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Abstract

Today the numerical weather prediction model HARMONIE forecasts visibility based on

the extinction coe�cient of atmospheric hydrometeors (water droplets, ice crystals, graupel,

etc.). Experience has shown that the visibility forecasts from HARMONIE are of poor

quality, with HARMONIE forecasting either very low or very high visibility. The aim of this

project is to improve the quality of the visibility forecasts by including the e�ect aerosols

and the relative humidity have on visibility.

In the �rst part a set of diagnostic visibility functions are developed for visibility as a

function of relative humidity and PM10 concentration. The functions are developed using

observations of visibility, relative humidity, PM10 concentration and precipitation intensity

at 13 weather stations in the Netherlands from the years 2012 and 2013. This diagnostic

visibility function is intended to work alongside HARMONIE and be used in cases with-

out precipitation, when aerosols are thought to be more important than hydrometeors in

determining the visibility.

Further the quality of the forecasts from HARMONIE, the air chemistry model LOTOS-

EUROS and the diagnostic visibility function is assessed using data from 2014. The diag-

nostic visibility function is used with both forecasts and observations of the input variables,

in order to determine what impact the limitations in the forecasting of the input variables

have on the quality of the visibility forecasts.

The results show that the visibility forecasts from the diagnostic visibility function have

considerably higher quality than the visibility forecasts from HARMONIE. It is also found

that limitations in the forecasting of the input variables act to signi�cantly lower the quality

of the forecasts from the diagnostic visibility function. When observations of the input

variables are used, i.e. no forecasting errors in the input variables, the quality of the visibility

forecasts from the visibility function is found to be comparable to the quality of the relative

humidity forecasts from HARMONIE.

iii



iv



Contents

1 Introduction 1

2 Theory 3

2.1 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Measuring Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 HARMONIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Forecasting Visibility in HARMONIE . . . . . . . . . . . . . . . . . . 9

2.3 Aerosols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Aerosols and Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Data and Methods 13

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Development of a Diagnostic Visibility Function . . . . . . . . . . . . . 15

3.2.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Quality of the Forecasts 21

4.1 HARMONIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Precipitation Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Relative Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.3 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 LOTOS-EUROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 PM10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



5 Results and Discussions 27

5.1 Only Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Only Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Some Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Combination Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Summary and Conclusions 41

A Measuring Stations 45

vi



Chapter 1
Introduction

Visibility is one of the most intuitive characteristics of the atmosphere. It is simply a

measure of how far away an object can be seen and recognized against its background.

Historically visibility has been measured by human observers. Today, however, automated

measurements with transmissometers and scatter meters are becoming more common, and

in the Netherlands all visibility observations are now done by instruments. The visibility

re�ects the optical state of the atmosphere, and it is reduced by scattering and absorption

of light along the path from the object to the observer. Under normal conditions the main

factor reducing the visibility is scatter of light by atmospheric hydrometeors (water droplets,

ice crystals, graupel, etc.) and aerosols.

Low visibility is of great concern for land, sea and air tra�c. There are numerous documented

cases where fog events (visibility < 1000m) have lead to accidents, and according to Musk

(1991) fog is the weather hazard drivers fear the most. Driving only becomes hazardous

when the visibility is reduced to less than 200m (Edwards, 1998), but air tra�c is a�ected

at higher visibility. At Schiphol airport the maximum number of planes that can take o�

and land is reduced when the visibility is less than 1500m. When the visibility is low fewer

runways are used and the distance between the planes is increased. High quality visibility

forecasts are therefore not only important for improving safety by warning drivers/pilots of

dangerous conditions, but also in economical terms by, for instance, reducing down-time and

delays and increasing capacity for airports.

Forecasting visibility is a challenge for numerical weather prediction (NWP) models because

visibility in a complex way depends on parameters like relative humidity, precipitation,

vegetation, snow cover and aerosol concentration. In addition, fog events usually have small

spatial and temporal scales, making it di�cult to forecasts them correctly. The NWP model

HARMONIE is one of the tools used by KNMI (Royal Dutch Meteorological Institute) for

visibility forecasts in the Netherlands. Even this state-of-the-art model has problems with

forecasting visibility, and experience shows that HARMONIE has a tendency to forecast

either very low or very high visibility.

In HARMONIE the visibility is calculated based on the density of hydrometeors and empir-
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CHAPTER 1. INTRODUCTION

ical relations between the density of the di�erent hydrometeors and their extinction coe�-

cients. Aerosol concentration and composition are not included as variables in HARMONIE,

and so the e�ect of aerosols on visibility cannot be explicitly taken into account. The fact

that aerosol e�ects are not included is thought to be a major reason for the poor quality of

the visibility forecasts from HARMONIE.

The goal of this project is to improve the visibility forecasts from HARMONIE by taking

account of the changing aerosol concentration and the e�ect this has on the visibility. To do

this we will develop an empirical relation for visibility as a function of aerosol concentration

and relative humidity (RH). This visibility function will be developed and used outside of

precipitation events since we expect the visibility to be determined by the type and intensity

of the precipitation, rather than the aerosol content of the air, in precipitation events. In

the development of the visibility function observations from 2012 and 2013 of visibility,

relative humidity, precipitation intensity and PM10 concentration at 13 weather stations in

the Netherlands are used. With this function a new visibility variable is calculated using

forecasts from 2014 of the precipitation intensity and relative humidity from HARMONIE

and the PM10 concentration from the LOTOS-EUROS air chemistry model. The quality

of the new visibility forecasts will be assessed by veri�cation against observations (obs-

veri�cation).

The theory of visibility, the HARMONIE model and aerosols is presented in Chapter 2. In

Chapter 3 the datasets used in this project and the statistical methods used to analyze the

quality of forecasts are described. The empirical visibility function is also developed in this

chapter. In Chapter 4 obs-veri�cation is used to assess the quality of the forecasts from

HARMONIE and LOTOS-EUROS. The quality of the new visibility variables calculated

with the diagnostic visibility function is presented and discussed in Chapter 5. Finally, in

Chapter 6 a brief summary is given before the main conclusions of the project are presented.

A few suggestions for further work and implementation of the results from this project are

also given in this last chapter.
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Chapter 2
Theory

2.1 Visibility

When observing a distant object the apparent contrast between the object and its back-

ground decreases with increasing distance. This is a result of an increase in the apparent

luminance of the object due to light being scattered into the observer's eyes by the air

between the observer and the object, so-called airlight. At some distance the airlight will

have increased the apparent luminance of the object to such a level that the apparent

contrast between the object and its background becomes equal to the contrast threshold

of the observer's eyes, and the object is barely visible. This distance is what is known as the

visibility.

Based in this intuitive concept of visibility the World Meteorological Organization (WMO)

has de�ned visibility as follows:

Visibility, meteorological visibility (by day) and meteorological visibility at night

are de�ned as the greatest distance at which a black object of suitable dimensions

(located on the ground) can be seen and recognized when observed against the

horizon sky during daylight or could be seen and recognized during the night if

the general illumination were raised to the normal daylight level (WMO, 1992;

2003).

The visibility estimated by a human observer, based on the WMO de�nition, is a�ected

by many subjective and physical factors. Primarily visibility is determined by the optical

state of the atmosphere as represented by the atmospheric extinction coe�cient. The

extinction coe�cient depends on the amount of particles (water droplets, aerosols etc.) in the

atmosphere and their ability to scatter and absorb light. Scattering/absorption of light by

these particles reduces the atmospheric visibility. The estimated visibility is also a�ected by

the characteristics of the objects to be observed. In practice the objects used for observations

in daylight may not be totally black, meaning they may have an intrinsic luminance. This
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2.1. VISIBILITY CHAPTER 2. THEORY

intrinsic luminance will reduce the contrast between the object and its background (the

horizon sky), reducing the distance at which the objects can be seen. Hence, lighter colored

objects are less visible than black objects and estimating visibility with such objects will

underestimate the actual visibility of the atmosphere. In addition it is important to keep

in mind that since the contrast threshold is subjective and varies from observer to observer

visibility estimated by human observers will always be subjective. This means that two

observers may have a di�erent ability to recognize the object against its background, and

may estimate a di�erent visibility even when all outer factors are the same.

For consistency the measure of visibility to be used in meteorology should be objective and

not in�uenced by any extra-meteorological factors. It must be a measure of the essential

quantity, namely the transparency of the atmosphere, as well as being related to the intuitive

concept of visibility as a measurement of how far away an object can be seen. To meet these

requirements the meteorological optical range (MOR) has been de�ned and is now adopted

by WMO as the measure of visibility. MOR is de�ned as the length of path in the atmosphere

required to reduce the luminous �ux in a collimated beam from a lamp burning at a color

temperature of 2700K (corresponding to a wavelength of about 550 nm) to 5% of its original

value (WMO, 2008).

2.1.1 Basic Equations

The primary equation when considering atmospheric visibility is the Bouguer-Lambert law:

F = F0e
−βx (2.1)

where F is the luminous �ux [lumen] received through an atmospheric length of path x

from an object transmitting light with initial luminous �ux F0. The extinction coe�cient

β is de�ned as the proportion of luminous �ux lost by a collimated beam (from a lamp

burning at 2700K) while traveling a unit distance in the atmosphere. The proportion of the

luminous �ux not lost by the beam while traveling from the object to the observer is called

the transmission factor (T ). Using equation 2.1 the transmission factor can be written as

T =
F

F0
= e−βx (2.2)

From the de�nition of MOR it is clear that when an object is at MOR (x = P ) the

transmission factor is 0.05. Hence, for an object at MOR equation 2.2 gives

T = 0.05 = e−βP (2.3)

The mathematical relation between MOR and the extinction coe�cient can then be written

as

P = − ln 0.05

β
≈ 3

β
(2.4)

showing that MOR only depends on the optical properties of the atmosphere.
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CHAPTER 2. THEORY 2.1. VISIBILITY

By combining equations 2.2 and 2.4 the equation used for measuring MOR with a transmis-

someter (see subsection 2.1.2) can be obtained:

P =
x ln 0.05

lnT
(2.5)

MOR is related to the intuitive concept of visibility through the contrast threshold (ε). The

contrast threshold is the minimum value of the luminance contrast (C) that the human eye

can detect. The luminance contrast is given by

C =
Lb − Lh
Lh

(2.6)

where Lb is the luminance of the object
[
cdm−2

]
and Lh is the luminance of the background.

Note that the luminance contrast will be negative when the object is darker than the

background. The relationship between the apparent contrast (Cx) between an object and

its background when seen by an observer from a distance x, and the inherent contrast

(C0) the object would have against its background when seen from short range is given by

Koschmieder's law:

Cx = C0e
−βx (2.7)

From equation 2.6 the inherent contrast is C0 = −1 when a black object (Lb = 0) is viewed

against the background horizon, and from equation 2.7 the apparent contrast between the

object and its background at a distance x is given by

Cx = −e−βx (2.8)

Comparing this result with equation 2.3 shows that when the apparent contrast is reduced

to −0.05 the object is at MOR. Hence, MOR relates to the intuitive concept of visibility

by being exactly the visibility that would be estimate by a human observer if the contrast

threshold of the observer's eyes was 0.05.

2.1.2 Measuring Visibility

Historically visibility has been measured by human observers and this is still widely done.

