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“Because the Earth is a dynamic system, sufficient understanding of the complex interactions among 
physical and ecological processes is needed (…). To achieve this goal, both long- and short-term 

observations are required to quantify, analyze, and subsequently understand the spatial and temporal 
variability, trend and magnitudes of changes in eco-systems dynamics” 

(Qi et al, 2012, p79), 

 

‘(…) customer demand and general interest is present to the point that there are already some UAV 
geoinformation niche markets; in particular growing new market for small photogrammetric and remote 

sensing projects. The trend seems to be unstoppable.’ 

(Colomina & Molina, 2014, p93). 

  

3 
 



  

Summary 
Although they have been effectively around for several decades, the societal interest for Unmanned 

Aerial Vehicles (UAVs) has recently taken off dramatically. The applicability of these remotely or automatically 
piloted aerial platforms is explored extensively in an endless array of different scientific fields, industries and 
professions. It is anticipated that (precision) agriculture (PA) in particular will represent the largest client of 
UAV technology in the coming decade. The ultimate objective of (PA) is to maximize productivity while 
minimizing economic costs and avoiding environmental harm. Consequently, practitioners of PA consider 
the presence of complex in field variability and require accurate and repeated information regarding crop 
statuses on a detailed small scale to adjust their intervening practices accordingly. Remote sensing has been 
extensively applied within agricultural sciences for this purpose in the past decades and proved capable of 
delivering intelligence on various biochemical and biophysical vegetation characteristics. Conventional 
sensing platforms and sensing systems, however, are generally unable to meet the combined spatial, 
temporal and, to a lesser degree, spectral resolutions required for establishing effective PA operations. 

The advent of UAVs, however, is expected to invoke auxiliary possibilities within this industry due to 
unique enabling features provided by these platforms, particularly with respect to spatial and temporal 
resolutions. Additionally the relatively recent miniaturization of advanced hyperspectral sensor systems, 
delivering continuous spectral data in as many as hundreds of adjacent (narrow) bands, is increasingly 
considered for compatibility with precision agriculture agricultural applications. The resultant increase in 
spectral resolution has been demonstrated to grant access to analytic capabilities of a larger variety of vital 
agricultural parameters with enhanced precision and accuracy. Apart from the anticipated benefits, UAV 
based remote sensing and the resultant very high resolution data acquisition give rise to several potential 
drawbacks (i.e. space, payload and power (range) restrictions, in-flight susceptibility, processing power, large 
data volumes and data redundancy, visualization impracticalities, preservation of acceptable signal-to-noise 
and applicability of existing methodologies, among others), rendering the technology far from a self-fulfilling 
prophecy. In this study, the combined suitability of UAVs and hyperspectral cameras for small scale 
monitoring of crops is evaluated through utilization of a custom built UAV platform to which one of the 
latter sensing systems is mounted. At the Wageningen University & Research center a research is currently 
underway to investigate the assumed interrelationship between the legacies of plants present in soils and 
plant traits of current vegetation. It is this field experiment and the associated study area that provide the 
practical framework within which this research was shaped and subsequently conducted. 

A UAV flight was conducted in the 2015 growing season over a field comprising of seventy separate 
plots cultivated with oats, each having received different treatments. Spectral data was acquired in the visible 
and near-infrared range (450-915nm) over 94 adjacent wavebands by a hyperspectral push broom scanner. 
Simultaneously, a RGB orthomosaic was acquired from which a Crop Surface Model (CSM) was eventually 
derived. Within the same time frame, in situ measurements of a variety of relevant agronomic crop 
parameters were retrieved from each plot (crop height, fresh biomass, nitrogen (N) content, carbon (C) 
content and leaf chlorophyll (Chl) content). Subsequently, the acquired hyperspectral data was related to 
distinct crop parameters in an independent calibration procedure through univariate regression analysis over 
individual wavebands, existing vegetation indices (VIs), new optimized indices and partial least squares (PLS) 
regression. For each trait, a selection of the best performing indices and models found during calibration 
was evaluated with respect to their precision and predictive accuracies on an independent validation set. 
Validation displayed considerably varied results, indicated by relatively high prediction capabilities for models 
estimating crop height (CVRMSE = 5.12%, R2 = 0.79) followed by leaf chlorophyll content (CVRMSE = 14.5%. 
R2 = 0.79). The best models related to prediction of N content (CVRMSE = 21.6%. R2 = 0.68), fresh biomass 
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(CVRMSE = 20.8%. R2 = 0.56) and C content (CVRMSE = 20.8%. R2 = 0.52) exhibited larger prediction 
inaccuracies and lower precision. For all traits except height and leaf Chl content, derivation of new indices 
through an optimization algorithm considering all possible combinations of two narrow bands delivered 
enhanced performances. PLS regression only yielded higher prediction capabilities for fresh biomass, no 
improvements were observed for any of the remaining traits. Besides, the outcomes suggest that predictions 
through remotely sensed data for height, leaf Chl content, N content and, to a lesser degree, fresh biomass 
may be effectively further discriminated for different cultivars and their associated treatments 

Next to quantitative results the research has illuminated a variety of additional points of interests 
that are to be considered in UAV based remote sensing (research). It is reasoned that the most considerable 
topic relates to demonstrated, and partially assumed, within plot heterogeneity on the one hand, and 
different densities at which field data was collect for distinct traits on the other. The latter resolves around 
the hypothesis of within plot homogeneity and the assumed representativeness of samples with respect to 
the remainder of distinct plots. Initially, however, it was observed that a selection of plots exhibited physical 
heterogeneity to various levels of severity. Furthermore, it has been reasoned that some of the inaccuracies 
observed in prediction of traits for separate plots may possibly be invoked by limited sampling procedures 
that inadequately reproduced (assumed) variability of the distribution of biophysical or biochemical crop 
attributes. Relatedly, the highest prediction accuracies were recorded for traits for which a comparatively 
higher sampling density was adhered to. Subsequently, it is believed that more intensive and homogenous 
sampling allows establishing of more robust relationships between spectral data and field data. It was also 
observed that the original data comprised of a heterogeneous image quality, indicated by various forms and 
degrees of radiometric flaws (i.e. illumination, striping and dead pixel issues) and geometric inconsistencies. 
The latter was accommodated for through the inclusion of a limited number of RTK-GPS measured ground 
control points and additional geometric processing of the data hereafter. Some of the radiometric errors 
were tackled through signal enhancement by vegetation indices although some (plausibly influential) errors 
have sustained. Alternative points of interest relate to the incorporation of two independent yet relatively 
small calibration and validation datasets, and the general applicability of the findings of this study. Regarding 
the former it has been observed that individual observations (plots) are allocated considerable leverage in 
regression analysis, hereby allowing potential errors originating from several stages of the (overarching) 
research to significantly influence the results. Relatedly, a considerable discrepancy was observed for fresh 
biomass and C content measurements in the calibration and validation set, which is argued to have affected 
the analysis at different stages to various degrees. At last, straightforward generalizing of the findings of this 
particular study to other studies and/or crops is considered questionable and should thus be treated with 
caution. Different plant species, their associated structure (e.g. planophile vs. erectophile), their 
developmental stage, among others, are known to (significantly) influence spectral signatures and, 
subsequently, the relationship(s) between spectral data (e.g. vegetation indices) and measured quantities of 
biophysical and biochemical properties. The latter variable relating to growth stage is argued to be 
particularly relevant in this instance. Spectral data on the oat plots was acquired when the crops had reached 
the maturation phase, only three weeks prior to harvesting. Various biochemical processes that are 
intensified throughout this phase have plausibly affected the spectra of crops, and the associated ability to 
discriminate in situ measurements. Calibration of relationships between both variables was found to be 
particularly complex in this final stage which, additionally, renders comparison of findings to previous studies 
focusing on a different developmental phase peculiarly problematic. Several suggestions believed to 
(partially) mitigate some of these concerns are presented throughout this report and the eventual discussion. 
Consequently, it is argued that the study of which the findings are presented in this document has yielded a 
variety of promising results from which auxiliary research in different directions may effectively depart.  
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1. Introduction 

1.1 Introduction 
Ever since the first photograph of the Earth’s surface was acquired from an aerial platform in the midst 

of the 19th century, the interest for the associated technology enabling human beings to collect remotely 
sensed imagery of our planet has developed at a formidable pace. Driven by an amalgam of sheer curiosity 
and conviction of its applicability within practically an endless number of fields, a wide array of different 
platforms and sensors have come into being over the course of the past decades for these means (Lillesand 
et al., 2014). Through the use of such sensors one may distil unique imagery of a specific study area from a 
distance in a non-destructive manner, sometimes including radiation oriented spectral information normally 
undetectable by the human eye, among others, such as thermal, atmospheric and three-dimensional 
intelligence (Campbell & Wynne, 2002). 

For remote sensing purposes, sensors may be mounted on various platforms belonging to one of 
the following operational modes: ground-based, airborne or space borne (Ortenberg, 2012). Whereas space 
and airborne platforms are considered ultimately applicable for remote sensing on the regional and/or 
global scale, they subsequently fail to meet the conditions required for remote sensing purposes on 
(significantly) smaller scales (Bareth et al, 2014). Relatedly, though their potential was already considered 
three decades ago, Unmanned Aerial Vehicles (UAVs) have only recently received notable scientific and 
societal attention (Colomina & Molina, 2014). UAVs are capable of covering sizable areas in a relatively short 
period of time at equally short distances from the area and/or objects under study. These features allow 
imagery acquisition at uniquely high temporal and spatial resolutions (Eling et al., 2014). As a result, both 
commercial and scientific interest for UAV-based remote sensing and geo-information collection has 
expanded recently and is rapidly maturing (Bendig & Bareth, 2014). Relatedly, scholars worldwide are 
exploring its applicability within a wild array of interested fields, hereby further advancing the technology to 
allow tackling of the associated challenges and optimizing its pertinence (Colomina & Molina, 2014; 
Everaerts, 2009). 

The potential of UAV-based imagery collection is now considered and explored within a diversified 
and continuously growing number of fields. The interest for agricultural vegetation monitoring using UAVs is 
increasing particularly substantial (Colomina & Molina, 2014). A related and relatively novice subfield within 
the agricultural industry to which UAV-based remote sensing technology is considered ultimately valuable is 
precision agriculture (PA) (Honkavaara et al., 2013; Zecha et al., 2013; Lelong, 2008). PA represents the 
ultimate example of agricultural practices becoming ever more efficient and profitable, through enhancing a 
more effective management of inputs (e.g. herbicides, seeds, fertilizers and soil content) zonally and 
adequately adjusting intervening practices (Huang et al., 2013). This notion suggests that farming methods 
should be executed with a fairly high level of precision, reaching plot or even plant level, to maximize yields 
and limit excessive use of potentially environmentally detrimental substances (Zhang & Kovacs, 2012). In 
precision farming, the challenge thus largely comprises tackling of issues related to scale and uncertainty, 
besides finding meaningful ways for delivering the information to practitioners (e.g. through prescription 
and/or variable rate application maps), preferably in near-real time (Dobermann et al., 2004; Lamb & Brown, 
2001; Flemming et al., 2000). Resultantly, research incorporating miniaturized experimental agricultural plots 
to develop and evaluate innovative methods to optimize farming procedures is substantiating.  

