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Abstract

Datatype generic programming is a programming model that exploits the structural similar-
ities of different types in order to generically define functions on families of types. This model
demands a powerful type system so it has been seldomly used outside Haskell. This thesis
attempts to address this problem by introducing a datatype generic programming for the F#
language, which is a simpler functional language designed for existing .NET programmers.
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1 Introduction

Functional programming languages have relied on algebraic data types (ADTs) as the mechanism
to represent data structures. They allow inductively defined types which can be de-constructed
using pattern matching. Whenever a value is pattern matched inside a function, the function will
demand a concrete type (instead of a type variable) for that value. This is very useful since it allows
the compiler to infer types but has consequences for certain functions. For example, the equality
function is trivial to define. Simply check that both arguments were constructed with the same
constructor, if so, apply equality to the arguments of the constructor. However, most languages
will require pattern matching to be done in isolation for each type making it impossible to define
equality that works on more than one type.

To mitigate the problem, polytypic programming [3], which later became datatype generic
programming, was developed. The idea behind polytypic programming is to define functions by
induction over the structure of types. The structure is encoded using a representation type and
functions are defined on values of the representation type. Finally, a translation between types and
representations allows functions to be applied to ordinary values.

Datatype generic programming has been actively researched in the Haskell programming lan-
guage. Many approaches exists such as Regular [8], Multirec [13], Generic Haskell [5], RepLib [12]
and Instant Generics [1]. Most of the approaches differ in the class of types that can be represented
by the library – called the universe. In general, if the universe is smaller, the library is easier to
learn and its implementation is less demanding for the type system.

Unfortunately, little work has been done to bring these ideas into other programming languages.
One of the main difficulties is that most approaches rely on advanced type system features to ensure
correct behavior. For example none of the libraries mentioned above works with plain Haskell 98
and all of them use higher kinded polymorphic types. Since most ordinary programming languages
still lack these features, the ideas cannot be directly implemented in such languages and need to
be adapted.

The present thesis investigates how to adapt the ideas of datatype generic programming to
apply them in the F# programming language. The approach is inspired by Regular which is a
library designed with ease of use in mind. It leverages from .NET’s reflection to carry out the
type level computations necessary for generic programming at runtime. To adapt the ideas, several
compromises had to be made which resulted in both advantages and disadvantages. The result is
packed as a library which can be used to declare generic functions which can be used with little
programming overhead in the F# language.
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Part I

Background

2 Datatype Generic Programming

Functional programming languages often use algebraic data types (ADTs) to represent values.
ADTs are defined in cases by providing a constructor for each case and specifying the type of the
values the constructor needs to create a new value. In other words, a type constructor is a function
that takes a group of values of different types and produces a value of the ADT’s type.

To define functions for ADTs, functional languages provide a mechanism to deconstruct ADTs
called pattern matching. This mechanism allows the programmer to check if a particular value was
constructed using the specified constructor and extract the arguments used to produce the value.
This mechanism is very elegant since it allows defining functions by induction but it has several
shortcomings.

A function that pattern matches a value over the constructors of a particular ADT constraints
the type of that value to be the ADT defined by those constructors. This leads to functions being
implemented multiple times – either when a existing ADT is modified or a new ADT is declared [3].
Due to the importance of abstraction, several methods for polymorphism have been developed to
address these restrictions.

An ADT can be higher-kinded. This means that a definition of a list data List = Cons Int List | Nil
can abstract the type of its content and become data List a = Cons a (List a) | Nil . A function,
such as length, might de-construct the list without performing any operations on its content (the
type represented by a). Such function can operate on a list of any type – this is called parametric
polymorphism. The programmer might also wish to implement functions that operate on the con-
tents of a list without restricting the type of the list’s content to a particular type. This can be
done by requiring that the function is also provided with a set of operations that it may perform
on its content. For example, the sum function could be implemented by requiring that a function
to add two elements of type a is provided. This is called ad-hoc polymorphism.

These approaches can be used to define many polytypic functions generically. This is evidenced
by the libraries Scrap your Boilerplate Code [4] and Uniplate [7]. Both libraries specify a family
of operations that must be supported by a type and use ad-hoc polymorphism to implement many
polytipic functions (for example length or increment) in terms of the family of operations. The
programmer only needs to do pattern matching when defining these base operations and both
libraries provide mechanisms to do it automatically.

Although it’s possible to define many polytipic functions with these approaches, there exists
a more general approach called datatype generic programming. The following example shows the
intuition. For simplicity consider types with constructors that either accept zero or one argument.
Such as the types:

data Maybe a = Nothing | Just a
data Circle = Radius Int

Then typeclasses to match constructors with zero and one argument are defined as follows:

class ZeroArgs t where
value0 :: t → Maybe ()
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constr0 :: t

class OneArg t a where
value1 :: t → Maybe a
constr1 :: a → t

The following instances are valid for the types given above:

instance ZeroArgs (Maybe a) a
instance OneArg (Maybe a) a
instance OneArg Circle Int

With those constructors one can easily define an increment function:

increment :: OneArg t Int ⇒ t → t
increment v = case value1 v of

Nothing → v
Just i → constr1 (i + 1)

The idea is encoding type constructors using other types, ZeroArgs and OneArg in this case,
and the arguments of the constructor as type parameters of the encoding type. The type used
to encode other types is called representation type or universe. The approach above has many
limitations in the types it is able to encode. For example, it cannot encode a type, such as
data Int = Pos Nat | Neg Nat , with two type constructors that accept the same argument. Richer
representation types are able to encode more types. The remainder of this section introduces
Regular [8] which is an approach to datatype generic programming able to express many more types.
In the rest of this thesis, generic programming will always refer to datatype generic programming
and functions defined using generic programming will be called generic functions.

2.1 Generic Programming with Regular

Generic functions are defined by induction on the structure of a type. Since pattern matching can
only do induction on one type, generic programming libraries include facilities to define functions
that work on many types. The most important things are: a representation type (U ) that can
represent values of other types, and a decoding function, Set → U , that decodes representations
back to types. The representation type along with the decoding function is called the universe.
The universe specifies the types that can be represented by the library.

In the case of Regular, its universe consists of all ADTs that:

• Are of kind ∗

• Are not mutually recursive

This universe includes many common types like lists, trees and simple DSLs but is smaller than
the set of types definable in Haskell 98. To represent its universe, Regular uses the following types:

data K a r = K a
data Id r = Id r
data Unit r = Unit
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data (f ⊕ g) r = Inl (f r) | Inr (g r)
data (f ⊗ g) r = f r ⊗ g r

The types have the following roles:

• K represents the occurrence of values of primitive types (eg. Int or Bool)

• Id represents recursion on the type being represented (eg. the List argument of the Cons
constructor).

• Unit represents a constructor which takes no arguments

• (f ⊕ g) represents sum of two representations. This happens when a type has multiple
constructors

• (f ⊗ g) represents product of two representations. This happens when a constructor takes
multiple arguments.

As an example, this list of integers:

data List = Cons Int List | Nil

is represented by the type:

type Rep = (K Int ⊗ Id) ⊕ Unit

It is straightforward to see that the sum of constructors gets translated to the ⊕ type. The ⊗
type is used to join the arguments of the first constructor. One of the arguments is a primitive Int
represented with K Int and the second arguments is a recursive occurrence of the list, represented
by Id . Finally, the Nil constructor is represented by Unit .

The types above are used to define generic functions but in order to do so, values must be
translated to representations. In Regular, the translation is defined by making a type an instance
of the Regular typeclass. The Regular typeclass is defined as follows:

class (Functor (PF a))⇒ Regular a where
type PF a :: ∗ → ∗
from :: a → PF a a
to :: PF a a → a

The constituents of the class are a type called PF which is the representation of the argument
type and two functions, to and from, that convert values to representations and representations to
values. In the case of list of Int , an instance could be the following:

instance Regular List where
type PF List = (K Int ⊗ Id) ⊕ Unit

from (Cons i l) = Inl (K i ⊗ Id l)
from Nil = Inr Unit

to (Inl (K i ⊗ Id l)) = Cons i l
to (Inr Unit) = Nil
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This instance declaration is straightforward. In general, instances of the Regular class are
straightforward and libraries usually provide an automatic mechanism to generate them. This
feature makes the library easy to use.

Generic functions can now be expressed in terms of values of representation types instead of
using values of the type itself. A generic function is specified as a typeclass and is implemented by
making representations instances of that class. As an example, the generic increment function will
be defined. This function increases the value of every integer that occurs in a type by one. It is
defined as the following class:

class GInc r where
gInc :: r → r

and is implemented as follows:

instance GInc (K Int) where
gInc (K i) = K (i + 1)

instance GInc Unit where
gInc Unit = Unit

instance GInc Id where
gInc (Id r) = Id $ from $ gInc $ to r

instance (GInc f ,GInc g)⇒ GInc (f ⊕ g) where
gInc (Inl f ) = Inl $ gInc f
gInc (Inr g) = Inr $ gInc g

instance (GInc f ,GInc g)⇒ GInc (f ⊗ g) where
gInc (f ⊗ g) = gInc f ⊗ (gInc g)

instance GInc (K a) where
gInc x = x

This definition is not very interesting. Whenever there is an integer, its value will be increased by
one. In the case of products and sums, the function is recursively applied and the result is packed
back into the same product or sum. The case for Id also applies the function recursively but since
it contains a value, not a representation, it must be converted into a representation to apply gInc
and the result needs to be converted back to the original type. The rest of the cases leave their
argument untouched.

