
Comparing General Relativity with
Shape Dynamics

Hamish Forbes
July 17, 2015

Master’s Thesis
Supervised by Prof. Dr. Gerard ’t Hooft and Dr. Sean

Gryb

Utrecht University
Faculty of Science - Institute for Theoretical Physics



Abstract

The aim of this thesis is to compare the strengths and weaknesses of the theories
shape dynamics and general relativity using two well-known situations involving spher-
ically symmetric gravitational fields; the pure vacuum solution and the gravitational
collapse of a thin shell. Using the formal equivalence between the field equations in a
particular spacetime foliation of general relativity we have succeeded in finding relevant
solutions that permit a shape dynamics description. We subsequently provide an in-
terpretation of these solutions in terms of the principles of shape dynamics. Although
the two theories are locally equivalent at the level of the field equations, global or
topological differences may yet arise in the classical theory, furthermore, the fact that
the theories contain different local symmetries and corresponding constraint algebras
may lead to different predictions after quantization.
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1 Outline

This thesis is divided into seven chapters. Starting with chapter two we give a brief in-
troduction to the ideas and motivation of shape dynamics (SD). In chapter three we use
the Dirac/ADM Hamiltonian formulation of general relativity (GR) to find the static
spherically symmetric vacuum solution to the EFE in a maximal spacetime foliation.11

The maximal foliation requirement is a sufficient condition for the solution to admit a
SD solution, we then give an interpretation according to the SD perspective. In chapter
four we briefly show how the solution is related to the well-known Schwarzschild solu-
tion. In chapter five we give the equivalent solution using the better-known covariant
formulation giving both the static exterior solution and the non-static interior solution
whilst giving full expression to the fact that, in general relativity, one always has the
freedom to choose coordinates at will. In chapter six we summarise the dynamics of a
thin shell in the covariant formalism and present the solution for the motion of a shell
made of dust with respect to both the shell’s proper time and exterior time, which
represents a maximal foliation and is required for a SD interpretation. Chapter seven
describes the same physical situation in phase space and suggests a p1 ` 1q Hamilto-
nian that will determine the time evolution of the shell in a maximal foliation in SD.
Chapter eight concludes the thesis including a critical reflection of SD.
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2 Introduction to Shape Dynamics

Before comparing the predictions of SD and GR in our chosen physical situations
we need to introduce both theories. GR is covered in great detail in many good text-
books. [1–5] This chapter serves as a very brief introduction to only SD which is covered
in more detail in the following papers. [6–11]
In 1898 Poincaré identified two fundamental issues relating to time: [12, 13] The defi-
nitions of duration and of simultaneity at spatially separated points. Special relativity
(SR) was correctly understood once it was realised that the notion of simultaneity at
spatially separated points is dependent on the motion of the observer. The generalisa-
tion of SR to incorporate gravitational phenomena led to GR and the realisation that
inertial motion and gravitation were two aspects of the same phenomenon.
We find in both theories that a fundamental physical property is the proper time: The
time measured by an ideal clock carried along a timelike curve between two points
in spacetime. However, little importance is given to the choice of an adequate clock,
moreover, they stand alone as self-sufficient entities, [14] such that their relation to
other physical things in the theory is unclear.

In contrast, SD was created out of the desire to understand the nature of clocks both
natural and man made. A particular goal was to highlight the manner in which du-
ration, according to our experience, is derived from the motion of material bodies.
It stresses that a crucial feature of adequate clocks is that they march in step. It is
a physical assumption inherent in the structure of relativity that, between the same
spacetime points, an ideal clock will always measure a time interval that is proportional
to any other ideal clock, independent of the word line connecting the points and of the
events on that world line. SD aspires to explain why this hypothesis is true in nature,
so that we can have confidence that the proper time measured by ideal clocks is of
physical importance. Clearly both GR and SD are concerned with the foundations of
time, in the future we hope to understand how both problems of time may be solved
within one coherent framework.

2.1 Motivation

As was the case for GR, an impetus for the creation of SD was the abandonment of
the concept of absolute space and time, and the definition of a relative velocity. This
was motivated by considering how motion is determined in experiment. The laws of
both Newtonian mechanics (NM) and GR may be tested by observing the motion of
celestial bodies against an assumed fixed background provided by the distant galaxies.
In reality we acknowledge that, however small, the distant galaxies will exhibit relative
motions and so the problem is then how to define displacement when nothing in the
universe ever remains relatively motionless.
In NM, absolute space and time was postulated precisely to solve this problem. The
equation

v “
∆x

∆t
, (2.1)

presents no problems; because with an absolute spacetime we have a unique notion of
equilocality and duration, that is, it is permissible to say that two spacetime points
(events) are separated by a definite measure of time, and are or are not at the same
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spatial location. Equation (2.1) simply states that in an absolute period of time ∆t
an absolute distance ∆x was covered, motion is thereby definable and NM can be
established via Newton’s laws.
If we do not accept absolute space or time, then there are (at least) two ways to proceed:
Acknowledge that the frame of reference is always relative to an observer, in terms of
their coordinate system one may again define duration and displacement, and hence
a relative velocity between any two observers, or define duration and displacement in
a way that is intrinsic to, and includes all the observable bodies in the system, the
former is implemented in GR and the latter in SD. In GR 4-velocities are compared
at different spacetime points via parallel transport, the mathematics involved is well
understood. In this chapter we will explain how SD defines its holistic relative velocity
via a method called best matching (BM).

2.2 Best matching

The theory of SD and its method of BM begins with the concept of a instantaneous
configuration of the universe. [7] Due to the finiteness of the speed of light only the part
of this surface lying on the past light cone of some event can be observed, furthermore,
the motion of the observer at this event will determine the particular configuration
observed. We therefore consider the configurations as formal concepts that are useful
in the mathematical description of SD, but recognise that they are not observable in
practise.
In the field theoretic version of SD, the configuration space is obtained by quotienting
larger spaces starting with the space of all possible Riemannian 3-metrics gij called
Riem. The same 3-geometry may be represented by different 3-metrics which are
related by 3-diffeomorphisms, identifying the configuration points that are related by
3-diffeomorphisms gives the quotient space called Superspace; the space of all distinct
3-geometries.
In contrast to GR, SD makes the radical postulate that local scale should not be
considered as a physical observable, instead it may be understood as a gauge degree
of freedom. This idea is motivated by the following epistemological argument; if it
is assumed that all idealised measurements of length are local comparisons of the
separations of bodies in the system, then both the separation representing the ideal
ruler and the separation of the bodies being measured will be rescaled under a local
scale transformation of the metric. The equivalent mathematical statement is that in
SD the geometrical degrees of freedom (d.o.g) reside in the conformal 3-geometry. By
quotienting superspace with respect to 3-conformal transformations,

g̃ij “ ω4gij , (2.2)

where ω “ ωpxq is a scalar function of position1, we arrive at conformal superspace
(CSS); the space of all distinct conformal 3-geometries. CSS is considered to be the
irreducible configuration space of SD.
The method of BM then takes two distinct configurations in Riem, and transforms
one configuration via 3-diffeomorphisms and conformal transformations to match as
closely as possible the other configuration, thereby determining the difference in the
configurations when represented in CSS. Hence, BM is a method of bringing distinct

1The fourth power is chosen for mathematical convenience.
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configurations as close to congruence as possible, i.e. a principle of least incongruence.
This method leads to a relative definition of displacement ∆x, notice that the process
necessarily involves a comparison between all the bodies in the system, it is in this
respect a holistic notion of displacement. We are half way to defining a holistic relative
velocity; we have yet to define the duration ∆t.

2.3 Duration from change

Suppose that we have best-matched a set of configurations to produce an ordered
smooth curve in CSS. SD postulates that in nature the curve connecting the first and
last configuration, in the best-matched order, will be an extremal curve, i.e. a geodesic.
This is a generalisation of the geodesic principle in GR:2 Free massive point particles
traverse timelike geodesics. The difference lies in the choice of the configuration space,
which in GR is a single free particle traversing a world line in spacetime, whereas in
SD it is the successive shapes of a collection of observable bodies.
SD defines duration as a measure of difference between points in CSS representing
different conformal 3-geometries. Notice that again this definition of ∆t is holistic as
it results from all observable change in the system. From this perspective we recognise
that Newton’s first law

dp

dt
“ 0, (2.3)

with p “ mv and its generalisation in GR; the geodesic equation

Uα∇αU
σ “ 0, Uα “

dxα

ds
, (2.4)

where s is an affine parameter, is only arrived at after consideration of all the ways
in which the entire configuration of the system could change. This is the essence of
Mach’s conjecture [15], which we interpret as: The idea that local inertial motion arises
through the interaction of physical fields in the universe.
What is left to do is to specify the laws by which this interaction may be described.
We find that the postulates of SD laid out so far lead to equations of motion that
are identical to a particular Hamiltonian formulation of GR,3 called the ADM for-
malism, [18] and furthermore in a certain spacetime foliation called constant mean
curvature (CMC) slicing. We can therefore appreciate that SD should admit far fewer
solutions than standard GR satisfying the Einstein field equations (EFE).

2.4 ADM formalism

An early Hamiltonian formulation of GR was found by Dirac, [19] where the original
4-metric tensor with corresponding momenta were taken to be the fundamental phase
space coordinates. The ADM formalism, however, by a change of variables, distin-
guishes between those that describe the 3-geometry and those that describe how the

2The Geodesic principle can be deduced from Einstein’s field equations with the assumption that energy
propagates along only timelike world lines, which represents a stronger form of the dominant energy condition.

3The equations of motion may also be derived from an action principle using the BSW action, which was
first considered in the context of the Thin-sandwich problem. [2, 16,17]
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3-geometry changes from one spacelike surface to the next, the so called 3`1 split,4 on
the other hand, extended spacelike surfaces are not a necessary ingredient in Dirac’s
formulation. A necessary requirement for the equivalence between the Hamiltonian
formulations is that a canonical transformation relates the two set of variables, it has
been shown that no such transformation exists, and consequently the two theories
are not exactly equivalent. [20] The ADM formalism may, however, be understood as
equivalent to Dirac’s formalism on a reduced part of the phase space. [21]

2.5 ADM and SD phase space

The Hamiltonian formulation of SD is given on the phase space corresponding to CSS.
In a particular conformal section, which means fixing the conformal factor of the 3-
metric to be a particular function, it is formally equivalent to the ADM formulation
with an additional constraint which, on the one hand is effecting conformal transfor-
mations in SD, but in the ADM formalism is enforcing the spatial 3-surface to have
CMC. CMC foliations were first considered by Lichnerowicz, whose conformal tech-
niques were later championed by York culminating in the solution to the Initial value
problem (IVP) providing the inspiration for SD.5 [22–24] York’s solution to the IVP
can be summarised as follows: On a CMC slice, give the conformal 3-geometry and its
conjugate momenta as freely specifiable data to uniquely determine the whole generic
4-dim spacetime manifold. [2] SD turns this statement on its head and requires that the
conformal 3-geometry and its conjugate momenta uniquely determine the spacetime,
therefore concluding that a CMC slice must exist.
The quickest way to arrive at SD formalism is through a local symmetry trading al-
gorithm; trading foliation invariance for spatial conformal invariance. This is achieved
by enlarging the phase space of ADM to a Linking theory and then subsequently re-
ducing the phase space by imposing a constraint (gauge-fixing) to arrive at SD, see
Fig. 1 [8,11,25]. In this respect SD and ADM may be understood as two theories with
different local symmetries and constraint algebras coexisting in the same phase space.
Furthermore, they provide gauge-fixings of each other on the intersection (dictionary)
of the surfaces, see Fig. 2. Finding the GR solution on the intersection allows one to
find the equivalent solution in SD. This is the fastest way to arrive at a solution in
SD and is the procedure followed in this thesis. In future work the solutions should be
considered in a conformal section which does not lie on the intersection. According to
SD such solutions are gauge-equivalent, however, they will necessarily not be a solution
to the EFE since they do not lie on the ADM constraint surface.

