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In	their	language	development,	children	are	able	to	extract	rules	from	the	
limited	input	they	hear	extremely	fast.	They	are	able	to	apply	those	rules	to	
new	strings	of	words,	which	they	never	heard	before:	a	process	known	as	

‘the	logical	problem	of	language	acquisition’.	The	entropy	model	for	
linguistic	generalizations	addresses	this	problem	and	states	that	the	process	
of	making	generalizations	is	influenced	by	the	input	complexity	(entropy)	

and	the	channel	capacity.	Whenever	the	channel	capacity	is	exceeded	by	the	
input	complexity,	the	process	of	making	generalizations	is	thought	to	

increase.	In	order	to	learn	more	about	the	point	at	which	children	start	to	
extract	rules	from	the	input,	a	previous	artificial	grammar	study	is	used	as	a	
model	for	language	acquisition	in	children	(Rădulescu,	Wijnen,	&	Avrutin,	

2014).	A	tendency	of	making	more	generalizations	when	the	entropy	
increased	and	channel	capacity	was	kept	constant,	is	reported.	The	present	
study	investigates	the	effect	of	group	(dyslexics	vs.	non-dyslexics)	on	the	

process	of	making	generalizations,	when	entropy	was	kept	constant,	in	order	
to	learn	more	about	the	effect	of	varying	channel	capacities.	The	low	entropy	

condition	of	the	original	experiment	was	used	in	this	follow-up	study,	as	
dyslexics	were	expected	to	make	more	generalizations	than	non-dyslexics	

when	confronted	with	a	low	amount	of	entropy.	This	is	due	to	the	
assumption	that	participants	with	dyslexia	are	hypothesized	to	have	smaller	
channel	capacities	than	participants	without	dyslexia,	due	to	either	weaker	
working	memories	or	problems	in	procedural	learning.	Dyslexics’	channel	
capacities	were	thus	expected	to	be	exceeded	by	the	input	and	dyslexics	
were	expected	to	abstract	more	generalized	rules	from	the	input	as	a	

consequence.		Results	indicated	a	tendency	in	dyslexics	of	making	more	
generalizations	than	non-dyslexics,	but	no	significant	differences	between	
groups	were	found.	This	is	probably	due	to	power	issues	of	the	results,	as	

the	sample	sizes	in	the	present	study	were	relatively	small.	Therefore,	
people	with	dyslexia	are	still	hypothesized	to	have	smaller	channel	

capacities	than	people	without	dyslexia.		

A	comparison	between	people	with	
and	without	dyslexia	
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1. Introduction	
In	 order	 to	 become	 native	 speakers	 of	 a	 language,	 one	 of	 the	 things	 children	 have	 to	
learn	is	a	complex	set	of	rules	(grammar).	Children	are	able	to	master	these	rules	very	
easily	 in	 a	 short	period	of	 time.	 Considering	 the	 relatively	 limited	 input	 children	hear	
from	 their	 environment	 and	 the	 ease	with	which	 they	 learn	 the	 language	 rules,	 there	
seems	 to	 be	 a	 problem	 in	 explaining	 how	 they	 do	 so.	 Children	 seem	 to	 effortlessly	
extract	 rules	 from	 the	 limited	 input	 they	 get:	 a	 pattern	 found	 in	 children’s	 language	
development	from	all	over	the	world.	This	problem	is	known	as	‘the	logical	problem	of	
language	acquisition’	(Fromkin,	et	al.,	2000)	and	this	problem	is	still	unsolved,	despite	
many	years	of	research.	
	 Although	very	much	of	the	language	development	puzzle	is	yet	to	be	solved,	some	
things	are	already	known.	At	some	point	in	their	language	development,	children	have	to	
extract	generalized	rules	from	the	input	they	hear.	This	can	be	seen	for	example	when	
children	 learn	 the	 past	 tense	 of	 verbs.	 For	 example,	 many	 children	 acquiring	 English	
follow	the	pattern	of	using	the	correct	irregular	past	tense	at	first,	for	instance	went,	and	
using	the	wrong	form	goed	afterwards.	Such	errors	are	called	overregularizations	(Hoff,	
2014).	Overregularizations	show	that	children	do	not	solely	rely	on	remembering	every	
single	word	(or	sound)	they	hear,	because	they	do	not	hear	those	wrong	forms	in	their	
input	and	thus	cannot	remember	them.	The	fact	that	children	use	the	correct	past	tense	
prior	 to	 the	wrong	past	 forms	 furthermore	 shows	 that	 they	do	know	 the	 correct	past	
form	at	first	(Hoff,	2014).	At	some	point	children	move	from	memorizing	specific	words	
to	 extracting	 generalized	 rules	 from	 the	 input,	 after	 which	 they	 will	 make	 some	
overregularization	 errors.	 After	 a	 while,	 children	 will	 learn	 the	 exceptions	 to	 the	
generalized	rules	they	have	learned.	
	 Although	we	do	know	that	at	some	point	children	start	to	extract	rules	from	the	
input	they	hear	and	stop	relying	on	remembering	all	the	specific	words	they	hear	alone,	
we	don’t	know	yet	at	which	point	this	rule	extracting	exactly	starts.	In	order	to	find	out	
some	 more	 about	 what	 triggers	 rule	 extraction	 in	 children’s	 language	 acquisition,	
Rădulescu,	Wijnen	 &	 Avrutin	 (2014)	 developed	 a	 theory	 on	 linguistic	 generalizations	
based	 on	 entropy	 and	 channel	 capacity.	 In	 their	 research	 they	 tried	 to	 find	 out	what	
triggers	 and	 limits	 the	 inductive	 leap	 from	 memorizing	 specific	 items	 to	 extracting	
general	rules,	according	to	an	artificial	grammar	experiment	in	adults,	which	is	used	as	a	
model	 for	 language	acquisition	in	children.	The	authors	state	that	the	 inductive	 leap	is	
influenced	by	 the	complexity	of	 the	 input	and	the	processing	 limitations	of	 the	human	
brain.	In	order	to	determine	the	complexity	of	the	input	they	use	entropy	as	a	measure,	
which	 is	 an	 information-theoretic	 concept.	 In	 order	 to	 understand	 the	 statements	 of	
Rădulescu	et	al.,	 it	 is	 important	 to	understand	 those	 information-theoretic	 concepts	 in	
more	detail.	
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2. Information	theory	
Information	 theory	 tries	 to	 explain	 how	 information	 is	 processed	 through	 different	
‘machines’	(e.g.	the	human	brain).	First,	the	concept	of	 ‘information’	should	be	defined.	
In	 information	 theory,	 information	 is	 seen	 as	 something	 you	 did	 not	 know	 before:	
information	 is	 a	 surprise.	 For	 example,	 if	 you	 have	 a	 look	 at	 your	 watch	 when	 you	
already	know	what	time	it	is,	this	gives	you	no	information,	because	your	watch	does	not	
tell	you	something	you	did	not	know	before.	In	contrast,	if	you	do	not	know	what	time	it	
is	 and	 have	 a	 look	 at	 your	watch,	 it	 does	 give	 you	 information.	 Information	 exchange	
only	occurs	when	there	is	an	uncertainty,	and	the	amount	of	exchanged	information	is	
determined	by	that	amount	of	uncertainty.	Information	can	be	seen	as	the	reduction	of	
uncertainty	(Van	Ewijk,	2013).	This	uncertainty	can	be	measured	 in	 logarithms,	and	 is	
defined	by:	

𝑈 =	− log( 𝑘	
where	 U	 is	 the	 measure	 of	 uncertainty	 and	 k	 is	 the	 number	 of	 possible	 outcomes.	
Uncertainty	 is	measured	 in	bits,	which	 is	a	contraction	of	binary	 and	digit.	Bits	have	a	
value	of	either	0	or	1	and	are	combined	into	possible	configurations	to	encode	possible	
outcomes	of	information	(Van	Ewijk,	2013).		
	 In	 order	 to	 understand	 to	what	 extent	 information	 could	 be	 transferred	 error-
free	 through	machines,	 Shannon	 (1948)	 created	 the	 concept	 of	 entropy.	 According	 to	
Shannon,	 it	 is	 not	 the	 transmission	 rate	 of	 information	 that	 predicts	 the	 amount	 of	
errors	 in	 the	 transmission,	 as	was	 stated	 earlier	by	Nyquist	 and	Hartley	 (cited	 in	Van	
Ewijk,	 2013).	 Shannon	 suggests	 that	 the	 complexity	 of	 the	 information	 predicts	 the	
amount	 of	 errors	 in	 the	 transmission	 of	 information.	 Shannon	 named	 this	 complexity	
level	‘entropy’	(H)	and	created	a	model	to	calculate	the	entropy	level.	This	entropy	level	
is	 based	 on	 a	 statistical	measure	 for	 probability	 and	 states	 that	 every	message	 has	 a	
certain	 probability	 of	 occurrence,	 or	 an	 uncertainty	 of	 occurrence,	 depending	 on	 the	
entropy	 level	 (Van	 Ewijk,	 2013).	 Probabilities	 are	 numbers	 between	 0	 and	 1.	 A	
probability	of	0	shows	that	it	is	improbable	for	a	value	to	occur,	while	a	probability	of	1	
shows	 that	 a	 value	 will	 certainly	 occur.	 The	 formula	 suggested	 to	 measure	 the	
uncertainty	 (U)	 assumes	 that	 all	 outcomes	 are	 equally	 likely	 to	 occur,	 but	 for	 most	
situations	this	is	not	the	case.	Shannon	(1948)	therefore	created	a	formula	to	calculate	
the	entropy	of	an	information	source,	which	assumes	that	not	all	outcomes	are	equally	
likely	 to	occur.	 In	order	 to	determine	 the	uncertainty	of	a	whole	set,	 it	 is	necessary	 to	
determine	the	uncertainty	of	the	individual	elements	of	that	set,	as	some	elements	could	
be	 more	 likely	 to	 occur	 than	 others.	 When	 the	 uncertainties	 of	 all	 of	 the	 individual	
elements	 of	 a	 set	 are	 determined,	 the	 entropy	 of	 the	 whole	 set	 can	 be	 determined.	
Entropy	 is	a	measure	 for	 the	average	uncertainty,	or	average	 information,	of	 the	 input	
(Shannon,	1948).	Entropy	can	be	calculated	as	follows:	