Each station has a list of objects suitable for both daytime observations (church towers, build-

ings, trees etc.) and night-time observations (light sources) at known distances and bearings

from the station. The observations are made without any optical devices by observers who

have �normal� vision and have received suitable training. Since the meteorological measuring

stations in the Netherlands no longer use human observers to estimate visibility, the methods

used by human observers will not be elaborated upon here, but details are provided in for

instance WMO (2008).

Instruments used for estimating the visibility work by measuring the extinction coe�cient

from which MOR may be calculated using equation 2.4. From MOR the visibility may then

be calculated based on the contrast threshold.

5



2.1. VISIBILITY CHAPTER 2. THEORY

(a)

(b)

Figure 2.1: (a) Sketch of a transmissometer (b) Double baseline transmissometer located at
Schiphol airport. Left in the picture are two receiver units at di�erent distances from the transmitter
unit seen to the right in the picture.
Source: (a) WMO (2008), (b) KNMI (2005)

Today all visibility measurements in the Netherlands are done by instruments, and in the

measuring network of KNMI two kinds of instruments for measuring meteorological visibility

are used: transmissometers and scatter meters.

Transmissometer: A transmissometer estimates MOR by determining the mean trans-

mission factor of the atmosphere between a transmitter and a receiver. The transmitter

sends a collimated light beam with known luminous �ux (F0) to the receiver where a

photodetector measures the luminous �ux transmitted through the atmosphere (F ). From

this the mean transmission factor can be calculated using equation 2.2. A simple sketch of

a transmissometer is shown in Figure 2.1a.

The distance between the transmitter and the receiver is called the transmissometer baseline

(a), and may range from a few meters to over 100 meters depending on the range of MOR

values to be measured. The range of MOR values that can be measured for a given baseline

is between about 1 and 25 times the baseline length. To extend the measuring range

transmissometers with two receivers at di�erent distances from the transmitter are sometimes

used. At airports in the Netherlands such double baseline transmissometers are used with

baselines of 12m and 75m. One example can be seen in Figure 2.1b.

With the known transmissometer baseline and the calculated transmission factor MOR

estimated by the transmissometer can be calculated using equation 2.5:

P =
a ln 0.05

lnT
(2.9)

Calculating MOR using this expression assumes that the transmission factor determined
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CHAPTER 2. THEORY 2.1. VISIBILITY

Table 2.1: Technical speci�cations for the instruments used by KNMI to measure visibility

Vaisala Mitras
transmissometer

Vaisala FD12P
scatter meter

Range 10m - 3 km 10m - 50 km
Resolution 1m 1m

Accuracy 10% - 20%
10% for 10m - 10 km,
20% for 10 km - 50 km

Frequency 1/12Hz 1/12Hz
Source: KNMI (2005)

between the transmitter and the receiver is the same as that in the path between an observer

and an object at MOR.

Since the transmissometer estimates MOR in a way that is so closely related to the de�nition

of MOR, a transmissometer working within its range of highest accuracy provides a very good

approximation to the true MOR (WMO, 2008).

Some technical speci�cations for the Vaisala Mitras transmissometer used in the KNMI

measuring network are listed in Table 2.1.

Scatter meter: A scatter meter estimates MOR by measuring the scattering coe�cient in

a volume of air and assuming that the absorption coe�cient in the atmosphere is negligible.

In this way the extinction coe�cient can be considered equal to this scattering coe�cient.

Since the visibility is mainly reduced by scattering of light on water droplets and aerosols,

this assumption is usually good. The exception is if the air contains particles that strongly

absorb light, e.g. industrial pollutants and ice crystals.

The scattering coe�cient is determined by having a transmitter concentrate a beam of light

on a small volume of air and using a photodetector to determine the proportion of the light

scattered in a given angle. The most used technique measures the forward scatter and a

sketch of such a scatter meter is shown in Figure 2.2a.

The scatter coe�cient (βscat) is given by the function

βscat =
2π

ΦV

ˆ π

0
I (φ) sin (φ) dφ (2.10)

where ΦV is the �ux entering the volume of air V and I (φ) is the intensity of the light

scattered in direction φ with respect to the incident beam. In order to properly determine

the scattering coe�cient, measurements would have to be made of the light being scattered

in all directions. In practice, however, the scattered light is only measured over a limited

angle and the scattering coe�cient is calculated assuming a high correlation between the

intensity measured for the given angle and the full integral in equation 2.10. MOR can then

be estimated from equation 2.4:

P = − ln 0.05

βscat
(2.11)

Since a scatter meter only samples a very small volume of air, the measured MOR is

7



2.2. HARMONIE CHAPTER 2. THEORY

(a)

(b)

Figure 2.2: (a) Sketch of a scatter meter measuring forward scatter. (b) Scatter meter located in
De Bilt
Source: (a) WMO (2008), (b) KNMI (2005)

usually less representative for the general state of the atmosphere than that measured by a

transmissometer, which samples a larger volume.

Some technical speci�cations for the Vaisala FD12P scatter meter used in the KNMI mea-

suring network is listed in Table 2.1, and a picture of the scatter meter located in De Bilt is

shown in Figure 2.2b.

2.2 HARMONIE

HARMONIE is a mesoscale non-hydrostatic spectral model developed through collaboration

between the HIRLAM consortium and the ALADIN consortium. The main objective of

this cooperation is to provide the HIRLAM and ALADIN members with a state-of-the-art

numerical weather prediction system for short range forecasting. HARMONIE is built upon

model components that had previously been developed in the ALADIN and Météo-France

communities, and at the default horizontal resolution of 2.5 km the forecast model is basically

the same as the AROME model from Météo-France. At lower resolutions di�erent physical

packages and/or dynamical cores can be used.

At KNMI version 36h1.4 of HARMONIE is run operationally with a horizontal resolution

of 2.5 km and 60 vertical levels. The boundary conditions for the operational model are

provided by a larger scale HIRLAM 11 km model. The model is run every three hours with

8



CHAPTER 2. THEORY 2.3. AEROSOLS

a forecasting range of 48 hours and an output temporal resolution of one hour.

More information about HARMONIE can be found at the website of the HIRLAM consor-

tium: www.hirlam.org.

2.2.1 Forecasting Visibility in HARMONIE

As seen from equation 2.4, MOR can be calculated once the extinction coe�cient is known.

The extinction coe�cient can be calculated from theoretically derived relations if the ex-

tinction e�ciency and size distribution of all the atmospheric constituents a�ecting visibility

(hydrometeors, aerosols) are known. Since this is not known, except for in detailed �eld

campaigns, empirically determined relations between the density of hydrometeors (W ) and

the extinction coe�cient of each hydrometeor are used in practice.

In HARMONIE rain, snow, cloud droplets, ice crystals and graupel are prognostic variables

and thus the scattering coe�cient due to each of these hydrometeors can be calculated

using the relations in Table 2.2. The total extinction coe�cient of the atmosphere is

then calculated as the sum of the hydrometeor's extinction coe�cients plus a background

extinction coe�cient due to air molecules and the �xed background aerosol concentration:

β = βclw + βr + βci + βs + βg + βb (2.12)

β = 144.7W 0.88
clw + 1.1W 0.75

r + 163.9W 1.00
ci + 10.4W 0.78

s + 2.6W 0.78
g + βb (2.13)

The extinction due to an aerosol concentration di�erent from the background concentra-

tion is not taken into account since aerosol concentration is not a prognostic variable in

HARMONIE.

Given the expression for the extinction coe�cient in equation 2.13 the visibility (MOR) is

calculated with the relation

V IS = − ln 0.02

144.7W 0.88
clw + 1.1W 0.75

r + 163.9W 1.00
ci + 10.4W 0.78

s + 2.6W 0.78
g + βb

(2.14)

Note that the value 0.02 is used for the contrast threshold here, as opposed to 0.05 suggested

by WMO (2008) and used in equation 2.4. The value 0.02 was suggested by Koschmeider

(1924) and is widely used. When using 0.02 for the contrast threshold the calculated MOR

will be about 30% larger than when using a contrast threshold of 0.05.

2.3 Aerosols

Aerosols are de�ned as a suspension of �ne solid or liquid particles in a gas (Seinfeld and

Pandis, 2006). The particles are either released directly into the atmosphere (primary

aerosols) or formed in the atmosphere by gas to particle conversion (secondary aerosols).

Aerosols are emitted from both natural (sea salt, mineral dust, sulfates from DMS, etc.)

and anthropogenic (industrial dust, fuel combustion, etc.) sources.

9



2.3. AEROSOLS CHAPTER 2. THEORY

Table 2.2: Extinction coe�cients for the di�erent hydrometeors in HARMONIE. W is the density
of the hydrometeor in gm−3.

Hydrometeor Extinction coe�cient

Cloud liquid water βclw = 144.7W 0.88
clw

Rain βr = 1.1W 0.75
r

Cloud ice βci = 163.9W 1.00
ci

Snow βs = 10.4W 0.78
s

Graupel βg = 2.6W 0.78
g

Source: Petersen and Nielsen (2000)

The diameters of atmospheric aerosols range from a few nanometers to hundreds of microme-

ters, and based on the diameter the aerosols are classi�ed as �ne particles (< 2.5 µm) or coarse

particles (> 2.5 µm). This division is fundamental since �ne particles and coarse particles

in general have di�erent sources, sinks, chemical composition and optical properties. The

�ne aerosol mode can be further divided into two modes: the nucleation mode (< 0.1 µm)

and the accumulation mode (0.1− 2.5 µm). Aerosols in the nucleation mode are formed by

condensation of gasses and are lost primarily by coagulation with larger particles. Aerosols

in the accumulation mode are formed primarily when aerosols in the nucleation mode grow

into this size range by coagulation and/or by condensation of water vapor. Aerosols in the

accumulation mode are too big to grow e�ciently by condensation, too few to grow e�ciently

by coagulation, and they are too small to be removed e�ciently by dry deposition. This

means that the aerosols in the accumulation mode are least e�ciently removed from the

atmosphere, hence the name of the mode. Aerosols in the coarse mode are formed by

mechanical processes and consist of, for instance, natural and anthropogenic dust particles

lifted by the wind. These aerosols have large enough sedimentation velocities to be removed

by dry deposition.

In addition to the removal mechanisms described above, wet deposition a�ects both �ne

and coarse mode particles. Wet deposition causes the aerosols to be incorporated into cloud

droplets during the formation of precipitation and/or be washed out of the atmosphere as

the droplets fall. In combination these removal mechanisms lead to relatively short residence

times for aerosols in the troposphere, typically days to a few weeks. Because of this short

residence time and the spatial distribution of sources, aerosols vary in both concentration

and composition over the Earth.

