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Preface

The master’s programme Theoretical Physics at Utrecht University consists of two major
parts. The first part consists of the obligatory courses in quantum and statistical field theory,
and optional courses varying from soft-condensed matter theory to string theory. The other
part is the master’s research project.

After finishing most of the due courses I started looking for a research project. Following
the course on cosmology by Tomislav Prokopec gained my interest in cosmology. In the
summer of 2014 Enrico Pajer came from Princeton to Utrecht. When I dropped by his office
he told me very enthusiastically that the research field of large scale structures was where
it was happening right now in cosmology. As it just happened to be, this was exactly his
discipline.

His compelling story convinced me to ask him to supervise my master’s research and I
was very pleased he said yes. One week earlier Stella Boeschoten, another master’s student,
started with her research under the supervision of Dr. Pajer as well. Because we both had
to familiarize ourselves with the most important parts of the theory of large scale structures,
we collaborated and had meetings with the three of us.

First, we had the plan to diverge our research once we would arrive at the first milestone
on our roadmap. Unfortunately, the learning curve was steep and we never got past that first
milestone, so we kept collaborating all year long, culminating in a combined presentation
for the staff and students of the Institute for Theoretical Physics of Utrecht University on
June 25th, 2015.

During this year I have learned a lot about large scale structures and cosmology in
general. Moreover this year gave a great insight in how one conducts scientific research. I
would like to thank all members of the cosmology group and especially Enrico Pajer and
Stella Boeschoten for this valuable experience.

Nikki Bisschop
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Notation and Conventions

Integrals ∫
x

≡
∫

d3x

∫
k

≡
∫

d3k

(2π)3∫
x′
δD(x− x′)f(x′) ≡ f(x)

∫
k′
δD(k − k′)f(k′) ≡ f(k)

Fourier Transform

f(x) ≡
∫
k

f(k)e−ik·x f(k) ≡
∫
k

f(x)eik·x

Variables and fields

x = ar Comoving position in real space

v(x, τ) =
dx

dτ
Peculiar velocity

ρ(x, τ) Local density

ρ̄(τ) Background density

δ(x, τ) = ρ(x, τ)/ρ̄(τ)− 1 Local density contrast

θ(x, τ) = ∇ · v(x, τ) Velocity divergence

Φ(x, τ) Cosmological gravitational potential

v





Chapter 1

Introduction

Looking up the night’s sky has been a popular pastime in the entire history of humankind,
always asking what was up there and how we ended down here. First, they saw signs in the
arrangements of the stars and planets. That inspired many to minutely keep track of all the
objects seen at night. Later came the realization that all those stars were just similar to our
sun, that there were planets similar to ours revolving around those stars, and that what we
called the Milky Way was just one of many galaxies.

During the centuries we became ever more aware that Earth is not a special place in the
Universe, yet it is still fascinating to look into the sky and wonder how everything came
into being. Using ever more advanced instruments, from the naked eye to unmanned space
telescopes, we managed to look deeper and deeper into space, and thus back in time. It
was in 1964 that Arno Penzias and Robert Wilson were experimenting with a horn antenna,
originally designed to pick up communication signals, that there was this one signal coming
from every direction they could not put their finger on. It was not caused by some pigeons
nesting in their equipment, instead it was the oldest electromagnetic signal, the cosmic
microwave background radiation (CMBR) – not surprisingly later coined the baby picture
of the Universe.

From this baby picture we have learned that the Universe is extremely isotropic, the
anisotropies are only in the order 10−5. Since the beginning of the twentieth century the
homogeneity of the Universe, known as the Cosmological Principle, was already assumed; the
CMBR strengthened the believe in this assumptions. Later red-shift surveys, which can give
a three dimensional picture of the density distribution really proved that the Universe was
homogeneous on large scales, scales larger than approximately 100 Mpc (the Local Group,
the group of around 50 galaxies we reside in, has an approximate diameter of 3.1 Mpc).

At the same time, we know that on smaller scales the inhomogeneities are very big. This
is all a natural result of how the Universe evolved. The leading narrative now is that after
the Big Bang there was a very short time of inflation, not longer than 10−32 seconds. That
is the explanation for the homogeneity of regions of the Universe that seem to be otherwise
causally disconnected. After that very brief inflation epoch, radiation dominated up to
70,000 years after the Big Bang. From that time matter started to dominate the energy
density of the Universe for most of the time up to now. Now, most of the energy density
can be attributed to dark energy.

What the origins of this dark energy are, remains one of the big questions of Cosmology.
The most widely used model is the ΛCDM model which assumes this density to be constant,
therefore its importance grows as the Universe expands and the matter and radiation content
dilutes. At the present time it makes up about 70 % of the entire energy density and it is
responsible for the accelerating expansion of the Universe. Only about one fifth of the final
30 % is baryonic matter, which leaves approximately 25 % of the entire energy density to
be what we call dark matter. We know that this matter interacts with ordinary baryonic
matter through gravity and that other interactions with this matter are, if present at all,
very weak. Many researchers, cosmologists as well as particle physicists, are currently trying
to find a good explanation for the dark matter content.
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Chapter 1. Introduction

Another big question is where the asymmetry between matter and anti-matter comes
from. From the standard model of particle physics one would assume there would be equal
amounts of baryons and anti-baryons, but now we see practically only matter and virtually
no anti-matter. One explanation would be that the Universe is divided in different regions
where either matter or anti-matter dominates. That leads us directly to the problem of
how the matter and anti-matter gets separated enough such that it does not annihilate.
One possibility would be that gravity does not work equally on anti-matter as on matter
particles, but this would violate general relativity. All those ideas are highly speculative and
there is not yet any experimental (dis)proof for them.

We leave all those question aside and take a look at how the matter content is distributed
in the Universe. On the large scales it is almost perfectly homogeneous and we allot this
to almost homogeneous initial conditions. The tiny inhomogeneities in this initial condi-
tions are thought to be caused by quantum fluctuations right after the big bang and to be
stretched by inflation. There are many competing theories to explain inflation, and they all
have a different effect on these so-called primordial perturbations. Therefore measuring the
primordial perturbations tells us something about the mechanism behind inflation.

After inflation and the radiation epoch, matter starts to dominate. The pressure drops
and gravity starts to dominate the large scales. Gravitational pull towards overdense regions
is larger and attracting more and more matter makes them more overdense. In chapter 2 we
will first explore the dynamics of the density perturbations on large scales. We will derive
the equations of motion from Newtonian physics and the expansion of the Universe. It turns
out that the matter distribution is acting as a pressureless fluid. Because the density only
deviates slightly from the average density, we will use perturbation theory (section 2.2) to
find solutions for these equations of motion.

Perturbation theory however demands that the expansion parameter is small in any
regime. Although the density contrast stays small on the very large scales, on small scales it
becomes extremely non-linear. Because the difference between those scales – the observable
Universe has an approximate diameter of 28 Gpc while the typical scale for structure for-
mation is only 10 Mpc – is gigantic, it still works reasonably well on those large scales, but
as experimental research progresses we can no longer sweep these small scale perturbations
under the carpet and pretend they are not there.

However, we are also not really interested in what exactly happens on the small scales,
we only want to know what the effects are on the large scales. That is exactly what Effective
Field Theory is all about, it reduces short-scale physics to some parameters in the long-scale
equations of motion. In chapter 3 we will look for those parameters in large scale structure
formation. Just like in ordinary fluids we get the effective pressure, the speed of sound and
the viscosity of the Universe. By design they cancel the UV-divergences that otherwise arise
and we checked they really do.

The values of the parameters of the Effective Field Theory of Large Scale Structures
(EFTofLSS) can be obtained from measurements or N -body simulations, but not from the
theory itself. An analytical result would provide us more intuitive insight in the effective
theory. To obtain an analytical value for the effective parameters we will look at the special
case of spherical collapse in chapter 4. Unfortunately there is no final result of our search
for these parameters in this specific case in this thesis, but we took some first steps in the
right direction and will point out in chapter 6 what steps are left.

The hope is that eventually it is possible to divide the entire cosmic web into parts that
have different symmetries. One of those building blocks would then be the spherical collapse
solution, others would be linear collapse resulting in cosmic walls and cylindrical collapse
which results in filaments.

All these structures are observed by red-shift surveys. Large Scale Structures is a very
active research field and there are many projects pushing the boundaries on the measure-
ments. In chapter 5 we will briefly review what measurements are done right now and what
we can expect in the (near) future.
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Chapter 2

Evolution of Large Scale
Structures

One can derive from the CMB that in the early Universe the matter distribution was very
isotropic and homogeneous, with maximal perturbations of the order 10−5. In a sea of
particles, matter perturbations tend to grow, no matter how small they start. There are
two effects of inhomogeneities on an individual particle. First there is the pressure which
provides a force away from overdensities. Gravity on the other hand is attractive and thus
points in the opposite direction.

These two forces, pressure and gravity, are therefore responsible for the evolution of
inhomogeneities: overdensities grow there where gravity is stronger than pressure, while they
fade out if the pressure is stronger. In early times, when the Universe was much smaller,
pressure was stronger than gravity, and therefore inhomogeneities were not growing. While
the Universe expanded, the gravity took over and matter started to cluster. If however the
Universe would expand very rapidly, the dilution of the densities could make the matter
collapse impossible.

Gravity

Pressure

Figure 2.1: Pressure lets overdensities decrease, while the attractive gravitational force lets
overdensities increase and small inhomogeneities turn into grow into structures.