What is important about this function is that Haskell’s add-hoc polymorphism (type-classes) is
used to perform recursion and to provide type safety. For instance, consider the following definition:

instance GInc (K Int) where
gInc (K i) = K "wrong!"

This definition does not type-check since gInc :: a → a but K i :: K Int and K "wrong!" :: K String
which would result in gInc :: K Int → K String .

The definition of GInc requires the overlapping instances extension (among others) since there
is no way to provide a specific case for Int and a case for everything but Int . Ommiting the K Int
case would still result in a valid definition and the Haskell compiler is, in principle, allowed to
ignore it. Regular relies on the compiler to select the correct instance and is unable to accept
custom selection rules.
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For convenience, generic functions are usually wrapped around the conversion functions to
provide a toplevel function that works on every instance of the Regular typeclass:

inc :: Regular a ⇒ a → a
inc = from ◦ gInc ◦ to

This definition of GInc is total for Regular’s universe since any representation can be applied to
it. This is not necessary. Consider deleting the instance: instance Regular (K a). GInc will still
work for any ADT as long as all of its type constructors take only values of type Int as arguments.
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3 The F# language

The F# [11] programming language is a functional language of the ML family. It started off as
a .NET implementation of OCaml but was adapted so it could inter-opearate with other .NET
languages. One notable feature of the language is that it obtains its type system from the .NET
platform (hence there is no type erasure). In addition, it includes a syntax directed type inference
algorithm inspired on the Hindley-Miller system. The remainder of the section explains some of
the components of the F# language.

3.1 Types and Type System

The types in the F# language can be divided into two categories. The purely functional structures
(value types) and the Object Oriented/Imperative structures (classes). The language is completely
object oriented in the sense that every value is an object. In some cases, the compiler will optimize
values by un-boxing primitive types (like integers) but this happens transparently depending on
how a value is used.

Value types: The value structures are Algebraic Data Types and Records. Both of theese
structures are immutable and do not allow inheritance/sub-type relations (they are sealed in .NET
terminology). ADTs in F# are very similar to those of a traditional functional language. Con-
structors are defined by cases along with the arguments the constructor requires to build the type.
Records are defined by enumerating the fields of the record along with the type of each field.
Records can then be constructed by providing the arguments of each of the Record’s fields as a
named argument.

Value types can be de-constructed through pattern matching. F# also supports parametric
and ad-hoc polymorphism on these types. Parametric polymorphism is implemented in the same
way as in other functional languages. For ad-hoc polymorphism, operations are defined on types as
member functions. Interfaces and member constraints can be used to constrain a value to support
certain operations. The code below shows the syntax for interfaces and member constraints:

[〈Interface〉]
type Show =

abstract Show :unit → string

let print1 〈‘x :when ‘x ≺ Show〉 : ‘x → unit

let print2 〈‘x :when ‘x : (member Show :unit → string)〉 : ‘x → unit

This code defines an interface called Show that defines the methods a type should have in order
to be convertible to strings. The print1 function requires that the argument ‘x implements that
interface. The print2 function simply requires that ‘x defines a member function called show with
signature unit → string .

Classes and Structures: The other category of types that exists in F# are classes and
structures. Both are very similar with slight differences only on the type parameters they support
but those details are not relevant for this thesis and will be ignored. These types are the traditional
classes that are available in other object oriented languages. They are defined by providing one (or
many) constructors, class variables (which can be mutable) and member functions (or methods).
F# (and .Net) allow inheritance from a single type. Classes in F# can also implement any number
of interfaces.
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Since types can inherit from other types, there exists a sub-typeing relation in F#. This thesis
uses the notation τa ≺ τb to indicate that τa inherits from (is a subtype of) τb. As with most OO-
languages, values are automatically assigned a supertype if necessary. Sometimes it is necessary to
explicitly assign a type to a value. The notation x ≺ τa is used to indicate a safe cast of x to τa – in
other words x is assigned the type τa and the compiler can check that the value x is compatible with
that type. In some situations, the compatibility cannot be checked statically. When this happens,
the operation x - τa is used to dynamically check if x is compatible with τa and if so assign the
type τa to x or raise a runtime exception if x does not have type τa.

Finally, classes can define internal or nested types. This is how modules internally work. They
simply are classes; toplevel definitions become static members and type definitions become nested
types.

Polymorphic types: Types in F# can accept type arguments. These are type variables that
can be instantiated to any concrete type as long as the concrete type satisfies the constraints given
to the argument. A major difference between F# and other functional laungauges is that type
variables are restricted to kind ∗. Functions such as the bind (>>=) function in Haskell cannot be
implemented in F#. For example:

(>>=) :: Monad m ⇒ m a → (a → m b)→ m b

cannot be immitated in F# because m is higher kinded (it takes a as argument). One possible
approximation in F# could be:

(>>=):Monad〈‘a〉 → (‘a → Monad〈‘b〉)→ Monad〈‘b〉

and have every monad in F# implement the Monad interface. Even though this funciton would
behave correctly, it can go wrong if the first argument is an instance of the Maybe monad and the
second argument a function that goes from ‘a to the IO monad. Such errors would not be caught
by the typechecker.

Member functions: Types are allowed to define member functions (typically known as
methods) for any type. Member functions can be abstract or concrete. Abstract members can be
overriden by a different implementation with the same signature. They must be overriden at least
once in order to instantiate the type. Concrete members cannot be overriden. Member functions
can be defined post-hoc in any module. Member functions defined in a different location where
the type is defined are called extension members. Whenever a module gets imported, all extension
members will be added to their respective types. The major limitation of extension members is
that they are not checked when solving memeber constrains.

3.2 Reflection

Through the .NET platform, the F# language has access to a rich reflection library. Reflection is
a mechanism that allows programs to query values for information about their type at runtime. In
.NET, reflection exposes that information through the Type class.

When a program is compiled to CIL, the .NET intermediate language, an instance of the Type
class is created for every type that is declared in the program. This is an abstract class and specifies
all the information that .NET needs about a type. Languages of the .NET platform extend the
Type class with the information they wish to store about their types. In the case of F#, information
about the constructors and record fields is included in the type.
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The .NET platform is an object oriented runtime system. Every value is an object and has
methods asociated with it. When ADTs get translated to native .NET values, they become ordinary
objects in the object oriented sense. The code below outlines how the structure of an ADT would
look like if it were defined as a class:

[〈Sealed〉]
type List〈‘a〉 =

type Cons〈‘a〉(a : ‘a, l :List〈‘a〉)
inherit List〈‘a〉
member Value : ‘a ∗ List〈‘a〉

type Nil〈‘a〉() = inherit List〈‘a〉
abstract IsCons :bool

abstract IsNil :bool

The definition is not a valid F# definition since classes cannot inherit from a sealed class but
compilers targeting .NET are allowed to generate such definitions. This definition ignores some
details but includes the information that is necessary to present the reflection library.

In this example, the List type has no constructors and cannot be instantiated. Instead, List
values are created using the Cons type or the Nil type. Pattern matching is not a native .NET
operation. To de-construct a type into a particular pattern, .NET first checks wether the value is a
Cons or a Nil using the respective members and then it performs an unsafe cast to that type and
uses the Value member function to obtain the values.

Constructing values of type List can be done by invoking the constructor of either the Nil type
or the Cons type with the apropiate arguments.

When this ADT gets compiled to .NET, a value of type Type is created for List , Cons and
Nil . The Type class defines the memeber function GetNestedTypes : unit → Type [ ] which returns
all the types that are defined inside the type on which the function is invoked. In the case of
List , GetNestedTypes would return an array containing Cons and Nil . Furthermore, the Type
class defines a member called GetConstructor : Type [ ] → ConstructorInfo. This member returns
a constructor with input types that match the types provided in the array or null in case no
constructor matches the arguments.

The ConstructorInfo class is a subclass of the MemberInfo class. This class contains information
about member functions. In particular, it defines the member Invoke : obj → obj [ ] → obj . This
member takes as first argument the object on which it will be invoked and as second argument
the values that the member accepts as arguments. Since every type in .NET inherits from obj ,
any values can be passed to this method. The method produces as result the result of calling the
method with the provided arguments. If the Invoke method is called with arguments of the wrong
type it raises a runtime exception. For completeness, the code below uses reflection to construct a
simple list.

type List〈‘a〉 = Cons‘a ∗ List〈‘a〉 | Nil

let listTy = (Nil ≺ List〈int〉).GetType ()
let [| consTy ; nilTy | ] = listTy .GetNestedTypes ()
let cons = consTy .GetConstructor ([| typeof 〈int〉; listTy |])
let nil = nilTy .GetConstructor ([||])
cons.Invoke (null , [ | 1:obj ; nil .Invoke (null , [ ||]) | ])
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Note that when calling static members or constructors using the Invoke method, null is given
as first argument since they don’t use that argument.

The reflection api of .NET is very rich. Many more functions are available; an entire book
would be required to explain every detail. This section gives the intuition on how it can be used to
achieve the objectives of the thesis. More information is available in Microsoft’s documentation [6].
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Part II

Research Topic

4 Description of the Problem

Even though datatype generic programming has existed for almost 20 years, it is still uncommon in
languages other than Haskell. The method is still quite unknown but if more languages adopt it, it
could eventually become a tool to prevent boilerplate code and unecessary refactoring within large
software systems. However, it is not trivial to translate the Haskell approach to other languages,
especially languages like F# which have simpler type systems.

4.1 Why should F# adopt Datatype Generic Programming

Programmers of the F# language also face the problem of having to define a function multiple times
for every ADT. Apart from parametric polymorphism and ad-hoc polymorphism, the language
dosen’t have a good method to define generic functions.

