian
gauge theory with gauge group SU(3). The gluons belong to the bosonic gauge fields, and the
quarks to the fermionic fields. Often the gauge group of QCD is generalized to SU(Nc) for arbitrary
Nc ∈N≥1. This will also be the case for the rest of this text. Every quark is then a SU(Nc) multiplet.
The SU(Nc) index of the quark fields is sometimes called the color charge. Color charges are
conserved, so a quark never changes color. There are NA = N2

c − 1 gluon fields, as gluons live in
the adjoint representation of the gauge group which has dimension N2

c − 1.
There are six quark flavours, historically named u (up), d (down), s (strange), c (charm), b

(bottom), t (top). The top quark has a mass of 173.34± 0.76 GeV and is much heavier than the
other quarks [2]. Because quarks are fermions there are 6 corresponding anti-quarks which have
the same properties as the quarks but have opposite charges. The basic QCD Lagrangian has the
typical form of a non-abelian gauge theory (a Yang-Mills theory):

LQCD = ψ̄ f ,i(i /Dij −m f δij)ψ f ,j −
1
4

Ga
µνGµν

a (1)

The index f sums over the 6 quark flavours (u, d, t, b, c, s), and the indices i, j are SU(Nc) indices.
When not an index i refers to the imaginary constant. The covariant derivative is given by Dµ,ij ≡
∂µδij + igAa

µTa
ij, with Ta

ij denoting the generators of the Lie-algebra su(Nc) in the fundamental
representation and Aa being the gluon fields. The term Ga

µν is the nonabelian field strength defined
by TaGa

µν = − i
g [Dµ, Dν]. This leads explicitely to the form Ga

µν = ∂µ Aa
ν − ∂ν Aa

µ − g f abc Ab
µ Ac

ν. The
QCD Lagrangian written above comes with a certain set of conventions, which are made explicit
next.

Coupling constant One is free to pick a different sign for the coupling constant g, and in some
texts the sign differs from ours. This is not of much theoretical importance. As long as one is
consistent within the theory itself ( - note the definitions of the covariant derivative Dµ and field
strength tensor G depend on the sign - ) and takes care to check the definition of other authors
when comparing results, no problems will arise. For example, some of the notation used in this
thesis is inspired by ref. [3], but in this thesis the coupling constant is defined with a minus

compared to the book mentioned. Sometimes the notation αs ≡ g2

4π is used in power series of the
(top)-quark self-energy.

Metric signature and Dirac matrices The metric signature used in this thesis is (+1,−1,−1,−1),
i.e. the mostly minus convention. Furthermore, the following anticommutation relation is taken
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for the Dirac matrices:

{γµ, γν} = γµγν + γνγµ = 2ηµν (2)

The Dirac equation is:

(i/∂ −m)ψ = 0 (3)

The quark propagator is proportional to the Green’s function of the Dirac equation and takes the
following form using our conventions:

S0,ij(/k , m) = i j
k =

iδij

/k −m
(4)

(An additional factor +iε should be added to the divisor to be rigorous, which is discussed later.)
The quark propagator should have a pole for on-shell momenta. This means that k2 = m2 in the
mostly minus convention. The commutation relation of eq. 2 gives /k/k = k2. This shows that:

S0,ij(/k , m) =
iδij

/k −m
· /k + m

/k + m
= iδij

/k + m
k2 −m2 (5)

Thus there is a pole for on-shell momenta. In other texts the metric might be defined with the
mostly plus convention, in which case the on-shell condition is k2 = −m2. This alters the preceding
definitions, so care has to be taken when comparing to the literature.

The su(Nc) color algebra The special unitary group, denoted SU(Nc), is a compact Lie group
of Nc × Nc unitary matrices with determinant 1. Being a compact Lie group it has a Lie algebra
associated to it, which will be denoted su(Nc). The basis elements of su(Nc) are denoted by Ta

ij
and are Hermitian and traceless matrices, which satisfy the following commutation relations:

[Ta, Tb] = i f abcTc (6)

{Ta, Tb} = 1
3

δab + dabcTc (7)

where the numbers f abc are called the structure constants and the numbers dabc are the symmetric
symbols. For Nc = 3 it is often picked that Ta = λa/2 where the matrices λa are the Gell-Mann
matrices. Consider a set of infinitesimal real parameters θa. The expression U = 1 + iθaTa is an
element of SU(Nc) up to order O(θ2):

UU∗ ≈ 1 + iθaTa − iθaTa +O(θaθb) = 1 (8)

det(U) = eTr(log(U)) = eTr(log(1+iθaTa)) ≈ eTr(iθaTa) = e0 = 1 (9)

One can create general elements in the group by making an infinite series of infinitesimally small
steps away from the identity element. Pick θa finite this time. Then one can write:

U(θa) ≡ lim
n→∞

(
1 +

iθaTa

n

)n

= eiθaTa
(10)

Because SU(Nc) is a compact group the elements of eq. 10 cover the full group, which is motivated
by observing that the number of generators Ta equals the dimension of SU(Nc):
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• Using complex numbers writing down a general Nc × Nc matrix gives 2N2
c free real parame-

ters. The fact that matrices U in the group are unitary gives U ·U∗ = 1, amounting to N2
c

distinct equations, so one ends up with N2
c degrees of freedom. Fixing the determinant lastly

leaves N2
c − 1 degrees of freedom.

• Similarly, fixing a general matrix to be hermitian means we have the same freedom as a real
matrix, i.e N2

c real parameters. Lastly, tracelessness fixes one entry on the diagonal, which is
real, so the degree of freedom is N2

c − 1 as well.

The elements Ta are called the infinitesimal generators of SU(Nc). In the evaluation of Feynman
diagrams one will encounter contractions of structure constants and generators due to their
presence in the Feynman rules of the vertices. The evaluation of these ’color factors’ will be left to
the algorithms developed in [4] of which an implementation exists in FORM. These algorithms
make it possible to do a group independent reduction of group theory factors of Feynman
diagrams in terms of group invariants. Explicit results for SU(Nc) color factors in the fundamental
representation can be found afterwards by plugging in the invariants.

In the color factors of the Feynman diagrams that we will consider we will encounter the
following terms:

CFδij ≡ Ta
ikTa

kj CAδab ≡ f acd f bcd TF ≡
NcCF

N2
c − 1

(11)

With the most common choice of generators Ta = λa/2 in the case Nc = 3 one has explicitely:

CF =
4
3

CA = 3 TF =
1
2

(12)

Feynman rules and gauge fixing The Feynman rules used in this thesis are taken from appendix
D of ref. [3], but differ by a minus sign in the coupling constant. The resulting Feynman rules are
stated in appendix B. These Feynman rules include a particular choice of gauge, explained next.

We cannot perform perturbation theory with the Lagrangian of eq. 1 without adding a gauge
fixing term, because it is impossible to define the propagator for the gluon field otherwise. (The
quadratic part of the gluon fields in the action has a zero eigenvector in momentum space, so it
can not be inverted.) It should not matter how we pick the gauge, as we expect physical quantities
to be gauge independent. However some choices of gauge can be more convenient than others,
depending on the calculation that is done. In this thesis we pick the Lorentz gauge, sometimes also
called the covariant gauge. With this choice of gauge the theory remains Lorentz invariant. But
this choice of gauge makes it necessary to add a Faddeev-Popov ghost term to the Langrangian.
The QCD-Lagrangian in the covariant gauge becomes:

LQCD = ψ̄ f ,i(i /Dij −m f δij)ψ f ,j −
1
4

Ga
µνGµν

a −
1

2α
(∂µ Aµ)

2 + (∂µ(χa)∗)Dab
µ χb (13)

This result comes from ref. [3], page 83. with a sign flip on the coupling constant, and some small
changes of notation. Dab

µ refers to the covariant derivative in the adjoint representation:

Dab
µ = δab∂µ + g f abc Ac

µ (14)

The parameter α is the gauge parameter. It can still be picked freely, so that we have a family of
covariant gauges. For calculations by hand it is convenient to pick α = 1, sometimes called the
Feynman gauge choice. This choice rests on the assumption that the end result of a calculation
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should be gauge-independent. In principle physical amplitudes should be gauge independent.
However, leaving the gauge parameter in a calculation is a good check to see if the calculation went
well. If it hasn’t dropped out, a mistake might have been made. Furthermore, renormalization
constants can depend on the gauge parameter.

Feynman propagator prescription and Wick rotation The propagators in appendix A should
actually have a factor +iε included with ε > 0 in the following ways:

i j
k = iδij

/k + m
k2 −m2 + iε

(15)

a µ b ν
k = −iδab

dµν(k)
k2 + iε

(16)

a b
k = iδab

1
k2 + iε

(17)

This +iε convention indicates we are calculating ’Feynman’ propagators, meaning that the
propagators correspond to the vacuum expectation value of a time-ordered product of the fields.
This is quite extensively covered in (introductory) QFT courses and will not be further discussed
here. There are nonetheless some quick ways to motivate adding this factor.

Firstly in the path-integral formulation one can look at the path-integral and note that it does
not converge unless a factor iε is added at the right place in the quadratic part of the fields in the
action. This results in the factors +iε in the propagators. Such an explanation is given in ref. [5].

A more relevant observation for this thesis is that this factor is needed to properly define
Feynman integrals, or in particular just the Fourier transform of a propagator in momentum space.
The definition of the Fourier transform in this thesis is:

φ(x) =
∫ ddk

(2π)d φ(k)e−ikx (18)

This form is needed for consistency with the Feynman rules that are used. In particular, applying
the Dirac equation to the quark propagator in position space, expressed as an integral over the
momentum representation, shows that the propagator is its Green’s function. For this to work
the exponent in the above Fourier transform should be −ikx instead of +ikx. For the quark
propagator, without the iε-prescription, one finds that the Fourier transform becomes:

S0(x, m) =
∫ ddk

(2π)d
ie−ikx

/k −m
=
∫ ddk

(2π)d
i(/k + m)e−ikx

k2 −m2 (19)

Taking a closer look at this expression it is seen that it is not well-defined, because there are poles
at (k0)2 − (ki)2 = m2. After adding the factor +iε the poles are at the following positions in the
k0-plane:

This makes it possible to evaluate integrals using a Wick rotation. A Wick rotation can be done
by observing the following integration contour, in the limit R→ ∞ with R being the radius of the
circle arcs:
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Since the poles are not in the interior of the integration path the integral over this path should
be zero, by Cauchy’s theorem. Furthermore, the integrals over the circle’s arcs go to zero for
R → ∞ rapidly because the exponential function will get a negative argument that scales with
R on these arcs. Hence the integral on the real axis and on the imaginary axis can be identified.
But the latter integral is over an Euclidean measure and therefore one can use standard Euclidean
intuition to evaluate it. Furthermore, the poles do not play an important role anymore in the
Wick-rotated integral so that the limit ε→ 0 can be taken in that integral.

Adding the terms +iε to the propagators is more easily thought of as an integration convention.
In particular consider the following integration path:

When taking the limit ε → 0 the integral over this path is the same as the integral with the
poles themselves shifted. This is seen by again doing a Wick rotation and noting that this integral
is also equal to the Wick rotated one, where the integration is on the imaginary axis. In the rest of
the thesis we will therefore not put the terms +iε in the propagators of the integrals. Instead every
integral in Minkowski space over an internal momentum parameter is implicitely understood to
take the above path: One integrates underneath the left pole and above the pole on the right. The
variable ε will in the future refer to a parameter that comes up in the dimensional regularization
procedure.

The gluon and ghost propagators are massless but the +iε pre-scription still enforces two
distinct poles in the k0-plane strictly in the upper left and lower right quarters, even if the spatial
part of the momentum is zero.

Lastly, note that in Feynman integrals the propagators contain linear combinations of internal
and external momenta. In those cases the poles take the same positions but in the plane of the
zeroth component of the composite momentum.

The full quark propagator The full quark propagator is defined as the quark propagator after
including all quantum interactions. That means one has to theoretically calculate all quark 2-point
diagrams for any number of loops to find the full quark propagator. This calculation is simplified
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in a perturbative setting by recognizing that all such diagrams are expressed in the geometric
series of so-called one particle irreducible diagrams.

By definition a diagram is one particle irreducible (1PI) if it can’t be split in two by removing a
single internal line. The observation can then be made that all one particle reducible diagrams can
be composed from 1PI-diagrams. In particular, let the self-energy −iΣ(/p, m) represent the sum of
all 1PI-diagrams, which we can diagrammatically represent in the following way:

−iΣ(/p, m) = (20)

The notation Σ(/p, m) indicates explicitely the dependence of the self-energy on the quark mass
parameter and the external momentum. This will become important later on when renormalizing
the theory, but is not always stated in this section. Note that, by looking at the Feynman rules,
it is clear that the self-energy only depends on pµ in the form /p = γµ pµ (understanding that
p2 = /p/p). The following result holds for the full quark propagator, which is sometimes referred to
as a Dyson sum:

Sfull(/p, m) = + + + . . . (21)

The main motivation behind this expression is that all 1-particle reducible diagrams are composed
of connected 1-particle irreducible diagrams. Note that diagrams with tadpoles are 1-particle
reducible but are not included in the above sum. However, tadpole diagrams evaluate to zero.

One can recognize a geometric series in the diagrammatic formula stated above. This result is
stated formulaically below. In doing this we don’t write out color and Dirac indices, but it should
be kept in mind we are dealing with matrices. The identity matrices in color space and Dirac
space are thus implicitely added to scalar quantities.

Sfull = S + S(−iΣ)S + S(−iΣ)S(−iΣ)S + . . .

= S (1 + (−iΣ)(S + S(−iΣ)S + S(−iΣ)S(−iΣ)S + . . .))

= S(1 + (−iΣ)Sfull) (22)

⇒ Sfull = (S−1 + iΣ)−1 = (−i(/p −m− Σ))−1 =
i

/p −m− Σ
(23)

In this notation a δij is thus implicit (Sfull,ij ∝ δij). The fractional notation that is used refers to
an inverse matrix and i/(/p −m− Σ) is treated as a noncommutative quantity, because it is not
proportional to the identity matrix in Dirac space.

The self-energy Σ = Σ(/p, m) can be decomposed in a Lorentz invariant manner. Two forms of
decompositions are commonly seen:

Σ(/p, m) = A(p2, m2)m + B(p2, m2)/p (24)

Σ(/p, m) = Σ1(p2, m2)m + (/p −m)Σ2(p2, m2) (25)

They are clearly related by:

A(p2, m2) = Σ1(p2, m2)− Σ2(p2, m2) (26)

B(p2, m2) = Σ2(p2, m2) (27)
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The full gluon propagator Let Glab
µν(p) denote the gluon propagator, and Πab

µν the gluon self
energy. The full gluon propagator is found by the geometric sum of the gluon self energy:

Glfull = Gl + Gl(−iΠ)Gl + . . .

= Gl(1 + (−iΠ)Glfull) (28)

⇒ Glfull = (Gl−1 + iΠ)−1 (29)

The inverse gluon propagator can be found by inverting the propagator which is stated in the
Feynman rules in app. B, or alternatively one identifies the quadratic matrix of the gluon field in
the QCD Lagrangian, denoted KA:

Lquad. in A =
1
2

Aµ,aKab
A,µν Aν,b (30)

It then follows from eq. 13 that:

Kab
A,µν = δab

(
ηµν�− ∂µ∂ν

(
1− 1

α

))
(31)

with � = ∂µ∂µ. Taking the Fourier transform and putting the right prefactor gives the inverse
gluon propagator in momentum space:

Gl−1,ab
µν = iδab

(
k2ηµν − kµkν

(
1− 1

α

))
(32)

The gluon self-energy satisfies a Ward-Takahashi identity (see ref. [3]) so that:

kµkνΠab
µν(k) = 0 (33)

⇒ Πab
µν(k) = δab(kµkν − k2ηµν)Π(k2) (34)

Therefore it follows that:

(Gl−1 + iΠ)ab
µν = iδab

(
ηµνk2(1−Π(k2))− kµkν

(
1−Π(k2)− 1

α

))
(35)

The inverse of this matrix gives Glfull, leading to:

Glab
full,µν = −i

δab

k2

ηµν −
kµkν

k2

1−Π(k2)
+ α

kµkν

k2

 (36)

Hence, only the transversal part of the gluon propagator is subject to higher-order corrections.

III. Dimensional regularization

In a quantum field theory it is generally not possible to find nonperturbative solutions to physical
observables. For this reason they are calculated as perturbative series in terms of the coupling
constants. It turns out that the coefficients in these expansions contain divergent integrals, which
have to be dealt with.

To isolate divergences in a systematic fashion a regularization scheme is employed. The
most successful one is dimensional regularization. The method was introduced by ‘t Hooft and
Veltman (ref. [6]) and using it they showed that Yang-Mills theories with massive fields due to
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spontaneous symmetry breaking are renormalizable, which led to their Nobel prize in physics in
1999.1 Dimensional regularization has the advantage of preserving Lorentz invariance, and allows
for precise analytical calculations. It is built on the observation that Feynman integrals which
diverge in 4 dimensions can in fact converge for different dimensions. The idea is therefore to
generalize Feynman integrals to arbitrary complex dimensions, by taking the analytic continuation
of the results for integer dimensions. The dimension will be written as d = 4− 2ε, where ε is a
complex number that gives the deviation from the true dimension.

Consider the integral in eq. 37, with ddK being an Euclidean integral measure. (Lorentz
measures in Feynman integrals can be made Euclidean by doing a Wick rotation.) One can observe
the integral has a spherical symmetry. Changing variables to hyperspherical coordinates, the
measure ddK splits in an angular integral and a radial integral together with a factor Kd−1. Focus
for now on the radial integral:

∫ ddK
(2π)d

1
(K2 + m2)2 ∝

∫ ∞

0
dK

Kd−1

(K2 + m2)2 (37)

If one calculates the indefinite integral close to infinity one has K2 � m2, so that the indefinite
integral goes like log(K), which means the integral diverges logarithmically at infinity. However,
for d = 3 we do have convergence, since the indefinite integral goes like 1/K at infinity which goes
to zero. The idea is therefore to solve the integral for a region of d where the integral converges
and to take the analytic continuation of this result. The divergence just seen is called an ultraviolet
(UV)-divergence, which is a divergence that comes from the high-momentum region in the integral.
Let’s generalize the integral in eq. 37 by putting an arbitrary power λ ∈ R>0 on the propagator.
We first pick d and λ so that λ > d/2, which makes the radial integral convergent.

∫ ddK
(2π)d

1
(K2 + m2)λ

=
1

(2π)d

∫
dd−1Ω

∫ ∞

0
dK

Kd−1

(K2 + m2)λ
(38)

The angular integral is just the area of a unit d-ball / the volume of the d− 1 sphere, which gives:

∫
dd−1Ω =

2π
d
2

( d
2 − 1)!

, (39)

for integer d. We would like to generalize the result to arbitrary d ∈ C in some way. We can’t
geometrically define a sphere for non-integer dimension, but we can find a complex analytic
function that generalizes the above integral to arbitrary values of d. This is done by replacing the
factorial with the Gamma function (see eq. 418), which is the unique analytic extension of the
factorial function. As a prescription that is part of the dimensional regularization procedure we
will define the spherical integral for arbitrary dimensions to be this function. Thus we define:

∫
dd−1Ω =

2π
d
2

Γ( d
2 )

(40)

The (radial) K-integral can be evaluated in terms of the Euler Beta-function using eq. 430. We

1More specifically, the prize was awarded for ’elucidating the quantum structure of electroweak interactions in physics’.
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work out the (radial) K integral to find:

∫ ∞

0
dK

Kd−1

(K2 + m2)λ
= (m2)−λ

∫ ∞

0
dK

Kd−1( K2

m2 + 1
)λ

=
1
2
(m2)d/2−λ · 2

∫ ∞

0
dK

(K2)
d−1

2(
K2 + 1

)λ

=
1
2
(m2)d/2−λB

(
d/2, λ− d/2

)
(for λ > d/2) (41)

Putting all elements together we have:

∫ ddK
(2π)d

1
(K2 + m2)λ

=
B(d/2, λ− d/2)
(4π)d/2Γ(d/2)

(m2)d/2−λ (for λ > d/2) (42)

=
Γ
(

λ− d
2

)
(m2)d/2−λ

(4π)d/2Γ(λ)
(43)

Repeating the practice of analytically continuing results, eq. 42 can be extended to a larger
domain λ ∈ C, d ∈ C. There are then poles at λ − d/2 ∈ Z≤0 and zeros at λ ∈ Z≤0, unless
these conditions hold at the same time in which case the result is finite. Returning to the original
example, let λ = 2 and d = 4− 2ε. One sees:

∫ ddK
(2π)d

1
(K2 + m2)2 =

B(2− ε, ε)

(4π)2−εΓ(2− ε)
(m2)−ε

=
Γ(ε)

(4π)2−ε
(m2)−ε

≈ 1
16π2

(
1
ε
− γE − log

(m2

4π

))
+O(ε) (44)

The following expansions are used in the last step:

Γ(ε) =
1
ε
− γE +O(ε) (45)

xε = eε log(x) ≈ 1 + ε log(x) +O(ε2) (46)

The result in eq. 44 has a pole 1/ε. Hence in the limit ε→ 0 we have d→ 4, but we also get back
the original divergence. However, we gained an explicit characterization of the UV-divergence. It
turns out that in so-called renormalizable quantum field theories the Lagrangian can be altered so
that the divergent terms proportional to powers of 1/ε are cancelled out in the calculations for
certain quantities, especially those that correspond to observables. That part will be played by
setting up a renormalized Lagrangian, treated in the next section.

Now that we decide to keep d ∈ C a point of concern is how to pick the Dirac matrices,
a complication that was left out of the previous example. Instead of interpreting them just as
matrices we can consider them as objects that satisfy particular (commutation)-relations. We need
these relations to be analogous to the ones that we usually use, and reduce to the usual relations
for d = 4. As an example we might pick Tr(γµγν) = 2d/2ηµν. But equally valid is Tr(γµγν) = 4ηµν.
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In this thesis the following choices are made:

{γµ, γν} = 2ηµν (47)

γµγµ = d (48)

γµγνγµ = (2− d)γν (49)

Tr[γµγν] = 4ηµν (50)

These choices were made in accordance with ref. [3]. These conventions can affect the finite result
that is obtained from dimensional regularization, and therefore it is important to be consistent.
For example, suppose one uses that Tr(γµγν) = 2d/2ηµν. Expanding this expression on ε gives a
power series in ε. If from some other term there is an additional factor 1/ε, it becomes clear the
finite part of the expansion is different from when the choice is Tr(γµγν) = 4ηµν.

A last observation is that the coupling constant gains a dimensional dependence in the
dimensional regularization scheme. First note that the action, S =

∫
ddxLQCD(~x, t) should be of

zero (mass) dimension, (for example because it appears in the exponent of the Feynman path
integral.) Let [·] denote the mass dimension of some expression denoted with the dot. One has
[L] = d. From looking at the kinetic terms in eq. 1 it is seen that [ψ f ,i] = 3/2− ε and [Aa] = 1− ε.
In particular, together with the definition of g in the covariant derivative it becomes clear that
[g] = ε. It is reminded that the main procedure of quantum field theory is to expand observables
in perturbative series of coupling constants. For such an expansion to make sense the coupling
constant should be dimensionless. Therefore when doing dimensional regularization we will
replace the coupling constant g by µεg, such that g is indeed dimensionless, and the dimension is
captured in a scale parameter µ. It will not be put explicitely in the Lagrangian, but will be added
at the end of a calculation. The integral of eq. 44 can come from a one-loop diagram, which will
have two vertex factors and thus be multiplied by g2µ2ε. Note that this gives:

∫ ddK
(2π)d

µ2εg2

(K2 + m2)2 = g2 Γ(ε)
(4π)2−ε

(
µ2

m2

)ε

(51)

≈ g2

16π2

(
1
ε
− γE − log

(
m2

4πµ2

))
+O(ε) (52)

The overall result is dimensionless because the parameter µ2 divides out the mass dimension of
m2. This will happen similarly for integrals arising from multiloop diagrams.

Go back to the massless case of eq. 37, and consider it with the propagator raised to an
arbitrary power λ > 0. It turns out this integral can be set to zero. Requiring the dimensionally
regulated integral to satisfy the usual additive property for integration on an interval, it is possible
to split up the radial integral in some point between 0 and ∞, say 1, which leads to:

∫ ddK
(2π)d

1
(K2)λ

=
1

(2π)d

∫
ddΩ

∫ ∞

0
dK

1
K2λ+1−d =

1
(2π)d

∫
ddΩ

(∫ 1

0
dK

1
K2λ−d+1 +

∫ ∞

1
dK

1
K2λ−d+1

)
(53)

The radial integrals converge for different domains of d. This is shown below:

∫ 1

0
dK

1
K2λ−d+1 =

[
1

d− 2λ
Kd−2λ

]1

0
=

1
d− 2λ

(for d > 2λ) (54)∫ ∞

1
dK

1
K2λ−d+1 =

[
1

d− 2λ
Kd−2λ

]∞

1
= − 1

d− 2λ
(for d < 2λ) (55)
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At d = 2λ there is both an infrared divergence (meaning the integral diverges near the zero
momentum region) and a UV-divergence. Nonetheless, the dimensional regularization of divergent
integrals was introduced as an analytic continuation of the convergent result. Hence eqs. 54 and
55 are interpreted to hold for all d 6= λ. It is clear that these integrals then sum to 0, so that we
have: ∫ ddK

(2π)d
1

(K2)λ
= 0 (56)

As a definition in dimensional regularization, ’scaleless’ integrals are always taken to be zero,
where the term ’scaleless’ indicates that these integrals only depend on internal momenta and
not on any external scales, like external momenta or masses. For the previous example this was
explicitely shown by the cancellation of the UV- and IR-divergences.

A full motivation for this convention can be found in the literature. The convention does not
lead to any inconsistencies and dimensionally regularized integrals obey the same result regardless
of how they are calculated. For example, the following holds by doing a partial fractioning:

∫ ddk
k2(k2 −m2)

=
1

m2

(∫ ddk
k2 −m2 −

∫ ddk
k2

)
(57)

(The integrals are taken over Minkowski space in this example.) It turns out that:

∫ ddk
k2(k2 −m2)

=− i(m2)−επ2−εΓ(ε− 1) =
1

m2

∫ ddk
k2 −m2 (58)

Hence it must be that
∫ ddk

k2 = 0, which is consistent with eq. 56.
Another important non-trivial result is that integration by parts in a dimensionally regulated

integral can be applied while always setting the boundary terms to zero. An explanation for this
using the alpha-parametrization is given in [7]. The alpha-parametrization is derived in this thesis
in section IX. Integration by parts (IBP-) identities in dimensional regularization allow one to
considerably simplify complicated Feynman integrals, which is discussed in section 7.6.

To conclude, a method was discussed to isolate divergences that arise in Feyman integrals.
These divergences still need to be dealt with in some manner, which is done by renormalization of
the quantum field theory.

IV. Renormalization

Renormalization involves passing from the original theory (called the ’bare’ theory) to a renormal-
ized theory, in order to remove divergences that are exposed using the regularization procedure. It
will be seen that in essence this is done by rescaling parameters in the original theory, while letting
the rescaling factors absorb infinities. More generally, renormalization involves just rescaling
parameters in the theory and that can also be done for other reasons than removing divergences.
Renormalization can be done in many ways, and depends on:

• Which (part of the) theory are we renormalizing?

• In which scheme are we doing the renormalization?

In this section we consider a single massive quark theory. QCD has of course 6 quark flavours, but
it is easier to first do the analysis in a single quark theory. Remarks on how to extend the analysis
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to a theory with multiple quarks will be given later on. Our goal will be to renormalize the quark
self-energy diagrams, meaning that we’ll make them finite. Renormalization is often introduced
using counterterms which are new terms added to the Lagrangian. These counterterms do not
alter the essence of the theory because they can be introduced by rescaling parameters like masses
and fields in the theory, which will be seen soon.

The counterterms end up in the Feynman rules as vertices, and are added to diagrammatic
calculations. They are defined in such a way that upon adding them the poles 1/εk for k ∈ Z>0
from the regularization procedure are cancelled out. There is freedom in how to pick the
counterterms, because the finite part of the counterterms is not constrained by the condition of
cancelling divergences. The prescription for how to pick the finite parts of the counterterms is
dictated by the so-called renormalization scheme. The minimal subtraction scheme (MS), the
modified minimal subtraction scheme (MS) and the on-shell scheme (OS) will be treated.

In the following section the renormalization constants Zm and Zψ are introduced, by doing a
rescaling of the quark field and mass in the bare theory. One will need to introduce additional
renormalization constants in the theory to cancel divergences in other kinds of diagrams than the
self-energy diagrams, but for our purposes this will be enough.

Make a change of notation and denote the quark mass as m0 from now on, and the quark
propagator as ψ0. These quantities are called the bare quark mass and bare quark field since they
come from the bare theory, which is called as such because it has not been renormalized yet. The
basic QCD Lagrangian for a single quark, with bare mass m0 and bare quark field ψ0 is stated
below:

LQCD = ψ̄0,i(i/∂ −m0)δijψ0,j − gψ̄0,iTa
ijψ0,j /Aa − 1

4
Ga

µνGµν
a (59)

The covariant derivative /D has been written out explicitely, exposing the term that gives rise to
the quark-gluon vertex. The gauge fixing terms are not added as they play no explicit role in the
kind of renormalization that will be done here. To find the renormalized theory the quark field
and mass are rescaled in the following way:

ψ0 →
√

ZψψR (60)

m0 → ZmmR (61)

with ψR and mR denoting the renormalized quark wave function and mass parameter respectively.
The factors Zψ and Zm are called the renormalization constants. While the aim is to remove
the divergences of some calculations in the theory, the language will also be used that we are
renormalizing the quark field and mass, which just refers to the rescaling done here. Under these
rescalings the bare Lagrangian changes and we explicitely write out the result in the following
ways.