Though on large scales the Universe is still very homogeneous, the formation of structures
resulted in very large inhomogeneities on smaller scales. Compare for example the density
of a galaxy and that of the space between clusters.

In 2001 Bernardeau et al.[1] reviewed the formalism and application of perturbation
theory in large scale structures. We closely follow their work that set a standard here.
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Chapter 2. Evolution of Large Scale Structures

2.1 The Equations of Motion

When looking at large scale structures, our aim is to find a description of the density as a
function of space and time. The largest part of the matter density in the universe consists of
dark matter, so we will start by imagining a sea of particles only interacting gravitationally.
The remaining, baryonic matter follows the dark matter distribution, so this will give us a
good description of the total matter density distribution.

The motion of a single particle with mass m at position r, with velocity u surrounded
by particles with mass mi at positions ri is given by the Newtonian equation

du

dt
= GN

∑
i

ri − r

|ri − r|3
mi.

Because we are interested in large scales where great numbers of particles interact, we take
the continuum limit,

du

dt
= GN

∫
d3r′ ρ(r′)

r′ − r

|r′ − r|3
≡ −dφ(r)

dr
, (2.1)

with ρ(r, t) the matter density and the resulting gravitational potential given by,

φ(r) = GN

∫
d3r′

ρ(r′)

|r′ − r|

Because the Universe is on large scales homogeneous and isotropic, we assume a Friedman-
Lemâıtre-Robertson-Walker (FLRW) metric, gµν = a(t) diag(−1, 1, 1, 1), with a(t) the scale
factor. We define conformal time τ by dt = a(τ) dτ and define the comoving coordinates
x = a−1r. In a perfectly homogeneous expanding Universe, all particles would move with
the Hubble flow, we want to describe the deviations from that, therefore we define the
peculiar velocity,

v ≡ dx

dτ
= u−Hx, with the comoving Hubble flow H ≡ 1

a

da

dτ
.

Also for the densities, we just want to describe the deviations from the homogeneous back-
ground. Therefore we define the density contrast,

ρ(x, τ) = (1 + δ(x, τ))ρ̄(τ),

which leads together with the Friedmann equations to the Poisson equation,

∇2Φ(x, τ) =
3

2
ΩmH2δ(x, τ), (2.2)

for the cosmological gravitational potential,

Φ = φ+
1

2

dH
dτ

x2.

The distribution of matter in the Universe can be described by the density distribution
function f(x,v, τ). Phase-space conservation for this function implies the Vlasov equation

d

dτ
f(x,v, τ) =

∂

∂τ
f(x,v, τ) + v · ∂

∂x
f(x,v, τ)− (∇Φ +Hv)

∂

∂v
f(x,v, τ) = 0. (2.3)

This equation is obviously very hard to solve. Because we are interested in the time evolution
of the spatial distribution only, we will integrate out the momentum, which is done by taking
moments. The zeroth moment is simply the density,∫

d3v f(x,v, τ) = ρ(x, τ). (2.4)
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2.1. The Equations of Motion

The first and second moment are then defined as,∫
d3v vf(x,v, τ) = ρ(x, τ)v(x, τ) (2.5)∫

d3v vivjf(x,v, τ) = ρ(x, τ)vi(x, τ)vj(x, τ) + σij(x, τ) (2.6)

We see that for every additional moment we need an additional variable. Now we take the
zeroth moment of the Vlasov equation and find the so called continuity equation,

∂τδ(x, τ) +∇ [(1 + δ(x, τ))v(x, τ)] = 0, (2.7)

and from the first moment we get the Euler equation,

∂τv +Hv + (v · ∇)v = −∇Φ− 1

ρ
∂j(ρσij). (2.8)

From these equations we want to find the equations of motion for the density contrast
and the peculiar velocity. With just these two equations we can not get rid of the stress-
energy tensor σij , but if we take the third moment of the Vlasov equation, we would have
to introduce another variable. Because for every higher moment we need to introduce such
a new variable, this is a never-ending story. We could find a way out of this by postulating
a relation between the stress-energy tensor and the velocities, e.g.

σij = −pδij + η

(
∂ivj + ∂jvi −

2

3
δij∂kvk

)
+ ζδij∂kvk (2.9)

from standard fluid dynamics with p the pressure and η and ζ viscosity coefficients. In the
definition in equation (2.6) one can see that for a single coherent flow σij = 0. On the large
scales we are today still in the early stages of gravitational collapse and we can therefore
assume we have no multi-streaming on these scales. This makes σij ≈ 0 and thus we neglect
it in the rest of this chapter. Hence in this approximation, the system of an infinite number
of coupled equations reduces just to only two.

Every vector field can be uniquely determined by its divergence and its vorticity.

Before combining these equations, we Fourier transform them. The continuity and Euler
equation transform to,

∂τδ(k, τ) + θ(k, τ) = Sα, (2.10)

∂τθ(k, τ) +H(τ)θ(k, τ) +
3

2
ΩmH2(τ)δ(k, τ) = Sβ , (2.11)

where we have defined the velocity divergence, θ = ∇ · v, and

Sα = −
∫
q

α(q,k − q)θ(q, τ)δ(k − q, τ)

Sβ = −
∫
q

β(q,k − q)θ(q, τ)θ(k − q, τ)

with

α(q,k) =
(k + q) · k

k2
, β(q,k) =

(k + q)2(k · q)

k2
(2.12)

We can combine equations (2.10) and (2.11) to get the equation of motion for the density
contrast,

∂2
τ δ(k, τ) +H∂τδ(k, τ)− 3

2
ΩmH2δ(k, τ) = (H+ ∂τ )Sα − Sβ (2.13)
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Chapter 2. Evolution of Large Scale Structures

2.2 Standard Perturbation Theory

Because the density contrast is very small (∼ 10−5) on large scales we can treat it pertur-
batively. First, we try to solve the linear form of equation (2.13) and rewrite the conformal
time derivatives to derivatives with respect to the scale factor,

�δlin(k, τ) ≡ a2H2∂2
aδlin(k, a) + a

(
2H2 + aH∂aH

)
∂aδlin(k, a)− 3

2
ΩmH2δlin(k, a) = 0.

(2.14)

Now we can factorize the solutions,

δlin(k, a) = δlin(k)D1(a) (2.15)

and solve equation (2.14) for the growth factor D1(a). This results in a hypergeometric
function. We can plug this linear term in the right hand side of the original equations
of motion, equation (2.13), and find the second order growth factor, D2(a). For energy
densities Ωm ≈ 0.3 and ΩΛ ≈ 0.7, this is very well approximated by D2(a) ≈ D1(a)2[2].

For a flat Universe without cosmological constant consisting only of non-relativistic mat-
ter these equations simplify. In this Einstein-de Sitter (EdS) Universe, where Ωm = 1 and
H ∼ a−1/2,

D+
1 (a) = a, and D−1 = a−3/2 (2.16)

are the two independent solutions. The latter is decreasing for increasing scale factor and
thus becomes less significant over time. Therefore, we will only use the former, and expand
the density contrast as

δ(k, a) =

∞∑
n=1

δ(n)(k, a) =

∞∑
n=1

δ
(n)
k an, (2.17)

and likewise for the velocity divergence,

θ(k, a) =

∞∑
n=1

θ(n)(k, a) =

∞∑
n=1

θ
(n)
k an. (2.18)

Using this expansion in equation (2.13) we find expressions for δ
(n)
k up to any order n,

δ
(n)
k =

∫
k1,k2,...,kn

δD

(
k −

∑
i

ki

)
Fn(k1,k2, . . . ,kn)δ

(1)
k1
δ(1)k2 . . . δ

(1)
kn
, (2.19)

θ
(n)
k = −H

∫
k1,k2,...,kn

δD

(
k −

∑
i

ki

)
Gn(k1,k2, . . . ,kn)δ

(1)
k1
δ

(1)
k2
. . . δ

(1)
kn
, (2.20)

where we can find the kernels Fn and Gn recursively.

2.3 Power Spectrum

When we say the density of the Universe is homogeneous on large scales, we mean it is
statistically homogeneous. Thus, if we take some large enough volume at a random point in
space and we take some other random volume of the same size, we expect the mean density
to be the same. It also means that all joint multipole probability densities are translation
invariant, i.e.

〈δ(x1)δ(x2) · · · δ(xn)〉 = 〈δ(x1 + x)δ(x2 + x) · · · δ(xn + x)〉 .

In the case of the two-point correlation function, it means it only depends on x1 − x2.
Because we also assume that the Universe is statistically isotropic, it can not depend on the
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2.3. Power Spectrum

angle and therefore the two point correlator only depends on the distance between the two
points,

ξ(x′,x′ + x) ≡ 〈δ(x′)δ(x′ + x)〉 = ξ(x). (2.21)

A three point function could be described by the size and shape of a triangle.
The power spectrum is defined by the correlation function of the Fourier transformed

density fluctuations,〈
δ(k)δ(k′)

〉
=

∫
x

∫
x′
〈δ(x′)δ(x′ + x)〉 e−ix′·k′e−i(x′+x)·k (2.22)

= δD(k + k′)

∫
x

ξ(x)e−ix·k (2.23)

≡ δD(k + k′)P (k). (2.24)

This quantity is also only dependent on the norm of k, not on the angle. The bispectrum,
the three-point correlation function, would also depend on the angles between the different
wave vectors.

If we assume that all joint distributions are Gaussian distributed, Wick’s theorem applies,

〈δ(k1)δ(k2) · · · δ(kn)〉 =


∑

all pair
associations

∏
all pairs (i,j)

〈δ(ki)δ(kj)〉 if n is even

0 if n is odd

(2.25)

Thus for Gaussian initial conditions all correlation functions can be expressed in terms of
the power spectrum.