2.3.1 Aerosols and Visibility

The extinction of light by aerosols is a result of both scattering and absorption of the light,

but for most aerosols scattering is by far the most important process. Each aerosol particle

scatters and absorbs light with a certain e�ciency know as the particle's scattering (σscat)

and absorption (σabs) cross section, respectively. Depending on the optical properties of

the aerosol particle and the wavelength of the incident light the scattering and absorption

cross sections can be smaller or larger than the cross-sectional area of the particle (A). The

ratio between the scattering cross section and the cross-sectional area of a particle is the

10
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dimensionless scattering e�ciency (Qscat):

Qscat =
σscat
A

(2.15)

The absorption e�ciency is similarly de�ned and the extinction e�ciency of an aerosol

particle is given by

Qext = Qscat +Qabs (2.16)

By assuming that the atmospheric aerosols are spherical particles, equations for the scatter-

ing and absorption e�ciency can be formally derived using Mie theory. The scattering and

absorption e�ciency are functions of the wavelength of the incident light (λ), the diameter

of the aerosol particle (Dp) and the particle's complex index of refraction (m) giving the

particle's optical properties relative to the surrounding atmosphere.

If the extinction e�ciency and the size distribution of aerosols are known, in an atmosphere

with a population of di�erently sized aerosols, the extinction coe�cient due to the aerosols

can be calculated using the following equation:

βaer =

ˆ Dmax
p

0

πD2
p

4
Qext (λ,Dp,m)n (Dp) dDp (2.17)

where Dmax
p is the diameter of the largest aerosol particle in the population, n (Dp) is the

number size distribution function and Qext is given by Mie theory.

The above discussion shows that four parameters determine the e�ect atmospheric aerosols

have on visibility in an area. The complex re�ective index and the diameter of the aerosol

particles are necessary to calculate Qscat and Qabs which describe how e�ectively a single

particle scatters and absorbs light. Then the aerosol number size distribution is needed

to determine the extinction and absorption of light by the whole aerosol population. In

addition the total number concentration of aerosols along the atmospheric path from the

light source to the observer dictates how many scattering and absorption events the light

beam will encounter.

Aerosol hygroscopicity and visibility: Some aerosols are hygroscopic meaning that

they will attract and hold water molecules as the ambient relative humidity increases. This

can have a huge e�ect on the visibility and is responsible for the situations with lowest

visibility, namely fog.

The uptake of water changes the composition of the aerosols. If an aerosol is a liquid solution

with some material dissolved in water the uptake of more water will dilute the aerosol. As

the composition of the aerosol is changed, the refractive index is changed as well. This will in

turn change the extinction e�ciency of the aerosol. Since water has a smaller refractive index

than most atmospheric aerosols, the uptake of water will generally decrease the refractive

index of the aerosol, causing it to scatter less light. This e�ect will work to reduce the

extinction e�ciency of the aerosol.
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The impact of aerosol dilution on visibility is small compared to the e�ect of the changing

aerosol size (Tang, 1996). When the relative humidity increases hygroscopic aerosols will

attract water vapor from the ambient air and start to grow. This growth starts at RH levels

well below saturation. When the aerosols grow the total mass of the aerosols in a volume of

air increases as well as the total surface area of the aerosols. For a single aerosol particle the

scattering cross section will increase as it absorbs more water. The scattering cross section

of an ammonium sulfate aerosol particle can, for example, increase by a factor �ve or more

at 90% RH compared to the dry particle (Malm and Day, 2001). This e�ect will work to

greatly increase the scattering from aerosols as the relative humidity increases.

Not all aerosols are hygroscopic and di�erent hygroscopic aerosols behave di�erently when

the relative humidity increases. In order to determine the extinction of a light beam caused

by aerosols it is therefore necessary to know which aerosol species are present as well as the

relative humidity.
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Chapter 3
Data and Methods

3.1 Datasets

3.1.1 Observations

In this project meteorological and air quality observations from 2012, 2013 and 2014 are used.

The observations from 2012 and 2013 are used to develop a diagnostic visibility function.

The observations from 2014 are used for obs-veri�cation of the forecasts from HARMONIE

and LOTOS-EUROS, and the visibility calculated using the diagnostic visibility function.

Meteorological observations: KNMI has 49 operational weather stations in the Nether-

lands, of which 13 are used in this project. The rejected stations either have a large amount

of missing data or are considered to be poorly represented by the air quality measuring

stations. The selected stations are shown on the map in Figure 3.1, and more information

about the stations can be found in Table A.1.

In this project three meteorological variables are used: visibility [m], relative humidity [%]

and precipitation intensity [mm/h]. The observations are reported as 10 minute averages,

but in order to match the PM10 observations hourly averages are calculated and used for

the analysis. The observations are reported in Coordinated Universal Time (UTC) and all

the calculations are also performed in UTC.

PM10 observations: The PM10 concentration
[
µgm−3

]
is not measured at the weather

stations in the KNMI network. It is rather measured at some of the stations in the Dutch

National Air Quality Monitoring Network (LML) operated by the National Institute of

Public Health and the Environment (RIVM). This network consist of 51 stations of which

16 are used in this project. The rejected stations do not measure PM10, have large amounts

of missing data, or they are situated such that other stations better represent the conditions

at the weather stations. The selected stations are shown on the map in Figure 3.1, and more

information about the stations can be found in Table A.2.

13



3.1. DATASETS CHAPTER 3. DATA AND METHODS

Figure 3.1: Map of the selected observation stations in the Netherlands. Meteorological stations
in red and air quality stations in blue

The PM10 observations are reported as hourly averages in local time, and are converted from

local time to UTC prior to the calculations. Since the PM10 concentrations are measured in

a di�erent network than the meteorological variables, the position of the measuring stations

are di�erent. In the interest of having all the data available at the same positions, the PM10

observations are interpolated from the air quality stations to the weather stations. If an air

quality station is located close to the weather station, the PM10 concentration at the weather

station is taken to be equal to that measured at the air quality station. If the distance is

larger, the PM10 observations from two or three air quality stations are interpolated to the

weather station using inverse distance weighting.

3.1.2 Forecasts

In this project forecasts of meteorological variables and PM10 concentrations from 2014 are

used. The meteorological forecasts are from HARMONIE, and the PM10 concentrations are

from the LOTOS-EUROS model.

Meteorological forecasts: In the HARMONIE output �les that were used the forecasts

have already been interpolated from the regular grid of HARMONIE to the meteorological

stations. Since HARMONIE is run every three hours with a forecasting range of 48 hours

14



CHAPTER 3. DATA AND METHODS 3.2. METHODOLOGY

there are many forecasts available for any given time. To have one continuous time series of

the HARMONIE forecasts, only the 00 UTC runs are used with a forecasting range of 24

hours. Days are considered to start at 00 UTC. Each run will therefore give forecasts from

01 UTC the day of the run till 00 UTC the following day.

In the output �les the precipitation intensity and visibility are reported as such, but the

relative humidity must be calculated based on the forecasted 2m temperature (T ) and 2m

dewpoint temperature (Td) using the relation

rh = 100
e

es
= 100

es (Td)

es (T )
(3.1)

where e and es are the vapor pressure and saturation vapor pressure, respectively. The sat-

uration vapor pressure can, using the Magnus form approximation (Alduchov and Eskridge,

1996), be approximated by

es (T ) = 6.1094 exp

(
17.625T

243.04 + T

)
(3.2)

Applying this approximation to equation 3.1 the relative humidity can be calculated using

the relation

rh = 100 exp

(
17.625Td
Td + 243.04

− 17.625T

T + 243.04

)
(3.3)

PM10 forecasts: The LOTOS-EUROS air chemistry model is an integration of the two

models LOTOS (Long Term Ozone Simulation) and EUROS (European Operational Smog).

The LOTOS model was developed by Netherlands Organization for Applied Scienti�c Re-

search (TNO) and EUROS was developed by RIVM. One of the output variables from the

LOTOS-EUROS model is PM10 concentration [kg/kg]. The operational LOTOS-EUROS

model at KNMI has a horizontal resolution of 0.125◦ longitude× 0.0625◦ latitude, and from

this grid the PM10 concentrations are interpolated to the weather stations. To convert

the forecasted PM10 concentrations to the same unit as the observed concentrations they

are multiplied with the density of air. In this project we take the density of air to be

constant at 1.2 kgm−3. A simple calculation show that the extremes we might expect are

about 1.13 kgm−3 (P=980 hPa; T=30 ◦C) and 1.38 kgm−3 (P=1040 hPa; T=−10 ◦C), and

1.2 kgm−3 therefore seems like a reasonable value to use for the air density.

3.2 Methodology

3.2.1 Development of a Diagnostic Visibility Function

In this project we intend to �nd an empirical relation between visibility, relative humidity

and PM10 concentration. In the search for this relation we restrict ourselves to the cases

without precipitation. This is because when there is precipitation we expect the visibility to

be determined by the type and intensity of the precipitation, rather than the aerosol content
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in the air, as the aerosols are washed out by the precipitation. Since HARMONIE includes

hydrometeors as prognostic variables and presently calculates visibility based on their concen-

tration (Section 2.2.1), we expect HARMONIE to be more accurate at forecasting visibility

in precipitation and fog events than outside these events. Our empirical relation based

on relative humidity and PM10 concentration will therefore act as an additional visibility

relation to be used in cases without precipitation or fog, when we expect the aerosol e�ect

to be the main factor reducing visibility.

Because poor visibility is a greater concern than good visibility we restrict our analysis

to observations where the visibility is less than 20 km. Observations where one or more

of the parameters are missing are not used. When we combine the 13 stations, apply

these restrictions and remove the observations where there is precipitation, the number

of observations amounts to 80 499.

In order to �nd the empirical relation, which is a plane in three dimensions, we �rst divide

the observations into 20 bins, based on the PM10 concentration. The width of the bins are

determined so each bin will have roughly the same number of observations, which in this

case is around 4000. The width of the bins can be seen in Table 3.1.

Within each of the 20 bins we intend to �nd a relation between relative humidity and

visibility. From these 20 relations the 3D plane can be constructed. In each bin the

scatterplot of visibility vs. relative humidity shows a large amount of scatter, but it is

also possible to see a clear pattern (Figure 3.2). In order to �nd the curve that will �t this

pattern best, the median visibility within small bins of relative humidity are calculated. To

make sure the �tting curve would catch the sharp decrease in visibility for relative humidity

close to 100%, the 10th percentiles are calculated in stead of the medians (50th percentile)

for relative humidity close to 100%. Else the scatter in observed values would draw the

relations too far from the low visibilities. The medians are also plotted in Figure 3.2, and it

can be seen that they ��atten out� in the lower relative humidity range. Orthogonal distance

regression is used to make a linear �t to the medians at high relative humidity, before the

medians �atten out. For some of the bins two linear �ts have to be used: one for relative

humidity below 97%, and one above. The resulting curves (Table 3.1) are taken to be our

empirical relations between visibility and relative humidity for each PM10 bin. It can be

seen from Figure 3.2 that the linear �tting curves describe the observed patterns in the

scatter plots well.

Using the forecasted relative humidity from HARMONIE and forecasted PM10 concentra-

tions from LOTOS-EUROS a new visibility variable is made using the relations in Table 3.1.