Lscaled
R ≡ Zψψ̄R,i(i /Dij − ZmmRδij)ψR,j −

1
4

Ga
µνGµν (62)

Lcounter
R ≡ ψ̄R,i(i/∂ −mR)δijψR,j − gψ̄R,iTa

ijψR,j /Aa − 1
4

Ga
µνGµν

a − (ZmZψ − 1)mRψ̄RψR+

(Zψ − 1)ψ̄R(i/∂)ψR − g(Zψ − 1)ψ̄0,iTa
ijψ0,j /Aa (63)

In the equation for Lcounter
R , a part has been factored out that has the same form as eq. 59 but with

the renormalized mass and field at the usual locations. The additional terms are the counterterms.
The Lagrangians Lscaled

R and Lcounter
R are of course exactly equal to each other, but in the

following analysis we will interpret their Feynman rules differently. It will then be shown using
examples how those approaches are in fact equivalent, as they should be, and how to relate them.
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4.1. The counterterm Lagrangian Lcounter
R

The counterterm Lagrangian Lcounter
R is interpreted as a theory where the quark field is ψR, the

quark mass is mR, and which has additional counterterms. These counterterms are interpreted as
vertices, so the quadratic counterterms in the Lagrangian are not part of the quark propagator.
The counterterms are visually represented by a cross:

Counterterms Mathematical expression

Mass counterterm −i(ZmZψ − 1)mR

Kinetic counterterm i(Zψ − 1)/p

Quark-gluon counterterm

a µ

i j −ig(Zψ − 1)Ta
ijγ

µ

In this case the 2-point counterterms have been split in a kinematic counterterm, and a counterterm
proportional to mR. In some cases this is convenient for bookkeeping purposes. When stating
the prefactors in the mathematical expressions of the counterterms one has to be careful to be
consistent with the rest of the Feynman rules. With our Feynman rules every vertex term in
the Lagrangian gains a factor i in the diagrammatic expression, and furthermore the kinetic
counterterm gets an additional factor −i that comes from the derivative term, which is seen by
doing a Fourier transform of the quark field and taking the derivative. We will also often take
both counterterms together into a single term:

Combined counterterm −i(ZmZψ − 1)mR + i(Zψ − 1)/p

Another thing to realize is that as one works perturbatively, one will want to expand the renormal-
ization constants Zm and Zψ in the coupling constant g. It turns out that the quark self-energy Σ0
of the bare theory expands into even powers of g. For this reason Zψ and Zm also expand into
even powers of g. Furthermore, the leading constant terms are just equal to 1, because we don’t
need to alter the theory at leading order. (There are no divergent loop integrals at leading order.)
As such we write that:

Zm = 1 + δ
(g2)
m g2 + δ

(g4)
m g4 + . . . (64)

Zψ = 1 + δ
(g2)
ψ g2 + δ

(g4)
ψ g4 + . . . (65)

In diagrammatic form we write that:

= + + . . . (66)

Leading to:
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g2 order counterterm g2(−i(δ(g2)
m + δ

(g2)
ψ )mR + iδ(g2)

ψ /p)

g4 order counterterm g4(−i(δ(g4)
m + δ

(g4)
ψ + δ

(g2)
m δ

(g2)
ψ )mP + iδ(g4)

ψ /p)
. . .

We continue in the same way for the quark-gluon counterterm:

= + + . . . (67)

When there is mention of the ’renormalized’ theory without further specification, for which
quantities will be denoted with a subscript R, the theory Lcounter

R will be meant, and not the theory
Lscaled

R that is discussed next as an illustrative example of a different way to the renormalization.

4.2. The ’scaled’ Lagrangian Lscaled

The ’scaled’ Lagrangian Lscaled is equivalent to the counterterm Lagrangian but in the interpre-
tation of this theory we don’t explicitely factor out the counterterms. Instead the rescalings are
carried over into the Feynman rules. A quark line now corresponds to:

=
1

Zψ

i

/p − ZmmR
(68)

and similarly each quark-gluon vertex gains a factor Zψ in the numerator. A calculation using
Feynman diagrams in order of increasing loops will not give a proper perturbative expansion
in this theory, but we can still do the calculation. The idea will then be to expand the Feynman
diagrams at some step of their evaluation by writing out Zψ and Zm as a series in g and expanding
the whole expression in terms of g up to the desired order of the calculation. Such a calculation
can be seen in the following example. In the theory Lscaled expand the quark propagator:

1
Zψ

i
/k − ZmmR

≈ i
/k −mR

+
i

(k2 −m2
R)

2

[
mRk2(δ

(g2)
m − δ

(g2)
ψ )− k2/kδ

(g2)
ψ + m3

R(δ
(g2)
m + δ

(g2)
ψ ) (69)

+m2
R/p(2δ

(g2)
m + δ

(g2)
ψ )

]
g2 +O(g4) (70)

Now look at the counterterm theory and calculate the diagram with two external quark propagators
and a g2-order counterterm vertex wedged in between. The result is:

= g2 i
/k −mR

·
[
−i(δ(g2)

m + δ
(g2)
ψ )mR + iδ(g2)

ψ /k
]
· i

/k −mR

= g2 −1
(k2 −m2

R)
2 [/k + mR] ·

[
−i(δ(g2)

m + δ
(g2)
ψ )mR + iδ(g2)

ψ /k
]
· [/k + mR]

= g2 i
(k2 −m2

R)
2

[
mRk2(δ

(g2)
m − δ

(g2)
ψ )− k2/kδ

(g2)
ψ + m3

R(δ
(g2)
m + δ

(g2)
ψ )

+m2
R/p(2δ

(g2)
m + δ

(g2)
ψ )

]
(71)
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It then becomes clear that:

≈ + +O(g4) (72)

Note that at orders g4 and higher on the right side there are terms with lower order counterterms
concatenated with propagators in between. Equivalences like eq. 72 will hold in general. For
example, say that one calculates the two-loop quark self-energy in the theory Lscaled

R . The
corresponding expression will have the following shape:

−iΣscaled,loops≤2
R (/p, m) = + (73)

The two diagrams represent all of the 1-loop and 2-loop contributions using the Feynman rules
for the scaled theory. These terms are not strictly proportional to g2 and g4 respectively, because
the terms Zψ and Zm have not been expanded out yet, but are full power series in g. Hence we are
not doing a proper perturbative expansion. This changes when one expands the terms Zψ and Zm
up to order g4 to get:

−iΣscaled,loops≤2
R (/p, mR) ≈ + + +O(g6)

(74)

While the big O is put on the right, we are really expanding the expression on the left up to order
g4 and claim that this is exactly equal to the three terms on the right. The first two diagrams
represent the bulk of the 1-loop and 2-loop contributions using the Feynman rules for the theory
Lcounter

R , which are proportional to g2 and g4 respectively. The diagram on the right represents the
contribution of one-loop diagrams with a counterterm insertion:

= + + (75)

For the Lagrangian Lcounter
R it holds that:

−iΣcounter,loops≤2
R (/p, mR) = + + +

+ (76)

Thus expanding Σscaled
R (/p, mR) almost gives us Σcounter

R (/p, m) but we miss the 2-point counterterm
vertices. This is a result of the fact that the quark propagator is not included in the self-energy, so
in the theory Lscaled

R the counterterms do not show up after expansion. But the quark propagator
is included in the Dyson sum of that theory, so to be consistent we also have to expand the quark
propagator in the Dyson sum of Lscaled

R , which has the exact same effect as including counterterms
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in the self-energy. Hence the full quark propagator of both Lagrangians turns out exactly the same.
One can make the following relation between the quark self-energies of the two theories:

−iΣ
scaled,loops≤Nloops
R (/p, mR) ≈ −iΣ

counter,loops≤Nloops
R (/p, mR)−

2Nloops

∑
k≥2

k even

+O(g2Nloops+2)

(77)

There is another observation to make. Any (sub-)diagram in Lscaled
R theory without external

quarks exhibits cancellation of all Zψ factors. For example, the below diagram has two vertices
each yielding factors Zψ and two internal quark propagators each yielding factors Z−1

ψ .

Thus, the factors Zψ cancel exactly. The quark self-energy Σscaled
R (/p, mR) is proportional to Zψ,

because the external quark lines are not counted, so that there isn’t a complete cancellation leaving
a single factor Zψ. This shows that:

Σscaled
R (/p, mR) = ZψΣ0(/p, ZmmR) (78)

Using eq. 77 this shows that:

−iΣ
counter,loops≤Nloops
R (/p, mR) ≈ −iZψΣ0(/p, mRZm) +

2Nloops

∑
k≥2

k even

+O(g2Nloops+2)

(79)

In this equation the term −iZψΣ0(/p, mRZm) is expanded in g up to orderO(g2Nloops+2) by plugging
in the power series expansions of Zψ and Zm. Hence if we have calculated the self-energy in the
bare theory, we can always move to the renormalized theory using this relation. This method of
doing the renormalization has the advantage that one does not explicitely have to consider new
diagrams with counterterms, while expanding a series on a computer is relatively easy to do. We
also see that:

Sfull,R =
i

Zψ/p − ZψZmmP − Σscaled
R (/p, mR)

=
1

Zψ

i

/p − ZmmP − Σ0(/p, ZmmR)
=

1
Zψ

Sfull,0 (80)

4.3. Renormalization schemes

It has been explained in the previous part how to add new degrees of freedom to the bare theory
to get the renormalized theory. How to use these degrees of freedom in order to actually remove
unwanted divergences is dictated by the renormalization scheme that is being used.

4.3.1 Minimal subtraction scheme (MS)

In the MS-scheme we focus on removing only the divergent part that arises in the bare quark
self energy Σ0(/p, m0), and we pick the finite part of the counterterms to be zero. Let coef((·), εk)
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denote the εk coefficient of (·) as a Laurent series in ε. The MS-condition becomes:

0 = coef(−iΣcounter
R (�p, mR), ε−k) for all k ∈ Z≥0 (81)

One can use eq. 79 to calculate Σcounter
R (�p, mR) up to the desired order. This MS-condition has to

be solved iteratively in orders of g. First one sets Nloops = 1. One can then solve for δ
(g2)
ψ and δ

(g2)
m .

Next one can set Nloops = 2, substituting the results for δ
(g2)
ψ and δ

(g2)
m in the one-loop diagrams

with counterterm insertions, and solve for δ
(g4)
ψ and δ

(g4)
m . The higher orders follow in similar

manner. The finite parts of the counterterms, which are not proportional to an inverse power of ε
are set to zero.

4.3.2 Modified minimal subtraction scheme (MS)

It turns out that upon rescaling µ2 → µ2 eγE
4π the power series expansion of Feynman diagrams

becomes simpler. For example, a part of the quark self-energy at one-loop is given in eq. 112 and
repeated below:

A(p2, m2
0) =

αsµ2ε

(4π)1−ε
CFΓ(ε) (4− 2ε)

∫ 1

0
dx(m2

0x− p2x(1− x))−ε (82)

Expanding up to order O(ε) one finds the result of eq. 114. By first doing the rescaling of µ one
finds the following (denoted with a tilde to distinguish from the usual result):

Ã(p2, m2
0) =

CFαs

2π

(
2
ε
− 1− 2

∫ 1

0
dx log

(
m2

0
µ2 x− p2

µ2 x(1− x)

)
+O(ε)

)
(83)

Note that the factors proportional to γE and log(4π) have disappeared. The MS-scheme is roughly
defined as the MS-scheme while also rescaling µ2 → µ2 eγE

4π . However, in practice µ is not actually
rescaled but alternatively the finite parts of the counterterms are picked to cancel the terms coming
from an implicit factor ( eγE

4π )−ε in the Feynman diagrams. At 1-loop this is done in eqs. 124 and
125.

4.3.3 On-shell scheme (OS)

In the on-shell scheme one is not only concerned with removing divergences but also makes
claims for how the full renormalized propagator Sfull,R should behave. The desired behavior is
that Sfull,R should have a pole at the renormalized mass (/p = mR) and that for momenta close
to the pole, the full propagator should behave like a free propagator. Because the renormalized
mass is taken to be at the pole, we use the notation mR = mP where mP is called the pole mass.
Expanding around the pole mass gives:

SR,full(/p, mP) =
i

/p −mP − ΣR(/p, mP)
≈ i

(/p −mP)(1− d
d/p

ΣR(/p, mP)|/p=mP) +O(/p −mP)2
(84)

We read off that to have a pole at /p = mP and to act like a free propagator around the pole the
following conditions should hold:

ΣR(/p, mP)|/p=mP = 0 (85)
d

d/p
ΣR(/p, mP)|/p=mP = 0 (86)
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And using some of our previous results the first on-shell condition gives:

ΣR(/p, mP)|/p=mP = ZψΣ0(/p, Zmm0)|/p=mP + i · |/p=mP

= ZψΣ0(/p, Zmm0)|/p=mP + i
(
−i(ZmZψ − 1)mP + i(Zψ − 1)/p

)
|/p=mP

= ZψΣ0(/p, Zmm0)|/p=mP + ZψmP(Zm − 1) = 0

⇒ Σ0(/p, Zmm0)|/p=mP = mP(1− Zm) (87)

Thus the on-shell mass renormalization constant is given by:

Zm = 1− 1
mP

(
Σ0(/p, Zmm0)|/p=mP

)
(88)

To solve for Zm one expands both sides of the equation perturbatively as a series in g and solves
iteratively starting from 1-loop order (g2) and moving up successively. The second on-shell
condition gives in a similar manner:

d
d/p

ΣR(/p, mP)|/p=mP = Zψ
d

d/p
Σ0(/p, Zmm0)|/p=mP + i

d
d/p
· |/p=mP

= Zψ
d

d/p
Σ0(/p, Zmm0)|/p=mP − (Zψ − 1) = 0 (89)

The wave function renormalization constant is therefore:

Zψ =
1

1− d
d/p

Σ0(/p, Zmm0)|/p=mP

(90)

A trick for on-shell renormalization of the massive quark propagator A trick can be used
that aides in bookkeeping and gets rid of tensor integrals in the on-shell calculation of the
renormalization constants Zψ and Zm [8], [9]. Firstly decompose the self-energy in the following
way:

ΣR(/p, mP) = mΣR,1(p2, m2
P) + (/p −mP)ΣR,2(p2, m2

P) (91)

Define the external momentum to be p = (1 + t)Q, with Q2 = m2
P. Next construct TR(p2, m2

P):

TR(p2, m2
P) ≡ Tr

[
/Q + mP

4m2
P

ΣR(/p, mP)

]

=
1

4m2
P

Tr
[
(/Q + mP)(mPΣR,1(p2, m2

P) + (/p −mP)ΣR,2(p2, m2
P))
]

=
1

4m2
P

Tr
[

/Q/pΣR,2(p2, m2
P) + m2

P(ΣR,1(p2, m2
P)− ΣR,2(p2, m2

P))
]

=
1

4m2
P
(4Q2(1 + t)ΣR,2(p2, m2

P) + 4m2
P(ΣR,1(p2, m2

P)− ΣR,2(p2, m2
P)))

= ΣR,1(p2, m2
P) + tΣR,2(p2, m2

P) (92)

Expanding ΣR up to first order in /p −mP gives:

ΣR(/p, mP) =ΣR(/p, mP)|/p=mP +
d

d/p
ΣR(/p, mP)|/p=mP(/p −mP) +O((/p −mP)

2)

=mPΣR,1(p2, mP)|/p=mP +

[
2m2

P
d

dp2 ΣR,1(p2, m2
P)|/p=mP + ΣR,2(p2, m2

P)|/p=mP

]
(/p −mP)

+O((/p −mP)
2) (93)
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In the second line it has been used that:

d
d/p

ΣR,1(p2, m2
P) =

dp2

d/p
d

dp2 ΣR,1(p2, m2
P) = 2/p

d
dp2 ΣR,1(p2, m2

P) (94)

Setting the first two coefficients in the expansion of eq. 93 equal to zero amounts to the on-shell
renormalization conditions. (See eqs. 85, 86) It turns out these terms can also be obtained from TR,
by expanding around t = 0. In particular, because we defined that Q2 = m2

P, the condition t = 0 is
equivalent to p2 = m2

P. Thus one obtains the following expansions in t:

ΣR,1(p2, m2
P) = ΣR,1(Q2(1 + t)2, m2

P) ≈ ΣR,1(p2, m2
P)|p2=m2

P
+ t · 2m2

P
d

dp2 ΣR,1(p2, m2
P)|p2=m2

P
+O(t2)

ΣR,2(p2, m2
P) = ΣR,2(Q2(1 + t)2, m2

P) ≈ ΣR,2(p2, m2
P)|p2=m2

P
+O(t) (95)

The dependence on p2 on the left side of the equation is really a dependence on t. Plugging these
expansions into the definition of T and not writing the momentum dependence anymore gives:

TR(m2
P) ≈ ΣR,1(p2, m2

P)|p2=m2
P
+ t
(

2m2
P

d
dp2 ΣR,1(p2, m2

P)|p2=m2
P
+ ΣR,2(p2, m2

P)|p2=m2
P

)
+O(t2)

(96)

What is seen, is that the expansions of eqs. 93, 96 agree in the first two coefficients, and setting
these coefficients to zero amounts to the on-shell renormalization conditions. By looking at eqs.
87, 89, we also see that:

Zm = 1− coef(T0(Z2
mm2

P), t0) (97)

Zψ =
1

1− coef(T0(Z2
mm2

P), t1)
(98)

Here T0(m2
0) = T0(Z2

mm2
P) refers to the quantity in the bare theory. These equations can be

solved for iteratively by expanding in g. The inverse field renormalization constant Z−1
ψ follows

immediately once Zm has been found.
The main advantage of doing the on-shell renormalization by constructing T0(Z2

mm2
P) is

that it is allows for a convenient bookkeeping and one can get rid of tensor integrals early on
in the calculation. Furthermore eqs. 97, 98 take an easy form so that the renormalization is
straightforward to do without employing counterterms.

However the method only works for the on-shell scheme. A more general form to find
renormalization constants is to solve the renormalization conditions of the scheme that is used by
starting from eq. 79.

4.4. Renormalization of other parameters

So far the treatment of renormalization has been confined to a rescaling of the quark field and mass
for a single quark theory. To fully renormalize QCD at a certain loop order much more parameters
of the theory should be rescaled/renormalized. This will not complicate the calculations much.
Suppose we are still interested in calculating the quark self-energy but will also take into account
rescalings of other parameters in the theory. We consider a few points:

• Rescaling of a field, say the gluon field Aµ
0 = Z1/2

A Aµ
R.
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Since we are only looking at 2-point quark diagrams the scaling of the vertices will exactly cancel
out the scaling of the gluon propagators. Hence, nothing changes for the calculation of the quark
self-energy.

• Rescaling of a scalar parameter, say the coupling constant itself g0 = ZggR.

We can take any calculation in terms of the bare coupling constant, and simply rescale g0 in that
result and expand on gR, with Zg interpreted as a power series in gR.

• Adding more quarks to the theory

We consider the top quark to be much heavier than the other quarks, so we don’t add mass terms
for the other quarks. In that case there is only a wave function renormalization for the other quarks
and this drops out in top quark self-energy diagrams. In case we do not neglect masses for the
other quarks there will be mass renormalization constants for these quarks as well. The calculation
will become much more difficult in this case because one will need to calculate Feynman integrals
with different masses.

For the multiloop renormalization we will consider a model consisting of Nh massive quarks
of the same mass and Nl ’light’ quarks with no mass. At the end one can put Nh = 1 and Nl = 5
to get a model with a massive top quark and the masses of the other quarks neglected. It was
discussed that the wave function renormalization constants of the massless particles drop out of
the top quark self-energy diagrams. A renormalization of the coupling constant will still need
to be done, but it is easy to reexpress Zm and Zψ in the renormalized coupling constant as it
amounts to a simple power series expansion after putting g0 = ZggR. Similarly, the wave function
renormalization constant depends on the (bare) gauge parameter starting from 3-loop order. To
include renormalization of the gauge parameter one can rescale αbare = ZααR and expand Zα in
terms of gR. Of course to find Zg and Zα different types of Feynman diagrams will need to be
considered than the quark propagator type.

V. Renormalization of the top quark at 1-loop order

5.1. Calculating the bare self-energy

The first order contribution to the self-energy is derived below in the bare theory. The only
diagram contributing at one-loop level is:

−iΣij
αβ(/p, m) =

i j
α βα

1
α

2

i
1

i
2

µ νa b

p + k

−k

p p

(99)

For completeness all indices have been written down explicitely:

i, i1, i2, j SU(Nc) indices
α, α1, α2, β Spinor indices for Dirac algebra
a, b Index for gauge group generator
µ, ν Space-time indices
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This diagram diverges in 4 dimensions and dimensional regularization is used to make the
integral finite. From the Feynman rules in app. B one finds:

Σij
0,αβ(/p, m0) = µ2εg2

∫ ddk
i(2π)d

(γµ)αα1

(
Ta

ii1
δi1i2 δabTb

i2 jjdµν(−k)

((/p + /k)−m0)k2

)
α1α2

(γν)α2β

 (100)

Where dµν(k) = ηµν − (1− α)
kµkν

k2 , and α denotes the gauge parameter (not to be confused with
the index α used for the Dirac algebra, nor the strong coupling constant αs.) To simplify the
calculation we will pick the Feynman gauge (α = 1). Evaluating the delta functions, it is seen
the color factor equals the definition of CF (eq. 11). We will use this relation and drop the color
indices on Σ0(/p, m0), understanding that a δij is implied. Similarly we will drop the indices for
the Dirac algebra. Lastly note that:

1
(/p + /k)−m

=
m + (/p + /k)
(p + k)2 −m2 (101)

This leads to:

Σ0(/p, m0) = µ2εg2CF

∫ ddk
i(2π)d

(
γµ(m0 + (/p + /k))γµ

((p + k)2 −m2
0)k

2

)
(102)

The diagram exhibits ultraviolet divergence, i.e. it diverges in the high momentum region:
Σ ∼

∫
ddk /k

k4 ∼ limk→∞ kd+1−4 ⇒ lin. divergence in 4 dimensions. Using eqs. 48 and 49 we find
that:

Σ0(/p, m0) = µ2εg2CF

∫ ddk
i(2π)d

(
dm + (2− d)(/p + /k)
((p + k)2 −m2

0)k
2

)
(103)

The well-known Feynman trick is used next:

1
AB

=
∫ 1

0
dx

1
(xA + (1− x)B)2 (104)

Leading to:

Σ0(/p, m0) = µ2εg2CF

∫ 1

0
dx
∫ ddk

i(2π)d
dm0 + (2− d)(/p + /k)

(x((p + k)2 −m2
0) + (1− x)k2)2

= µ2εg2CF

∫ 1

0
dx
∫ ddk

i(2π)d
dm0 + (2− d)(/p(1− x) + /k)
(k2 − (m2

0 − p2(1− x))x)2
(105)

where in the second step the internal momentum is shifted by k→ k− xp. This makes the divisor
invariant under reflection k→ −k, so the /k term in the numerator can be dropped as it gives an
odd integral. The k-integral can be put in a standard form by going to Euclidean space using a
Wick rotation:

k0 = iK0 (106)

k2 = k2
0 − kiki = −K2

0 − KiKi = −K2 (107)

ddk = iddK (108)

So that:

Σ0(/p, m0) = µ2εg2CF

∫ 1

0
dx
∫ ddK

(2π)d
dm0 + (2− d)/p(1− x)

(K2 + L)2 (109)
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with L ≡ (m2
0 − p2(1− x))x. This way one can use eq. 44 with m2 replaced by L. Making use

of the stated results, filling in d = 4− 2ε, and putting g2 = 4παs, which is a commonly used
notation, the following result is found:

Σ0(/p, m0) = µ2ε αs

(4π)1−ε
CFΓ(ε)

(
(4− 2ε)m0

∫ 1

0
dx(m2

0x− p2x(1− x))−ε+

/p(2ε− 2)
∫ 1

0
dx(m2

0x− p2x(1− x))−ε(1− x)
)

(110)

It is convenient to factor out the kinematic part and the mass part:

Σ0(/p, m0) ≡ A(p2, m2
0)m0 + /pB(p2, m2

0) (111)

This yields:

A(p2, m2
0) = µ2ε αs

(4π)1−ε
CFΓ(ε) (4− 2ε)

∫ 1

0
dx(m2

0x− p2x(1− x))−ε (112)

B(p2, m2
0) = µ2ε αs

(4π)1−ε
CFΓ(ε) (2ε− 2)

∫ 1

0
dx(m2

0x− p2x(1− x))−ε(1− x) (113)

Expanding the expressions on ε gives in turn:

A(p2, m2
0) =

αs

4π
CF

(
4
ε
− 2− 4γE + 4 log(4π)− 4

∫ 1

0
dx log

(
m2

0x− p2x(1− x)
µ2

)
+ O(ε)

)
(114)

B(p2, m2
0) =

αs

4π
CF

(
−1

ε
+ 1 + γE − log(4π) + 2

∫ 1

0
dx log

(
m2

0x− p2x(1− x)
µ2

)
(1− x) + O(ε)

)
(115)

5.2. Renormalization

Using the dimensional regularization procedure the UV-divergent part of the quark self-energy at
1-loop has been isolated in the previous section. We will now renormalize the UV-divergences by
going to the renormalized theory by adding a 2-point quark counterterm. This gives us:

−iΣ1-loop
R (/p, mR) = −iΣ1-loop

0 (/p, mR) + g2(−i(δ(g2)
m + δ

(g2)
ψ )mR + iδ(g2)

ψ /p) (116)

Minimal subtraction (MS) In the MS-scheme at 1-loop the counterterms are defined by the
following relation, because there are only simple poles at one-loop:

coef(−iΣg≤2

R (/p, mR), ε−1) = 0 (117)

This equation splits up into two independent equalities by factorizing the parts proportional to /p
and to mR, so that:

0 = coef(−iA(g2) − i(δ(g2)
m + δ

(g2)
ψ ), ε−1) (118)

0 = coef(−iB(g2) + iδ(g2)
ψ , ε−1) (119)
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Where it is defined that A = g2 A(g2) +O(g4). From the previous equations it follows that:

δ
(g2)
m = coef(−(A(g2) + B(g2)), ε−1) (120)

δ
(g2)
ψ = coef(B(g2), ε−1) (121)

This finally leads to:

δ
(g2)
ψ g2 = − αs

4π
CFε−1 ⇒ ZMS

ψ = 1− αs

4πε
CF +O(g4) (122)

δ
(g2)
m g2 = −3αs

4π
CFε−1 ⇒ ZMS

m = 1− 3αs

4πε
CF +O(g4) (123)

Modified minimal subtraction (MS) In the modified MS scheme one also absorbs the terms γE
and log(4π), that arose in eqns 114 and 115. This leads to a slightly different definition:

ZMS
ψ = 1− αs

4π
CF

(
ε−1 + log(4π)− γE

)
+O(g4) (124)

ZMS
m = 1− 3αs

4π
CF

(
ε−1 + log(4π)− γE

)
+O(g4) (125)

On-shell scheme In the on-shell (subtraction) scheme the renormalized mass mR is directly
identified with the pole mass mP, so that mR = mP. The on-shell renormalization conditions, eqs.
85, 86 tell us:

−i Σg≤2

0 (/p, mP)
∣∣∣
/p=mP

− ig2δ
(g2)
m = 0 (126)

−i
d

d/p
Σg≤2

0 (/p, mP)
∣∣∣
/p=mP

+ ig2δ
(g2)
ψ = 0 (127)

From this δ
(g2)
m follows easily:

0 = mP(B(m2
P, m2

P)− δ
(g2)
ψ g2) + mP(δ

(g2)
ψ g2 + δ

(g2)
m g2 + A(m2

P, m2
P)) (128)

⇒ δ
(g2)
m g2 = −A(m2

P, m2
P)− B(m2

P, m2
P) (129)

= − αs

4π
CF

(
3
ε
− 1− 3γE + 3 log(4π) +

∫ 1

0
dx log

(
m2

P
µ2 x2

)
(−4 + 2(1− x)) +O(ε)

)
(130)

Explicitely evaluating the integral gives us:

ZOS
m = 1− αs

4π
CF

(
3
ε
− 1− 3γE + 3 log(4π) +

(
5− 3 log

(
m2

P
µ2

))
+O(ε)

)

= 1− 3αs

4π
CF

(
1
ε
+

4
3
− γE − log

(
m2

P
4πµ2

)
+O(ε)

)
(131)

This is in correspondence with ref. [10], equation. 12.26 (b). Furthermore:

0 = B(m2
P, m2

P)− δ
(g2)
ψ g2 + mP

d
d/p

B(p2, m2
P)|p2=m2

P
+ mP

d
d/p

A(p2, m2
P)|p2=m2

P
(132)

⇒ δ
(g2)
ψ g2 = B(m2

P, m2
P) + mP

(
d

d/p
B(p2, m2

P)|p2=m2
P
+

d
d/p

A(p2, m2
P)|p2=m2

P

)
(133)
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If one tries to evaluate this expression using the expanded form of A and B in eqs. 114 and 115,
one will end up with a divergence in the x integal. This is seen below:

d
d/p

(
A(p2, m2

P) + B(p2, m2
P)
)∣∣∣∣

/p=mP

= −
∫ 1

0
dx

αsCF
(
x2 − 1

)
πmx

(134)

This divergence shows up because we were not allowed to take the derivative after first expanding
in epsilon, because the derivative introduces different scaling behaviour as x → 0 in the integrals
in eqs. 112 and 113. Therefore one should first take the derivative on /p in the x-integral before
expanding in terms of ε. Then we find that:

d
d/p

(
A(p2, m2

P) + B(p2, m2
P)
)∣∣∣∣

/p=mP

=
4αs

(4π)1−ε
µ2εmCFΓ(ε)

∫ 1

0
dx
(
(x− 1)x(m2x2)−1−ε(x(ε− 1)− 1)ε

)
(135)

The integral has been evaluated using Wolfram Mathematica which leads to:

d
d/p

(
A(p2, m2

P) + B(p2, m2
P)
)∣∣∣∣

/p=mP

= − 4αs

(4π)1−ε
µ2εmCFΓ(ε)

m−2(ε+1)(ε− 1)
2(2ε− 1)

(136)

The integration is in principle only allowed for Re(ε) < 0, but of course in dimensional regulariza-
tion such constraints are relaxed and the analytic continuation is taken. However this does indicate
that the integral is infrared (IR-)divergent. By looking at d = 4− 2ε the integral is understood
to converge when the dimension is higher than 4. This is typical for an infrared divergence,
whereas for ultraviolet divergences one expects the integral to converge for dimensions lower than
4. Plugging eq. 136 into eq. 133 and expanding into terms of ε gives us:

δ
(g2)
ψ g2 =

αs

4π
CF

(
−3

ε
− 4 + 3γE + 3 log

(
m2

4πµ2

)
+O(ε)

)
(137)

ZOS
ψ = 1− 3αs

4π
CF

(
1
ε
+

4
3
− γE − log

(
m2

4πµ2

)
+O(ε)

)
(138)

It is seen that Zψ = Zm in the on-shell renormalization scheme. These results are in correspondence
with ref. [9]. (See eq. (6.29) in Grozin’s book and expand it on ε.)