In perturbation theory, we can write〈
δ(k)δ(k′)

〉
=
〈
δ(1)(k)δ(1)(k′)

〉
+ 2

〈
δ(1)(k)δ(3)(k′)

〉
+
〈
δ(2)(k)δ(2)(k′)

〉
+ . . . (2.26)

P (k) = Pδ + P13 + P22 + . . . (2.27)

if the linear density perturbations are Gaussian. Without the condition of Gaussianity, there
would also be terms as P12, a term dependent on the bispectrum. Therefore non-Gaussianity
arises when the initial bispectrum does not vanish.

2.3.1 Initial Power Spectrum

Eventually we want to say something about the very young Universe. Therefore we have
to know how primordial perturbations evolve through time such that we can relate the
measurements now to the situation there must have been.

We expect that the earliest fluctuations are formed before the end of inflation. The
mechanisms causing these fluctuations are unknown, but are thought to be very short wave-
length, even smaller than the Planck length. The wavelength of these fluctuations keep
growing with the scale factor a. The Hubble radius during inflation is however constant, so
(almost all) perturbation modes are larger than the horizon at the end of inflation, kτ � 1.
After inflation follows the radiation epoch, where the Hubble radius grows as a2, such that
more and more larger modes enter the Hubble radius.

When outside the horizon perturbation modes freeze out, they do not evolve apart from
spreading out due to the growing scale factor. During radiation era, the pressure is too large
for structures to form. Therefore, modes entering the horizon well before matter-radiation
equality only oscillate while their amplitudes stay the same. The modes entering the horizon
long past matter-radiation equality immediately start to grow.

Of course the power spectrum today depends on the primordial power spectrum. The
spectrum for large scales today, consisting of the modes entered in the matter-dominated
era, has the same k-dependence as the primordial power spectrum. The modes that entered
in the radiation-dominated era, were suppressed till the time of matter-radiation equality.
Therefore we see a peak in the power spectrum in figure 2.3.

7



Chapter 2. Evolution of Large Scale Structures

Inflation (cnst) Radiation (~a) Matter (~a
3/2)

log(a)

log(RH )

Figure 2.2: Matter perturbation modes (thin grey lines) leave the horizon during inflation
when the horizon is constant. They enter at different times in the radiation dominated era
or the subsequent matter era.

10-4 0.001 0.010 0.100 1
k (h Mpc-1)

10

100

1000

104

P(k) (h-3 Mpc3)

Figure 2.3: The power spectrum according to WMAP. The grey vertical line is at kNL(≈ 0.2)
so left of that line everything is still evolving linearly.

2.4 Self-Similarity

In an Einstein-de Sitter Universe there is no preferred scale, and therefore the equations of
motion should allow self-similar solutions. This means that a scaling of the fields together
with a scaling of the space and time coordinates should result in another solution. If the
fields are known at a given time, then the total evolution of the fields is known.

We can find self-similar solutions by introducing the scaling,

δ̃(x, τ) = λδδ(λxx, λττ) (2.28)

and similar for v and Φ, and plug this in equations (2.7) and (2.8). Then we get the the
scalings,

δ̃(x, τ) = δ(λxx, λττ) (2.29a)

ṽ(x, τ) =
λτ
λx

v(λxx, λττ) (2.29b)

8



2.4. Self-Similarity

Φ̃(x, τ) =

(
λτ
λx

)2

Φ(λxx, λττ) (2.29c)

σ̃ij(x, τ) =

(
λτ
λx

)2

σij(λxx, λττ). (2.29d)

This does not work in ΛCDM, because there we do not have H ∝ τ−1.
Though for every choice of λτ and λx the scalings in equation (2.29) give solutions of

the equations of motion, they are not part of the same cosmology for arbitrary choices. If
we want to find a family of solutions to be part a sample of the same initial conditions, we
have to demand that the power spectrum is the same for all members of the family.

Therefore, we require

∆̃(k, τ) = ∆(λ−1
x k, λττ). (2.30)

We will first look at very early times, when the linear theory still holds. If we assume power
law initial conditions with index n, i.e. ∆in(k, τ) ∝ k3+nτ4, the initial power spectrum scales
as

∆̃in(k, τ) = λ−3−n
x λ4

τ∆in(k, τ). (2.31)

If we make the choice,

λ ≡ λτ = λ
3+n
4

x , (2.32)

then the power spectra are the same, and thus the picked solutions of the equations of motion
are just other samples of the same initial power spectrum. Because the power spectrum is
an ensemble averaged quantity, it should be equal for all times and all choices of λ,

∆(k, τ) = ∆̃(k, τ) = ∆(λ−
4

3+n k, λτ) (2.33)

which means the power spectrum can only depend on wave number and time in the combi-

nation kτ
4

3+n . Thus we write,

∆(k, τ) = ∆(k/kNL), (2.34)

with

kNL ≡
2π2

Aa2
∝ τ−4. (2.35)

First we said that there is no preferred scale for the equations of motion. Now we see
that if we demand the self-similar solution to be part of the same cosmology there arises a
scale, kNL. Hence, we conclude that there is only one typical scale in a cosmology and that
is the non-linear scale. Furthermore, we should be able to express all solutions in terms of
this scale only.
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Chapter 3

Effective Field Theory

For scales where the density contrast is much smaller than unity, perturbation theory gives
a very good description. On smaller scales however, the contrast becomes non-linear and
the perturbative expansion diverge. The easiest thing to do is to find the scale where it
becomes non-linear and cut it off from there, but if you follow this procedure your theory
becomes cut-off dependent and thus unphysical.

Small scale modes can give a backreaction on long scale modes and should be included.
In Effective Field Theory we add terms to the equation of motion to describe the influence of
the short scale on the long scale perturbations. Comparable to a regular fluid, where we do
not need to know all the interactions on molecular level to give a macroscopic description,
but knowing parameters like the density and the viscosity suffices.

3.1 Integrating out short wavelengths

If we include all wavelengths, the perturbative expansion starts to diverge for short wave-
lengths. We want to smooth the density perturbations such that these divergences disappear.
Here we choose the Gaussian smoothing function,

WΛ(x) =

(
Λ√
2π

)3

e−
1
2 Λ2x2

, (3.1)

and define the smoothed quantities as the convolution with this function,

[O]Λ (x, τ) =

∫
d3x′WΛ(x− x′)O(x′).

This will smooth all fluctuations with wavelengths smaller than 1/Λ, as is shown in figure 3.1.

Using this method, we want to smooth the fluid equations for a pressureless fluid, i.e.
equations (2.7) and (2.8) with σij = 0. We start with defining the smoothed quantities,

ρ`(x) ≡ [ρ]Λ(x) =

∫
x′
WΛ(x− x′)ρ(x′), (3.2)

φ`(x) ≡ [φ]Λ(x) =

∫
x′
WΛ(x− x′)φ(x′), (3.3)

ρ`v`(x) ≡ [ρv]Λ(x) =

∫
x′
WΛ(x− x′)ρ(x′)v(x′). (3.4)

One should note that this means v` 6= [v]Λ.
If we apply this smoothing on our equations of motion, we get the smoothed continuity

and Euler equations (see appendix A.1 for the derivation), respectively,

δτρ` + 3Hρ` + ∂i(ρ`v
i
`) = 0, (3.5)

∂τv
i
`(x, τ) +Hvi`(x, τ) + vj` (x, τ)∂jv

i
`(x, τ) = − 1

ρ`
∂j
[
τ ij
]
Λ
, (3.6)

11



Chapter 3. Effective Field Theory

-1

1

Figure 3.1: A signal consisting of long and short wavelength modes (grey, solid), and
smoothed with a large (dashed) and small (dotted) smoothing scale.

where τ ij is the effective stress-energy tensor,

τ ij = ρvisv
j
s −

δij∂kφs∂kφs − 2∂iφs∂jφs

8πG
. (3.7)

This stress-energy tensor is manifestly dependent on the short-wavelength modes. However,
we will not measure these, possibly very large, small-scale density fluctuations. Because we
are only interested in their effects on the large-scale perturbations, we will take expectation
values of the stress-energy tensor. The expectation value does not longer depend on the small
scale modes, but rather only on the large scale perturbations, such that we can expand it in
δ` using a simple Taylor expansion,

〈[
τ ij
]
Λ

〉
δ`

=
〈[
τ ij
]
Λ

〉
δ`

∣∣∣
δ`=0

+
∂
〈[
τ ij
]
Λ

〉
δ`

∂δ`

∣∣∣∣∣
δ`=0

δ` + . . . (3.8)

We can write this in the most general form up to first order in perturbations which is
symmetric, 〈[

τ ij
]
Λ

〉
δ`

= Aδij +Bδijδ` + Cδij∂kv
k
` +D

(
∂iv

j
` + ∂jv

i
`

)
. (3.9)

We can rewrite this in a trace and a trace-free part in the suggestive form〈[
τ ij
]
Λ

〉
δ`

= p̄effδ
ij + ρ̄

[
c2sδ`δ

ij − c2bv

H
δij∂kv

k
` −

3c2sv
4H

(
∂jv

i
` + ∂iv

j
` −

2

3
δij∂kv

k
`

)]
+ ∆τ ij + . . .

(3.10)

which is the stress-energy tensor of an imperfect fluid, with peff the effective pressure, cs the
speed of sound, and cbv and csv the bulk and shear viscosity, respectively.