When polymorphism isn’t enough, programmers rely on reflection to define functions generically.
There are several reasons why this approach is inconvenient:

• Reflection is quite involved to use. The programmer must learn a lot on how .NET internally
handles types and values.

• The F# language offers no syntactic facilites to call functions via reflection. This means that
a function call can ammount to several lines of code.

• Reflection relies on dyamic typeing which can lead to runtime errors.

• Different implementations (eg. .NET, Websharper and Mono) handle reflection differently so
code might not work in every platform.

It is generally easier and less time consuming implementing a function tens of times before
recurring to reflection. The average programmer will hardly find it convenient to use reflection,
cluttering the codebase with boilerplate code in the long run. Reflection also lacks the mathematical
elegance of inductively defined functions which, combined with the disadvantages above, easily leads
to code that is hard to mantain.

Taking as inspiration the existing knowlege about datatype generic programming, it might be
possible to develop a library that allows the definition of generic functions without requiring the
programmer to use reflection. Even if this library is implemented using reflection, the programmer
would enjoy several advantages using it:

• The definition of generic functions will not require reflection

• The code that uses reflection can be small and easy to mantain

• The library can perform optimizations which would have to be done manually when using
reflection

• Defining and calling generic functions has little overhead for the programmer since it will be
done elegantly, inductively and without the syntactic clutter of code that uses reflection
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The existing methods for datatype generic programming cannot be directly implemented in F#
since the language lacks features that are heavily used by said methods. The remainder of the
section introduces these features and explains their role in datatype generic programming.

4.2 Kind-Polymorphism and Datatype Generic Programming

Polytipic programming was introduced as a mechanism to generically derive folds over any type [3].
This approach visualized the representation of a type as the functor of the type. A functor f is
a typelevel function that takes as argument a type t and produces a new type f t . Consider the
Regular class:

class Regular a where
PF a :: ∗ → ∗
from :: a → PF a a
to :: PF a a → a

In this definition PF a is the functor which given a type will produce a new type PF a a. Note
that every instance of Regular supplies its own functor which means that the to/from function
must necesarily make it a type variable dependant on the input type. This is not possible in F#
because type variables cannot accept type arguments.

4.3 Typeclasses and Generic Programming

Typeclasses are another Haskell specific feature essential for generic programming. They are the
mechanism used in Haskell for function overloading. The special feature about typeclasses is the
way they select function overloads. Consider the following portions of the GInc function:

instance GInc (K Int) where
gInc (K i) = K (i + 1)

instance GInc Unit where
gInc Unit = Unit

instance (GInc f ,GInc g)⇒ GInc (f ⊕ g) where
gInc (Inl f ) = Inl $ gInc f
gInc (Inr g) = Inr $ gInc g

Consider what happens when gInc is invoked with a value of type f ⊕ g . The function invokation
makes a recursive call to an overload of gInc – but which? It is not possible to determine the precise
overload until all type variables get instantiated. For instance, gInc can be called with a value of
type K Int ⊕ Unit as well as a value of type Unit ⊕ Unit or even GInc a ⇒ a ⊕ K Int . Each
of these scenarios requires the compiler to select a different gmap overload. Haskell addresses the
problem by performing type level computations when type variables get instantiated to select the
correct overload.

In F#, method constraints could be used to achieve a similar result. For example, one could
define the GInc funciton as an extension method of K , Unit and Sum:

type K 〈‘t , ‘x 〉 with
member x .GInc () = x
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type K 〈‘t , int〉 with
member x .GInc () = K (x .Elem + 1)

type Sum〈‘t , ‘a, ‘b when
(‘a :member GInc :unit → ‘a)
and (‘b ::member GInc :unit → ‘a)〉 with
member x .GInc () = match x .Elem with
| Choice1Of2 v → Sum (Choice1Of2 v .GInc ())
| Choice2Of2 v → Sum (Choice2Of2 v .GInc ())

However, type constraints in F# have the following limitations:

1. Extension methods are not checked by the compiler when solving type constraints

2. When extending a type, it must have the exact same signature as the original definition. The
extension for K 〈‘t , int〉 and Sum given above are not valid F# code.

These limitations (especially #2) highlight the additional type level computation power available
in Haskell. To address them, F# would have to solve type constraints differently depending on
how type variables are instantiated. Currently, type constraints in F# are solved the same way
regardless on how the type variables of a type get instantiated.

4.4 Higher-Rank Polymorphism and Generic Programming

The RepLib [12] can be used to define generic functions for any Haskell 98 type. To achieve this
it makes use of rank 2 types. The rank of a type is determined by the depth of nestings that the
forall quantifier can appear. For example, RepLib defines the following rank-2 type:

data Con c a = ∀ l .Con (Emb l a) (MTup c l)

This type is rank-2 because the type ∀ quantifier of the l type is nested within the ∀ quantifier of
the c and a types. To illustrate the usefulness of higher ranks in Haskell, consider a simpler rank-2
type:

data Rank2 = ∀ l .Rank2 l

With this type, one can define the following list:

[Rank2 5,Rank2 "String"] :: [Rank2 ]

Since every element of the list is of type Rank2 . This is not very useful since any function that
pattern matches on the Rank2 constructor cannot perform any operation on the type it contains
since it could be a value of any type. However, if type constraints are somehow imposed on the l ,
it would be possible to perform some operations. One possible way this could happen is through
generalized algebraic data types (GADTs) [10]. Consider for example:

data V a where
V :: Show a ⇒ a → V a

data Rank2 = ∀ l .Rank2 (V l)
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In this case, the type V imposes the constraint that l will always be an instance of Show .
Back to RepLib, the type Con represents a type constructor. What RepLib does is that for

every type a it represents, it defines a list of Con representing all the available constructors of
that type. The argument l encodes the type of the arguments of the constructor. Since every
constructor accepts arguments of different types, it must be a rank-2 type in order to have them
all in the same list.

RepLib also defines a type Emb:

data Emb l a = Emb {
to :: l → a,
from :: a → Maybe l
}

This is the type used to pattern match constructors generically. For every type constructor,
a value of type Emb is defined. This value contains two functions. The function from is used to
generically pattern match this a value with a constructor. If the match is positive, it returns a
value l inside a Just . As said before, l is used to encode the type of the arguments of the type-
constructor. This allows the inclusion of the values given as parameters to the type constructor
inside the Just constructor. Similarly, the to function takes a set of values with the type accepted
by the type constructor and creates a new value using that constructor.

The RepLib library shows that rank polymorphism allows the programmer to specify how a
generic function should behave depending on how the l argument is instantiated but at the same
time, values that instantiate the l argument differently can be treated as if they were the same
type.

4.5 Remarks

Typeclasses and GADTs give Haskell basic typelevel programming power. This allows the compiler
to check that values constructed generically will be consistent with the type it represents. Withouth
such typelevel programming capabilities, it is difficult to enforce correctness when constructing
values generically since such correctness can only be checked at runtime with reflection.
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5 Objectives

To explore the feasability of implementing a datatype generic programming in F#, the following
objectives have been established:

General Objectives

• Implementing a library for datatype generic programming using Regular as a basis

• Compare the library to existing Haskell libraries

• Evaluate the library

Specific Objectives

• Define the types that will be used to define representations

• Create a mechanism to automatically derive representations

• Implement a mechanism to select method overloads using reflection

• Outline the shortcommings resulting from the lack of kind polymorphism

• Outline the shortcommings resulting from the lack of rank polymorphism

• Compare the library to Regular
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[〈AbstractClass〉]
type Meta () = class end

type U 〈‘ty〉() =
class

inherit Meta ()
end

type K 〈‘ty , ‘x〉(elem : ‘x) =
class

inherit Meta ()
member self .Elem

with get () = elem
end

type Id〈‘ty〉(elem : ‘ty) =
class

inherit Meta ()
self .Elem

with get () = elem
end

type Sum〈‘ty , ‘a, ‘b
when ‘a ≺ Meta
and ‘b ≺ Meta〉(
elem :Choice〈‘a, ‘b〉) =
class

inherit Meta ()
member self .Elem

with get () = elem
end

type Prod〈‘ty , ‘a, ‘b
when ‘a ≺ Meta
and ‘b ≺ Meta〉(
e1 : ‘a, e2 : ‘b) =
class

inherit Meta ()
member self .Elem

with get () = e1 , e2
member self .E1

with get () = e1
member self .E2

with get () = e2
end

Figure 1: Definition in F# of all the types used to build type representations.

Part III

Strategy to Solve the Problem

6 Representations in F#

The core of datatype generic programming libraries is the representation type. As mentioned before,
this library borrows its approach from Regular but has to be modified to cope with the limitations
described in section 4.

All representations inherit from the class Meta. On a type level, the role of this class is to
impose type constraints on type variables. Theese constraints are an alternative to the typeclass
constraints used in Regular. For example, consider the following instance of the GInc defined
above:

instance (GInc f ,GInc g)⇒
GInc (f :∗: g) where

gInc f (x :∗: y) = ...

Rather than abstracting over higher-kinded type arguments, this library abstracts over first-
order type variables of kind ∗ and requires that they themselves are subtypes of the Meta class.