How well these new visibility forecasts compare to observations and the visibility forecasts

from HARMONIE will be investigated in Chapter 5.
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Table 3.1: Fitting curves for each PM10 bin

PM10 bin PM10 concentration
[
µgm−3

]
Fitting curve

1 0− 7.3 −1817 · rh+ 180293

2 7.3− 10.4 −1803 · rh+ 178984

3 10.4− 12.7 −1717 · rh+ 170516

4 12.7− 14.6 −1716 · rh+ 170275

5 14.6− 16.2 −1684 · rh+ 167168

6 16.2− 18.0 −1657 · rh+ 164467

7 18.0− 19.6 −1566 · rh+ 155452

8 19.6− 21.2 −1483 · rh+ 147339

9 21.2− 22.8 −1290 · rh+ 128695

10 22.8− 24.5 −1292 · rh+ 128594

11 24.5− 26.3 −1200 · rh+ 119463

12 26.3− 28.2 −1134 · rh+ 112929

13 28.2− 30.3 −1069 · rh+ 106444

14 30.3− 32.6
−851 · rh+ 86201, for rh < 97%

−1703 · rh+ 168766, for rh ≥ 97%

15 32.6− 35.5
−810 · rh+ 81747, for rh < 97%

−1334 · rh+ 132545, for rh ≥ 97%

16 35.5− 39.0
−702 · rh+ 71043, for rh < 97%

−1358 · rh+ 134637, for rh ≥ 97%

17 39.0− 43.7
−560 · rh+ 57162, for rh < 97%

−1275 · rh+ 126501, for rh ≥ 97%

18 43.7− 50.1
−487 · rh+ 49652, for rh < 97%

−971 · rh+ 96620, for rh ≥ 97%

19 50.1− 60.3
−344 · rh+ 35689, for rh < 97%

−977 · rh+ 97108, for rh ≥ 97%

20 60.3+
−270 · rh+ 28021, for rh < 97%

−749 · rh+ 74479, for rh ≥ 97%

17



3.2. METHODOLOGY CHAPTER 3. DATA AND METHODS

Figure 3.2: Scatterplots of visibility vs. relative humidity for some of the PM10 bins. The red
circles indicate the median visibility in small bins of relative humidity. The black lines are the �tting
curves from Table 3.1.
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Table 3.2: Contingency table for evaluating forecasts

Forecasted
Observed

Yes No

Yes a b

No c d

3.2.2 Statistical Methods

In this project the statistical methods suggested by Thornes and Stephenson (2001) are used

to determine the quality of the forecasts. The quality is evaluated based on three attributes:

reliability, accuracy and skill. To determine these attributes it is recognized that for any

given event in forecasting a 2×2 contingency table, like the one in Table 3.2, can be made.

The event can for instance be visibility less than 1000m (fog). In Table 3.2 a is then the

number of times fog is both forecasted and observed, b is the number of times fog is forecasted

but not observed, c is the number of times fog is observed but not forecasted, and d is the

number of times fog is neither forecasted nor observed. The forecasts are correct in a and

d, while c is denoted as Type 1 error (miss) and b is denoted as Type 2 error (false alarm).

Reliability: The reliability of forecasts can be indicated by the bias (B). The bias will

tell whether the forecasting model is consistently over- or under-forecasting the event. The

bias can be calculated from the contingency table as

B =
a+ b

a+ c
(3.4)

When the bias is larger than 1, often called positive bias, the model is over-forecasting the

event and when the bias is smaller than 1 (negative bias) the model is under-forecasting the

event. When B = 1 the forecasts are said to be perfectly reliable. Note that this does not

mean that the forecasts are accurate.

In some cases a positive bias can be put into the model intentionally to guard against Type

1 errors. In the example with fog a positive bias would lower the number of unforecasted fog

events and, since fog has a large impact on aviation and road tra�c safety, this would be a

�better safe than sorry� approach. The downside would be forecasting more fog events that

never take place. This can have an economical cost when, for instance, air tra�c is slowed

down due to the forecasted fog.

Accuracy: The accuracy of forecasts can be indicated by two independent measures: the

hit rate (H) and the false alarm rate (F ).

The hit rate is the proportion of the observed events that were forecasted. In probability

terms the hit rate is the probability that the event was forecasted given that it is observed,
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H = P (forecasted | observed). From the contingency table the hit rate can be calculated as

H =
a

a+ c
(3.5)

The hit rate is a number between 0 and 1 where close to 1 indicates good accuracy. If there

are no Type 1 errors the hit rate will be exactly 1. Note that the hit rate by itself can be

misleading. In the fog example forecasting fog all the time would give a hit rate of 1, but

the quality of the forecasts would still be very poor.

The false alarm rate is the proportion of the not observed events that were forecasted. In

probability terms the false alarm rate is the probability that the event was forecasted given

that it is not observed, F = P (forecasted | not observed). From the contingency table the

false alarm rate can be calculated as

F =
b

b+ d
(3.6)

The false alarm rate is a number between 0 and 1 where close to 0 indicates good accuracy.

If there are no Type 2 errors the false alarm rate will be exactly 0.

In the fog example forecasting fog all the time might give a hit rate of 1 (indicating very

good accuracy), but it will also give a false alarm rate of 1 (indicating very poor accuracy).

It is therefore important to look at both the hit rate and the false alarm rate in order to

determine the accuracy of the forecasts.

Skill: The skill of the forecasts can be indicated by the Peirce skill score (PSS). PSS is

simply calculated from the hit rate and the false alarm rate as

PSS = H − F (3.7)

PSS is thus a measure of how good the forecasting model is at correctly forecasting the event

and avoiding false alarms. The PSS is a number between −1 and 1 where the closer the

value is to 1 the better the skill of the forecasts. If PSS is negative the false alarm rate

is larger than the hit rate. The forecasting model would then have better skill if it simply

relabeled forecasted events as unforecasted and vice versa.

In the fog example forecasting fog all the time would give a PSS of zero, indicating that the

forecasting model has no skill.
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Chapter 4
Quality of the Forecasts

In this chapter the quality of the forecasts from HARMONIE and LOTOS-EUROS is

examined. The qualities of the forecasts are determined using the statistical methods

described in Section 3.2.2. The quality of the visibility forecasts from HARMONIE will

be used for comparison with the quality of the new visibility variable we have calculated

using the diagnostic visibility function. This comparison will be done in Chapter 5. The

quality of the forecasts of the other variables is also important. We use forecasted values

of the meteorological and air quality variables in order to calculate the new visibility. The

quality of our visibility calculations therefore depends on the quality of the forecasts of the

variables we use.

4.1 HARMONIE

4.1.1 Precipitation Intensity

As explained in Chapter 3, the diagnostic visibility function will only be used when there

is no precipitation. We are therefore interested in knowing only how good HARMONIE is

at forecasting whether there will be precipitation or not, and not how well HARMONIE

forecasts the intensity of the precipitation. In HARMONIE the amount of precipitation is

often very small instead of exactly zero, and a threshold of 0.1mm/h is therefore used for the

forecasts in the obs-veri�cation. If the forecasted precipitation intensity is lower than this,

we consider there to be forecasted no precipitation and the visibility can be calculated using

the visibility function. The obs-veri�cation results in the simple 2×2 contingency table seen

in Table 4.1 where the event is precipitation smaller than 0.1mm/h.

Firstly, we see that no precipitation is observed in 91% of the total number of cases, but no

precipitation is forecasted in only 57% of the cases. This gives a large negative bias of 0.63,

and HARMONIE is clearly under-forecasting no precipitation.

The hit rate is high, telling us that as many as 61% of the observed precipitation-free events

were forecasted. The false alarm rate is low; when precipitation was observed HARMONIE
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Table 4.1: Contingency table for precipitation intensity smaller than 0.1mm/h. Total number:
111 650

Forecasted
Observed

B H F PSS
yes no

yes 61 942 2006
0.63 0.61 0.19 0.42

no 39 411 8291

had forecasted there would be no precipitation in only 19% of the cases. The combination

of the hit rate and the false alarm rate results in a Peirce skill score of 0.42. This skill score

is indicating that HARMONIE has good skill when it comes to forecasting whether there

will be precipitation or not.

For our purpose it is most important that the false alarm rate is low in Table 4.1. In

the obs-veri�cation of the visibility forecasts from the diagnostic visibility function Type 2

errors in Table 4.1 will result in the calculated visibility being compared with the visibility

observed during precipitation events. This will introduce an error in the obs-veri�cation since

the visibility is calculated assuming no precipitation. Type 1 errors, on the other hand, will

result in the rejection of cases that should not have been rejected. This will lower the number

of cases that can be used in the obs-veri�cation and thus increase the statistical uncertainty,

but it will not result in errors in the obs-veri�cation. Hence, since the false alarm rate is

low in the precipitation intensity forecasts from HARMONIE, using these forecasts when

calculating the new visibility variable with the visibility function is expected to introduce

few errors.

4.1.2 Relative Humidity

Unlike for the precipitation intensity we are interested in knowing the quality of the RH

forecasts from HARMONIE for di�erent values of RH. To accomplish this we have divided

the RH range into �ve classes. The results of the obs-veri�cation can therefore be presented

in a 5×5 contingency table (Table 4.2). For each class the bias, hit rate, false alarm rate and

Peirce skill score can be calculated by considering RH being in this class as the event. That

is, for RH class 1 a from Table 3.2 is the number of cases where both the forecasted and

observed RH is lower than 70%, b is the number of cases where the forecasted RH is lower

than 70% but the observed RH is higher, c is the number of cases where the observed RH

is lower than 70% but the forecasted RH is higher, and d is the number of cases where both

the forecasted and observed RH are higher than 70%. For each class the 5×5 contingency

table (Table 4.2) is thus reduced to a 2×2 contingency table, and the bias, hit rate, false

alarm rate and PSS are calculated as normal. We can then evaluate the quality of the RH

forecasts for the di�erent classes.

The sum of the numbers on the main diagonal of the contingency table gives the number

of correct forecasts, i.e. cases with the observed and forecasted relative humidity within the

same class. The proportion of correct RH forecasts is 0.50. If we allow the forecasts to miss

by one class the proportion, called the one class error, is 0.90. This means that in in 50%
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Table 4.2: Contingency table for relative humidity [%]. Total number: 111 268. Proportion of
correct forecasts: 0.50. One class error: 0.90.

Forecasted
Observed

B H F PSS
< 70 70− 80 80− 90 90− 95 95− 100

< 70 15 870 3570 1603 288 86 0.93 0.69 0.06 0.63

70− 80 5448 8076 5688 1397 508 1.03 0.39 0.14 0.25

80− 90 1569 7971 17 001 6432 3373 1.12 0.52 0.25 0.28

90− 95 114 846 7042 7929 6351 1.19 0.42 0.16 0.27

95− 100 11 77 1078 2738 6202 0.61 0.38 0.04 0.34

of the cases the forecasted RH was in the same class as the observed RH, and in 90% of the

cases the forecasted RH was at most one class di�erent from the observed RH.

From Table 4.2 we see that the bias only deviate a little from 1 for the �rst four classes.

For class 5 the bias is 0.61, meaning that HARMONIE is under-forecasting RH values in

this class to such an extend that the number of times RH is forecasted to be in this class is

only 61% of the number of times it is observed to be in this class. From the relations for

the diagnostic visibility functions we know that the visibility changes greatly with changes

in RH, and especially in the RH-range covered by class 5. Since this range is associated

with low visibility, the under-forecasting of RH in this range is expected to result in too few

cases of low visibility in the new visibility variable calculated using the diagnostic visibility

function.

The hit rates range from 0.38 for class 5 to 0.69 for class 1, indicating that the accuracy

with which HARMONIE forecasts RH is quite good for all the classes.