Distinct crop features such as structure, composition and quantitative characteristics interact 
spectrally different with incoming electromagnetic radiation (Homolová et al., 2013; Mulla, 2013). As a result, 
information derived from spectral remote sensors can aid in measuring and mapping of varying biophysical 
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and biochemical traits of crops, classification of different crops, crop growth, and soil mapping, among 
others (Zhang & Kovacs, 2012). Especially optical (narrow band) hyperspectral sensors have revolutionized 
the use of remote sensing for monitoring (agricultural) vegetation. It is generally accepted that, for these 
purposes, narrowband hyperspectral optical sensors are superior to broadband (e.g. multispectral) sensor 
systems (Ortenberg, 2012). This is due to their significantly enhanced ability to discriminate between unique 
vegetation properties of which anomalies in reflective behavior may only be discerned when their spectral 
signatures are measured at small continuous intervals (Mulla, 2013; Nguyen & Lee, 2006; Campbell & 
Wynne, 2002). Once collected and processed, the acquired data can be effectively utilized to support 
decision-making processes in crop management, yield forecasting and/or environmental protection 
(Thenkabail et al., 2012b; Haboudane et al., 2002). Zhang & Kovacs (2012), however, state that the 
application of remote sensing in small scale PA is still rather limited. Currently, PA oriented research is still 
mostly relying on time-consuming and labor intensive sampling methods. It is argued that this may be 
partially related to the notion that while conventional remote sensing platforms have proved a valuable 
means for agricultural purposes on the regional and larger scales, space and air borne remote sensing are 
either largely or completely unsuitable for application in PA solely by themselves (Nebiker et al., 2008). In this 
regard, issues resulting from frequent cloud cover, inadequate revisiting time, high operational costs, 
insufficient spectral and spectral resolution, among others, are frequently mentioned (Primicerio et al., 2012; 
Zhang & Kovacs, 2012; Mulder et al., 2011; Zhang et al., 2002).  

Practitioners of PA are on a continuous quest to devise and implement new sustainable methods 
that preserve or improve the quality and reliability of information acquisition, besides meeting a variety of 
qualifications (Kooistra et al., 2014). In respect to considering remote sensing for application in PA, imagery 
ought to be affordable and provided at uniquely high spatial, spectral and temporal resolutions (Berni et al., 
2009; Nebiker et al., 2008; Zarco-Tejada et al., 2008). Considering the inability of conventional ground, air 
and space based sensing systems to meet all of these requirements by themselves, UAVs offer unique and 
highly desired capabilities that may provide auxiliary intelligence for practitioners of PA, particularly when 
combined with alternative sources (i.e. ground/aerial/satellite platforms) of intelligence (Rango et al., 2009). 
More specifically, this relates to the combination of very high spatial (cm) and temporal (frequently and near 
real-time) resolution imagery, and an unprecedented operational resilience at limited costs and effort. 
Considering spectral capabilities, initial commercial UAV platforms were endowed with relatively simple 
(consumer) cameras operating in the VIS and/or NIR spectrum using broad bands (Konkavaara et al., 2013; 
Hunt et al., 2010). As technological capabilities advanced and sensor systems were increasingly miniaturized, 
the way for incorporating auxiliary and higher-order sensors on these platforms was successfully paved 
(Colomina & Molina, 2014). Principle examples include both multispectral (Retzlaff et al., 2014; Nebiker et al., 
2008) and hyperspectral (Bareth et al., 2014; Calderón, 2014; Suomalainen et al., 2014) systems, when 
considering the purpose of mapping distinct plant traits in particular. Thanks to these enabling features, 
UAVs effectively bridge a gap that previously existed between other sensing systems (Xiang & Tian, 2010).  

Finally, the number of hyperspectral systems on board UAV sensing platforms is still far 
outnumbered by its broadband multispectral counterparts (Suomalainen et al., 2014; Shippert, 2004). 
Likewise, hyperspectral remote sensing is still primarily utilized within the scientific community for 
experimental purposes, although commercial availability of hyperspectral sensors (e.g. CASI & Hymap) is 
gradually growing (Govender et al., 2007). These deliberations, however, may be partially ascribable to the 
notion that contemporary hyperspectral remote sensing suffers from several limitations, such as large data 
volumes and data redundancy, visualization impracticalities, preservation of acceptable signal-to-noise 
ratios, and the fact that some broadband oriented methodologies are unsuitable for processing of 
hyperspectral data, among others (Qi et al., 2012). Besides, hyperspectral sensors tend to be larger and 
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more expensive than their multispectral counterparts (Colomina & Molina, 2014; Huang et al., 2013). When 
hyperspectral sensors are utilized for agricultural purposes, they are therefore majorly space borne (e.g. 
Hyperion) or airborne (e.g. AVIRIS, CASI), and specifically applied for large scale agriculture (Mulla, 2013). 
Research in which hyperspectral spectroscopy from the sensor point of view, and UAVs regarding sensing 
platforms, are unified and applied for small scale agricultural applications is relatively scarce. It is argued here 
that evaluation of the application of high resolution hyperspectral imagery onboard UAV platforms is worth 
exploring considering the undeniable benefits both components are believed to offer to precision 
agriculture.  

1.2 Background & practical relevance of research 
At the Wageningen University & Research (WUR) center a field experiment is underway as of March 

2014, investigating the legacies of various cover crops and combination of crop species. It is argued that the 
(un)successful growth of present vegetation is inherently determined by biological traces (i.e. phatogens, 
nematodes, phytotoxic substances) left by different types of preceding agricultural land use or cultivars, 
resulting in heterogeneous topsoil (Selige & Schmidhalter, 2006; López-Granados et al., 2005; Moran et al., 
1997). Within the field experiment, an attempt is made to better understand the assumed interrelationship 
between dead plant material provided by preceding vegetation, the (resultant) biological composition and 
activity of soil, and various characteristics of current vegetation (e.g. productivity, composition and structure) 
respectively. Such legacies present in soil are one of the agronomical inputs practitioners of precision 
agriculture are increasingly trying to unveil in order to enhance management of crops and optimize yields 
more efficiently and effectively (McBratney et al., 2005; Whelan & McBratney, 2000).  

Considering the labor-intensive and costly endeavors currently undertaken to perform manual analysis 
of traits of interest on relatively small spatial scales, as is currently done in this field experiment, the ability to 
execute such assessments differently in a fast, robust and cost-efficient manner is in high demand (Kuang & 
Mouazen, 2011; Nebiker et al., 2008). Given these deliberations, the applicability and usefulness of 
(advanced) optical sensors on board a UAV platform are currently being investigated at WUR, through 
integration of this analytical component into the overarching field experiment. The latter, focusing on the 
remote retrieval of crop attributes, is where this research comes into play.  

1.3 Scientific & societal relevance 
The following research is motivated from different directions, fueled by a combination of partially 

overlapping fields of interests in contemporary precision agriculture and remote sensing, and their 
anticipated future development. Conventional air and space borne remote sensing platforms are currently 
unable to meet the distinct needs of small scale precision agriculture, especially in regard to different 
dimensions of resolution, costs, flexibility, repeatability, and near real-time information provision (Mulla, 
2013; Primicerio et al., 2012; Zhang & Kovacs, 2012; Mulder et al., 2011; Zhang et al., 2002). Therefore, 
precision agricultural experiments and practices are heavily relying on labor-intensive manual procedures, 
destructive sampling and spectral measurements of plants and soils on the ground, hereby challenging the 
associated goals of adequate, repeated and cost-effective farming (Nebiker et al, 2008). Resultantly, 
development and evaluation of new technologies for precise crop monitoring is considered one of the 
primary pillars in contemporary and future precision agriculture oriented research (Arnó et al., 2009; 
Dobermann et al., 2004). Mapping and quantification of in-field variation by UAV based remote sensing 
embodies one of these new technologies for which exploration in regard to its applicability to the industry is 
highly desired.  
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As far as remote sensing is concerned, the potential of UAVs for monitoring and mapping purposes 
was articulated on multiple occasions in the (recent) past. On these occasions, however, it was similarly 
stated that additional research into the performance of UAVs and their on board sensors for various 
applications is required continuously (Everaerts, 2008). This is especially relevant when one considers that 
some of the challenges UAVs potentially suffer from render their suitability and accuracy far from self-
evident (Hardin & Jensen, 2015). Besides, in UAV based remote sensing research, hyperspectral systems are 
still clearly outnumbered by their multispectral counterparts (Suomalainen et al., 2014). Therefore, continued 
exploration of what UAVs are (not) capable of within different field of applications using different sensors, 
such as precision agriculture, is considered a valid topic in contemporary remote sensing research. More 
specifically, proper analysis methods and the associated (i.e. geometric and/or radiometric) accuracy of 
thereofs with respect to a distinct application, taking into account the resultantly increased resolution(s), 
require careful evaluation (Hardin & Jensen, 2015; Hruska et al., 2012; Lelong et al., 2008). 

Regardless of the anticipated benefits for PA of both UAVs and hyperspectral spectroscopy, 
research which integrates all three components is still marginal. Agriculture oriented research incorporating 
hyperspectral remote sensing is still mostly geared towards large scale agriculture, relying on imagery 
acquired by airborne and/or space borne platforms (Zhang & Kovacs, 2012). Likewise, studies related to 
precision agriculture and the use of UAVs primarily cover sensors other than hyperspectral ones, such as 
multispectral optics. Therefore, research on the appropriate analysis methods for spectral decomposition 
should receive renewed attention, now that distinct hyperspectral spectroscopy and sensing platforms 
combined allow capturing of imagery at both spectral and spatial resolutions required for effective PA. In 
addition, it is considered ultimately vital to continuously investigate the possibility of generating new value 
adding and accurate spectral indices for measuring crop characteristics (Mulla, 2013). 