4This restricts the topology of the spacetime manifold to be R ˆ Σ, where Σ is a constant time slice,
such that the spacetime is globally hyperbolic. This means that it can be sliced by non-intersecting space-like
hypersurfaces labelled by a monotonic parameter.

5In particular the remark in [22] p. 1658 regarding the scalar or Hamiltonian constraint was an impetus
for the search for a spatially conformally invariant theory which eventually led to SD.

8



Figure 1: A schematic showing the relationship between ADM, SD and the Linking theory
relating them. The dictionary corresponds to the CMC slicing of ADM and a particular
conformal section in SD. This figure was taken from [11].

Figure 2: A schematic representation of the ADM and SD phase space. Two coexisting con-
straint surfaces, defined by the scalar (or Hamiltonian) constraint in ADM and the conformal
constraint in SD, are good gauge-fixings of each other. Any solution on the intersection may
be represented in an arbitrary conformal gauge by lifting it from the intersection to an
arbitrary curve on the conformal constraint surface. This figure was taken from [7].
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3 Spherically symmetric vacuum solution to Ein-

stein’s equations in the Hamiltonian formulation

SD is motivated by the desire to highlight the way in which local proper time may be
derived from the dynamical gravitational degrees of freedom, which in SD are consid-
ered to be the conformally invariant spatial data, in short the shape. In addition it
requires that, given the initial shape and corresponding momenta, the whole generic
spacetime must be uniquely determined. In turn, this imposes the foliation of spacetime
to be such that each spatial 3-space must have a spatially constant trace of extrinsic
curvature.6

In GR proper time takes a primary physical status. In contrast, the shapes of matter
in the universe are considered primary in SD. Furthermore, by assuming a choice of
local scale, considered a gauge degree of freedom in SD, one would like to consider
local proper time as an emergent property in SD. From the GR perspective, built upon
the relativity of simultaneity, a preferred foliation seems to be a serious drawback of
SD, the consolation prize might be a clearer understanding of how duration arises as
measured by local proper time.
With a preferred foliation it is appropriate to present SD in its Hamiltonian formula-
tion, if the Hamiltonian is conformally invariant then it will have especial importance in
SD. As a first step in this direction, we find the spherically symmetric vacuum solution
to the Einstein field equations (EFE) using the Hamiltonian formalism.7 We make
use of the ADM variables and the Hamiltonian gauge fixing procedure by imposing
certain coordinate conditions dictated by shape dynamical considerations. Requiring
that the coordinate conditions be preserved in time under the Hamiltonian evolution
leads to the exterior solution (radii greater than the Schwarzschild radius) in isotropic
coordinates that is static and asymptotically flat, as required by Birkhoff’s theorem.

Notation: Greek indices range over the values 0, 1, 2, 3 and latin indices over 1, 2, 3.
The coordinates t and x or pr, θ, φq are assumed to be timelike and spacelike respec-
tively. We use a spacetime metric gµν of signature p´,`,`,`q. Tensors such as the 3
dimensional Ricci tensor Rij rgs and its trace Rrgs, with the functional dependence on the
relevant metric shown explicitly, are defined on a 3-dimensional spacelike hypersurface
(3-space). Ordinary differentiation is denoted by a comma, covariant differentiation
(gij-compatible) by a vertical line, covariant differentiation with respect to the flat
metric γij by a dot, and the time derivative by an over-dot. We employ units in which
c “ 1 “ 16πG (c the speed of light in vacuo and G the gravitational constant).

6The so called constant mean curvature slicing. SD therefore restricts the topology of the spacetime
manifold to be Rˆ Σ, where Σ is a constant time slice, such that it is globally hyperbolic.

7The time dependant and independent solutions have been found in the ADM formulation. [26,27]
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3.1 Primary Hamiltionian

The canonical theory begins with the following decomposition of the metric tensor:

pgµνq “

¨

˝

´N2 `NkN
k Nj

Ni gij

˛

‚,

pgµνq “

¨

˝

´N´2 N´2N j

N´2N i hij ´N´2N iN j

˛

‚, (3.1)

with N “ p´g00q´1{2 the lapse function, N i “ hijNj “ ´g
i0{g00 the shift vector field

and gijh
jk “ δki defines the inverse metric in the 3-space.8 The Lagrangian of GR is

singular because its Hessian matrix is not invertible. In the canonical formalism the
Hamiltonian function is therefore not uniquely defined, indeed any linear combination
of primary constraints (PC), the vanishing of which define the PC surface, may be
added to the Hamiltonian function to give the primary Hamiltonian (PH).
The PH that we start with is the ADM vacuum Hamiltonian plus the primary con-
straints,9

H “

ż

H d3x, (3.2)

with
H “ N HK`N j Hj `λµ0p

µ0, (3.3)

and

HK “ g´1{2pgikgjm ´
1
2gijgkmqp

ijpkm ´ g1{2Rrgs, (3.4)

Hj “ ´2gijp
ik
|k, (3.5)

where λµ0 “ λµ0pxq are arbitrary functions and pµν , HK, Hj and H are 3-densities of
weight ´1 under coordinate transformations in the constant time slice.

3.2 Vacuum canonical equations of motion and constraints

The fundamental Poisson brackets are
!

gµνpxq, p
αβpx1q

)

t“t1
“ 1

2

´

δαµδ
β
ν ` δ

β
µδ

α
ν

¯

δpx´ x1q. (3.6)

Using (3.2)-(3.6), we find the following Canonical equations of motion, [28]

9gij “ 2Ng´1{2
`

pij ´
1
2pgij

˘

` 2Npi|jq, (3.7)

9pij “ ´Ng1{2Gij ` 1
2Ng

´1{2
´

pkmpkm ´
1
2p

2
¯

hij ´ 2Ng´1{2
´

pikp
kj ´ 1

2p p
ij
¯

` g1{2
´

N |ij ´ hijN|k
k
¯

` g1{2
´

g´1{2pijNk
¯

|k
´ 2pkpiN jq

|k, (3.8)

8The signature of the 4-metric is chosen such that g00 ă 0.
9We postpone the discussion of spatial boundary terms until Sec. 3.6.
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with g ” det gij , p ” gijp
ij , Gij “ Rij rgs ´

1
2Rrgsh

ij and Npi|jq ”
1
2pNi|j ` Nj|iq.

Furthermore, because the Lagrangian of GR is singular we have

9gµ0 “ λµ0, (3.9)

and four PC
pµ0 « 0, (3.10)

where the p«q symbol is used to distinguish functions which vanish only on the PC
surface (weakly zero), as opposed to those that vanish throughout all phase space
(strongly zero).
Requiring 9pµ0 « 0 leads to four secondary constraints (SC),

HK « 0, (3.11)

Hj « 0, (3.12)

which will be referred to as the scalar and vector constraint respectively. The propa-
gation of the SC in time give no new constraints.
The coefficients λµ0 in (3.9) represent an arbitrariness in the dynamical evolution be-
cause they are not determined by the EFE (3.7),(3.8),(3.11) and (3.12). In addition to
this, there exists a redundancy in the initial conditions that are physically equivalent.10

All the arbitrariness is due to the freedom in choosing a coordinate system.
The ADM formulation [18] represents a reduced part of the full phase space because
it treats N,N i as functions of gij , p

ij such that they are no longer independent phase
space variables. In this case the primary constraints in (3.3), and equations (3.9) and
(3.10) do not occur, in turn, (3.11) and (3.12) are considered as primary constraints.
For the sake of generality we continue with the full phase space, nevertheless, it can
be shown that the same solution may be found in the reduced ADM formalism.

3.3 Coordinate conditions

According to SD only the conformally invariant spatial degrees of freedom are con-
sidered objective and dynamical. We therefore make the following canonical transfor-
mations to separate these from the gauge degree of freedom residing in the conformal
factor. [29]

ω “ ln

ˆ

g

γ

˙1{3

, (3.13)

p “ gijp
ij , (3.14)

g̃ij “

ˆ

g

γ

˙´1{3

gij , (3.15)

p̃ij “

ˆ

g

γ

˙1{3
`

pij ´ 1
3ph

ij
˘

, (3.16)

where p̃ jj “ 0 and g̃ ” det g̃ij “ γ are strong equations, and where for now γij plays
the role of an arbitrary reference metric. The variable ω represents the conformal

10More generally, physically equivalent points at a specific time. These points are related by transforma-
tions effected by the SC.
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(gauge) degree of freedom and g̃ij the conformally invariant degrees of freedom in gij
respectively. The Poisson brackets of the new variables derive from (3.6),

 

ωpxq, ppx1q
(

t“t1
“ δpx´ x1q,

!

g̃ijpxq, p̃
kmpx1q

)

t“t1
“ δ̃kmi j δpx´ x1q,

!

p̃ijpxq, p̃kmpx1q
)

t“t1
“ 1

3

`

p̃ij h̃km ´ p̃kmh̃ij
˘

δpx´ x1q, (3.17)

with
δ̃kmi j “

1
2

´

δki δ
m
j ` δ

m
i δ

k
j

¯

´ 1
3 g̃ij h̃

km. (3.18)