Note that the renormalization schemes were introduced as being only different in the UV-finite
part. However, the divergent ε−1 term in the on-shell counterterm ZOS

ψ is different than the

divergent term in ZMS
ψ . This can be interpreted in the sense that the IR-divergence that was

observed in eq. 134 has now been absorbed together with the UV-divergence. In particular one
might separate the divergent part in the following way:

ZOS
ψ = 1− αs

4π
CF

(
1
ε
+

(
2
ε
+ 4− 3γE − 3 log

(
m2

4πµ2

))
+O(ε)

)
(139)

The bracketed term containing a factor 2/ε is then interpreted to be UV-finite but not IR-finite.
This is done for example in [10].

Relation between MS and on-shell mass Of theoretical interest is the relation between the MS-
and on-shell mass of the quark, because it relates the perturbative series of the theories that have
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(a) Gluon fusion

(b) Quark-antiquark annihilation

Figure 1: Dominant diagrams for the production of a tt̄ quark-antiquark pair in proton colliders

been renormalized in these schemes. The result is a finite ratio, which is found by expanding up
to order g2 and gives:

mP
mMS

= 1 + αsCF

(
3 log

(
m2

P/µ2)− 4
)

4π
+O(α2

s ) (140)

Picking the renormalization scale to be µ = mP gets rid of the logarithm.

VI. Phenomenological context

The following section touches on a few topics within particle physics related to the renormalization
of the top quark.

6.1. Experimental measurement of the top quark (mass)

The top quark was first observed in 1995 at the Fermilab pp̄ Tevatron collider, while its existence
was already suggested after the observation of the bottom quark in 1977 at Fermilab. The dominant
diagrams for the production of a tt̄ quark-antiquark pair in a pp̄ collision are shown in fig. 1, (see
ref. [11], [12]). The same processes also dominate at the LHC, which is a pp-collider, although in
different ratios. The mean lifetime of the top quark is about 5× 10−25s, which is too short-lived
for the top quark to form hadrons. Therefore the top quark behaves like a quasi-free quark. The
dominant decay of the of the top quark in the SM is the decay into a W boson and a b quark, with
a branching fraction of nearly 100%(see ref. [13]). Hence after production the tt̄ pair is expected to
undergo the following weak decay:

tt̄→W+b + W− b̄ (141)

The b, b̄ quarks will each generally fragment into a jet of hadrons. Hence the tt̄ final states can
be classified according to the decay modes of the W bosons. The W’s can decay to a lepton (in
particular an electron or muon) and a corresponding neutrino, or into hadronic jets. It turns out
that the most lucrative channel is where one of the W bosons decays into a lepton + neutrino
while the other decays into a quark-antiquark pair, forming jets. For example, at the CMS detector
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at the LHC such top quark pair events are selected. An approach of CMS for measuring the mass
of the top quark using only the kinematic properties of its charged decay products is given in [14].

The experimental signature of the top quark pair production in this channel is thus composed
of one lepton, four jets two of which come from bottom quarks, and missing transverse momentum
due to the neutrino which is not detected. The branching fraction of the leptons + jets channel
is about 29% which provides for good statistics. Generally spoken the top quark mass can be
reconstructed by reconstructing the event kinematics up to ambiguities (for example due to the
unmeasured neutrino).

A particular method is the ’template method’. It comes down to the following: make multiple
event hypotheses for the ambiguities and for each hypothesis minimize a χ2-fit by varying the top
quark mass. The best fit is taken to correspond to the correct event hypothesis and gives a value
for the top quark mass. Such an analysis is done for each event, and the combined measurements
give an estimate of the top quark mass. A slightly more in-depth general explanation can be
found in chapter 9.5 of [13] and the references therein. Furthermore a description of the use of the
template method at Atlas is given in [15].

Future higher precision measurements of the top quark are expected from high-energy eē
colliders, by looking at the threshold centre-of-mass energy region for tt̄ production. (see ref. [16].)
It turns out that the cross-section of top-quark pair production from eē interactions is highly
sensitive to the top quark mass around the threshold of production. This is illustrated in fig 2,
which gives the expected total cross-section for tt̄ production at the threshold for different values
of the top quark mass.

Figure 2: Total cross-section for tt̄ production at the threshold for different values of the top quark mass. (Figure taken
from [16].)

Both the position of the threshold as well as the peak height are seen to depend on the top
quark mass. Therefore one can do a so-called threshold scan, where the cross-section for tt̄
production is measured in the threshold region by varying the centre-of-mass energy of the
collisions. One can then make a fit for the top quark mass by comparing the threshold scan to the
theoretical prediction.

6.2. Interpretation of the measured top quark mass

The measured top mass is identified with the renormalized top quark mass, but the result depends
on the renormalization scheme used. In principle the difference in value between schemes is small
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and should become smaller as the theory is renormalized up to higher orders. This picture is
however complicated by the non-perturbative behaviour of the theory. For example, an argument
by Dyson states that QED cannot have convergent power series. The argument is roughly as
follows. Suppose some quantity is expanded perturbatively in the elementary charge (the coupling
constant of QED):

S(αe) ≈ s0 + s1αe + s2α2
e + . . . (142)

Where αe = e2/(4π) is the fine-structure constant. One can consider αe to live in the complex plane
and note that for the power series S to converge there must be some finite radius of convergence
denoted r. In particular the series should then converge for S(i α̃e) with |α̃e| < r. This however
describes a theory wherein equal charges attract and opposite charges repel, which has an unstable
vacuum and is not expected to converge. The conclusion is then that r = 0, meaning that the radius
of convergence of QED is zero. When a series has zero radius of convergence it might however
still be an asymptotic series, wherein only the first few terms of the power series expansions in the
coupling constant improve the theoretical prediction and thereafter they worsen it. (The closer
one takes αe to zero the more terms one can take in the expansion until the error increases.)

Similarly there is question about the convergent behaviour of QCD. This can be shown by
the presence of so-called renormalon ambiguities in the pole-mass. A short introduction to
renormalons is given in one the following sections. Neglecting renormalons, the one-loop relation
between the MS- and pole-mass is given by eq. 140. In the literature one often finds this result
with the explicit factor CF = 4/3 (see eq. 12.) Using this relation one can convert between both
renormalization schemes at one-loop order.

6.3. Asymptotic series

As was noted, it is suspected that perturbative series in the coupling constants of a quantum
field theory, even after renormalization, are in fact asymptotic series. These kind of series are
formalised in the definition below (see ref. [17]):

Definition. The power series ∑∞
n=0 an(x − x0)

n is said to be asymptotic to the function y(x) as
x → x0 and we write y(x) ∼ ∑∞

n=0 an(x− x0)
n for x → x0 if y(x)−∑N

n=0 an(x− x0)
n � (x− x0)

N

as x → x0 for every N.

Note that the symbol� indicates the following limit:

f (x)� g(x) as x → x0 ⇐⇒ lim
x→x0

f (x)
g(x)

= 0 (143)

Thus asymptotic series of a function f (x) satisfy the property that their partial sums can be made
an arbitrarily good approximation of f (x) when x tends to a particular point x0, which might be
infinity. This leaves open the possibility that the fully summed series is divergent. An often stated
example is the Stirling series given below2:

log Γ(z) =
1
2

log(2π) + (z− 1
2
) log(z)− z +

∞

∑
n=1

B2n

2n(2n− 1)z2n−1 (144)

=
1
2

log(2π) + (z− 1
2
) log(z)− z +

1
12z
− 1

360z3 +
1

1260z5 − . . . (145)

2This result has been taken from Wolfram Mathworld. The Stirling series can be found in many places of relevant
literature.
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The terms Bn are the Bernoulli numbers. While the series sums to infinity for any z, any truncated
sum becomes a perfect approximation to log Γ(z) as z → ∞. This is illustrated in the following
graph3:
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Even though the series ultimately diverges for each value of z, a very good approximation to
the function sought is found by truncating the sum at some optimal point. Similar behaviour is
expected for QCD. After including a significant number of loops, amplitudes are expected to start
diverging from the physical values which are measured.

Often divergent asymptotic series can be assigned a finite value when one loosens their inter-
pretation. It is possible to not interpret the series as an actual summation, but as a mathematical
object called a ’formal’ power series. Formal power series are commonly used to prove various
properties of power series while sidestepping the question of convergence.

A few short examples of how to sum infinite series are given next, which are inspired by
the PSI lectures on mathematical physics of Carl Bender, which are available online. One might
define a general summation machine S for a formal series which has the following properties of
associativity and linearity:

1. S(a0 + a1 + a2 + . . .) = a0 + S(a1 + a2 + . . .)

2. S(∑∞
i=0(λ1ai + λ2bi)) = λ1S(∑∞

i=0 ai) + λ2S(∑∞
i=0 bi)

Note that commuting terms inside a sum is not generally allowed. That means the sum a0 + a1 + . . .
is really to be interpreted as some infinite set of parameters (a0, a1, . . .) which is fed to the
summation machine S. Using the above definitions, the formal geometric series gets its usual
values for any complex value z. Say one takes z = −2 and looks at the sum ∑∞

i=0(−2)i. One finds:

S

(
∞

∑
i=0

(−2)i

)
= 1 + S

(
∞

∑
i=1

(−2)i

)
= 1− 2S

(
∞

∑
i=0

2i

)
(146)

⇒ S

(
∞

∑
i=0

2i

)
=

1
3
=

1
1 + 2

(147)

There is a good reason for not generally allowing terms to be commuted within the series.
Commutation of terms makes no difference when a series is convergent, but for a divergent sum

3This graph has been inspired by the treatment of the Stirling series on Wikipedia, at the time of writing.

33



different results are obtained when permuting terms. For example, the sum ∑∞
i=0(−1)i is equal to

1/2 using the summation machine. On the other hand:

s ≡ S(1 + 0− 1 + 1 + 0− 1 + . . .)

s− 1 = S(0− 1 + 1 + 0− 1 + 1 + . . .)

s− 1 = S(−1 + 1 + 0− 1 + 1 + 0 + . . .) (148)

Adding these three equations together gives a term S(0 + 0 + . . .) = 0 on the right side, so that
one concludes s = 2/3. This result is different from ∑∞

i=0(−1)i = 1/2 even thought the sums look
superficially similar.

What can be taken away from the short discussion is that finite values can sometimes be
assigned to divergent sums, but one needs to be consistent in the method used. (Similarly one can
use regularization and renormalization to remove infinities from a QFT, which gives unambiguous
results as long as both are done consistently.)

A summation technique that satisfies at least the two properties of the summation machine
described above is Borel summation, which is discussed next.

6.4. Borel summation

Consider a formal power series R in a coupling constant g of some theory. The series of R in g
and its so-called Borel transform B(R)(g), named after Émile Borel, are given below:

R(g) =
∞

∑
n=−1

rngn+1 B(R)(g) ≡ r−1δ(g) +
∞

∑
n=0

rn

n!
gn (149)

The Borel transform generally has a larger radius of convergence because the coefficients of the
original series are divided by factorials. Suppose that the Borel transform converges for sufficiently
small g, and that the following integral, which is called the Borel sum, exists:

Bsum(R)(g) ≡
∫ ∞

0
e−t/gB(R)(t)dt (150)

According to [17], the Borel sum can be expanded for small g by explicitely plugging in the
series of the Borel transform and integrating term-by-term which is justified by a result known as
Watson’s lemma which is also stated in [17]. This leads to:

Bsum(R)(g) ∼ r−1 +
∞

∑
n=0

rn

n!

∫ ∞

0
e−t/gtndt =

∞

∑
n=−1

rngn+1 as g→ 0+ (151)

The asymptotic relation follows from Watson’s lemma and the last equality comes from applying
repeated integration by parts on the integral:∫ ∞

0
e−t/gtndt =

[
−ge−

t
g tn
]∞

0
+ ng

∫ ∞

0
e−t/gtn−1dt = ng

∫ ∞

0
e−t/gtn−1dt

= n(n− 1)g2
∫ ∞

0
e−t/gtn−2dt

= . . .

=

(∫ ∞

0
e−t/gdt

)
n!gn = n!gn+1 (152)

(Note that the Borel transform in [17] is stated slightly different from here. The Borel transform
given here is chosen consistent with the conventions of [18].) In case the original power series R
does not converge, but the Borel sum does, it can be interpreted as a summation machine.
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6.5. Renormalons

By looking at certain unique infinite subsets of Feynman diagrams in perturbative series in QCD
one can identify non-perturbative contributions. In particular one can consider diagrams with n
massless quark bubble insertions. It turns out that integrating these diagrams over momentum
space leads to n!-behaviour which can be dealt with by doing a Borel transform. In some cases it
turns out however that there are poles in the positive real axis of the Borel plane which means the
Borel sum can’t be unambiguously defined without making a choice of integration convention
around these poles. These poles are called renormalons, and were first considered by ’t Hooft.

This will be illustrated with an example, which consists of n massless quark bubble insertions
in the gluon propagator of the massive quark self-energy diagram. This is drawn in fig. 3. The
following treatment of this type of diagram is based on ref. [18] and [19].

Figure 3: n massless bubble insertions in the massive quark one-loop self-energy diagram.

We will consider the sum over all n of the diagrams from fig. 3 and take a Borel transform of
the sum before integrating over the internal momentum. Because the bubbles are all located in the
gluon propagator it turns out one can define a ’modified’ gluon propagator which is the Borel
transform of the sum of gluon propagators with n massless quark bubble insertions. The Borel
transform of the sum of diagrams in fig. 3 is then simply found by calculating the one-loop quark
self-energy diagram but with the gluon propagator replaced by the ’modified’ gluon propagator.

The motivation behind looking at massless quark bubbles is that they admit a simpler expansion
in ε than massive bubbles. Each bubble will be considered to be renormalized in the MS-scheme.
From the gluon self-energy calculation in section 8.3 it follows that:

=
ig2TF Nlδab(kµkν − k2ηµν)

12π2

(
1
ε
+

(
5
3
− γE + log(4π)− log(−k2/µ2)

)
+O(ε)

)
(153)

Renormalizing the bubble in the MS-scheme leads to:

+ =
ig2TF Nlδab(kµkν − k2ηµν)

12π2

(
− log(−k2e−5/3/µ2)

)
(154)

where the factors log(4π) and γE disappear by convention of the MS-scheme. As the single
exception in this thesis the counterterms will not be explicitely drawn in the next few equations,
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but the bubbles are considered to be renormalized and hence finite. We consider the gluon
propagator in the Landau gauge α = 0. This means that:

a µ b ν
k =

−iδab
k2

(
ηµν − kµkν

k2

)
(155)

By concatenating numerous gluon propagators and massless renormalized bubbles one finds the
below result:

=
iδab
k4 (kµkν − k2ηµν)

(
αsTF Nl

3π
log(−k2e−5/3/µ2)

)n
(156)

Note that the coupling constant has been replaced by αs ≡ g2/(4π), which is the more common
notation in the literature, and that the external lines are included as this diagram will be inserted
into another one. Next a somewhat hand-waving operation will be done. The reader is referred
to [18] for a more in-depth analysis. We will replace Nl by −3β0/(4TF), where β0 = 11CA

3 − 4TF
3 Nl

is the first coefficient of the QCD β-function defined by:

µ
d

dµ
αs(µ) = −

β0

2π
α2

s (µ) (157)

One can think of this procedure as including some of the non-abelian behaviour of QCD into the
bubble diagrams. In [18] this replacement is motivated by considering the calculation to be part
of a 1/Nl-expansion. In that case one can write that β0 ≈ − 4TF

3 Nl and solve for Nl in terms of
β0 which gives Nl ≈ −3β0/(4TF). However, in this approximation QCD loses the property of
asymptotic freedom, so to restore the usual properties β0 is taken with its full value.

We will keep indicating the expression with bubble diagrams so that we write:

=
iδab
k4 (kµkν − k2ηµν)

(
−αsβ0

4π
log(−k2e−5/3/µ2)

)n
(158)

≡ iδab
k4 (kµkν − k2ηµν)rnun (159)

where rn = − log(−k2e−5/3/µ2)n and u = αsβ0/(4π). Next we take the Borel transform of the
sum of all n-bubble contributions seen as a power series in u. Note that in eq. 149 the numbering
between the coefficients and the power on the expansion parameter differs by 1. This was a
convenient definition, because there will be an additional term αs proportional to u coming from
the two quark gluon vertices in fig. 3. Taking the Borel transform of the sum over n of the terms
rnun in eq. 158 multiplied by an additional factor u gives:

B
(

∞

∑
n=0

rnun+1

)
(u) =

∞

∑
n=0

rn

n!
un =

(
−k2e−5/3/µ2

)−u
(160)

It is now possible to calculate the one-loop quark self-energy diagram with the ’modified’ gluon
propagator at the location of the usual one. One will need to take care that the factor g2

coming from the quark gluon vertices has already been partly absorbed. In particular one has
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g2 = −12π2u/(TF Nl) and the factor u has already been absorbed in the Borel transform. Note
that the pole mass satisfies:

mP = mMS + ΣMS(/p, mMS)

∣∣∣∣
/p=mP

(161)

Make a decomposition of the self-energy:

ΣMS(/p, mMS)

∣∣∣∣
/p=mP

= mMS A(mP, mMS) + mPB(mP, mMS) (162)

This leads to:

mP = mMS

(
1 + AMS(mP, mMS)

1− BMS(mP, mMS)

)
(163)

Following the treatment in [18] we use that A and B are proportional to 1/Nl , so that:

mP = mMS

(
1 + AMS(mP, mMS) + BMS(mP, mMS) +O

(
1

N2
l

))
(164)

Note that we can plug eq. 164 into itself and expand up to order O
(
1/N2

l
)

which then leads to:

mP = mMS

(
1 + AMS(mMS, mMS) + BMS(mMS, mMS) +O

(
1

N2
l

))
(165)

Hence one can calculate A and B and put �p = mP. This leads to the following result, which is
quoted from [18]:

mpole = mMS

δ(u) +
CF

4πNl

(m2
MS

µ2

)−u

e5u/36(1− u)
Γ(u)Γ(1− 2u)

Γ(3− u)
− 3

u
+ RΣ1(u)

 (166)

The term −3/u comes from renormalizing the whole renormalon diagram, and the term RΣ1(u)
is an entire function in the Borel plane which depends on the renormalization scheme. In the
MS-scheme it holds that RΣ1(u) = −5/2 + 35u/24 +O(u2). The delta function δ(u) comes from
transforming the constant 1 into Borel space. Looking at the eq. 168 there are seen to be poles at:

u ∈ Z≤0 ∪
{

1
2

,
3
2

,
4
2

}
∪
{

5
2
+ k

∣∣∣∣ k ∈ Z≥0

}
(167)

In particular the pole mass has poles in u on the positive real axis which means the Borel sum
cannot be unambiguously defined. The strongest renormalon is the u = 1/2 renormalon. One can
choose to either integrate slightly above the pole or slightly below. Therefore the ambiguity in
the pole mass can be estimated by the absolute value of 1/2 times the integral around the pole at
u = 1/2. Expanding around u = 1/2 yields:

mpole ≈ mMS

δ(u)− µ

mMS

e5/6CF

2πNl

(
u− 1

2

)
 (168)
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One therefore finds that:

ambiguity ≈ 1
2

∣∣∣∣ ∮
−µe5/6CF exp

(
− 4πu

β0αs

)
2πNl

(
u− 1

2

)
 du

∣∣∣∣ = e5/6CF
2Nl

µe−
2π

β0αs =
e5/6CF

2Nl
ΛQCD (169)

≈ (170 − 180) MeV (170)

where ΛQCD is the QCD scale parameter, and the numerical estimate is taken from [18]. The
integral around u = 1/2 was easily evaluated using the residue theorem.

6.6. Vacuum instability

From analysis of the running of the Higgs quartic coupling the possibility has been observed
that the Higgs potential can contain a lower minimum than the electroweak (EW-) vacuum. This
additional minimum is observed for particular regions of values of the Higgs mass and the
top quark mass to which the potential is highly sensitive as a result of providing the dominant
contributions to β(λ) = dλ/d log µ. The slope of the running coupling λ(µ) for a fixed value of
Mh = 125.7 GeV and varying values of the top quark mass is shown in fig. 4, taken from [20].

Figure 4: Plot of the running quartic coupling λ(µ). (Figure taken from [20].)

It is seen that the running coupling becomes negative at sufficiently high µ approaching the
Planck scale, which leads to the Higgs potential becoming unstable. The reason for the unstability
is that for high values of the Higgs field h the Higgs potential is dominated by the quartic
term 1

4 λ(µ)h4. Furthermore, at large field values the coupling should be evaluated at a scale
µ ∼ h. Hence this leads to the Higgs potential becoming deeper than the electroweak vacuum
at sufficiently high scales. If our universe is indeed in a local minimum, it could move to the
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lower global vacuum by either the occurence of extremely high energy processes crossing the
potential barrier or as a result of quantum tunneling. If such an event were to happen a bubble
residing in the new vacuum (with physics behaving very differently) would expand throughout
space, effectively ending the state of the universe as we know it (and all life in it). Such an event is
sometimes referred to as a ’vacuum collapse’ event.

Because extremely high-energy particle collisions occur all the time in the universe, much
larger than the energies obtainable at particle accelerators like the LHC, and because no vacuum
collapse event has yet occured (because we would not be around to wonder about it), current
accelerators do not present a risk of invoking such an event. However, through quantum tunneling
a miniscule probability of decaying to the new vacuum state can add up to a close to certainty
over time. For this reason it makes sense to look at the electroweak vacuum lifetime τEW defined
as the expected mean lifetime of the electroweak vacuum. Furthermore let τU be the age of the
universe. One might then distinguish the following cases:

1. Instability τEW < τU

2. Meta-stability τEW > τU

3. Complete stability τEW = ∞

The contours of these three regions are plotted out in the (mh, mt)-plane in fig. 5, taken from [20].

Figure 5: Stability of the electroweak vacuum, plotted out in the (mh, mt)-plane. (Figure taken from [20].)

It is seen that the current experimental measurements predict a metastable vacuum, in which
vacuum collapse will happen at some point in the future. A precise experimental determination of
the top quark mass gives a better window into the behaviour of the Higgs potential and as such
the life-time of the electroweak vacuum. Furthermore, multiloop theoretical calculations yield a
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more precise determination of the running quartic coupling and running top mass, and could
alter the shape of the contour plot.

It should be noted that some significant assumptions are at play in determining the stability
of the vacuum in the way described. In particular, in using the running coupling at very high
scales it is assumed that the effects of new physics remaing negligible which might not be the
case. Furthermore, around the Planck scale the effects of quantum gravity might also change the
physical picture. Estimating the effects of these kinds of contributions can be done by making
assumptions on the behaviour of the new physics which is outside the scope of this thesis.
Nonetheless it is seen that high precision measurement and calculation of the top quark mass is a
subject that can have significant phenomenological implications.

VII. Introducing a setup for NNLO and N3LO calculations

7.1. Introduction

The preceding sections have dealt with outlining the basics of QCD and the main topic of interest
in this thesis: to do automated multiloop calculations for the renormalization of the top quark
mass and field. To find the renormalization coefficients the self-energy has to be calculated up to
the desired loop order. Therefore an automated setup has been developed for calculating 2-point 1
particle irreducible Feynman diagrams. The main ideas involved in the automated calculation will
be discussed in the following section. The global outline of the calculation is given below:

Concept Approach used
Graph generation QGRAF
Plugging in Feynman amplitudes Custom FORM code
Finding a minimal set of topologies Custom Mathematica code
Reducing integrals by IBP-relations FIRE5 & Mathematica
Finding equivalent master integrals Custom Mathematica code
Evaluation of master integrals Manual calculations, finite integrals expansions, HyperInt
Finding the renormalization constants Custom mathematica calculation / code

A supervisor script is needed to connect all the parts together and communicate expressions
between different programs and scripts. A Mathematica notebook is used for this purpose. While
generally no explicit code will be given, the ideas and concepts will be treated so that the reader
should be able to build a similar setup based on the ideas discussed here.

FORM Use will be made of the computer algebra system FORM, which is created and developed
by dr. Jos Vermaseren at Nikhef and is widely used in particle physics. It has been in development
since 1984. It is well suited for tensor algebra and contains numerous routines that aid in
common particle physics calculations. For example it has inbuilt support for tensor algebra
and Dirac traces in arbitrary dimension. Furthermore a package is available for expressing
SU(Nc) color traces in Casimir invariants, described in [4]. For this reason FORM is perfectly
suited to automate the evaluation of Feynman rules, to reduce products of Dirac matrices, and
to evaluate the color algebra. At the time of writing, FORM can be found at its Nikhef home-
page: https://www.nikhef.nl/~form/. An extensive manual with examples is available on the
webpage and therefore no further discussion will be given on specific FORM code.
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7.2. Graph generation

The first thing needed is a way to represent Feynman diagrams in a non-visual form, and to
automatically generate all diagrams needed. In the automated setup developed for this thesis
graph generation is done using a program called QGRAF, which is widely used in particle physics
and is available on the author’s website. A detailed explanation of the QGRAF algorithm is
found in the paper [21], and the program comes bundled with a manual that explains all possible
options. An alternative is the Mathematica package ’FeynArts’ which has similar abilities but also
comes with more baggage and custom notation in setting up the QCD model and processing the
diagrams.

QGRAF is capable of presenting Feynman diagrams as a list of propagators and vertices and
gives their connections by assigning numbers to the lines of vertices and heads and tails of propa-
gators. Matching numbers indicate that the vertex and propagator are connected. Additionally it
gives the prefactors of the diagrams, which consists of the symmetry factors and the minus signs
from fermion loops.

QGRAF takes a style file, a model file and a configuration file as input. The model file specifies
the propagators and whether they are fermionic or bosonic and also the vertices of the theory. The
style file specifies the notation of QGRAF’s output which allows it to yield output compatible
with many different programs. Lastly a configuration file specifies the type of diagrams desired
by specifying the external particles of the diagrams and a set of filters. These filters can be set to
pick for example only 1-particle irreducible diagrams or diagrams without tadpoles.

The output of QGRAF should be imported in a computer algebra system (CAS) to plug in the
Feynman rules. In my setup this is done using FORM, which is described later on. It was found
convenient to specify the style file so that the output of QGRAF for each diagram is actually a
FORM statement defining a local expression. The vertices and propagators are presented with
a multiply statement between them and are given as symbolic functions of the external indices
and momenta. These symbolic function are then substituted with Feynman rules in FORM using
identify statements. The style file which has been used is given below:

<prologue>

<diagram>

Local Diag<diagram_index> = <back>

(<sign>1)*

(<symmetry_factor>)*

<propagator_loop>qgraf<field>(<momentum>,g<field_index>,

<back>g<dual-field_index>,i<field_index>,

<back>i<dual-field_index>,a<field_index>,

<back>a<dual-field_index>,mu<field_index>,

<back>mu<dual-field_index>)*

<end><back>

<vertex_loop>qgrafv<ray_loop><field><end>(<ray_loop>

<back><momentum>,g<field_index>,i<field_index>,a<field_index>,mu<field_index>,

<back><end><back>)*

<end>1;

<epilogue>

<exit>

The QGRAF output for the 1-loop quark self-energy graph using our style file is given below:

Local Diag1 =

(+1)*
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(1)*

qgrafu(-k1+p1,g1,g2,i1,i2,a1,a2,mu1,mu2)*

qgrafg(-k1,g3,g4,i3,i4,a3,a4,mu3,mu4)*

qgrafvUug(k1-p1,g2,i2,a2,mu2,p1,gn,i,b,nu,-k1,g3,i3,a3,mu3)*

qgrafvUug(-q1,g0,j,a,mu,-k1+p1,g1,i1,a1,mu1,k1,g4,i4,a4,mu4)*

1;

Note that the quark-gluon vertex carries two color indices i, j in the fundamental representation,
a color index a in the adjoint representation and a spacetime index µ (see the Feynman rules in
app. B.) The symbolic functions in QGRAF’s output contain much more indices. What is done
is that for each line the indices gx, ix, ax and mux are printed out, where x denotes the number
belonging to the line. (The indices gx will be used for the components of Dirac matrices.) The
indices which are not needed are simply ignored. For example the following ’id’ statement in
FORM amounts to plugging in the quark-gluon vertex:

id qgrafvUug(k1?,g1?,i1?,a1?,mu1?,k2?,g2?,i2?,a2?,mu2?,k3?,g3?,i3?,

a3?,mu3?)=-i_*gs*gph(mu3,g1,g2)*T(i1,i2,a3);

The function gph is temporarily used to indicate a Dirac matrix with components g1 and g2.
FORM has inbuilt support for Dirac matrices but considers them as noncommutative objects
without indices. Hence, after all the propagators and vertices are plugged in some code is used to
put the gph’s in the right order of multiplication by ordering them based on their indices. Identify
statements are then used to change the gph’s into the inbuilt Dirac matrix notation of FORM
denoted by _g.