The concrete subtypes of Meta will be presented in the remainder of the section. Theese sub-
types are analogous to the representation types already presented for Regular. All the subclasses
of the Meta class are parametrized by at least one (phantom) type argument ‘ty . This argument
will be instantiated to the type that a value of type Meta is used to represent.
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The first subclass of Meta is Sum, that represents the sum of type constructors, analogous to
⊕ in Regular. Besides ‘ty , it takes two additional type arguments: ‘a and ‘b. It stores a single
element of type Choice〈‘a, ‘b〉 which contains two type constructors: Choice1Of2 and Choice2Of2
which are used instead of Inl and Inr .

The second subclass of Meta is Prod , corresponding to the product of two types, analogous to
⊗ in Regular. Besides the ‘ty argument, the Prod type accepts two additional type arguments: ‘a
and ‘b corresponding to the types of the two values of the product. It contains the properties E1
and E2 to access each of the elements of the product.

The third subclass of Meta is K , used to represent types that are not defined as ADTs, analogous
to K in Regular. In addition to ‘ty it contains an extra argument ‘a which is the type of the value
it contains. The variable ‘a has no type constraints since F# cannot statically constrain a type to
not be an ADT. The value contained in K can be accessed by the property Elem.

The fourth subclass of Meta is U , used to represent empty type constructors, analogous to U
in Regular. It takes no additional type arguments.

The fifth subclass of Meta is Id , used to represent recursion within a type, analogous to I in
Regular. This type only contains a single value of type ‘ty which is the recursively occurring value.

The definitions of these types are given in Figure 1. These definitions are not complete since the
actual implementation contains extra code used for reflection which is not relevant when discussing
the universe of types that the library can handle.

To show how representations look in F#, a similar list is defined in F#. This list has nested
ADTs to highlight some of the differences between the representations of this library and Regular’s.

type Shape = Square of int ∗ in | Point

type SList = Cons of Shape ∗NatList
| Nil

type SListRep =
Sum〈

SList ,
Prod〈SList ,Sum〈Shape,Prod〈Shape,K 〈Shape, int〉,K 〈Shape, int〉,U 〈Shape〉〉〉,

Id〈SList〉〉,
U 〈Elems〉〉

It is important to notice that the first type argument ‘ty of any subclass of FoldMeta is instantiated
to the type being represented. In the next sections it will be highlighted why this is important.
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7 Automatic conversion between values and representations

Being able to convert values to and from representations automatically makes the library more
convenient to use. Since this conversion is a single function, it can be implemented using reflection.
The user of the library will not need to write reflective code to implement generic functions. This
section describes how reflection can be used in F# to write the function.

Every object in .NET has a member function GetType : unit → Type. This function returns a
value of type Type containing all the metadata related to the type of the value. Many methods
exist to inspect that metadata, most of them are available in the Reflection package of F#. Two
important functions when dealing with ADTs are:

type FSharpType =
static member IsUnion :Type → bool
static member GetUnionCases :Type → List〈UnionCaseInfo〉

The IsUnion method checks at runtime whether or not values of the given type are defined as ADTs.
The GetUnionCases method gives a list of all the constructors of an ADT. The UnionCaseInfo
type contains information about each of the constructors and can be used to construct and pattern
match values.

The remainder of this section describes the algorithm to convert values into representations. The
code here intends to demostrate how the algorithm works and how reflection is used to implement
it but the actual implementation is very different since this code omits lots of boilerplate code that
arises from the use of reflection. It uses pseudo-code that has F# syntax but types are treated as
first class values, it uses 〈〉 to distinguish types from values in the arguments of functions.

In this code, variables preceded by an apostrophe, such as ‘x , always refer to types, even when
used as values. They are always of type ‘x :Type. This code also pattern matches types as if they
were ordinary values. Reflection can mimick pattern matching on types because type objects can
be checked for equality. However, polymorphic types cannot be directly compared to monomorphic
types. For example, the types List〈‘a〉 and List〈int〉 are not equal according to .NET. In order to
match List〈int〉 with the pattern List〈‘a〉, the method GetGenericTypeDefinition :unit → Type of
the Type class is used to un-instantiate the type variables. The resulting type can be checked for
equality.

Another simplification of the language is that it omits conversion from/to type variables (the
types that appear inside 〈〉) to .NET values of type Type. This is straightforward to do. Suppose
one has a generic function foo〈‘t〉, the Type object represented by the ‘t variable can be obtained
in the body of foo〈‘t〉 using the typeof 〈‘t〉 :Type function.

The final simplification is that constructors for types that contain polymorphic type arguments
are invoked by instantiating the polymorphic types with values of type Type. Suppose we wish
to invoke the Sum〈‘t , ‘a, ‘b〉 constructor with the values T ,A,B : Type (which are runtime .NET
values). First a Type object is constructed which instantiates ‘t , ‘a, ‘b with T ,A,B :

let sumTy ′ = typeof 〈Sum〈obj ,Meta,Meta〉〉
let sumTy = sumTy ′.GetGenericTypeDefinition ().MakeGenericType ([| T ; A; B |])

The GetGenericTypeDefinition member returns a Type object identical to the type it is invoked
on but with all type variables un-instantiated. Then the MakeGenericType method instantiates all
type variables of a type with other types which are given as arguments in an array. Nothe that the
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MakeGenericType function is un-safe because it cannot check until runtime that the Type values
passed as argument are compatible with the variables they are instantiating. With this new type,
the constructor can be obtained using the GetConstructor : Type [ ] → ConstructorInfo and can
then be called using the Invoke : obj → obj [ ] → obj method. The first argument is the object on
which a method is called (always null for constructors), the second argument is an array with the
arguments passed to the constructor and it returns the object that gets constructed (in this case
an object of type Sum〈T ,A,B〉). Note that this function is also unsafe because it dosen’t check
that the arguments given to the constructor are of the correct type and the resulting object from
the Invoke function must be dynamically casted to the type that is expected to be produced. All
these details are ignored in the pseudo-code and invoking constructors this way is simply done by
using the notation Sum〈T ,A,B〉(args) and assuming it returns the correct type.

Type representations are constructed in two stages. First the type of such representation is
obtained by the getTy function. Then, given a value, a representation is constructed with the to
function. The type of the representation is the type determined by the getTy function. Below are
the signatures:

let getTy :Type → Type
let to :Type → obj → Meta

Both of these functions only operate on ADTs. They are implemented in several stages. Below are
the first two parts:

let getTyUnion :〈Type〉 → List〈UnionCaseInfo〉 → Type
getTyUnion〈‘t〉(uc :: [ ]) = getTyValue〈‘t〉 uc
getTyUnion〈‘t〉(uc :: ucs) = Sum〈‘t , getTyValue〈‘t〉 uc, getTyUnion〈‘t〉 ucs〉

let toUnion :〈Type〉 → obj → List〈UnionCaseInfo〉 → Meta
toUnion〈Sum〈‘t , ‘a, ‘b〉〉(x ) (uc :: ucs) =

if uc.Matches x then
Sum〈‘t , ‘a, ‘b〉(toValue〈‘t〉x uc |> Choice1Of2 )

else
Sum〈‘t , ‘a, ‘b〉(toUnion〈‘t , ‘b〉x ucs |> Choice2Of2 )

The getTyUnion function takes as arguments the type for which a representation will be com-
puted and the information of the type constructors for that type encoded as a list of UnionCaseInfo.
The function nests an application of the Sum type for every type constructor available in the ar-
gument type. For each of the type constructors, the function getTyValue is called. The toUnion
function takes as arguments the type obtained by the getTyUnion function, the list of constructors
and the value being converted to a representation. It tries to match the given value to the con-
structor. This is done using the Matches extension method of UnionCaseInfo type. This method
is implemented using special methods generated by the F# compiler for every ADT which allow
checking at runtime if a value was constructed using a particular type constructor. For each con-
structor that dosen’t match, it applies a nesting of the Sum constructor and recursively calls itself
with the next type argument of the Sum (the 〈‘b〉) and the remaining constructors. When the
match is positive, it provides the value and the matched constructor to the toValue function and
packs the result in the corresponding Sum.
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let getTyValue :〈Type〉 → UnionCaseInfo → Type
getTyValue〈‘t〉 uc =

let genTy〈‘ty〉 =
if FSharpType.IsUnion〈‘ty〉 then getTyUnion〈‘ty〉
else K 〈‘t , ‘ty〉

let tys = uc.ArgumentsTypes
let go (‘ty :: tys) = Prod〈‘t , getTy〈‘ty〉, go tys〉

go [‘ty ] = genTy〈‘ty〉
go [ ] = U 〈‘t〉

go tys

let toValue :〈Type〉 → ‘t → UnionCaseInfo → Meta
toValue〈Prod〈‘t , ‘a, ‘b〉〉(obj : ‘t) (uc :UnionCaseInfo) =

let (args :List〈obj 〉) = uc.GetArguments obj
let go〈Prod〈‘t , ‘a,U 〈‘t〉〉(x :: [ ]) = Prod〈‘t , ‘a,U 〈‘t〉〉(to〈‘a〉 x ,U 〈‘t〉())

go〈Prod〈‘t , ‘a, ‘b〉(x :: xs) = Prod〈‘t , ‘a, ‘b〉(to〈‘a〉 x , go〈‘b〉 xs)
go〈Prod〈‘t , ‘a, ‘b〉〉 args

toValue〈K 〈‘t , ‘x 〉〉(obj : ‘t) (uc :UnionCaseInfo) =
let [v ] = uc.GetArguments obj
K 〈‘t , ‘x 〉(v)

toValue〈U 〈‘t〉〉(obj : ‘t) (uc :UnionCaseInfo) = U 〈‘t〉()

The getTyValue function handles the conversion of each of the type constructors to the type
of the corresponding representation. It first extracts the type of each of the arguments of the
type constructor. The code above uses the member function ArgumentsTypes. That function is
not available in the reflection API but can be defined by querying the arguments accepted by the
constructor method. Applications of the Prod constructor are nested for each argument accepted
by the constructor. Each of the arguments is subsequently expanded into its representation which
is done by calling the getTyUnion function for ADTs or using the K constructor for other types.