1.4 Research Objectives 
Given the deliberations presented in this introductory chapter thus far, the primordial objective of this 

explorative research is to evaluate how, and to which extent, UAV based optical sensors can assist 
agricultural practitioners in mapping and quantification of specific plant traits. Consequently, this study aims 
to demonstrate the potential of UAV based hyperspectral spectroscopy for precision agriculture, and to 
evaluate the suitability of the obtained mapping results regarding their possible integration into the 
associated practices. This includes evaluation and comparison of the performance of different data analysis 
approaches based on different (sensor) inputs. As was mentioned previously, UAVs and PA are relatively 
novice fields. Resultantly, the coverage of both elements, especially when hyperspectral spectroscopy is 
added to equation, is still limited. This thesis research therefore ultimately aims to add to the currently 
existing knowledgebase and potentially provide auxiliary directions for future research. 

Although the research process flows through a substantial number of phases, three overarching stages 
can be identified. The first, exploration, comprises of an extensive literature review to acquire, expand and 
enhance the understanding of relevant theories, concepts, data processing techniques and jargon. This 
exploration is specifically geared towards UAVs, remote sensing and precision agriculture, as well as the 
associations between these themes. Preparation of both field and aerial UAV data embody the second stage. 
This relates to application of various corrections to the data, retrieval of trait metrics and generation of 
supportive datasets to aid in the analysis stage. In the third and final stage the data is subsequently 
processed, including spectral feature extraction analysis, calibration and validation of different models, and 
statistics, among others. Eventually, the results are evaluated, compared to the findings of the preceding 
literature stage and assessed in regard to accuracy and applicability for application in PA. In short, the final 
stage provides a synthesis of the preceding research and answers to the problem statement that is derived. 
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1.5 Research Problem Statement 
In order to eventually reach the objectives of this research, the following problem statement has 

been formulated: 

 To what extent can optical sensors on board a UAV platform be used to identify, map and quantify 
biophysical and biochemical traits of crops? 

 
Here, the identification component relates to the ability to successfully discriminate between the 

different traits under study. The mapping aspect deals with the capacity to accurately locate the identified 
traits in space. Finally, quantification deals with the associated capability of distilling and predicting correct 
numerical values/quantities/proportions to the identified traits in respect to ground-truth measurements. 

Subsequently, to further structure the research process, the following sub questions will be 
addressed: 

 Which specific biophysical and biochemical crop traits are considered relevant for identification, 
mapping and quantification considering precision agricultural practices? 

 Which remote sensing methods, requiring which data input, can be used to identify, map and 
quantify these traits? 

 How do these different methodologies perform when applied to the selected traits, using UAV 
acquired imagery, in regard to precision and (prediction) accuracy? 

1.6 Research scope 
It is considered vital to adequately delineate the research, i.e. to define its scope. The problem 

statement and sub questions mentioned above relate especially to what will be covered by this study. The 
delineation is further clarified and completed by stating what the research objective is not about below: 

 The research only covers the use of remote sensing of vegetation by means of optical sensor 
systems and reflected electromagnetic radiation in the visible and near-infrared spectral region 
Analysis of emitted radiation by means of thermal sensor systems and/or evaluation of data 
derived from Light Detection and Ranging (LiDAR) sensors are excluded. This is not to say they 
are irrelevant for vegetation monitoring (previous research has confirmed they are to various 
degrees), but rather the direct result of the notion that the UAV platform that will be used 
during this study does not carry any of such sensors. 

 The research will not cover comparative analysis of agriculture oriented remote sensing by 
different platforms. UAVs are the primordial and only remote sensing platform considered here. 

 The research will evaluate the use of optical sensors for crop phenology at a single moment in 
time. Dynamics and differences caused by crop growth/development through time are not 
included. This has been purposely decided for two specific reasons. The first is to limit the scope 
of the research and align its feasibility with the given time constraints. Secondly, the dataset’s 
temporal resolution does not allow such analysis. The research deliverables, however, may 
provide auxiliary directions and input for future research that incorporates the temporal 
dimension. 

 Overcoming contemporary relevant challenges currently facing the application of hyperspectral 
remote sensing (e.g. excessive data volumes, data redundancy, and visualization difficulties) 
may be partially or indirectly touched upon, but do not represent the focal point of this 
research by any means. 
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1.7 Conceptual model 
Based on the initial exploration of the research, its objectives and the associated problem statement and 

sub questions provided in this introductory chapter, a conceptual model was established (figure 1.1). The 
model depicts the most fundamental concepts, themes and components related to this study, as well as their 
(assumed) interrelationship. It supposedly provides a simplified but comprehensive and directional visual 
representation of the research presented here. The left (green) and right (orange) side of the model depict 
the two major overarching fields of interest incorporated in this thesis, agriculture and remote sensing, 
respectively. Each is gradually broken down to more specific constructs, or variables, in boxes in the vertical 
direction. Connections depicted as one-way or two-headed arrows depict rather causal relationships 
between variables, indicating some sort of cause-effect or input-output dependency. Lines without arrows 
represent relationships that do not necessarily express causality. Textual additions to the relationships 
indicate how relationships are to be interpreted. At the very bottom, the linkage between distinct specifics of 
both fields of interest (crop monitoring for PA and UAV based optical remote sensing, respectively) put 
forward the eventual problem statement that will be covered in this thesis (in cyan). 

Figure 1.1: The Conceptual Model for this thesis 
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1.8 Thesis report structure 
In order to enhance the readability of this extensive report a textual overview of the document’s 

structure is provided here. The reader is strongly advised to take note of this supplement, to allow efficient 
locating of the components deemed relevant.  

In the upcoming chapters, the relevant theoretical context of this research will be further and 
extensively elaborated on. The first theoretical chapter deals with remote sensing specifically, including a 
short history, its application, different platforms and (relevant) sensor systems, among other themes. 
Subsequently, the third chapter discusses the use of remote sensing in vegetation monitoring. Besides, the 
recent developments in the agricultural industry, particularly in regard to the advent of precision agriculture 
(PA), are discussed. Likewise, the requirements of PA in regard to application of remote sensing technology 
are mentioned. The fourth and final theoretical component is geared towards plant traits and their spectral 
behavior in the electromagnetic spectrum. More importantly, the chapter identifies the most vital agronomic 
traits of crops for PA practices and elaborates on their relevance. A tabular overview of existing indices used 
to map these traits in previous remote sensing studies is also provided, the textual elaboration on these 
matters is provided in appendix C. Next, chapter five elaborates on acquisition of the data included in this 
research. This section comprises of a description of the study area and the UAV platform used, and of how 
the data was collected in the field and from the air, respectively. Besides, various stages of pre-processing 
that were applied prior to this research are briefly discussed. In chapter six the methodological framework 
adhered to is presented, indicating the distinct phases within the overarching stages that characterize this 
study. This includes mentioning of different techniques to be used and justification of decisions that were 
made. A visual representation of the methodological framework, i.e. the operational design, is also given. 
From chapter seven onwards the actual analysis is commenced and its results presented. This includes an 
exploratory analysis of the data (chapter 7) and both calibration (chapter 8) and validation procedures 
(chapter 9), in addition to linking of the results to findings in existing research. These chapters are followed 
up by an extensive discussion in which relevant deliberations and possible limitations of this research are 
considered. Following from here, an array of directions for future research is presented. The study is brought 
to a conclusion in chapter eleven through some brief concluding remarks. 
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2. Theoretical context: Remote sensing & UAVs 

2.1 Brief history of RS and its applications 
Throughout its existence, various endeavors have been undertaken to concisely establish an all-

encompassing definition that fits the field of remote sensing and the associated techniques and their 
applications. An overview of such definitions is presented by Campbell & Wynne (2002). Varied as they 
might be, each describes at least the importance of 1) acquiring information (passively or actively) of 2) 
objects or events from 3) a distance (Cracknell & Hayes, 2007; Elachi & Zyl, 2006). For acquired data to be 
considered as information, however, interpretation or processing is required. As a result, the relatively 
general yet broadly applicable definition adhered to here defines remote sensing as ‘the collection and 
subsequent interpretation of information of an object, area or event that has been derived without 
contacting the target under study physically’. Even though this theoretically implicates that conventional 
photography can too be considered a form of remote sensing, the latter is distinctly different due to the 
frequent use of different equipment and techniques to acquire alternative information, for example outside 
the visible wavelength range (Cracknell & Hayes, 2007). Nonetheless, initial progress in the field of remote 
sensing was, not surprisingly, a direct result of advancements in a related field of expertise, namely 
photography (Lillesand et al., 2014).  

Remote sensing at its simplest comprises of several elements as visualized below in figure 2.1. The 
first embodies the energy source (e.g. the sun) that illuminates light or disseminates electromagnetic energy 
to one or multiple targets (1). Subsequently, as the energy passes to or from the target it interacts with the 
intermediate atmosphere (2). Eventually, the energy interacts with a target, although the distribution and 
level of energy over different wavelengths is particularly shaped by distinct properties of the target at the 
receiving end (3). Depending on how much energy is transmitted, absorbed, emitted and/or reflected, a 
(passive) sensor mounted on a platform at a distance may be used to measure the incoming remaining 
radiation (4). Finally, the received data requires transmission (5), processing, interpretation and analysis (6), 
to eventually arrive at one or multiple applications (7) (Sahu, 2008; Kumar, 2005). 

Figure 2.1: Simplified visual representation of the elements present in remote sensing. Please take note that here the 
sun is depicted as the energy source in case of passive RS (paragraph 2.3), although this could be replaced by an antenna 
in active RS. Likewise, targets other than vegetation may be incorporated. Similarly, the depicted satellite may be 
replaced by alternative operational modes. 
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The first known aerial photographs captured from a balloon in the midst of the 19th century, taken 
by Parisian photographer Gaspard-félix Tournachon, marked the initiation of remote sensing according to 
many sources (Lillesand et al., 2014). Subsequently, kites and pigeons were utilized to mount cameras on. In 
the early and late 20th century, development of remote sensing from aircraft and spacecraft was introduced, 
allowing image capturing under relatively controlled conditions. Concerning imagery, black and white 
photography was replaced by color photography in the 1930s, to be further extended into the near-infrared 
range soon after. Concurrently, active and passive microwave systems were also included from the early 20th 
century onwards, similar to radar systems. In the 1960s, multispectral sensors were developed and exploited 
from various platforms extensively (Elachi & Zyl, 2006). In approximately the same time frame laser 
instruments were developed. Narrow band hyperspectral imagery emerged more recently, in the 1980s (Qi 
et al., 2012).  

Applications of remote sensing were initially geared towards topographic purposes, although 
remote sensing was increasingly used by the military for surveillance and reconnaissance, especially during 
WW II (Cracknell & Hayes, 2007; Elachi & Zyl, 2006). As of today, remote sensing is omnipresent in a highly 
varied array of industries and disciplines in which the associated techniques and output data are utilized for 
an equally substantial number of deviating purposes, such as land use mapping, geological and soil 
mapping, planning applications, forestry, (wildlife) ecology, geomorphology, archaeology, disaster 
management, climatology, agriculture, civil engineering, meteorology, pollution monitoring, among many 
more  (Lillesand et al., 2014; Rees, 2013; Cracknell & Hayes, 2007). 