3.2 Effective Field Theory Parameters

Now we have an expression for the effective stress-energy tensor in equation (3.10), we want
to know what the parameters in this expression are. We already know they should provide
counterterms for the UV-divergences in the perturbative expansion of the power spectrum,
but in this section we want to show it explicitly.

First look at the trace of the effective stress-energy tensor,

〈[τ ]Λ〉 ≡
〈[
δijτ

ij
]
Λ

〉
= 3p̄eff + 3ρ̄c2sδ` − 3c2bv

θ`
H

(3.11)
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3.2. Effective Field Theory Parameters

We assume the long-wavelength perturbations to be Gaussian and we know from equa-
tion (2.20) θ` = θ(1) = −Hδ`. Hence,

p̄eff =
1

3
lim
k→0
〈τ〉 and c2s + c2bv =

1

ρ̄

〈δ`peff〉
〈δ`δ`〉

. (3.12)

If we now look at the traceless part,

〈[
τ̂ ij
]
Λ

〉
≡
〈[
τ ij − 1

3
δijτ

]
Λ

〉
= −3c2sv

4H

(
∂jv

i
` + ∂iv

j
` −

2

3
δij∂kv

k
`

)
, (3.13)

we can subsequently define,

σeff =
1

ρ̄

∂i∂j
∂2

〈[
τ̂ ij
]
Λ

〉
= −c2sv

θ`
H

= c2svδ` (3.14)

and using correlators over long wavelength perturbations again,

c2sv =
〈δ`σeff〉
〈δ`δ`〉

. (3.15)

Using equations (3.12) and (3.15) with the stress-energy tensor as in equation (3.7), we find
(the derivation can be found in appendix A.2)

c2comb = c2s + c2bv + c2sv =
61

70

1

2π2
H2

∫
dq Pδ(q). (3.16)

With adding the effective terms to the equations of motion, the expansion of the density
contrast becomes,

δ = δ1 + δ2 + δ3 + . . .+ δc2s + . . .

and the expansion of the power spectrum, cf. equation (2.27),

P = Pδ + P13 + P22 + Pc2s + . . . . (3.17)

To start with computing δc2s , we define the Green’s function,

�G(a, ã) = δD(a− ã), (3.18)

with � the operator defined in equation (2.14). In the effective theory we have the equations
of motion[3],

�δ` = (c2s + c2bv)∂2δ` + c2sva∂
2∂aδ`, (3.19)

such that if we write δ` = δlin + δc2s we get,

δc2s (k, a) =

∫
dã G(a, ã)k2

[
c2s + c2bv + c2visã∂ã

]
δ`(k, ã) (3.20)

In EdS the Green’s function takes the form,

G(a, ã) = θH(a− ã)
2

5H2
0

[(
ã

a

)3/2

− a

ã

]
, (3.21)

where θH is the Heaviside function. Plugging this in equation (3.20), results in

δc2s = − a

9H2
0

k2c2combδ`. (3.22)
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Chapter 3. Effective Field Theory

With this result we can compute Pc2s by taking expectation values,

〈δ(1)
k δc2s(p)〉 = − a

9H2
0

p2c2comb〈δ
(1)
k δ

(1)
p 〉 (3.23)

= − 61a

630π2

H2

H2
0

p2δD(k + p)Pδ(k)

∫
dq Pδ(q), (3.24)

Pc2s(k) = − 61

630π2
k2Pδ(k)

∫
dq Pδ(q) (3.25)

If we take the primordial power spectrum to follow a power law with spectral index n, i.e.
Pδ(k) = Akn, then for n ≥ 0 we find,

Pc2s(k) = − 1

(2π)3

244

315
πA2k2+n

∫ kc

0

dq qn = − 1

(2π)3

244

315(n+ 1)
πA2k2+nkn+1

c . (3.26)

We claimed that the effective terms would cancel the short wavelength (UV) divergences
that arise in SPT. If we compare equation (3.26) with equation (A.70), we see that it indeed
does.

3.3 Self-Similarity in EFT

In section 2.4 we have shown that there are self-similar solutions of the equations of motion
in an Einstein-de Sitter Universe. This self-similarity should of course be maintained in
the effective theory. If we take the same scaling as in equation (2.29), and plug it in the
smoothed Euler equation, equation (3.6), we find the scaling

[
τ̃ ij
]
Λ

(x, τ) =

(
λτ
λx

)2 [
τ ij
]
Λ

(λxx, λττ). (3.27)

If we compare this with equation (3.10), we conclude that effective parameters scale as

c2s , c
2
bv, c

2
sv ∝

(
λx
λτ

)2

. (3.28)

These parameters represent averages over short modes and thus the scaling should only be
satisfied if it conserves the initial power spectrum. Using equation (2.32), we find the time
dependence of the coefficients of the effective theory,

c2s , c
2
bv, c

2
sv ∝ τ

2−2n
3+n . (3.29)
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Chapter 4

The Spherical Collapse Model

Until now we looked at general fluctuations in matter density and had to resort to perturba-
tive methods (in SPT) or simulations (in EFT). Many physical problems which are hard to
resolve for general conditions become if we simplify significantly if we put enough constraints
on it. Although those constraints are not entirely realistic, the derived analytic results may
give a good insight in the physics involved and can serve as a first order approximation for
real life circumstances. Remember for instance the parabolic trajectory of thrown basket-
balls when friction is neglected, a situation which can be found in every high school physics
text book.

4.1 Newtonian Spherical Collapse

When studying large scale structures we look at the evolution of density distribution func-
tions in three dimensions. To simplify this, we will constrain the distribution function to be
spherically symmetric at initial time – and by that for all times.

We start with the Newtonian equation

R̈ ≡ d2R

dt2
= −GM

R2
(4.1)

where R is radius of a mass shell and M is the mass enclosed by that radius.
We can write this as

d

dt

(
dR

dt

)2

= 2
d

dt

(
GM

R

)
, (4.2)

which results in,

Ṙ2 − 2GM

R
= F, (4.3)

where F is some integration constant (independent of t). This equation can be solved by
the parametrization

R(η) =
GM

|F |
(1− cos(η)), t(η) =

GM

|F |3/2
(η − sin(η)) + t0, (4.4)

for F < 0, and by

R(η) =
GM

|F |
(cosh(η)− 1), t(η) =

GM

|F |3/2
(sinh(η)− η) + t0, (4.5)

in the case F > 0. In the former case the radius is first expanding, and later shrinking, this
corresponds to a matter collapse and thus an initial overdensity. The latter parametrization
is of a exponentially increasing radius and therefore corresponds to an initial underdensity.
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Chapter 4. The Spherical Collapse Model

The integration constant F only depends on the initial density distribution within R, as
long as the energy outside is distributed spherically symmetric. This means that the collapse
is independent of the (initial) density distribution outside the sphere we are looking at in
this Newtonian picture. In this thesis we will only consider spherically symmetric initial
overdensities, so we only consider equation (4.4). Aside from the sign, the value of F does
not seem to make much sense physically. Therefore we define some initial time tin ≡ t(ηin)
and initial radius Rin ≡ R(ηin) with ηin � 1, and write

R(η) = Rin
1− cos η

1− cos ηin
, t(η) = tin

η − sin η

ηin − sin ηin
(4.6)

In an EdS universe, H = 2
3t , and thus from the Friedman equation the background matter

density is,

ρ̄ =
1

6πGNt2
. (4.7)

We will look at a top hat density distribution, i.e. a sphere with uniform density,

ρ =
3M

4πR3
(4.8)

Combining these we can give an expression for the density contrast in spherical collapse,

1 + δ =
ρ

ρ̄
=

9GNMt2

2R3
, (4.9)

or in terms of the earlier defined initial conditions,

1 + δ = (1 + δin)

(
t

tin

)2(
Rin

R

)3

. (4.10)

If we plug the parametric equations of equation (4.6) in equation (4.1) and fill in the initial
conditions, we get the relation between the initial conditions

(ηin − sin ηin)2

(1− cos ηin)3
= −GMt2in

R3
in

. (4.11)

Using this in equation (4.9), results in the simple parametric expression

1 + δ =
9

2

(η − sin η)2

(1− cos η)3
(4.12)

4.2 Spherically Symmetric Equations of Motion

We go back to the equations of motions derived from the Vlasov equation in section 2.1.
In the case of spherical symmetry, the density contrast only depends on the distance to
the point of symmetry and the time. This gives us the continuity and Euler equation,
respectively, for spherical collapse, cf. equations (2.7) and (2.8),

∂τδ + v∂rδ + (1 + δ)θ = 0 (4.13)

∂τθ +Hθ + θ∂rv + v∂2
rv + ∂rΦ = 0 (4.14)

where v = (vr, vθ, vφ) = (v, 0, 0), r is the distance to the point of symmetry and θ ≡ ∇ ·v =
r−2∂r(r

2v). We still have have the Poisson equation, equation (2.2), which means under
these conditions ∂2

rΦ = − 3
2H

2δ. We can transform these equations into the Lagrangian
equations

Dτδ + (1 + δ)θ = 0 (4.15)

Dτθ +Hθ +
1

3
θ2 +

3

2
H2δ = 0, (4.16)
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4.3. Perturbation Theory in Spherical Collapse

where Dτ = ∂τ +v∂r is the convective derivative with respect to conformal time. Convective
derivatives1 are derivatives for fixed Lagrangian coordinates.