𝐻 𝑥 = − 𝑝(𝑥.) log 𝑝(𝑥0)
1

.20
	

	
where	H	is	a	measure	of	the	entropy,	p(x)	is	the	probability	of	occurrence	of	any	value	of	
x,	and	log	should	be	read	as	log	to	the	base	2.		
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	 Apart	from	entropy,	Shannon’s	theory	(1948)	is	also	based	on	‘channel	capacity’.	
Aside	 from	 calculating	 how	much	 information	 is	 being	 transmitted,	 it	 is	 important	 to	
know	 how	much	 information	 a	 machine	 is	 able	 to	 process	 per	 unit	 of	 time.	 Channel	
capacity	is	a	measure	for	the	maximum	amount	of	entropy	a	machine	can	process	error-
free,	and	can	be	determined	by	presenting	varying	amounts	of	entropy	to	the	machine.	
As	long	as	the	entropy	of	the	machine’s	outcome	increases	linearly	with	the	entropy	of	
the	input,	the	machine’s	channel	capacity	is	not	exceeded	(Van	Ewijk,	2013).	Whenever	
the	channel	capacity	of	a	machine	is	exceeded	by	the	entropy	of	the	input,	the	amount	of	
entropy	has	 to	be	 reduced	 in	order	 to	process	 the	 information	error-free.	This	 can	be	
done	 by	 regularizing	 the	 information	 (i.e.	 reorganizing	 the	 information	 based	 on	
regularities	 in	 it),	 so	 that	 the	entropy	of	 the	 input	 is	 reduced	and	does	not	exceed	 the	
machine’s	channel	capacity	any	longer	(Rădulescu,	Wijnen,	&	Avrutin,	2014).	In	order	to	
reduce	 the	 entropy,	 information	 can	 be	 regularized	 by	 extracting	 rules,	 for	 example.	
Rădulescu	et	al.	 tried	to	 find	out	at	what	point	rule	extracting	starts	to	 increase	 in	 the	
human	artificial	grammar	 learning	process.	 In	order	 to	do	 this,	 the	authors	created	an	
entropy	model	for	linguistic	generalizations.		

3. An	entropy	model	for	linguistic	generalizations		
Rădulescu	et	al.	combine	the	entropy	of	the	input	with	channel	capacity	in	their	model	
for	linguistic	generalizations	and	state	that	“generalization	is	a	cognitive	mechanism	that	
results	from	the	interaction	of	input	complexity	(entropy)	and	the	processing	limitations	
of	the	human	brain,	i.e.	limited	channel	capacity”	(Rădulescu,	Wijnen,	&	Avrutin,	2014,	p.	
3).	 This	 model	 applies	 to	 language	 acquisition	 because	 of	 the	 fact	 that	 in	 order	 to	
become	 fluent	 speakers	 of	 their	 mother	 tongue,	 children	 have	 to	 memorize	 specific	
linguistic	items	(e.g.	English	–	dog,	house,	table)	and	have	to	acquire	linguistic	categories	
(e.g.	 the	 category	 of	 nouns).	 Children	 cannot	 remember	 every	 single	 noun	 and	 its	
specific	 characteristics,	 because	 eventually	 their	 channel	 capacity	will	 be	 exceeded.	 In	
order	 to	reduce	 the	entropy	of	 their	 input,	 children	eventually	have	 to	extract	general	
characteristics	 from	the	 input	 for	 the	category	of	nouns.	To	become	fluent	speakers	of	
their	 mother	 tongue,	 this	 has	 to	 be	 done	 for	 every	 linguistic	 category.	 Although	 it	 is	
known	 that	 this	 process	 has	 to	 take	 place	 at	 some	 point	 in	 a	 child’s	 language	
development,	 it	 is	 unknown	 what	 exactly	 triggers	 the	 rule	 extracting.	 That	 is	 what	
Rădulescu	et	al.	 tried	 to	 find	out	via	an	artificial	 language	experiment	with	adults.	We	
assume	 that	 adult	 artificial	 grammar	 learning	 is	 a	 representative	model	 for	 language	
acquisition	in	children.		

In	 order	 to	 determine	 at	 what	 point	 humans	 move	 from	 memorizing	 specific	
items	 to	 extracting	 general	 rules,	 Rădulescu	 et	 al.	 (2014)	make	 a	 distinction	 between	
two	types	of	abstractions:	pattern-based	abstractions	and	category-based	abstractions.	
A	relation	between	perceptual	characteristics	of	elements,	for	example	a	relation	based	
on	 physical	 identity	 (e.g.	 ba-ba,	 in	 which	 ba	 is	 followed	 by	 ba),	 is	 a	 pattern-based	
abstraction.	 On	 the	 other	 hand,	 a	 relation	 between	 abstract	 variables	 (e.g.	 A-A-B	
abstracted	 from	babalu,	kokofe,	 dedemo,	 etc.)	 is	 a	 category-based	abstraction.	 Pattern-
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based	 abstractions	 correspond	 to	memorizing	 specific	 items	 out	 of	 the	 input	 and	 can	
only	 be	 applied	 to	 the	 specific	 items	 they	 are	 related	 to.	 In	 contrast,	 category-based	
abstractions	correspond	to	extracting	general	rules	from	the	input	and	can	be	applied	to	
new	 strings	 of	 words.	 In	 order	 to	 determine	 at	 what	 point	 humans	 move	 from	
memorizing	 specific	 items	 to	 extracting	 general	 rules	 from	 the	 input,	 the	 authors	
attempted	 to	 discover	 what	 triggers	 and	 what	 limits	 the	 process	 of	 making	 pattern-
based	abstractions	towards	making	category-based	abstractions.	

In	 their	 experiment,	 Rădulescu	 et	 al.	 (2014)	 used	 an	 artificial	 language,	 which	
they	 created.	 This	 miniature	 artificial	 grammar	 consisted	 of	 words	 with	 an	 XXY	
structure,	 where	 each	 letter	 represents	 a	 set	 of	 syllables	 (e.g.	 daadaalie,	 puupuuvee,	
keekeemuu).	 In	 the	 experiment,	 participants	were	 exposed	 to	 grammatical	 stimuli	 (i.e.	
following	an	XXY	structure)	in	the	training	phase	at	first.	Subsequently	participants	had	
to	complete	a	test	in	which	both	grammatical	and	ungrammatical	(i.e.	following	an	XYZ	
structure;	 e.g.	hiedaareu)	 stimuli	were	presented,	which	 consisted	of	both	 trained	 (i.e.	
occurred	 in	 the	 training	 phase)	 and	 untrained	 (i.e.	 novel)	 syllables.	 Grammatical	 test	
items	 with	 novel	 syllables	 were	 most	 useful	 to	 test	 category-based	 abstractions.	
Participants	 had	 to	 judge	 whether	 the	 items	 were	 correct	 according	 to	 the	 artificial	
language	 they	were	exposed	 to	 in	 the	 training	phase.	This	process	of	 training	and	 test	
phases	was	repeated	three	times,	after	which	a	final	test	was	completed.	