Note that QGRAF outputs all diagrams in a single file. A small script has been written in the
supervisor notebook that splits the QGRAF output into multiple files by searching for occurrences
of ";", indicating the end of a FORM expression. Multiple instances of FORM are then run in
parallel for each diagram, with no more instances active at the same time than the number of cores
on the system.

7.3. First steps of the calculation

After plugging in the Feynman rules using FORM a number of simplifications are performed
which are outlined next.

7.3.1 Simplifying the Dirac algebra

As was already seen during the 1-loop calculation one can make a decomposition of the quark
self-energy in the following manner:

Σ(/p, m) ≡ A(p2, m2)m + /pB(p2, m2) (171)

Because the trace over a single gamma matrix is zero the coefficients A and B can be expressed in
terms of the self-energy on the left:

Tr(Σ) = 4m · A Tr(/pΣ) = 4p2 · B (172)

This means that one can express the self-energy of the quark in the following manner:

Σ =
1
4

(
Tr(Σ) + /p Tr(/pΣ)/p2

)
(173)
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Hence the self-energy can be calculated from the Dirac traces Tr(Σ) and Tr(/pΣ). Calculating Dirac
traces is inbuilt in FORM. Alternatively, if one doesn’t use FORM, it is possible to prepare a table
of trace identities of gamma matrices and lookup the traces in the table.

For a MS calculation eq. 173 can be used to find the self-energy. For an on-shell calculation
the self-energy doesn’t have to be directly computed but instead the quantity TR of eq. 92 can be
constructed which also involves doing a trace of the Dirac algebra.

7.3.2 Tracing over the color algebra

Because color charges are conserved the quark (full) propagator and self-energy are proportional
to δij. Therefore, after the Feynman rules are plugged in, the color factors can be traced over
leading to:

Σ = Trcol(Σ)δij/Nc (174)

The algorithms from [4] and corresponding FORM package are used to write the color trace into
Casimir elements.

7.3.3 Reducing tensor integrals

When calculating complicated Feynman integrals with external lines that carry space-time indices
one will encounter tensor integrals. In principle this will not be the case in this thesis because the
main focus lies on calculating the top quark self-energy, so that 2-point diagrams are considered
that carry color indices but not space-time indices. It is therefore guaranteed that after doing a
Dirac trace the self-energy contains only scalar integrals. It is however still of interest to shortly
discuss how tensor integrals can be reduced to scalar integrals. Furthermore the gluon self-
energy calculation is presented at 1-loop order which does require a reduction of tensor integrals.
Consider a Lorentz invariant Feynman integral with a tensorial term t in the numerator composed
of the internal momenta:

I~µ(p1, . . . , ph′) =
h

∏
i=1

(∫
ddki

)
t~µ(k1, . . . , kh)s(k1, . . . , kh, p1, . . . , ph′) (175)

The scalar term s can be a product of propagators (e.g a product of terms like 1/(k2 − m2))
which depends on h′ external momenta pi and h internal momenta ki. There might also be
dot products of momenta in s, but no tensorial terms, as these are assumed to be in t~µ. In
particular, ~µ = (µ1, . . . , µnt) is a vector of space-time indices. In principle some of these spacetime
indices might be contracted. In the following treatment we consider each space-time index to be
independent so that the Einstein summation convention is not working on any combination of the
indices. The case where some of the indices are contracted follows from contracting the end result
of the next discussion with Minkowski matrices.

Because the internal momenta are integrated out we can conclude the space-time indices must
be transfered to tensors with nt = ∑h

i=1 ni space-time indices which are formed from products of
Minkowski matrices η and external momenta. We let S denote the set of all such tensors with nt
indices which are independent. Then we can write that:

I~µ = ∑
s∈S

As s~µ (176)

Here {As | s ∈ S} is a set of scalars for which can be solved by doing contraction on both sides of
eq. 176 for each element s′ ∈ S. This yields #S equations and allows one to solve for all constants
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As, which are scalar integrals. To make this more concrete, consider the simple case with internal
momentum k, external momentum p, and the following integral:∫

ddk kµkνs(k, p) = Apµ pν + Bηµν (177)

A system of equations is constructed by contracting with each element in S = {pµ pν, ηµν} to find:∫
ddk (k · p)2s(k, p) = Ap4 + Bp2 (178)∫

ddk k2s(k, p) = Ap2 + Bd (179)

The system is easily solved and yields:

A =
1

(d− 1)p4

∫
dk
(

d(k · p)2 − k2 p2
)

s(k, p) (180)

B =
1

(d− 1)p2

∫
ddk

(
k2 p2 − (k · p)2

)
s(k, p) (181)

Plugging this back into eq. 177 then gives the reduction of the tensor integral to scalar integrals.
The dot products of momenta which reside in the prefactor of s and can also be in s itself can
additionally be removed by solving for the dot products in terms of the propagators of the integral
which is possible for complete topologies, a subject that is introduced in the following section.

The relations of eqs. 180 and 181 will be used to calculate the 1-loop gluon self-energy result
which is given in section 8.3.

7.4. Finding a minimal set of topologies and rewriting dot-products

Code written in FORM is used to plug in the Feynman rules for each diagram using the output
from QGRAF, and to do the simplifications outlined in the previous section. At this point every
diagram is expressed as a sum of scalar Feynman integrals multiplied by some coefficients.

To discuss these Feynman integrals it is convenient to use the term ’massive propagator’ to
denote a factor 1/(k2 −m2) for some mass and some momentum and ’massless propagator’ to
denote a factor 1/k2 for some momentum. Because the QCD model in this thesis deals with a set
of massive quarks of equal mass the term ’massive propagator’ is not ambiguous.

It also turns out to be convenient to assign symbols to the denominators of each propagator,
because these symbols will be easier to deal with algebraically. These symbols are usually denoted
by Di in this thesis and are called the denominator factors. Sometimes the denominator factors
will be called ’propagators’ as well when it does not lead to confusion. Example: in the integral
below the (denominators of the) propagators are the terms D1 ≡ −k2 + m2 and D2 ≡ −(k− p)2:

Idot-sample =
∫

ddk
k · p

(−k2 + m2)λ1(−(k− p)2)λ2
=
∫

ddk(k · p)D−λ1
1 D−λ2

2 (182)

The denominator factors are given with a minus sign on the momenta. This turns out to be
the natural way of representing the propagators when taking the alpha-parametrization, which
is derived in sec. IX. One can solve for k · p in terms of the denominator factors: k · p =
1
2 (−D1 + D2 + m2 + p2). If one uses this expression the integral can be rewritten as:

Idot-sample =
∫

ddk
k · p

(−k2 + m2)λ1(−(k− p)2)λ2
=

1
2

∫
ddk

(−D1 + D2 + m2 + p2)

Dλ1
1 Dλ2

2

= −1
2

∫
ddk

1

Dλ1−1
1 Dλ2

2

+
1
2

∫
ddk

1

Dλ1
1 Dλ2−1

2

+
1
2
(m2 + p2)

∫
ddk

1

Dλ1
1 Dλ2

2

(183)
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It is now seen that the sample integral is completely represented by integrals over the denominator
factors. In general we want to consider only integrals over denominator factors with no dot
products in the numerator, which will be called topologies. The name ’topology’ comes from the
fact that they admit diagrammatic representations. Define the following topology:

T1,2(λ1, λ2) ≡
∫

ddk D−λ1
1 D−λ2

2 (184)

The first superscript index in T1,2 indicates it is a 1-loop topology and the second index labels
the topology with a number. In app. A the results for all integrals considered in this thesis are
presented together with the numbering of the integrals. When the powers of the propagators are
integral they are often put in the subscript:

T1,2
a1,a2
≡
∫

ddk D−a1
1 D−a2

2 for λi ∈ Z (185)

In app. A the term topology refers to Feynman integrals for general complex indices λi and the
term integral is used for Feynman integrals with explicit values plugged in for the powers on the
propagators. Note that the sample integral just considered can now be written in terms of the
topology:

Idot-sample =
1
2

(
−T1,2(λ1 − 1, λ2) + T1,2(λ1, λ2 − 1) + (m2 + p2)T1,2(λ1, λ2)

)
(186)

The diagrammatic representation of this topology is just the 1-loop diagram that was considered
in section V:

Diagrammatic representations of topologies are interpreted using simple Feynman rules where
the massive propagators, denoted by solid lines, correspond to factors 1/(k2 − m2) and the
massless propagators, denoted by wiggled lines, correspond to factors 1/k2, and where k of course
denotes the momentum that flows on the line. The momenta that run through the diagram are
not explicitely included in the drawing. By not adding the momenta to the diagram it is clear that
the topology describes any equally valid choice of momenta over the propagators that satisfy the
conservation conditions at the vertices.

We want to be able to define a minimal set of topologies such that all integrals in the calculation
can be expressed in terms of these topologies. That means we should only consider topologies
that are inequivalent with respect to coordinate transformations. For example, the integrals∫

ddk(k2 −m2)−2 and
∫

ddk((k− p)2 −m2)−4 clearly belong to the same topology, which is seen
by shifting the second integral by k→ k + p. Hence these two topologies are considered to be the
same and should not both appear in the set of topologies.

To be able to rewrite dot products in terms of propagators one needs to consider only so-called
complete topologies. A topology is called complete when its propagators form a basis for all dot
products of internal momenta with internal momenta, and dot products of external momenta
with internal momenta. For the one-loop case the momenta are k, p, and the set of dot products is
{k2, k · p}. Thus the topology T1,2 is complete.
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In general for h internal momenta and h′ external momenta, the number of propagators of a
complete topology Ninv is given by:

Ninva =
h(h + 1)

2
+ hh′ (187)

Hence the 2-loop 2-point quark self-energy calculation has complete topologies consisting of 5
propagators and the 3-loop calculation has complete topologies consisting of 9 propagators.

Now let’s look at the number of independent topologies which are encountered in our
calculations. In the 1-loop quark self-energy calculation there is only 1 contributing diagram.
Hence there is only 1 topology which can be defined by hand. In the 2-loop calculation there
are already 6 contributing diagrams, which belong to 2 independent complete topologies. Lastly,
in the 3-loop calculation there are about 100 contributing diagrams, belonging to 11 complete
topologies.

To find these independent topologies an automated approach is needed, because the number
of shift-symmetries can become very large. The shift symmetries are all of the following forms:

 k1
. . .
kh

→ Ah×(h+1)


k1
. . .
kh
p1

 (188)

The matrix Ah×(h+1) has entries in the set {−1, 0, 1} and det(Ah×h) = ±1, with Ah×h denoting
the upper h× h block corresponding to the internal momenta. The determinant has to be equal to
±1 so that the absolute value of the determinant of the Jacobian of the transformation is 1. The
number of matrices Ah×(h+1) can get very large:

#Ah×(h+1) =


7 1-loop
361 2-loop
187921 3-loop

(189)

Note that the integrals in diagrammatic calculations do not usually have a complete set of
propagators. This means that these integrals can be mapped to a subset of many different complete
topologies under some change of variables. Hence the set of distinct completed topologies to
which the integrals of each diagram can be mapped is significantly smaller than the number of
diagrams.

The following steps lay out how to find a minimal set of completed scalar topologies for the
diagrams of the 2- and 3-loop calculation:

1. First store the (incomplete) topologies for all diagrams in a list, with entries (k, T) where k is
the diagram number and T the corresponding topology. This can be done by looking solely
at the QGRAF output, which contains a list of the propagators and the momenta that these
propagators carry. Of course when the Feynman rules are plugged in and tensor integrals
are reduced there will be many (sometimes thousands of) different integrals in the output
of each diagram, but these integrals only differ in the powers on the denominator factors
and not the set of denominator factors. (Some integrals might have a power of 0 on some
denominator factors though.)

2. Sort the entries (k, T) in order of descending number of propagators so that the diagram
and topology with the most propagators is the first entry.

3. Perform the following operations, described below in pseudo-code:
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Definitions / initialization
Qrem(aining) is the ordered list of pairs (k, T) in descending order of #propagators. Let Qrem[1]
denote the first pair in the ordered list.
Qcom(pleted) = ∅ is a set to be filled with entries (i, T) where i is the number of the completed
topology T.
σ is a set of entries (k, i, s) denoting that diagram k belongs to complete topology (i, T) in Qcom,
after the change of variables s is applied to the incomplete topology of k stored in Qrem.
S = {Ah×(h+1) ∈ Zh×(h+1) : |det(Ah×(h+1))| = 1} denotes the set of all allowable shift-
symmetries.
j = 1 denotes the current completed topology.

Procedure
while (Qrem is non-empty) {

(k, T)← Qrem[1];
remove (k, T) from Qrem;

if (number of propagators(T) < Ninva)
T ← random completion of T;

Qcom ← Qcom ∪ (j, T);
σ← σ ∪ (k, j, 1);

for ((k′, T′) ∈ Qrem) {
If (∃s ∈ S so that T′ under s ⊆ T) {

σ← σ ∪ (k′, j, s);
remove (k′, T′) from Qrem;

}
}

j← j + 1;
}

4 After the previous procedure has been evaluated Qrem is empty, and Qcom contains the set
of independent complete topologies. Lastly σ specifies which diagram belongs to which
topology in Qcom.

Note that at some point in the procedure incompleted topologies are extended to complete
topologies. Furthermore, the incompleted topologies of the diagrams contain only independent
propagators with respect to the scalar invariants. Therefore a completed topology is found by
picking some random new propagators so that the set of all propagators form a basis of the scalar
invariants. The new propagators are taken massless for simplicity.

7.5. The Mathematica supervisor notebook

As was noted in the introduction, a Mathematica notebook is used to control and link parts of the
calculation together. The first steps the Mathematica notebook performs are:

1. Call QGRAF and split the output into multiple files for each diagram.

2. From the QGRAF output find the set of independent topologies.
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3. Update the momenta in the QGRAF output by shifting momenta of diagram k according to
s ∈ (k, i, s) ∈ σ.

Next one wants to use FORM to perform the operations outlined earlier, like plugging in the
Feynman rules. For this purpose a ’template’-file has been put together which contains FORM
code but with a few placeholders. In particular there are placeholder for the diagram number, for
the denominator factors, and for how to rewrite dot products into denominator factors.

The Mathematica supervisor notebook loads in the template file and for each diagram writes
out a FORM file with a specific diagram number and where the substitutions of denominator
factors and dot products are done in accordance with the topology that the diagram belongs to.

For example, if a 1-loop diagram is considered that happens to belong to the topology of eq.
185, the supervisor notebook generates the following FORM statements:

id k1.k1 = -D1 + mt^2;

id k1.p1 = (-D1 + D2 + mt^2 + p1.p1)/2;

These FORM statements are put at the right placeholder and a FORM file is created for the diagram
considered. Furthermore Mathematica also automatically creates FORM code to do the expansions
in t up to order O(t2) of the quantity TR defined in 92, in the case of the on-shell calculation. This
expansion can be done by separately expanding each propagator which depends on t, and using a
FORM initialization that states every term of order t2 or higher should be dropped. For example:

1
−(k− p)2

p→Q(1+t)−−−−−−→ 1
−(k−Q(1 + t))2 =

1
−(k−Q)2 +

2tQ · (Q− k)
(−(k−Q)2)2 +O(t2) (190)

Note that:

Q · (Q− k) = m2 − 1
2
(−D1 + D2 + 2m2)

=
1
2
(D1 − D2) (191)

(With the denominator factors now defined with p replaced by Q, which satisfies Q2 = m2.) Hence
the following form code is generated:

id Dinv2 = D2^(-1) + (t*(D1 - D2))/D2^2

So generally spoken, the supervisor notebook performs the following steps:

4. Generate FORM-code for each diagram

5. Invoke the FORM-code for each diagram in parallel

The FORM programs save their result in a new file, which is then loaded back into Mathematica.
For every diagram k the resulting expressions look as follows:

diag(k) = ∑
~a

ck,~aTσ(k)
~a (192)

The sum is over powers of the propagators of the integrals in topology Tσ(k), where σ(k) is the
number of the topology belonging to diagram k. The coefficients ck,~a may be zero if the integral is
not expressed in the diagram.

If one solves for the integrals Tσ(k)
~a expressed in each diagram k, the diagram has been fully

calculated. However, the set of integrals is generally far too large to be able to calculate each
integral separately. For this reason the set of integrals will need to be reduced somehow to a
more manageable size, which is done by making use of integration by parts identities, which is
explained next.
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7.6. Reduction to master integrals using integration-by-parts relations

Some topologies can be solved analytically for arbitrary powers of the propagators. In those
cases it doesn’t matter how many integrals one has in the topology as one can evaluate them by
plugging them into the general formula. However, generally the topologies are much too difficult
to be solved in the general case.

In section III about dimensional regularization it was remarked that integration by parts (IBP)
can be applied for dimensionally regularized integrals while always setting the boundary term to
zero. It turns out that this can be used to reduce the powers of the propagators of complicated
integrals. A few examples are discussed next, where IBP-identities are derived.

Example 1 Consider the following integral with λ > 0:∫
ddk

1
(k2 −m2)λ

(193)

It holds that:

0 =
∫

ddk′
d

dkµ

[
kµ

(k2 −m2)λ

]
k=k′

= d
∫

ddk
1

(k2 −m2)λ
− 2λ

∫
ddk

k2

(k2 −m2)λ+1

= d
∫

ddk
1

(k2 −m2)λ
− 2λ

∫
ddk

(k2 −m2) + m2

(k2 −m2)λ+1

= (d− 2λ)
∫

ddk
1

(k2 −m2)λ
− 2λm2

∫
ddk

1
(k2 −m2)λ+1 (194)

⇒
∫

ddk
1

(k2 −m2)λ+1 =
d− 2λ

2λm2

∫
ddk

1
(k2 −m2)λ

(195)

It turns out that higher powers of the propagator can be lowered by repeatedly aplying the above
relation. The derivation fails when λ = 0. That means that if λ is a positive integer, I(λ) can be
expressed as a constant times I(1), which can not be further reduced.

Example 2 In the following example it is shown that ’complicated’ integrals with large powers on
the denominator factors can be reached by generating IBP-relations from the ground up. Consider
the following topology:

Ia1,a2 ≡
∫

ddk
1

(−(k− p)2)a1(−k2 + m2)a2
(196)

One can state the following IBP-identities:

0 =
d

dkµ kµ I0,1 = (2− d)I0,1 − 2m2 I0,2 (197)

0 =
d

dkµ kµ I1,1 = (3− d)I1,1 + I2,1

(
p2 −m2

)
− 2m2 I1,2 (198)

0 =
d

dkµ pµ I1,1 = I1,2

(
−m2 − p2

)
+ I2,1

(
p2 −m2

)
− I0,2 (199)
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(Note that the derivative and vector on the left are of course taken inside of the integrals so a
slight abuse of notation is used.) Solving for I1,2, I2,1, I0,2 leads to:

I1,2 = −2(d− 3)m2 I1,1 + (d− 2)I0,1

2m2 (m2 − p2)
(200)

I2,1 =
(d− 3)I1,1

(
m2 + p2)+ (d− 2)I0,1

(m2 − p2)
2 (201)

I0,2 = − (d− 2)I0,1

2m2 (202)

These relations allow us to ’simplify’ the integrals I1,2, I2,1, I0,2. Now generate IBP-identities for
these integrals:

0 =
d

dkµ kµ I0,2 = (4− d)I0,2 − 4m2 I0,3 (203)

0 =
d

dkµ kµ I1,2 = (5− d)I1,2 + I2,2

(
p2 −m2

)
− 4m2 I1,3 + I2,1 (204)

0 =
d

dkµ kµ I2,1 = (4− d)I2,1 + I3,1

(
2p2 − 2m2

)
− 2m2 I2,2 (205)

0 =
d

dkµ pµ I1,2 = I1,3

(
−2m2 − 2p2

)
+ I2,2

(
p2 −m2

)
− 2I0,3 + I1,2 + I2,1 (206)

Substituting the relations for I1,2, I2,1, I0,2 and solving for I0,3, I1,3, I2,2, I3,1 leads to:

I0,3 =
(d− 4)(d− 2)I0,1

8m4 (207)

I1,3 =
(d− 4)

(
4(d− 3)m4 I1,1 + (d− 2)

(
3m2 − p2) I0,1

)
8m4 (m2 − p2)

2 (208)

I2,2 = −
2(d− 3)m2 ((d− 4)m2 + (d− 6)p2) I1,1 + (d− 2)

(
(2d− 9)m2 − p2) I0,1

2m2 (m2 − p2)
3 (209)

I3,1 =
(d− 5)(d− 2)

(
m2 + p2) I0,1 + (d− 3)

(
(d− 4)m4 + 2(d− 6)m2 p2 + (d− 4)p4) I1,1

2 (m2 − p2)
4 (210)

One can continue in the manner outlined until some desired integral is reached which is then
fully expressed in the integrals I0,1 and I1,1 which are the so-called master integrals because they
cannot be reduced any further. Note that the IBP-relations become increasingly complex the more
are generated.

Example 3 Consider the following 2-loop topology,

Ia1,a2,a3,a4,a5 =
∫ ∫ ddk1ddk2

(−(k1)2)a1(−(k1 − p1)2)a2(−(k2)2)a3(−(k2 − p1)2)a4(−(k1 − k2)2)a5
(211)

Then it holds that:

d
dkµ

1
(kµ

1 − kµ
2 )I1,1,1,1,1 = 0 =(4 + d)I1,1,1,1,1 − I1,2,1,0,1 + I1,2,1,1,0−

I2,1,0,1,1 + I2,1,1,1,0 (212)
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Making use of shift-symmetries to reduce 4 integrals to 2 one finds:

I1,1,1,1,1 =
2(I1,2,1,1,0 − I1,2,1,0,1)

d− 4
(213)

The integrals on the right hand side have only 4 contributing propagators which makes them
easier to evaluate.

The Laporta algorithm The previous examples give an idea of the power of IBP-relations. For
general multiloop topologies there is not a good strategy to reduce complicated integrals to master
integrals but to generate all possible IBP-relations from the ground up and solve the linear system
created for the integrals deemed the most complex, in a similar manner to example 2. This
approach becomes computationally very expensive but is currently the most fruitful in state of the
art N3LO and N4LO calculations. The algorithm in which this approach is fully worked out is
called the Laporta algorithm, which is first described in [22].

The Laporta algorithm has been implemented in a number of widely used software packages.
For this thesis the C++ version of the program FIRE5 has been used, which is described in [23].
Again the supervisor Mathematica notebook is used for automatically setting up the required
configuration for FIRE for each topology and for invoking the program to run. Because FIRE5 runs
separately on each topology what can happen is that the master integrals for different topologies
are in fact the same under some change of variables. For this reason some code has been written
in Mathematica that reduces the final set of master integrals using shift-symmetries as in eq. 188.

After applying the IBP-reduction the completely automated calculation provides us with an
expression for each diagram k in terms of master integrals:

diag(k) = ∑
i

ck,i Mi (214)

The sum runs over all the master integrals, denoted by Mi, and the ck,i are coefficients. The next
step is to solve the master integrals to finish the calculation of each diagram. Generally every
master integral will have to be solved in a case-by-case analysis. If numerical results are sufficient a
close to automated method of evaluation is obtained by using the finite integral expansion method
from section X. First results from the automated setup will be presented using the expressions
for master integrals stated in app. A, which are derived using the methods from the sections
afterwards.

VIII. Results from automated calculations

8.1. Quark 1-loop self-energy (general gauge)

Using the automated calculation the 1-loop self-energy for general gauge parameter α was derived,
which gives the following result:

A(p2, m2
0) =

αsCF
4πε

(
(α + 3)

ε
− 2 + (α + 3)

(
−γE + log(4π)−

∫ 1

0
dx log

(
m2

0x− p2x(1− x)
µ2

))
+O(ε)

)
(215)

B(p2, m2
0) =

CFαs α

4πε

(
−1

ε
+ 1 + γE − log(4π) + 2

∫ 1

0
dx log

(
m2

0x− p2x(1− x)
µ2

)
(1− x) +O(ε)

)
(216)
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Interesting is to note that B(p2, m2
0) is proportional to the gauge parameter. Plugging in α = 1

reproduces eqs. 114, 115.

8.2. Quark 1-loop on-shell renormalization

The on-shell renormalization constants for the quark at 1-loop were already derived in the previous
section for the convenient choice α = 1. Using the setup that was developed it is now easy to
check whether this choice was allowed. The quantity TR from eq. 92 expanded to order O(t2)
evaluates to:

T1-loop
R (mP) = −g2µ2ε i CF(d− 2)(d− 1)(t− 1)I1,1

2(d− 3)m2
P

+O(t2) (217)

where I1,1, defined in appendix A, is a massive tadpole integral. Using equations 97, 98 and
expanding in ε shows that:

δ
(g2)
m g2 = δ

(g2)
ψ g2 =

CFαs

4π

(
−3

ε
− 4 + 3γE + 3 log

(
m2

P
4πµ2

))
+O(ε) (218)

The result is in correspondence with equations 131, 137. It is remarked that the result here was
derived for a general gauge parameter α which drops out. Hence the on-shell renormalization
constants are gauge independent. It can not be claimed that the on-shell renormalization constants
are always gauge independent and in [8] it’s shown that the 3-loop on-shell wave function
renormalization constant is in fact gauge dependent.

8.3. Gluon 1-loop self-energy

While the main concern of this thesis is to calculate the top quark self-energy it is a good effort to
calculate the gluon self-energy at 1-loop and compare it to the literature. This is because already at
1-loop order all the vertices and propagators of the Feynman rules are expressed in the diagrams,
except for the 4-gluon vertex which gives a so-called snail diagram which is trivially zero because
it is proportional to a scaleless integral. The contributing diagrams at 1-loop order are given
below:

−iΠµν(p) = + + + (219)

We let −iΠµν
G,Gh,Q,QM be the gluon, ghost, quark and massless quark bubble diagrams. The master

integrals turn out to be I1,1, I1,2 and I1,3 from appendix A. The following expressions were found:

−iΠµν
Q (p) = g2µ2εδabNhTF

(
pµ pν − p2ηµν

) 2
(
(d− 2)p2 I1,3 + 2(d− 2)I1,1 + 4m2 I1,3)

(d− 1)p2 (220)

−iΠµν
Qm(p) = g2µ2εδabNlTF

(
pµ pν − p2ηµν

) 2(d− 2)
d− 1

I1,2 (221)

−iΠµν
Gh(p) = g2µ2εδabCA

(
(d− 2)pµ pν + p2ηµν

)
4(d− 1)

I1,2 (222)

−iΠµν
G (p) = g2µ2εδabCA I1,2 1

8(d− 1)
((

pµ pν

(
4(α(α + 5)− 3) + (α− 1)(α + 7)d2 + (17−
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α(5α + 26))d
)
− p2

(
4(α + 5)α + (α− 1)(α + 7)d2 + (19− α(5α + 26))d− 14

)
ηµν
))

(223)

−iΠµν(p) = g2µ2εδab

(
pµ pν − p2ηµν

) 1
8(d− 1)p2

(
16TF

(
(d− 2)p2(I1,3 + I1,2) + 2(d− 2)I1,1+

4m2 I1,3
)
+ CA I1,2 p2

(
4(α(α + 5)− 4) + (α− 1)(α + 7)d2 + (19− α(5α + 26))d

))
(224)

These diagrams can be expanded in ε by plugging in the explicit expressions for the master
integrals. The results of this expansion has been compared up to finite order with an expansion of
the results of appendix A of ref. [3] and was found to be in agreement.

This gives confidence that the calculation works as required. The analytical expressions take a
slightly different form from those in stated in ref. [3], but it should be possible to use analytical
relations to make both representations look the same. Note that in the comparison there is a minus
difference, due to a difference in the definition of the self-energy. This is seen by comparing the
expression for the full gluon propagator in eq. (2.5.165) of ref. [3] to ours in eq. 36.