All other Poisson brackets are zero.
We proceed by introducing coordinate conditions which remove the redundancy in
the initial conditions, allowing us to solve (3.11) and (3.12). By imposing that these
conditions be propagated in time, we are able to determine the arbitrary coefficients
in (3.9) and hence remove all arbitrariness in the system.
In SD we regard ω as a gauge degree of freedom, in the phase space formulation this
is reflected in the (weakly) vanishing of its conjugate momentum,

p « 0, (3.19)

which represents the additional constraint relating the phase space formulations of SD
and ADM.11 [30]
We specialise to spherically symmetric gravitational fields. In terms of our decompo-
sition (3.1), the most general spherically symmetric 4-metric is

ds2 “ ´
`

N2 ´NrN
r
˘

dt2 ` 2A4Nr dr dt`A
4 dr2 `B2 dΩ2

“ ´N2 dt2 `A4 pdr `N r dtq2 `B2 dΩ2, (3.20)

with dΩ2 “ dθ2 ` sin2 θ dφ2 and where all metric components are functions of pr, tq
only. A common choice of spatial coordinates corresponds to choosing B2 « R2, we call
these areal coordinates because the constant-R 2-space is intrinsically indistinguishable
from an ordinary sphere of radius R and invariant area 4πR2. Yet another choice is
B2 « r2A4, accordingly the spatial 3-metric is equal to the flat metric multiplied by a
conformal factor

gij « A4γij , γij “ diagp1, r2, r2 sin2 θq, (3.21)

taking the determinant we find

A4 «

ˆ

g

γ

˙1{3

“ eω, γ “ r4 sin2 θ, (3.22)

where we have used (3.13). In terms of the variables (3.13)-(3.16), the choice (3.21)
takes on a particularly simple form because the conformally invariant degrees of free-
dom residing in (3.15) are completely fixed by (3.21)

g̃ij « γij , (3.23)

11 It is called the maximal slicing gauge, a subset of the CMC gauge where the trace of the extrinsic
curvature of the spatial hypersurface, defined by t “ constant, is zero. In the case where the 3-space is
infinite, we consider the volume inside every finite domain.
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leaving only the gauge degree of freedom ω, which represents the local scale. In ac-
cordance with (5.1), if spherical symmetry is required at all times we also have the
following coordinate conditions that the shift vector field be radial

Nθ “ gtθ « 0, Nφ “ gtφ « 0, (3.24)

which, together with (3.19) and (3.23), comprise 8 weak conditions.12 We need to en-
sure that they are preserved in time, if their time derivatives are not automatically zero,
they impose further constraints and the process repeats itself until no new constraints
appear.

3.4 Propagating the constraint equations

According to (3.9), the preservation in time of (3.24) determines two of the arbitrary
functions, λtθ « 0 « λtφ. Using (3.7) and (3.8) the preservation in time of the constraint
p « 0 gives

9p « 2g1{2
`

NR´N|j
j
˘

« 0. (3.25)

The preservation in time of (3.23) gives

9̃gij ´ 9γij « 2

ˆ

g

γ

˙´1{3
´

Ng´1{2pij `Npi|jq ´
1
3gijh

kmNpk|mq

¯

« 0, (3.26)

where we have used (3.7), (3.15), (3.19) and (3.21). Therefore, we have the following
relation between the spatial momenta and the shift vector

pij « N´1g1{2
´

Npi|jq ´
1
3gijh

kmNpk|mq

¯

, N ‰ 0, (3.27)

such that our coordinate chart will cover the spacetime manifold everywhere except the
surface N “ 0. Substituting (3.27) into (3.12) yields an equation for the shift function

Ni|j
j ´ 1

3N
j
|ji « 0. (3.28)

In general ω, N r and N will be time dependent, however, we choose to simplify our
calculation by taking the trivial solution to (3.28) N r « 0, we then find λµ0 « 0 and
9N « 0. We recognise that our simplification is equivalent to choosing a static spacetime,

accordingly, from (3.27) we find that the spatial momenta must vanish weakly pij « 0.
Equation (3.11) then simplifies to Rrgs « RrA4γs « 0. Using (3.44) with Rrγs “ 0, we
find that (3.11) reduces to the Laplace equation13

A.k
k « 0. (3.29)

Using (3.29) and (3.46), (3.25) yields

pANq.k
k
« 0. (3.30)

12Six conditions followed from demanding spherical symmetry at all times, and a further two due to the
ambiguity associated with choosing two coordinates pr, tq.

13Covariant differentiation with respect to γij is denoted by a dot.
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Lastly we require 9pij « 0, substituting the equations N i « 0, pij « 0, and (3.25) into
(3.8) and setting to zero yields

N |ij ´NRij “ N .ij ´ 2A´1
´

A.iN .j `A.jN .i ´A.kN
.kγij

¯

` 2NA´2
´

AA.ij `A.kA
.kγij ´ 3A.iA.j

¯

« 0, (3.31)

where we have used (3.43) with Rij rγs “ 0, (3.45) and (3.29) to obtain the first equality.

3.5 Solving the constraint equations

We have reduced our canonical equations of motion to 9gij “ 0 and pij “ 0, giving a
stationary spacetime with N and gij functions only of r. The most general solution
satisfying our coordinate conditions (3.19), (3.23) and (3.24) may be obtained for a
general function N r. Our simplifying assumption N r “ 0 led to a static spacetime, in
accordance with Birkhoff’s theorem.
There are no new constraints to be found, we can now treat all our constraints as strong
equations and subsequently solve them. The general solution to (3.29) is A “ b` a{r
for r ‰ 0, with a and b constant. From (3.30) we find N “ pd` c{rq{A, where c and d
are two more constants. Since we have solved two second order equations, we are left
with four integration constants. However, a temporal and radial coordinate rescaling
removes the constants b and d, the solutions then take the following form,

A “ 1`
a

r
,

N “
1` c{r

1` a{r
. (3.32)

Substituting (3.32) into (3.31), and taking either the r r, θ θ or φφ component, we find
that c “ ´a yielding

N “
1´ a{r

1` a{r
, (3.33)

the requirement N ‰ 0 gives r ‰ a. The remaining constant, a, may be interpreted by
going to the weak-field limit, which leads us to consider the spatial boundary terms as
the radial coordinate tends to infinity.

3.6 On-shell Hamiltonian

When the vacuum field equations are satisfied, the value of the primary Hamiltonian
(3.2) is zero due to the constraints. Only spatial boundary terms contribute to the
on-shell Hamiltonian E, [31]

E “ 2

¿

Spr,tq

´

g´1{2Nip
ijrj ´Npk ´ k0q

¯

σ1{2 dθ dφ, (3.34)

where σ “ detσab, a, b “ 1, 2, is the induced metric on the closed 2-surface Spr, tq
which forms the boundary of the 3-space. The unit normal to Spr, tq is the spacelike
vector rj . k is the extrinsic curvature of Spr, tq embedded in 3-space, and k0 is the
extrinsic curvature of a 2-surface of identical intrinsic geometry, but embedded in flat
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3-space.14 For stationary spacetimes pij “ 0 therefore in the spherically symmetric
case only the second term in (3.34) contributes.
The extrinsic curvature is defined as k “ rj |j , and in our case the unit normal is given

by rj “ |grr|
1{2r,j “ p1` a{rq

2 r,j , we find

k “ rj |j “ g´1{2
´

g1{2p1` a{rq´2
¯

,r

“
2

r

´

1`
a

r

¯´2
´

4a

r2

´

1`
a

r

¯´3
.

In order to calculate k0 we need to know how the radial coordinate in the curved space
is related to that used for the flat space. By comparing coefficients of dΩ2 in the curved
and flat metrics we find r2

0 “ r2p1` a{rq4, k0 is therefore given by

k0 “ g
´1{2
0 g

1{2
0 ,r “

2

r0
“

2

r

´

1`
a

r

¯´2
.

The difference in the extrinsic curvatures is then

k ´ k0 “ ´
4a

r2

´

1`
a

r

¯´3
. (3.35)

The induced 2-metric in our case is

σab “
´

1`
a

r

¯4
diagpr2, r2 sin2 θq,

with determinant

σ “
´

1`
a

r

¯8
r4 sin2 θ. (3.36)

Substituting (3.33), (3.35) and (3.36) into (3.34) we find

E “ 8a
´

1´
a

r

¯

¿

Spr,tq

sin θ dθ dφ

“ 32πa
´

1´
a

r

¯

“ 2a´
2a2

r
. (3.37)

In the last equality we are reminded that we employ units in which 16πG “ 1. When
the Einstein field equations are satisfied, equation (3.37) represents the total energy
of the system. Accordingly, in the limit r Ñ 8 we require that it be equal to the
gravitational mass m by choosing the constant a “ m{2,

E “ m´
m2

2r
. (3.38)

We recognise the second term as the energy contribution of the gravitational field,
which has the form of (half) the Newtonian gravitational potential energy.15 The
4-metric is then

ds2 “ ´

ˆ

1´m{2r

1`m{2r

˙2

dt2 ` p1`m{2rq4
`

dr2 ` r2dΩ2
˘

, (3.39)

14The k0 term makes the Hamiltonian finite for non-compact asymptotically flat spacetimes, furthermore
for Minkowski spacetime it makes the Hamiltonian zero.

15It differs in two respects: The radial coordinate employed here is the isotropic coordinate, not the areal
coordinate, however, in the asymptotic region the coordinate values differ by only the constant m. The mass
is the gravitational mass, not the Newtonian mass, again however, in the weak field limit, these quantities
will agree.
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which is the isotropic line element. [32] Both (3.38) and (3.39) appear to superficially
diverge as r Ñ 0. However, we may also notice that (3.39) is in fact invariant under
the following inversion of the radial coordinate

r “
m2

4r1
. (3.40)

The region r Ñ 0 is therefore isometric to another asymptotically flat region using the
coordinate r1, indeed, it leaves invariant

R “ r
´

1`
m

2r

¯2
, (3.41)

where R is the Schwarzschild radial coordinate of the areal coordinate system. The
transformation (3.40) also features in electrostatics using the method of images,16 ap-
plied to a sphere of radius rs “ m{2 equal to the Schwarzschild radius in isotropic
coordinates. [33]
The manifold described by (3.39) covers only the exterior left r ă m{2 and right
r ą m{2 regions of the Kruskal diagram corresponding to R ą 2m. [34,35] Indeed, the
foliation of spacetime with Schwarzschild time coordinate does not penetrate under the
event horizon located at the Schwarzschild radius R “ 2m in areal coordinates. We
restricted our solution to the exterior regions by simultaneously imposing (3.19) and
N r « 0 leading to a stationary solution valid for only the region R ą 2m.17 In contrast,
the interior region R ă 2m is non-stationary and spatially homogeneous (independent
of the radial coordinate); it is well known that the Killing vector field additional to
the three related to spherical symmetry is timelike in the exterior and spacelike in the
interior.

3.7 Shape dynamics interpretation

3.7.1 The conformal constraint

According to the standard spacetime interpretation, the gauge fixings gi0 « 0, gij «
eωγij are equivalent to choosing a spacetime which is diagonal and foliated by 3-spaces
which are manifestly conformally flat. Owing to its contracted tensorial character we
notice that our third condition, p « 0, which was required to enforce that ω be a
gauge degree of freedom, does not restrict the coordinates in the 3-space, indeed, it
corresponds to the requirement that the volume of every 3-space be stationary under
timelike deformations. It is therefore a time coordinate condition and determines how
spacetime is to be divided into space and time.
In contrast, SD interprets this last constraint as a SC which generates conformal trans-
formations in the 3-space by transforming the variable conjugate to p, i.e. ω, considered
to be a gauge degree of freedom. Equation (3.11) determines the conformal factor ω
and accordingly, if SD assumes that the physical dynamics reside on the intersection

16Where the interaction between an electric charge at a distance r from the centre of a conducting sphere
of radius R ă r is equivalent to that of a charge of equal magnitude but opposite sign at a distance R2{r.