In	 order	 to	 do	 determine	 at	 what	 point	 humans	 start	 to	 make	 category-based	
abstractions,	 Rădulescu	 et	 al.	 varied	 the	 amount	 of	 entropy	 in	 the	 input	 and	
hypothesized	 to	 keep	 the	 channel	 capacity	 constant.	 We	 assume	 that	 the	 processing	
capacity	of	the	human	mind	matures	in	time,	and	so	does	the	channel	capacity.	By	using	
participants	 of	 roughly	 the	 same	 age,	 the	 authors	 kept	 the	 channel	 capacity	 of	 the	
participants	as	constant	as	possible.	By	varying	the	amount	of	entropy	in	the	input,	they	
tried	 to	 find	 out	 what	 its	 effect	 is	 on	 making	 pattern-based	 or	 category-based	
abstractions	while	the	channel	capacity	was	kept	constant.	In	order	to	vary	the	amount	
of	entropy	over	the	different	entropy	conditions	in	their	experiment,	the	authors	varied	
the	 number	 of	 syllables	 that	 occurred	 in	 the	 artificial	 grammar	 over	 the	 conditions,	
where	a	higher	number	of	syllables	corresponded	with	a	higher	entropy.	The	results	of	
the	 experiment	 showed	 that	 participants	 tended	 to	 make	 more	 category-based	
perceptions	 (i.e.	 accepted	 grammatical	 stimuli	 with	 both	 trained	 and	 untrained	
syllables)	when	the	entropy	of	the	input	was	higher,	and	tended	to	make	more	pattern-
based	abstractions	(i.e.	mainly	accepted	grammatical	stimuli	with	trained	syllables)	with	
a	lower	entropy	in	the	input	(Rădulescu,	Wijnen,	&	Avrutin,	2014).	

In	 this	 experiment,	 participants	 were	 hypothesized	 to	 have	 roughly	 the	 same	
channel	capacity	due	to	the	fact	that	they	were	of	the	same	age.	It	is	interesting	though	
to	 have	 a	 look	 at	 varying	 channel	 capacities	 and	 their	 effect	 on	 the	 point	 at	 which	
humans	start	to	abstract	generalized	rules.	The	expectation	would	be	that	participants	
with	a	 lower	channel	 capacity	 sooner	 tend	 to	extract	generalized	rules	 from	the	 input	
than	the	participants	 in	the	original	experiment,	because	of	 the	 fact	 that	 the	 input	will	
exceed	 their	 channel	 capacity	 earlier.	 In	 order	 to	 test	 this,	 mainly	 the	 low	 entropy	
condition	of	the	original	experiment	will	learn	us	more	about	the	point	at	which	humans	
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with	 smaller	 channel	 capacities	 start	 to	 make	 generalizations,	 as	 participants	 in	 the	
original	 experiment	 were	 shown	 to	 abstract	 rules	 in	 the	 low	 entropy	 condition	 to	 a	
lesser	 extent	 than	 in	 the	 medium	 and	 high	 entropy	 conditions.	 When	 humans	 with	
smaller	 channel	 capacities	 than	 in	 the	 original	 experiment	will	 participate	 in	 the	 low	
entropy	condition,	this	will	prove	whether	these	participants	indeed	abstract	more	rules	
from	 the	 low	 entropy	 input	 than	 participants	 in	 the	 original	 experiment.	 This	 can	 be	
investigated	by	testing	participants	who	are	considerably	younger	(Rădulescu,	Wijnen,	
&	Avrutin,	2014),	on	the	assumption	that	channel	capacity	increases	with	age.		

Finding	 out	 what	 the	 effect	 of	 varying	 channel	 capacity	 is	 on	 the	 process	 of	
extracting	 generalized	 rules	 from	 the	 input,	 could	 also	 be	 done	 by	 testing	 dyslexic	
participants.	 Next	 to	 the	 well-known	 reading	 and	 writing	 difficulties,	 people	 with	
dyslexia	 are	 also	 known	 to	 have	 problems	 with	 recognizing	 patterns	 and	 rules	 from	
strings	 of	 input.	 The	 underlying	 learning	 problems	might	 explain	 reading	 and	writing	
difficulties	that	come	with	dyslexia.	The	exact	causes	of	dyslexia	are	unknown	and	many	
theories	 have	 been	 proposed	 over	 the	 years.	 According	 to	 the	 Procedural	 deficit	
hypothesis,	 the	 problems	 are	 due	 to	 a	 limited	 procedural	 learning	 system	 caused	 by	
abnormal	brain	structures	(Nicolson	&	Fawcett,	2007).	This	causes	people	with	dyslexia	
to	have	difficulties	in	automatizing	observed	patterns.	In	order	to	become	a	competent	
reader	 and	 writer,	 it	 is	 important	 to	 find	 regularities	 in	 a	 language’s	 orthography.	
Subsequently,	these	patterns	should	be	memorized	in	order	to	automatize	the	process	of	
recognizing	 and	 producing	 these	 patterns	 in	 written	 language.	 This	 process	 does	 not	
seem	 to	work	 properly	 in	 people	with	 dyslexia.	 Because	 of	 the	 problems	 people	with	
dyslexia	 have	 in	 automatizing	 observed	 patterns,	 they	 have,	 among	 others,	 weaker	
reading	 and	 writing	 skills	 than	 people	 without	 dyslexia	 according	 to	 the	 Procedural	
deficit	hypothesis.	The	problem	in	recognizing	patterns	and	rules	could	also	be	due	to	a	
problem	in	the	working	memory	of	dyslexic	people,	which	seems	to	be	weaker	than	in	
non-dyslexic	 people	 (Schuchardt,	 Bockmann,	 Bornemann,	 &	 Maehler,	 2013).	 Due	 to	
weaker	working	memory,	 people	with	 dyslexia	would	 not	 be	 able	 to	memorize	 input	
long	enough	to	find	regularities	in	it.	

Anyway,	 whatever	 the	 precise	 underlying	 cause	 may	 be	 for	 the	 problems	
associated	with	dyslexia,	the	problems	in	procedural	learning	and	working	memory	can	
be	construed	as	 limitations	of	 the	channel	 capacity.	Based	on	 the	observation	 that	 the	
procedural	 learning	 system	 and	 working	 memory	 are	 weaker	 in	 dyslexics	 than	 non-
dyslexics,	it	makes	sense	to	hypothesize	a	smaller	channel	capacity	in	dyslexics.	Because	
of	 the	 idea	 that	 dyslexics	 have	 a	 smaller	 channel	 capacity	 than	 (adult)	 non-dyslexics,	
dyslexics	are	thought	to	have	a	more	‘child-like’	learning	pattern:	Their	channel	capacity	
is	 hypothesized	 to	 be	 exceeded	 sooner	 than	 non-dyslexics’	 channel	 capacity	 and	 this	
may	 cause	 category-based	 abstractions	 to	 arise	 earlier	 (i.e.	 when	 confronted	 with	 a	
relatively	 low	 amount	 of	 entropy	 in	 the	 input)	 than	 found	 in	 the	 participants	 of	 the	
original	 experiment	 (Rădulescu,	 Wijnen,	 &	 Avrutin,	 2014).	 Finding	 out	 what	 kind	 of	
learning	 pattern	 dyslexic	 participants	 show	 compared	 to	 non-dyslexic	 participants,	
when	confronted	with	a	low	amount	of	entropy	in	the	input,	is	the	goal	of	this	thesis.		
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4. Research	question	and	hypotheses	
The	research	question	of	this	thesis	 is	as	 follows:	 is	 there	a	difference	between	people	
with	and	without	dyslexia	regarding	rule	(or	pattern)	abstraction,	when	confronted	with	
an	 artificial	 language	 with	 a	 low	 entropy?	 This	 question	 leads	 to	 the	 following	
hypotheses:	

(a) Participants	with	 dyslexia	 are	 expected	 to	 extract	 rules	 from	 the	 input,	 due	 to	
exceeded	channel	capacities.	This	will	cause	them	to	reorganize	the	information	
of	the	input	and	to	find	regularities	in	it.	

(b) Participants	 without	 dyslexia	 are	 expected	 to	 perform	 as	 in	 the	 previous	
experiment	(Rădulescu,	Wijnen,	&	Avrutin,	2014;	2015),	i.e.	they	are	not	expected	
to	extract	rules	from	the	input,	due	to	non-exceeded	channel	capacities.	

	
In	order	to	test	these	hypotheses,	four	different	types	of	test	stimuli	will	be	used.	

Grammatical	 stimuli	 (i.e.	 following	an	XXY	 structure)	with	both	 trained	and	untrained	
syllables	and	ungrammatical	stimuli	(i.e.	 following	an	XYZ	structure)	with	both	trained	
and	 untrained	 syllables	 will	 be	 presented	 to	 the	 participants	 in	 the	 test	 phases.	
Especially	 grammatical	 stimuli	 with	 novel	 syllables	 will	 be	 useful	 to	 test	 whether	
participants	abstracted	generalized	rules	from	the	input,	due	to	the	fact	that	participants	
cannot	judge	them	to	be	correct	based	on	memorization	as	a	consequence	of	exposure	in	
the	 training	 phases.	 According	 to	 the	 hypotheses,	 participants	 with	 dyslexia	 are	
expected	to	perform	better	 than	participants	without	dyslexia	on	the	grammatical	 test	
items	with	untrained	syllables,	due	to	the	assumption	that	their	channel	capacity	will	be	
exceeded	 by	 the	 input,	 and	 they	 will	 have	 to	 reorganize	 the	 information	 and	 find	
regularities	 in	 it	 as	 a	 consequence.	 Participants	 without	 dyslexia	 are	 not	 expected	 to	
reorganize	 the	 information	 of	 the	 input,	 due	 to	 the	 assumption	 that	 their	 channel	
capacity	 will	 not	 be	 overloaded	 by	 the	 input.	 As	 a	 consequence,	 participants	 without	
dyslexia	are	not	expected	to	extract	generalized	rules	from	the	input	and	are	expected	to	
perform	weaker	than	participants	with	dyslexia	on	XXY	test	items	with	novel	syllables.	