The massless quark bubble diagram is used in the renormalon calculation, and its ε-expansion
is desired. With the integral I1,3 filled in one finds:

−iΠµν
2,massless(p) =g2µ2εδabTF(pµ pν − p2ηµν)

4i(−p2)−ε(ε− 1)Γ(1− ε)2Γ(ε)
(4π)2−ε(2ε− 3)Γ(2− 2ε)

(225)

The expansion in ε up to order O(ε) turns out to be:

−iΠµν
2,massless(p) =

ig2TFδab(pµ pν − p2ηµν)

12π2

(
1
ε
+

(
5
3
− γE − log

(
−p2

4πµ2

))
+O(ε)

)
(226)

8.4. Quark field and mass renormalization at NNLO

There are eight 2-loop 1-particle irreducible diagrams in the quark self-energy. They are drawn
below:

−iΣ(g4)
0 (/p, m) = + + + (227)

+ + + (228)

+ (229)
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On-shell renormalization The on-shell 2-loop renormalization can be done by calculating
TR(p2, m2

P) of eq. 92 and expanding up to order O(t2). From the IBP-reduction one finds 3
master integrals: I2,1, I2,2 and I2,3 from appendix A. The exact expressions of the diagrams in
terms of the master integrals are too long to present here, and wouldn’t be very insightful anyway.
For this reason the renormalization constants are presented here directly as power expansions in ε.
Following the conventions of [8] we define:

a0 =
α
(bare)
s
π

Γ(1 + ε)m−2ε

(4π)−ε
(230)

The renormalization constants are presented as power series expansions in a0. These expansions
are significantly simpler than expansions in g2 or αs because the Γ functions are not expanded out
which gets rids of logarithmic factors and terms like γE. Write the renormalization constants as
follows:

ZOS
m = 1 + a0CFZ(1),OS

m + a2
0CFZ(2),OS

m + a3
0CFZ(3),OS

m (231)

ZOS
ψ = 1 + a0CFZ(1),OS

ψ + a2
0CFZ(2),OS

ψ + a3
0CFZ(3),OS

ψ (232)

The 1-loop coefficients are:

Z(1),OS
m = Z(1),OS

ψ = − 3
4ε
− 1− 2ε− 4ε2 +O(ε3) (233)

For the 2-loop coefficients it is convenient to group terms based on their color structure. Define
the following:

Z(2),OS
m = CFd(2)1 + CAd(2)2 + TF Nld

(2)
3 + TF Nhd(2)4 (234)

Z(2),OS
ψ = CF f (2)1 + CA f (2)2 + TF Nl f (2)3 + TF Nh f (2)4 (235)

Then the following results were found for the mass renormalization constant:

d(2)1 =
9

32ε2 +
45
64ε

+

(
199
128
− 5π2

16
+

1
2

π2 log(2)− 3ζ3

4

)
+

(
677
256
− 55π2

32
+

π4

20
+ 3π2 log(2)−

3
2

π2 log2(2)− 6ζ1,−3 −
33ζ3

4
+

21
2

log(2)ζ3

)
ε +

(
1167
512
− 1255π2

192
− π4

30
+ 11π2 log(2)+

7
30

π4 log(2)− 9π2 log2(2) + 3π2 log3(2)− 36ζ1,−3 + 36 log(2)ζ1,−3 + 36ζ1,1,−3 −
297ζ3

8
−

3π2ζ3

2
+ 63 log(2)ζ3 −

63
2

log2(2)ζ3 + 39ζ5

)
ε2 +O(ε3) (236)

d(2)2 = − 11
32ε2 −

91
64ε

+

(
− 605

128
+

π2

12
− 1

4
π2 log(2) +

3ζ3

8

)
+

(
− 3799

256
+

19π2

48
− π4

40
−

3
2

π2 log(2) +
3
4

π2 log2(2) + 3ζ1,−3 +
13ζ3

4
− 21

4
log(2)ζ3

)
ε +

(
− 23269

512
+

125π2

96
− 11π4

180
−

11
2

π2 log(2)− 7
60

π4 log(2) +
9
2

π2 log2(2)− 3
2

π2 log3(2) + 18ζ1,−3 − 18 log(2)ζ1,−3 − 18ζ1,1,−3+

13ζ3 +
3π2ζ3

4
− 63

2
log(2)ζ3 +

63
4

log2(2)ζ(3)− 39ζ5

2

)
ε2 +O(ε3) (237)
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d(2)3 =
1

8ε2 +
7

16ε
+

(
45
32

+
π2

12

)
+

(
279
64

+
7π2

24
+ ζ3

)
ε +

(
1701
128

+
15π2

16
+

4π4

45
+

7ζ(3)
2

)
ε2 +O(ε3)

(238)

d(2)4 =
1

8ε2 +
7

16ε
+

(
69
32
− π2

6

)
+

(
463
64
− 5π2

6
+ π2 log(2)− 7ζ3

2

)
ε +

(
3053
128
− 3π2 − 7π4

90
+

5π2 log(2)− 3π2 log2(2)− 12ζ1,−3 −
35ζ3

2
+ 21 log(2)ζ3

)
ε2 +O(ε3) (239)

The following was found for the wave function renormalization constant:

f (2)1 =
9

32ε2 +
51
64ε

+

(
433
128
− 13π2

16
+ π2 log(2)− 3ζ(3)

2

)
+

(
211
256
− 89π2

32
+

π4

10
+

23
4

π2 log(2)−

3π2 log2(2)− 12ζ1,−3 −
147ζ3

8
+ 21 log(2)ζ3

)
ε +

(
4889
512
− 2321π2

192
− 7π4

24
+

41
2

π2 log(2)+

7
15

π4 log(2)− 69
4

π2 log2(2) + 6π2 log3(2)− 69ζ1,−3 + 72 log(2)ζ1,−3 + 72ζ1,1,−3 −
513ζ3

8
−

3π2ζ(3) +
483

4
log(2)ζ3 − 63 log2(2)ζ3 + 78ζ5

)
ε2 +O(ε3) (240)

f (2)2 = − 11
32ε2 −

101
64ε

+

(
− 803

128
+

5π2

16
− 1

2
π2 log(2) +

3ζ3

4

)
+

(
− 4241

256
+

41π2

48
− π4

20
−

23
8

π2 log(2) +
3
2

π2 log2(2) + 6ζ1,−3 +
129ζ3

16
− 21

2
log(2)ζ3

)
ε +

(
− 30163

512
+

117π2

32
+

11π4

240
−

41
4

π2 log(2)− 7
30

π4 log(2) +
69
8

π2 log2(2)− 3π2 log3(2) +
69
2

ζ1,−3 − 36 log(2)ζ1,−3 − 36ζ1,1,−3+

205ζ3

8
+

3π2ζ3

2
− 483

8
log(2)ζ3 +

63
2

log2(2)ζ(3)− 39ζ5

)
ε2 +O(ε3) (241)

f (2)3 =
1

8ε2 +
9

16ε
+

(
59
32

+
π2

12

)
+

(
369
64

+
3π2

8
+ ζ3

)
ε +

(
2259
128

+
59π2

48
+

4π4

45
+

9ζ(3)
2

)
ε2 +O(ε3)

(242)

f (2)4 =
1

4ε2 +
19
48ε

+

(
1139
288
− π2

3

)
+

(
20275
1728

− 19π2

12
+ 2π2 log(2)− 7ζ3

)
ε +

(
450395
10368

−

67π2

12
− 7π4

45
+

19
2

π2 log(2)− 6π2 log2(2)− 24ζ1,−3 −
133ζ3

4
+ 42 log(2)ζ3

)
ε2 +O(ε3)

(243)

Up to order ε0 direct agreement with [8] can be read off. For the ε1 coefficients the following
relation gives the same result:

ζ1,−3 =
1
48

(
96a4 + 84ζ(3) log(2)− π4 + 4 log4(2)− 4π2 log2(2)

)
(244)

This was found by taking the difference between the result from [8] and our calculation and
solving for ζ1,−3, assuming both results are correct. A quick numerical calculation, in which we
calculate ζ1,−3 using eq. 451 gives:

ζ1,−3 ≈ 0.087785671568655302 . . . (245)
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Using that a4 ≡ ∑∞
n=1

1
2nn4 and numerically evaluating the right side of eq. 244 yields the same

result up to very high order. (A quick check was done that gave agreement up to order 10−80 by
setting the precision in Mathematica very high and calculating the zeta sum up to 200 terms, after
which 20 Shanks transformations were taken to speed up convergence.) In the derivation of the
3-loop master integrals our results correspond with [24] when using eq. 244.

An extra coefficient of order ε2 is presented here for the NNLO renomalization constants,
compared to [8]. To find the expansion up to order ε2 the master integral I2,3

OS had to be derived
up to order ε4, because it is multiplied by a term 1/ε2 in the exact expression.

8.5. Partial results for field and mass renormalization at N3LO

Using the automated setup a 3-loop calculation was performed. There are 100 diagrams con-
tributing to the 3-loop self-energy. All diagrams were calculated in terms of master integrals and
reduced using IBP-relations, although the ε-expansions of the renormalization constants have not
been completely derived.

Therefore only partial results will be presented for the 3-loop renormalization constants. The
3-loop renormalization constants can be grouped based on color structure. Define the following:

Z(3),OS
m = C2

Fd(3)1 + CFCAd(3)2 + C2
Ad(3)3 + CFTF Nld

(3)
4 + CFTF Nhd(3)5 + CATF Nld

(3)
6 +

CATF Nhd(3)7 + T2
F Nl Nhd(3)8 + T2

F N2
h d(3)9 + T2

F N2
l d(3)10 (246)

Z(3),OS
ψ = C2

F f (3)1 + CFCA f (3)2 + C2
A f (3)3 + CFTF Nl f (3)4 + CFTF Nh f (3)5 + CATF Nl f (3)6 +

CATF Nh f (3)7 + T2
F Nl Nh f (3)8 + T2

F N2
h f (3)9 + T2

F N2
l f (3)10 (247)

The ε-expansions of the coefficients d(3)8 , d(3)9 , d(3)10 and f (3)8 , f (3)9 , f (3)10 have been derived which is
done by considering diagrams with 2 quark bubbles. (Note that the diagram with two massive
quark bubbles is not trivial as it cannot be done with successive integration.) There are 20 master
integrals in the 3-loop calculation. Out of the 20 master integrals one needs 8 integrals to calculate
the mentioned coefficients: I3,8, I3,9, I3,13, I3,14, I3,15, I3,16, I3,18 and I3,19 which are given in app. A.
The results are shown below:

d(3)8 = − 1
18ε3 −

17
54ε2 +

−304 + 9π2

162ε
+

1
486

(
− 4064− 9π2(−26 + 36 log(2)) + 918ζ3

)
+(

− 26582
729

+
64a4

3
− 59π4

540
+

8 log4(2)
9

+
1

162
π2
(

349− 828 log(2) + 288 log2(2)
)
+

415ζ3

27

)
ε +O(ε2) (248)

d(3)9 = − 1
36ε3 −

17
108ε2 +

− 385
324 + π2

9
ε

+

(
− 5441

972
+ π2

(
79

135
− 2 log(2)

3

)
+

53ζ3

18

)
+

(
− 92294

3645
+

64a4

3
− 11π4

72
+

8 log4(2)
9

+

2π2
(

2918− 3555 log(2) + 1125 log2(2)
)

2025
+

4397ζ3

270

)
ε +O(ε2) (249)

d(3)10 = − 1
36ε3 −

17
108ε2 +

−223− 18π2

324ε
+

1
972

(
− 2687− 306π2 − 1026ζ3

)
+
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1
29160

(
− 40140π2 − 4077π4 − 20(15728 + 8721ζ3)

)
ε +O(ε2) (250)

f (3)8 = − 1
12ε3 −

7
18ε2 +

− 31
9 + π2

6
ε

+

(
− 1168

81
− 1

6
π2(−7 + 8 log(2)) + 4ζ3

)
+

(
128a4

3
−

37π4

270
+

4
9

π2
(

11− 23 log(2) + 8 log2(2)
)
+

2
243

(
− 8870 + 216 log4(2) + 3969ζ3

))
ε +O(ε2)

(251)

f (3)9 = − 1
12ε3 −

5
36ε2 +

− 131
54 + 2π2

9
ε

+

(
− 6887

648
+ π2

(
11
10
− 4 log(2)

3

)
+ 7ζ3

)
+

(
− 1023397

19440
+

152a4

3
− 47π4

120
+

19 log4(2)
9

+ π2
(

23263
4050

− 33 log(2)
5

+
17 log2(2)

9

)
+

2847ζ3

80

)
ε +O(ε2)

(252)

f (3)10 = − 1
36ε3 −

23
108ε2 +

−325− 18π2

324ε
+

1
972

(
− 4025− 414π2 − 1026ζ3

)
+

1
29160

(
− 475780−

58500π2 − 4077π4 − 235980ζ3

)
ε +O(ε2) (253)

The derived expansions have been compared with [8] up to finite order and are in agreement. The
coefficient ε1 is presented here as well. This is possible because the 3-loop master integrals have
been plugged in up to order ε2. In the exact calculation these master integrals are multiplied by a
factor 1/ε. Some of the 3-loop integrals in app. A were calculated to an order smaller than ε2. In
those cases the missing coefficients up to order ε2 were taken from the results in [24]. That means
all the results are presented with a4 ≡ ∑∞

n=1
1

2nn4 , instead of ζ1,−3.

IX. Parametrizing Feynman integrals using the alpha-representation

The evaluation of master integrals is the only part of the calculation that cannot be completely
automated, although as will become clear later on some progress can be made by automating
numerical evaluations of master integrals using so-called finite integral expansions.

The evaluation of master integrals is aided by moving to the so-called alpha-representation
given in eq. 273. The derivation of the alpha-representation is treated in the following section.
The alpha-parametrization is well known in literature and the treatment in the next section is
inspired by [7] and [25], although these references do not provide a derivation in the amount of
detail presented here.

9.1. Derivation of the alpha-representation

A particular way to parametrize Feynman integrals is the alpha-representation, which is derived
below. The main formula of interest rewrites a denominator into an exponent:

1
Da =

ia

Γ(a)

∫ ∞

0
dα αa−1 exp [−iDα] (254)

where a ∈N≥1. This formula can be derived by starting with the integral and repeatedly using
integration by parts relations. From the product rule it holds that:

d
dα

[
1
−iD

αa−1e−iDα

]
= αa−1e−iDα +

i
D
(a− 1)αa−2e−iDα (255)
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Integrating the total derivative from 0 to ∞ gives zero since:∫ ∞

0
dα

d
dα

[
1
−iD

αa−1e−iDα

]
=

[
1
−iD

αa−1e−iDα

]∞

0
= 0 (256)

Thus one finds after repeatedly applying integration by parts:∫ ∞

0
dα αa−1 exp [−iDα] =

∫ ∞

0
dα

1
iD

(α− 1)αa−2 exp [−iDα]

= . . .

=
(a− 1)(a− 2) . . . 1

(iD)a−1

∫ ∞

0
e−iDαdα

=
(a− 1)!
(iD)a =

Γ(a)
(iD)a (257)

Rearranging the terms Γ and i leads to eq. 256. Next, consider a general Feynman integral
topology Ta1,...,an :

Ta1,...,an =
∫

ddk1 . . . ddkh
1

Da1
1
· . . . · 1

Dan
n

(258)

Dj ≡ −(Djj′ P̃j′)
2 + m2

j (259)

(Note that a summation is implied for indices which occur twice. Occasionally the sums will be
written out explicitely.) The notation P̃ = (k1, . . . , kh, p1, . . . , ph̃) is used, where the k j denote the
internal momenta, the pj denote the external momenta and the number of internal and external
momenta are defined by h, h̃ respectively. Furthermore, the terms Djj′ are coefficients of the
momenta, expected to lie in {−1, 0, 1}, but it is not necessary to assume this. Hence the term
Djj′ P̃j′ simply denotes some linear combination of the momenta. Note that the propagators are
defined with a negative sign on the momentum term. Repeatedly apply eq. 256 to get:

Ta1,...,an =
ia1+...+an

Γ(a1) . . . Γ(an)

∫ ∞

0
dα1 . . .

∫ ∞

0
dαn αa1−1

1 . . . αan−1
n

∫
ddk1 . . . ddkh exp

[
−i

n

∑
j=1

Djαj

]
(260)

Next make the following definition:

i ∑
j
(∑

j′
Djj′ P̃j′)

2αj ≡ i

∑
jj′

Ajj′k j · k j′ + 2 ∑
j
(qj · k j) + ∑

jj′
Cjj′ pj · pj′

 (261)

The left hand expression is simply separated into three parts. The matrix A groups terms with
dot products of internal momenta. The vector q groups dot products of external momenta with
internal momenta. The matrix C groups the terms that only depend on external momenta. Note
that the entries qj contain external momenta, whereas the entries of A and C are scalars with
respect to spacetime. Making use of the definition one finds:

Ta1,...,an =
ia1+...+an

Γ(a1) . . . Γ(an)

∫ ∞

0
dα1 . . .

∫ ∞

0
dαn αa1−1

1 . . . αan−1
n ·∫

ddk1 . . . ddkh exp
[
i(Aijki · k j + 2qi · ki + Cij pi pj −m2

i αi)
]

(262)
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The momentum integrals can now be evaluated by recognizing a Gaussian integral, and using eq.
416, derived in app. C. The derivation of the Gaussian integral in the appendix holds for positive
integer dimension, so for now we assume that dimensional regularization is not active.

A subtle point is that the integrals over the internal momenta that we are considering integrate
around the poles of the Feynman propagators as outlined in section II in the paragraph on
Feynman propagator prescription. It turns out that this does not affect the derivation of the
Gaussian integral formula, so we can safely use the result of eq. 416. The motivation is as follows:

Focus on a particular pole in one of the propagators, and shift the momentum parameters
so that the propagator considered depends on a single internal momentum parameter. Looking
at eqs. 254 and 259 it is clear that the zeroth component of the momentum in the exponent has
prefactor (−i) · (−1) = i. Hence the integration region that is used for the Gaussian integral is
that of fig. 9 in app. C and this is in the top-half plane while in the conventions discussed in
section II the pole on the right is shifted down / we integrate slightly above the pole. So there is
indeed no pole in the interior of fig. 9 and the usual derivation holds.

Hence, it follows that:

Ta1 ...an =
e

iπ
2 [a1+...+an+h(1− d

2 )]

Γ(a1) . . . Γ(an)
πh d

2

∫ ∞

0
dα1 . . .

∫ ∞

0
dαn αa1−1

1 . . . αan−1
n ·

(det A)−
d
2 exp

[
−iA−1

ij qi · qj + iCij pi · pj − im2
i αi

]
(263)

To simplify this expression define the following polynomials:

det A = U (264)

i
V
U

= −iA−1
ij qi · qj + iCij pi · pj ⇒ V =

[
−A−1

ij qi · qj + Cij pi · pj

]
U (265)

The polynomials U and V are called the first and second Symanzik polynomials respectively. The
topology is now written as:

Ta1 ...an =
e

iπ
2 [a1+...+an+h(1− d

2 )]

Γ(a1) . . . Γ(an)
πh d

2

∫ ∞

0
dα1 . . .

∫ ∞

0
dαn αa1−1

1 . . . αan−1
n U−

d
2 exp

[
i
V
U
− im2

i αi

]
(266)

The exponent is simplified further by defining a third polynomial W:

W ≡ −V + U
n

∑
j=1

m2
j αj ⇒ −i

W
U

= i
V
U
− i

n

∑
j=1

m2
j αj (267)

This leads to the following parametrization of Ta1 ...an :

Ta1 ...an =
e

iπ
2 [a1+...+an+h(1− d

2 )]

Γ(a1) . . . Γ(an)
πh d

2

∫ ∞

0
dα1 . . .

∫ ∞

0
dαn αa1−1

1 . . . αan−1
n U−

d
2 exp

[
−i

W
U

]
(268)

It turns out that the exponent can be removed by doing a change of variables. Let αj = ηα′j so that

α′1 + . . . + α′n = 1. The Jacobian of this transformation is ηn−1, which can be seen for example by
explicitely letting αn = η(1−∑n−1

j=1 α′j) and calculating the Jacobian. Instead, we will introduce a
term δ

(
1−∑n

i=1 α′i
)
, to rewrite T as:

Ta1 ...an =
e

iπ
2 [a+h(1− d

2 )]

Γ(a1) . . . Γ(an)
πh d

2

∫ ∞

0
dα′1 . . .

∫ ∞

0
dα′n α′a1−1

1 . . . α′an−1
n δ

(
1−

n

∑
i=1

α′i

)
·

∫ ∞

0
dηηa−1U−

d
2 exp

[
−i

W
U

]
(269)
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The definition a ≡ a1 + . . . an is used from now on. We would like to use the formulas from before,
namely, eqs. 264, 265 and 267 for U, V and W, but we substituted αj = ηα′j. Therefore we define:

U = ηhU′

V = ηh+1V′

W = ηh+1W ′ (270)

Then eqs. 264, 265 and 267 apply for U′, V′, W ′ with αj replaced by α′j. This is seen from analyzing
the degree of the polynomials. Let deg(P) be the degree of the monomials of the alpha-parameters
in the polynomial P.

Firstly, U = det(A), and every nonzero entry in A carries a factor αi for some index i.
Furthermore A has dimension h× h, so, deg(U) = h. Similarly we have deg(qi) = 1 for nonzero
qi, deg(Cij) = 1 for nonzero Cij and deg(A−1

ij ) = −1 for nonzero A−1
ij . From this and eq. 265 it is

clear deg(V) = h + 1. Lastly from eq. 267 it is then also seen deg(W) = h + 1. Therefore it holds
that:

Ta1 ...an =
e

iπ
2 [a+h(1− d

2 )]

Γ(a1) . . . Γ(an)
πh d

2

∫ ∞

0
dα′1 . . .

∫ ∞

0
dα′n α′a1−1

1 . . . α′an−1
n δ

(
1−

n

∑
i=1

α′i

)
·

∫ ∞

0
dηηa−1− hd

2 (U′)−
d
2 exp

[
−iη

W ′

U′

]
(271)

The η-integral is easily evaluated by recognizing an integral representation of the Γ function (eq.
418):

∫ ∞

0
dηηa−1− hd

2 exp
[
−iη

W ′

U′

]
= Γ

(
a +

hd
2

)(
i
W ′

U′

)−a+ hd
2

(272)

Using this in eq. 271 leads to:

Ta1 ...an =
Γ(a− hd

2 )

Γ(a1) . . . Γ(an)
(iπ

d
2 )h

∫ ∞

0
dα1 . . .

∫ ∞

0
dαn δ

(
1−

n

∑
i=1

αi

)
αa1−1

1 . . . αan−1
n Ua− d

2 (h+1)W−a+ hd
2

(273)

This parametrization is what will be referred to as the alpha-representation of a topology Ta1 ...an

in this thesis. Sometimes eq. 269 is also referred to as the alpha-parametrization, or in other texts
as the Schwinger parametrization.

The alpha-parametrization was derived assuming the dimension and powers on the propagators
are integers and positive. By extending these to complex parameters an analytic continuation of
Feynman integrals is defined by eq. 273. Such reasoning is for example used in [7]. Hence we
will use the alpha-parametrization to deal with dimensionally regularized integrals as well as
non-integer powers on propagators.

For the purposes of this thesis a function was written in Mathematica that takes in a set of
propagators and powers and uses eqs. 261, 264, 265 and 267 to find the U and W polynomials.
The alpha-representation is then easily retrieved from eq. 273.

An interesting observation is that, except for the delta function, eq. 273 is invariant under a
rescaling of all alpha-parameters by some factor λ. This is a simple result which follows from the
degrees of the polynomials in eqs. 270 and from looking at the powers which they are raised to in
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eq. 273. Rescaling αi → λαi (⇒ dαi → λdαi) and counting the power of λ gives:

degλ(T) = n + (a− n) + h ·
(

a− d
2
(h + 1)

)
+ (h + 1) ·

(
−a +

hd
2

)
= 0 (274)

where degλ(T) denotes the degree of T in λ. This type of rescaling does not preserve the delta
function but one can do a similar rescaling such that the delta function is in fact preserved which
is explained in the next section on the projective transform.

9.2. Projective transforms

The alpha-parametrization of Feynman integrals contains a factor δ(1−∑n
i=1 αi) with n denoting

the number of propagators. It turns out it is possible to rescale alpha-parameters while keeping
the delta function in the same form, using a projective transform. This kind of transform was
first considered in the context of Feynman integrals in [26]. Let λi > 0 and consider the following
change of variables:

αi =
λiβi

∑n
j=1 λjβ j

for i = 1, . . . , n (275)

Starting from eq. 273 this leads to:

Ta1 ...an =
Γ(a− hd

2 )

Γ(a1) . . . Γ(an)
(iπ

d
2 )h

∫ ∞

0
dβ1 . . .

∫ ∞

0
dβn δ

(
1−

n

∑
i=1

βi

)
λa1

1 . . . λan
n βa1−1

1 . . . βan−1
n ·

Ua− d
2 (h+1)∣∣

αi→λi βi
W−a+ hd

2
∣∣
αi→λi βi

(276)

The notation Ua− d
2 (h+1)

∣∣
αi→λi βi

indicates that we take the usual U polynomial and replace the
alpha-parameters according to αi → λiβi. Note that the delta function has retained its usual
form with the alpha-parameters replaced by the new parameters. If we relabel the betas back to
alpha-parameters we see that it is possible in the alpha-parametrization to simply rescale naively
in the following manner: dαi → λi dαi and αi → λiαi, while also keeping the delta function in its
usual form.

It is not possible to directly do the transformation of eq. 275 inside the alpha-parametrization,
because the Jacobian matrix is singular. To do the transformation one can first integrate out αn
leading to αn → αn(~α) = 1− ∑n−1

i=1 αi. The bracketed notation indicates αn is interpreted as a
function over the other alpha-parameters. Hence eq. 273 becomes:

Ta1 ...an =
Γ(a− hd

2 )

Γ(a1) . . . Γ(an)
(iπ

d
2 )h

∫ 1

0
dα1 . . .

∫ 1−∑n−2
i=0 αi

0
dαn−1 αa1−1

1 . . . (αn(~α))
an−1Ua− d

2 (h+1)W−a+ hd
2

(277)

One also ’imagines’ replacing αn in the U and W polynomials by αn(~α). Next apply the transform
of eq. 275 on the variables α1, . . . , αn−1 but with βn(~β) = 1−∑n−1

i=1 βi. Note that also:

αn(~α) = 1−
∑n−1

j=i λiβi

∑n−1
j=1 λjβ j + λnβn(~β)

(278)

=
λnβn(~β)

∑n−1
j=1 λjβ j + λnβn(~β)

(279)
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Hence, αn(~α) transforms as expected. One can calculate the Jacobian determinant J of this change
of coordinates which turns out to be:

|J| = λ1 · . . . · λn

(∑n−1
j=1 λjβ j + λnβn(~β))n

(280)

Thus the Jacobian determinant gives the same result as naively rescaling the differentials according
to dαi → dβiλi/(∑n−1

j=1 λjβ j + λnβn(~β)). It is known that under an equal rescaling of all the
alpha-parameters and differentials the rescaling factor cancels out. For this reason the factor
(∑n−1

j=1 λjβ j + λnβn(~β))−1 cancels out. Therefore, after the change of variables one finds:

Ta1 ...an =
Γ(a− hd

2 )

Γ(a1) . . . Γ(an)
(iπ

d
2 )hλ1 · . . . · λn

∫ 1

0
dβ1 . . .

∫ 1−∑n−2
i=0 βi

0
dβn−1 (λ1β1)

a1−1 . . . (λnβn(~β))
an−1·

·Ua− d
2 (h+1)∣∣

αi→λi βi
W−a+ hd

2
∣∣
αi→λi βi

(281)

Note that the bounds on the integration region kept the same form with αi replaced by βi. This is
seen as follows. Consider that αi = 0 for some i = 1, . . . , n− 1. Then we have:

0 =
λiβi

∑n−1
j=1 λjβ j + λnβn(~β)

⇔ βi = 0 (282)

Next suppose that αi = 1−∑1≤j<i αj for some i = 1, . . . , n− 1. This also means that αj = β j = 0
for all i < j ≤ n. Plugging in the change of coordinates and multiplying out the denominators
gives:

λiβi

∑1≤j≤i λjβ j + λn(1−∑1≤j≤i β j)
= 1−

∑1≤j<i λiβi

∑1≤j≤i λjβ j + λn(1−∑1≤j≤i β j)

⇒ 0 = λn(1− ∑
1≤j≤i

β j)

⇒ βi = 1− ∑
1≤j<i

β j (283)

This shows the bounds in eq. 281. Lastly because the terms βn(β) were not written out but kept
in functional notation one can simply introduce a delta function δ(1− ∑n

i βi) and change the
integration domain back so that every parameter is integrated from 0 to infinity. This gives eq.
276.

Integrals with a factor δ(1− ∑n
i=1 αi) and which are invariant under a projective transform

with λi = 1 for all i = 1, . . . , n are called projective forms. Hence the alpha-parametrization of a
Feynman integral is a projective form. Note that when a factor δ(1−∑n

i=1 αi) is present in a scalar
integral one can also make the integral into a projective form by applying a projective transform
with λi = 1.

9.3. The Cheng-Wu theorem

It turns out that projective forms like the alpha-parametrization obey an interesting integration
theorem, which is called the Cheng-Wu theorem [27].
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Cheng-Wu Theorem The delta function in the alpha-parametrization of a Feynman integral in
the form of eq. 273 can be changed to δ(1−∑αi∈S αi), where S denotes a non-empty subset of the
alpha-parameters.

A simple proof of the Cheng-Wu theorem follows from eq. 268. To derive eq. 273 we rescaled
the integration parameters by letting αj = ηα′j under the constraint ∑n

i=1 α′j = 1. Now instead let:

αj = ηα′j for j = 1, . . . , n (284)

subject to ∑
α′i∈S

α′i = 1 with S ⊆ {α′1, . . . , α′n} (285)

If one puts explicitely that α′n = η(1−∑α′i∈S α′i) the Jacobian J takes the following form:

J =


η 0 . . . 0 α1
0 η . . . 0 α2

. . . . . . . . . . . . . . .
0 0 . . . η αn−1
−ηδ1 −ηδ2 . . . −ηδn−1 1−∑i∈S αi

 (286)

where δi = 1 if i ∈ S and δi = 0 otherwise. The determinant is found to be ηn−1 by expanding the
determinant along the bottom row using Laplace’s formula. We can now proceed analogous to eqs.
271, 272 and 273 with the delta function replaced by δ(1−∑α′i∈S α′i), which proofs the theorem.