17There exist other maximal foliations which are related to (3.39) by a spacetime diffeomorphism that
preserves (3.19), representing a different congruence of observers who are accelerated relative to the static
observers. [36]. The 4-metric in [36] uses a different time coordinate, has a non zero shift, and a lapse that
vanishes at R “ 3m{2.
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where both (3.11) and (3.19) hold, then (3.11) may reasonably be considered a gauge
fixing of (3.19).
The scalar and conformal constraints have therefore swapped roles; the generator of a
symmetry reinterpreted as a constraint which gauge fixes a different symmetry and vice
versa. The two symmetries in question are spacetime refoliation invariance, assumed
in GR, and 3-dim conformal invariance, assumed in SD.

3.7.2 Duration from changing shapes

Our aim was to develop a theory which highlighted the manner in which duration,
as measured by proper time, emerged as a secondary construct from the underlying
conformal degrees of freedom. However, for N ‰ 0, we were able to fix the conformal
degrees of freedom by choosing a conformally flat coordinate system. This is easily
understandable; in SD the objective dynamical degrees of freedom are the evolving
shapes of matter in the universe, by imposing spherical symmetry there is now only
ever one shape allowed, the sphere.
Furthermore, according to (3.28) N r « 0 is an admissible solution yielding a static
spacetime for R ą 2m, such that there is no evolution on the SD phase space. In this
case the remaining non-zero variables are N and ω, which in GR represent physical
gravitational degrees of freedom. On the other hand, in SD, ω is considered to be
a gauge degree of freedom fixed by (3.11) representing a choice of local scale. This
postulate was imposed mathematically in (3.19), the propagation of this led to (3.25)
which, when combined with (3.23) represents a relation between N and ω.
The lapse function relates the coordinate time t to the proper time τ as measured by
an Eulerian observer ; whose 4-velocity is equal to the unit timelike vector n of the
spacelike 3-space Σ, [37]

δτ “ Nδt, N ą 0. (3.42)

The coordinate time also has a physical interpretation, it is equal to the proper time of
an observer with N “ 1. For our calculation, the particular coordinate time found was
the Schwarzschild time; physically equivalent to the proper time of an observer with
pr, θ, φq constant and r Ñ 8. Therefore, (3.42) relates the proper time measured by
Eulerian observers at any r to those with r Ñ8.
The spherically symmetric static solution in SD is considered physically trivial due
to there being no local gravitational degrees of freedom. Equation (3.30) fixes local
duration in terms of the local scale, considered a gauge degree of freedom. The local
scale is determined by the constant a, which in turn is given by the boundary condition
that the total energy be equal to the Schwarzschild mass, see (3.38). Therefore, the
boundary conditions determine the local scale and thence duration.
Asymptotic boundary conditions allow the system to be considered as an isolated sys-
tem, but ultimately we must recognise that, when gravitational phenomena are con-
cerned, there are no truly isolated systems, even though there are many approximately
isolated systems. In a more physically realistic situation the boundary conditions may
be understood as the information contained in the relationship between the system un-
der consideration and the rest of the universe; at infinity they give rise to a coordinate
system, with respect to which local scale and duration may be defined. In this respect
we start to understand how local physics may be determined by the universe at large,
which is the central holistic message at the heart of Mach’s principle. [38]
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3.8 Identities

Transformation identities of the Ricci tensor, Ricci scalar, second covariant derivative
and its contraction under the transformation of the 3-metric gij “ A4γij . Covariant
differentiation with respect to γij is denoted by a dot.

Rij rA4γs “ Rij rγs ´A
´2pA2

.ij ` γijA
2
.k
k
´ 8A.iA.jq, (3.43)

RrA4γs “ A´4pRrγs ´ 8A´1A.j
jq, (3.44)

N|ij “ N.ij ´ 2A´1
´

A.iN.j `A.jN.i ´ γijA.kN
.k
¯

, (3.45)

N|j
j “ A´5

`

AN.j
j ` 2A.jN

.j
˘

. (3.46)
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4 The relation between the Schwarzschild met-

ric and the Isotropic line element

In the last chapter we found (3.39), representing the spherically symmetric solution to
the vaccum EFE. Due to Birkhoff’s theorem we know that this must be locally equiv-
alent to the Schwarzschild solution, in this brief chapter we elucidate the relationship
between the two solutions.
In flat space, r has the standard interpretation of distance, however, generalising to
curved spaces that are spherically symmetric it is best to define r via the equation
A “ 4πr2, where A is the surface area of a sphere that may be measured by observers
on its surface. Hence we refer to pt, r, θ, φq as areal coordinates, where pt, rq constant
describes a 2-space with invariant area A, or alternatively as curvature coordinates
since the 2-space has an intrinsic Gaussian curvature 2{r2. r is related to the isotropic
radial coordinate ρ by the following transformation

r “ ρ

ˆ

1`
m

2ρ

˙2

, (4.1)

with m the gravitational mass. The transformation (4.1) is not injective because for
every r ą 2m, outside the horizon, there are two distinct values of ρ that are mapped
to it,

ρ˘ “
r ´m

2
˘
r

2

c

1´
2m

r
, (4.2)

from which we find

ρ` “
m2

4ρ´
. (4.3)

This inversion maps r to itself, it is an isometry of the isotropic line element,

ds2 “ ´

ˆ

1´m{2ρ

1`m{2ρ

˙2

dt2 ` p1`m{2ρq4
`

dρ2 ` ρ2dΩ2
˘

, (4.4)

which is the spherically symmetric vacuum solution of the Einstein field equations us-
ing isotropic radial coordinate ρ. It is therefore locally isometric to the Schwarzschild
solution.
The coordinates ρ˘ cover two geometrically identical exterior regions where r ą 2m,18

but neither one covers the interior region where r ă 2m, hence (4.1) is also not surjec-
tive, see Figs.3 and 4.
Because (4.1) is not a bijection, the coordinate charts defined using r and ρ seem to
give rise to manifolds that are not everywhere diffeomorphic to each other. However, it
is well known that they cover different regions of the maximally extended Schwarzschild
manifold which may be globally covered, for example by the Kruskal-Szekeres coordi-
nates. [34, 35]

18These regions are often referred to as mirror images of each other, but this is not correct as parity
transformations involve the angular coordinates θ, φ and therefore are not related to (4.3). [39]
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Figure 3: The coordinate mapping from the isotropic radial coordinate ρ to the Schwarzschild
radial coordinate r, with m the gravitational mass.
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Figure 4: The inverse coordinate mapping from the Schwarzschild radial coordinate r to the
the isotropic radial coordinates ρ˘, with m the gravitational mass.
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5 Spherically symmetric vacuum solution to Ein-

stein’s equations in the covariant formulation

In the last two chapters we derived the Isotropic line element (3.39), showed precisely
how it is related to the Schwarzschild solution and explained which part of the maxi-
mally extended manifold it covers. In this chapter we solve the same problem in the
covariant formalism to make clear the relation between the exterior static solution and
the interior solution. We also show explicitly that the EFE only fix the coordinate
independent spacetime geometry, as is well known. This is the reason why one is free
to choose either the isotropic radial coordinate or the Schwarzschild areal coordinate.
The time-independent (exterior) solution to the EFE for a spherically symmetric gravi-
tational field was first found by Schwarzschild and then subsequently by Droste, Hilbert
and Weyl. [32,40–43] Later on it was generalised to the time dependent case by [44–47],
now known as Birkhoff’s theorem: The Schwarzschild metric is the unique vacuum so-
lution with spherical symmetry.
Notation: We assume t to be timelike coordinate and r, θ, φ to be spacelike coordi-
nates. We denote ordinary differentiation by a comma and covariant differentiation
(gµν-compatible) by a vertical line. In this chapter we deliberately do not set the
constants c and G to unity.

5.1 The spherically symmetric EFE in vacuo

The most general spherically symmetric 4-metric of signature p´,`,`,`q is

ds2 “ ´eγ dt2 ` eα dr2 ` eβ dΩ2, dτ “ ´c ds, (5.1)

where τ is the proper time and dΩ2 is the metric on a unit two-sphere,

dΩ2 “ dθ2 ` sin2 dφ2. (5.2)

The ranges of the coordinates are assumed to be

´8 ă t ă 8, 0 ď r ă 8, 0 ď θ ď π, 0 ď φ ă 2π. (5.3)

We assume the EFE with zero cosmological constant Λ “ 0,

Gµν “ Rµν ´
1
2R

σ
σgµν “

8πG

c4
Tµν , (5.4)
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where Gµν is the Einstein tensor. In vacuo Tµν “ 0, hence we start by setting the five
non-zero components of the p1, 1q Einstein tensor Gµν to zero.19

Gtt “ e´γ

˜

β 2
,t

4
`
α,tβ,t

2

¸

` e´α

˜

´β,rr ´
3β 2

,r

4
`
α,rβ,r

2

¸

` e´β “ 0, (5.5)

Grr “ e´α

˜

´
β 2
,r

4
´
β,rγ,r

2

¸

` e´γ

˜

β,tt `
3β 2

,t

4
´
β,tγ,t

2

¸

` e´β “ 0, (5.6)

Gθθ “ Gφφ “ e´α

˜

´
β,rr
2
´
β 2
,r

4
´
γ,rr
2
´
γ 2
,r

4
´
β,rγ,r

4
`
α,rβ,r

4
`
α,rγ,r

4

¸

` e´γ

˜

β,tt
2
`
β 2
,t

4
`
α,44

2
`
α 2
,t

4
`
β,tα,t

4
´
γ,tβ,t

4
´
α,tγ,t

4

¸

“ 0, (5.7)

eαGrt “ ´e
´γGtr “ β,rt `

β,rβ,t
2

´
β,rα,t

2
´
β,tγ,r

2
“ 0. (5.8)

The local solution to eqs. (5.5) to (5.8) depends on whether the hyper surfaces β “
constant are timelike or spacelike, the lightlike case being the limiting case where the
two solutions coincide.20

5.2 Timelike case β “ βprq

First we consider the timelike case, β “ βprq, (5.8) then gives α,t “ 0. Changing
variables to R “ eβ{2 the remaining EFE become

Gtt “ e´α

˜

´
2R,rr
R

´
R 2
,r

R2
`
α,rR,r
R

¸

`
1

R2
“ 0, (5.9)