We can combine those to get the equation of motion for the density,

D2
τδ +HDτδ −

3

2
H2δ =

4

3

(Dτδ)
2

1 + δ
+

3

2
H2δ2 (4.17)

δ̈ + 2Hδ̇ − 3

2
H2δ =

4

3

δ̇2

1 + δ
+

3

2
H2δ2. (4.18)

where the dots denote convective derivatives with respect to regular time, Dt = ∂t+a−1v∂r.
If we use the identifications

M ≡ 4π

3
R3ρ̄(1 + δ), H2 =

8πGN

3
ρ̄, (4.19)

equation (4.18) and equation (4.1) are equivalent. Notice that we did not use a top hat
assumption here. Therefore we can conclude that the Lagrangian equations of motion for a
general spherically symmetric density contrast are the same as the Eulerian equations for a
top hat distribution. This should not come as a surprise, because the density is the same
everywhere in a top hat distribution and therefore it does not matter whether you move
along with a particle or stay at a fixed position, as long as it is within the overdense region
at least.

Notice also that in the Lagrangian formalism the density ρ is the mean density of the
overdense region and thus the exact distribution is not important – as long as it is spher-
ically symmetric of course. This is a familiar result, because gravity outside a spherically
symmetric object does never depend on the density distribution rather than on the total
mass.

4.3 Perturbation Theory in Spherical Collapse

In most generic cases of structure formation the perturbative expansion does not converge
to the real solution for arbitrary large density contrasts. In this section we will show that
in spherical collapse it does converge for any value of δ. However, for spherically symmetric
underdensities the expansion still diverges.

We have the expression for the density contrast,

δ =
9GNMt2

2R3
− 1 = (1 + δin)

(1− cos ηin)3

(ηin − sin ηin)2

(η − sin η)2

(1− cos η)3
− 1, (4.20)

in a very suggestive form, where we can see immediately it holds for the initial conditions.
We have already seen in equation (4.12) that we can simplify this to

δ =
9

2

(η − sin η)2

(1− cos η)3
− 1. (4.21)

When working in perturbation theory, we want to expand this in terms of the linear term
δlin. In an Einstein-de Sitter Universe the linear terms go with the scale factor, δlin ∝ a ∝
t2/3. Hence,

δlin =
3

5

(
3

4
(η − sin η)

)2/3

. (4.22)

Expanding the density contrast,

δ =
∑
n≥1

νn
n!
δnlin − 1,

1There are many names for this derivative, among others: the material derivative, the Lagrangian deriva-
tive, the Stokes derivative, the hydrodynamic derivative.
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(a) Perturbative expansion of growing initial
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Figure 4.1: The density contrasts found using perturbation theory converge to the real
solution in spherical collapse but diverges for underdensities when δ ≈ −0.7. The solid
black line is the fully non-linear solution, the dashed line is the linear solution, the dotted
(dash-dotted) are perturbative expansions up to order 2, 8 and 14 (5 and 11).

and using the expansion of equation (4.21),

δ = − 3

20
η2 +

13

1400
η4 − 17

56000
η6 + . . . , (4.23)

to match the expansion coefficients νn up to any order, one will find,

ν1 = 1, ν2 =
34

21
, ν3 =

682

189
, ν4 =

446440

43659
. (4.24)

We can see in figure 4.1a that the perturbative expansion converges for all overdensities.
This means that in spherical collapse we can always use perturbation theory to find solutions
because it does not break down anywhere.

In the case of a spherical underdensity, which results in the growth of a spherical void, we
can follow the same procedure as for the overdensity. We start instead with the parametric
equations equation (4.5) and find the parametric equation for the density contrast,

δ =
(sinh η − η)2

(cosh η − 1)3
− 1 (4.25)

and expand this in δlin. We get exactly the same expansion coefficients as in equation (4.24).
Again, we plot the perturbative expansion, see figure 4.1b, and conclude that for underden-
sities the perturbative expansion does diverge for every order at δ ≈ −0.7.

The expansion coefficient νn being the same for under and overdensities is not surprising.
We can see this if we compute these coefficients directly from section 2.2. For spherically
symmetric densities, the angular integrals in equation (2.19) is only over the kernels and
result in pure numbers. With the symmetrised kernel,

F2(k1,k2) =
5

7
+

1

2
µ

(
k1

k2
+
k2

k1

)
+

2

7
µ2, µ =

k1 · k2

k1k2
, (4.26)

we get the coefficient

ν2 =

∫
dΩk
2π

F2(k, q) =
1

2π

∫ 2π

0

dφ

∫ π

0

dθ sin θF2 (4.27)

=

∫ 1

0

dµF2 =
34

21
. (4.28)
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We can do this for all kernels and find all the expansion coefficients. In this derivation we
did not assume under or overdensities initially. Therefore this should hold for both cases.

4.4 Effective Parameters in Spherical Collapse

We have derived the equations of motion in the Lagrangian picture and have a parametric
expression for R and t. With this we have all the means to derive an (parametric) expres-
sion for the effective parameters. Furthermore, we know that the perturbative expansion
converges to the real solution, so we can compute the parameters up to any order.

4.5 Self-Similarity in Spherical Collapse

In section 2.4 we have shown that standard perturbation theory allows self-similar solutions
in Einstein-de Sitter. Because SPT gives a convergent description of spherical collapse, the
spherical collapse solutions should also be self-similar.

If we consider a solution of equation (4.1), given by R(Rin, t) there is a family of solutions

R′(Rin, t) = λR(Rin, λ
−3/2t). (4.29)

Plugging in t = tin shows that R′ and R have the same initial conditions if and only if
R ∝ t2/3. In that case both solutions are identical, choosing a different scaling gives the
same solution at a different time.

This rescaling was for any M(Rin), independent of the density distribution. For a specific
mass profile, we can do the same as in section 2.4. We assume we have a found a solution
R(q, t) of equation (4.1) for a density profile M(q), and plug the scaling

R̃(Rin, t) ≡ λRR(λRin
Rin, λtt) (4.30)

back in. This gives the condition on the density profile,

M(Rin/λRin
)

M(Rin)
= λ2

tλ
3
R. (4.31)

This condition is only satisfied for all scaling factors if

M(Rin/λRin
)

M(Rin)
= λαRi . (4.32)

The initial condition R(tin) ≡ Rin requires λRin
= λR, and thus, combining above equations,

λt = λ
α−3
2

R . (4.33)

Considering an initial scale invariant power spectrum with index n, requires furthermore,
cf. equation (2.32)

λt = λ
3(3+n)

4

R , (4.34)

which results in the constraint on α,

α =
15 + 3n

2
. (4.35)
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Chapter 5

Experiments

The limit on the amount of information that could be extracted from the two-dimensional
picture of the CMBR is almost reached. The three-dimensional model of large scale struc-
tures is now the most obvious place to look for more clues about the earliest times of our
Universe. In the last few chapters we have reviewed the theory of structure formation, in
this chapter we will look at the experimental side.

Large scale structures are measured using redshift surveys. In these surveys large parts
of the sky are searched for luminous objects. Measuring the angular coordinates is trivial; to
find the radial coordinate the spectrum is analysed and the redshift is measured. We will first
look at the theory behind the experiments and thereafter review some of the experiments.
Will Percival wrote great lecture notes about large scale observations[4], here we will pick
out some of the topics discussed in there.

5.1 Theory Behind the Experiments

In redshift surveys the angular position and the redshift of galaxies is measured. Because
the Universe expands and we can measure at what rate it is expanding, the recession velocity
of an observed galaxy is enough to determine the distance to that galaxy. To determine the
recession velocity we can use the redshift: the faster a galaxy is moving away from us, the
more its emitted radiation is redshifted.

The observed light profiles can be fitted to templates or training spectra in two different
ways. We can either use the broad-band colours or we can use the spectrum. The latter
method uses the absorption and emission lines and is therefore much more precise, with
typical errors of 0.001(1+z) to 0.0001(1+z) against 0.05(1+z) for the so called photometric
redshift measurements. Unfortunately it is not always possible to measure the spectrum from
a galaxy, so it is a trade off between the number of data points and the accuracy.

When we have measured many galaxies we want to translate the observed galaxy distri-
bution to the real density contrast. First of all, we have to take into account where we could
have measured galaxies. There could be for instance a star in the path between us and a
galaxy which prevents us from measuring that galaxy. Furthermore, if our measurements
are magnitude-limited, we can only observe the brightest galaxies on long distances. To take
all these things into account, we have to use a mask. A mask is what we expect to measure
if we assume a random sample of homogeneously distributed galaxies with the expected
background density ρ̄.

We observe only the galaxies, while we want to measure the matter densities. If we
assume that the galaxies form just a Poisson sample of the total matter density, we use that
to apply weights to the positions in our mask. This assumption is unfortunately only an
approximation.

What we eventually want to measure is the power spectrum averaged over all angles.
We can compute this by taking the Fourier transform of the overdensity distribution. We
obtain the overdensity distribution by taking the difference between the number density in
the catalogue of observed galaxies and the number density in the mask.
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5.1.1 Observational effects

Because we use the Hubble rate to compute distances from the measured redshifts, all our
inferred distances are sensitive to the measured value of the Hubble rate. If we use a value too
high, clusters of galaxies seem to be closer and smaller than they actually are. Because we
assume isotropy, we assume that clustering in the radial and the angular direction should
be the same. With this assumption we can correct the distances for this mistake in the
projection.