The false alarm rates are low for all the classes, also indicating good accuracy for the RH

forecasts. Especially class 1 and 5 have very low false alarm rates, re�ecting the relatively

small number of Type 2 errors for these classes.

For all the classes the combination of hit rate and false alarm rate results in a good PSS.

For class 1 the PSS is over 0.60 and the other classes all have PSS over 0.25. This shows

that HARMONIE de�nitely has skills when it comes to forecasting the relative humidity.
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Table 4.3: Contingency table for visibility [km]. Total count: 22 752. Proportion of correct
forecasts: 0.04. One class error: 0.12

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 551 590 6386 5780 5752 33.73 0.98 0.83 0.14

0.4− 1 11 15 288 497 843 2.69 0.02 0.07 −0.05

1− 5 0 4 178 396 823 0.20 0.03 0.08 −0.05

5− 10 1 4 42 127 214 0.06 0.02 0.02 0.00

10− 20 2 1 41 59 147 0.03 0.02 0.01 0.01

4.1.3 Visibility

The proportion of correct visibility forecasts from HARMONIE is low. In only 4% of the

cases did HARMONIE forecast the visibility to be in the same class as the observed visibility.

By allowing the forecasts to miss by one class this percentage still only increases to 12%,

meaning that in as many as 88% of the cases the visibility forecasts from HARMONIE miss

by two classes or more.

The bias is huge for class 1. Dense fog (visibility < 400m) is forecasted by HARMONIE

more than 33 times as often as it is observed. Also class 2 has a large bias. The combination

of class 1 and 2 gives how often fog is forecasted/observed, and it is clear from Table 4.3 that

HARMONIE greatly over-forecasts fog. The biases of the remaining classes are necessarily

strongly negative since these classes must be vastly under-forecasted when class 1 and 2

are so vastly over-forecasted. This extreme distribution of the forecasted visibility from

HARMONIE can be seen clearly in the scatterplot in Figure 4.1. The scatterplot shows

a strong tendency for the forecasted visibility to be lower than the observed visibility. In

particular HARMONIE' leaning towards forecasting dense fog can be clearly seen.

HARMONIE forecasted dense fog in more than 83% of the total number of cases, but it

was only observed in 2% of the cases. For class 1 this results in very few Type 1 errors, and

consequently a high hit rate. For the other classes the hit rates are very low, re�ecting the

large number of times visibility is observed to be in these classes, but forecasted to be in

class 1.

The strong over-forecasting of dense fog also results in a high false alarm rate for class 1.

For the other classes the false alarm rates are very low. This is a result of the relatively few

Type 2 errors occurring for these classes when the visibility is forecasted to be in class 1

almost every time.

The PSS are very low for all classes, except class 1, indicating that HARMONIE has very

poor skills at forecasting visibility in these classes. For class 1 the visibility forecasts have

some skill. Based on Table 4.3 it must therefore be said that HARMONIE has poor skills

when it comes to forecasting visibility.

We see that the quality of the visibility forecasts from HARMONIE stands out by being far
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Figure 4.1: Scatterplot of HARMONIE forecasted visibility vs. observed visibility. The color
indicates the number of cases with forecasted and observed visibility within that double bin. The
black diagonal line indicates where the forecasted and observed visibility are equal.

poorer than the quality of the other forecasts. This comes as no surprise since this whole

project was initiated based on the knowledge that HARMONIE was forecasting visibility

poorly. In Chapter 5 we will examine if the quality of the visibility calculated using the

diagnostic visibility function is any better.

4.2 LOTOS-EUROS

4.2.1 PM10

Ideally the quality assessment of the PM10 forecasts would use classes equal to the PM10

bins used in Section 3.2.1. This is however very unpractical since it would call for a 20×20

contingency table. To be consistent with the obs-veri�cation of RH and visibility from above,

we instead present the results in a 5×5 contingency table (Table 4.4). The classes are de�ned

such that each class covers four of the PM10 bins from Section 3.2.1.

From Table 4.4 we see that in 37% of the cases the forecasted PM10 concentration from

LOTOS-EUROS is within the same class as the observed PM10 concentration, and in 76%

of the cases the forecasted concentration was at most one class di�erent from the observed

concentration.

There is a positive bias for PM10 concentrations in class 1 and 2, indicating that these

classes with low PM10 concentration are being over-forecasted by LOTOS-EUROS. PM10

concentrations in class 3, 4 and 5 are under-forecasted by LOTOS-EUROS. Especially PM10

concentrations in class 5 are strongly under-forecasted. It is clear from Table 4.4 that

the PM10 concentrations are generally forecasted to be too low by LOTOS-EUROS. For

observations in class 2 LOTOS-EUROS forecasts more cases with PM10 in class 1 than in
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Table 4.4: Contingency table for PM10 concentration
[
µgm−3

]
. Total number: 93 792. Proportion

of correct forecasts: 0.37. One class error: 0.76

Forecasted
Observed

B H F PSS
0 - 14.6 14.6 - 21.2 21.2 - 28.2 28.2 - 39 39+

0 - 14.6 18 884 10 544 5206 2463 827 1.19 0.59 0.31 0.28
14.6 - 21.2 8235 7538 4953 3182 1540 1.08 0.32 0.25 0.07
21.2 - 28.2 3100 3504 3272 3111 2077 0.95 0.21 0.15 0.05
28.2 - 39 1384 1534 1875 2477 3223 0.86 0.20 0.10 0.10
39+ 364 407 563 964 2565 0.48 0.25 0.03 0.22

class 2, and the number of cases in class 1 is much higher than the number of cases in

class 3, 4 and 5. For observations in class 3 LOTOS-EUROS forecasts more cases in both

class 1 and class 2 than in class 3, and the number of cases forecasted in class 4 and 5 are

much lower. Similarly, for observations in class 4 the forecasts have more cases with PM10

concentrations in both class 2 and class 3 than in class 4. Since high PM10 concentrations

are associated with low visibility for all values of RH (Table 3.1), the tendency of LOTOS-

EUROS to forecast too low PM10 concentrations is expected to cause the visibility function

to forecasts too high visibility when the forecasted PM10 concentrations are used as input.

The hit rates vary from 0.20 for class 4 to 0.59 for class 1. The false alarm rate is very low

for class 5 as a result of the relatively few cases where the PM10 concentration is forecasted

to be in this class. For the other classes the false alarm rates range from 0.10 for class 4 to

0.31 for class 1.

The PSS are low for class 2, 3 and 4, meaning that LOTOS-EUROS has poor skills when

it comes to forecasting PM10 concentrations in these classes. For class 1 and 5 the PSS are

better.

The forecasts of PM10 concentration appear to have a lower quality than the forecasts from

HARMONIE, with the exception of visibility. The true error in the forecasts of PM10 may

come from the LOTOS-EUROS model itself forecasting too low PM10 concentrations. Note

that some of the reduction in quality might also have been introduced by our methods. The

observed PM10 concentrations are not considered at the location where they are measured,

but are rather interpolated to the weather stations. The observations of PM10 might be

made under conditions that are not representative for the weather station, e.g. close to a

road or in a city, which would result in too high PM10 concentrations at the weather station.

The forecasted PM10 concentrations are also interpolated from a regular grid to the weather

stations, and this interpolation might cause errors. Also, in order to get the forecasted PM10

concentrations to have the same unit as the observed concentration, namely
[
µgm−3

]
, we

multiplied them with the density of air. Since this density is taken to be constant in this

project we introduce an additional error, as discussed in Section 3.1.2.
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Chapter 5
Results and Discussions

In this chapter the quality of the visibility forecasts from the diagnostic visibility function

developed in Section 3.2.1 is assessed. The visibility function calculates the visibility us-

ing forecasted values of precipitation intensity and relative humidity from HARMONIE,

and PM10 concentrations from LOTOS-EUROS. The forecasts of these input variables are

themselves not perfect, as discussed in Chapter 4. The deviation of the input variables from

the observations will a�ect the quality of the visibility forecasts. In order to determine the

true quality of the visibility function itself, without the e�ect of the errors in the input

variables, the visibility is also calculated using observations of the variables. The errors

associated with the observations themselves and the interpolation of the PM10 values will

still remain.

It is also of interest to see how the forecasts of the di�erent input variables a�ect the quality

of the visibility forecasts. This is investigated in Section 5.3 by using the visibility function

with observations of one input variable, and forecasts of the other two.

Lastly, the quality of the visibility forecasts from a combination of the visibility function

and HARMONIE is assessed in Section 5.4. In this case the visibility is calculated using

the visibility function as long as there is forecasted no precipitation, and the visibility is

calculated from the combined extinction coe�cient from HARMONIE and the visibility

function when there is forecasted precipitation.
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Table 5.1: Contingency table for calculated visibility [km]. Only forecasts. Total number: 21 561.
Proportion of correct forecasts: 0.45. One class error: 0.86.

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 214 139 609 196 57 2.19 0.39 0.05 0.34

0.4− 1 53 38 244 76 23 0.73 0.06 0.02 0.04

1− 5 182 226 1801 960 323 0.58 0.30 0.11 0.19

5− 10 66 119 2163 2733 1716 0.94 0.38 0.28 0.09

10− 20 40 76 1245 3303 4959 1.36 0.70 0.32 0.38

5.1 Only Forecasts

In this section the quality of the forecasts from the visibility function is assessed when only

forecasts of the input variables are used. This will be a measure of how well the visibility

function might perform in an operational setting where only forecasts are available.

5.1.1 Quality

The contingency table for the obs-veri�cation of the visibility that is forecasted using fore-

casts of all the input variables is shown in Table 5.1. The information in this contingency

table is also shown in Figure 5.2 where the quality assessment attributes of all the di�erent

scenarios presented in this chapter is summarized for easy side by side comparison.

For the visibility forecasted using the diagnostic visibility function the percentage of correct

forecasts is 45%, and when allowing the forecasts to miss by one class the percentage

increases to 86%.

There is a positive bias of 2.19 for class 1, indicating that the visibility function is forecasting

dense fog more than twice as often as it is observed. The function has a negative bias for

forecasting visibility in class 2, and by combining class 1 and 2 the bias of the function for

forecasting fog is found to be 1.43. Hence, the visibility function is over-forecasting fog. The

bias for class 4 is close to one, whereas the function is under-forecasting visibility in class 3,

and over-forecasting visibility in class 5.

The hit rate is highest for class 5 where 70% of the observed cases were forecasted. For

class 2 the hit rate is lowest, and for this class as little as 6% of the observed cases were

forecasted. For the remaining classes the hit rates vary from 0.30 to 0.39.

For class 1 the false alarm rate is an order of magnitude lower than the hit rate. In only 5%

of the cases where the visibility was observed to be in another class was it forecasted to be

in class 1. For class 2 the false alarm rate is even lower. For the remaining classes the false

alarm rates are higher, ranging from 0.11 for class 3 to 0.32 for class 5. The low false alarm

rates show that the visibility forecasts have relatively few Type 2 errors, which is a sign of

good accuracy.
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The combination of the hit rate and the false alarm rate gives the PSS of the visibility

function. From Table 5.1 it can be seen that the function has good skills when it comes to

forecasting visibility in class 1 and 5, with a PSS of 0.34 and 0.38, respectively. For class

2 and 4 the PSS are considerably lower, only 0.04 for class 2 and 0.09 for class 4. These

PSS are signi�cantly di�erent from zero (P < 0.01), meaning that the visibility function has

skills when it comes to forecasting visibility in these classes, although these skills are poor.