2.2 RS Platforms 
Platforms represent the vehicles or carriers for remote sensing equipment (Sahu, 2008, p 129). 

Sensors may be mounted on practically an endless variety of different platforms, ranging from simple 
ground equipment to advanced space complexes and everything in between, such as trucks, helicopters and 
zeppelins. Considering this diversity, an overarching classification comprising of ground, air and space based 
platforms is frequently adhered to for clarification. Due to the operating conditions that each environment 
invokes, each type of platform is familiar with a range of distinct advantages, challenges and limitations 
(Ortenberg, 2012). The eventual application of the remotely sensed imagery, however, ultimately determines 
what platform and its associated characteristics are more suitable than others. 

2.2.1 Ground, air & space based systems 
Ground based systems refer to those platforms physically handled on the ground by hand (e.g. 

spectroradiometers), from trucks, or in a laboratory environment (Qi et al., 2012). Due to the limited ground-
sensor distance and the resultantly small Field-of-View (FOV), ground based systems are known to provide 
the highest spatial resolution, in the order of centimeters (Nebiker et al., 2008). Besides, ground based 
systems are relatively flexible and easily deployable, allowing analysis in (near) real-time (Ortenberg, 2012; Qi 
et al., 2012). Even though ground-based systems are, generally speaking, less costly to operate and maintain 
than air- and space borne systems, they provide a highly limited aerial extent rendering them less useful for 
covering larger areas repeatedly (Gopi et al., 2008). Ground based platforms are frequently utilized to 
calibrate sensor systems that are eventually exploited from either air- or space borne platforms (Ortenberg, 
2012; Barrett & Curtis, 1999). Alternatively, measurements conducted by these ground based systems have 
been used to validate measurements from aerial or space borne platforms (Bareth et al., 2014). 
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Aerial platforms are majorly represented by conventional fixed-wing aircraft, although alternatively 
they may refer to other mobile vehicles such as balloons, helicopters and rockets, among others. In contrast 
to ground based platforms, aerial systems provide a substantially larger coverage and may be deployed 
practically anywhere (Gopi et al., 2008). In addition, airborne systems are generally more flexible than their 
space based counterparts in regard to flight scheduling and adjusting of sensing equipment/flying height to 
fit the required spectral and/or spatial resolutions, respectively (Qi et al., 2012). Depending on the aircraft’s 
altitude and FOV of the camera, a sub meter ground resolution can be realized (Ortenberg, 2012; Nebiker et 
al., 2008). Due to the capturing of imagery based on the flight line direction and attitude of the aircraft, 
however, the data’s geometrical quality is inherently influenced by environmental conditions such as wind, 
flight speed and alignment (Qi et al., 2012). Besides, especially in comparison to ground based platforms, 
aerial remote sensing suffers from significant operational costs (Primicerio et al., 2012). Likewise, compared 
to space borne equipment, airborne sensing is generally more expensive due to a smaller swath width and 
reduced speed of the platform (Qi et al., 2012). 

The introduction of remote sensing into space provided a substantial boost to the development of 
the field and its applicability, due to opening up of an entirely new dimension allowing continuous 
observation of the Earth’s surface on a global scale (Elachi & Zyl, 2006). As a result, global patterns 
(especially in climatology) have been illuminated and unraveled in the past that could not be accomplished 
using any of the other platforms (Gopi et al., 2008). Due to their high altitude, space borne systems are 
capable of covering large areas in relatively little time, producing cost-efficient imagery when considering 
costs per unit surface area (Qi et al., 2012). The costs associated with its development and maintenance of 
the required ground support facilities, however, render satellite remote sensing a far from inexpensive 
endeavor (Ortenberg, 2012). Besides, the large coverage equals a spatial resolution that may be considered 
too coarse for certain applications (Zhang & Kovacs, 2012). Compared to aerial platforms, space borne 
systems enjoy the benefit of being operable in all weather conditions, although cloud cover may effectively 
obstruct image acquisition (specifically in the VIS/NIR) at times (Mulla, 2013; Cracknell & Hayes, 2007). 
Besides, repetition and regular data acquisition deemed relevant for temporal studies may not be 
accommodated for by space borne sensing systems due to inadequate revisiting times (Zhang et al., 2002). 
Furthermore, as a result of the considerable ground-sensor distance, atmospheric distortions are likely to 
influence signals underway, requiring adequate radiometric correction prior to analysis (Cracknell & Hayes, 
2007). 

2.2.2 Unmanned Aerial Vehicles (UAVs) 
Even though the fields of photogrammetry and remote sensing identified the potential held by 

Unmanned Aerial Vehicles (UAVs) several decades ago already, recent advancements in robotics, geomatic 
engineering and computer vision have recently taken the promises of Unmanned Aerial Vehicles to a whole 
new level (Colomina & Molina, 2014). During the 2008 ISPRS congress in Istanbul it was articulated that 
UAVs are ingenious sensing platforms, believed to be capable of introducing auxiliary directions for remote 
sensing to a larger group of (new) users (Everaerts, 2008). In fact, UAV represents a rather generic term that 
refers to a substantial number of different platforms that vary with respect to their physical shape (e.g. fixed-
wing, glider, or rotor shaped), degree of (auto) piloting, size (nano, micro, mini) (payload) weight, range 
(close, short, medium), flying altitude, and nature of application (Colomina & Molina, 2014). Regardless of 
the vast diversity of differences between unique UAVs, however, all essentially comprise of an aircraft 
(platform) component, a sensing payload and a ground control unit (Watts et al., 2012).  

UAVs are believed to offer (partially) unique advantages for distinct purposes compared to more 
conventional platforms, such as repeated deployment at relative ease, less expensive (and arguably safer) 
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than piloted aircraft, reduced operational complexity, flexibility with regard to altitude adjustments and 
provision of access to high resolution imagery in the order of centimeters (Carrivick et al., 2013; Everaerts, 
2009; Rango et al., 2009). In accordance with more generic remote sensing jargon, benefits of UAVs are 
frequently described along the lines of an enhanced spatial and temporal resolution at affordable costs, 
alternatively complemented by a high spectral resolution, depending on the sensor system(s) (Kooistra et al., 
2014; Zhang & Koavacs, 2012; Berni et al., 2009). Nebiker et al. (2008) summarize the benefits presumably 
offered by UAVs as being able to effectively fill the (resolution) gaps between air- and space borne remote 
sensing on one side and ground based sensing on the other. It is worth mentioning, however, that the 
extent to which these advantages may be realizable, if at all, is further influenced by the purpose of use and 
local regulations and legislations, respectively. 

Besides, one should note that UAVs face several challenges in contemporary remote sensing 
practices as well, especially regarding space, payload and electrical power (range) restrictions (Caris & 
Stanko, 2014). Besides, the relatively low weight of the platform renders it susceptible to in-flight distortions, 
such as wind buffeting, which potentially affects adequate capturing of images under stable camera, tilting 
and illumination conditions (Hardin & Jensen, 2015; Lelong et al., 2008). In addition, considering typical 
payload limitations of approximately 20-30% of the UAVs bare weight, imaging system’s weight may only be 
in the order of few ounces or kilo’s when considering most micro or mini UAVs (Nebiker et al., 2008). The 
advent of different sensing payloads in UAV based remote sensing is therefore inherently depended on the 
progress in miniaturization of such sensors (Colomina & Molinda, 2014). In this regard, (commercial) RGB 
cameras have dominated the UAV sensor market since its initiation (Konkavaara et al., 2013; Hunt et al., 
2010). In contrast, miniaturization of multi- and especially hyperspectral optical cameras is relatively 
challenging (Nebiker et al., 2008). The latter in particular are more expensive and larger in size, and 
therefore heavier, challenging overall financial feasibility and UAV payload restrictions, respectively 
(Colomina & Molina, 2014; Huang et al., 2013). As a result, only few hyperspectral cameras suitable for 
mounting on a UAV platform have been developed thus far. The same notion applies for laser scanners and 
SAR equipment, as well as thermal optics to a lesser degree (Colomina & Molina, 2014), although examples 
of thermal optics for water-stress mapping (Bellvert et al., 2014) and laser scanning aperture for 3D scenic 
reconstruction (Wallace et al., 2012) on board UAV platforms are existent. For a full overview of sensing 
payloads available to UAV systems recently, the reader is directed to Blyenburgh (2013). 

Given these deliberations, the potential of UAV-based imagery collection is considered valuable to a 
large number of fields, such as for studying geophysical dynamics (Niethammer et al, 2012), infrastructure 
inspection (Metni & Hamel, 2007), military purposes (Bento, 2008), (real-time or post) disaster management 
(Stuart & Friedland, 2011) and meteorological studies (Martin et al., 2011). Nonetheless, the relative 
importance of these fields is dwarfed by the advent of UAV based remote sensing in the increasingly 
information driven and smaller scale agricultural industry (paragraph 3.3). Subsequently, it is believed that 
(precision) agriculture oriented applications will account for more than 80 percent of the anticipated growth 
of the commercial UAV market in the coming decade (Stehr, 2015; Odido & Madara, 2013). 

2.3 Optical Sensor Systems  
A substantial number of different sensors are existent, all of which were designed to accommodate 

a distinct purpose. Each opens up possibilities within different overarching types of remote sensing, the latter 
which can be classified along the lines of adherence to different energy sources and spectral coverage 
accommodated by sensors. Classification along these paths results in the distinction of passive and active 
remote sensing on the one hand, and of reflective visible/infrared, emitted thermal infrared and microwave 
remote sensing on the other (Gopi et al., 2008; Schowengerdt, 2006; Campbell & Wynne, 2002) (figure 2.2). 
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Even though the variety of different sensor systems and their suitability to equally varying applications is 
significant, this theoretical elaboration is solely geared towards passive optical remote sensing in the 
reflective visible and (near-)infrared, to enhance overall readability. This focus is in accordance with the 
different sensor systems that are present on the HYMSY UAV platform used for this research, as mentioned 
in paragraph 5.3. The readers interested in alternative forms of remote sensing and the associated types of 
sensors are advised to further explore Lillesand et al. (2014), Warner et al. (2009), Gopi et al. (2008) and 
Campbell & Wynne (2002).  