The toValue function looks involved but is also very simple. It is divided in three cases: Prod ,
K and U . The K case simply unpacks the only argument that is accepted by the constructor
and packs the argument into the K constructor. The U case simply returns an instance of the
U 〈‘t〉 type. The Prod case extracts the value of all the arguments that were given to the type
constructor. Again, the example uses the GetArguments member function which can be defined by
invoking all the property accessors of the values accepted by the constructors. For each value, it
applies the Prod constructor giving it as a first argument the representation of the value (obtained
by calling the to function) and the recursive application of the function to serialize the remainder
of the product. Finally we define the main functions:

let to〈Sum〈‘t , ‘a, ‘b〉〉obj = toUnion〈Sum〈‘t , ‘a, ‘b〉〉obj FSharpType.GetUnionCases〈‘t〉
let to〈Prod〈‘t , ‘a, ‘b〉〉obj = toValue〈Prod〈‘t , ‘a, ‘b〉〉obj (head FSharpType.GetUnionCases〈‘t〉)
let to〈K 〈‘t , ‘x 〉〉obj = toValue〈K 〈‘t , ‘x 〉〉obj (head FSharpType.GetUnionCases〈‘t〉)
let to〈U 〈‘t〉〉obj = toValue〈U 〈‘t〉〉obj (head FSharpType.GetUnionCases〈‘t〉)

let getTy〈‘t〉 =
if FSharpType.IsUnion〈‘t〉then
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getTyUnion〈‘t〉
else

failwith "Not an ADT"

With these functions, conversion into a representation can be done by invoking the getTy function
and passing the result to the to function along with the value which should be converted to a
representation. Conversion from a representation into a value happens in a similar way but in the
opposite direction. All this machinery is packed inside the Generic type which provides:

type Generic〈‘t〉 =
abstract To : ‘t → Meta
abstract From :Meta → ‘t
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[〈AbstractClass〉]
type FoldMeta〈‘t , ‘in, ‘out〉() =

abstract FoldMeta :Meta ∗ ‘in→ ‘out
abstract FoldMeta〈‘ty〉 :Sum〈‘ty ,Meta,Meta〉 ∗ ‘in→ ‘out
abstract FoldMeta〈‘ty〉 :Prod〈‘ty ,Meta,Meta〉 ∗ ‘in→ ‘out
abstract FoldMeta〈‘ty , ‘a〉 :K 〈‘ty , ‘a〉 ∗ ‘in→ ‘out
abstract FoldMeta :Id〈‘t〉 ∗ ‘in→ ‘out
abstract FoldMeta〈‘ty〉 :U 〈‘ty〉 ∗ ‘in→ ‘out

Figure 2: Definition of the Meta abstract class for generic functions taking one argument.

8 Defining generic functions as classes

The purpose of type representations is to provide an interface that the programmer can use to
define generic functions. Once a function is defined on all the subtypes of the Meta class, it can
be executed on any value whose type may be modeled using the Meta class. The following section
explains how the FoldMeta class is used to implement generic functions and provides some examples
of implementations of common generic functions.

8.1 Overloading the FoldMeta class and GMap definition

Similar to Regular, generic functions will be defined by cases for each of the types that define
representations. Since F# dosen’t have typeclasses, each case will be defined by overriding methods
of the abstract class called FoldMeta. The abstract definition of the FoldMeta is given in figure 2.
The FoldMeta type is parametrized by the following type argumetns:

• ‘t which is the type being represented by the type representation

• ‘in which is the input type of the generic function

• ‘out which is the output type of the generic function

In addition to those arguments, the Sum, Prod , K and U variants of the method also include
the type parameter ‘ty . Recall that all type representatios take as first type parameter the type
being represented. In the case of nested types or types that contain within them other types, the
parameter will vary in different sections of the representation. Therefore, it is necessary to quantify
over all types, not only ‘t . Regular does not do this but it is necessary to define certain generic
functions which will be covered later. The K override also contains the type parameter ‘a which
denotes the primitive type contained by K .

This class can only handle generic functions that take a single argument. However, F# allows
types to have the same name as long as they differ in the number of type parameters. This makes
it possible to define variants of FoldMeta that take more arguments.

To illustrate how the library works. The generic function GMap will be used as an example.
This function takes as an argument another function and applies the function on every occurence
of the type of the function. The heading of the function is the following:
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type GMap〈‘t , ‘x 〉(f : ‘x → ‘x ) =
class
inherit FoldMeta〈

‘t ,
Meta〉()

end

This function uses the variant of FoldMeta that accepts no input arguments since the functional
argument is moved to the constructor. It is easier to use class arguments if the argument dosen’t
change during recursive function calls. To perform the mapping, the function produces a new
representation with updated values; hence the ‘out parameter is instantiated to Meta.

The first method that needs to be overriden is the Sum case:

override self .FoldMeta〈‘ty〉
(v :Sum〈‘ty ,Meta,Meta〉) =

match v .Elem with
| Choice1Of2 m →

Sum〈‘ty ,Meta,Meta〉(
self .FoldMeta (m) |> Choice1Of2 )
| Choice2Of2 m →

Sum〈‘ty ,Meta,Meta〉(
self .FoldMeta (m) |> Choice2Of2 )
≺ Meta

The Sum constructor encodes the constructor that was used to create the value that was pro-
vided. The choice is encoded as nestings of the Choice type and the nesting is defined by using
the Choice1Of2 and Choice2Of2 constructors. This override will recursively apply the FoldMeta
function to both cases and pack the result back into a value with the same number of Choice
nestings. The result must be casted to Meta in order to agree with the type of the method.

Next, the Prod case must be overriden:

override x .FoldMeta〈‘ty〉
(v :Prod〈‘ty ,Meta,Meta〉) =

Prod〈Meta,Meta〉(
x .FoldMeta (v .E1 ),
x .FoldMeta (v .E2 )
≺ Meta

The Prod type contains two properties, E1 and E2 , which correspond to the two representations
from which a product is built. Again, the function only needs to be applied recursively to the inner
representations of the product and then packed back.

To handle the K constructor, two methods are needed:

member x .FoldMeta〈‘ty〉(
v :K 〈‘ty , ‘x 〉) =
K (f v .Elem) ≺ Meta

override x .FoldMeta〈‘ty , ‘a〉(k :K 〈‘ty , ‘a〉) = k ≺ Meta
override x .FoldMeta〈‘ty〉(u :U 〈‘ty〉) = u ≺ Meta
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The first case handles the occurences of primitive values that have the same type as the input
type of the argument function. It simply applies the function to the value and packs the result
with the same constructor. The second case handles all other values. Since nothing can be done
with them, they are returned as they are. Below is the definition for the U type which dosen’t do
anything special either.

Next, the Id case must be overriden:

override x .FoldMeta
(v :Id〈‘t〉) =

let g = Generic〈‘t〉()
Id〈‘t〉(x .FoldMeta (

g .To c.Elem) |> g .From)
≺ Meta

Since this library works with shallow representations, recursive values are not immediately converted
to their representation. The Id constructor contains an instance of the type being represented.
Since generic functions only work with representations, the value must first be converted to its
representation, then FoldMeta can be recursively applied to the representation and finally the
resulting representation is converted back to a value and packed inside the Id constructor.

Although the definition for GMap is complete, it is still incorrect. As it stands, it only allows
primitive values to be mapped. Values that are expressible as a representation (ADTs) will not get
mapped, just ignored. The reason is that such values get translated into their corresponding repre-
sentation when the generic funciton gets applied. Here is were the first parameter of representation
types becomes important. Three additional overloads are provided to map ADTs:

let mapper (f : ‘x → ‘x ) (v :Meta) =
let g = Generic〈‘x 〉()
v |> g .From |> f |> g .To

member x .FoldMeta (
u :U 〈‘x 〉, f : ‘x → ‘x ) = mapper f u

member x .FoldMeta (
p :Prod〈‘x ,Meta,Meta〉, f : ‘x → ‘x ) = mapper f p

member x .FoldMeta (
s :Sum〈‘x ,Meta,Meta〉, f : ‘x → ‘x ) = mapper f s

Theese overloads match the type parameter of the representation type with the type of the first
argument of the input function. When the match is positive, the function proceeds by calling the
mapper helper function which converts the representation into a value, applies the function and
converts the result back into a representation. Theese overloads no longer have the universally
quantified ‘ty parameter since they work specifically for the type ‘x which gets instantiated at a
class level rather than being instantiated when the method is invoked.

The definition is now correct and complete. If implemented with the library, it will generically
map algerbaic data types. The following sections explain how the library correctly selects the
methdos that are invoked in each case. Note that all recursive calls of the FoldMeta method invoke
the overload with signature FoldMeta : Meta → ‘out for which no implementation was given. The
implementation of the method is derived automatically using reflection and is explained in section
9.
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8.2 Uniplate

One of the popular combinator based libraries is the Uniplate [7] library. All generic functions in
this library are implemented on top of a single function called uniplate. Being able to implement
the uniplate function with this library is a way to demostrate the expressiveness of the library.