5. Method	
5.1	Participants		
Both	dyslexic	and	non-dyslexic	participants	were	 recruited	via	various	posts	on	social	
media	and	the	author’s	social	network.	A	 total	of	23	Dutch	speaking	adults	(age	range	
19-25),	who	were	not	 familiar	with	 the	research	 topic,	participated	 in	 the	experiment.	
Dyslexics	and	non-dyslexics	were	matched	on	gender,	age	and	educational	background.	
Both	dyslexic	(n=12)	and	non-dyslexic	(n=11)	subjects	were	accepted	in	the	experiment,	
as	 long	 as	 they	 had	 no	 known	 hearing	 impairment	 or	 attention	 deficit.	 Subjects	
participated	in	the	experiment	for	free.		

Statistical	 tests	 were	 carried	 out	 in	 order	 to	 check	 whether	 the	 groups	 were	
comparable	with	regard	to	age,	gender,	and	educational	background.	An	alpha	 level	of	
.05	 was	 used	 for	 these	 tests.	 An	 Independent-Samples	 T	 Test	 showed	 no	 significant	
difference	in	age	between	dyslexic	(M	=	22.50,	SD	=	2.35)	and	non-dyslexic	(M	=	22.18,	
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SD	=	1.78)	participants	 (t	=	0.38;	df	=	20.30;	p	=	 .717).	Fisher’s	exact	Test	 showed	no	
significant	difference	(p	=	 .611)	 in	gender	between	dyslexics	 (female/male	=	8/4)	and	
non-dyslexics	 (female/male	 =	 7/4).	 Furthermore,	 Fisher’s	 exact	 Test	 showed	 no	
significant	difference	(p	=	.999)	in	education	level	between	dyslexics	(MBO/HBO/WO	=	
1/6/5)	and	non-dyslexics	(MBO/HBO/WO	=	1/6/4).	The	groups	are	therefore	assumed	
to	be	similar,	and	differences	in	test	results	thus	cannot	be	explained	by	between-group	
differences	in	age,	gender	or	educational	background.	
	
5.2	Training	stimuli	
The	 same	 stimuli	 were	 used	 as	 in	 the	 low	 entropy	 condition	 in	 the	 experiment	 of	
Rădulescu	et	al.	(2015).	This	means	that	the	set	of	training	stimuli	has	an	entropy	of	2.8	
bits	(see	Appendix	1	for	the	complete	entropy	calculations).	All	syllables	were	recorded	
one	by	one	in	a	sound-proof	booth	by	a	female	Dutch	native	speaker.	She	was	instructed	
to	use	the	same	intonation	for	each	syllable.	The	set	of	training	stimuli	consists	of	words	
with	 three	syllables,	which	all	 start	with	a	 consonant	 that	 is	 followed	by	a	 long	vowel	
(e.g.	 daa,	 teu)	 in	 order	 to	 resemble	 common	 Dutch	 syllable	 structure.	 Syllables	 were	
checked	on	actual	existence	 in	Dutch	and	were	excluded	 from	the	artificial	 language	 if	
they	 did	 occur	 in	Dutch	words.	 All	 stimuli	 follow	 an	 XXY	 structure,	where	 each	 letter	
represents	a	set	of	syllables.	A	subset	of	the	syllables	in	the	artificial	language	is	used	in	
the	X-positions,	while	 another	 subset	 is	used	 in	 the	Y-positions.	Therefore,	X-syllables	
never	 occur	 in	 an	 Y-position,	 and	 vice	 versa.	 Examples	 of	 stimuli	 are	 daadaalie	 and	
teuteureu.	The	complete	set	of	training	stimuli	consists	of	28	strings,	with	7	X-syllables	
and	7	Y-syllables	(see	Appendix	2	for	the	complete	list	of	stimuli).	Stimuli	are	presented	
in	a	 randomized	order	per	participant.	After	all	 training	phases,	participants	will	have	
been	exposed	to	84	training	stimuli	in	total.	
	
5.3	Procedure	
Subjects	 participated	 in	 the	 experiment	 at	 home	 or	 at	 school,	with	 as	 few	 distracting	
factors	in	the	surroundings	as	possible.	In	order	to	classify	participants	as	dyslexic	and	
to	make	a	comparison	between	the	results	of	people	with	and	without	dyslexia	on	the	
artificial	 grammar	 task,	 the	 experiment	 also	 consisted	 of	 two	 reading	 tasks,	 a	 verbal	
competence	task	and	a	memory	task.	During	the	experiment	subjects	participated	in	the	
artificial	grammar	task	at	first.	In	this	task	the	participants	had	to	listen	to	28	stimuli	in	
all	 3	 training	 phases.	 These	 stimuli	 were	words	which	were	 correct	 according	 to	 the	
artificial	 grammar	 that	 was	 constructed	 by	 Rădulescu	 et	 al.	 (2014).	 After	 a	 training	
phase,	the	test	phase	started.	In	this	phase	the	participants	had	to	decide	whether	the	4	
given	 test	 items	 could	 occur	 in	 the	 artificial	 grammar	 they	 were	 exposed	 to	 in	 the	
training	phase.	This	procedure	was	repeated	three	times,	after	which	there	was	a	final	
test.	 In	 this	 final	 test	 participants	 were	 confronted	 with	 another	 set	 of	 8	 test	 items	
(consisting	of	two	separate	tests,	to	be	called	‘test	4’	and	‘test	5’),	about	which	they	had	
to	decide	whether	 they	were	correct	according	 to	 the	artificial	grammar.	 Intermediate	
test	phases	were	included	in	the	design	to	be	able	to	have	a	closer	look	at	the	learning	
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curve	 and	 to	 check	 whether	 participants	 tend	 to	 generalize	 more	 when	 exposure	 is	
extended.	The	procedure	of	the	artificial	grammar	task	is	shown	in	the	timeline	below:	

	
	 Subsequently	participants	had	to	complete	a	visual	forward	digit	span	task	to	test	
their	working	memory.	In	this	task	participants	had	to	reproduce	a	series	of	digits	that	
were	shown	to	them	on	a	computer	screen.	The	shown	set	of	digits	was	extended	with	
one	digit	per	 test	phase.	This	process	 continued	 for	 as	 long	as	 the	participant	did	not	
make	a	mistake	or,	alternatively,	up	to	a	digit	span	of	ten	digits.	This	task	is	especially	
interesting	to	compare	the	results	of	the	dyslexic	and	non-dyslexic	participants,	because	
working	 memory	 is	 assumed	 to	 be	 related	 to	 channel	 capacity.	 A	 difference	 in	 the	
outcomes	of	this	visual	forward	digit	span	task	between	groups	might	explain	(part	of)	
the	 possible	 differences	 in	 the	 outcomes	 of	 the	 artificial	 grammar	 task.	 Dyslexics	 are	
expected	 to	 show	significant	poorer	performance	 than	non-dyslexics,	 based	on	earlier	
findings	that	dyslexics	have	a	weaker	working	memory	than	non-dyslexics	(Schuchardt,	
Bockmann,	Bornemann,	&	Maehler,	2013).	
	 Finally,	 the	 participants	 were	 tested	 for	 their	 reading	 abilities	 and	 verbal	
competence.	In	order	to	do	this,	they	had	to	complete	the	‘Een	Minuut	Test’	(EMT;	(Brus	
&	Voeten,	1973)	at	first.	This	is	a	list	of	existing	words,	which	participants	had	to	read	
out	 loud	 as	 fast	 and	 accurate	 as	 they	were	 able	 to	within	 one	minute.	 After	 this,	 the	
participants’	 verbal	 competence	 was	 tested	 with	 the	 verbal	 competence	 task	 of	 the	
WAIS	 IQ-test	 (Wechsler,	1955).	Participants	had	 to	name	similarities	between	pairs	of	
two	words	in	this	test,	e.g.	 ‘car	vs.	airplane’	and	‘day	vs.	night’.	Finally,	participants	had	
to	complete	the	Klepel	(Van	den	Bos,	Lutje	Spelberg,	Scheepstra,	&	De	Vries,	1994).	This	
is	a	 list	of	phonotactically	 legal	non-words,	which	participants	had	to	read	out	 loud	as	
fast	 and	 accurate	 as	 they	were	 able	 to	within	 two	minutes.	 These	 tests	were	 used	 to	
classify	participants	as	dyslexic.	This	was	done	according	to	the	norms	of	Kuijpers,	Van	
der	Leij,	Van	Leeuwen,	Ter	Keurs,	Schreuder	&	Van	den	Bos	(2003),	who	set	norms	for	
classifying	dyslexia	 for	 research	purposes	with	 the	named	 tests.	Determining	whether	
participants	are	dyslexic	is	necessary	to	compare	the	artificial	grammar	task	and	visual	
forward	digit	 span	 task	results	 for	 the	dyslexic	and	non-dyslexic	groups.	Dyslexics	are	
expected	to	perform	significantly	more	poorly	than	non-dyslexics	on	both	the	EMT	and	
Klepel.	 No	 significant	 differences	 are	 expected	 in	 performance	 between	 groups	 for	
verbal	competence,	because	participants	were	matched	on	educational	background.	
	