For class 3 the PSS is 0.19.

5.1.2 Discussion

The percentage of correct forecasts from the diagnostic visibility function is considerably

higher than that from HARMONIE (Section 4.1.3). In 88 % of the cases the visibility

forecasts from HARMONIE will miss by two classes or more, whereas the forecasts from the

visibility function will miss by that much in only 14 % of the cases. The visibility function is

forecasting the right visibility class ten times as often as HARMONIE, and the one class error

says that when the visibility function misses it is likely to miss by less than HARMONIE.

The bias for forecasting fog, and especially dense fog, was huge in HARMONIE. By com-

bining class 1 and 2 in the HARMONIE forecasts it is found that fog was forecasted 17.19

times more often than it was observed. The visibility function also over-forecasts fog, but

only by a factor 1.43, which must be considered to be a large improvement. As a result

of the less extreme bias for fog the visibility function also show less extreme biases for

the remaining classes, which HARMONIE was vastly under-forecasting. The biases in the

visibility forecasts in Table 5.1 have, except for class 1, magnitudes within the same range as

the magnitudes of the biases in the RH forecasts from HARMONIE and the PM10 forecasts

from LOTOS-EUROS. The bias for class 1 in the visibility function is, however, larger than

the biases seen for the other variables.

The positive bias for forecasting dense fog in the visibility function comes from the way the

�tting curves are found in Section 3.2.1. The �tting curves describe the overall pattern in

how the visibility changes with RH within each PM10 bin. This overall pattern shows a

clear decrease in visibility with increasing RH, with dense fog for the highest values of RH

(Figure 3.2). The diagnostic function will therefore forecast dense fog every time the RH is

above a certain limit, and this limit is di�erent for the di�erent PM10 bins. The linear �ts

cannot describe the scatter in the observations around this general trend. It can be seen in

Figure 3.2 that the scatter in the visibility observations are considerable, and for very high

values of RH the visibility observations span the entire visibility range, even though most of

the visibility observations indicate low visibility. Not accounting for this scatter, but rather

forecasting dense fog every time the RH is above a certain limit, the visibility function will

forecast more dense fog than is observed, and thus give a positive bias.

Also interesting is the negative bias for visibility in class 2. In HARMONIE this class had

a large positive bias, albeit not as extreme as class 1. The scatter in the observations is

probably limiting the visibility function's ability to correctly forecast visibility in class 2.
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(a) (b)

Figure 5.1: Scatterplots of calculated vs. observed visibility. The color represents the number of
cases with forecasted and observed visibility within that double bin. The black diagonal line indicates
where the calculated and observed visibility are equal. (a) Visibility calculated with only forecasts
of the input variables. (b) Visibility calculated with only observations of the input variables.

However, this is not the main cause of the negative bias for class 2 in the visibility function.

As will be discussed in Section 5.2 and 5.3 this is rather caused by the limitations in the

forecasts of the input variables.

For visibility forecasts in class 1 HARMONIE showed an almost perfect hit rate. This was,

however, mainly because HARMONIE forecasted dense fog in almost all cases. The false

alarm rate was therefore also high, resulting in a PSS of only 0.14. For the visibility function

the hit rate for class 1 has decreased. This would in itself indicate that the accuracy is poorer

than in HARMONIE, but in the forecasts from the visibility function the false alarm rate is

one order of magnitude lower than in the HARMONIE forecasts, resulting in a PSS for class

1 that is much higher than in HARMONIE. For all other classes HARMONIE had a very

low hit rate due to the large number of times visibility was observed to be in these classes,

but forecasted to be in class 1. The visibility function shows a similarly low hit rate only

for class 2. The low hit rate for class 2 is also a result of the limitations in the forecasts

of the input variables (Section 5.2 and 5.3). For the remaining classes the hit rates are one

order of magnitude higher than in HARMONIE. The false alarm rates are also higher than

in HARMONIE, but compared to the hit rates they are relatively lower, resulting in higher

PSS for the visibility function than for HARMONIE in all classes. Hence, the visibility

function has better skills than HARMONIE for forecasting the visibility in all classes.

From Table 5.1 it can be seen that the forecasted visibility is generally too high. When the

visibility is observed to be in class 2 the visibility function forecasts the visibility to be in

every other class more often than in class 2, and the number of cases where the visibility is

forecasted to be in class 3 is higher than the number of cases where it is forecasted to be

in class 1 and 2 combined. For observed visibility in class 3 the visibility function forecasts

more cases with visibility in class 4 than in class 3, and the number of cases with forecasted

visibility in class 4 and 5 is remarkably higher than the number of cases with forecasted
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Table 5.2: Contingency table for calculated visibility [km]. Only observations. Total number:
32 439. Proportion of correct forecasts: 0.56. One class error: 0.93.

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 232 266 683 120 30 2.38 0.41 0.03 0.38

0.4− 1 197 249 1029 188 44 2.42 0.35 0.05 0.31

1− 5 131 187 4898 2456 841 1.04 0.60 0.15 0.45

5− 10 0 2 1440 5041 3247 0.87 0.45 0.22 0.23

10− 20 0 1 174 3367 7616 0.95 0.65 0.17 0.48

visibility in class 1 and 2. Similarly, for observed visibility in class 4 the visibility function

forecasts more cases with visibility in class 5 than in class 4, and the number of cases

with forecasted visibility in the other classes is much lower. This tendency of the visibility

function to forecast too high visibility can be seen even clearer in the scatterplot in Figure

5.1a. Apart from the over-forecasting of the very low visibility we see that the general trend

is that the forecasted visibility is higher than the observed visibility. The tendency of the

visibility function to forecast too high visibility might be a result of the tendency of LOTOS-

EUROS to forecast too low PM10 concentrations, as suggested in Section 4.2.1. This will

be investigated further in the following sections.

When comparing the scatterplot in Figure 5.1a with the scatterplot for HARMONIE in

Figure 4.1, it again becomes clear that the forecasts from the visibility function are in much

better agreement with the observations than the visibility forecasts from HARMONIE.

5.2 Only Observations

In this section the quality of the forecasts from the visibility function is assessed when only

observations of the input variables are used. This is of course not possible in an operational

setting, but it will provide insight into how well the visibility function performs in itself,

regardless of the quality of the forecasts of the other variables. This can be considered as

an upper limit for the performance of the visibility function in the operational setting. If

the forecasting models were forecasting the input variables perfectly the visibility function

would still have limitations. It wouldn't forecast the visibility perfectly, but rather with the

quality found in this section.

5.2.1 Quality

The contingency table for the obs-veri�cation of the visibility that is forecasted using obser-

vations of all the input variables is shown in Table 5.2. The information in this contingency

table is also shown in Figure 5.2 where the quality assessment attributes of all the di�erent

scenarios presented in this chapter is summarized for easy side by side comparison.
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When using observations of the input variables the visibility function has a percentage of

correct forecasts of 56%. When allowing the forecasts to miss by one class the percentage

increases to 93%. This means that if the input variables were in perfect agreement with the

observations the visibility forecasts from the diagnostic function would miss by more than

one class in only 7% of the cases.

There are strong positive biases for class 1 and 2, and by combining the two classes the bias

of the function for forecasting fog is found to be 2.40. Hence, the visibility function is clearly

over-forecasting fog when observations of the input variables are used. For the remaining

classes the biases are close to one.

The hit rates are high for all classes, ranging from 0.35 for class 2 to 0.65 for class 5. This

in combination with low false alarm rates results in high PSS, ranging from 0.23 for class 4

to 0.48 for class 5.

5.2.2 Discussion

The di�erences in quality between forecasts in this section and the forecasts from Section 5.1

are caused by the limitations in in the forecasts of the input variables used by the visibility

function. There is also a di�erence in the total number of cases making up Table 5.2 and

Table 5.1, but since the number is high in both the statistical uncertainty is low in both

cases.

Compared to the results with only forecasts the percentage of correct forecasts and one

class error have increased considerably when only observations are used. The one class error

is remarkably high, indicating that if the input variables to the visibility function were in

perfect agreement with the observations the visibility function would only miss by more than

one class in 7% of the cases.

The biases are also di�erent between the two cases. Especially noticeable is the increase in

bias for class 2. This class changes from having a negative bias of 0.73 in the case with only

forecasts to a strong positive bias of 2.42 in the case with only observation. It is therefore

clear that the limitations in the forecasts of one or more of the input variables are causing

the negative bias for class 2 seen in the case with only forecasts, since the visibility function

itself is over-forecasting visibility in class 2. This will be discussed further in Section 5.3

where the e�ects of the forecasts of each variable are investigated.

The increase in the bias for class 2 combined with a small increase in the bias for class

1 results in a bias for forecasting fog that is higher in the observational case than in the

forecasting case. Hence, the visibility function itself if biased towards forecasting fog and

will forecast fog more than twice as often as it is observed. For class 3 and 5 the observational

case have a bias closer to one than the forecasting case, indicating that limitations in the

forecasts of the input variables are causing the visibility forecasts to have larger biases for

these classes.

For class 1 there is only a slight increase in the hit rate and a slight decrease in the false

alarm rate when observations of the input variables are used. This causes the PSS for class
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1 to increase by only 0.04. Hence, for class 1 going from forecasts to observations of the

input variables will only have a small e�ect on the hit rate, false alarm rate and skill. The

quality of the visibility forecasts for class 1 from the visibility function therefore seems to

not be limited by the forecasts of the input variables, but rather by the visibility function

itself.

For class 2, 3 and 4 the hit rates are considerably higher when observations of the input

variables are used. The false alarm rates for class 2 and 3 increases slightly, whereas the

false alarm rate for class 4 is decreasing. As a result the PSS for these classes increase

signi�cantly when going from forecasts to observations of the input variables. Hence, the

quality of the visibility forecasts for class 2, 3 and 4 are limited by the forecasts of the input

variables as well as the visibility function itself.

The PSS is lowest for class 4, and this is less than 0.30 even when observations of the input

variables are used. This shows that the visibility function has considerable limitations when

it comes to forecasting visibility in this class. This is due to the large amount of scatter in

the visibility observations around the range covered by class 4, scatter which a linear �tting

curve for visibility as a function of RH cannot account for.

For class 5 the hit rate is lower when observations of the input variables are used. This is

mostly due to the fact that this class is forecasted less often in the observational case, which

is indicated by the reduced bias. This reduction in hit rate for class 5 is, however, more than

made up for by a considerable decrease in the false alarm rate, resulting in a PSS that is

much higher when observations of the input variables are used. The quality of the visibility

forecasts for class 5 is therefore also limited by the forecasts of the input variables as well as

the visibility function itself.