Corollary In the alpha-parametrization in eq. 273 it is possible to set one integration parameter
to 1, and integrate the other integration parameters from 0 to infinity.

The corollary can also be shown by doing a projective like transform:

αi =
βi

∑n
k=1,k 6=j βk + 1

for all i 6= j (287)

This transforms the δ-function into:

δ

(
1−

∑n
i=1,i 6=j βi

∑n
k=1,k 6=j βk + 1

− αj

)
= δ

(
1

∑n
k=1,k 6=j βk + 1

− αj

)
(288)

Integrating out αj results in plugging in αj = 1/(∑n
k=1,k 6=j βk + 1). Furthermore, it turns out that

the Jacobian determinant J of transformation 287 satisfies:

|J| =
(

n

∑
k=1,k 6=j

βk + 1

)−n

(289)

Using the fact that the alpha-parametrization is a projective form, the denominator
(

∑n
k=1,k 6=j βk + 1

)−1

completely cancels out. Hence one can effectively put one of the alpha-parameters to 1 and inte-
grate the other parameters from 0 to ∞. It it stressed however that this only works for projective
forms.
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9.4. Probing divergences using power counting

A method is needed to quantify the divergent structure of Feynman integrals. Discussed next is a
simple ’power counting’ technique that archieves this goal. The discussion will be illustrated by
looking at the scalar integral in the alpha-parametrization of I2,2

OS:

I2,2
part =

3

∏
i=1

(∫ ∞

0
dαi

)
(α1 + α2)

d−3 α2d−6
3 (α1α2 + α3α2 + α1α3)

3− 3d
2 δ

(
1−

3

∑
i=1

αi

)
(290)

There are no negative coefficients in the integrand. Therefore one can conclude that any divergences
of the integral must be in regions where subsets of the alpha-parameters go to zero because those
regions are the only ones where poles can occur. There cannot be divergences at infinity because
the integration region is a finite 3-simplex by virtue of the delta function. We will let S denote the
subset of alpha-parameters which go to zero simultaneously.

To probe whether a singularity exists in a given region one can rescale combinations of alpha-
parameters by a common factor λ and factor out λ as much as possible. The differentials are also
rescaled, so a proper coordinate transformation is done. The exponent of λ gives an indication of
whether the integral is divergent in the region considered.

The delta function in the integral can be ignored as long as one sticks to regions with at
least one alpha-parameter being nonzero so that we probe from within the integration domain.
For example, one considers the change of variables α1 → λα1, α2 → λα2 to prope the region
S = {α1, α2} meaning that α1 → 0, α2 → 0.

Let div(S) be the exponent of the scale-parameter λ after it has been factored out as much as
possible. Factoring out λ is thought of in the following sense, illustrated by an example:

(λα1 + λα2 + α3)(λα1 + λα2)λα2
factor λ−−−−→ λ2(λα1 + λα2 + α3)(α1 + α2)α2 (291)

The following claims are made:

1. If div(S) ≤ 0 the integral experiences a singularity at region S.

2. If div(S) > 0 the integral does not experience a singularity at region S

A rigorous proof of this claim will not be made here, but it is supported by common intuition on
the behaviour of scalar integrals. Some examples of convergent and divergent integrals are given
below:

1. The integral
∫ 1

0
dα1
α1

is divergent.

2. The integral
∫ 1

0

∫ 1
0

dα1dα2
α1+α2

is convergent.

3. The integral
∫ 1

0

∫ 1
0

dα1dα2
(α1+α2)2 is divergent.

The first example satisfies div(S = {α1}) = 0 and is divergent. In the second example div(S =
{α1, α2}) = 1 and the integral is convergent. In the third example one finds div(S = {α1, α2}) = 0
and there is a divergence.

The power counting method might miss a singularities because the assumption is made that
the parameters considered go to zero at an equally fast rate. In principle one could expect a
divergence to only pop up when some of the parameters go to zero at a faster rate than the others.
These regions might additionally be found by rescaling parameters according to different powers
of λ. In the integrals that were looked at in this thesis such behaviour was not observed. An
example of an integral which looks superficially finite, but is divergent is given below:
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4. The integral
∫ 1

0

∫ 1
0 dα1dα2

α1α2
2

(α2
1+α4

2)
2 is divergent.

A divergence is observed upon rescaling α1 → λ2α1, α2 → λα2.
The scalings div(S) for all subsets of alpha-parameters of the integral I2,2

part are shown below:

S div(S) S div(S)

{α1} 1 {α1, α2} ε

{α2} 1 {α1, α3} 1− ε

{α3} 3− 4ε {α2, α3} 1− ε

Because we are interested in the limiting case ε→ 0 the region α1 → 0, α2 → 0 falls in the case
div(S) = 0 and the other regions fall in the case div(S) > 0. Hence the integral experiences a
singularity at S = {α1, α2} when ε → 0. It turns out one can remove such a divergent from the
integral and perform a ’finite integral’ expansion, where ’finite integral’ refers to a set of integrals
which are finite under the limit ε→ 0. This will be clarified in the next section.

X. Finite integral expansions

10.1. Motivation

A method will be discussed to write divergent integrals as linear combinations of integrals which
are finite under ε → 0. The coefficients multiplying the finite integrals will contain divergent
factors ε−k, for k ≥ 1. As a trivial example, the Euler gamma function satisfies Γ(1 + x) = x Γ(x).
Furthermore Γ(x) admits a representation as an integral, given in eq. 418. One can therefore write:

Γ(ε) =
1
ε

Γ(1 + ε) (292)

The left hand side is interpreted to be the divergent integral, whereas the right hand side is the
finite integral expansion (in this case consisting of a single finite integral). Considering finite
integrals is beneficial because one can do a power series expansion in ε inside of the integral
which is not possible for integrals which diverge as ε→ 0. For example, it is well known that the
Laurent series in ε of Γ(ε) is given by:

Γ(ε) ≈ 1
ε
− γE +O(ε) (293)

Now try the integral representation of eq. 418 and expand in ε inside of the integral:

Γ(ε) =
∫ ∞

0
xε−1e−x dx ≈

∫ ∞

0

e−x

x
dx + ε

∫ ∞

0

e−x log(x)
x

dx +O(ε2) (294)

The expansion is clearly not allowed as the pole 1/ε is not present. Indeed, the expansion
coefficients do not converge, so for example

∫ ∞
0

e−x

x dx is not a well-defined integral. Now instead
consider a power series expansion inside the integral defining Γ(1 + ε):

Γ(1 + ε) =
∫ ∞

0
xεe−x dx ≈

∫ ∞

0
e−x dx + ε

∫ ∞

0
e−x log(x) dx +O(ε2) (295)

= 1− ε γE +O(ε2) (296)
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Using that Γ(ε) = Γ(1 + ε)/ε one reproduces eq. 293.
When doing power series expansions in ε of finite integrals each coefficient in the expansion

can be calculated by a numerical integrator. This means that master integrals can be calculated
numerically in an automated fashion if an automated method can be found for doing finite integral
expansions of complicated Feynman integrals. Furthermore, the Maple package ’HyperInt’ [1]
will be used in this thesis to calculate a number of complicated 3-loop integrals. This program is
basically a powerful symbolic integrator which can be used for calculating expansion coefficients
in ε of finite Feynman integrals.

HyperInt includes some code to do finite integral expansions. The method used in HyperInt
is outlined in [28], and has a similar effect as the ’projective trick’ discussed in the following
section. The aim in the following sections is to improve the analysis of finite integral expansions
and the possibilities of HyperInt by looking at methods of getting rid of so-called ’spurious poles’
which are poles that seem to show up, but are seen to be zero once their integrals are integrated.
Furthermore we will then show how a finite integral expansion can be done automatically through
recursive power counting and application of the projective trick.

10.2. The projective trick

Note that power counting the integral of Γ(ε) leads to the following expression:∫ ∞

0
λεxε−1e−λx dx (297)

so that div(S = {x}) = ε. Make the observation that the integral does not depend on λ. Hence it
must hold that:

0 =
d

dλ

(∫ ∞

0
λεxε−1e−λx dx

)
= ε

∫ ∞

0
λε−1xε−1e−λx dx−

∫ ∞

0
λε+1xεe−λx dx (298)

Put λ = 1 on the right side to derive that:∫ ∞

0
xε−1e−x dx =

1
ε

∫ ∞

0
xεe−x dx (299)

This reproduces eq. 292. It turns out that in a completely similar manner finite integral expansions
are derived for non-trivial Feynman integrals. Let’s first look at a slightly more complex example:
the Euler beta function. Note that B(ε, ε + 1) is divergent for ε→ 0. The divergence is isolated as
follows:

B(ε, ε + 1) =
Γ(ε)Γ(1 + ε)

Γ(1 + 2ε)
=

1
ε
· Γ(1 + ε)2

Γ(1 + 2ε)
=

(1 + 2ε)

ε

Γ(1 + ε)2

Γ(2 + 2ε)
=

(1 + 2ε)

ε
B(ε + 1, ε + 1)

(300)

Consider the integral representation of B(ε, ε + 1) in the form of eq. 431:

B(ε, ε + 1) =
∫ ∞

0
dα1

∫ ∞

0
dα2 αε−1

1 αε
2 δ(1− α1 − α2) (301)

The Beta function can also be written as a projective form by including a factor (α1 + α2)
1−2ε:

B(ε, ε + 1) =
∫ ∞

0
dα1

∫ ∞

0
dα2 αε−1

1 αε
2 (α1 + α2)

1−2ε δ(1− α1 − α2) (302)

66



From power counting the divergence is in the region α1 → 0. The rescaling of α1 by a factor λ
can be done by actually performing a projective transform which keeps the delta function intact
because the beta function has been stated as a projective form. This leads to an expression:

B(ε, ε + 1) =
∫ ∞

0
dα1

∫ ∞

0
dα2 λεαε−1

1 αε
2 (λα1 + α2)

1−2ε δ(1− α1 − α2) (303)

Hence, div(S = {α1}) = ε. Noting that B(ε, ε + 1) does not depend on λ leads to:

0 =
d

dλ

∫ ∞

0
dα1

∫ ∞

0
dα2 λεαε−1

1 αε
2 (λα1 + α2)

1−2ε δ(1− α1 − α2)

= ε
∫ ∞

0
dα1

∫ ∞

0
dα2 λε−1αε−1

1 αε
2 (λα1 + α2)

1−2ε δ(1− α1 − α2)+

(1− 2ε)
∫ ∞

0
dα1

∫ ∞

0
dα2 λεαε

1αε
2 (λα1 + α2)

−2ε δ(1− α1 − α2) (304)

Putting λ = 1 gives that:

B(ε, ε + 1) =
(

1− 2ε

ε

)
B(ε + 1, ε + 1) (305)

The same relation as in eq. 300 is now found and the divergence of the integral has been isolated.
To summarize, we have seen that power counting involves rescaling subsets of alpha-parameters

by some factor λ and singularities can be found by looking at the exponent of λ after it has been
factored out. It turns out, at least in the two cases just considered, that taking a derivative on λ
leads to a relation where the original integral is expressed in new integrals where the divergence
has disappeared in the region S.

Let’s take a look again at the scalar integral in the alpha-parametrization of I2,2
OS in eq. 290. It

was seen that there is one divergent region S = {α1, α2}. Apply the following projective transform:

α1 →
λα1

λα1 + λα2 + α3
α2 →

λα2

λα1 + λα2 + α3
α3 →

α3

λα1 + λα2 + α3
(306)

This leads to the following result, where we explicitely put d = 4− 2ε:

I2,2
part =

3

∏
i=1

(∫ ∞

0
dαi

)
λε (α1 + α2)

1−2εα2−4ε
3 (α1α2λ + α3α2 + α1α3)

3(ε−1)δ

(
1−

3

∑
i=1

αi

)
(307)

Taking a derivative on λ and putting λ = 1 yields:

I2,2
part =

(
3
ε
− 3
) 3

∏
i=1

(∫ ∞

0
dαi

)
α1α2 (α1 + α2)

1−2ε α2−4ε
3 (α2α3 + α1α2 + α1α3)

3ε−4 δ

(
1−

3

∑
i=1

αi

)
(308)

The scalings div(S) for all subsets of alpha-parameters of the integral on the right are:

S div(S) S div(S)

{α1} 2 {α1, α2} 1 + ε

{α2} 2 {α1, α3} 1− ε

{α3} 3− 4ε {α2, α3} 1− ε
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Hence for all regions div(S) > 0 under the limit ε→ 0, meaning that the integral on the right
is finite. From now on the previous steps will be referred to as the projective trick. The projective
trick hence refers to the following operations:

The projective trick on a projective form I and region S

1. Take a projective transform:

αi →
λαi

λ
(

∑j∈S αj

)
+ ∑j/∈S αj

for i ∈ S αi →
αi

λ
(

∑j∈S αj

)
+ ∑j/∈S αj

for i /∈ S (309)

2. Let Ĩ denote the integral I after applying the projective transform.

3. Factor λ out of Ĩ as much as possible.

4. Write down the equation 0 = ((d/dλ) Ĩ)|λ=1 and solve for I.

After applying the projective trick, the original projective form is rewritten into new integrals for
which div(S) has increased. (This even works if we already have div(S) > 0.) None of the other
regions S′ will have div(S′) lowered.

The projective trick was an idea of Franz Herzog at Nikhef who introduced it to me using
the beta function as an example, and who invited me to look at applying it to more complex
Feynman integrals. In collaboration we have looked at applying the projective trick to Feynman
integrals and while doing this I have developed a few ideas, stated as rules of thumb, to deal with
overcounted divergences which will be encountered in the following section.

The projective trick works as long as a nonzero power of λ can be factored out after applying the
projective transform. Note that for a projective form the projective transform is really equivalent
to rescaling αi → λαi and dαi → λdαi for i ∈ S while not altering the delta function. If a nonzero
power of λ has been factored out the derivative, the expression ((d/dλ) Ĩ)|λ=1 will contain a term
equal to the original integral, which is why step 4. is possible.

Note that all the other integrals that come from 0 = ((d/dλ) Ĩ)|λ=1 have div(S) improved.
A proof for this is not given, but it is motivated with an example. Look at eq. 307. Taking a
derivative on λ and using the product rule for derivatives, there is an integral containing a term

d
dλ

(α1α2λ + α3α2 + α1α3)
3ε−3 = α1α2 (α1α2λ + α3α2 + α1α3)

3ε−4 λ=1−−→ α1α2 (α1α2 + α3α2 + α1α3)
3ε−4

(310)

Note that (∗) ≡ (α1α2 + α3α2 + α1α3)
3ε−3 contributes to the power counting of the regions S =

{α1, α2}, {α1, α3} and {α2, α3} but not of the regions S = {α1}, {α2} or {α3}. This is because
every monomial in (∗) contains at least one of α1, α2 and α3 but not all of them. Hence, when
the exponent of (λα1α2 + α3α2 + α1α3)

3ε−3 is lowered by 1 due to the derivative this can only
affect div({α1, α2}), div({α2, α3}) and div({α1, α3}). However, because every monomial contains
at least one of α1, α2 and α3, the numerator term d/dλ(λα1α2 + α3α2 + α1α3) will contain at least
one of the parameters in these regions so div(·) cannot be lowered for any of these regions. Lastly
div({α1, α2}) is net increased by 1: it lowers by 1 because (λα1α2 + α3α2 + α1α3)

3ε−3 loses 1 in the
exponent, but then it gains 2 because of the term α1α2. Furthermore div({α1}) and div({α2}) turn
out to increase as well.

To remove all the divergences in a Feynman integral the projective trick has to be applied
recursively. This leads to the following algorithm:
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The recursive projective trick

1. For all S ⊂ ∪n
i=1{αi} calculate div(S).

2. Take some region S which satisfies div(S) < 0 if such a region exists, else we are done.

3. Apply the projective trick for region S.

4. For each new integral apply the recursive projective trick (go to step 1.)

The recursive projective trick terminates because div(S) is always increased when div(S) < 0 and
none of the other regions are lowered (but possibly increased.) Note that in the second step no
directions are given on which region S to take. It turns out that it matters in some cases in which
order the singular regions are removed.

All the previous cases have been rather simple. Complications may arise for more complicated
integrals. Consider the scalar integral part of the Feynman parametrization of I2,3

OS in app. A:

I2,3
part =

3

∏
i=1

(∫ ∞

0
dαi

)
(α1 + α2)

1−2ε(α1 + α3)
1−2ε(α2 + α3)

1−2ε(α2α3 + α1α2 + α1α3)
−3+3εδ

(
1−

3

∑
i=1

αi

)
(311)

The scalings div(S) are given below:

S div(S) S div(S)

{α1} 1 {α1, α2} ε

{α2} 1 {α1, α3} ε

{α3} 1 {α2, α3} ε

It is seen that there are singularities in all regions S consisting of 2 alpha-parameters. It
turns out that a Laurent expansion of eq. 311 has only a simple pole 1/ε so the divergences are
overcounted by the power counting procedure. Some intuition behind this is that the 3 regions
do not overlap: when for example (α1, α2)→ (0, 0), it also holds that α3 → 1 because of the delta
function.

To keep the expressions simple the following notation is introduced:

T(a1, a2, a3, a4, a5, a6, a7) =
3

∏
i=1

(∫ ∞

0
dαi

)
αa1

1 αa2
2 αa3

3 (α1 + α2)
a4(α1 + α3)

a5(α2 + α3)
a6 ·

· (α2α3 + α1α2 + α1α3)
a7 δ

(
1−

3

∑
i=1

αi

)
(312)

In this notation I2,3
part is written as:

I2,3
part = T(0, 0, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε) (313)
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Some code in Mathematica was written to apply the recursive projective trick. Let’s follow the
steps. Putting S = {α1, α2} it is found that:

I2,3
part = −

(
3(ε− 1)

ε

)
T(1, 1, 0, 1− 2ε, 1− 2ε, 1− 2ε, 3ε− 4)−(

1− 2ε

ε

)
T(1, 0, 0, 1− 2ε,−2ε, 1− 2ε, 3ε− 3)−(

1− 2ε

ε

)
T(0, 1, 0, 1− 2ε, 1− 2ε,−2ε, 3ε− 3) (314)

The last integral on the right is equal to the second under the relabeling α1 ↔ α2. Consider the
divergent regions of the two independent integrals:

S div(S) S div(S)

{α1} 2 {α1, α2} 1 + ε

{α2} 2 {α1, α3} ε

{α3} 1 {α2, α3} ε

(a) Scalings of T(1, 1, 0, 1− 2ε, 1− 2ε, 1− 2ε, 3ε− 4)

S div(S) S div(S)

{α1} 2 {α1, α2} 1 + ε

{α2} 1 {α1, α3} ε

{α3} 1 {α2, α3} ε

(b) Scalings of T(1, 0, 0, 1− 2ε,−2ε, 1− 2ε, 3ε− 3)

It is seen that both integrals still have 2 remaining divergent regions. Hence the projective
trick is applied again on the resulting integrals for the remaining regions. Applying the projective
trick two more times and writing only integrals which are independent under a relabeling of the
alpha-parameters gives the following result:

I2,3
part =

(
12
ε2 −

48
ε

+ 48
)

T(0, 1, 2, 1− 2ε,−2ε,−2ε− 1, 3ε− 3)+(
−18

ε2 +
54
ε
− 36

)
T(0, 2, 2, 1− 2ε, 1− 2ε,−2ε− 1, 3ε− 4)+(

− 2
ε3 +

12
ε2 −

24
ε

+ 16
)

T(1, 1, 1,−2ε,−2ε,−2ε, 3ε− 3)+(
27
ε3 −

135
ε2 +

216
ε
− 108

)
T(1, 1, 2, 1− 2ε,−2ε,−2ε, 3ε− 4)+(

−72
ε3 +

270
ε2 −

306
ε

+ 108
)

T(1, 2, 2, 1− 2ε, 1− 2ε,−2ε, 3ε− 5)+(
60
ε3 −

141
ε2 +

108
ε
− 27

)
T(2, 2, 2, 1− 2ε, 1− 2ε, 1− 2ε, 3ε− 6) (315)

All the integrals on the right are free of divergences. Expanding the finite integrals in powers of
ε and using the inbuilt integrator of Wolfram Mathematica up to goal precision 7, gives us the
following numerical result:

I2,3
part ≈

0× 10−8

ε3 +
0× 10−7

ε2 +
3.000000

ε
+ 2.500000 + 7.184802ε + 8.043951ε2 − 7.363772ε3 +O(ε4)

(316)
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There are terms proportional to ε−3 and ε−2 but these have vanishing coefficients up to the
precision of the calculation. From an exact derivation of I2,3

part it can be shown these coefficients are
exactly zero. These poles which are the result of non-trivial cancellations between coefficients of
the finite integrals will be called ’spurious’ poles. Spurious poles are quite undesirable for the
following reasons:

1. One needs to calculate more coefficients than necessary.

2. The expansion coefficients in ε of finite Feynman integrals become increasingly complex the
higher the order in ε. For a numerical calculation this decreases the accuracy. Furthermore,
using HyperInt the expansion coefficients can be calculated exactly. However the compu-
tation time HyperInt needs to compute the next coefficient in ε grows exponentially. For
complex 3-loop integrals HyperInt might take hours to calculate coefficients once it reaches
some order. For example, suppose some divergent integral has been expanded in finite
integrals and HyperInt takes an hour for the coefficient of order εp for some integer p. If
a different finite integral expansion were done with k spurious poles one can expect the
coefficient of order εp−k to already take a computation time of about an hour.

It turns out that using some rules of thumb spurious poles can be removed for all the integrals
which have been considered in this thesis. Some intuition for this is developed next by again
considering I2,3

part.

A first attempt at removing spurious poles Observe that the delta function enforces (α1 + α2 +
α3 = 1). Multiply I2,3

part in the form of eq. 311 by (α1 + α2 + α3). This leads to:

T(0, 0, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε) = T(1, 0, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε)+

T(0, 1, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε)+

T(0, 0, 1, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε)

= 3T(1, 0, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε) (317)

The last step follows from the fact that all three integrals are the same under a relabeling of the
alpha-parameters. Probing for divergences yields:

S div(S) S div(S)

{α1} 2 {α1, α2} 1 + ε

{α2} 1 {α1, α3} 1 + ε

{α3} 1 {α2, α3} ε

It is seen that there is only one divergent region left, so 2 overcounted divergences have
disappeared. That this is possible was initially expected because the divergent regions were all non-
overlapping in the integration domain. We want to remove the remaining divergent region using
the projective trick. This is not directly possible because T(1, 0, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε) is
not a projective form. The integral can be turned into a projective form by applying a projective
transform with λi = 1 for all i = 1, 2, 3. The result is equivalent to what would have been obtained
if we initially multiplied I2,3

part by a factor 1 = (α1 + α2 + α3)/(α1 + α2 + α3).
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After the integral is turned back into a projective form one can apply the projective trick. In
the resulting integrals we remove the factors (α1 + α2 + α3) using the delta function so we can
keep the notation of eq. 312. The result is:

T(0, 0, 0, 1− 2ε, 1− 2ε, 1− 2ε,−3 + 3ε) =
3
ε

(
T(0, 0, 1, 2− 2ε, 1− 2ε, 1− 2ε, 3ε− 3)+

(4ε− 2)T(0, 1, 1, 1− 2ε, 1− 2ε,−2ε, 3ε− 3)−

3(ε− 1)T(1, 1, 1, 1− 2ε, 1− 2ε, 1− 2ε, 3ε− 4)
)

(318)

This finite integral expansion is considerably more dense than what was obtained before and
there are no spurious poles. For numerical integration the above finite integral expansion is a
reasonable result. It turns out that for exact evaluation using a program like HyperInt the finite
integral expansion just derived is problematic. To explain this we first need to provide a few more
words about HyperInt.

HyperInt HyperInt is a maple package, developed by dr. Erik Panzer, which is able to exactly
calculate the coefficients of finite Feynman integrals seen as power series in ε. The algorithms
behind HyperInt are described in [29] and [1]. The mathematics behind HyperInt is based on a
general class of functions called hyperlogarithms. These functions are closely related to so-called
multiple polylogarithms, stated in eq. 452. An introduction to the mathematics of harmonic
polylogarithms and harmonic sums for use in calculating Feynman integrals can be found in [30]
and [31]. The mathematics behind these polylogarithms is a very broad subject hence they will
not be further discussed here.

There are however a few points to know about HyperInt to understand the following discussion.

1. HyperInt works by integrating Feynman integrals one integration (alpha-)parameter at a
time.

2. For every integration step the partial integral has to be a hyperlogarithm in the next
integration variable. This roughly means that at each integration step the polynomials
occurring in the calculation should factor linearly with respect to the current integration
variable. This condition is called the linearly reducible integration condition. A more precise
formulation is given in [1].

3. HyperInt includes code for doing finite integral expansions in a similar manner to what has
been described here (although it does not use the projective trick.) Namely, one applies power
counting to probe for divergent regions, and for each divergent region a procedure is applied
to remove the divergent region. In HyperInt this function is called ’dimregPartial’. However,
HyperInt does not include a function for applying the recursive projective trick which
recursively calls itself on resulting integrals until all divergences are removed. Furthermore,
HyperInt includes no methods for dealing with spurious poles, which will be developed
here.

4. HyperInt generally only works on Feynman integrals when using the corollary from section
9.3, meaning that one of the alpha-parameters is set to 1 and the other parameters are
integrated from 0 to infinity. If one tries to integrate a Feynman integral using for example
that αn = 1−∑n−1

i=1 αi while adjusting the integration bounds accordingly to a n− 1 simplex,
the integral will usually not be linearly reducible.
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It turns out that the finite integrals from eq. 318 cannot be evaluated using HyperInt. To
evaluate them using HyperInt they first have to be turned back into projective forms by applying
a projective transform with λi = 1 for i = 1, . . . , n. Now one can use the corollary from section 9.3,
hence put one of the variables to 1 and integrate the others from 0 to infinity. It turns out that now
the integrals do not admit a linearly reducible integration order anymore, due to the presence of
an additional factor (α1 + α2 + 1)−1 (assuming we put α3 = 1.)

A better method of removing spurious poles From trial and error a better method of removing
spurious poles was established which seems to preserve linear reducibility. Again take a look at
I2,3
part. Note that one can do the following kinds of extraction:

(αi + αj)
1−2ε = (αi + αj)(αi + αj)

−2ε for (ij) ∈ {(12), (13), (23)} (319)

If this extraction is done for all three terms one can write:

I2,3
part =

3

∏
i=1

(∫ ∞

0
dαi

)
[(α1 + α2)(α1 + α3)(α2 + α3)] ·[

(α1 + α2)
−2ε(α1 + α3)

−2ε(α2 + α3)
−2ε · (α2α3 + α1(α2 + α3))

−3+3εδ

(
1−

3

∑
i=1

αi

)]
(320)

(The square brackets are added to group terms together in two parts and have no mathematical
significance.) Note that both terms between the square brackets are symmetric under permutation
of the parameters. Say that the left bracketed term is expanded into a sum and each resulting
integral is written down separately. Then one finds:

I2,3
part = ∑

l(αi)∈L

[
3

∏
i=1

(∫ ∞

0
dαi

)
l(αi)

[
(α1 + α2)

−2ε(α1 + α3)
−2ε(α2 + α3)

−2ε

(α2α3 + α1(α2 + α3))
−3+3εδ

(
1−

3

∑
i=1

αi

)]]
(321)

with L being the set:

L =
{

α2
1α2, α1α2

2, α2
1α3, 2α1α2α3, α2

2α3, α1α2
3, α2α2

3

}
(322)

Note that one is free to relabel the integration parameters in each integral in the sum and this
will not affect the bracketed part, but only the term l(αi). Using this fact one can rewrite many
integrals and reduce the set L to:

L =
{

6α2
1α2, 2α1α2α3

}
(323)

The integral with ’l(αi) = 2α1α2α3’ is convergent which can be seen by power counting. The
integral with the term ’l(αi) = 6α2

1α2’ has a remaining divergent region when (α2, α3) → (0, 0).
This last region can be removed using the projective trick which gives a finite integral expansion
without spurious poles:

I2,3
part = 2T(1, 1, 1,−2ε,−2ε,−2ε, 3ε− 3) + 12T(2, 1, 1,−2ε,−2ε− 1,−2ε, 3ε− 3)+

12T(2, 2, 0,−2ε− 1,−2ε,−2ε, 3ε− 3)− 18(ε− 1)T(2, 2, 1,−2ε,−2ε,−2ε, 3ε− 4)
ε

(324)

Furthermore, all of the 4 finite integrals on the right side have retained linear reducibility so that
the terms in their ε-expansions can be integrated using HyperInt. A rule of thumb is derived from
the previous example:
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First rule of thumb The first step in removing overcounted divergences is to extract any positive
integers out of the exponents of U a− d

2 (h+1) and W−a+ hd
2 in eq. 273. Let pow(U) denote the integer

power of U in the Feynman-parametrization, and similar for W. For d = 4− 2ε one can distinguish
the following cases:

1. If a > 2(1 + h) then pow(U) > 0, pow(W) < 0.

2. If 2(1 + h) ≥ a ≥ 2h then pow(U) ≤ 0, pow(W) ≤ 0

3. If a < 2h then pow(U) < 0, pow(W) > 0

Hence for cases 1 and 3 there is a positive integer power of either U or W which can/should
be extracted and separated into multiple integrals. Furthermore, by looking at (permutation)
symmetries of U and W the set of resulting integrals can usually be reduced to a few as in eq. 323.
Two more rules of thumb are applicable to the recursive projective trick.