Grr “ e´α

˜

´
R 2
,r

R2
´
γ,rR,r
R

¸

`
1

R2
“ 0, (5.10)

Gθθ “ Gφφ “ e´α

˜

´
R,rr
R

´
γ,rr
2
´
γ 2
,r

4
`
R,r
2R
pα,r ´ γ,rq `

α,rγ,r
4

¸

“ 0. (5.11)

We will show that only two of these equations are independent, the third being a
consequence of the other two. Subtracting (5.10) from (5.9) we find

α,r ` γ,r “
2R,rr
R,r

. (5.12)

Taking the time derivative of (5.12) gives

γ,rt “ 0, γpr, tq “ fprq ` gptq, (5.13)

such that (5.12) becomes

α,r ` f,r “
2R,rr
R,r

. (5.14)

19See [1] p. 272.
20See [48] p. 370
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Substituting (5.14) into (5.11) yields

f,rr ` f
2
,r “ f,r

ˆ

R,rr
R,r

´
2R,r
R

˙

. (5.15)

Substituting (5.12) into (5.10) gives

R,r “ e´α
`

´α,rRR
2
,r `R

3
,r ` 2RR,rR,rr

˘

“
`

e´αRR 2
,r

˘

,r
, (5.16)

which we may integrate to give

eα “ R 2
,r

´

1´
c1

R

¯´1
, (5.17)

for R ą |c1| where c1 is a constant in spacetime. By integrating (5.14) we find

eα`f “ c2R
2
,r, (5.18)

where c2 ą 0 is another constant in spacetime. Substituting (5.49) into (5.18) yields

ef “ c2

´

1´
c1

R

¯

, (5.19)

valid for R ą |c1|. Let us take stock of what we have found so far. Our three equations
are now given by (5.15), representing a differential equation between γ and R, (5.49),
a differential equation between α and R, and (5.19) an algebraic relation between f
and R. We may differentiate (5.19) once and twice yielding

f,re
f “

c1c2R,r
R2

, (5.20)

ef
`

f,rr ` f
2
,r

˘

“ c1c2

˜

R,rr
R2

´
2R 2

,r

R3

¸

. (5.21)

Dividing (5.21) by (5.20) we find

f,rr ` f
2
,r “ f,r

ˆ

R,rr
R,r

´
2R,r
R

˙

, (5.22)

which is precisely (5.15), showing that it is not an independent equation, but is a
consequence of (5.19). This, in turn, is because the Einstein tensor satisfies the twice-
contracted Bianchi identities,

Gµν |ν “ 0, (5.23)

representing four differential identities which reduce the number of independent EFE
to only six. Using (5.13) we have

eγ “ c2

´

1´
c1

R

¯

eg, (5.24)

hence the general solution that we have found is

ds2 “ ´c2

´

1´
c1

R

¯

eg dt2 `
´

1´
c1

R

¯´1
R 2
,r dr

2 `R2 dΩ2, (5.25)
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for R ą |c1|. This solution was shown independently by Combridge and Jannes [49–51]
for the time independent case g,t “ 0. Since R “ Rprq and g “ gptq represent two
undetermined functions, the spherically symmetric vacuum EFE represent an undeter-
mined system. This is appropriate since the EFE fix only the coordinate-independent
degrees of freedom, whereas the function Rprq and gptq must be determined by the
choice of radial coordinate r and time coordinate t. A particularly simple choice for r
is the function R itself. Using the chain rule of differentiation we have

R,r dr “
dR

dr
dr “ dR, (5.26)

and we may define a new time coordinate t1

t1 “

ż

eg{2 dt, (5.27)

relabelling t1 Ñ t and RÑ r (5.25) becomes

ds2 “ ´c2

´

1´
c1

r

¯

dt2 `
´

1´
c1

r

¯´1
dr2 ` r2 dΩ2, (5.28)

where |c1| ă r ă 8.

5.2.1 Boundary conditions

Since we have solved a system of differential equations, the highest order of which was
second order, we have in our general solution (5.28) two integration constants. The
first, c1, has dimensions of length, the second, c2, has dimension velocity squared. In
order to determine the constants we require two boundary conditions. First consider
the radial lightlike paths, hence we set dθ “ 0, dφ “ 0 and ds2 “ 0 in (5.28),

´ c2

´

1´
c1

r

¯

dt2 `
´

1´
c1

r

¯´1
dr2 “ 0; (5.29)

which gives
ˆ

dr

dt

˙2

“ c2

´

1´
c1

r

¯2
. (5.30)

Our first boundary condition is to impose that in the limit

c1

r
Ñ 0,

ˆ

dr

dt

˙2

Ñ c2, (5.31)

from which we conclude that
c2 “ c2, (5.32)

allowing us to interpret the coordinate t as the proper time of an observer in the limit
(5.31) and pr, θ, φq constant.
The second boundary condition may be provided by by requiring agreement with New-
tonian theory in the weak gravitational field limit.

c1 “
2Gm

c2
” Rs, (5.33)
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with m the active gravitational mass and Rs the Schwarzschild radius. With our
integration constants determined, we have the following particular solution

ds2 “ ´

ˆ

1´
Rs
r

˙

c2 dt2 `

ˆ

1´
Rs
r

˙´1

dr2 ` r2 dΩ2, (5.34)

which is the Schwarzschild metric for r ą Rs, hence Birkhoff’s theorem has been
proven.

5.3 Spacelike case β “ βptq

In the case where β “ βptq, (5.8) then gives γ,r “ 0. Changing variables to T “ eβ{2

the EFE become

Gtt “ e´γ

˜

T 2
,t

T 2
`
α,tT,t
T

¸

`
1

T 2
“ 0, (5.35)

Grr “ e´γ

˜

´
2T,tt
T

`
T 2
,t

T 2
´
γ,tT,t
T

¸

`
1

T 2
“ 0, (5.36)

Gθθ “ Gφφ “ e´γ

˜

T,tt
T
`
α,tt
2
`
α 2
,t

4
`
T,t
2T
pα,t ´ γ,tq ´

α,tγ,t
4

¸

“ 0. (5.37)

As before we will show that only two of these equations are independent, the third
being a consequence of the other two. Subtracting (5.36) from (5.35) we find

α,t ` γ,t “
2T,tt
T,t

. (5.38)

Taking the derivative of (5.38) with respect to r gives

α,rt “ 0, αpr, tq “ fprq ` gptq, (5.39)

such that (5.38) becomes

g,t ` γ,t “
2T,tt
T,t

. (5.40)

Substituting (5.42) into (5.37) yields

g,tt ` g
2
,t “ g,t

ˆ

T,tt
T,t

´
2T,t
T

˙

. (5.41)

Substituting (5.38) into (5.35) gives

T,t “ e´γ
`

γ,tTT
2
,t ´ T

3
,t ´ 2TT,tT,tt

˘

“
`

e´γTT 2
,t

˘

,t
, (5.42)

which we may integrate to give

eγ “ ´T 2
,t

´

1´
c1

T

¯´1
, (5.43)
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for T ă |c1| where c1 is a spacetime constant. By integrating (5.42) we find

eg`γ “ c2T
2
,t , (5.44)

where c2 ą 0 is another spacetime constant. Substituting (5.43) into (5.44) yields

eg “ ´c2

´

1´
c1

T

¯

, (5.45)

valid for T ă |c1|. Let us take stock of what we have found so far. Our three equations
are now given by (5.41), representing a differential equation between g and T , (5.43), a
differential equation between γ and T , and (5.45) an algebraic relation between g and
T . We may differentiate (5.45) once and twice yielding

g,te
g “

c1c2T,t
T 2

, (5.46)

eg
`

g,tt ` g
2
,t

˘

“ c1c2

˜

T,tt
T 2

´
2T 2

,t

T 3

¸

. (5.47)

Dividing (5.47) by (5.46) we find

g,tt ` g
2
,t “ g,t

ˆ

T,tt
T,t

´
2T,t
T

˙

, (5.48)

which is precisely (5.41), showing that it is not an independent equation, but is a
consequence of (5.45). Using (5.39) we have

eα “ ´c2

´

1´
c1

T

¯

ef , (5.49)

hence the general solution that we have found is

dτ2 “

´

1´
c1

T

¯´1
T 2
,t dt

2 ´ c2

´

1´
c1

T

¯

ef dr2 ` T 2 dΩ2, (5.50)

for T ă |c1|. Using the chain rule of differentiation we have

T,t dt “
dT

dt
dt “ dT, (5.51)

and we may define a new radial coordinate r1

r1 “

ż

ef{2 dr, (5.52)

relabelling r1 Ñ r and T Ñ t (5.50) becomes

dτ2 “

´

1´
c1

t

¯´1
dt2 ´ c2

´

1´
c1

t

¯

dr2 ` t2 dΩ2, (5.53)

where ´8 ă t ă |c1|. Matching this local solution to the previous one as t Ñ |c1|
determines the constants c1 and c2 giving the particular solution

dτ2 “

ˆ

1´
Rs
t

˙´1

dt2 ´

ˆ

1´
Rs
t

˙

c2 dr2 ` t2 dΩ2, (5.54)

which is the Schwarzschild metric for r ă Rs [48].
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5.4 Discussion

In 1960 Kruskal and Szekeres [34, 35] gave a coordinate system that was in a one-
to-one correspondence with all spacetime points of the maximally extended manifold.
The two local solutions considered here can be matched at the event horizon r “ Rs to
form part of this maximal manifold. The number of solutions to (5.4) are infinite on
account of the four arbitrary coordinates that may be chosen. The solution we have
found describes three qualitatively distinct physical scenarios which, due to spherical
symmetry, are distinguished by only the ratio R{Rs, where R is the radius of the
gravitating body, they are

R ă Rs, R ą Rs, R “ Rs. (5.55)

Systems that may be described by these solutions include: For the first, a non-rotating
spherical black or white hole, the second could describe a non-rotating (but possibility
radially pulsating) spherical star and the third is the point where the two solutions
meet, which could describe the instantaneous state of a star collapsing to a black hole.
In order to understand this last situation in greater detail, the next section analyses
the simplest such case where a star is modelled by a thin spherical shell collapsing
under its own gravitational attraction.
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6 Thin shell dynamics

Having successfully found the static maximal foliations of the spherically symmetric
vacuum spacetime and recognising that there exist non-static slices that also admit
a SD solution,17 we move on to the non-vacuum case by considering a thin spherical
shell in vacuo. In the context of general relativity the dynamics of a thin shell has
been studied by many and is understood fairly well. [28,52–58] In this chapter we give
a review of the subject by deriving the equations of motion for a thin spherical shell
embedded in a spherically symmetric spacetime using the static maximal foliation that
will necessarily admit a SD solution. We then solve the equations of motion for the
simplest case of a single shell, composed of dust, in vacuo. We employ units in which
c “ 1 “ 16πG.