The uniplate function takes as an argument a value and returns a tuple. The first element
contains a list with all the recursive occurences of values of the same type as the input type within
the input value. The second element of the tuple is a function that provided with a list of values,
such as the list returned in the tuple, it constructs a new value. In Haskell, its signature is the
following:

uniplate :Uniplate a ⇒ a → ([a ], [a ]→ a)

The F# implementation of uniplate should work as follows:

type Arith =
| Op of string ∗Arith ∗Arith
| Neg of Arith
| Val of int

let (c, f ) = uniplate (
Op ("add",Neg (Val 5),Val 8))

// prints [Neg(Val5); Val8]
printf "%A" c
// prints Op(“add”, Val1, Val2)
printf "%A" (f [Val 1; Val 2])

The uniplate function will be implemented in terms of two functions. The first one is Collect which
computes the list of all the recursive children of a type. The definition is the following:

type Collect〈‘t〉() =
inherit FoldMeta〈‘t, ‘t list〉()
member self .FoldMeta〈‘ty〉(

c :Sum〈‘ty ,Meta,Meta〉) =
match c.Elem with
| Choice1Of2 m → self .Collect m
| Choice2Of2 m → self .Collect m

override self .FoldMeta〈‘ty〉(
c :Prod〈‘ty ,Meta,Meta〉) =
List .concat〈‘t〉[

self .Collect c.E1
; self .Collect c.E2 ]

override self .FoldMeta〈‘ty , ‘a〉(
:K 〈‘ty , ‘a〉) = [ ]

override self .FoldMeta〈‘ty〉( :U 〈‘ty〉) = [ ]

override self .FoldMeta (i :Id〈‘t〉) =
[i .Elem ]
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The definition is straightforward. The most important case is Id . Recall that Id indicates a
recursive occurence of a value with the same type as the type that produced the current represen-
tation. Therefore that value is packed inside a list and returned as a result. The K and U simply
return an empty list because they don’t contain any relevant information for the uniplate function.
The Prod case simply concatenates the results of the recursive invokation of the Collect function
and the Sum case simply applys the function recursively and returns its result.

The second generic function requried for uniplate is Instantiate. This function takes as an
argument the list of recursive occurences of values and produces a new value with the same type
as the list’s elements. The definition will be explained in parts. The header of the function is:

type Instantiate〈‘t〉(values‘ : ‘t list) =
inherit FoldMeta〈‘t,Meta〉()
let mutable values = values‘

let pop () = match values with
| x :: xs → values ← xs; Some x
| [ ]→ None

This function accepts in its constructor the list of values that will be used to instantiate the
new value. It also defines a helper function pop which extracts a single element of that list. The
pop function is used by the Id overload defined below:

type Instantiate〈‘t〉(values‘ : ‘t list) =
inherit FoldMeta〈‘t,Meta〉()
let mutable values = values‘

let pop () = match values with
| x :: xs → values ← xs; Some x
| [ ]→ None

This overload simply extracts the next element from the argument list and replaces the value
provided by the representation with the value extracted from the list.

The cases of sums and products are analogous to the Collect function, making two recursive
calls to construct a new Meta value:

override self .FoldMeta〈‘ty〉(
p :Prod〈‘ty ,Meta,Meta〉) =
Prod〈‘ty ,Meta,Meta〉(self .FoldMeta p.E1 , self .FoldMeta p.E2 )
≺ Meta

member self .FoldMeta〈‘ty〉(
s :Sum〈‘ty ,Meta,Meta〉) =
match s with
| Choice1Of2 m → Sum〈‘ty ,Meta,Meta〉(

self .FoldMeta m |> Choice1Of2 )
| Choice2Of2 m → Sum〈‘ty ,Meta,Meta〉(

self .FoldMeta m |> Choice2Of2 )
≺ Meta
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This definitions rely on the call-by-value semantics of F# since the Prod case assumes that
self .FoldMeta p.E1 will be evaluated before self .FoldMeta p.E2 . In any case, both of these defini-
tions recursively invoke the Instantiate function and return the result packed in the same fashion
as the input.

Finally, the case for U and K are trivial since they don’t modify their argument nor the list of
values:

override self .FoldMeta〈‘ty〉(u :U 〈‘ty〉) =
u ≺ Meta

override self .FoldMeta〈‘ty , ‘a〉(k :K 〈‘ty , ‘a〉) =
k ≺ Meta

The uniplate function wraps both of these functions into a single function which also handles
value conversions:

let uniplate〈‘t〉(x : ‘t) =
let g = Generic〈‘t〉()
let rep = g .To x
let xs = rep |> Collect〈‘t〉().FoldMeta
let inst xs ′ =

rep |> Instantiate〈‘t〉(xs ′).FoldMeta〈‘t〉
|> g .From

(xs, inst)

8.3 Generic Equality and Two Argument extension of FoldMeta

Generic equality is very common among generic functions but cannot be implemented with the
FoldMeta class presented before. The reason it that generic equality requires two representation
arguments. Fortunately, it is easy to extend the FoldMeta class to do recursion on more than one
argument. This variant of FoldMeta will have the same name but is located in a different module.
Below is an example of how to use the two argument version of FoldMeta to define generic equality:

type GEQ〈‘t〉() =
inherit FoldMeta〈‘t〉()
member x .FoldMeta〈‘ty〉(v1 :Sum〈‘ty ,Meta,Meta〉, v2 :Sum〈‘ty ,Meta,Meta〉) =

match v1 .Elem, v2 .Elem with
| Choice1Of2 v1 ‘,Choice1Of2 v2 ‘→ x .FoldMeta (v1 ‘, v2 ‘)
| → false

override x .FoldMeta〈‘ty〉(v1 :Sum〈‘ty ,Meta,Meta〉, v2 :Meta) = false

member x .FoldMeta〈‘ty〉(v1 :Prod〈‘ty ,Meta,Meta〉, v2 :Prod〈‘ty ,Meta,Meta〉) =
x .FoldMeta (v1 .E1 , v2 .E1 ) ∧ x .FoldMeta (v1 .E2 , v2 .E2 )

override x .FoldMeta〈ty〉(v1 :Prod〈‘ty ,Meta,Meta〉, v2 :Meta) = false

member x .FoldMeta〈‘ty〉(v1 :U 〈‘ty〉, v2 :U 〈‘ty〉) = true

override x .FoldMeta〈‘ty〉(v1 :U 〈‘ty〉, v2 :Meta) = false
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member x .FoldMeta〈‘ty , ‘x 〉(v1 :K 〈‘ty , ‘x 〉, v2 :K 〈‘ty , ‘x 〉) =
v1 .Elem = v2 .Elem

override x .FoldMeta〈‘ty , ‘x 〉(v1 :K 〈‘ty , ‘x 〉, v2 :Meta) = false

member x .FoldMeta (v1 :Id〈‘t〉, v2 :Id〈‘t〉) =
let g = Generic〈‘t〉()
x .FoldMeta (v1 .Elem |> g .From, v2 .Elem |> g .From)

override x .FoldMeta (v1 :Id〈‘t〉, v2 :Meta) = false

This definition is very straightforward to understand. When values of similar structure appear
in the same place, they are compared for equality either with recursion or direct comparison like
the K case. What is important about this definition is that FoldMeta variants that accept multiple
representation arguments can be enforced to be complete by requiring an overload that instantiates
all representation arguments excepting the first to Meta.
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9 The FoldMeta class

The FoldMeta class is the interface to define generic functions. It has the purpose of ensuring that
the definitions are complete and it also dispatches the correct methdod according to a custom set
of type rules.

9.1 Enforcing complete definitions

Consider once again the GInc function that was previously defined using Regular. Assume that
only the following cases were given:

instance GInc (K Int) where
gInc (K i) = K (i + 1)

instance GInc U where
gInc U = U

instance (GInc f ,GInc g)⇒ GInc (f ⊗ g) where
gInc (f ⊗ g) = gInc f ⊗ gInc g

Consider these two types and their representations:

data T1 = T1 Int Int
data T1Rep = Prod (K Int) (K Int)

data T2 = T2 Int String
data T2Rep = Prod (K Int) (K String)

Values of type T1 can be handled by the GInc function wheras values of type T2 cannot since
GInc lacks a case for K String . If one tried to apply GInc to a value of type T2Rep, the Haskell
compiler would instantiate the variables and figure out that there is no GInc instance for K String .
It was discussed in section 4.3 that F# cannot perform the necessary typelevel computations and
that abstract members and member constraints cannot be used to dispatch the correct overloads.
This means that the F# compiler has no way to check if a generic function can handle a particular
representation.

The only option left is to require that every generic function handles every case. This is quite
a drawback because generic functions in this library must be total for its universe – every value
can be applied to every generic function as long as the value can be represented as an instance of
Meta. As a result, the FoldMeta class requires an implementation for five methods which are able
to handle all representations. More specialized overloads can be included and they will be used
whenever the function’s arguments are compatible with the method.

9.2 Overload Selection

The GMap function defined above has overlapping overloads – cases where several methods can be
invoked for a particular value. This is a problem that many datatype generic libraries have. In the
case of Haskell based libraries, the problem is usually solved by enabling the overlapping instances
language extension.

In the case of F#, the problem must be approached differently. For starters, all overload
selections must be statically resolved at compile time (as mentioned in section 4.3). For this
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reason, the F# language cannot support an extension similar to overlapping instances. However,
this also restricts the library from allowing functions like GMap to be defined, which demand that
a similar feature exists. To resolve the problem, a customized dispatch mechanism was created
using reflection. This mechanism inspects, at runtime, the types of the arguments provided to the
FoldMeta method and selects the correct overload based on selection rules. The rules are described
in figure 3. This figure shows the type of the FoldMeta overload that will be selected based on the
input type for the FoldMeta :Meta → ‘out overload. In this figure:

• v ≺ V denotes that the type T can be given to the value v.