Second rule of thumb In step 4. of the recursive projective trick each new integral is generally
considered to be a term from the product rule of the total derivative on λ. But note that one can
have the following kind of scenario:

d
dλ

(α1α2α3λ + α1α2α4λ + α1α4α3 + α2α4α3)
k ∣∣

λ=1 = k (α1α2α3 + α1α2α4) ·

(α1α2α3 + α1α4α3 + α2α4α3 + α1α2α4)
k−1 (325)

Generally one can consider the term (α1α2α3 + α1α2α4) to be part of a single integral, but if there
are still remaining spurious poles it might be necessary to split the term up and consider the result
to be two integrals. The downside of this is that this increases the number of integrals for which
the recursive projective trick is applied in the next step.

Third rule of thumb If the recursive projective trick still leads to spurious poles, or if there are
simply a large number of integrals resulting from the recursive projective trick, change the order
of removing the divergences.

The blowing up of the number of integrals can be illustrated with a simple example. Consider
a product of three massive tadpole integrals (I3,18.) Clearly each tadpole can be separately
evaluated but suppose one is lazy and tries to automate everything in the manner discussed in this
section, by going to the Feynman parametrization and evaluating by finite integral expansion. The
alpha-parametrization of the three-tadpole integral is proportional (but not equal) to the integral
below:

IBeta =
3

∏
i=1

(∫ ∞

0
dαi

)
αε−2

1 αε−2
2 αε−2

3 (α1 + α2 + α3)
3−3εδ

(
1−

3

∑
i=1

αi

)
(326)

This integral can be easily exactly evaluated for Re(ε) > 1 by using α1 + α2 + α3 = 1 and
recognizing eq. 431. It is written here with the additional factor so that the integral is a projective
form. Taking the analytic continuation for d = 4− 2ε ∈ C gives:

IBeta =
Γ(ε− 1)3

Γ(3ε− 3)
(327)

The highest order pole is seen to be of order ε−2. (Note that a product of three massive tadpole
integrals is divergent up to order ε−3, but there are additional Γ-functions coming from the
alpha-parametrization which are not included in 326.)
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Let’s apply the recursive projective trick to eq. 326. It turns out that if one starts removing
divergent regions with a high number of parameters, the finite integral expansion consists of
an enormous amount of terms. If on the other hand the divergences are removed starting from
α1 → 0, then α2 → 0 and lastly α3 → 0 this is not the case. Power counting gives:

S div(S) S div(S)

{α1} −1 + ε {α1, α2} −2 + 2ε

{α2} −1 + ε {α1, α3} −2 + 2ε

{α3} −1 + ε {α2, α3} −2 + 2ε

If the divergence α1 → 0 is removed by applying the projective trick twice one finds the
following result:

IBeta =

(
3− 3ε

ε− 1

)(
2− 3ε

ε

) 3

∏
i=1

(∫ ∞

0
dαi

)
αε

1αε−2
2 αε−2

3 (α1 + α2 + α3)
1−3ε (328)

Power counting the new integral gives the following:

S div(S) S div(S)

{α1} 1 + ε {α1, α2} 2ε

{α2} −1 + ε {α1, α3} 2ε

{α3} −1 + ε {α2, α3} −2 + 2ε

Note that div(S) of the regions S = {α1, α2} and S = {α1, α3} has gone up, in addition to the
region {α1} being removed. Applying the same procedure for the regions α2 → 0 and α3 → 0
finally yields:

IBeta = −3(−3ε− 2)(−3ε− 1)(1− 3ε)(2− 3ε)(3− 3ε)

(ε− 1)3ε2

3

∏
i=1

(∫ ∞

0
dαi

)
αε

1αε
2αε

3 (α1 + α2 + α3)
−3ε−3

(329)

This result gives the finite integral expansion which consists of just a single finite integral with a
prefactor with a pole of order ε−2 as is needed. Furthermore, evaluating the finite integral gives:

Γ(1 + ε)3

Γ(3 + 3ε)
(330)

So what has been found is that:

IBeta =
Γ(ε− 1)3

Γ(3ε− 3)
=

9
(
81ε4 − 45ε2 + 4

)
(ε− 1)2ε2

Γ(1 + ε)3

Γ(3 + 3ε)
(331)

Now look again at the original integral but start by removing the divergence (α1, α2) → (0, 0).
Applying the projective trick three times leads to:

IBeta =
3(9(ε− 1)ε + 2)

4ε(2ε− 1)

3

∏
i=1

(∫ ∞

0
dαi

)
(α1 + α2)

3 αε−2
1 αε−2

2 αε−2
3 (α1 + α2 + α3)

−3εδ

(
1−

3

∑
i=1

αi

)
(332)
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The divergences are now:

S div(S) S div(S)

{α1} −1 + ε {α1, α2} 2ε

{α2} −1 + ε {α1, α3} −2 + 2ε

{α3} −1 + ε {α2, α3} −2 + 2ε

While S = {α1, α2} has improved, the rest of the divergent regions are untouched unlike the
previous case. Note some additional regions can be removed by expanding the term (α1 + α2)

3

but this leads to multiple integrals. Furthermore applying the projective trick on eq. 332 for the
region {α1, α3} turns out to give multiple integrals as well. Hence in this example it is clearly seen
the order of removing divergences matters for the end result. Note that in this case the problem is
not the existence of spurious poles but simply the blowing up of the number of integrals after
applying the projective trick multiple times.

Two simple strategies can be distinguished for the order of removing divergences:

1. From below: start removing regions S with the smallest number of alpha-parameters.

2. From above: start by removing regions with the most number of parameters.

Let’s consider another example. The scalar integral in the alpha-parametrization of I3,13
OS is:

I3,13
OS,part =

(
4

∏
i=1

∫ ∞

0
dαi

)
(α1 + α2 + α3 + α4)

2−3ε (α1α2α3 + α1α4α3 + α2α4α3 + α1α2α4)
ε−2 δ

(
1−

4

∑
i=1

αi

)

=

(
4

∏
i=1

∫ ∞

0
dαi

)
(4α2

1 + 12α2α1) (α1 + α2 + α3 + α4)
−3ε ·

(α1α2α3 + α1α4α3 + α2α4α3 + α1α2α4)
ε−2 δ

(
1−

4

∑
i=1

αi

)
(333)

The first rule of thumb is applied in the second line. It turns out that when the divergences are
removed ’from below’ the finite integral expansion has two spurious poles. Using the second rule
of thumb does not remove them. The first spurious pole at order ε−4 has the following integral:

’sp. pole’(ε−4) =

(
4

∏
i=1

∫ ∞

0
dαi

)
240(−5α4

2α4
3α4

4α5
1 + α5

2α3
3α4

4α5
1 + α5

2α4
3α3

4α5
1 + α5

2α4
3α4

4α4
1)

(α1α2α3 + α1α4α3 + α2α4α3 + α1α2α4) 7 δ

(
1−

4

∑
i=1

αi

)
(334)

A quick numerical calculation gives the result −4.24 · 10−11 which indeed indicates this integral
is zero. The first nonzero coefficient which is of order ε−2 contains numerous logarithmic terms
and squares of logarithmic terms. In contrast, when the divergences are removed from above,
i.e. starting with the regions with the most alpha-parameters, and the second rule of thumb is
applied, a finite integral expansion is derived without spurious poles. The ε−2 coefficient is:

coef(I3,13
OS,part, ε−2) =

4

∏
i=1

(∫ ∞

0
dαi

)
1

A4
4 S3

4
18α2

1α2
2(α3 A2

4 + α4 A2
4 + α1α3α4 A4S4 + α2α3α4 A4 S4

+ α2
3α2

4S3
4) δ

(
1−

4

∑
i=1

αi

)
= 12 (335)
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where A4 ≡ α1α2α3 + α1α4α3 + α2α4α3 + α1α2α4 and S4 ≡ α1 + α2 + α3 + α4 are introduced to keep
the notation simple.

10.3. Dimensional shift relations

One can also wonder what the projective trick does to an integral considered in momentum space.
For this purpose we consider the integral I2,3

OS, except we the omit factor (2π)−2d. For this reason
we label the integral differently, to avoid confusion. Removing the only divergent region yields:

I2-loop
OS ≡

∫ ∫ ddk1ddk2

(k2
1)(k

2
2)((k1 + k2 + p1)2 −m2)

= 3π4−2εm2−4ε Γ(2ε− 1)(ε− 1)
ε

T(1, 1, 2− 4ε, 1− 2ε, 0, 0, 3ε− 4) (336)

where the notation of eq. 312 is used. It turns out that the result is related to a Feynman integral
with a shifted dimension d̃ = 6− 2ε:

I2-loop
OS,shifted ≡

∫ ∫ dd̃k1dd̃k2

(k2
1)

2(k2
2)

2((k1 + k2 + p1)2 −m2)

=−m2−4επ6−2εΓ(2ε− 1)T(1, 1, 2− 4ε, 1− 2ε, 0, 0, 3ε− 4) (337)

Note that the 6-dimensional integral has the first two propagators raised two power 2. The
following relation is derived:

I2-loop
OS = −3(ε− 1)

π2ε
I2-loop
OS,shifted(m

2) (338)

Additionally of interest is the fact that one use integration by parts to reduce the shifted integral
back into a master integral of the same form as the original one. Then one has a found a
’dimensional recurrence relation’ for the integral considered. Using FIRE5 for the IBP-reduction
gave the following result:

I2-loop
OS,shifted =

(d̃− 6)(d̃− 3)(3d̃− 10)(3d̃− 8)
16(2d̃− 9)(2d̃− 7)m4

I2-loop,d̃
OS (339)

The notation I2-loop,d̃
OS denotes the integral of eq. 336 with d replaced by d̃. Combining the result

with equation 338 yields the dimensional recurrence relation:

I2-loop
OS = −3(ε− 1)(2ε− 3)(3ε− 5)(3ε− 4)

2π2m4(4ε− 5)(4ε− 3)
I2-loop,d̃
OS (340)

The analytical result of I2-loop
OS is known from the result for I2,3

OS in app. A, by using that I2-loop
OS =

(2π)2d I2,3
OS. It was checked using the relation Γ(x + 1) = xΓ(x) that eq. 340 is correct.

Unfortunately the integral I2-loop,d̃
OS is again divergent so the singularity has been absorbed into

the integral again. Indeed the proportionality factor that is derived is finite as ε→ 0. However,
the dimensional recurrence relation does expose structure of the integral which is considered. In
reference [32] a method is discussed for using dimensional recurrence relation to find analytical
results for master-integrals. This method is outside the scope of this thesis but possibly worth the
consideration for the interested reader.
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10.4. Concluding remarks

The projective trick has been introduced as a way of removing a single singular region from an
alpha-parametrized Feynman integral. By repeatedly applying the projective trick in the manner
of the recursive projective trick an automated method is found for rewriting divergent integrals
into finite integrals.

One can encounter spurious poles in which case the rules of thumb should be used. The first
rule of thumb should almost always be applied as it gets rid of most of the overcounted divergent
regions. The second rule of thumb should only be applied in case the recursive projective trick
gives spurious poles. Lastly, if there are still remaining spurious poles one should change the
order in which the divergent regions are removed. The two strategies which were mentioned
(remove ’from below’ or ’from above’) together with the other rules of thumb made it possible to
derive finite integral expansions without spurious poles for all the (3-loop) integrals considered in
this thesis.

The finite integrals can be expanded as power series in ε. Because the 3-loop integrals
considered in this thesis are on-shell and contain a single mass scale, the mass factors out of these
integrals. This makes it possible to evaluate the series coefficients of the power series numerically,
which gives an automated method of evaluating the master integrals as Laurent series in ε up to
some desired order. Exact evaluation of the series coefficients of the finite integrals is usually also
possible with HyperInt.

XI. Explicit calculations of Feynman integrals

In this section a number of calculations are presented for 2- and 3-loop Feynman integrals.

11.1. 2-Loop

11.1.1 Warmup exercise: T2,4

Consider a simple 2-loop integral T2,4(λ1, λ2, λ3):

T2,4(λ1, λ2, λ3) =
∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)

λ1(−k2
2)

λ2(−(k1 + k2)2 + m2)λ3
(341)

This integral can be evaluated by successive integration. First one shifts variables to get:

T2,4(λ1, λ2, λ3) =
∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)

λ1(−(k1 + k2)2)λ2(−k2
2 + m2)λ3

(342)

Evaluating the k1 integral gives (the result follows from the alpha-parametrization):

∫ ddk1

(2π)d
1

(−k2
1)

λ1(−(k1 + k2)2)λ2
=

i
(
−k2

2
) 1

2 (d−2λ1−2λ2) Γ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ
(
− d

2 + λ1 + λ2

)
(4π)

d
2 Γ (λ1) Γ (λ2) Γ (d− λ1 − λ2)

(343)
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Hence one finds for T2,4(λ1, λ2, λ3) that:

T2,4(λ1, λ2, λ3) =
iΓ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ
(
− d

2 + λ1 + λ2

)
(4π)

d
2 Γ (λ1) Γ (λ2) Γ (d− λ1 − λ2)

∫
(2π)−dddk2

(−k2
2)
− 1

2 (d−2λ1−2λ2)(−(k2)2 + m2)λ3

(344)

= −
Γ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ
(
− d

2 + λ1 + λ2

)
Γ (−d + λ1 + λ2 + λ3)

(
m2)d−λ1−λ2−λ3

(4π)dΓ
(

d
2

)
Γ (λ1) Γ (λ2) Γ (λ3)

(345)

One can also evaluate the integral in a more brute force approach. From the alpha-parametrization
one finds:

T2,4(λ1, λ2, λ3) = −
m2(d−λ1−λ2−λ3)Γ (−d + λ1 + λ2 + λ3)

(4π)dΓ (λ1) Γ (λ2) Γ (λ3)

(
3

∏
i=1

∫ ∞

0
αi

)
αλ1−1

1 αλ2−1
2 αd−λ1−λ2−1

3 ·

(α2α3 + α1 (α2 + α3))
− d

2 δ

(
1−

3

∑
i=1

αi

)
(346)

We want to focus on the scalar integral so define:

T2,4
part(λ1, λ2, λ3) =

(
3

∏
i=1

∫ ∞

0
αi

)
αλ1−1

1 αλ2−1
2 αd−λ1−λ2−1

3 (α2α3 + α1 (α2 + α3))
− d

2 δ

(
1−

3

∑
i=1

αi

)
(347)

Evaluate the α3 integral (i.e. α3 = 1− α1 − α2), and then do a change of variables:

α1 → ηα1 (348)

α2 → ηα2 (349)

under the contraint that α1 + α2 = 1. This yields:

T2,4
part(λ1, λ2, λ3) =

∫ 1

0
dα1

∫ 1−α1

0
dα2

∫ 1

0
dηηλ1+λ2−1αλ1−1

1 αλ2−1
2 (1− η(α1 + α2))

d−1−λ1−λ2

(η(α1 + α2) + η2(−α1α2 − α2
1 − α2

2))
− d

2 δ(1− α1 − α2) (350)

Evaluate the α2 integral to find:

T2,4
part(λ1, λ2, λ3) =

∫ 1

0
dα1

∫ 1

0
dηηλ1+λ2−1− d

2 (1− η)d−1−λ1−λ2 ·

(1 + η(−1 + (1− α1)α1))
− d

2 αλ1−1
1 (1− α1)

λ2−1 (351)

Recognize the Euler integral of a hypergeometric function, (see eq. 447.) Evaluating the η integral
yields:∫ 1

0
dηηλ1+λ2−1− d

2 (1− η)d−1−λ1−λ2(1− ηγ)−
d
2 =

Γ(− d
2 + λ1 + λ2)Γ(d− λ1 − λ2)

Γ( d
2 )

2F1

(
d
2

,−d
2
+ λ1 + λ2;

d
2
|γ
)

(352)
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where γ = 1− (1− α1)α1. The HGF that is found simplifies because a = c, and using eqs. 442,
443 this yields:

2F1

(
d
2

,−d
2
+ λ1 + λ2;

d
2
|γ
)
= ∑

k≥0

(− d
2 + λ1 + λ2)k

k!
γk = ∑

k≥0

( d
2 − λ1 − λ2

k

)
(−γ)k = (1− γ)

d
2−λ1−λ2

(353)

Plugging in γ = 1− (1− α1)α1 gives 1− γ = (1− α1)α1 and combining terms leads to:

T2,4
part(λ1, λ2, λ3) =

Γ(− d
2 + λ1 + λ2)Γ(d− λ1 − λ2)

Γ( d
2 )

∫ 1

0
dα1α

d
2−1−λ2
1 (1− α1)

d
2−1−λ1

=
Γ(− d

2 + λ1 + λ2)Γ(d− λ1 − λ2)

Γ( d
2 )

Γ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ (d− λ1 − λ2)

(354)

This gives the final result, which agrees with the result from successive integration in momentum
space:

T2,4(λ1, λ2, λ3) = −
m2(d−λ1−λ2−λ3)

(4π)d

Γ(λ1 + λ2 + λ3 − d)Γ
(
− d

2 + λ1 + λ2

)
Γ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ(λ1)Γ(λ2)Γ(λ3)Γ

(
d
2

)
(355)

11.1.2 A topology from the NNLO renormalization: T2,2

Consider the following integral:

T2,2(λ1, λ2, λ3) ≡
∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)

λ1(−(k1 + k2)2)λ2(−(k2 + p1)2 + m2)λ3
(356)

The master integral I2,2
OS from the 2-loop on-shell calculation is a special case. This integral can

again be evaluated by successive integration in momentum space. The k1 integral is the same as
for T2,4. Hence one finds:

T2,2(λ1, λ2, λ3) =
iΓ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ
(
− d

2 + λ1 + λ2

)
(4π)

d
2 Γ (λ1) Γ (λ2) Γ (d− λ1 − λ2)

∫
(2π)−dddk2

(−k2
2)
− 1

2 (d−2λ1−2λ2)(−(k2 + p1)2 + m2)λ3

(357)

Using the result for T1,2 in app. A and assuming |p2
1/m2| < 1 one finds:

T2,2(λ1, λ2, λ3) = −
Γ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ
(
− d

2 + λ1 + λ2

)
Γ (−d + λ1 + λ2 + λ3)

(
m2)d−λ1−λ2−λ3

(4π)dΓ
(

d
2

)
Γ (λ1) Γ (λ2) Γ (λ3)

·

2F1

(
−d

2
+ λ1 + λ2,−d + λ1 + λ2 + λ3;

d
2

∣∣∣∣ p2
1

m2

)
(358)

A brute force approach is again possible too. From the alpha-parametrization one has:

T2,2(λ1, λ2, λ3) = −
Γ(λ1 + λ2 + λ3 − d)

(4π)dΓ(λ1)Γ(λ2)Γ(λ3)
T2,2

part(λ1, λ2, λ3) (359)
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where T2,4
part(λ1, λ2, λ3) is equal to:

T2,2
part(λ1, λ2, λ3) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
dα1dα2dα3αλ1−1

1 αλ2−1
2 αλ3−1

3 (α1α2 + α1α3 + α2α3)
λ1+λ2+λ3− 3d

2

(−p2
1α1α2α3 + m2α3(α1α2 + α1α3 + α2α3))

d−λ1+λ2−λ3 δ(1− α1 − α2 − α3) (360)

The alpha-parametrization looks like that of T2,4, but there is now a composite term with the
external momentum p1 in it. It is possible to get rid of this term using a binomial expansion,
assuming that |p2

1/m2| < 1.

(−p2
1α1α2α3 + m2α3(α1α2+α1α3 + α2α3))

d−λ1+λ2−λ3 = ∑
k≥0

(
d− λ1 − λ2 − λ3

k

)(
−

p2
1

m2

)k

·

(m2)d−λ1−λ2−λ3(α3(α1α2 + α1α3 + α2α3))
d−λ1−λ2−λ3−k(α1α2α3)

k

(361)

Combining terms together gives:

T2,2
part(λ1, λ2, λ3) = ∑

k≥0

(
d− λ1 − λ2 − λ3

k

)(
−

p2
1

m2

)k

(m2)d−λ1−λ2−λ3

∫ ∞

0

∫ ∞

0

∫ ∞

0
dα1dα2dα3

αk+λ1−1
1 αk+λ2−1

2 αd−λ1−λ2−1
3 (α2α3 + α1 (α2 + α3))

− d
2−kδ

(
1−

3

∑
i=1

αi

)
(362)

Let (%α%) denote the scalar integral in T2,2
part(λ1, λ2, λ3) without the prefactor:

(%α%) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
dα1dα2dα3αλ1−1+k

1 αλ2−1+k
2 αd−1−λ1−λ2

3 (α1α2 + α1α3 + α2α3)
− d

2−kδ

(
1−

3

∑
i=1

αi

)
(363)

Similar to before one can now do consecutively:

• Evaluate the α3 integral so that α3 → 1− α1 − α2.

• Change variables to: α1 → ηα1, α2 → η(1− α1).

The result is:

(%α%) =
∫ 1

0

∫ 1

0
dα1dηαλ1−1+k

1 (1− α1)
λ2−1+kηλ1+λ2−1+k− d

2 (1− η)d−1−λ1−λ2 ·

(1 + η(−1 + α1 − α2
1))
− d

2−k (364)

Recognizing the Euler integral over η, and doing the integration, one finds:∫ 1

0
dηη−1+λ1+λ2+k− d

2 (1− η)−1+d−λ1−λ2(1 + η(−1 + α1 − α2
1))
− d

2−k =

Γ(d− λ1 − λ2)Γ(− d
2 + k + λ1 + λ2)((1− α1)α1)

d
2−k−λ1−λ2

Γ( d
2 + k)

(365)

So that:

(%α%) =
Γ(d− λ1 − λ2)Γ(− d

2 + k + λ+λ2)

Γ( d
2 + k)

∫ 1

0
dα1 α

d
2−λ2−1
1 (1− α1)

d
2−λ1−1 (366)
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The remaining integral is clearly a beta function so we find that:

(%α%) =
Γ( d

2 − λ2)Γ( d
2 − λ1)Γ(− d

2 + k + λ1 + λ2)

Γ( d
2 + k)

(367)

Putting everything together the following is found:

T2,2(λ1, λ2, λ3) = −(m2)d−λ1−λ2−λ3
Γ(−d + λ1 + λ2 + λ3)Γ( d

d − λ2)Γ( d
2 − λ1)

(4π)dΓ(λ1)Γ(λ3)Γ(λ3)
· (368)

· ∑
k≥0

(
−

p2
1

m2

)k (
d− λ1 − λ2 − λ3

k

)
Γ(− d

2 + k + λ1 + λ2)

Γ( d
2 + k)

(369)

In the latest expression one can recognize a hypergeometric function, after rewriting the binomial
coefficient using 442 and the final result becomes:

T2,2(λ1, λ2, λ3) = −(m2)d−λ1−λ2−λ3
Γ(− d

2 + λ1 + λ2)Γ(−d + λ1 + λ2 + λ3)Γ( d
d − λ2)Γ( d

2 − λ1)

(4π)dΓ( d
2 )Γ(λ1)Γ(λ3)Γ(λ3)

·

2F1

(
−d

2
+ λ1 + λ2,−d + λ1 + λ2 + λ3;

d
2

∣∣∣∣ p2
1

m2

)
(370)

This is the same as what was obtained using successive integration in momentum space.
The master integral I2,2

OS from the 2-loop calculation follows from putting λ1,2,3 = 1 and p2
1 = m2.

Plugging in these values gives:

∑
k≥0

(
−

p2
1

m2

)k
Γ(d− λ1 − λ2 − λ3 + 1)

Γ(d− λ1 − λ2 − λ3 − k + 1)k!

Γ
(
− d

2 + k + λ1 + λ2

)
Γ
(

d
2 + k

) = ∑
k≥0

(−1)kΓ(d− 2)Γ
(

2− d
2 + k

)
Γ(d− 2− k)Γ

(
d
2 + k

)
k!

=
Γ
(

2− d
2

)
Γ(2d− 5)

Γ(d− 2)Γ
( 3

2 (d− 2)
)

(371)

This gives the specific result:

I2,2
OS ≡

∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)(−k2

2)(−(k1 + k2 + p1)2 + m2)

=
−(m2)d−3Γ(3− d)Γ

(
d
2 − 1

)2
Γ
(

2− d
2

)
Γ(2d− 5)

(4π)dΓ(d− 2)Γ
( 3

2 (d− 2)
) (372)

11.1.3 Master integral from the NNLO renormalization: I2,3
OS

The integral I2,3
OS comes from the 2-loop on-shell renormalization and turns out to be significantly

harder to calculate than I2,2
OS.

I2,3
OS ≡

∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1 + m2)(−k2

2 + m2)(−(k1 + k2 − p1)2 + m2)
(373)
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= −(4π)−dm2d−6Γ(3− d)

(
3

∏
i=1

∫ ∞

0
dαi

)
(α1 + α2)

d−3 (α1 + α3)
d−3 (α2 + α3)

d−3

(α2α3 + α1 (α2 + α3))
3− 3d

2 δ

(
1−

3

∑
i=1

αi

)
(374)

It is not possible to use successive integration to calculate this integral due to the fact that every
propagator is massive. For example one has:

∫ ddk1

(2π)d
1

(−k2
1 + m2)(−(k1 + k2)2 + m2)

= i(4π)−
d
2 Γ
(

2− d
2

) ∫ 1

0
dα1

(
(α1 − 1) α1k2

2 + m2
)

d−4
2

(375)

This integral yields a non-trivial function of k2 and it is not possible to do the remaining k2 integral
using the usual methods. Furthermore, a satisfactory brute force approach as was found for T2,2

was not obtained either. In fact quite some time was spend on finding a method to evaluate the
alpha-parametrized integral as an analytic function in d, but the effort did not lead to a result. For
this reason the alternative became to look at the ε-expansion of I2,3

OS. The finite integral expansion
is given by:

I2,3
OS = − m2−4ε

(4π)4−2ε
Γ(2ε− 1)

(
3

∏
i=1

∫ ∞

0
dαi

)(
− 18(ε− 1)

ε
α2

1α2
2α3 (α1 + α2)

−2ε (α1 + α3)
−2ε (α2 + α3)

−2ε (α2α3 + α1 (α2 + α3))
3ε−4+

12α2
1α2α3 (α1 + α2)

−2ε (α1 + α3)
−2ε−1 (α2 + α3)

−2ε (α2α3 + α1 (α2 + α3))
3(ε−1)+

12α2
1α2

2 (α1 + α2)
−2ε−1 (α1 + α3)

−2ε (α2 + α3)
−2ε (α2α3 + α1 (α2 + α3))

3(ε−1)+

2α1α2α3 (α1 + α2)
−2ε (α1 + α3)

−2ε (α2 + α3)
−2ε (α2α3 + α1 (α2 + α3))

3(ε−1))
δ

(
1−

3

∑
i=1

αi

)
(376)

Expanding the finite integrals in ε and evaluating the series coefficients using HyperInt yields the
result stated in app. A.

11.2. 3-Loop

There are a number of 3-loop integrals reported in app. A, which were derived by finding finite
integral expansions and integrating the coefficients using HyperInt whenever possible. For the
integral I3,8

OS a linearly reducible integration order was not found.

11.2.1 I3,8
OS

The integral I3,8
OS is represented diagrammatically in fig. 7, which follows from contracting to a

point the propagators raised to power zero in fig. 8.
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Figure 7: Diagrammatic representation of I3,8.

The integral could not be performed using HyperInt because a linearly reducible integration
order could not be found. For this reason a numerical computation was performed on the finite
integral expansion using Mathematica’s ’NIntegrate’ which gave the following result:

I3,8
OS ≈ −iπ6−3εm2(1−3ε)Γ(3ε− 1)

(
3
ε2 +

7
ε
− 14.8043 − 17.9616ε + 110.071ε2 +O(ε3)

)
(377)

Precise errors are not given on the coefficients as this calculation is presented as a proof of concept.
The first two coefficients were reported to be very close to 3 and 7 with an error of 10−4. The ε2

coefficient was reported with an error of order 0.1. It is seen in app. A that all the 3-loop integrals
considered have rational numbers for the first two coefficients in their ε-expansions. Therefore it
seems very likely that the first two coefficients are indeed exactly 3 and 7.

The integral can also be stated with a prefactor according to the conventions of [24], leading to:

I3,8
OS ≈ −iπ6−3εm2−6εΓ(ε + 1)3

(
− 1

ε3 −
16
3ε2 −

16.0000
ε

− 43.9109− 154.914ε +O
(

ε2
))

(378)

The exact result taken from [24] is stated below. (More coefficients are given in the paper.)