Galaxies are not only flowing along the Hubble flow, but also have a peculiar velocity. A
galaxy that has a peculiar velocity pointed away from us, is more redshifted than one that is
at a constant comoving coordinate. Therefore these galaxies seem to be farther away naively.
This causes the image of over and underdensities to become distorted. In a overdensity,
where the matter is moving inwards, the nearest galaxies seem to be farther away, while
the galaxies at the longest distance seem to be nearer than they actually are. This makes
overdensities to look squeezed in the radial direction, while underdensities look stretched.
Therefore the difference between apparent over and underdensities gets exaggerated and the
power spectrum changes. We have to adjust the power spectrum for this redshift space
distortion to get more accurate results.

5.2 Surveys

5.2.1 2dF Galaxy Redshift Survey

The 2-degree-Field Galaxy Redshift Survey took place between 1997 and 2002. It was con-
ducted by the Anglo-Australian Observatory with the Anglo-Australian Telescope located
in New South Wales, Australia, and includes measurements of 382,323 objects within a 1500
square degree patch of the sky, in both the north and south galactic pole regions[5].

The measurements have been used for solving many fundamental problems, e.g. the
measurement of the power spectrum of galaxy clustering on scales up to 300 h−1 Mpc; a
new limit on the total neutrino mass, mν,tot < 1.8 eV; the variation in clustering properties
of galaxies as functions of luminosity and spectral type.

5.2.2 Sloan Digital Sky Survey

Data collection for the Sloan Digital Sky Survey began in 2000 and the catalogue now
consists of around 500 million objects covering approximately 35% of the sky. It uses a
2.5 meter wide-angle optical telescope at Apache Point Observatory in New Mexico, United
States.

Its extensive period of operation can be divided in different projects. The first two,
SDSS-I (2000–2005) and SDSS-II (2005–2008), included already 350 million objects. It was
used to map mass distributions around galaxies (the dark matter halos) with weak gravi-
tational lensing and for precision measurements of large scale structuring and cosmological
constraints. It also measure substructures of the Milky Way and it was even used to demon-
strate the common origin of dynamical asteroid families[6].

For SDSS-III (2008-2014) the spectrograph was upgraded and now it could do four
surveys at the same time. It mapped the clustering of galaxies and intergalactic gas in
the distant universe.

Currently SDSS-IV is taking data, it started in 2014 and is planned to run till 2020. It
is extending precision measurements in the distant Universe, so for the critical early phase
of cosmic history.
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Chapter 6

Conclusion

The focus of this master’s research was to find the effective parameters in the Effective Field
Theory analytically. While familiarizing with the subject, we have encountered several
difficulties which cost us too much time too reach our goal. However, we have found some
new results and corrected some calculations and have learned a lot in the process. We can
also sketch a path to finish what we started here.

6.1 Accomplishments

Much time was invested in understanding the calculations in the appendix of the paper by
Baumann et al.[7]. Though the method used was clear and the initial mistake was also easy
to understand, we had a hard time correcting the calculations. By knowing the end result
we knew when our calculations were not yet right, but it also misguided us into looking for
a magical factor while our mistake was in not including some terms. Fortunately, Daniel
Baumann and Valentin Assassi immediately spotted the mistakes. Now we saw explicitly
for the first time that the extra effective term cancelled the UV-divergence in P13, such that
we could finally conclude that the method used worked and that we could eventually use it
to find the effective parameters from the analytic effective stress-energy tensor.

We have found this analytic stress-energy tensor in the Lagrangian picture of spherical
collapse. Along the way we have obtained a more intuitive understanding of the spherical
collapse situation. There is much to find in the literature about spherical collapse, but it
was never entirely clear what were the initial conditions and what were the approximations
used in the equations.

In section 4.5 we have shown that spherical collapse allows self-similar solutions. Together
with the self-similarity shown in section 3.3 we can use this to find the time dependence of
the effective parameters.

6.2 Outlook

It may seem that we have only obtained some disconnected results. Though we hoped that
we could take all these results and wrap them in a nice final computation of the effective
parameters, we could still sketch what has to be done to connect the different parts and
reach a final conclusion.

First of all, we have to translate the effective stress energy tensor we have found in the
Lagrangian picture to the Eulerian picture1. When in the familiar Eulerian coordinates, we
can compute the expectation values over the short modes. With these results we can use the
method in Baumann et al.[7] to find eventually the effective parameters of spherical collapse.
Hopefully this analytic result would provide us more intuitive insight in what influences the
speed of sound and viscosity of large scale structures.

1Enrico Pajer has already done this by now, unfortunately it was too late to include it in this thesis.
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Chapter 6. Conclusion

When we follow these steps, we end up with the parameters in an EdS Universe. We
know our Universe is not like that and therefore we want to derive the same parameters for
a ΛCDM Universe. We already switched to the easier EdS model in chapter 2, but doing all
the calculations in ΛCDM should not pose real problems, because we only have to change
the growth function from Dn(a) = an to a non-trivial function. For these functions are
integral representations which can be approximated as is done in e.g. Bernardeau et al.[1].

Up till now, we have totally passed over the fact that this perfect spherical symmetry
only exists in the head of the theoretical physicist, rather than in the real world. It is
our hope that we could find a way to divide the complex structure of the cosmic web in
pieces which contain a certain symmetry approximately. This way we could build the entire
universe from analytically solvable structures. This is easier said than done, because at this
moment we have no idea how to add the different solutions, but we have at least one of the
building blocks – or actually we think we will have one soon.
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Appendix A

Calculations

Some important derivations and calculations that were too tedious for the main text are
collected in this appendix.

A.1 Stress-energy tensor

In section 3.1 we introduced Gaussian smoothing. In this section we will smooth the fluid
equations explicitly and derive the stress-energy tensor following Baumann et al.[7].

We start with the continuity equation from equation (2.7) in EdS and multiply it by the
background density,

∂τρ+ 3Hρ+ ∂i(ρv
i) = 0. (A.1)

Smoothing this results directly to equation (3.5),

∂τρ` + 3Hρ` + ∂i(ρ`v
i
`) = 0, (A.2)

with the definitions of the long-wavelength quantities as in equations (3.2) to (3.4).
To find the effective stress-energy tensor in equation (3.6) we will smooth all the terms

in the Euler equation, equation (2.8), except the stress-energy tensor σij ,

ρ [∂τv +Hv + (v · ∇)v +∇Φ] (A.3)

Lets start with,

(I) ≡
∫
x′
WΛ(x− x′)ρ̄(τ) (1 + δ(x′, τ))

[
∂τv

i(x′, τ) +Hvi(x′, τ) + vj∇jvi
]

(A.4)

= (∂τ + 4H) [ρ`v
i
`](x) +

∫
x′
WΛ(x− x′)

[
vi∂j [ρv

j ] + vjρ∂jv
i
]

(A.5)

where we have used the continuity equation, ∂τδ = −∂i[(1 + δ)vi]. We can use partial
integration and ∂i′W (x− x′) = −∂iW (x− x′) in the last term,

(I) = (∂τ + 4H) [ρ`v
i
`](x) + ∂j

∫
x′
WΛ(x− x′)ρvivj . (A.6)

We define

v ≡ v` + vs, (A.7)

and Taylor expand v`(x
′) around x,

v`(x
′) = v`(x) + (x− x′)i∂iv`(x) +

1

2
(x− x′)i(x− x′)j∂i∂jv`(x) + . . . . (A.8)

25



Appendix A. Calculations

We want to compute[
ρvivj

]
Λ

=
[
ρvi`v

j
`

]
Λ

+ 2
[
ρv

(i
` v

j)
s

]
Λ

+
[
ρvisv

j
s

]
Λ

(A.9)

From the definition of the Gaussian filter, we have

∂i′WΛ(x− x′) = −∂iWΛ(x− x′) = Λ2(x− x′)iWΛ(x− x′), (A.10)

∂i′∂j′WΛ(x− x′) = ∂i∂jWΛ(x− x′)

= −Λ2δijWΛ(x− x′) + Λ4(x− x′)i(x− x′)jWΛ(x− x′), (A.11)

and using equation (A.8),

vi`(x
′)vj` (x

′) = vi`(x)vj` (x) + 2v
(i
` ∂kv

j)
` (x− x′)k

+
[
v

(i
` ∂k∂lv

j)
` + ∂kv

i
`∂lv

j
`

]
(x− x′)k(x− x′)l + . . . , (A.12)

we can find the first term of equation (A.9),[
ρvi`v

j
`

]
Λ

= ρ`v
i
`v
j
` −

2

Λ2
v

(i
` ∂kv

j)
` ∂kρ` +

[
v

(i
` ∂k∂lv

j)
` + ∂kv

i
`∂lv

j
`

]
×
[

1

Λ4
∂k∂lρ` +

1

Λ2
δklρ`

]
+ . . .