6.1 Junction conditions

Let the time-like 3-space Σ be the history of a thin spherical shell of matter which
divides spacetime into two distinct four-dimensional manifolds V ˘ mapped by inde-
pendent coordinate charts xµ˘ and with metrics21

ds2
˘ “ gµνdx

µdxν |˘. (6.1)

Their common boundary Σ is described by the following intrinsic 3-metric

ds2
Σ “ hijdζ

idζj , (6.2)

where ζi are the intrinsic coordinates of Σ. The intrinsic 3-metric is induced on Σ by
each of the 4-geometries via

hij “ gµνe
µ
i e
ν
j , eµi “

Bxµ

Bζi
, (6.3)

where eµi are the basis vectors22 tangent to Σ.
Our first junction condition requires (6.3) to be equal on either side of Σ,

rhijs “ h`ij ´ h
´
ij ” hijpV

`q|Σ ´ hijpV
´q|Σ “ 0. (6.4)

This is certainly required if Σ is to have a well-defined geometry.
In general the extrinsic curvature Kij will differ in V ` and V ´ in the presence of a
shell of matter. Our second junction condition therefore relates the jump in Kij across
Σ to the surface stress-energy tensor Sij of the shell,23

´ 8πSij “ rKijs ´ hijrKs, (6.5)

where K “ hijKij . We notice that (6.5) is the surface analogue of the Einstein field
equations (EFE),

8πTµν “ Gµν , (6.6)

21Greek indices range over 0, 1, 2, 3 and Latin indices 0, 2, 3.
22More correctly, the components of the basis vectors.
23Geometric unit system G “ 1 “ c.
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which holds in the surrounding continuous medium, where Gµν “ Rµν ´
1
2R

σ
σgµν is the

Einstein tensor. Indeed, both can be derived from the principle of stationary action
using

S “ SG ` SM ,

as the total action with gravitational part24

16πSG “

ż

V´Σ
Rσσ
?
g d4x´ 2

ż

Σ
rKs

?
h d3y, (6.7)

where V ” V ` Y V ´, g “ |det gµν | and h “ |dethij |. The thin spherical shell of
matter is represented by a timelike boundary Σ with common unit normal vector nµ,
directed from V ´ to V `. Performing a variation of (6.7) with respect to the inverse
metric gµν leads to

16πδSG “

ż

V ˘´Σ
Gµνδg

µν?g d4x´

ż

Σ
rKij ´ hijKsδh

ij
?
h d3y, (6.8)

Variation of the material part SM gives

SM “ 1
2

ż

V ˘´Σ
Tµνδg

µν?g d4x´ 1
2

ż

Σ
Sijδh

ij
?
h d3y, (6.9)

where Tµν corresponds to the surrounding continuum and Sij to the shell. In the
standard derivation of (6.6) by a variational principle, the second term in (6.8) vanishes
because Σ is considered to be the enclosing boundary of the entire spacetime on which
one requires δhij “ 0. In our case we allow non-zero variations of the metric on Σ,
requiring then that δS “ 0 gives both (6.5) and (6.6).
By contracting the Gauss-Codazzi equations we find the following relations between
the extrinsic curvatures K˘

ij and the normal components of the Einstein tensor on Σ,

´2Gµνn
µnν |˘ “ 3R`KijKij ´K

2|˘, (6.10)

Gµνe
µ
j n

ν |˘ “ Ki
j |i ´K,j |

˘, (6.11)

where the vertical bar denotes hij-compatible covariant differentiation and 3R is the
intrinsic curvature invariant of Σ. Using (6.5) and (6.6), we can write (6.10) and (6.11)
in the following form,

Sij
´

K`
ij `K

´
ij

¯

“ 2 rTµνn
µnνs , (6.12)

Si
j
|j “ ´2 rTµ

νeµi nνs . (6.13)

It has be shown that equation (6.12) expresses the normal force acting on the respective
sides of the shell as a consequence of the gravitational self-attraction. Equation (7.7)
is an energy conservation law, describing the response of the shell to energy fluxes and
stresses from the surrounding continuum.

24Equation (6.7) assumes that the entire spatial 3-volume is a closed manifold. Also assumed is the
existence of coordinates near Σ such that a discontinuity occurs only in the first derivative of gµν at Σ. [59]
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6.2 Equation of motion

We are concerned with the specific case of a spherical shell moving in a spacetime with
interior and exterior 4-metric given by

ds2
˘ “ ´f˘pr˘qdt

2
˘ ` f

´1
˘ pr˘qdr

2
˘ ` r

2
˘ dΩ2

˘, (6.14)

where t˘ “ constant are static maximal slices and dΩ2 “ dθ2` sin2 θ dφ2 is the metric
on a unit two-sphere. The history of the shell represents a time-like hypersurface Σ
which we parameterise as follows

t “ T pτq,

x “ Rpτq sin θ cosφ,

y “ Rpτq sin θ sinφ,

z “ Rpτq cos θ, (6.15)

or in spherical coordinates

r “
a

x2 ` y2 ` z2 “ Rpτq, (6.16)

where R “ Rpτq is the shell’s radius and τ is the proper time for observers with
coordinates ζi “ pτ, θ, φq comoving with the shell. In terms of these coordinates the
intrinsic metric (6.2) is given by

ds2
Σ “ ´dτ

2 `R2dΩ2. (6.17)

Using (6.3) and (6.4) we find the following relations

f˘pRq 9t˘ “ λ

b

f˘pRq ` 9R2, (6.18)

where λ “ sgnpnuBµrq “ ˘1 determines whether r increases or decreases in the direc-
tion of nµ from V ´ to V `. Equation (6.18) may be integrated to find t˘pτq. We find
that (6.4) also requires r˘ “ r and θ˘ “ θ and φ˘ “ φ. The unit tangent vi to Σ is
defined as the unit vector in the timelike eigen-direction of the surface stress-energy
tensor,

Sijv
j “ ´σvi, vivi “ ´1, (6.19)

where σ “ σpRpτqq is the proper surface energy, i.e. the surface energy in the rest
frame of the shell. From (6.5) and (6.19) it follows that

´ 8πσ “ rKijsv
ivj ` rKs. (6.20)

In terms of the coordinates of Σ we have

vi ” dζi{dτ “ p 9τ , 9θ, 9φq “ p1, 0, 0q. (6.21)

Using (6.21) and (6.17), (6.20) simplifies to

rKθθs “ ´4πR2σ ” ´Mpτq, (6.22)

where M is the total proper mass, equal to the sum of the masses of the constituent
particles of the shell M0, when infinitely dispersed and at rest, plus the internal thermal
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energy of the shell U , i.e. M “ M0 ` U . The thermal energy of the shell is due to
the random transversal kinetic motion of the particles in the shell. The four-velocity
uµ ” dxµ{dτ is as follows

uµ˘ “ p 9t˘, 9R, 0, 0q. (6.23)

Substituting (6.23) into the identities uµuµ “ ´1, nµnµ “ 1 and uµnµ “ 0 we find

n˘µ “ λp´ 9R, 9t˘, 0, 0q, (6.24)

The extrinsic curvature tensor Kij is defined as the projection of the covariant deriva-
tive of the unit normal vector nµ onto Σ,

Kij ” nµ;νe
µ
i e
ν
j , (6.25)

where the semicolon denotes gµν-compatible covariant differentiation. Substituting
(6.24) into (6.25) and using (6.18) we find

K˘
θθ “ λR

b

f˘pRq ` 9R2. (6.26)

Substituting (6.26) into (6.22) yields the equation of motion of the shell,

λ

b

f´pRq ` 9R2 ´ λ

b

f`pRq ` 9R2 “
M

R
, (6.27)

which follows directly from (6.5) and the requirement of spherical symmetry, in par-
ticular, no explicit form of the surface energy was assumed. Upon squaring equation
(6.27) we find

f´pRq ´ f`pRq “
2λM

R

b

f˘pRq ` 9R2 ˘
M2

R2
. (6.28)

Specialising to the case of an electrically neutral shell of total gravitational mass, the
Birkhoff theorem dictates that the regions V ˘ are given by the Schwarzschild manifold
giving

mΣ “ λM

b

f˘pRq ` 9R2 ˘
M2

2R
(6.29)

where mΣ “ m` ´ m´, and f˘ “ 1 ´ 2m˘{r in the regions V ˘.25 Equation (6.29)
shows that all forms of energy contribute to the total gravitational mass of the shell,
however, although it permits a splitting of the inertial and gravitational terms, we
must remember that in the general theory of relativity this split is arbitrary, that is, it
depends on the frame of reference in accordance with the equivalence principle. Indeed,
we may multiply (6.27) by M{2, upon substituting the result into (6.29) we find

mΣ “ λ
M

2

ˆ

b

f`pRq ` 9R2 `

b

f´pRq ` 9R2

˙

, (6.30)

where the distinction between inertial and gravitational terms has disappeared.

6.3 A single shell in vacuo

By assuming the interior region V ´ to be the Minkowski manifold m´ “ 0, 26 we
further specialise to the case of a single shell of total gravitational mass m` “ m in
empty space.27 Both equations given in (6.29) are equally valid and are a consequence

25Interchanging ˘ requires also changing the sign of λ.
26This can be understood by taking the limit r Ñ 0, the ratio of the circumference of a small circle to its

radius should be 2π, this enforces m´ “ 0, hence the interior metric must be flat.
27We choose r to increase in the direction nµ, i.e. from V ´ to V `, thus λ “ `1.
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of (6.27), however, in the literature the negative sign equation appears more frequently
because its terms are recognisable from special relativity and Newtonian theory,

m “M

b

1` 9R2 ´
M2

2R
. (6.31)

The first term on the right-hand side is the shell’s relativistic inertial mass-energy,
which in the classical limit dR{dt˘ ! 1 comprises exactly the rest mass and kinetic
energy of the shell.
The second term is a potential energy term due to the binding of the shell; it is the
negative of the work done by the gravitation field in moving the shell to a radius R
from infinity. Notice that it is exactly half the Newtonian potential energy, reflecting
the fact that the shell responds to the average field on either side of the hypersurface
Σ.

6.4 Conservation equations

The EFE (6.6) require all geometries with metrics of the form (7.3) to have Tt
t “ Tr

r.
Substituting (6.24) and Tµ

ν into (7.7) and using eµi nµ “ 0 we find

Sij |j “ 0. (6.32)

Thus for spherically symmetric spacetimes, any pressures due to the surrounding con-
tinuum do no work, as a result the total internal energy of the shell is locally conserved.