• T ∈ x dentoes that the object x has a FoldMeta overload with type T .

• The ∀‘ty notation is used to represent polymorphic types. In other words, the signatures
FoldMeta : ∀‘ty . ‘ty → X and FoldMeta〈‘ty〉 : ‘ty → X are equivalent.

The figure describes a function defined by parts: the first column is used as a label, the second
column is the result and the third column lists the conditions necessary to select the result on the
second column on a particular input. The function takes as input the FoldMeta method call and
returns the type that will be used to match a FoldMeta overload.

For example, consider a variant of GMap with the following overloads: i

type Dollars = Dollars of int

type GMap〈‘t , ‘a〉(f : ‘a → ‘a) =
member x .FoldMeta〈‘ty〉 :K 〈‘ty , ‘a〉 → Meta
member x .FoldMeta :K 〈Dollar , int〉
override x .FoldMeta〈‘ty , ‘x 〉 :K 〈‘ty , ‘x 〉 → Meta

The the chosen overload is different depending on the first argument given to FoldMeta. Suppose
FoldMeta is invoked with a value of type K 〈List〈int〉, int〉. The applicable cases (available in figure
3) are: K1, K2, K3 and K4. Case K1 tries to find an overload that exactly matches the type of
the input, in this case K 〈List〈int〉, int〉, but no such overload exists. It then proceeds to the K2
case which matches any ‘ty but fixes the type of the second variable of K to some concrete type
V . In the example above, if ‘a is instantiated to int , then the overload with type ∀‘ty . K 〈‘ty , ‘a〉
is selected and the process finishes. If ‘a is instantiated to any other type, there is no match. The
process then proceeds to the K3 case. This case is identical to K2 but fixes the ‘ty variable to
a concrete type and matches any ‘x in the second type variable of K . Needless to say, the K3
is not applicable to this example because no overload fixes ‘ty to a concrete type and leaves ‘x
polymorphic. Finally, if none of the cases matches, the case K4 serves as a catch-all since its type
can match any value of type K 〈‘ty , ‘x 〉. Similarly, when FoldMeta is invoked with a value of type
K 〈Dollar , int〉 the case K1 finds an exact match since there is an overload that accepts values of
type K 〈Dollar , int〉.

When many methods with compatible signature exist. Priority is first given to the closest match
and then the position in the class hierarchy of the type that declared the candidate method. Al-
though this mechanism is immitating the overlapping instances mechanism of the Haskell compiler,
it gives the user a finer control to specify which method should be selected. In fact, this makes it
trivial to extend or customize generic functions. For example, to define a function GMapShallow
which does the same as GMap but does not traverse structures that occurr recursively, one can
simply extend from GMap and override the Id case:

31



x.FoldMeta(v) : ‘out =



(S1) Sum〈T,Meta,Meta〉 → ‘out v ≺ Sum〈T,Meta,Meta〉
Sum〈T,Meta,Meta〉 → ‘out ∈ x

(S2) ∀‘ty . Sum〈‘ty,Meta,Meta〉 → ‘out ∃‘ty . v ≺ Sum〈‘ty,Meta,Meta〉

(P1) Prod〈T,Meta,Meta〉 → ‘out v ≺ Prod〈T,Meta,Meta〉
Prod〈T,Meta,Meta〉 → ‘out ∈ x

(P2) ∀‘ty . Prod〈‘ty,Meta,Meta〉 → ‘out ∃‘ty . v ≺ Prod〈‘ty,Meta,Meta〉

(K1) K〈T, V 〉 → ‘out v ≺ K〈T, V 〉
K〈T, V 〉 → ‘out ∈ x

(K2) ∀‘ty . K〈‘ty, V 〉 → ‘out ∃‘ty . v ≺ K〈‘ty, V 〉
∀‘ty . K〈‘ty, V 〉 → ‘out ∈ x

(K3) ∀‘x . K〈T, ‘x〉 → ‘out ∃‘x . v ≺ K〈T, ‘x〉
∀‘x . K〈T, ‘x〉 → ‘out ∈ x

(K4) ∀‘ty, ‘x . K〈‘ty, ‘x〉 → ‘out ∃‘ty, ‘x . v ≺ K〈‘ty, ‘x〉
∀‘ty, ‘x . K〈‘ty, ‘x〉 → ‘out ∈ x

(Id1) Id〈T 〉 → ‘out v ≺ Id〈T 〉
Id〈T 〉 → ‘out ∈ x

(U1) U〈T 〉 → ‘out v ≺ U〈T 〉
U〈T 〉 → ‘out ∈ x

(U2) ∀‘ty . U〈‘ty〉 → ‘out ∃‘ty . v ≺ U〈‘ty〉

Figure 3: Selection criteria of the FoldMeta overload.
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type GMapShallow〈‘t , ‘x 〉(f : ‘x → ‘x ) =
class

inherit GMap〈‘t , ‘x 〉(f )

override self .FoldMeta (v :Id〈‘t〉) = v

end

Here both functions can exist in the same namespace and context. In fact, a function could
invoke both of them as if they were any two generic functions.

9.3 Limitations of the FoldMeta class

The most obvious limitation of the FoldMeta class is the number of arguments on which it can
induct. For example, the generic equality function cannot be defined with FoldMeta as it stands
since it must do recursion on two representations. To overcome the limitation, a variant of FoldMeta
that performs induction on two of its arguments could be defined. The definition would look like:

[〈AbstractClass〉]
type FoldMeta〈‘t , ‘out〉() =

abstract FoldMeta :Meta ∗Meta → ‘out
abstract FoldMeta〈‘ty〉 :Sum〈‘ty ,Meta,Meta〉 ∗Meta → ‘out
abstract FoldMeta〈‘ty〉 :Prod〈‘ty ,Meta,Meta〉 ∗Meta → ‘out
abstract FoldMeta〈‘ty , ‘a〉 :K 〈‘ty , ‘a〉 ∗Meta → ‘out
abstract FoldMeta :Id〈‘t〉 ∗Meta → ‘out
abstract FoldMeta〈‘ty〉 :U 〈‘ty〉 ∗Meta → ‘out

This definition ensures that all cases are covered when defining generic functions that accept two
arguments. Additional overloads can be added to this class in order to pattern match specific cases.
For example, when defining generic equality, one would like a method with type:

member FoldMeta〈‘ty〉 :Sum〈‘ty ,Meta,Meta〉 ∗ Sum〈‘ty ,Meta,Meta〉 → ‘out

which would recursively check each side of the sum for equality and return true if both sides are
equal. This extension can be repeated to do recursion in any number of arguments. It is still
limited by the fact that the library can only define a finite number of these extensions.

Another limitation of the FoldMeta class has to do with the type of values that can be returned
by generic functions. Since generic functions are specified through the FoldMeta class, the return
type of such functions is provided as a type argument to the class. This means that the return type
of all cases must be the same. This is restrictive compared to other datatype generic programming
libraries like Regular where the Id case might have a different return type as the K case. This is
particularly important to ensure type safety on functions that construct values generically, such as
read . The FoldMeta class cannot fully solve the problem without higher kinds. For example, to
define GMap properly, one would like that the return type is the same as the input type. For the
K would be:

abstract FoldMeta〈‘ty , ‘a〉 :K 〈‘ty , ‘a〉 → K 〈‘ty , ‘a〉

Here, ‘out gets instantiated to K 〈‘ty , ‘a〉. Notice that both ‘ty and ‘a are universally quantified
variables local to the FoldMeta definition, not the class. This means that in order for it to be
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possible to instantiate ‘out to K 〈‘ty , ‘a〉, ‘out must be of kind ∗ → ∗ → ∗ since it must accept ‘ty
and ‘a as arguments.

A possibility that could overcome some of the limitations is to extend the FoldMeta class with
additional type arguments – one for each case. This would result in a new definition like:

type FoldMeta〈
‘t, // Generic type

‘m, // Return type of the Meta overload

‘s, // Return type of the Sum overload

‘p, // Return type of the Prod overload

‘i , // Return type of the Id overload

‘k , // Return type of the K overload

‘u, // Return type of the U overload

〉

This definition is still problematic since the return type of every overload is different. Recall that
all overloads get dispatched by same method. This method has type ‘m, so it cannot return a value
of type ‘s or ‘p since it results in a runtime error. To overcome this, one could add additional type
constraints to ensure all return types are compatible with ‘m:

type FoldMeta〈
// [...]
when ‘s ≺ ‘m
and ‘p ≺ ‘m
and ‘i ≺ ‘m
and ‘k ≺ ‘m
and ‘u ≺ ‘m
〉

However, sub-type constraints cannot be enforced against type variables. This results in a compile
time error since ‘m is a type variable.
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Part IV

Evaluation and Conclusions

10 Evaluation of the library in the F# language

One of the objectives is to asses the value generic programming can have for the F# programmer.
The most important consideration is whether the library serves as a competitive approach to other
means F# offers for implementing polytipic functions generically.

If a programmer needs to implement a polytipic function generically, he will typically have to
use reflection. As mentioned in section 4, it has a lot of drawbeacks and will hardly become a tool
for everyday use. The most important drawbacks from the generic programming point of view are:

• Error prone and type unsafe

• Requires a lot of boilerplate code

• Requires knowledge about the .NET platform

• Imperative programming style

The following section explores in greater detail these drawbacks and evaluates how our library
addresses them.