Test	1Exposure	
1 Test	2Exposure	

2 Test	3Exposure	
3

Final	test:
- test	4
- test	5
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5.4	Test	stimuli	and	performance	predictions	
The	 set	 of	 test	 stimuli	 consists	 of	 four	 different	 kinds	 of	 stimuli:	 grammatical	 stimuli	
with	 trained	 syllables	 (i.e.	 syllables	 that	 occurred	 in	 the	 training	 set),	 grammatical	
stimuli	with	untrained	(i.e.	novel)	syllables,	ungrammatical	stimuli	with	trained	syllables	
and	ungrammatical	stimuli	with	untrained	syllables.	Grammatical	test	stimuli	follow	an	
XXY	structure	(e.g.	daadaalie,	teuteureu),	while	ungrammatical	test	stimuli	follow	an	XYZ	
structure	(i.e.	comprising	3	different	syllables;	e.g.	hiedaareu,	keefoovee).	The	complete	
list	of	 test	stimuli	comprised	20	 items	(see	Appendix	3).	Each	of	 the	 four	 types	of	 test	
stimuli	is	designed	to	test	a	specific	mechanism	of	rule	extraction	(Rădulescu,	Wijnen,	&	
Avrutin,	2014).	According	to	the	entropy	model	for	linguistic	generalizations,	each	type	
of	 test	 stimuli	 should	 show	 a	 particular	 type	 of	 learning	 tendency,	 which	 will	 be	
discussed	 below.	 These	 performance	 predictions	 are	 based	 on	 predictions	 made	 by	
Rădulescu	et	al.	according	to	their	different	entropy	conditions.	
	 Type_1	comprises	XXY	stimuli	with	both	trained	X	and	trained	Y	syllables,	which	
should	be	considered	correct.	This	type	of	test	items	is	supposed	to	check	learning	of	the	
trained	strings	and	structure	and	is	a	positive	test	case,	because	participants	have	heard	
the	 XXY	 structure	 as	well	 as	 the	 syllables.	 As	 a	 consequence,	 participants	 could	 judge	
type_1	stimuli	to	be	correct,	based	on	memorization	from	the	training	phase	input	alone.	
For	this	type	of	test	stimuli,	it	is	thus	not	necessary	to	have	abstracted	generalized	rules	
from	the	 input	 in	order	to	give	the	correct	answer.	Both	the	dyslexic	and	non-dyslexic	
participants	 are	 therefore	 expected	 to	 show	 a	 high	 performance	 for	 type_1	 stimuli.	
Dyslexics	 are	 expected	 to	 show	 high	 performance	 based	 on	 strongly	 or	 at	 least	
satisfactorily	 developed	 category-based	 abstractions,	 due	 to	 an	 exceeded	 channel	
capacity	 and	 rule	 abstraction.	 Non-dyslexics	 are	 expected	 to	 show	 high	 performance	
based	on	strongly	developed	pattern-based	abstractions,	due	 to	non-exceeded	channel	
capacity	and	no	generalized	rule	abstraction.	Consequently,	both	groups	are	expected	to	
perform	significantly	above	chance	level,	with	no	between-group	differences.	

Type_2	consists	of	XYZ	stimuli	with	both	untrained	X	and	untrained	Y	syllables,	
which	 should	 be	 judged	 as	 incorrect.	 This	 type	 of	 test	 stimuli	 is	 also	 designed	 to	 test	
learning	of	the	trained	strings	and	structure,	but	is	a	negative	test	case	complementary	
to	 type_1.	 If	 the	hypothesized	 tendencies	 for	 type_1	 are	 correct,	 type_2	 results	 should	
therefore	 be	 consistent	 with	 the	 results	 of	 the	 type_1	 stimuli.	 Participants	 cannot	
consider	 type_2	 items	 correct	 based	 on	 either	 learned	 syllables	 or	 structure,	 because	
they	did	not	hear	the	structure	or	syllables	in	the	training	phases.	Both	the	dyslexic	and	
non-dyslexic	group	are	expected	to	show	high	performance	for	type_2	stimuli.	Dyslexics	
probably	 consider	 type_2	 items	 incorrect	 based	 on	 strongly	 or	 at	 least	 satisfactorily	
developed	category-based	abstractions.	Non-dyslexics	probably	consider	type_2	stimuli	
incorrect	 based	 on	 strongly	 developed	 pattern-based	 abstractions.	 As	 a	 result,	 both	
groups	are	expected	to	perform	significantly	above	chance	level,	with	no	between-group	
differences.		

Type_3	consists	of	XXY	stimuli	with	both	untrained	X	and	untrained	Y	syllables,	
which	should	be	judged	as	correct.	Type_3	is	a	positive	test	case	and	is	designed	to	check	
whether	participants	extracted	a	generalized	rule	from	the	training	stimuli.	This	type	of	
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test	 items	 is	 most	 useful	 to	 test	 rule	 abstraction	 and	 thus	 the	 difference	 between	
participants	with	 and	without	 dyslexia	 regarding	 generalizations,	 due	 to	 the	 fact	 that	
participants	should	consider	type_3	items	correct	based	on	the	learned	structure	alone,	
as	 participants	 have	 not	 heard	 the	 syllables	 in	 the	 training	 phases.	 Both	 groups	 are	
expected	to	perform	significantly	above	chance	level,	based	on	Rădulescu	et	al.’s	findings	
(2015),	but	with	between-group	differences.	The	highest	number	of	correct	answers	is	
expected	 to	 be	 given	 by	 the	 dyslexics,	 due	 to	 satisfactorily	 developed	 category-based	
abstractions.	The	lowest	number	of	correct	answers	is	expected	to	be	given	by	the	non-
dyslexics,	 due	 to	 strongly	 developed	 pattern-based	 and	 weakly	 developed	 category-
based	abstractions.		

Type_4	comprises	XYZ	stimuli	with	both	trained	X	and	trained	Y	syllables,	which	
should	 be	 considered	 incorrect.	 Type_4	 is	 designed	 as	 a	 negative	 test	 case	
complementary	to	type_3.	If	the	hypothesized	tendencies	for	type_3	stimuli	are	correct,	
type_4	 results	 should	 be	 consistent	 with	 the	 results	 of	 type_3	 stimuli.	 Participants	
should	 consider	 type_4	 items	 incorrect,	 based	 on	 the	 learned	 structure.	 The	 pattern-
based	 and	 category-based	 abstractions	 should	 work	 against	 each	 other,	 because	 the	
trained	syllables	tend	to	drive	pattern-based	abstractions	to	accept	the	stimuli,	while	the	
structure	drives	category-based	abstractions	to	reject	the	stimuli.	As	a	result,	difference	
in	 performance	 level	 is	 expected	 between	 groups.	 Dyslexics	 are	 expected	 to	 give	 the	
highest	numbers	of	correct	answers,	due	to	a	higher	tendency	to	make	category-based	
abstractions	 than	 non-dyslexics.	 As	 a	 result,	 dyslexics	 will	 have	 abstracted	 the	
grammatical	 XXY	 pattern	 from	 the	 input,	 and	 their	 memory	 traces	 of	 the	 trained	
syllables	will	 be	weaker	 than	 that	 of	 the	 non-dyslexics.	Non-dyslexics	 are	 expected	 to	
show	 lower	 performance	 than	 dyslexics,	 due	 to	 strongly	 developed	 pattern-based	
abstractions,	and	thus	stronger	memory	traces	of	the	trained	syllables	than	that	of	non-
dyslexics.	 Consequently,	 they	 are	 expected	 to	 show	 weaker	 performance	 than	
participants	 with	 dyslexia.	 Both	 groups	 are	 expected	 to	 perform	 above	 chance-level,	
according	to	the	findings	of	Rădulescu	et	al.	(2015)	

6. Results	
6.1	Reading	tests	and	digit	span	
The	 percentile	 scores	 for	 the	 EMT,	 Klepel	 and	 the	 verbal	 competence	 task	 were	
computed	 according	 to	 the	 total	 scores.	 Participants	were	 regarded	 as	 dyslexic	when	
they	met	at	least	one	of	the	following	criteria:	

1. Percentile	score	of	10	for	EMT	and/or	Klepel;			
2. Percentile	score	of	20	for	both	EMT	and	Klepel;	
3. Difference	of	60	in	percentile	scores	for	EMT	and/or	Klepel	in	comparison	with	

verbal	competence	score.	
(Kuijpers,	et	al.,	2003)	