= ρ`v
i
`v
j
` −

2

Λ2
v

(i
` ∂kv

j)
` ∂kρ` +

1

Λ2
ρ`v

(i
` ∂

2v
j)
` +

1

Λ2
ρ`∂kv

i
`∂kv

j
` + h.o. derivatives

(A.13)

Before we compute the second term of equation (A.9), we look at[
ρvis
]
Λ

=
[
ρvi
]
Λ
−
[
ρvi`
]
Λ

=
1

Λ2
∂kv

i
`∂kρ` −

1

2Λ2
ρ`∂

2vi`, (A.14)

Because this has only terms of second order in derivatives we get,

2
[
ρv

(i
` v

j)
s

]
Λ

=
2

Λ2
v

(i
` ∂kv

j)
` ∂kρ` −

1

Λ2
ρ`v

(i
` ∂

2v
j)
` + h.o. derivatives, (A.15)

and thus, [
ρvivj

]
Λ

= ρ`v
i
`v
j
` +

[
ρvisv

j
s

]
Λ

+
1

Λ2
ρ`∂kv

i
`∂kv

j
` . (A.16)

With the use of the smoothed continuity equation (A.2), we finally get

(I) = ρ`∂τv
i
` +Hρ`vi` + ρ`v

j
`∂jv

i
` + ∂j

[
ρvisv

j
s

]
Λ

+ Cij , (A.17)

with

Cij =
1

Λ2
ρ`∂kv

i
`∂kv

j
` (A.18)

Now we want to smooth the last term of equation (2.8),

(II) ≡ [ρ∂iΦ]Λ = [ρ`∂iφ`]Λ + [ρs∂iφ`]Λ + [ρ`∂iφs]Λ + [ρs∂iφs]Λ . (A.19)

We split the density and the Newtonian potential in long and short modes,

ρ ≡ ρ` + ρs, Φ ≡ φ` + φs, with φ` ≡ [φ]Λ (A.20)

Again we can expand these long modes around x and get,

[ρs]Λ = − 1

2Λ2
∂2ρ`, [φs]Λ = − 1

2Λ2
∂2φ`. (A.21)
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and from there,

(II) = ρ`∂iφ` + [ρs∂iφs]Λ +
1

Λ2
∂i∂kφ`∂kρ`. (A.22)

Using the Poisson equation for the small modes, ∂2φs = 4πGρs, partial integration and
∂i′WΛ = −∂iWΛ, we get,

[ρs∂iφs]Λ =
1

4πG

[
∂2φs∂iφs

]
Λ

=
1

4πG

[
∂j
(
∂jφs∂iφs

)
− 1

2
∂i
(
∂jφs∂jφs

)]
Λ

=
1

4πG
∂j
[
∂jφs∂iφs

]
Λ
− 1

8πG
∂i
[
∂jφs∂jφs

]
Λ

= ∂j

[
2∂iφs∂jφs − δij∂kφs∂kφs

8πG

]
Λ

, (A.23)

and if we use the long mode part of the Poisson equation, ∂2φ` = 4πGρ` ,we can rewrite
the last term of equation (A.22) as well,

(∂i∂kφ`) (∂kφ`) =
1

4πG
(∂i∂kφ`)

(
∂k∂

2ρ`
)

(A.24)

=
1

4πG
∂j
[
(∂i∂kφ`)

(
∂j∂kρ`

)]
− 1

8πG
∂i
[(
∂j∂kφ`

) (
∂j∂kφ`

)]
= ∂j

[
2 (∂i∂kφ`)

(
∂j∂kρ`

)
− δij (∂k∂lφ`) (∂k∂lφ`)

8πG

]
≡ ∂jDij . (A.25)

Hence,

(II) = ρ`∂iφ` + ∂j

[
2∂jφs∂iφs − δij∂kφs∂kφs

8πG

]
Λ

+ ∂jDij (A.26)

Summing the results of equations (A.17) and (A.26), we get the smoothed Euler equation,

(I) + (II) = 0

ρ`∂τv
i
` +Hρ`vi` + ρ`v

j
`∂j`

i + ρ`∂iφ` = −∂j
[
τ ij
]
Λ
− ∂jτ

ij
∂2 , (A.27)

with the stress-energy tensor

τ ij = ρvisv
j
s −

δij∂kφs∂kφs − 2∂iφs∂jφs

8πG
(A.28)

and

τ ij∂2 = Cij +Dij (A.29)

which is second order in derivatives.

A.2 Effective paramaters in perturbation theory

The parameters of the effective field theory can be computed using expectation values as is
shown in section 3.2,

p̄eff =
1

3
lim
k→0
〈τ〉, c2s + c2bv =

1

ρ̄

〈δ`peff〉
〈δ`δ`〉

, c2sv =
〈δ`σeff〉
〈δ`δ`〉

, with σeff =
1

ρ̄

∂i∂j
∂2
〈[τ̂ ij ]Λ〉.

(A.30)

The explicit calculation was already attempted by Baumann et al.[7], but we found some
mistakes in that calculation. With the help of Daniel Baumann and Valentin Assassi, we
have managed to fix these mistakes and found the satisfying results below.
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We want to compute c2s and c2sv up to the lowest order in perturbation theory. When we
look at the non-perturbative stress-energy tensor in equation (3.7) we see that we can write

τij = τ
(2)
ij + τ

(3)
ij + . . . , (A.31)

where τ
(n)
ij is n-th order in δ(1). We are not interested in p̄eff and σeff but only want to

calculate the speed of sound and the viscosity. Because δ` is only first order in δ(1), and
correlation functions over odd numbers of linear perturbations vanish, we are only interested
in

τ
(3)
ij ≡ ρ̄

(
δ(1)v

(1)
i v

(1)
j + v

(1)
i v

(2)
j + v

(2)
i v

(1)
j

)
− 2ρ̄

3H2

(
δij∂kφ

(1)∂kφ
(2) − ∂iφ(1)∂jφ

(2) − ∂iφ(2)∂jφ
(1)
)
, (A.32)

τ (3) ≡ ρ̄δ(1)v(1) · v(1) + 2ρ̄v(1) · v(2) − 2ρ̄

3H2
∂kφ

(1)∂kφ
(2). (A.33)

If we assume we can write vi(x) = ∂iu(x), then we can use

v
(n)
k = − ik

k2
θ

(n)
k , (A.34)

to rewrite the first two terms in equation (A.33). For the third term, we use Poisson’s
equation,

∂2φ(x) = 4πGa2ρ̄δ(x), and thus φ
(n)
k = −3H2

2k2
δ

(n)
k , (A.35)

and fill this in[
τ (3)

]
Λ

(p) = WΛ(p)

∫
x

τ (3)(x)e−ip·x (A.36)

= 2ρ̄WΛ(p)

∫
x

∫
k

∫
q

e−i(p−k−q)·x
[
v

(1)
k · v

(2)
q −

1

3H2
(ik) · (iq)φ

(1)
k φ(2)

q

]
+ ρ̄WΛ(p)

∫
x

∫
q

∫
q1

∫
q2

e−i(p−q−q1−q2)·xδ(1)
q v(1)

q1
· v(1)

q2
(A.37)

= 2ρ̄WΛ(p)

∫
q

α(q,p)

[
−θ(1)

p−qθ
(2)
q +

3H2

4
δ

(1)
p−qδ

(2)
q

]
− ρ̄WΛ(p)

∫
q

∫
q1

∫
q2

q1 · q2

q2
1q

2
2

δ
(1)
p−qθ

(1)
q1
θ(1)
q2
δD(q − q1 − q2) (A.38)

= −1

2
ρ̄H2WΛ(p)

∫
q

∫
q1

∫
q2

α(q,p)H2(q1, q2)δ
(1)
p−qδ

(1)
q1
δ(1)
q2
δD(q − q1 − q2)

− ρ̄H2WΛ(p)

∫
q

∫
q1

∫
q2

q1 · q2

q2
1q

2
2

δ
(1)
p−qδ

(1)
q1
δ(1)
q2
δD(q − q1 − q2) (A.39)

where

α(q,p) =
(p− q) · q
(p− q)2q2

, (A.40)

and

H2(q1, q2) = 4G2(q1, q2)− 3F2(q1, q2) = −3

7
+

1

2
µ

(
q1

q2
+
q2

q1

)
+

10

7
. (A.41)

We want to compute

〈δ(1)
k [τ ]Λp〉 = −1

2
ρ̄H2WΛ(p)

∫
q

∫
q1

∫
q2

α(q,p)H2(q1, q2)δD(q − q1 − q2)〈δ(1)
k δ

(1)
p−qδ

(1)
q1
δ(1)
q2
〉.

− ρ̄H2WΛ(p)

∫
q

∫
q1

∫
q2

q1 · q2

q2
1q

2
2

δD(q − q1 − q2)〈δ(1)
k δ

(1)
p−qδ

(1)
q1
δ(1)
q2
〉. (A.42)
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Therefore we will look first at

〈δ(1)
k δ

(1)
p−qδ

(1)
q1
δ(1)
q2
〉 = 〈δ(1)

k δ
(1)
p−q〉〈δ(1)

q1
δ(1)
q2
〉+ 〈δ(1)

k δ(1)
q1
〉〈δ(1)

p−qδ
(1)
q2
〉+ 〈δ(1)

k δ(1)
q2
〉〈δ(1)

p−qδ
(1)
q1
〉

= δD(k + p− q)δD(q1 + q2)Pδ(k)Pδ(q1) (A.43)

+ δD(k + q1)δD(p− q + q2)Pδ(k)Pδ(|p− q|) (A.44)

+ δD(k + q2)δD(p− q + q1)Pδ(k)Pδ(|p− q|) (A.45)

Because H2(q1, q2) is symmetric, the first term will vanish under the integral in equa-
tion (A.42) while the last two give the same. We can now compute the integrals over q1 and
q2 ∫

q1

∫
q2

H2(q1, q2)δD(q − q1 − q2)〈δ(1)
k δ

(1)
p−qδ

(1)
q1
δ(1)
q2
〉

= 2δD(p + k)Pδ(k)H2(−k,k + q)Pδ(|p− q|)

+ δD(q)δ(p + k)Pδ(k)

∫
q′
H2(q′,−q′)Pδ(q′)

= 2〈δ(1)
k δ(1)

p 〉H2(−k,k + q)Pδ(|p− q|)