I3,8
OS = −iπ6−3εm2−6εΓ(ε + 1)3

(
− 1

ε3 −
16
3ε2 −

16
ε

+

(
2ζ(3)− 8π2

3
− 20

)
+

ε

(
−200ζ(3)

3
− 3π4

10
− 28π2 +

364
3

+ 16π2 log(2)
)
+O

(
ε2
))

(379)

Taking the absolute value of the difference between the numerical and exact calculation of the ε0

and ε1 coefficients gives:

|(exact - numerical)(ε0)| ≈ 0.004 (380)

|(exact - numerical)(ε1)| ≈ 0.004 (381)

This gives confidence the finite integral expansion and subsequent numerical integration can be
done with sufficient accuracy.
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XII. Conclusion

The renormalization of the top quark was studied which is the heaviest quark and is of significant
phenomenological interest. For this purpose an explicit treatment of multiloop renormalization was
first given, using diagrammatic formulas. At multiloop order there are diagrams with counterterm
insertions which are not seen at 1-loop order. It was shown in addition that renormalization
can be done by rescaling calculations from the bare theory with the renormalization constants
and expanding the renormalization constants in the coupling constant afterwards. This makes it
possible to renormalize a theory without explicitely looking at counterterms. As an introduction
the 1-loop renormalization constants were derived in the MS, MS and on-shell schemes in a
manual calculation.

The phenomenological context of top quark renormalization was then touched upon, which
included a short treatment of top quark measurements in colliders, asymptotic series and the
renormalon ambiguity in the quark pole mass. Furthermore, the electroweak vacuum instability
was presented which implicates that a precise determination of the top quark mass could shed
light on the ultimate fate of the universe.

The building blocks of a computational setup for doing automated calculations of Feynman
diagrams were discussed next. Using an implementation developed for this thesis, a number of 1,
2, and 3-loop results were presented. In particular the full 2-loop renormalization of the top quark
mass and field was done in the on-shell scheme. These results relied on finding explicit results for
master integrals, usually as a Laurent series in ε.

An explicit treatment was given of methods for the derivation of master integrals. We started
by deriving the alpha-parametrization. A new method called the ’projective trick’ was introduced
for deriving finite integral expansions, and rules of thumb were developed to circumvent the
creation of spurious poles for the 2- and 3-loop on-shell integrals considered. The presented
approach allows one to use existing general purpose numerical integration software to derive
numerical results for on-shell Feynman integrals with one mass scale up to finite order or higher
in ε in an automated manner. Furthermore, using the Maple package HyperInt we succeeded in
deriving exact results for the series coefficients of most integrals.
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Appendices

A. Results for Feynman integrals

The following is a list of integrals that were needed in this thesis. The subscript OS is used for
integrals where p2

1 = m2. The exponents λi of the propagators in the topologies are assumed to be
nonzero numbers in C. A factor (2π)−d is included for each internal momentum. Note that the
integrals are given with a minus in front of the momenta in the propagators.

1.1. Topologies

1.1.1 1-Loop

T1,1(λ) ≡
∫ ddk1

(2π)d
1

(−k2
1 + m2)λ

=
i Γ
(

λ1 − d
2

) (
m2) 1

2 (d−2λ1)

(4π)
d
2 Γ(λ1)

(382)

T1,2(λ1, λ2) ≡
∫

ddk1
1

(−k2
1 + m2)λ1(−(k1 − p1)2)λ2

(383)

=
i Γ
(
− d

2 + λ1 + λ2

)
(4π)

d
2 Γ (λ1) Γ (λ2)

∫ ∞

0
dα1

∫ ∞

0
dα2 αλ1−1

1 αλ2−1
2

(
α1

(
m2 − α2 p2

1

))
1
2 (d−2λ1−2λ2)δ(1−

2

∑
i=1

αi)

=
iΓ
(
− d

2 + λ1 + λ2

)
2Γ
(

d
2 − λ2

) (
m2) 1

2 (d−2λ1−2λ2)

(4π)
d
2 Γ
(

d
2

)
Γ (λ1)

2F1

(
λ2,−d

2
+ λ1 + λ2;

d
2

∣∣∣∣ p2
1

m2

)

(Assuming |p2
1/m2| < 1)

T1,2
OS(λ1, λ2) =

i Γ (d− λ1 − 2λ2) Γ
(
− d

2 + λ1 + λ2

) (
m2) 1

2 (d−2λ1−2λ2)

(4π)
d
2 Γ (λ1) Γ (d− λ1 − λ2)

(384)

1.1.2 2-Loop

T2,2(λ1, λ2, λ3) ≡
∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)

λ1(−k2
2)

λ2(−(k1 + k2 + p1)2 + m2)λ3
(385)

= −(m2)d−λ1−λ2−λ3
Γ(− d

2 + λ1 + λ2)Γ(−d + λ1 + λ2 + λ3)Γ( d
d − λ2)Γ( d

2 − λ1)

(4π)dΓ( d
2 )Γ(λ1)Γ(λ3)Γ(λ3)

·

2F1

(
−d

2
+ λ1 + λ2,−d + λ1 + λ2 + λ3;

d
2

∣∣∣∣ p2
1

m2

)
(Assuming |p2

1/m2| < 1)

T2,4(λ1, λ2, λ3) ≡
∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)

λ1(−k2
2)

λ2(−(k1 + k2)2 + m2)λ3
(386)

= −
Γ
(

d
2 − λ1

)
Γ
(

d
2 − λ2

)
Γ
(
− d

2 + λ1 + λ2

)
Γ (−d + λ1 + λ2 + λ3)

(
m2)d−λ1−λ2−λ3

(4π)dΓ
(

d
2

)
Γ (λ1) Γ (λ2) Γ (λ3)
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1.2. Integrals

1.2.1 1-Loop

I1,1 ≡
∫ ddk1

(2π)d
1

(−k2
1 + m2)

=
i Γ
(

1− d
2

) (
m2) 1

2 (d−2)

(4π)
d
2

(387)

I1,2 ≡
∫ ddk1

(2π)d
1

(−k2
1)(−(k1 − p1)2)

=
i
(
−p2

1
) d−4

2 Γ
(

2− d
2

)
Γ
(

d
2 − 1

)2

(4π)
d
2 Γ(d− 2)

(388)

I1,3 ≡
∫ ddk1

(2π)d
1

(−k2
1 + m2)(−(k1 − p1)2 + m2)

= i(4π)−
d
2 Γ
(

2− d
2

) ∫ 1

0
dα1

(
m2 − p2

1(1− α1)α1

) 1
2 (d−4)

(389)

1.2.2 2-Loop

I2,1 ≡
∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1 + m2)(−k2

2 + m2)
(390)

=− 1
(4π)d Γ

(
1− d

2

)2
(m2)d−2

I2,2
OS ≡

∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1)(−k2

2)(−(k1 + k2 + p1)2 + m2)
(391)

=− (m2)d−3

(4π)d

Γ(3− d)Γ
(

d
2 − 1

)2
Γ(2− d

2 )Γ(2d− 5)

Γ(d− 2)Γ
( 3

2 (d− 2)
)

I2,3
OS ≡

∫ ddk1

(2π)d

∫ ddk2

(2π)d
1

(−k2
1 + m2)(−k2

2 + m2)(−(k1 + k2 − p1)2 + m2)
(392)

= − m2−4ε

(4π)4−2ε
Γ(2ε− 1)

(
5
2
+

3
ε
+

(
−9

4
− π2

2

)
ε + ε2

(
−171

8
+

9π2

4
+ 6ζ3

)
+ ε3

(
− 1377

16
+

99π2

8
− 3π4

40
− 16π2 log(2) + 61ζ3

)
+ ε4

(
− 9315

32
+

729π2

16
+

59π4

80
− 72π2 log(2) + 48π2 log2(2)+

192ζ1,−3 +
495ζ(3)

2
− π2ζ3 − 336 log(2)ζ3 + 18ζ5

)
+ ε5

(
− 59049

64
+

4779π2

32
+

117π4

32
−

79π6

5040
− 252π2 log(2)− 24

5
π4 log(2) + 216π2 log2(2)− 96π2 log3(2) + 864ζ1,−3 − 1152 log(2)ζ1,−3−

1152ζ1,1,−3 +
3357ζ3

4
+

129π2ζ3

2
− 1512 log(2)ζ3 + 1008 log2(2)ζ3 + 6ζ2

3−

657ζ5 +O(ε6)

))

1.2.3 3-Loop

The integrals below were found by deriving finite integral expansions and integrating the series
coefficients in ε using HyperInt, except for I3,8

OS for which a linearly reducible integration order was

87



not found. A numerical integration was done for the first 5 coefficients in eq. 377 and compared
to [24]. The numbering of the integrals is done consistent with [24]. The integral I3,19

OS is not in [24],
and is therefore labeled number 19. All the other integrals can be expressed in the following
topology:

Figure 8: 3-Loop topology that includes the master integrals from the N3LO calculation. (Figure taken from [24].)

The denominator factors are given by:

D1 = −(p− k1)
2 + m2 − iε D2 = −(p− k1 − k2)

2 + m2 − iε

D3 = −(p− k1 − k2 − k3)
2 + m2 − iε D4 = −(p− k2 − k3)

2 + m2 − iε

D5 = −(p− k3)
2 + m2 − iε D6 = −k2

1 − iε

D7 = −k2
2 − iε D8 = −k2

3 − iε (393)

The computation of the integrals in HyperInt was usually terminated after the last coefficient took
about an hour to evaluate. This means some integrals are reported with less precision than in [24],
although given a few days or a better computer the results from [24] could be improved upon. As
a proof of concept I3,14

OS is stated with the ε3 coefficient, one more than in [24].
The derived results are completely in agreement with [24] up to the number of coefficients that

were derived in this thesis. To observe this eq. 244 has to be used to rewrite ζ1,−3.

I3,8
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D1D2D3D4D5
(394)

I3,9
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D2D3D5D6D7
(395)

= −i(4π)−
3
2 (4−2ε)m2−6εΓ(ε + 1)3

(
− 2

3ε3 −
10
3ε2 +

−26− π2

3ε
+

1
3

(
−16ζ3 − 11π2 − 6

)
+(

π2
(

16 log(2)− 73
3

)
− 13π4

45
− 248ζ3

3
+

398
3

)
ε +O

(
ε2
))

I3,13
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D1D2D4D5

= −i(4π)−
3
2 (4−2ε)m4−6εΓ(ε + 1)3

(
2
ε3 +

23
3ε2 +

35
2ε

+
275
12

+

(
112ζ3

3
− 189

8

)
ε +O

(
ε2
))

(396)

I3,14
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D3D5D6D7
(397)
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= −i(4π)−
3
2 (4−2ε)m4−6εΓ(ε + 1)3

(
1

3ε3 +
7

6ε2 +
25
12ε

+

(
8ζ3

3
− 5

24

)
+

(
28ζ3

3
− 2π4

15
− 959

48

)
ε+(

50ζ3

3
− 7π4

15
+ 48ζ5 −

10493
96

)
ε2 +

(
1
3

ζ3(32ζ3 − 5) + 168ζ5 −
5π4

6
− 4π6

21
− 85175

192

)
ε3+

O
(

ε4
))

I3,15
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D2D3D4D5
(398)

= −i(4π)−
3
2 (4−2ε)m4−6εΓ(ε + 1)3

(
3

2ε3 +
23
4ε2 +

105
8ε

+

(
275
16

+
4π2

3

)
+

ε

(
π2(10− 8 log(2)) + 28ζ3 −

567
32

)
+ ε2

(
96ζ1,−3 + 210ζ3 − 168ζ3 log(2) +

28π4

45
+

145π2

3
− 14917

64
+ 24π2 log2(2)− 60π2 log(2)

)
+O

(
ε3
))

I3,16
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D3D4D7D8
(399)

= −i(4π)−
3
2 (4−2ε)m4−6εΓ(ε + 1)3

(
1

2ε3 +
7

4ε2 +
25
8 + π2

3
ε

+

(
4ζ3 +

7π2

6
− 5

16

)
+(

14ζ3 +
16π4

45
+

25π2

12
− 959

32

)
ε +

(
25ζ3 +

56π4

45
+

1
24

π2(64ζ3 − 5) + 72ζ5 −
10493

64

)
ε2+

O
(

ε3
))

I3,18 ≡
∫ ( 3

∏
i=1

ddki

(2π)d

)
1

D1D4D5
= −i(4π)−

3
2 (4−2ε)m6−6εΓ(ε− 1)3

I3,19
OS ≡

∫ ( 3

∏
i=1

ddki

(2π)d

)
1

k2
1 (−k1 − k2) 2 (k1 + k3 − p1) 2 (−k1 − k2 − k3 + p1) 2 (m2 − (k2 + p1) 2)

(400)

= −i(4π)−
3
2 (4−2ε)m2−6εΓ(ε + 1)3

(
− 1

3ε3 −
4

3ε2 −
2
(
2 + π2)

3ε
− 2

3

(
19ζ3 + 4π2 − 24

)
+(

−152ζ3

3
− 151π4

90
− 8π2

3
+ 144

)
ε +

(
−76

3

(
2 + π2

)
ζ3 −

302π4

45
+ 32π2 − 430ζ5 + 832

)
ε2+

O
(

ε3
))
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B. Feynman rules

The Feynman rules that are used in this thesis are summarized in the table below.

Propagator Diagrammatic Representation Mathematical Expression

gluon A a µ b ν
k

−iδab
dµν(k)

k2

ghost ξ a b
k

iδab
1
k2

quark ψ i j
k

iδij
1

/k−m

Vertex Diagrammatic Representation Mathematical Expression

3-gluon

a
1
 µ

1

a
3
 µ

3
a

2
 µ

2

k
1

k
3

k
2

−g f a1a2a3 Vµ1µ2µ3(k1, k2, k3)

4-gluon

a
1
 µ

1

a
2
 µ

2

a
3
 µ

3

a
4
 µ

4

ig2Wa1a2a3a4
µ1µ2µ3µ4

gluon-ghost

a µ

b c

k

−g f abckµ

gluon-quark

a µ

i j −igγµTa
ij
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The following definitions apply:

dµν(k) =
(

ηµν − (1− α)
kµkν

k2

)
(401)

Vµ1µ2µ3(k1, k2, k3) = (k1 − k2)µ3 gµ1µ2 + (k2 − k3)µ1 gµ2µ3 + (k3 − k1)µ2 gµ3µ1 (402)

Wa1 ...a4
µ1 ...µ4 = ( f 13,24 − f 14,32)gµ1µ2 gµ3µ4 + ( f 12,34 − f 14,23)gµ1µ3 gµ2µ4+

( f 13,42 − f 12,34)gµ1µ4 gµ3µ2 (403)

Where in the last line the following combination was used:

f ij,kl ≡ f aiaja f akal a (404)

• Additionally, internal momenta should be integrated over, and each such integral comes
with a factor (2π)−d as part of the dimensional regularization prescription. (If dimensional
regularization were not used each integral would come with a factor (2π)−4.)

• Furthermore, as usual, each fermion loop gives a minus sign. This means ghost and quark
loops come with a minus sign.

• Lastly every diagram should be multiplied by its combinatorial symmetry factor so there is
no overcounting.

C. Derivation of a Gaussian integral

The aim in this section is to derive a specific Gaussian integral stated in eq. 416, which is needed
to derive the alpha-parametrization of Feynman integrals. While most readers will be familiar
with Gaussian integral identities from quantum field theory, the full derivation is provided below
for completeness. First note the following result, for A ∈ R>0:

∫ ∞

0
e−Ax2

dx =
1
2

√
π

A
(405)

This is seen from squaring the integral and integrating using polar coordinates:(∫ ∞

0
e−Ax2

dx
)2

=
∫ ∞

0
dx
∫ ∞

0
dy e−A(x2+y2) =

∫ π
2

0
dθ
∫ ∞

0
dr re−Ar2

=
π

2
·
[
−1
2A

e−Ar2
]∞

0
=

π

4A
(406)

Next consider a similar integral with a factor i in the exponent, and again with A ∈ R>0. The
following results hold:

∫ ∞

−∞
dk eiAk2

= e
iπ
4

√
π

A
(407)

To derive this we can focus on the positive real axis:∫ ∞

−∞
dk eiAk2

= 2
∫ ∞

0
dk eiAk2

(408)

Next consider the contour γ = γ1γRγ2, where the product denotes the composition of curves,
drawn in fig. 9. Using Cauchy’s residue theorem and the fact that the integrand has no poles in
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Figure 9

the interior of γ, the following integral is zero:

0 =
∫

γ
dk eiAk2

=
∫

γ1

dk eiAk2
+
∫

γR

dk eiAk2
+
∫

γ2

dk eiAk2
(409)

The integral over the arc drops out in the limit R→ ∞. We see this from explicitely parametrizing
the arc by γR(t) = R(cos(π

4 t) + i sin(π
4 t)):

lim
R→∞

∫
γR

dk eiAk2
= lim

R→∞

∣∣∣∣ ∫ 1

0
eiAR2(cos( π

2 t)+i sin( π
2 t)) iπ

4
Re

iπt
4 dt

∣∣∣∣ ≤ lim
R→∞

πR
4

∫ 1

0
e−AR2 sin( π

2 t)dt = 0

(410)

It can be concluded that:∫ ∞

0
dk eiAk2

= lim
R→∞

∫
γ1

dk eiAk2
= − lim

R→∞

∫
γ2

dk eiAk2
= e

iπ
4

∫ ∞

0
dk e−Ak2

=
1
2

e
iπ
4

√
π

A
=

1
2

√
iπ
A
(411)

It was assumed in the beginning that A ∈ R>0. Now suppose A ∈ R<0. This case can be treated
analogously, but now the contour γ (the same notation is reused) of fig. 10 is considered. Similar

Figure 10
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to before the integral over the arc goes to zero so that one finds:

∫ ∞

0
dk eiAk2

= lim
R→∞

∫
γ1

dk eiAk2
= − lim

R→∞

∫
γ2

dk eiAk2
= e

−iπ
4

∫ ∞

0
dk eAk2

=
1
2

e
−iπ

4

√
π

−A
=

1
2

√
iπ
A

(412)

Thus one finds that in general for A 6= 0, A ∈ R,

∫ ∞

−∞
dk eiAk2

=

√
iπ
A

(413)

Next we generalize the previous result by adding a linear term. Consider A 6= 0, A ∈ R and
B ∈ R. It holds that: ∫ ∞

−∞
ei(Ak2+2Bk) = e−i B2

A

∫ ∞

−∞
ei[(k+ B

A )2 A]dk = e−i B2
A

√
iπ
A

(414)

which follows from the identity (k + B
A )

2 A− B2

A = Ak2 + 2Bk, shifting the integration parameter
and using eq. 413. Now that we have the formula for a complex Gaussian integral we generalize
to the case of a multidimensional Lorentzian integral, by picking B ∈ Rd, and the Lorentzian dot
product B · k = B0k0 − . . .− Bdkd:∫ ∞

−∞
ddk ei(Ak2+2B·k) =

∫ ∞

−∞
dk0 . . .

∫ ∞

−∞
dkd exp

(
i(A((k0)2 − . . .− (kd)2) + 2B0k0 − . . .− 2Bdkd)

)
=

(∫ ∞

−∞
dk0ei(A(k0)2+2B0K0)

)
. . .
(∫ ∞

−∞
dkde−i(A(kd)2+2BdKd)

)
=

(
iπ
A

) 1
2
·
(

iπ
−A

) d−1
2

e
i
A (−(B0)2+···+(Bd)2)

=
(π

A

) d
2 e

iπ
2 (1− d

2 )e
−iB2

A (415)

Lastly the result will be completely generalized by considering multiple momenta, numbered
by an index on the subscript. We let A be a symmetric matrix with real entries. That means
in particular A is diagonalizable by an orthogonal matrix Q so that A′ = QT AQ is diagonal. A
summation will be implied for repeated indices as usual: Aijki · k j = ∑i,j Aijki · k j. The following
formula will be proven:∫

ddk1 . . . ddkh exp
(
i(Aijki · k j + 2qi · ki)

)
= e

iπ
2 (1− d

2 )πh d
2 (det A)−

d
2 exp

(
−iA−1

ij qi · qj

)
(416)

where A−1 denotes the inverse of A so that Aij A−1
jk = δik, and the qµ

i are space-time vectors which
are not integrated over. Equation 416 can be derived by doing the transformation ki → Qijk j, which
is volume preserving due to orthogonality of Q. For the proof we define qjQji ≡ q̃i. Performing
the change of variables leads to:

∫
ddk1 . . . ddkh exp

(
i(Aijki · k j + 2qi · ki)

)
=
∫

ddk1 . . . ddkh exp

(
i

(
∑

i
A′iik

2
i + 2Qij qi · k j

))

= ∏
i

(∫
ddki exp

(
i(A′iik

2
i + 2q̃i · ki)

))
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= e
iπ
2 h(1− d

2 ) ∏
i

((
π

A′ii

) d
2

e
−iq̃2

i
Aii

)

= e
iπ
2 h(1− d

2 ) ∏
i

(
πh

A′11 · . . . · A′hh

)
e−i ∑i

q̃2
i

Aii (417)

Note that: ∑i q̃2
i /A′ii = ~qTQA′QT~q = ~qT A~q, and also that A′11 · . . . · A′hh = det(A). Using this eq.

416 follows.

D. Mathematical definitions

4.1. Euler gamma and beta function

Euler gamma function The Euler gamma function is the unique analytic generalization of the
factorial function, and is defined for t ∈ C, Re(t) > 0 by:

Γ(t) =
∫ ∞

0
xt−1e−xdx (418)

with the integral converging absolutely in the chosen domain. From integration by parts one finds:

Γ(t + 1) =
∫ ∞

0
xte−xdx =

[
−xte−x]x=∞

x=0 + t
∫ ∞

0
xt−1e−xdx = t · Γ(t) (419)

Using that Γ(1) = 1 this proofs for n ∈ N≥0 that

Γ(n + 1) = n! (420)

Furthermore, the gamma function can be analytically continued to a meromorphic function on C

with poles for the negative integers using eq. 419. For example:

Γ(−1.5) =
1

1.5
· Γ(−0.5) =

1
1.5 · 0.5

· Γ(0.5) = . . . (421)

This analytic continuation can also be obtained in a more formal manner. One splits up the integral
representation of the Γ function in the following way:

Γ(t) =
∫ 1

0
xt−1e−xdx +

∫ ∞

1
xt−1e−xdx (422)

For Re(t) ≤ 0 the integration on the domain [0, 1] will diverge, whereas the integral on the domain
[1, ∞) converges everywhere. Within the domain of convergence one can expand the exponent in
the first integral and switch summation and integration to find:

∑
k≥0

(−1)k ∫ 1
0 xt+k−1dx
k!

= ∑
k≥0

(−1)k

k!(t + k)
(423)

Then it is found that:

Γ(t) = ∑
k≥0

(−1)k

k!(t + k)
+
∫ ∞

1
xt−1e−xdx (424)

It turns out that the sum converges for all complex k /∈ N≤0. Hence eq. 424 gives the analytic
continuation of the gamma function.
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Euler beta function The Euler beta function, denoted B, is seen many times in the evaluation of
Feynman integrals. It admits the following formula:∫ 1

0
tp−1(1− t)q−1dt =

Γ(p)Γ(q)
Γ(p + q)

≡ B(p, q) for Re(p) > 0, Re(q) > 0 (425)

The relation of B(p, q) in terms of gamma functions is derived below. First note that:

Γ(p)Γ(q) =
∫ ∞

0
dx
∫ ∞

0
dy xp−1yq−1e−(p+q) (426)

Then change variables in the following way:

x = zt, y = z(1− t) (427)

dxdy =

∣∣∣∣∣∣∣∣∣det

 t z

1− t −z


∣∣∣∣∣∣∣∣∣ dzdt = z dzdt (428)

This shows that:

Γ(p)Γ(q) =
∫ ∞

0
dz
∫ ∞

0
dt z(zt)p−1(z(1− t))q−1e−z

=
∫ ∞

0
dz zp+q−1e−z

∫ ∞

0
dt tp−1(1− t)q−1

= Γ(p + q)B(p, q) (429)

Note that the beta function can be analytically continued by taking the analytic continuation of the
Γ-functions. Another integral represention of the beta function follows from changing variables to
t = u2

u2+1 , so that dt = 2u
(u2+1)2 du. This leads to:

B(p, q) =
∫ 1

0
tp−1(1− t)q−1dt = 2

∫ ∞

0

(u2)p−1/2

(1 + u2)p+q du (430)

Generalized Euler beta function The generalized Euler beta function is given by:

B(a1, . . . , an) =

(
n

∏
i=1

∫ ∞

0
dti

)(
n

∏
i=1

tai−1
i

)
δ

(
1−

n

∑
i=1

ti

)
(431)

This integral can be evaluated in an iterative manner. First integrate out tn, which gets rid of the
delta function, and then rescale the remaining parameters in the following way:

ti = ηt′i for i = 1, . . . , n− 1 (432)

with
n−1

∑
i=1

t′i = 1 enforced by introducing a new delta function (433)

The Jacobian of this transformation is ηn−2, which is one factor η less than is expected from a
naive rescaling of the differentials dti. The resulting expression gives:

B(a1, . . . , an) =

(
n−1

∏
i=1

∫ ∞

0
dti

)(
n−1

∏
i=1

tai−1
i

)
δ

(
1−

n−1

∑
i=1

ti

) ∫ 1

0
dηηan−1(1− η)∑n−1

i=1 ai−1

= B(a1, . . . , an−1)B

(
n−1

∑
i=1

ai, an

)
= B(a1, . . . , an−1)

Γ(∑n−1
i=1 ai)Γ(an)

Γ(∑n
i=1 ai)

(434)
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Repeating the previous procedure leads to:

B(a1, . . . , an) = B(a1, a2) · B(a1 + a2, a3) · . . . · B
(

n−1

∑
i=1

ai, an

)

=
Γ(a1) · . . . · Γ(an)

Γ(a1 + . . . + an)
(435)

4.2. Pochhammer symbols and the binomial theorem

The rising and falling Pochhammer symbols denoted (a)n and a(n) respectively, with a ∈ C, n ∈ C

are defined by:

(a)n ≡
Γ(a + n)

Γ(a)
, a(n) ≡ Γ(a + 1)

Γ(a− n + 1)
(436)

For n ∈ N≥0 they can also be written as:

(a)n = a · (a + 1) · . . . · (a + n− 1) (437)

a(n) = a · (a− 1) · . . . · (a− n + 1) (438)

In some texts a different notation is used where the subscript and superscript are switched. In the
theory of hypergeometric functions a subscript is always used for the rising factorial and here we
stick to that notation. The following identities hold for n ∈ Z≥0:

(a)n = (−1)n(−a)(n) (439)

a(n) = (−1)n(−a)n (440)

Note that for integer a ≥ 0, a ≥ n ≥ 0 it follows from the definition that:(
a
n

)
=

a!
n!(a− n)!

=
Γ(a + 1)

n!Γ(a− n + 1)
=

a(n)

n!
(441)

Generalizing to a ∈ C, n ∈ Z≥0 one can therefore define the generalized binomial coefficient by:(
a
n

)
≡ a(n)

Γ(n + 1)
,
(
−a
n

)
= (−1)(n)

(a)n

Γ(n + 1)
(442)

Using this definition the binomial theorem can be generalized for λ ∈ C and |x| > |y|:

(x + y)λ =
∞

∑
k=0

(
λ

k

)
xλ−kyk (443)

This is of course nothing else but the Taylor series of (x + y)λ in y around 0.

4.3. Hypergeometric functions

The generalized hypergeometric function F(α, β|z) for α = (α1, . . . , αk) ∈ Cn (the numerator
parameters) and β = (β1, . . . , βk) ∈ Cn, βi 6∈ Z≤0 (the denominator parameters) can be introduced
in a number of ways. It admits a power series expansion around 0 given by:

F(α, β|z) = ∑
n≥0

(α1)n . . . (αk)n

(β1)k . . . (βk)n
zk for |z| < 1 (444)
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It can also be introduced as the local solution around 0 of the generalized hypergeometric
differential equation with parameters α and β given by:

[z(θ + α1) . . . (θ + αn)− (θ + β1 − 1) . . . (θ + βn − 1)] f (z) = 0 (445)

A special case of the hypergeometric equation is 2F1(a, b; c|z), also called the Clausen-Thomae
HGF, defined by:

2F1(a, b; c|z) = ∑
n≥0

(a)n(b)n

(c)nk!
zk for |z| < 1 (446)

which comes from using α = (a, b) and β = (c, 1) in eq. 444. This function can also be represented
using an Euler integral:

2F1(a, b; c|z) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt (447)

Provided that Re(c) > Re(b) > 0 and |z| < 1. This can be proven by doing a binomial expansion
on the term (1− tz)−a:

(1− tz)−a = ∑
k≥0

(
−a
k

)
(−tz)k = ∑

k≥0

(a)k
k!

(tz)k (448)

This leads to: ∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt = ∑

k≥0

(a)k
k!

zk
∫ 1

0
tk+b−1(1− t)c−b−1dt

= ∑
k≥0

(a)k
k!

Γ(b + k)Γ(c− b)
Γ(c + k)

zk

=
Γ(b)Γ(c− b)

Γ(c) ∑
k≥0

(a)k(b)k
(c)k k!

zk (449)

which proofs eq. 447.

4.4. Multiple zeta values

The Riemann zeta function ζ(s) is the analytical continuation of the infinite series

ζ(s) ≡
∞

∑
n=1

1
ns (450)

which converges for Re(s) > 1. Zeta values with s ∈ Z≥1 show up in the power series expansions
of Feynman integrals, in which case we put s in the subscript: ζ(s) = ζs. At high powers in ε
so-called multiple zeta values show up. Using the notation from [1] these are defined by:

ζn1,...,nr ≡ Li|n1|,...,|nr |

(
n1

|n1|
, . . . ,

nr

|nr|

)
(451)

with indices n1, . . . , nr ∈ Z \ {0}, nr 6= 1. The multiple polylogarithms are defined by:

Lin1,...,nr (z1, . . . , zr) ≡ ∑
0<k1<...<kr

zk1
1 . . . zkr

r

kn1
1 . . . knr

r
(452)
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