All	 of	 the	 dyslexic	 participants	met	 the	 first	 two	 criteria:	 they	 either	 had	 a	 percentile	
score	of	10	for	the	EMT	and/or	Klepel,	or	had	a	percentile	score	of	20	for	both	the	EMT	
and	the	Klepel.	None	of	the	participants	were	classified	as	dyslexic	based	on	a	difference	
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of	 60	 in	 percentile	 scores	 for	 EMT	 and/or	 Klepel	 in	 comparison	 with	 the	 verbal	
competence	 task	 score	 alone.	 After	 this	 analysis,	 two	 out	 of	 thirteen	 self-claimed	
dyslexic	 participants	 were	 assigned	 to	 the	 non-dyslexic	 group.	 Vice	 versa,	 one	 out	 of	
twelve	self-claimed	non-dyslexic	participants	was	regarded	as	a	dyslexic	participant	 in	
this	study.		
	 Subsequently,	 both	 groups	were	 compared	 on	 EMT,	 Klepel,	 verbal	 competence	
and	 digit	 span	 scores.	 Table	 1	 shows	 mean	 scores	 and	 standard	 deviations	 for	 both	
groups	 and	 the	 outcomes	 of	 statistical	 tests.	 An	 alpha	 level	 of	 .05	 was	 used	 for	 all	
statistical	 tests.	 Independent-Samples	 T	 tests	 showed	 significant	 differences	 between	
groups	 for	 EMT	 (p	 <	 .001)	 and	 Klepel	 (p	 <	 .001)	 scores,	 but	 no	 significant	 difference	
between	groups	for	verbal	competence	(p	=	.629)	and	digit	span	(p	=	.164)	scores.	EMT,	
Klepel	 and	 verbal	 competence	 scores	 are	 as	 expected,	 with	 significant	 differences	
between	groups	for	the	EMT	and	Klepel,	but	not	for	verbal	competence	scores.	Against	
the	odds,	digit	span	scores	do	not	differ	significantly	between	groups	however.		 	
	
Table	1	
Mean	Scores	(and	Standard	Deviations)	for	EMT,	Klepel,	Verbal	Competence	and	Digit	Span	for	Dyslexics	and	Non-dyslexics.	
Additionally,	Outcomes	of	Statistical	Analyses	are	given.	

	
Test	

Dyslexics	
(N	=	12)	

Non-dyslexics	
(N	=	11)	

t	 df	 p	

EMT	 78.67	(9.87)	 104.00	(10.74)	 5.89	 21	 <	.001	
Klepel	 62.83	(16.22)	 		93.09	(14.03)	 4.76	 21	 <	.001	
Verbal	Competence	 19.92	(3.99)	 		19.18	(3.09)	 0.49	 21	 			.629	
Digit	Span	 		7.00	(1.41)	 				8.00	(1.89)	 1.44	 21	 			.164	
	
	
6.2	Artificial	grammar	learning	
In	 order	 to	 test	 the	 effect	 of	 group	 (participants	 with	 dyslexia	 versus	 participants	
without	dyslexia)	on	the	process	of	making	generalizations,	when	input	complexity	was	
kept	 constant,	 performance	 levels	 of	 both	 groups	 for	 the	 different	 test	 stimuli	 types	
were	compared.	An	alpha	level	of	 .05	was	used	for	all	statistical	tests.	The	performance	
levels	(in	percentages	of	correct	answers)	of	both	groups	for	each	test	stimuli	type	are	
presented	below.	Figure	1	shows	the	mean	performance	for	both	groups	for	all	types	of	
test	 stimuli	 in	 percentages	 of	 correct	 answers	 (i.e.	 correct	 acceptance	 for	 type_1	 and	
type_3,	and	correct	rejection	for	type_2	and	type_4).	
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Figure	1	
Percentages	of	Correct	Acceptance	for	Type_1	and	Type_3	and	Percentages	of	Correct	Rejections	for	Type_2	and	Type_4	
for	both	groups.		

	

	
	
	 For	 type_1stimuli	 (XXY	 with	 trained	 syllables),	 dyslexics	 showed	 a	 mean	
performance	 level	 of	 95%	 (M	 =	 4.75,	 SD	 =	 0.45).	 Non-dyslexics	 showed	 a	 mean	
performance	of	93%	(M	=	4.64,	SD	=	1.21).	An	Independent-Samples	T	Test	showed	no	
significant	difference	between	performance	levels	of	both	groups	(t	=	0.30;	df	=	21;	p	=	
.764).	 One-Sample	 T	 Tests	 indicated	 a	 significant	 above-chance	 performance	 for	 both	
dyslexics	(t	=	36.38;	df	=	11;	p	<	.001)	and	non-dyslexics	(t	=	5.88;	df	=	10;	p	<	.001).	
	 Type_2	stimuli	(XYZ	with	untrained	syllables)	yielded	mean	performance	of	87%	
for	dyslexics	(M	=	4.33,	SD	=	0.65)	and	82%	for	non-dyslexics	(M	=	4.09,	SD	=	0.94).	An	
Independent-Samples	 T	 Test	 showed	 no	 significant	 difference	 between	 performance	
levels	of	both	groups	(t	=	0.72;	df	=	21;	p	=	 .478).	A	significant	above-chance	level	was	
indicated	 by	 One-Sample	 T	 Tests	 for	 dyslexics	 (t	 =	 9.75;	 df	 =	 11;	 p	 <	 .001)	 and	 non-
dyslexics	(t	=	5.59;	df	=	10;	p	<	.001).	

For	 type_3	 items	 (XXY	 with	 untrained	 syllables),	 which	 show	 best	 whether	
participants	 abstracted	 generalized	 rules	 from	 the	 input,	 dyslexics	 showed	 a	 mean	
performance	 level	 of	 58%	 (M	 =	 2.92,	 SD	 =	 1.83).	 Non-dyslexics	 showed	 a	 mean	
performance	level	of	44%	(M	=	2.18,	SD	=	2.04).	Although	mean	performance	levels	per	
group	 seem	 to	 differ	 considerably,	 an	 Independent-Samples	 T	 Test	 indicated	 no	
significant	difference	in	mean	group	performances	(t	=	0.91;	df	=	21;	p	=	.373)	however.	
One-Sample	T	Tests	indicated	no	significant	above-chance	performance	for	dyslexics	(t	=	
0.79;	df	=	11;	p	=	.447)	and	no	significant	below-chance	performance	for	non-dyslexics	(t	
=	0.52;	df	=	10;	p	=	.616).	
	 Type_4	 stimuli	 (XYZ	with	 trained	 syllables)	 evoked	mean	 performance	 level	 of	
87%	for	dyslexics	(M	=	4.33,	SD	=	0.49)	and	62%	for	non-dyslexics	(M	=	3.09,	SD	=	1.92).	
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An	 Independent-Samples	 T	 Test	 showed	 no	 significant	 difference	 between	 mean	
performance	levels	of	both	groups	(t	=	2.08;	df	=	11.20;	p	=	 .061).	A	significant	above-
chance	performance	was	indicated	by	One-Sample	T	Tests	for	dyslexics	(t	=	12.90;	df	=	
11;	p	<	.001),	but	not	for	non-dyslexics	(t	=	1.02;	df	=	10;	p	=	.332).	
	 In	 order	 to	 test	 whether	 one	 group	 showed	 higher	 variability	 between	
performance	levels	for	type_1	(XXY	with	trained	syllables)	and	type_3	stimuli	(XXY	with	
untrained	syllables)	than	the	other	group,	mean	differences	between	performance	levels	
for	both	groups	were	compared.	High	variability	between	performance	levels	for	these	
stimuli	indicates	a	low	level	of	rule	abstraction,	as	rule	abstraction	would	lead	to	equal	
performance	 levels	 for	both	 types	of	 test	 items,	 because	of	 the	 fact	 that	both	 types	of	
stimuli	 would	 be	 judged	 correct	 according	 to	 abstracted	 rules.	 The	 mean	 difference	
between	type_1	and	type_3	for	dyslexics	(M	=	1.83,	SD	=	1.70)	was	lower	than	for	non-
dyslexics	 (M	 =	 2.45,	 SD	 =	 1.97),	 but	 an	 Independent-Samples	 T	 Test	 indicated	 no	
significant	difference	for	both	groups	in	mean	differences	(t	=	0.81;	df	=	21;	p	=	.425).		
	 In	 order	 to	 test	 whether	 one	 group	 showed	 higher	 variability	 between	
performance	 levels	 for	 type_1	 (XXY	 with	 trained	 syllables)	 and	 type_2	 (XYZ	 with	
untrained	 syllables)	 stimuli,	 mean	 differences	 between	 performance	 levels	 for	 both	
groups	were	 compared.	High	 variability	 between	performance	 levels	 for	 these	 stimuli	
indicates	 a	 low	 level	 of	 both	 pattern-	 and	 category-based	 abstractions,	 as	 both	
abstractions	 lead	 to	 correct	 answers	 (i.e.	 accepting	 type_1	 and	 rejecting	 type_2).	 The	
mean	 difference	 between	 type_1	 and	 type_2	 for	 dyslexics	 (M	 =	 0.42,	 SD	 =	 0.51)	 was	
lower	than	the	mean	difference	for	non-dyslexics	(M	=	0.55,	SD	=	1.21).	An	Independent-
Samples	 T	 Test	 showed	 no	 significant	 effect	 in	mean	 differences	 for	 both	 groups	 (t	 =	
0.34;	df	=	21;	p	=	.740)	however.	