On the positive side, this library provides a lightweight interface to define generic traversals.
Generic traversals are defined simply by overriding the methdos of the FoldMeta class. Since those
methods have well defined signatures and are implemented entirely in F#, the porgramer can
benefit from all the type level features that the language offers. The main problem with generic
traversals is that overlapping cases are not checked for type correctness until runtime. Nevertheless,
it is easy to ensure that the type is correct since the function has the same signature as the abstract
members but specialized to a type.

Since the interface of the FoldMeta class is much simpler that the interface of reflection and
requires much less knowledge to be used, generic functions will probably have less bugs than
functions implemented with reflection. On a more fundamentalist perspective, code that uses
reflection looks highly imperative. It usually consists of invoking .NET routines in a specific order
to obtain some data or invoke an operation. This is definitely not the way a functional first language
should implement polytipic functions.

On the negative side, this library is much less expressive than reflection. It can only be used
with ADTs – although it can handle other types embeded inside ADTs. Based on what was
learned through this work, there is little hope that generic programming can work with classes sicne
representations rely on objects being immutable. The reason is that a value and its representation
are required to be an embedding projection pair. This means that to ◦ from ≡ id and from ◦ to v
id [2]. Classes may have mutable state and the state of an object cannot be recovered from the
constructor that was used to create it. This means that a representation must contain information
about every internal variable in a class rather than the constructor’s arguments. Furthermore,
the Sum constructor is probably useless since in the case of classes, it is not very relevant what
constructor was used to create the value.

Classes are very important in F# code because other .NET languages do not support ADTs.
It is often desirable that functions defined in F# also work on types defined in, for example, C#.
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Since some objects are immutable, a special interface could be defined to specify how to translate
and object from/to an ADT-like structure.
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11 Evaluation of the library against Regular

Compared to Regular, this library has many shortcommings because of F#’s limited type system.
Surprisingly, there are a couple of unexpected advantages comming from the use of reflection and
the object oriented approach of this library. If F# supported kind-polymorphism, this library could
be a competitive alternative to Regular.

The primary disadvantage occurs when values are constructed generically. Regular uses Haskell’s
type system to ensure that invalid representations will never be converted into values. The to and
from functions use type families to give a unique type signature for every type that is an instance of
Regular . It was pointed out in section 9.3 that this library can easily run into runtime errors since
the compiler allows the from function of any Generic instance to be applied to any representation.

The lack of dependent types in F# leads to the possible scenario that a method dispatch might
fail at runtime if a generic function is not total for all representations. Haskell addresses this issue
by checking at compile time that a representation type is compatible with the generic function it is
applied to. The only alternative to prevent method dispatch failures at runtime is to require that all
generic functions are total for the universe. With this library one can still define partial functions
that fail at runtime when applied to incompatible arguments but the advantage or Regular is that
such runtime failure is converted to a compile time error.

On the performance side, this library must perform more work at runtime than Regular.
Through cacheing, it is possible to achieve some performance gains but the first invokation will
always require more work than with Regular. On the bright side, using the information available
at runtime it is possible to dynamically generate code once which can be efficiently executed on
further applications of a generic function. Optimization was not thorughly studied in this thesis
but generating the code dynamically might bring some of the benefits of just in time compilation
to this library. It is left as future research how to optimize this implementation.

On the other hand, this library has some advantages over Regular. The most important one is
being able to handle types that accept any number of type arguments. The reason is that Regular
instances define a indexed type Rep that corresponds to representations. This type only allows
representations that accept at most one type argument. In this library, all representations are
of type Meta. This means they can take any number of arguments since they are hidden by the
subtypeing relation. Although this library supports more type arguments, it is a consequence of it
being less type safe.

Another nice advantage of this library is extensibility. As studied in section 9.2 it is easy to
customize the behavior of generic functions by overriding generic methods. This is much harder
to do in Haskell since only one instance per typeclasse is allowed. This advantage is also shared
by the Scala implementation [9] of generic programming. The problem in Haskell relies in the fact
that typeclasses are not well suited to define generic functions. Typeclasses are meant to express
global properties of types but functions are local operations.
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12 Remarks about F# and .NET

To develop this library, many features of F# where taken into consideration. This section talks
about the limitations of some of F#’s features that made them un-suitable for generic programming.

12.1 Type Providers

Type providers are a mechanism in F# that can be used to generate types at compile time by
executing .NET code. They use reflection to create instances of the Type class and those types are
then included as if they were part of the program. Type providers support static parameters that
can influence the types produced by the type provider. Type providers were initally designed to
provide typed access to external data sources.

Type providers were considered as the first alternative to develop the library. The basic idea was
that instead of having to provide several variants of the FoldMeta class accepting different number
and kind of arguments, one could have a type provider that is able to generate many variants of
the FoldMeta class to fulfill the requirements of many generic functions. This way, the programmer
could specify as static parameters the number of parameters on which recursion should be done
and the number of extra parameters accepted by the generic function.

Unfortunately, type providers are restricted on what types they are allowed to produce. Types
that contain polymorphic type arguments cannot be generated with type providers. This means
that no variant of the FoldMeta class is feasible with a type provider since it must at least accept
the generic type as argument. This wouldn’t be a problem if type providers could accept types as
static arguments, but the only static arguments supported by type providers are strings, integers
and booleans.

It is not unexpected that type providers are not enirely suitable for type level programming
(they were designed with other objectives in mind) but the limitations show a lot of potential that
F# could exploit by using reflection to generate types at compile time.

12.2 Add-Hoc Polymorphism

Ad-hoc polymorphism allows constraining polymorphic types to types that support a particular set
of operations. This is the foundation on which Regular is built since generic functions are defined
by extending the operations supported by representations. The same approach would have been
the natural choice for this library, but F# deals with ad-hoc porlymorphism differently.

It is possible to add methods to types post-hoc (after the type has been defined), it can even
be done in external modules. Since F# has memeber constraints, it should be possible to define
generic functions as extension members of the representation types and use member constraints to
enforce that the type variables corresponding to representation types support the generic function.
However, member constraints in F# do not check if there exist extension members that satisfy the
constraint. In F#, extension members are a convenient way to organize code but not a feature
useful in the type system.
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13 Conclusions and Future Work

It is well known that polytipic functions can lead to boilerplate code since they usually cannot be
implemented generically with the constructs typically offered by functional languages. Since many
of those functions are only dependent on the structure of types, it is possible to define algorithms
that work on families of types. This has been achieved by methods such as datatype generic
programming.

Generic programming has enjoyed lots of success in the Haskell programming language. It
allows high levels of abstraction and uses the type system in an effective way to prevent ill-defined
functions. Many methods even allow values to be constructed generically and ensure at compile
time that the resulting representations are valid. The main drawback of generic programming is
its relience on a powerful type system and immutability; making it hard to implement in other
languages.

Even though F# is far away from having a type system that fully supports generic programming
it runs on top of the .NET platform which provides a rich reflection api that can perform many
of Haskell’s type operations at runtime. Leveraging on reflection, it is possible to provide a safe
interface that allows functions to be defined in a style similar to the generic programming approach
of Regular.

This is evidenced by the library presented in this thesis along with some classic examples of
generic functions. The interface provided by this library is easy to understand, provides some level
of type safety and compared to reflection, which is typically used in F#, it has less room for errors.
Functions are cleaner and more succint since the library eliminates the invokation of .NET internal
routines. A more fundamentalist advantage over reflection is that it allows inductively defined
functions.

Compared to Regular, it lacks many features due to F#’s simpler type system. The major flaw
is that constructing values generically can easily lead to runtime errors since representations cannot
be checked for correctness at compile time. Another shortcomming is that this library enforces that
all generic functions are total for the universe. Regular allows partial functions since it can check
at compile time that the function is not used on values for which the function is undefined. Finally,
the library is less expressive since functions must be defined through the FoldMeta class and it is
restricted on the arguments it can do induction with and values it can take as parameters.

On the other hand, this library confirms (as pointed out in [9]) that ideas from the object
oriented world can benefit generic programming. In particular, method overriding is a powerful
feature that allows the re-usage of existing generic functions to implement new generic functions by
simply modifying individual induction cases. Alternatives to Haskell’s typeclass approach should
be considered by the Haskell community since typeclasses are quite rigid with the extensibility it
provides.

This research shows that through reflection, one can immitate a lot of Haskell’s type level
computations. Currently, all reflection was carried out at run time in order to show what is possible
with that framework. It would be interesting to research how much of theese computations could
be performed post-compilation by implementing a tool that inspects the generated assemblies using
reflection for correctness. This could potentially allow the programmer to define its own variations
of the FoldMeta class while ensuring that the definition will not crash at runtime due to missing
overloads. It would also be interesting to research possible runtime optimizaitions that can be
done through reflection. Even though performance might never be on par to Regular (or a similar
library) it could be possible that F#’s ability to generate code at runtime combined with the ideas
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from just in time compilation might lead to performance gains. This highlights a lot of the power
that .NET’s reflection framework has.

Bringing ideas of generic programming into everyday usage is a challenging work. F# is a nice
playground because it allows programers (especially C# programmers) to switch into the language
with minimal overhead. The language runs in Microsoft’s .NET platform which has been deployed
across many devices. This thesis shows that .NET’s reflection API is capable of supporting many
of the type level computations carried out by the Haskell compiler that are necessary for generic
programming. The approach is far from complete compared to what is available in Haskell but
there is room for improvement using the existing tools. Hopefully this thesis will inspire other
researchers to investigate creative approaches to combine reflection and generic programming in a
effective way.
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