From Table 5.2 it can be seen that the tendency for the calculated visibility to be higher than

the observed visibility is reduced when only observations are used. Both for observations in

class 3 and 4 the same class have the highest occurrences in the forecasts now. For both

of these classes it is still the case that there are more forecasts in the class above than in

the class below, but the di�erence is much lower than when forecasts of the input variables

are used. When the observed visibility is in class 1 the visibility function never forecasts

the visibility to be more than 5 km, and when the observed visibility is in class 2 this only

happens 3 times. Hence, the number of cases where the visibility function forecasts the

visibility to be much higher than the observed visibility is now reduced to almost zero. Also

from the scatterplots in Figure 5.1 we see that the distribution seems to be more symmetrical

and centered on the diagonal line in the observational than in the forecasting case. This

goes to show that most of the visibility function's tendency to forecast too high visibility is

caused by the limitations in the forecasts of the input variables.
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5.3 Some Observations

In this section the quality of the forecasts from the visibility function is assessed when

observations of one of the input variables are used. This will provide insight into how the

limitations of the forecasts of the di�erent input variables a�ect the quality of the forecasts

from the visibility function. The contingency tables for the obs-veri�cation of the visibility

that is forecasted using observations of some of the input variables are shown in Table 5.3.

The information in these contingency tables is also shown in Figure 5.2 where the quality

assessment attributes of all the di�erent scenarios presented in this chapter is summarized

for easy side by side comparison.

5.3.1 Quality

Observed precipitation intensity: When observations of the precipitation intensity are

used the visibility function has a percentage of correct forecasts of 0.46. When allowing the

forecasts to miss by one class the percentage increases to 87%.

The forecasts have a strong positive bias for class 1, and a negative bias for class 2. By

combining class 1 and 2 the bias of the function for forecasting fog is found to be 1.41. For

class 4 the bias is exactly one, so visibility in this class is forecasted as often as it is observed.

The visibility function is under-forecasting visibility in class 3, and over-forecasting visibility

in class 5.

For class 2 the hit rate is very low, and in this class only 6% of the observed cases were

forecasted. The hit rates for the other classes are higher, ranging from 0.30 for class 3 to

0.69 for class 5. For class 1, 2 and 3 the false alarm rates are very low, which results in good

PSS for class 1 and 3. Class 2 has a low PSS due to the low hit rate. For class 4 the false

alarm rate is high compared to the hit rate, resulting in a PSS of only 0.09. Class 5 has the

highest false alarm rate, but it also has the highest hit rate resulting in class 5 having the

highest PSS.

Observed relative humidity: When observations of the relative humidity are used the

visibility function has a percentage of correct forecasts of 0.51. When allowing the forecasts

to miss by one class the percentage increases to 91%.

The forecasts have a strong positive bias for class 1 and 2, and by combining the two classes

the bias of the function for forecasting fog is found to be 2.16. Hence, the visibility function

is clearly over-forecasting fog when observations of RH are used. The function is under-

forecasting visibility in class 3 and 4, and over-forecasting visibility in class 5, albeit not as

strongly as it is over-forecasting visibility in class 1 and 2.

The hit rates are high for all the classes, ranging from 0.35 for class 2 to 0.68 for class 5.

For class 4 the false alarm rate is so high compared to the hit rate that the PSS is 0.16. For

the remaining classes the combinations of hit rates and false alarm rates result in high PSS,

ranging from 0.30 to 0.44.
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Observed PM10 concentration: When observations of the PM10 concentrations are

used the visibility function has a percentage of correct forecasts of 50%. When allowing the

forecasts to miss by one class the percentage increases to 89%.

The forecasts have a strong positive bias for class 1. The bias for visibility in class 2 is

negative, and by combining class 1 and 2 the bias of the function for forecasting fog is found

to be 1.54. Hence, the visibility function is over-forecasting fog when observations of PM10

concentrations are used. The function is under-forecasting visibility in class 3 and 4, albeit

the bias for class 4 is quite close to one. Visibility in class 5 is over-forecasted by the visibility

function.

For class 2 the hit rate is low, with only 7% of the observed cases being forecasted. For the

remaining classes the hit rates are high, ranging from 0.40 for class 3 to 0.69 for class 5. The

false alarm rates for class 1 and 2 are of order 1%, which results in a high PSS for class 1.

For class 2, however, the low hit rate causes the PSS to be low. For the remaining classes

the false alarm rates are an order of magnitude larger, but they are still quite low. The PSS

for these classes range from 0.14 for class 4 to 0.43 for class 5.

5.3.2 Discussion

Using the observations of precipitation intensity has a small impact on the quality of the

forecasts from the visibility function. This comes as no surprise since the precipitation

intensity is not used in itself when calculating the visibility. It is only used to determine in

which cases the visibility should be calculated using the visibility function. The quality of

the precipitation intensity forecasts would only a�ect the quality of the visibility forecasts

if there were many cases where HARMONIE forecasted no precipitation, but precipitation

was observed. In these cases the visibility would be calculated with the visibility function

assuming no precipitation, but the forecasts would be compared to observations where there

is precipitation. From Table 4.1 it is clear that this only happens in a few cases since

HARMONIE is over-forecasting precipitation. The precipitation intensity might, however,

have an impact on the quality of the forecasts when the visibility function is combined

with the visibility forecasts from HARMONIE (Section 5.4). In this model the forecasted

precipitation intensity from HARMONIE determines when the visibility is calculated with

the visibility function alone, and when it is calculated from a combination of the visibility

function and HARMONIE. The over-forecasting of precipitation in HARMONIE will then

result in the combination of HARMONIE and the visibility function being used too often.

The proportion of correct forecasts and the one class error show the greatest increase when

observations of RH are used, but the increase when using PM10 observations are only 0.01

and 0.02 lower, respectively. Since the proportion of correct forecasts and one class error

is larger in the observational case than when either RH observations or PM10 observations

are used alone, the combination of the two variables is important. Hence, the forecasts of

both RH and PM10 are important for the di�erence in the proportion of correct forecasts

and one class error between the forecasting and observational case, and only a combination
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Table 5.3: Contingency tables for calculated visibility [km]. Some observations.

(a) Observed precipitation intensity. Total number: 31 958. Proportion of correct forecasts: 0.46. One

class error: 0.87.

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 203 150 709 228 68 2.25 0.36 0.04 0.32
0.4− 1 47 40 284 94 28 0.67 0.06 0.02 0.04
1− 5 175 272 2442 1339 476 0.58 0.30 0.10 0.20
5− 10 87 172 2912 3766 2666 1.00 0.39 0.30 0.09
10− 20 48 115 1682 4171 7124 1.27 0.69 0.32 0.37

(b) Observed relative humidity. Total number: 23 302. Proportion of correct forecasts: 0.51. One class

error: 0.91.

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 268 231 543 103 31 2.10 0.48 0.04 0.44
0.4− 1 181 216 791 160 22 2.23 0.35 0.05 0.30
1− 5 112 163 3001 1464 542 0.84 0.47 0.13 0.34
5− 10 0 3 1480 3096 1858 0.80 0.38 0.22 0.16
10− 20 0 2 510 3268 5257 1.17 0.68 0.24 0.44

(c) Observed PM10 concentration. Total number: 20 684. Proportion of correct forecasts: 0.50. One

class error: 0.89.

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 200 129 571 186 42 2.42 0.43 0.05 0.38
0.4− 1 39 36 211 66 19 0.74 0.07 0.02 0.05
1− 5 143 198 2208 1215 311 0.74 0.40 0.12 0.28
5− 10 56 94 1770 3050 1727 0.91 0.41 0.27 0.14
10− 20 29 47 754 2833 4750 1.23 0.69 0.26 0.43
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of the two can explain the full magnitude of the di�erence.

For class 1 it was noted in Section 5.2 that the di�erence between the forecasting and the

observational case is small. It is therefore interesting to see in Table 5.3 that if only observa-

tions of RH are used the quality of the visibility forecasts in class 1 improves considerably.

For all classes knowing RH will cause improved visibility forecasts for the same reason. For

each PM10 bin the visibility function is a function of only RH. Knowing the real value of

RH means that the di�erence in the calculated visibility and the observed visibility is caused

by the scatter in the observed visibility for this given RH value. Since this scatter depends

on which PM10 bin we are in the scatter is reduced from 3D (RH, PM10, visibility) to

2D (PM10, visibility), and the chance that the calculated visibility is close to the observed

visibility is higher. The increased quality when the observations of RH are used seems to

be counteracted by a reduction in quality when the observations of precipitation intensity

are used. This causes the quality to only increase slightly when observations of all input

variables are used.

For class 2 it can be seen that using the observations of PM10 concentration or precipitation

intensity only has a minimal e�ect on the bias and hit rate. Hence, the large di�erence in

the quality of the visibility forecasts in class 2 between the forecasting and observational

case is explained exclusively by the quality of the RH forecasts from HARMONIE. Since the

visibility range covered by class 2 is small compared to the slope of the �tting curves in the

visibility function, only a very small range of RH values is associated with visibility in class

2. The RH forecasts from HARMONIE are not perfect and they will easily fall outside this

narrow range, causing HARMONIE to forecast either too low or too high visibility compared

to the observation. Knowing the values of RH will, as explained above, reduce the amount

of possible scatter.

For class 3 there is an improvement in the bias, hit rate and PSS when either RH observations

or PM10 observations are used. The improvement when all observations are used is, however,

larger than either one. Hence, the quality of the RH forecasts from HARMONIE and the

PM10 forecasts from LOTOS-EUROS are both a�ecting the quality of the visibility function

for class 3, and the combined e�ect is larger than the e�ect of either one alone.

For class 4 and 5 a combination of the variables is also causing the di�erence between the

forecasting case and the observational case. For these classes it is not possible to conclude

that the quality of the forecasts of either RH or PM10 have the greatest in�uence on the

quality of the forecasts from the visibility function.

It can be seen from Table 5.3 that the tendency of the visibility function to forecast too

high visibility is reduced when observations of either RH or PM10 concentration are used.

Hence, the tendency we found for LOTOS-EUROS to forecast too low PM10 concentrations

is not causing all the di�erence in the over-forecasting of too high visibility between the

observational and forecasting case. The limitations in the RH forecasts from HARMONIE

are also important.
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5.4 Combination Model

In this section the quality of the forecasts from a combination of the visibility function and

the visibility forecasts from HARMONIE is assessed. As long as HARMONIE forecasts there

will be no precipitation the visibility is calculated using the diagnostic visibility function.

When HARMONIE forecasts that there will be precipitation the visibility is calculated using

the equation

V IScomb = − ln (0.02)

βcalc + βHARM
(5.1)

where the extinction coe�cients βcalc and βHARM are calculated from the visibility forecasted

by the visibility function and HARMONIE, respectively. To simulate the operational setting

only forecasts of the input variables are used in this section.

5.4.1 Quality

The contingency table for the obs-veri�cation of the visibility that is forecasted using the

combination of the visibility function and the visibility forecasts from HARMONIE is shown

in Table 5.4. The information in this contingency table is also shown in Figure 5.2 where

the quality assessment attributes of all the di�erent scenarios presented in this chapter is

summarized for easy side by side comparison.

When the visibility forecasted with the diagnostic function is combined with the visibility

forecasted by HARMONIE the percentage of correct forecasts is 34%. When allowing the

forecasts to miss by one class the percentage increases to 65%.