Figure	 4	 shows	 the	 percentages	 of	 correct	 answers	 for	 type_3	 (untrained	 XXY)	
stimuli	 detailed	 by	 intermediate	 tests.	 Results	 indicated	 a	 slowly	 increasing	 trend	 for	
dyslexics	and	an	even	slower	increasing	trend	for	non-dyslexics	for	the	direction	of	the	
generalization	tendency	as	a	function	of	exposure.		
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Figure	2	
Percentage	of	Correct	Acceptance	for	Type_3	Untrained	XXY	Detailed	by	Intermediate	Tests.	The	Trend	Lines	show	the	
Direction	of	the	Generalization	Tendency	as	a	Function	of	Exposure.	

	

7. 	Discussion	and	conclusions	
This	 study	was	 a	 follow-up	 to	 the	 study	 of	 Rădulescu	 et	 al.	 (2014).	 According	 to	 the	
entropy	 model	 for	 linguistic	 generalizations	 proposed	 by	 Rădulescu	 et	 al.,	 language	
development	 starts	 out	 with	 memorizing	 specific	 items	 out	 of	 the	 input,	 based	 on	
pattern-based	abstractions.	As	long	as	the	channel	capacity	is	not	exceeded	by	the	input	
complexity	 (entropy),	 this	 process	 continues.	Whenever	 the	 input	 complexity	 exceeds	
the	channel	capacity,	pattern-based	abstractions	are	no	longer	sufficient	to	process	the	
input	error-free.	At	this	point,	 the	tendency	towards	 learning	based	on	category-based	
generalizations	starts	to	develop	gradually.	The	authors	concluded	their	entropy	model	
for	 linguistic	 generalizations	 to	 be	 correct	 according	 to	 their	 results	 and	 suggested	
further	 research	 in,	 among	 others,	 varying	 channel	 capacities	 when	 input	 complexity	
was	kept	constant.		
	 In	 the	 present	 study	 the	 effect	 of	 group	 (participants	 without	 dyslexia	 versus	
participants	 with	 dyslexia)	 on	 the	 process	 of	 making	 generalizations	 in	 an	 artificial	
grammar	 experiment,	 when	 input	 complexity	was	 kept	 constant,	 was	 investigated.	 In	
order	to	do	this,	stimuli	of	Rădulescu	et	al.	were	used	and	both	dyslexic	and	non-dyslexic	
participants	 were	 tested.	 Dyslexic	 participants	 were	 hypothesized	 to	 have	 a	 smaller	
channel	capacity	than	non-dyslexic	participants,	due	to	either	weaker	working	memory	
or	 problems	 in	 procedural	 learning.	 According	 to	 this	 hypothesis,	 dyslexics	 were	
predicted	to	show	better	performance	than	non-dyslexics	on	grammatical	stimuli	with	
untrained	 syllables,	 due	 to	 overloaded	 channel	 capacity	 which	 causes	 them	 to	 make	
more	category-based	abstractions	than	non-dyslexics.	
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Any	reported	differences	between	groups,	do	not	necessarily	indicate	a	difference	
in	channel	capacities	between	groups,	however.	Differences	could	also	be	due	to	varying	
competence	in	recognizing	or	memorizing	auditory	stimuli,	for	example,	which	may	lead	
to	 varying	 performance	 levels	 between	 groups.	 The	 experiment	 design	 is	 not	 able	 to	
exclude	 these	 factors	 completely.	 However,	 it	 makes	 sense	 to	 hypothesize	 weaker	
competence	 in	 participants	 with	 dyslexia	 than	 participants	 without	 dyslexia	 in	
recognizing	 or	memorizing	 auditory	 stimuli.	 Problems	 in	 recognizing	 and	memorizing	
auditory	input	may	also	lead	to	problems	in	reading	and	writing,	because	of	the	lack	of	
recognizing	regularities	 in	 the	 input	as	a	consequence:	problems	 found	 in	people	with	
dyslexia.	Therefore,	 it	makes	 sense	 to	hypothesize	weaker	 competence	 in	memorizing	
and	recognizing	stimuli	for	dyslexics.	Therefore,	poorer	performance	for	dyslexics	than	
non-dyslexics	 in	 the	present	 study	would	be	hypothesized,	when	 reported	differences	
would	be	caused	by	problems	in	recognizing	and	memorizing	skills,	and	not	by	varying	
channel	 capacities.	However,	 according	 to	 the	 (non-significant)	 higher	performance	of	
the	dyslexic	group,	problems	in	recognizing	or	memorizing	the	stimuli	do	not	seem	to	be	
likely.	 It	 seems	 to	 be	 plausible,	 therefore,	 that	 reported	 differences	 are	 caused	 by	
varying	channel	capacities	between	groups.	

As	expected,	both	groups	showed	high	performance	for	type_1	(trained	XXY)	test	
stimuli	and	no	significant	difference	was	indicated	between	mean	group	performances.	
Furthermore,	 both	 groups	 showed	 above-chance	 performance	 for	 type_1	 test	 stimuli.	
Considering	the	fact	that	type_2	(untrained	XYZ)	test	items	were	designed	as	a	negative	
test	 case	 complementary	 to	 type_1	 test	 stimuli,	 and	 both	 groups	 showed	 equal	
performance	 on	 the	 two	 test	 types,	 performance	 is	 as	was	 expected	 for	 both	 groups.	
Prior	to	the	experiment,	a	between	group	difference	was	expected	for	type_3	(untrained	
XXY)	test	items.	Dyslexics	in	fact	showed	higher	mean	performance	than	non-dyslexics.	
The	 analyses	 showed	 no	 significant	 between	 group	 difference	 in	 performance	 level	
however.	 Both	 groups	 showed	 performance	 on	 type_4	 according	 to	 the	 predicted	
directions:	 dyslexics	 performed	 better	 than	 non-dyslexics.	 However,	 no	 significant	
difference	 was	 found.	 Altogether,	 the	 performance	 predictions	 made	 prior	 to	 the	
experiment	do	not	seem	to	be	completely	correct.	No	significant	differences	were	found	
in	 mean	 performance	 levels	 between	 dyslexics	 and	 non-dyslexics	 in	 the	 predicted	
directions.	However,	both	groups	showed	performance	in	the	predicted	tendencies.	The	
lack	of	significant	differences	might	be	explained	by	a	power	problem	of	the	results,	due	
to	either	the	used	statistical	tests	or	the	relatively	small	sample	sizes	used	in	this	study	
(Dyslexic	group:	N	=	12,	Non-dyslexic	group:	N	=	11),	and	relatively	high	variances.	The	
hypotheses	(i.e.	dyslexics	were	hypothesized	to	abstract	rules,	and	non-dyslexics	were	
not	expected	to	abstract	rules)	seem	to	be	correct,	therefore.	