 

 

 

 

 

Optical remote sensing represents one of the most frequently utilized types of RS for a diversity of 
applications, particularly in vegetation monitoring endeavors (Homolová et al., 2013). Electronic optical 
sensors measure incoming radiation as reflected by one or multiple targets in the visible (VIS, 0.4-0.7μm), 
near infrared (NIR, 0.7-1.1μm), short wave infrared (SWIR, 1.1-2.5μm), mid wave infrared (MWIR, 2.5μm-
7.5μm) and long wave infrared (LWIR, 7.5μm-15um) range (Warner et al., 2009). From the VIS through the 
SWIR region the sun acts as the primary source of energy. The radiation as perceived by optical sensors in 
this region represents solar energy that is partially reflected by the earth’s surface or objects thereon, or 
which was scattered by particles in the atmosphere alternatively (Schowengerdt, 2006). Beyond 
approximately 3.0um, materials constituting objects on the Earth’s surface initiate to actively emit (thermal) 
radiation by themselves, allowing sensors in this region to measure emitted rather than reflected energy 
(Gopi et al, 2008). This notion effectively marks the dividing line between the classifications of reflective 
visible/infrared and emitted thermal infrared remote sensing mentioned earlier.  Considering the extent and 
diversity of the entire optical range, sensors are often developed to cover only one or two of the sub regions 
mentioned here (Warner et al., 2009). Not surprisingly then, especially considering payload limitations for 
UAV sensing platforms, the HYMSY platform’s sensors only cover the visible and near infrared region, or 
more specifically the spectral range from 0.45μm to 0.915μm. 

Apart from the spectral coverage of optical sensors, the manner in which spectral features are 
selected or collected, or more specifically the sensor’s spectral resolution (paragraph 2.5), represents an 
additional vital variable of such optics. In essence, the associated spectral resolution can fall in either of two 
categories, being multispectral or hyperspectral. The former refers to sensors incorporating few and often 
discrete spectral bands, each covering a relatively broad spectral range (Govender et al., 2007). The simplest 
example of such a system is a conventional digital consumer camera, capturing reflectance in red, green and 
blue spectral bands to produce traditional color composites (Kerekes & Schott, 2007). Multispectral sensors 
on the other hand, in general, accommodate up to approximately ten relatively broad bands, which are not 
necessarily adjacent to one another in the electromagnetic spectrum (Navulur, 2007). In contrast, 

Figure 2.2: Different types of 
remote sensing and sensors, 
categorized along the lines of 
active and passive sensors and 
different coverages of the 
electromagnetic spectrum. 
(Source: SEOS, 2015) 
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hyperspectral imagers comprise of significantly more (up to hundreds) contiguous narrow bands (Warner et 
al., 2009). The latter notion with respect to contiguity is considered more important for classification of a 
sensor as hyperspectral than is the number of bands alone (Qi et al., 2012; Shippert, 2004). Besides, 
according to Ortenberg (2012) and Thenkabail et al. (2012a), the width of individual hyperspectral bands 
should ideally not exceed 10nm (Ortenberg, 2012; Thenkabail et al., 2012a). Too narrow bands, however, are 
likely to induce noise and adherence the 5-10nm range is therefore recommended (Thenkabail et al., 2012b). 
The majority of hyperspectral optics measure reflected solar radiation in the 0.4-2.5um (VNIR/SWIR) range, 
although sensors frequently cover either the VNIR (> ±1000nm) or SWIR (± 1000nm <> 2500nm) (Qi et al., 
2012; Shaw & Burke, 2003). In the resultant imagery, each pixel is considered a vector containing reflectance 
values for each narrow band at that specific location in space. Consequently, the entirety of the image is 
considered a three dimensional cube or hyperspectral data cube (Yao et al., 2012) (figure 2.3). 

Particularly for remote sensing of vegetation it has been demonstrated by previous research that an 
increased spectral resolution, as is provided by hyperspectral imaging systems, enables mapping distinct 
characteristics of vegetation more accurately (Kooistra et al., 2014). The use of these systems on 
conventional platforms has yielded promising results in the field of phenotyping, i.e. the methodologies and 
protocols for measuring plant growth, architecture, and composition (Fiorani & Schurr, 2013). Due to the 
ability to extract highly detailed and contiguous spectral data, hyperspectral imagers are better capable of 
discerning subtle variations in reflectance behavior resulting from, for example, differences in the chemical or 
physical structure, composition or other characteristics of objects such as plants (Mulla, 2013; Nguyen & Lee, 
2006; Campbell & Wynne, 2002). In contrast, broadband (multispectral) imagery is generally only suitable for 
rough discriminatory analysis of vegetation due to its reduced sensitivity to relatively small but vital 
differences in spectral reflectance at distinct wavelengths. Likewise, the latter may only be considered 
suitable for discriminating between different types of vegetation, whereas hyperspectral optics enable a 
more in-depth analysis of the constituents of vegetation (Govender et al., 2007) Besides, radiation 
measurements in multispectral imagery tend to saturate as biomass and leaf area index of the vegetation 
increases, hereby further limiting retrieval of accurate estimates of particular features of interest (Thenkabail 
et al, 2012). Due to the permissive features of hyperspectral remote sensing, spectroscopy is expected to 
enable significant cost savings for the development of vegetation monitoring systems in comparison to more 
traditional alternative practices (Ortenberg, 2012).  

 

Figure 2.3: Visual representation 
of a Hyperspectral Data Cube 
(HDC). The three-dimensional 
(comprising of two spatial 
dimensions in the x-y direction 
and one spectral dimension) cube 
stores reflectance values for each 
individual pixel as is measured on 
that specific location in each 
hyperspectral band (nm). The 
contiguous narrow band 
measurements enable generation 
of distinct and highly detailed 
spectral signatures, as shown to 
the right. Please note that the 
satellite platform can be replaced 
by any other platform carrying the 
appropriate sensor (Source Shaw 
& Burke, 2003). 

26 
 



  

 

2.4 Geometric errors in RS 
In remote sensing, geometric distortions in the raw output imagery are pertaining issues that have 

existed as long as the field itself. The type and severity of distortions are inherently determined by multiple 
factors and differ notably between different sensing systems, acquisition campaigns and/or locations (Toutin, 
2004). Causes are, for example, related to factors such as lens distortions, misalignment, inconsistent 
sampling rates, variability of the platforms altitude and attitude, the curvature and rotation of the Earth, 
different viewing angles, and topographic relief, among others (Xiang & Tian, 2011). Concerning sensor 
systems, for example, traditional photographic frame cameras represent vastly advanced and highly 
calibrated instruments, providing instant exposure over relatively larger areas and therefore allowing 
adequate tackling of geometric errors (Congalton et al., 1991). In contrast, point (whiskbroom) and line array 
(pushbroom) scanners are more prone to geometric distortions given a certain spatial coverage as a result 
of the platforms continuous movement during the process of image building (Schowengerdt,, 2012; Bajwa et 
al., 2004). UAV based remote sensing is unique in this respect due to the notion that image acquisition is 
frequently conducted in a haphazard manner (variable overlap and cross-over patterns), relatively large 
perspective deviations due to the small sensor-ground distance and highly variable illumination and 
resolutions. Likewise, the weight of UAV is generally low which renders the platform relatively susceptible to 
in-flight distortions as a result of environmental factors (Hardin & Jensen, 2015). Besides, exterior parameters 
are often either unknown or inaccurate, due to the reliance on relatively low cost GPS and IMU devices (Eling 
et al., 2014; Turner et al., 2012). Consequently, more advanced processing (software) is often required to 
deal with the limitations invoked by this specific platform (Colomina & Molina, 2014). Regardless of the 
geometric error’s source(s), such distortions are to be removed or minimized prior to utilization of the data 
in a GIS, particularly to allow for correct overlays with other data and/or multi-temporal studies (Pudelko et 
al., 2012; Rocchini & Rita, 2005; Hirano et al., 2003). This condition may be particularly valid if the data is to 
be incorporated into precision agricultural practices, as geometrically deformed data disallows accurate 
retrieval of surface area metrics of different types of vegetation, its condition and the associated resource 
requirements (Xiang & Tian, 2011).  

2.5 Resolutions 
Up until now, the concept of resolutions has been coined numerous times. Resolution is a vital 

component within all sorts of remote sensing and comes in a variety of different shapes. In essence, 
resolution is inherently related to the properties offered by distinct platforms and their on board sensors.  

Spatial resolution relates to the amount of detail discernible in an image, or at its simplest to ability 
to separate two closely spaced objects in image space (Sahu, 2008). For example, an image’s resolution of 5 
meters indicates that individual objects equaling or exceeding that size are identifiable, whereas those that 
are smaller are likely not (Quattrochi & Goodchild, 1997). The spatial resolution is ultimately determined by 
the combination of a sensor’s opening angle and the associated image forming pixel capabilities, and its 
distance to the studied object (Liang et al., 2012; Maas, 2008; Hall et al., 2002). Related to spatial resolution is 
the concept of Ground Sample Distance (GSD), described as the ground area that is represented by an 
individual pixel in the acquired imagery. GSD can theoretically equal the spatial resolution of a sensor, 
although it is equally likely that the two deviate as a result of image manipulation, conversion procedures 
and resampling (Lillesand et al., 2014). Spatial resolution is further influenced by the additional factors, such 
as recorded contrast, aspect ratio of features, number of objects in the scene, flight speed and associated 
blurring, extent and the uniformity of background. As a result, objects that are smaller than the spatial 
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resolution may in fact still be discernible, or vice versa. (Suomalainen et al., 2014; Campbell & Wynne, 2002). 
Equally important is the interplay between the image’s spatial resolution and structure of the ground area an 
image depicts. The coarser the spatial resolution, the more likely it is that the pixel represents mixed pixels, 
i.e. the pixel combines radiance values from different objects present within the pixel. As a result it is 
generally applicable that as the resolution becomes coarser, the ability to discern and retrieve details from 
an image is decreased (Lillesandet al., 2014). 

Spectral resolution refers to a combination of factors, being the number of spectral bands, location 
of these bands in the electromagnetic spectrum and the width of individual spectral bands in which a distinct 
sensor acquires data (Govender et al., 2009; Verbyla. 1995). In short, it relates to what segment of the 
electromagnetic spectrum is covered by a sensor, and how. Generally speaking, it suffices to state that the 
narrower the width of individual bands, the more accurate distinct objects can be identified and 
distinguished, and the more bands are required to cover a certain spectral range (Kooistra et al., 2014; Sahu, 
2008). As was mentioned previously, sensors come in a substantial variety of configurations and may, for 
example, cover a single broadband (panchromatic), multiple broad bands (multispectral) or a large number 
of narrow bands (hyperspectral) (Lillesand et al., 2014). 

Temporal resolution is specifically applicable to data time series and the associated temporal 
density, or the interval between acquisition dates of subsequent data sets (Verbyla, 1995). More specifically, 
it relates to how frequently measurements were conducted, and the resultant ability to identify changes in 
the object or area studied over a given period of time (Lillesand et al., 2014). When an application is geared 
towards studying dynamics in a relatively dynamic environment, temporal resolution may be valued highly, 
whereas this is less so in static environments and/or for applications not aimed at change detection 
(Campbell & Wynne, 2002).  