The forecasts have a huge positive bias for class 1, and the visibility is forecasted to be in

class 1 almost 15 times as often as it is observed to be in this class. The combination model is

therefore greatly over-forecasting dense fog. Visibility in class 2 is also over-forecasted, and

by combining class 1 and 2 the bias of the combination model for forecasting fog is found to

be 9.48. For class 5 the bias is exactly 1, whereas the combination model is under-forecasting

visibility in class 3 and 4.

The hit rate for class 2 is very low, with only 5% of the observed cases being forecasted.

For the other classes the hit rates are an order of magnitude larger, ranging from 0.20 for

class 3 to 0.53 for class 5. For most of the classes the false alarm rates are large compared to

the hit rates, resulting in only class 5 having a PSS larger than 0.20. For class 2 and 4 the

PSS are of order 0.01, indicating that the combination model has low skills when it comes

to forecasting visibility in these classes.

5.4.2 Discussion

The visibility calculated using the combination of HARMONIE forecasted visibility and the

visibility function shows a quality that is somewhere between the two models.

38



CHAPTER 5. RESULTS AND DISCUSSIONS 5.4. COMBINATION MODEL

Table 5.4: Contingency table for calculated visibility [km]. Combination model. Total number:
36 094. Proportion of correct forecasts: 0.34. One class error: 0.65.

Forecasted
Observed

B H F PSS
0− 0.4 0.4− 1 1− 5 5− 10 10− 20

0− 0.4 283 262 3327 3064 2832 14.96 0.43 0.27 0.17
0.4− 1 57 43 366 310 294 1.35 0.05 0.03 0.03
1− 5 184 234 1949 1192 637 0.43 0.20 0.09 0.11
5− 10 75 144 2543 3256 2257 0.69 0.27 0.21 0.06
10− 20 54 111 1638 4222 6760 1.00 0.53 0.26 0.27

The proportion of correct forecasts and one class error are considerably larger than for

HARMONIE alone. The proportion of correct forecasts is now almost as large as for the

PM10 forecasts from LOTOS-EUROS, but the one class error is somewhat lower.

The bias for class 1 is still large in the combination model, but it is only half the value

of the bias in HARMONIE. For the remaining classes the biases are much better than for

HARMONIE alone, and they are not more extreme than the biases found for the other

variables. From Table 4.3 it was clear that HARMONIE barely forecasts visibility in the

range 1− 20 km. That is no longer the case in the combination model (Table 5.4).

For class 1 the hit rate is lower in the combination model as a result of the combination

model not forecasting dense fog as often as HARMONIE. The false alarm rate has also greatly

decreased, but it is much higher than in the visibility function using only forecasts of the input

variables. The false alarms therefore mainly come from the situations where HARMONIE

has forecasted precipitation and subsequently very low visibility. It is clear that HARMONIE

will usually forecast a too large extinction coe�cient when it forecasts precipitation. Since

the combination model uses a simple addition of the extinction coe�cients from HARMONIE

and the visibility function, the fact that HARMONIE is prone to over-estimate the visibility

reduction in precipitation cases cannot be improved by using the combination model. The

visibility forecasts from HARMONIE will therefore cause the combination model to over-

forecast dense fog, resulting in a large false alarm rate compared to the visibility function

alone. The PSS for class 1 in the combination model is slightly higher than in HARMONIE.

As previously discussed the visibility function is struggling with forecasting visibility in class

2 correctly due to the quality of the RH forecasts from HARMONIE. The visibility forecasts

from HARMONIE also show a low quality when it comes to forecast visibility in class 2. It

therefore comes as no surprise that the combination model shows a low quality for forecasting

visibility in class 2. The hit rate and false alarm rate are slightly better than in HARMONIE

alone, resulting in a PSS that is now positive. The PSS is, however, very small, indicating

that the combination model also has poor skills when it comes to forecasting visibility in

class 2.

For class 3, 4 and 5 the hit rates are considerably higher in the combination model than

in HARMONIE. For class 3 the false alarm rate has only increased slightly, resulting in a

PSS that is 0.16 higher than in HARMONIE. For class 4 and 5 the false alarm rates have

increased more. For class 4 this results in a very low PSS, whereas for class 5 the increase
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(a) (b)

(c) (d)

Figure 5.2: Quality assessment attributes for the di�erent models and scenarios. (a)
Reliability/bias. (b) Accuracy/hit rate. Legend is the same as in (a). (c) Accuracy/false alarm
rate. Legend is the same as in (a). (d) Skill/Peirce skill score. Legend is the same as in (a).

in false alarm rate is relatively small compared to the increase in hit rate, resulting in the

highest PSS of all the classes.

The combination model has better skills than HARMONIE for all classes. The skills of the

combination model for forecasting visibility is of comparable size to the skills of the LOTOS-

EUROS model for forecasting PM10 concentration (Table 4.4). The skills of HARMONIE

for forecasting the relative humidity are higher.
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Chapter 6
Summary and Conclusions

Summary: In this project we intended to improve the visibility forecasts from HAR-

MONIE by taking the e�ect aerosols have on visibility into account. Our approach to

this complex problem was to use observations of relative humidity, precipitation intensity,

PM10 concentration and visibility to develop a diagnostic visibility function to be used for

forecasting visibility when there is no precipitation. The idea behind this approach was that

when there is no precipitation the visibility will mainly be determined by the aerosol content

of the air and, through aerosol hygroscopicity, the relative humidity.

After the diagnostic visibility function was developed the quality of the forecasts of pre-

cipitation intensity, relative humidity and visibility from HARMONIE, and the forecasts

of PM10 concentration from LOTOS-EUROS was assessed. The quality of the forecasts

was determined by verifying the forecasts from 2014 against observations. This analysis

provided us with a reference point with which to compare the performance of the diagnostic

visibility function. Since these forecasts are used as input variables to the visibility function

the quality of the forecasts also gave important insight into where the limitations in the

forecasts from the visibility function might come from. We saw that the quality of the

forecasts were generally good, except for the visibility forecasts from HARMONIE. This,

however, came as no surprise since this whole project was initiated based on knowledge that

HARMONIE is lacking when it comes to forecasting visibility.

In Chapter 5 the results of the calculations using the diagnostic visibility function were

presented. The function was used to forecast the visibility in a few di�erent scenarios. We

simulated an operational setting by using forecasts of all the input variables. Calculations

were also done using observations of one or all the input variables in order to determine

how the forecasts of the di�erent input variables a�ect the quality of the visibility forecasts.

Lastly we combined the visibility function with the forecasted visibility from HARMONIE

to calculate the visibility also in precipitation events.
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Conclusions: Based on the results presented in Chapter 4 and 5 some conclusions can be

drawn.

The visibility forecasts from the diagnostic visibility function have higher quality than the

visibility forecasts from HARMONIE. The distribution of the forecasts have greatly improved

and the skills for forecasting the visibility have increased for all the visibility classes we used

for the quality assessment. When forecasts of the input variables are used the quality of the

visibility forecasts from the visibility function are higher than the quality of the forecasts of

PM10 concentration from LOTOS-EUROS. The quality is, however, lower than the quality

of the RH forecasts from HARMONIE.

Some of the reduction in quality in the forecasts from the visibility function are caused by

limitations in the forecasts of the input variables. For all classes the forecasts from the

visibility function have higher skills when observations of the input variables are used than

when forecasts are used. When observations of the input variables are used the quality of

the visibility forecasts from the visibility function is comparable to the quality of the RH

forecasts from HARMONIE.

The impact of using observations instead of forecasts of precipitation intensity had only a

minimal e�ect on the quality of the forecasted visibility. However, this result must be treated

with caution as the true e�ect of the over-forecasting of precipitation by HARMONIE is likely

to be seen only when the forecasts from the visibility function is combined with the visibility

forecasts from HARMONIE.

Using observations of either RH or PM10 concentration increases the quality of the visibility

forecasts signi�cantly compared to the case with only forecasts. Hence, limitations in the

forecasts of RH from HARMONIE and PM10 concentration from LOTOS-EUROS both

reduce the quality of the visibility forecasts from the visibility function.

The combination model forecasts visibility with higher quality than HARMONIE alone. The

proportion of correct forecasts and one class error have increased considerably. The skills are

also better for all visibility classes. The skills of the combination model is of comparable size

to the skills of LOTOS-EUROS for forecasting the PM10 concentration. The combination

model is vastly over-forecasting dense fog, even though the bias is only half the value of the

bias in HARMONIE.

Future work and implementation: This project can only be considered a �rst approach

to including the e�ect of aerosols in the visibility forecasts from HARMONIE. The promising

results encourage further investigation into this topic.

Before the results of this project might be implemented in operational work it would be

bene�cial to combine the 20 individual visibility functions into one function. This would

result in in a visibility function of the form vis = f (RH,PM10) describing the 3D surface. If

the diagnostic visibility function is to be implemented in operational work it is also important

to examine the quality of the visibility forecasts for weather stations other than the ones

used here to develop the function.

42



CHAPTER 6. SUMMARY AND CONCLUSIONS

The PM10 forecasts from the LOTOS-EUROS model are reported on a di�erent grid than

the forecasts from HARMONIE. An interpolation of the PM10 concentrations to the same

grid is therefore necessary before the visibility function can be used operationally.
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Appendix A
Measuring Stations

Table A.1: Weather stations used in this project. AWS = Automatic Weather Station, A =
Aerodrome.

Station number Name Type Latitude [N] Longitude [E]

6210 Valkenburg AWS 52.17 4.42

6240 Schiphol A/AWS 52.30 4.77

6269 Lelystad A/AWS 52.45 5.53

6275 Deelen A/AWS 52.07 5.88

6279 Hoogeveen A/AWS 52.73 6.52

6280 Groningen A/AWS 53.13 6.58

6319 Westdorpe AWS 51.23 3.83

6340 Woensdrecht A/AWS 51.45 4.33

6344 Rotterdam A/AWS 51.95 4.45

6350 Gilze Rijen A/AWS 51.57 4.93

6375 Volkel A/AWS 51.65 5.70

6377 Ell AWS 51.20 5.77

6380 Maastricht A/AWS 50.92 5.78
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Table A.2: Air quality measuring stations used in this project. The stations are classi�ed based
on location: R = Rural, UB = Urban Background, S = Street.

Station number Name Type Latitude [N] Longitude [E]

131 Vredepeel - Vredeweg R 51.54 5.85

133 Wijnandsrade - Opfergeltstraat R 50.90 5.88

235 Huijbergen - Vennekenstraat R 51.43 4.36

236 Eindhoven - Genovevalaan S 51.47 5.47

240 Breda - Tilburgseweg S 51.59 4.82

318 Philippine - Stelleweg R 51.29 3.75

404 Den Haag - Rebecquestraat UB 52.08 4.29

448 Rotterdam - Bentinckplein S 51.93 4.46

537 Haarlem - Amsterdamsevaart S 52.38 4.65

631 Biddinghuizen - Hoekwantweg R 52.45 5.62

633 Zegveld - Oude Meije R 52.14 4.84

738 Wekerom - Riemterdijk R 52.11 5.71

741 Nijmegen - Graafseweg S 51.84 5.86

818 Barsbeek - De Veenen R 52.65 6.02

929 Valthermond - Noorderdiep R 52.88 6.93

937 Groningen - Europaweg S 53.22 6.58
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