6.5 Pressureless fluid (dust)

Let us first consider the simplest of all continua namely dust, which, on Σ, is defined
by the surface stressless energy tensor

Sij “ σvivj . (6.33)

From the normalisation (6.19) we have

viv
i
|j “ 0. (6.34)

To investigate the streamlines of dust, we substitute (6.33) into (7.9) and obtain

pσvjq|jv
i ` σvjvi|j “ 0. (6.35)

After multiplying by vi and using (6.34) we find that

pσvjq|j “ 0, (6.36)

and so by (6.35)
vjvi|j “ 0. (6.37)

Equation (6.37) expresses that for dust the streamlines are geodesics. Using (6.17) we
find

pσviq|i “
1
?
h
p
?
hσviq,i “ 9σ ` 2σ

9R

R
“ 0, (6.38)

where h “ R4 sin2 θ. The solution to equation (6.38) is σpτq “ σ0{R
2pτq with σ0 a

constant. Substituting this into (6.22) reveals that the proper mass of the shell is a
conserved quantity, Mpτq “ 4πσ0 ”M0; equal to the mass of each free particle of dust
at rest, multiplied by the number of particles in the shell.
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6.6 Perfect fluid

Next in order of simplicity comes the perfect fluid which, on Σ, is defined by two
quantities, σ and an isotropic rest frame surface pressure p. Due to spherical symmetry,
the two eigenvalues of the stress-energy tensor corresponding to spacelike eigenvectors
must be equal, therefore the material comprising a thin spherically symmetric shell is
necessarily a 2-dim perfect fluid. Its surface stress-energy tensor is

Sij “ pσ ` pqvivj ` phij . (6.39)

Comparison of (7.8) with (6.33) shows that a perfect fluid degenerates into dust when
p tends to zero. To investigate its motion, we substitute (7.8) into (7.9) and obtain

rpσ ` pqvjs|jvi ` rpσ ` pqv
jsvi|j ` p|i “ 0. (6.40)

On multiplying by vi and using (6.34) we find

pσviq|i “ ´pv
i
|i, (6.41)

which states that the rate of increase of surface energy is equal to minus the rate of
work done by the pressure in expanding the shell. Using (6.17) we find

9σ “ ´2
9R

R
pσ ` pq. (6.42)

Using (6.22) we can rewrite (6.42) as

dM “ dU “ ´p dp4πR2q. (6.43)

From which we note that in contrast to dust, the proper mass of an element of a fluid
under surface pressure changes with time.
Due to (6.22), we see that equations (6.42) and (6.31) contain three unknown functions
R, σ and p. Therefore, they become a closed set once a further equation of state of the
form p “ ppσq has been given.28 The motion of the shell is then determined, with M0

and m the constants of motion.

6.7 The motion of a shell composed of dust

Let us postpone the investigation of the perfect fluid for future work, and consider now
the simpler case where the shell is made of dust, then p “ 0 and the proper mass of
the shell M “M0 is a constant of motion. Let us also assume that both m and M0 are
strictly positive, hence so is their ratio a “ m{M0. Equation (6.31) can be rewritten
as follows,

1` 9R2 “

´

a`
m

2aR

¯2
. (6.44)

We distinguish three cases a ă 1, a ą 1 and a “ 1 corresponding respectively to a shell
with positive, negative and zero binding energy Ebin “M0 ´m.

28A fluid whose pressure is a function of only density is called a barotropic fluid.
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6.8 Positive binding energy m ăM0

For a ă 1, (6.44) shows that there exists a non-trivial solution pm ‰ 0q where the
velocity is permitted to vanish. The stationary point will occur at a maximum radius
given by

Rmax “
m

2ap1´ aq
. (6.45)

Differentiating (6.45) w.r.t a and setting to zero, we find that at a “ 1{2, Rmax has the
extremal value Rs “ 2m equal to the Schwarzschild radius. The second derivative at
a “ 1{2 is positive, therefore it is a minimum; this is understandable since a stationary
value 9R “ 0 for R ă Rs would require the shell to have a spacelike 4-velocity, prohibited
for a massive shell M0 ą 0.29 In view of (6.45) we choose to parameterise the radius
in the following way,

Rpxq “ Rmax
x` a

1` a
, ´a ď x ď 1. (6.46)

The integration of (6.44) yields τpxq,

τpxq “ ˘
m

2ap1´ a2q3{2

´

a sin´1 x´
a

1´ x2
¯

` τ0, (6.47)

where τ0 is a constant of integration. We plot in parametric form the motion of the
shell with respect to proper time R˚ “ R{Rs for a “ 0.9, see Fig. 6. For a ă 1 we may
calculate the amount of proper time taken for the shell to collapse from Rmax to zero,

τcolpaq “
m

2ap1´ a2q3{2

´

a sin´1p1q ` a sin´1paq `
a

1´ a2
¯

, (6.48)

which we have plotted as a function of a, see Fig. 5.30

6.9 Negative binding energy m ąM0

For a ą 1, (6.44) shows that the velocity is not permitted to vanish for non-trivial
solutions, therefore, we choose to parameterise the radius in the following way,

Rpxq “ Rmax
a´ x

1` a
, a ď x ă 8. (6.49)

The integration of (6.44) yields τpxq,

τpxq “ ˘
m

2apa2 ´ 1q3{2

´

a ln |x`
a

x2 ´ 1| ´
a

x2 ´ 1
¯

` τ0, (6.50)

where τ0 is a constant of integration. We plot in parametric form the motion of the
shell with respect to proper time R˚ “ R{Rs for a “ 1.1, see Fig. 6.

29We may also see this from (6.27), since for 9R “ 0 and R ă 2m, f ă 0 hence we obtain a negative number
inside the square root.

30Both Rmax and τcol Ñ8 as aÑ 0, 1 .
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Figure 5: Normalised proper time τ˚col “ τcol{Rs taken for the shell to collapse from Rmax to
zero as a function of a “ m{M0.

6.10 Zero binding energy m “M0

For a “ 1, (6.44) shows that the velocity is permitted to vanish only as R Ñ 8,
it is obviously the limit where the previous two solutions coincide. In this case we
parameterise the radius as follows,

Rpxq “
m

4
x, 0 ď x ă 8. (6.51)

The integration of (6.44) yields τpxq,

τpxq “ ˘
m

12
px´ 2q

?
x` 1` τ0, (6.52)

where τ0 is a constant of integration. We plot in parametric form the motion of the
shell with respect to proper time R˚ “ R{Rs for a “ 1.0, see Fig. 6.

-10 -5 0 5 10
τ*

2

4

6
R*

a=1.1
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a=0.9

Figure 6: Normalised shell radius R˚ “ R{Rs as a function of τ˚ “ τ{Rs with τ proper time,
a “ 0.9, 1.0 and 1.1, Rp0q “ 0 and Rs “ 2m.
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6.11 Discussion

Figure 6 clearly shows the similarity between the results of the motion of a dust shell
and the spatially homogenous and isotropic FLRW dust models, where there the pa-
rameter analogous to a is the constant spatial curvature of the constant time slices.31

For positive and negative binding energies, the radius may also be parameterised using
a parameter ξ related to x by

x “ ´ cos ξ, a ă 1, (6.53)

x “ ´ cosh ξ, a ą 1. (6.54)

In this parameterisation, (6.46), (6.47) and (6.49), (6.50) are given respectively by

R “ R0pa´ cos ξq, τ “ R0pξ ´ sin ξq ` τ0, a ă 1, (6.55)

R “ R0pa´ cosh ξq, τ “ R0pξ ´ sinh ξq ` τ0, a ą 1, (6.56)

where R0 is a constant function of a and m, as before τ0 is a constant of integration.32

Equations (6.55) and (6.56) show that the solution for a ą 1 can be obtained from
a ă 1 by taking ξ Ñ iξ and τ Ñ iτ .

6.12 Shape dynamics interpretation

Using (6.55) and (6.56) the solution for t˘pξq can be obtained from (6.18) with f´ “ 1
and f` “ 1´2m{R. A noteworthy example is Rpt`q, because the spatial slices defined
by t` “ constant are maximal and therefore permit a SD solution. We have plotted
Rpt`q for a “ 0.88, see Fig. 7.33 From (7.3) we know that t` corresponds physically
to the proper time of an observer moving at constant pr, θ, φq as r Ñ 8, therefore in
GR the interpretation is straightforward; an observer at infinity never actually sees
the shell enter its Schwarzschild radius, indeed, it is well known that the coordinate t`
becomes singular on the Schwarzschild sphere r “ Rs.
In SD the interpretation could be different if the coordinate t` is given a different
physical interpretation. The problem seems to be that the evolution of the shell with
respect to its proper time can only be considered in SD if the proper time defines a
CMC foliation. The question of how to interpret, in SD, the evolution of the shell after
it reaches its Schwarzschild sphere is currently under investigation. [61]

6.13 Null shell limit

Lastly, there exists a non-trivial solution for M Ñ 0, a Ñ 8 and aM Ñ m; it is
the limit of a null-shell. Equation (6.18) does not apply in this case since the history
of the shell is no longer time-like, it is a null hypersurface, hence τ “ 0. However,
setting (7.3) to zero and subsequently integrating, we find the following equations for

31See [60] p.722.
32Incidentally (6.55) is the equation of a cycloid; the curve traced out by a point on the circumference of

a circle rolling in a horizontal straight line, see Fig. 6, a “ 0.9.
33Compare with [61] where the same solution was found by solving the equations of motion in the 3 ` 1

ADM decomposition and using a twin shell model to select the particular static maximal foliation.
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a spherically symmetric shell of photons,

R “ |t´| ` t´0, (6.57)

R` 2m lnpR´ 2mq “ |t`| ` t`0, (6.58)

where t˘0 are constants of integration. In (6.58) we again notice the singular nature
of the exterior coordinate t` at R “ 2m.

-20 -10 0 10 20
(t+)

*

0.5

1.0

1.5

2.0

2.5
R*

Figure 7: Normalised shell radius R˚ “ R{Rs as a function of t˚` “ t`{Rs with t` exterior
time, a “ 0.9, Rp0q{Rs “ Rmax and Rs “ 2m.
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7 Effective thin shell dynamics

In the previous chapter we were able to simplify the study of thin shell dynamics by
imposing spherical symmetry. By doing so we reduced the dynamics to a problem
involving only one degree of freedom; the radius of the shell Rpτq. This warrants a
search for a p1 ` 1q effective action whose corresponding Hamiltonian generates the
same evolution as its p3` 1q counterpart.34

7.1 Total action

We begin with the following total p3` 1q action

S “ SG ` SM ,

with gravitational part

SG “

ż

V´Σ
Rµ
µ

?
g d4x´ 2

ż

Σ
rKs

?
h d3y, (7.1)

and matter part

SM “ ´

ż

V´Σ
ρ
?
g d4x´

ż

Σ
σ
?
h d3y, (7.2)

where V ” V ` Y V ´ represents our spacetime with g “ |det gµν | and h “ |dethij |. ρ
is the energy density in V ´ Σ and σ the surface energy density of the spherical shell,
represented by a timelike boundary Σ with common unit normal vector nµ, directed
from V ´ to V `, and extrinsic curvature Kij , with trace K “ hijKij where

rKs “ K` ´K´ ” KpV `q|Σ ´KpV
´q|Σ,

represents the jump discontinuity across Σ. Once again, we are concerned with the
specific case of a spherical shell moving in a spacetime with metric

ds2
˘ “ ´f˘dt

2
˘ ` f

´1
˘ dr2 ` r2 dΩ2, (7.3)

where t˘ “ constant are static maximal time slices and dΩ2 “ dθ2 ` sin2 θ dφ2 is
the metric on a unit two-sphere, f˘ “ 1 ´ 2m˘{r, with m˘ the Schwarzschild mass
corresponding to V˘. We have the following two junction conditions

E˘ ” f˘pRqt˘ τ “ λ
a

f˘pRq `R2
τ , (7.4)

rEs “ ´M
R
, (7.5)

where λ “ sgnpnuBµrq “ ˘1 determines whether r increases or decreases in the di-
rection of nµ from V ´ to V `, the subscript τ indicates d{dτ with τ the proper time,
M “ 4πR2σ is the proper mass of the shell, and E may be interpreted as the energy
per unit rest mass of a particle in the shell.
Equation (7.4) is obtained by requiring the induced metric hij to be continuous across

34The effective action idea came from [62] Appendix: Review of shell dynamics. Many of the equations
given there are reused in this chapter.
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Σ. Equation (7.5) relates the discontinuity of the extrinsic curvature across Σ to the
proper mass of the shell, since

K θ
θ “

E
R
.