Radiometric resolution at last is determined by a sensors ability to detect and record relatively subtle 
differences in brightness of a scene (Verbyla, 1995). More technically speaking, it is determined by how many 
different gray levels divide the darkest from the brightest pixels and the sensor’s associated sensitivity to 
different levels of incoming electromagnetic energy The larger the number of gray levels, the finer the 
radiometric resolution and the larger the interpretability of an image (Lillesand et al., 2014; Campbell & 
Wynne, 2002).  

It is worth mentioning that trade-offs between different types of resolutions are apparent and it is 
ultimately important to consider the distinct application in order to evaluate the relative importance of each 
(Campbell & Wynne, 2002). For example, in order to establish a relatively high spatial resolution, a small 
IFOV, or a sensor’s ground foot-print, is preferred (Sahu, 2008). As the ground area covered is minimized, 
however, so is the amount of energy that can be extracted by a sensor, hereby invoking a decrease in 
radiometric resolution. The only way of circumventing the latter without giving up on spatial resolution is by 
increasing the widths of individual spectral bands, which implicates a lower spectral resolution (NRCan, 2013; 
Campbell & Wynne, 2002).  
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3. Theoretical context: The use of RS Spectral Analysis in Vegetation 
Monitoring & Agriculture 

3.1 RS for Vegetation Monitoring 
Remote sensing is considered ultimately 

suitable for monitoring vegetation for a diverse 
range of purposes due to the inherent 
relationship between plant constituents and their 
interaction with radiation at different wavelengths 
(Pinter et al., 2003). Consequently, both remote 
sensing experts and vegetation physiologists have 
incorporated radiation based analysis in a 
diversity of studies related to investigations of 
plant canopies (Jones & Vaughan, 2010). In 
essence, this interaction can be ascribed to three 
distinct and related physical mechanisms, namely 
absorption, reflection and transmission of 
electromagnetic energy in vegetation (Homolová 
et al., 2013). Pigments, such as chlorophylls, for example, absorb light particularly in the blue (±430nm) and 
red (±660nm) regions of the electromagnetic spectrum to fuel photosynthesis (NASA, 2015; Mulla, 2013). The 
incident radiation at green wavelengths (±550nm) is absorbed less intensively thereby enhancing minor 
reflectance, hence the green appearance of healthy and photo synthetically active vegetation. In contrast, 
absorption significantly decreases in the near-infrared (700-1300nm) region due to transparent cell walls, 
pigments and scattering by mesophyll cell walls, resulting in increased reflectance and transmittance (Guyot, 
2013; Mulla, 2013; Nguyen & Lee, 2006; Pinter et al., 2003; Thorp & Tian, 2004) (figure 3.1).  

As these properties present in plants, in addition to other frequently studied variables such as Leaf Area 
Index (LAI), biomass, plant structure, moisture content, and nitrogen content, are varied and interrelated, the 
spectral properties of vegetation is similarly altered in various directions at different wavelengths (Thenkabail 
et al., 2012a). As a result of this heterogeneity in spectral behavior, remote sensing theoretically enables 
isolating, discriminating and subsequently identifying between different types of vegetation cover (Franklin, 
2013). Additionally, by performing spectral measurements, using distinct remote sensing instruments, 
particular quantifiable vegetation properties can be estimated (Mulla, 2013; Qi et al., 2012). Alternatively, the 
temporal dynamics inherent to vegetation may be assessed on different scales when remotely sensed 
imagery is acquired successively through time (Zhang et al., 2003). 

Even though a diverse array of methodologies for studying vegetation has been developed, the advent 
of vegetation indices (VIs) have proven to be most decisive in the advancement of remote sensing for 
application in vegetation monitoring (Jones & Vaughan, 2010). Such indices can be derived in multiple 
different ways through mathematical manipulation of raw spectra from two or more wavelengths (Goswami 
et al., 2015; Thorp & Tian, 2004). The primary motivation underlying the use of these indices relates to the 
notion that they are assumed to be stronger related to distinct plant traits than raw spectra of individual 
wavelengths thanks to isolation and enhancement of the spectral signal (Chuvieco, 2011; Delécolle et al., 
1992). Due to the potential influence of background soil and atmospheric effects on spectral responses of 
vegetation, various (hybrid) indices were developed to minimize distortions originating from these sources 
(Thenkabail et al., 2012a; Pinter et al., 2003). Consequently, vegetation indices enable both qualitative and 

Figure 3.1: Visual representation of the different interactions 
of vegetation with radiation over different wavelengths 
(Source: NASA, 2015)  

29 
 



  

quantitative analysis of vegetation and its properties (Teillet et al., 1997) through, for example, establishing 
statistical correlation models between VI data and vegetation characteristics (Liang et al., 2012). Regardless 
of the ever continuing development of techniques for measuring distinct vegetation characteristics by means 
of indices, for example, canopy structure remains a complicating factor that affects their interpretation and 
negatively impacts the retrieval of accurate quantitative measurements (Homolová et al., 2013). Due to 
variations in leaf area, illumination angle, shadowing effects, background surfaces, multiple layers of stacked 
leafs and orientation of leafs, among others, the reflective behavior of individual leafs deviates from the 
spectral signature of entire vegetation canopies (Thorp & Tian, 2004). 

3.2 Traditional large scale agriculture and remote sensing 
The introduction of remote sensing in the field of agriculture commenced approximately in the 

1930s, when aerial photography was utilized for soil and crop mapping (Allan, 2013; Nellis et al., 2009; Thorp 
& Tian, 2004). This advent was largely fueled by the notion that conventional field sampling is both time-
consuming and costly, particularly considering the sizable spatial regions over which traditional agriculture is 
practiced (Chen et al., 2008). As was mentioned in paragraph 2.3 and 3.1, different parameters of vegetation 
(e.g. their structure, composition, and/or status) provoke different spectral behavior at different wavelengths. 
This renders remote sensing useful in agricultural practices, as it allows detection and characterization of 
many agricultural phenomena by utilizing different segments of the electromagnetic spectrum (Thenkabail et 
al., 2012; NRC, 1970). Relatedly, accurate, objective, reliable, systematic and timely monitoring of agricultural 
land and the associates practices is vital for the management of agricultural markets and the formulation of 
relevant policies at various scales (Wu & Meng, 2013). In the past decades, research relating agronomic 
properties of plants to spectral reflectance behavior derived by remote sensing has substantiated vastly 
(Nebiker et al., 2008). Subsequently, once such monitoring data has been collected and interpreted 
accordingly, it may serve as an aid for agricultural practitioners during their decision-making processes 
(Thenkabail et al., 2012a; Haboudane et al., 2002).  

Until present day, remote sensing in agriculture has been primarily dominated by conventional 
airborne, space borne and, to a lesser extent, ground-based platforms (Colomina & Molina, 2014; Zhang & 
Kovacs, 2012). Using these operational modes, various global but especially regional agricultural campaigns 
have been accomplished. These are mainly geared towards applications such as crop identification and 
cropland mapping, monitoring of crop growth, prediction of crop yield, and retrieval of biophysical and 
biochemical properties of crops (Chen et al., 2008). Even though passive broad band optical systems 
represent the ones most frequently applied in traditional agriculture in the past and present (Homolová et 
al., 2013), microwave, thermal and laser scanning instruments have also been exploited for application in 
agriculture more recently (Mulla, 2013; Liang, 2008). Likewise, the relatively recent development of narrow 
band hyperspectral spectroscopy is believed to further revolutionize the use of remote sensing in agriculture 
thanks to its deliverance of auxiliary opportunities with increased precision (Yao & Huang, 2013). According 
to Seelan et al. (2003), however, the adoption of remote sensing by individual farmers remains relatively 
limited, regardless of the theoretical potential that it offers. 

3.3 The advent of small scale precision agriculture 

3.3.1 Precision agriculture 
Considering the current and anticipated growth of the world’s population at a formidable pace and 

the increasingly limited arable land resources, the pressure on efficiently and effectively exploiting existing 
productive land is larger than ever before (Seelan et al., 2003). Besides, agricultural practitioners in recent 
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times ought to consider to which extent striving for expanded yields outweigh the (environmental) costs 
associated with a more resource intensive management of agricultural land (Zhang & Kovacs, 2012; Rascher 
et al., 2011). The culmination of these developments and the growing societal awareness of their importance 
have led to a novel direction in agriculture practices from the mid-1980s onwards, denoted as precision 
agriculture, precision farming or precision crop management (Mulla, 2013). In order to enhance readability, 
however, the naming convention of precision agriculture (PA) will be adhered to throughout this report.  

Similar to remote sensing, various endeavors to define PA have been undertaken. Although the 
resultant definitions are vastly diverse, the most essential point of interest resolves around the assumption 
that substantial variations exist within the spatial-temporal layout of agriculturally productive lands. In PA, 
these variations (e.g. crop status, presence of important nutrients, soil conditions) ought to be identified and 
managed accordingly by considering local field needs (Prasad et al., 2007). Realization of this ambition was 
further fueled by enabling features provided by the advancement of GPS, GIS, electronics and remote 
sensing (Huang et al., 2013). Through timely collection of data on field variability at the appropriate scales, 
the increasingly information-driven (precision) agricultural practices are expected to further enhance 
efficiency, reduce loss of productivity and minimize environmental harm (Zhang & Kovacs, 2012; Herwitz et 
al., 2004; Moran et al., 1997). Such site-specific management of crops and resource inputs in an attempt to 
better accommodate in-field variability, is identified as the most important development in agricultural 
practices in the past decade (Pinter et al., 2003). As a result, the introduction of PA gave rise to a new 
concept that came to be known as the management zone. In PA, management zones represent a sub 
sections within a larger agricultural field in which the supposed variation is minimal and distinct properties 
are relatively homogeneous (Yao & Huang, 2013). In recent years, PA gradually transformed from a field of 
expertise that was majorly practiced under experimental conditions to a fully operational endeavor in 
contemporary agriculture industries (Foody et al., 2009). Though vastly diverse and situation dependent, PA 
can be broken down in four subsequent steps according to Zhang & Kovacs (2012) (figure 3.2). 