Moreover,	 the	 non-dyslexic	 group	 was	 expected	 to	 perform	 equal	 to	 the	
performance	 levels	 found	 in	 Rădulescu	 et	 al.’s	 experiment,	 as	 no	 changes	were	made	
according	to	those	participants’	channel	capacity	and	the	entropy	of	the	input.	However,	
type_3	 (untrained	 XXY)	 stimuli	 evoked	 different	 performance	 levels	 in	 the	 two	
experiments.	 Rădulescu	 et	 al.	 reported	 a	 percentage	 of	 correct	 answers	 of	 57%	 for	
type_3,	while	the	present	study	remarkably	found	a	percentage	of	44%	for	non-dyslexic	
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participants.	 Considering	 the	 fact	 that	 no	 changes	were	made	 in	 channel	 capacity	 and	
entropy	between	the	two	studies	for	non-dyslexic	participants,	the	difference	in	results	
might	 be	 due	 to	 unfortunate	 test	 circumstances	 in	 the	 present	 study.	 In	 the	 original	
experiment	participants	were	tested	in	a	sound-proof	booth,	while	in	the	present	study	
participants	 were	 tested	 at	 home	 or	 at	 school.	 Although	 background	 noises	 were	
eliminated	as	much	as	possible,	the	test	locations	were	not	sound-proof.	This	may	have	
caused	 the	participants	 to	be	distracted,	which	may	explain	 the	difference	 in	 reported	
results.	 Furthermore,	 participants	 in	 the	 original	 experiment	 were	 reimbursed,	 while	
subjects	in	the	present	study	participated	for	free.	This	may	have	caused	participants	in	
the	 original	 study	 to	 be	 more	 motivated	 than	 in	 the	 present	 experiment.	 In	 future	
research	all	participants	should	be	reimbursed	and	all	experiments	should	take	place	in	
a	 sound-proof	 booth,	 to	 rule	 out	 motivation	 due	 to	 reimbursement	 and	 background	
noise	as	influencing	factors	on	the	results.	Non-dyslexic	participants’	performance	levels	
are	 then	 expected	 to	 improve,	 up	 to	 the	 reported	 performance	 level	 of	 the	 original	
experiment.	 Dyslexics’	 performance	 levels	 are	 also	 expected	 to	 improve,	 as	 dyslexic	
participants	may	also	have	been	distracted	or	suffered	a	lack	of	motivation.	
	 The	 fact	 that	dyslexics	and	non-dyslexics	did	not	perform	significantly	different	
for	 type_3	 test	 items,	 could	 also	 be	 explained	 by	 the	 fact	 that	 the	 two	 groups	 did	 not	
have	significantly	different	digit	span	scores.	In	the	present	study	we	assumed	that	digit	
span	scores	are	a	proper	measure	for	working	memory,	although	this	is	not	commonly	
agreed	upon.	As	a	consequence	 to	 this	assumption,	we	assumed	that	digit	 span	scores	
are	related	to	channel	capacity	sizes,	as	working	memory	is	related	to	channel	capacity.	
Dyslexics	were	expected	to	perform	significantly	 lower	than	non-dyslexics	on	the	digit	
span	 task,	 due	 to	 weaker	 working	memories	 reported	 in	 earlier	 studies	 (Schuchardt,	
Bockmann,	 Bornemann,	&	Maehler,	 2013).	 Dyslexics	were	 therefore	 expected	 to	 have	
smaller	 channel	 capacities.	 This	 assumption	 resulted	 in	 the	 hypothesis	 that	 dyslexics	
would	perform	significantly	better	on	type_3	test	stimuli.	However,	according	to	the	fact	
that	 digit	 span	 scores	 did	 not	 differ	 significantly	 between	 groups,	 the	 hypothesized	
smaller	 channel	 capacity	 for	 dyslexics	may	have	 to	 be	 revised.	On	 the	 one	hand,	 non-
significant	 differences	 between	digit	 span	 scores	may	 indicate	 that	 digit	 span	 is	 not	 a	
proper	 test	 for	 working	 memory,	 as	 dyslexics	 are	 expected	 to	 have	 weaker	 working	
memories	than	non-dyslexics.	On	the	other	hand,	equal	channel	capacities	for	dyslexics	
and	non-dyslexics	explain	the	lack	of	significant	difference	between	group	performance	
levels	 for	 type_3	 test	 items.	 But	 then	 again,	 sample	 sizes	were	 relatively	 small	 in	 the	
present	study	(n	=	12	for	dyslexics;	n	=	11	for	non-dyslexics).	This	may	explain	the	fact	
that	digit	span	scores	and	type_3	performance	levels	did	not	differ	significantly	between	
groups,	due	to	power	issues	of	the	results.	According	to	the	findings	of	Schuchardt	et	al.	
(2013)	and	the	findings	of	the	present	study	(digit	span	score	of	7	for	dyslexics	vs.	8	for	
non-dyslexics),	digit	span	scores	are	still	assumed	to	be	a	proper	measure	for	working	
memory.	 Furthermore,	 digit	 span	 scores	 are	 expected	 to	 differ	 significantly	 between	
groups	 with	 bigger	 sample	 sizes	 in	 future	 research.	 Channel	 capacities	 thus	 are	 still	
hypothesized	to	be	smaller	for	dyslexics	than	non-dyslexics.		
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	 Rădulescu	 et	 al.	 propose	 a	 function	 for	 the	 two	 learning	 mechanisms,	 namely	
pattern-based	and	category-based	learning,	which	shows	the	effect	of	varying	entropies	
on	 the	 learning	 mechanisms.	 Future	 research	 should	 expose	 both	 dyslexic	 and	 non-
dyslexic	participants	to	varying	input	complexities,	in	order	to	figure	out	what	learning	
mechanism	function	could	be	made	when	channel	capacity	is	smaller	than	in	the	original	
experiment.	This	function	is	expected	to	show	earlier	decrease	of	pattern-based	learning	
and	sooner	increase	of	category-based	learning	for	dyslexics	as	compared	to	the	original	
function	when	entropy	increases,	due	to	earlier	exceeded	channel	capacities.	Findings	of	
the	present	study	confirm	this	hypothesis.		

Furthermore,	future	research	should	expose	both	children	and	adults	to	varying	
amounts	of	entropy	in	order	to	make	a	function	of	the	learning	mechanisms	for	children.	
This	 function	 is	also	expected	 to	show	earlier	decrease	 for	pattern-based	 learning	and	
sooner	increase	for	category-based	learning	for	children	as	compared	to	the	function	in	
the	original	experiment.	When	both	functions,	for	children	and	dyslexics,	are	made,	the	
functions	 can	 be	 compared	 in	 order	 to	 compare	 learning	 mechanisms	 of	 children	 to	
learning	mechanisms	of	dyslexics.	Considering	the	fact	that	channel	capacity	increases	in	
time,	(adult)	dyslexics	are	expected	to	show	later	decrease	of	pattern-based	abstractions	
and	 later	 increase	 of	 category-based	 abstractions	 than	 children,	 due	 to	 even	 smaller	
channel	capacities	in	children.	

The	 results	 of	 the	 present	 study	 do	 not	 show	 significantly	 different	 results	
between	participants	with	and	without	dyslexia	 in	abstracting	generalized	 rules	when	
confronted	with	a	low	entropy	in	the	input,	which	is	probably	due	to	the	small	sample	
sizes	 in	 the	 present	 study.	 However,	 the	 fact	 that	 the	 results	 do	 show	 a	 trend	 in	 the	
predicted	directions	 (i.e.	participants	with	dyslexia	extract	 rules	 from	 the	 input,	while	
participants	without	dyslexia	do	not	extract	rules)	suggests	that	a	more	extensive	study,	
with	sound-proof	test	locations,	might	show	significant	differences	between	participants	
with	and	without	dyslexia	according	to	rule	abstraction.		
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9. Appendices	
9.1	Entropy	calculations	
	
Low	 entropy	
28*3	 =	 84	 strings	
7	|	7	syllables	
Syllable	X	 Syllable	Y	
4*	kee	 4*	muu	
4*	joe	 4*	goo	
4*	daa	 4*	lie	
4*	puu	 4*	vee	
4*	teu	 4*	reu	
4*	hie	 4*	saa	
4*	foo	 4*	sjoe	
H[bX]	=	H[7]	=	-	å	x*logx	=	2.8	
H[XX]	 =	 H[7]	 =	 2.8	
H[XY]	 =	 H[7]	 =	 2.8	
H[Ye]	 =	 H[7]	 =	 2.8	
H[bXX]	 =	 H[7]	 =	 2.8	
H[XXY]	=	H[XYe]	=	H[7]	=	2.8	
H[bigram]	=	2.8	
H[trigram]	=	2.8	
H[total]	=	2.8	
	
(Rădulescu,	Wijnen,	&	Avrutin,	2015)	 	
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9.2	Training	stimuli	
	
Exposure	1/2/3	
	
keekeemuu	
joejoegoo	
daadaalie	
puupuuvee	
teuteureu	
hiehiesaa	
foofoosjoe	
keekeemuu	
joejoegoo	
daadaalie	
puupuuvee	
teuteureu	
hiehiesaa	
foofoosjoe	
keekeemuu	
joejoegoo	
daadaalie	
puupuuvee	
teuteureu	
hiehiesaa	
foofoosjoe	
keekeemuu	
joejoegoo	
daadaalie	
puupuuvee	
teuteureu	
hiehiesaa	
foofoosjoe	
	
(Rădulescu,	Wijnen,	&	Avrutin,	2014)	 	
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9.3	Test	stimuli	
	

Test	1	 Test	2	 Test	3	

type_1	 daadaalie	 type_1	 hie_hie_saa	 type_1	 kee_kee_muu	

type_2	 poogaaroe	 type_2	 roe_nuu_nie	 type_2	 gaa_mie_suu	

type_3	 duu_duu_taa	 type_3	 zoe_zoe_voo	 type_3	 soo_soo_ruu	

type_4	 joe_daa_saa	 type_4	 puu_teu_muu	 type_4	 kee_foo_vee	
	
(Rădulescu,	Wijnen,	&	Avrutin,	2014)	
	
	

Final	test	

type_1	 teuteureu	

type_2	 suunienuu	

type_3	 jiejiefeu	

type_4	 hiedaareu	

type_1	 joejoegoo	

type_2	 mienienuu	

type_3	 woewoesee	

type_4	 teupuugoo	
	
(Rădulescu,	Wijnen,	&	Avrutin,	2014)	