By squaring (7.5), we can write it in either of the two forms p˘q,

M

R

ˆ

2E˘ ˘
M

R

˙

“ f´ ´ f`,

addition gives
2M

R
Ē “ f´ ´ f`, (7.6)

where Ē ” 1
2 pE` ` E´q, subtraction gives again (7.5).

As well as the junction conditions (7.4) and (7.5), we have the following conservation
equation for metrics of the form (7.3),

Si
j
|j “ ´2 rTµ

νeµi nνs “ 0, (7.7)

where Tµν is the stress-energy tensor of V , Sij is the surface stress-energy tensor of
Σ and eµi are the tangent basis vectors of Σ. A spherically symmetric thin shell is
necessarily a 2-dim perfect fluid with isotropic proper surface pressure p. Its surface
stress-energy tensor is

Sij “ pσ ` pqvivj ` phij , (7.8)

where vi is the unit tangent to Σ. Substituting (7.8) into (7.7) we find that the proper
mass obeys the following conservation equation

dM “ ´p dp4πR2q. (7.9)

7.2 Effective action

We obtain an effective action for a shell in vacuo, i.e. ρ “ 0 and Rµ
µ “ 0 in V ´ Σ, by

retaining only the non-geometrical parts residing in (7.2),

I “ ´

ż

M dτ, (7.10)

which we recognise as the action of a relativistic particle with variable proper mass.
The standard Euler-Lagrange variation for the relativistic particle action starts by
substituting for the infinitesimal separation dτ ,

dτ “

ˆ

´gµν
dxµ

dξ

dxν

dξ

˙1{2

dξ

where ξ is some arbitrary parameter. Since the system is reparameterisation invari-
ant, the canonical Hamiltonian will be zero, the primary Hamiltonian is given by the
primary constraint,

M2 ` gµνp
µpν “ 0,

which we recognise as the mass shell condition. In order to fix the Lagrangian we
require a time coordinate which is invariant under variation of the shell’s worldline;
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for this reason the proper time is inadmissible. We choose instead to parameterise the
worldline of the shell with a static observer’s time split evenly between t˘:

I “

ż

Ldt, L “ ´M
f

E
, (7.11)

where t̄ ” pt` ` t´q {2 and we have made use of (7.4). Since t˘ “ constant are both
maximal foliations the foliation t̄ “ constant will also be maximal and will therefore
permit a SD solution.
The corresponding conjugate radial momentum and canonical Hamiltonian are given
respectively by

P “
BL

BRt
“
M

f
Rτ , (7.12)

H “ PRt ´ L “ME . (7.13)

Hamilton’s equation of motion for the momentum,

P̄t̄ “ tP̄ , H̄u,

yields an identical equation to the total time derivative of (7.6). Hence the equations
of motion, obtained using the effective action (7.11), ensure the propagation in time of
the junction condition (7.5). Substituting (7.6) into (7.13) we find that H̄ is equal to
the total energy of the shell,

H̄ “ m` ´m´ “ mΣ, (7.14)

which is conserved by Hamilton’s equations for a stationary (time-independent) space-
time metric. Using (7.5) we find

H̄ “M Ē

“ME˘ ˘
M2

2R
. (7.15)

The first line is understood from the point of view that each particle comprising the
shell responds in equal share to the geometry on either side of Σ. According to the
equivalence principle the second line is more suprising, since it permits a separation of
the inertial mass-energy and gravitational energy, as before we must not put any fun-
damental significance in this fact, the separation is merely useful in relating the terms
to concepts in predecessor theories, namely special relativity and Newtonian theory.
Interestingly both terms in (7.15) feature the proper mass M , where in the latter it
stands in for the Newtonian gravitational mass. This means that, in the particular
decomposition (7.15) of the inertial and gravitational terms, the gravitational interac-
tion is determined, not by the total mass m or even the inertial mass M

a

f˘ `R2
τ ,

but by the proper mass M . The proper mass includes the rest mass, and for non-zero
pressure, the internal thermal energy due to the random motion of the particles in the
shell. Substituting f˘ “ 1´ 2m˘{r into (7.15), squaring and solving for Rτ we find

R2
τ “ a2 ´ 1`

m` `m´
R

`

´ mΣ

2aR

¯2
, (7.16)

where a “ mΣ{M .
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7.3 Phase space for a single shell in vacuo

For a single shell in empty space, m´ “ 0, m` “ mΣ “ m,

R2
τ “

´

a`
m

2aR

¯2
´ 1. (7.17)

From (7.12) we have the following expression for the shell momentum,

P̄ “
m

a

Ę

ˆ

1

f

˙

Rτ

“ ˘
m

a

ˆ

R´m

R´ 2m

˙„

´

a`
m

2aR

¯2
´ 1

1{2

, (7.18)

where we have substituted (7.17). Using (7.18) we can make a phase space diagram
for the motion of the shell with normalised shell momentum P̄ ˚ “ P̄ {Rs and radius
R˚ “ R{Rs where Rs “ 2m is the Schwarzschild radius, see Fig. 8.35

We may notice that, although the proper velocity Rτ is regular at R “ Rs, the momen-
tum tends to infinity P̄ Ñ8 due to f` Ñ 0. Indeed, from (7.4) we notice that dτ{dt`
has a zero eigenvalue at R “ Rs since fpRsq “ 0, i.e. the exterior coordinate t` is
singular on the Schwarzschild sphere R “ Rs. Events recorded using the proper time
τ are not in a one-to-one mapping with those using t`. The physical interpretation is
well understood; an observer at infinity, with proper time τ “ t`, does not actually
observe the sphere collapse through its Schwarzschild sphere. The exterior coordi-
nate t` gives a static maximal foliation and will therefore permit a SD solution. The
challenge then is to understand the singular nature of t` in terms the framework of SD.

Equation (7.18) is not limited to a shell of dust; it is valid also for a shell with non-zero
pressure. This is because the phase space representation does not tell you how the
motion of the shell takes place in time. Only when requiring the solution for the radius
of the shell as a function of time (proper, exterior, interior or our average time) is it
necessary to know the pressure of the fluid composing the shell so that the change
in proper mass can be calculated using (7.9). Therefore, Fig. 8 represents the most
general phase space solution for the motion of a spherically symmetric shell in vacuo
with R ą Rs and Hamiltonian given by (7.15).

35Compare with [61].
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Figure 8: Phase space with normalised shell momentum P̄ ˚ “ P̄ {Rs and radius R˚ “ R{Rs

where Rs “ 2m, a “ 0.8, 0.9, 1.0, 1.1 and 1.2.
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8 Conclusion

In this thesis we have made extensive use of the formal equivalence of the equations of
motion of SD and GR in a particular spacetime foliation known as the maximal foliation
(a subset of the CMC foliation). Using two physical situations involving spherically
symmetric gravitational fields: The pure vacuum case and the collapse of a thin shell
we have successfully found the maximal foliations that permit a SD solution and, when
possible, have offered an interpretation in terms of the principles of SD. In future work
the SD solutions that lie off the intersection with the ADM constraint surface,36 i.e. in
a different conformal section, should be investigated.

8.1 Critique of shape dynamics

A common misconception of SD is that it represents merely a choice of time gauge
in GR. This interpretation is understandable since when spacetime permits a CMC
foliation there must necessarily be a corresponding SD solution. However, this naive
interpretation cannot be correct since SD has a conformal gauge symmetry that GR
does not possess, furthermore, there exist SD solutions that will not be solutions to the
EFE. However, according to SD, these solutions are considered physically equivalent
because they must be related by a local conformal transformation.
SD originated from Machian ideas, most notably it aspires to close the gap between
the immediate data that is observed in experiment and the basic concepts of the theory
aiming to explain that data. The most serious criticism of SD then comes from consid-
ering what the immediate data actually is in astronomy. What one is in fact observing
when one looks out at the stars is the celestial sphere; the rays of light on the past
light cone of a point in spacetime, clearly this is also true of any experimental detec-
tor.37 In practise then, the immediate data actually has no obvious link with spacelike
distances or angles on a spacelike hypersurface. Although nothing prevents us from
imagining the universe at an instant with a certain shape configuration, these data are
not directly observable, therefore, from a positivistic point of view, they should not be
used as the fundamental input of the theory.

8.2 What can we learn from shape dynamics?

In the case where the CMC preference turns out to by physically meaningful, it should
be considered as a selection principle for physically viable theories. GR admits many
solutions which are ruled out as models of the physical universe on account of the
energy-momentum distributions that they give rise to. The statement that the space-
time solution for the physical universe should admit a CMC foliation could play a
similar role. One example of a spacetime that cannot be CMC foliated is a spacetime
containing closed timelike curves, such scenarios are indeed considered unphysical by
most researchers.

36See Fig. 2.
37The celestial sphere does in fact have a conformal structure, where any shape perceived by one observer

is mapped to a different observer, at the same spacetime point but moving at a relative velocity, by a
conformal transformation. However, the celestial sphere has the structure of the Riemann sphere which is
2-dimensional. [60] p.429.
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[13] J. Barbour, “The nature of time,” 0903.3489.
http://arxiv.org/abs/0903.3489.

[14] A. Einstein, Autobiographical notes. Open court publishing, La Salle, Illinois,
centennial ed., 1991.

[15] J. Barbour, “The definition of mach’s principle,” 1007.3368.
http://arxiv.org/abs/1007.3368.

[16] R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, “Three-dimensional geometry as
carrier of information about time,” Physical Review 126 no. 5, (1962) 1864–1865.
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