3.3.2 The case for UAV RS in PA 
The extent to which remote sensing undertakings in regard to monitoring traits in agricultural land 

may be considered successful is ultimately determined by the spatial, spectral and temporal resolution 
provided by platform and sensor systems on the one hand, and their (mis)alignment with the resolutions 
required for a distinct application on the other (Wulder et al., 2009). In respect to such desired resolutions, 
PA is distinctly different from traditional agriculture due to its profound focus on using the ‘right 
management practice at the right place and the right time’ (Mulla, 2013, p. 358). More specifically, effective 
practicing of PA requires frequent and near real-time revisiting times, to constantly fuel information on the 
status of the aerial land throughout the growing season(s) of crops (Berni et al., 2009; Nebiker et al., 2008; 
Seelan et al., 2003), in a cost-efficient manner (Zhang et al., 2002). In addition to the temporal component, 
the requirements of very high spatial (sub meter) resolution imagery, access to VIS/NIR (and potentially TIR) 
spectral bands, and a high spectral resolution with narrow bandwidths to allow appraisal of pivotal 
biophysical and biochemical crop parameters, should be mentioned (Zarco-Tejada et al., 2008). As will be 

Figure 3.2: Visual representation of the four stages in precision agriculture according to Zhang & Kovacs (2012) 
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subsequently explained below, conventional sensing platforms are generally unable to adequately meet 
these requirements. Hence, contemporary PA is frequently undertaken in a time-consuming and therefore 
costly, destructive and selective manner, demanding weekly visual and metric probing in order to map and 
quantify relevant plant and/or trait parameters on the ground (Nebiker et al, 2008). The desire to advance 
from such randomly selected samples to high density and accurate maps embodies the primary fuel for the 
advent of remote sensing in precision agriculture (Alchanatis & Cohen, 2012). 

Satellites have been utilized for applications in agricultural management ever since the 1970s and 
even though their spatial resolution has notably increased ever since it is still in the order of meters (Mulla, 
2013; Wu et al., 2005). Their spatial resolution is generally too coarse to allow for retrieval of information on 
plant characteristics on a plot by plot basis (Zhang & Kovacs, 2012; Mulder et al., 2011) Besides, the revisiting 
times of these platforms in the order of multiple days is frequently considered inadequate for application in 
PA (Seelan et al., 2003). This notion, relating to the temporal resolution provided by platforms, may be 
circumvented by mounting sensors on flexibly deployable ground based systems, although this significantly 
lowers the spatial coverage and associated feasibility (Homolová et al., 2013). Ground based sensing systems 
also face limited issues regarding portability and accessibility in the case of tall crops and dense canopy 
structures (Sugiura et al., 2005). Besides, Colomina & Molina (2014) and Zhang et al. (2002) mention the 
substantial cost associated with high resolution space based remote sensing as a supplementary barrier. This 
is an especially valid argument, because it is still unsure whether a sufficiently large commercial demand 
exists among PA practitioners to minimize data procurement costs satisfactorily (Lamb & Brown, 2001). In 
addition, cloud cover effectively obstructs repeated retrieval of remotely sensed imagery in the visible and 
near-infrared from satellite platforms, and aerial platforms to a lesser degree (Mulla, 2013). Even though 
aerial remote sensing may theoretically circumvent some of the pertaining challenges mentioned here, 
image acquisition by air borne platforms suffers from high operational costs (rendering it economically 
feasible only for large scale campaigns) and potential inflexibility due to complex flight scheduling (Primicerio 
et al., 2012).  

The deliberations briefly listed here lie at the 
foundation of the growing scientific and societal demand 
for exploring the potential of (hyperspectral) UAV based 
remote sensing techniques for application in precision 
agriculture (Honkavaara et al., 2013). Particular relevant in 
this respect are those platforms sufficiently large to carry 
the desired instrument, but small enough to operate 
outside official airport control (Suomalainen et al., 2014). 
As formulated by Colomina & Molina (2014, p. 91), ‘UAVs 
have successfully introduced the smaller, cheaper-to-
operate platform paradigm among the (vegetation) 
remote sensing community’. Their anticipated potential is 
primarily motivated by their assumed ability to provide 
imagery at considerably high and flexible spatial and 
temporal resolutions, enabled by their limited altitude and slow cruising speed (Zhang & Kovacs, 2012; 
Herwitz et al., 2004) (figure 3.3). In regard to operational complexity Nebiker et al. (2008) mentions the 
integration of flight control systems in the majority of modern UAV system, enabling autonomous 
stabilization of the platform and automated piloting based on predefined way points in some cases. 
Particularly in comparison to manned aerial remote sensing assets, the fabrication and operation costs of 
UAVs may be low(er) or competitive at least (Colomina & Molina, 2014; Berni et al., 2009; Herwitz et al., 

Figure 3.3: Vegetation density derived from a 
multispectral optical sensor on board a UAV sensing 
system. Dark blues and greens indicate lush 
vegetation while reds indicate areas of bare soil. The 
resultant high spatial resolution is demonstrated by 
the easily discernible individual rows of crops and/or 
individual plants below the plot level. (Source: Urbahs 
& Jonaite, 2013) 
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2004). The estimation of per-hour pricing for different platforms and the overall validity of the cost 
argument, however, is complicated and ultimately influenced by the scale of operation, desired resolution, 
frequency of use and sensor requirements, among other variables (Watts et al., 2012; Zhang & Kovacs, 
2012). Relatedly, depending on the type of frame and the sensors it incorporates procurement of such 
systems can still be a rather costly undertaking. The spectral resolution provided by UAV based remote 
sensing is, obviously, depended on the type of sensor system(s) mounted to their frames. Due to payload 
restrictions the availability of sensors is still rather limited compared to those available to platforms able to 
carry more weight, although miniaturization of sensors is advancing at a formidable pace (Colomina & 
Molina, 2014; Berni et al., 2009; Everaerts, 2008). Regardless of these benefits supposedly enabled by UAV 
platforms, their applicability in various disciplines should not be taken for granted due to different 
unresolved challenges as mentioned in paragraph 2.2.2. 

3.3.3 Existing research on the use of UAVs in precision agriculture 
Not surprisingly, given the continuous technological advancement within the field and growing 

societal and scientific demand, research on the implementation of (optical) UAV based remote sensing into 
agricultural practices has recently intensified (Huang et al., 2013; Berni et al., 2009). In accordance to 
previous statements, however, it should be exemplified at this point that the inclusion of hyperspectral optics 
on these platforms is still rather limited (Suomalainen et al., 2014; Shippert, 2004). The Workshop on UAV-
based vegetation monitoring, held in Cologne in 2013, is indicative of this, given the relative abundant 
coverage on multispectral sensors compared to hyperspectral ones (Bendig & Bareth, 2014). A brief review 
of a selection of related studies is provided below. 

In 2009 and 2010, Calderón et al. (2014) performed a study on the early detection of Verticillium wilt 
using multispectral, hyperspectral and thermal camera sensors on board a UAV platform at different 
altitudes. In following years, Retzlaff et al. (2014) evaluated the ability to assess leaf canopy and vigor 
properties (e.g. chlorophyll) using vegetation indices derived from a six band VIS/NIR multispectral sensor on 
board a similar platform. Besides, the influence of different camera viewing angles on data throughput was 
assessed. Relatedly, Rasmussen et al. (2013) explored the applicability of a conventional RGB camera on 
board a UAV for assessing distinct crop resistance parameters and mapping leaf cover, in addition to 
evaluating the influence of different flying heights on the output. Tattaris et al. (2014) investigated how NDVI 
values computed from multispectral UAV data compared to NDVI measurements on the ground, and how 
these correlated with agronomic traits such as biomass and yield (g/m2). Using a broad band camera 
covering the Blue-Green-NIR range mounted on a fixed-wing UAV, Hunt et al. (2010) generated Green 
NDVI values over an experimental field and found strong linear relations with LAI for plots with limited 
canopy density. Drauschke et al. (2014) performed two different experiments to demonstrate the ability to 
construct 3D scenic models utilizing RGB images collected by a UAV, and to classify different trees on-
demand using multispectral imagery and a powerful classifier algorithm, respectively. In addition, Zarco-
Tejada et al. (2012) employed a narrow band hyperspectral camera and a thermal camera to assess their 
capability of detecting various water stress indicators in citrus trees when mounted on a UAV, by means of 
correlating various indices derived from the aerial data with in-situ measurements on the ground.  

More technically oriented but related studies, such as those of Eling et al. (2014), Xiang & Tian 
(2011) and Neeland & Kraft (2014), are primarily aimed at further engineering UAV platform components to 
increase their suitability for vegetation monitoring purposes, through developing direct on board 
georeferencing technology, navigation systematics, and enhancing on board processing speed of data, 
respectively.  
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4. Theoretical context: Plant traits & Spectral behavior 
At the core of this research lies the analysis of distinct plant traits or attributes by remote sensing 

techniques. From an agronomical perspective, as described in chapter 3, adequate spatial quantification of 
such traits, whether they be biochemical or biophysical of nature, enables farmers to evaluate essential 
factors and adjust their practices (e.g. nutrient supply, irrigation, etc.) accordingly (Alchanatis & Cohen, 2012; 
Thenkabail et al., 2012a; Zhang & Kovacs, 2012). As a result, enhancing of plant phenotyping capabilities has 
recently intensified, in order to assess plant performance through unraveling relevant agronomic traits 
(Rascher et al., 2011).  

Spectral data derived from a study area may be ascribed to global or regional zones, fields, plots or 
even individual plants and subsequently related to distinct vegetation traits, depending on the sensing 
system, the associated resolutions and the application (Ustin & Gamon, 2010). In this chapter, the most 
meaningful traits and their agronomic relevance will be elaborated on. Subsequently, a tabular overview of 
existing vegetation indices (VIs) that were employed in a variety of previous studies to remotely map these 
traits is provided (table 4.1 & 4.2). A textual commentary on how and why these specific indices and 
associated wavelengths were derived is presented as a supplement in appendix C. Both overviews are 
purposely and solely geared towards indices, related wavelengths or other indirect inputs that are 
accommodated for by the UAV platform incorporated into this research, being (hyperspectral narrow bands 
in) the 450-915nm range and plant height, respectively (paragraph 7.3). Different approaches relying on 
different equipment and/or divergent segments of the electromagnetic spectrum, however, are existent.  

Hundreds of different VIs have been developed ever since the advent of remote sensing in vegetation 
monitoring applications, resulting from the influence of different factors (e.g. RS platforms and vegetation 
types) on the performance of distinct models. Some these will be evaluated in this research, hereby serving 
as a benchmark. Including all of these in the subsequent analysis provided in this report is an impossible 
endeavor and therefore discarded. Instead, a selection of indices was excerpted from existing studies, based 
on their demonstrated success for correlating well with one or more of the traits included in this research. In 
order to narrow down the selection and provide a logical and representative distinction, the literature review 
on the use of these indices majorly focused on research on remote sensing of crops relatively similar to the 
oat crops studied here. More specifically, the exploration was geared towards studies incorporating other 
cereal crops, such as maize/corn, rice, wheat, barley, among others. It is believed that this collection is 
satisfactory to assess the suitability of the HYMSY platform and the associated sensor system(s) to estimate 
distinct traits. 