+ 〈δ(1)
k δ(2)

p 〉δD(q)

∫
q′
H2(q′,−q′)Pδ(q′), (A.46)∫

q1

∫
q2

q1 · q2

q2
1q

2
2

δD(q − q1 − q2)〈δ(1)
k δ

(1)
p−qδ

(1)
q1
δ(1)
q2
〉

= −2α(p, q)δD(p + k)Pδ(k)Pδ(|p− q|)

− δD(q)δD(p + k)Pδ(k)

∫
q′

1

q′2
Pδ(q

′) (A.47)

= −2〈δ(1)
k δ(1)

p 〉α(p, q)Pδ(|p− q|)

− 〈δ(1)
k δ(1)

p 〉δD(q)

∫
q′

1

q′2
Pδ(q

′) (A.48)

and insert this in equation (A.42)

〈δ(1)
k [τ ]Λp〉 = −ρ̄H2WΛ(k)〈δ(1)

k δ(1)
p 〉

∫
q

{α(q,−k)H2(−k,k + q)− 2α(−k, q)}Pδ(|k + q|)

− 1

2
ρ̄H2WΛ(k)〈δ(1)

k δ(1)
p 〉

∫
q

[
H2(q,−q)− 2

q2

]
Pδ(q) (A.49)

= −ρ̄H2WΛ(k)〈δ(1)
k δ(1)

p 〉
∫
q

{α(q − k,−k)H2(−k, q)− 2α(−k, q − k)}Pδ(q)

+ ρ̄H2WΛ(k)〈δ(1)
k δ(1)

p 〉
∫
q

1

q2
Pδ(q) (A.50)

= −ρ̄H2WΛ(k)〈δ(1)
k δ(1)

p 〉
∫
q

{
α(q − k,−k)H2(−k, q) (A.51)

− 2α(−k, q − k)− 1

q2

}
Pδ(q) (A.52)

To compute c2s , we have to take the limit k � q. We expand around k = 0,

α(q − k,−k)H2(−k, q)− 2α(−k, q − k)− 1

q2

=

[
− 1

q2
− µ k

q3
+O

(
k2
)]
×
[
−3

7
− 1

2
µ
q

k
+

10

7
µ2 +O (k)

]
− 2µ

1

kq
− 1

q2

= − 1

q2

(
4

7
+

13

14
µ2 +O (k)

)
+ terms linear in µ (A.53)
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with now

µ =
k · q
kq

and hence the integral in equation (A.52) becomes

c2s + c2bv =
1

3ρ̄

〈δ(1)
k [τ ]Λp〉

〈δ(1)
k δ

(1)
p 〉

=
1

3
H2

∫
q

1

q2

(
4

7
+

13

14
µ2

)
Pδ(q)

=
1

3

1

(2π)2
H2

∫
dq Pδ(q)

∫ 1

−1

dµ

(
4

7
+

13

14
µ2

)
(A.54)

=
37

126

1

2π2
H2

∫
dq Pδ(q) (A.55)

While θ
(1)
k = −Hδ(1)

k holds for the first order, for the second order θ
(2)
k 6= −Hδ(2)

k . This
is the reason why we get the H2(k, q) in the previous expression, instead of F2(k, q) in [7],
and thus this also explains the difference in the end result.

For c2sv we follow the same steps, starting from equation (A.32),[
τ̂

(3)
ij

]
Λ

(p) = WΛ(p)

∫
k

∫
q

{
ρ̄

((
v

(1)
k

)
i

(
v(2)
q

)
j

+
(
v

(2)
k

)
i

(
v(1)
q

)
j
− 2

3
δijv

(1)
k · v

(2)
q

)

+
2ρ̄

3H2

(
2

3
δij(k · q)− kiqj − kjqi

)
φ

(1)
k φ(2)

q

}
δD(p− q − k)

+WΛ(p)ρ̄

∫
q

∫
q1

∫
q2

{
δ(1)
q

(
v(1)
q1

)
i

(
v(1)
q1

)
j
− 1

3
δijδ

(1)
q v(1)

q1
· v(1)

q2

}
δD(p− q − q1 − q2)

(A.56)

= −2ρ̄WΛ(p)

∫
q

{
(pi − qi)qj − 1

3δij(p− q) · q
(p− q)2q2

(
θ

(1)
p−qθ

(2)
q +

3H2

2
δ

(1)
p−qδ

(2)
q

)}
+WΛ(p)ρ̄

∫
q

∫
q1

∫
q2

qi1q
j
2 − 1

3δijq1 · q2

q2
1q

2
2

δ(1)
q θ(1)

q1
θ(1)
q2
δD(p− q − q1 − q2)

(A.57)

= −5ρ̄H2WΛ(p)

∫
q

∫
q1

∫
q2

βij(q,p)H̃2(q1, q2)δ
(1)
p−qδ

(1)
q1
δ(1)
q2

+ ρ̄H2WΛ(p)

∫
q

∫
q1

∫
q2

qi1q
j
2 − 1

3δijq1 · q2

q2
1q

2
2

δ(1)
q δ(1)

q1
δ(1)
q2
δD(p− q − q1 − q2),

(A.58)

where,

βij(q,p) =
(pi − qi)qj − 1

3δij(p− q) · q
(p− q)2q2

, and (A.59)

H̃2(q1, q2) =
2

5
G2(q1, q2) +

3

5
F2(q1, q2) =

3

5
+

1

2
µ

(
q1

q2
+
q2

q1

)
+

2

5
µ2. (A.60)

Using the previous results, we can easily compute

〈δ`σeff〉 =
1

ρ̄

〈
δ`k
pipj
p2

[
τ̂

(3)
ij

]Λ
p

〉
= −10H2WΛ(k)〈δ(1)

k δ(1)
p 〉

∫
q

β(q,−k)H̃2(−k,k + q)Pδ(|p− q|),

+H2WΛ(p)

∫
q

∫
q1

∫
q2

(p · q1)(p · q2)− 1
3p

2q1 · q2

p2q2
1q

2
2

〈δ(1)
k δ

(1)
p−qδ

(1)
q1
δ(1)
q2
〉δD(q − q1 − q2)

(A.61)
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= −10H2WΛ(k)〈δ(1)
k δ(1)

p 〉
∫
q

β(q − k,−k)H̃2(−k, q)Pδ(q),

−H2WΛ(p)〈δ(1)
k δ(1)

p 〉
∫
q

1

q2

[
1

3
− q

p
µ− µ2

]
︸ ︷︷ ︸

=0 after angular integration

Pδ(q) (A.62)

where

β(q,p) ≡ pipj
p2

βij(q,p) =
p · (p− q)p · q − 1

3p
2(p− q) · q

p2q2(p− q)2
(A.63)

and taking limits k � q

β(q − k,−k)H̃2(−k, q)

= − 1

q2

[
−1

3
− 4

3
µ
k

q
+ µ2 + 2µ3 k

q

]
×
[

3

5
− 1

2
µ
q

k
+

2

5
µ2

]
= − 1

q2

[
−1

5
+

17

15
µ2 − 3

5
µ4 +O (k)

]
+ terms of odd order in µ (A.64)

and thus,

c2sv ≡
〈δlσeff〉
〈δlδl〉

= 10H2 1

(2π)2

∫
q

1

q2

[
−1

5
+

17

15
µ2 − 3

5
µ4

]
Pδ(q)

=
26

45

1

2π2
H2

∫
dq Pδ(q), (A.65)

c2comb ≡ c2s + c2bv + c2sv =
61

70

1

2π2
H2

∫
dq Pδ(q) (A.66)

A.3 Divergences in P13

By design of the EFTofLSS the UV-divergences in Pc2s should be cancelled by the divergences
in P13. To check this, we want to compute P13 as well. We start with,

〈
δ

(1)
k δ(3)

p

〉
=

∫
q1

∫
q2

∫
q3

δD(p− q1 − q2 − q3)F3(q1, q2, q3)
〈
δ

(1)
k δ(1)

q1
δ(1)
q2
δ(1)
q3

〉
= 3

∫
q1

∫
q2

F
(s)
3 (q1, q2,p− q1 − q2)

〈
δ

(1)
k δ
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p−q1−q2
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δ(1)
q1
δ(1)
q2

〉
= 3δD(k + p)Pδ(k)

∫
q

Pδ(q)F
(s)
3 (k, q,−q) (A.67)

from which we get the power spectrum

P13(k) = 6Pδ(k)

∫
q

Pδ(q)F3(k, q,−q)

= 6Pδ(k)
k3

(2π)2

∫ kc/k

0

dr Pδ(kr)

∫ 1

−1

dµ r2F3(k, q,−q),

where in the last line we split the integral in a radial and a angular component and wrote
r = q/k. We want to look at the large r limit, i.e. k � q, so we want F3 up to O

(
1
r2

)
and

only the terms with even powers in µ. We use equation (A.4) from [3] for the divergent part
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Appendix A. Calculations

of F3,

F3(k, q,−q) =
1

q2 + k2 − 2k · q

[
5k2
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+
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+
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)
and thus, for a linear power spectrum Pδ(k) = Aa2kn with n ≥ 0,

P13(k) = 6A2a4 k
3+n

(2π)2

∫ kc/k
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dr (kr)n
∫ 1
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(A.68)

= 6A2a4 k
3+n

(2π)2

kn(kc/k)n+1

n+ 1

(
− 61

945

)
(A.69)

= − 244

315(n+ 1)
A2a4π

k2+nkn+1
c

(2π)3
, (A.70)

where kc is the UV-cutoff.
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