4.1 Biophysical plant traits 

4.1.1. Biomass 
In-season signaling of crop production and yield prior to harvesting relates to one of the imperative 

fundamentals of precision farming practices (Alchanatis & Cohen, 2012). In this respect, adequate estimates 
of biomass are considered highly desirable, as it is suggested to provide valuable information of vegetation 
productivity (Gnyp et al., 2014; Cho et al., 2007). In agronomy, different methodologies exist to relate crop 
biomass to eventual yield through harvest indexing (Rascher et al., 2011). Consequently, within-season 
biomass estimation model outputs are regularly incorporated into crop development simulations as a means 
to predict crop yield (Pinter et al., 2003). Accurately tracking of green biomass in both remote sensing and 
agronomical studies, however, has remained a complicated and ultimately challenging endeavor (Alchanatis 
& Cohen, 2012). 
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4.1.2 Plant height 
Even though plant height as a trait has been less frequently covered in previous studies, it serves as 

an input parameter for a wide variety of indicators, such as capabilities of individual plants to compete with 
others and indirectly for LAI (Homolová et al., 2013). In addition, Cornelissen et al. (2003) associate the trait 
with parameters such as plant fertility, health, growth rate and tolerance/avoidance of distinct 
(climatic/nutrient) stress factors, as well as with other traits such as biomass, rooting depth, lateral spread 
and leaf size. Freeman et al. (2007), for example correlated ground measurements of corn plant height with 
biomass, yield and nitrogen uptake. Significant correlations were found for all possible combinations, 
although the strength differed for distinct growth stages. Consequently, measured plant height may aid in 
quantification of variable rate application of distinct fertilizers or pesticides (Ehlert et al., 2008). According to 
Thenkabail et al. (2000), plant height is the third most important estimator for crop yield prognosis, after 
FBM and LAI, respectively.  

4.2 Biochemical plant traits 

4.2.1 Chlorophyll (Chl) 
Concerning optical remote sensing for mapping plant trait purposes, plant pigments are most 

frequently studied. In this regard, especially chlorophylls have received notable attention, whereas other 
pigments such as carotenoids and anthocyanin’s are less frequently elaborated upon (Homolová et al., 
2013). Chlorophyll represents the most vital pigment in green plants regarding photosynthesis. In healthy 
green vegetation, chlorophyll absorbs significantly in the blue and red region of the visible (VIS) spectrum 
and slightly less in the green, hence their green appearance. Leaf’s strong reflectance in the NIR region, 
however, is mostly the result of very limited absorption of chlorophylls, in addition to internal leaf scattering 
(Knipling, 1970). Diseased plants facing various forms of stress (e.g. shortage of nitrogen (N)), hindering 
effective production of chlorophyll, absorb less in the blue and red region as a result (Alchanatis & Cohen, 
2012). Gitselson (2012) provides a comprehensive visual and textual elaboration on how leaf reflectance 
behavior changes considerably in the visible range as a result of different chlorophyll levels in healthy and 
diseased plants, respectively. Non-optimimal photosynthesis resulting from decreasing chlorophyll levels 
may be highly undesirable for agricultural practices, due to potentially sincere implications in regard to 
reduced crop growth, yield and carbon fixation (Clevers & Kooistra, 2012). Therefore, discrimination of 
chlorophyll content by spectral remote sensing can provide an excellent and necessary means for assessing 
the condition of vegetation, such as nutrient status, primary production capacity, developmental stage and 
plant stress (Alchanatis & Cohen, 2012; Gitelson, 2012; Gitelson et al., 2005). As a result, provision of 
estimates regarding chlorophyll content is considered ultimately important for practices in precision 
agriculture (Wu et al., 2008). 

Estimating of chlorophyll statuses of vegetation, however, may be complicated due to a spatially 
and temporally variable distribution of chlorophylls throughout different plant components (i.e. petioles, leaf 
blades, stem, grains, etc.), and due to the influence of plant height thereon. It was found for dill plants, for 
example, that as they increased in height the proportional differences of chlorophylls in the upper parts of 
plants changed, increasing for the stem in particular (Lisiewska et al., 2006). This is argued to be a relevant 
deliberation considering the relative (in)visibility of individual plant components in (optical) remote sensing 
and due to, for example, the viewing geometry used herein. Consequently, it has been demonstrated by 
Yoder & Pettigrew-Crosby (1995) that spectral proxys for chlorophylls at the leaf level do not 
straightforwardly propogate to the canopy level, or vice versa. Relatedly, considering the influence of 
additional plant structure relates variables (e.g. LAI, canopy architecture, cover, illumination, etc.), plausibly 
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irregularly concealing lower parts of plants, quantities of chlorophylls in these upper canopy components 
show stronger relationship with VIs than (lower) leaves do (Blackburn, 1998; Broge & Leblanc, 2000). 
Similarly, correlations with canopy measured chlorophyll content were also found to be stronger for top to 
middle positioned leafs than for those located at lower positions on maize crops by Ciganda et al. (2009). 
Adequate estimation of chlorophyll content in leafs through VIs remains specifically problematic in instances 
of relatively variable canopy structures (Sims & Gamon, 2002), and may be more effectively executed 
through physically based models that consider the interchange of radiation throughout canopies (Houborg 
et al, 2009). 

4.2.2 Nitrogen (N) 
As has been mentioned previously, chlorophyll and nitrogen content in vegetation are related, i.e. 

the majority of leaf N is contained in chlorophyll molecules (Netto et al., 2005, p. 200). Likewise, there exists a 
strong linear relationship between the amount of nitrogen present in vegetation and its respective capacity 
to photosynthesize (Sellers et al., 1992). Deficiencies of N in plants invoke a lowering of chlorophyll 
concentration, causing reduced photosynthesis capacities, decreasing plant growth, minimization of carbon 
fixation and reduction of overall yield formation and vegetation quality (Zhao et al., 2014; Homolová et al., 
2013; Clevers & Kooistra, 2012; Smith et al., 2002). Nitrogen and chlorophyll content in plants are thus 
biochemically and functionally linked closely (Weiss et al., 2001). In contrast, excess of nitrogen poses an 
environmental risk when it is transported into soil or aquatic systems when vegetation no longer absorbs the 
substance (Chen et al., 2010; Pinter et al., 2003; Haboudane et al., 2002). Either way application of N is 
considered highly decisive for optimizing both yields and economic returns to agricultural practitioners 
(Khosla et la., 2002). Due to the relevance of N for crop growth, estimation of N status to detect potential 
nitrogen stress and subsequent generation of prescription maps to aid in nutrient management are vital to 
precision agricultural management (Yao et al., 2012; Hansen & Schjoerring, 2003). According to Haboudane 
et al. (2002), of all common fertilizer compounds, nitrogen is the most vital yet potentially limiting factor for 
agricultural productivity of crops.  

4.2.3 Carbon (C) 
In general, individual fresh plants comprise mostly of water, ranging from 50 percent to as much as 

95 percent, most of the remainder material is represented by dry matter (biomass). The latter composition is 
primarily shaped by carbon (C), and to a lesser extent Oxygen (O). According to Magnussen and Reed 
(2004), the carbon content across highly varied types of vegetation approximately amounts to between 45 
and 50% of (oven dry) biomass. Using different complex processes, plants act as individual units within the 
biosphere that produce dry (organic) matter by condensing CO2 from their environment into biomass, 
known as carbon fixation (Lieth, 1963). Carbon has been at the epicenter of multiple remote sensing based 
environmental studies, primarily motivated by enhancing the understanding of the (changing) Earth systems 
with respect to complex exchange of carbon in ecosystems and the associated carbon cycle (Gitelson et al., 
2006; Veroustraete et al., 1996; Schimel, 1995; Sellers et al., 1992). Agricultural crops in particular are stated 
to represent one of the most influential biomes regarding the exchange of carbon and related policy making 
due to their pervasive and extensive presence worldwide (Peng et al., 2011 Lobell et al., 2003). From an 
agricultural perspective carbon is considered a relevant parameter due to its ability to act as an indicator for 
crop growth and subsequently crop yield, as the productivity of a plant is inherently connected to the rate at 
which it is able to assimilate carbon by means of photosynthesis (Barber & Baker, 1985). Relatedly, it was 
demonstrated by Cure & Acock (1986) that when crops are exposed to higher levels of CO2 concentration in 
their environments, photosynthesis and carbon biomass accumulation are accelerated, eventually resulting in 
expanded yields.  
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Table 4.1: Tabular overview of all the existing indices that were used in this study during calibration and validation, 
including there (reference) name, formulation and plant traits to which they were related in previous studied. The table 
depicts the original formulation of indices. As will be mentioned in 6.4.2.2, in order to allow their utilization, the original 
bandwidths were replaced by the closest wavelength accommodated for by the HYMSY’s HDC.  

Index name Formulation 
Trait 

F
B
M 

H 
C
H
L 

N C Simple Ratios  

SR_a 
𝑅𝑅734
𝑅𝑅629

   X   

SR_b 
𝑅𝑅780
𝑅𝑅710

-1   X X X 

SR_c 
𝑅𝑅780
𝑅𝑅550

-1   X X X 

SR_d 
𝑅𝑅760
𝑅𝑅550

    X  

SR_e 
𝑅𝑅706
𝑅𝑅755

 X     

MSR 
(𝑅𝑅750 𝑅𝑅705) − 1⁄

�(𝑅𝑅750 𝑅𝑅705) + 1⁄
   X   

       

NDVIs       

NDVI_a 
𝑅𝑅689 − 𝑅𝑅521
𝑅𝑅689 + 𝑅𝑅521

 X     

NDVI_b 
𝑅𝑅584 − 𝑅𝑅471
𝑅𝑅584 + 𝑅𝑅471

   X   

NDVI_c 
𝑅𝑅732 − 𝑅𝑅717
𝑅𝑅732 + 𝑅𝑅717

   X   

NDVI_d 
𝑅𝑅750 − 𝑅𝑅734
𝑅𝑅750 + 𝑅𝑅734

    X  

NDVI_e 
𝑅𝑅770 − 𝑅𝑅717
𝑅𝑅770 + 𝑅𝑅717

    X  

NDVI _f 
𝑅𝑅820 − 𝑅𝑅720
𝑅𝑅820 + 𝑅𝑅720

 X     

NDVI_g 
𝑅𝑅750 − 𝑅𝑅705
𝑅𝑅750 + 𝑅𝑅705

   X   

NDVI_h 
𝑅𝑅740 − 𝑅𝑅667
𝑅𝑅740 + 𝑅𝑅667

   X   

NDVI_i (NDRE) 
𝑅𝑅780 − 𝑅𝑅710
𝑅𝑅780 + 𝑅𝑅710

   X   

NDVI_j 
𝑅𝑅760 − 𝑅𝑅550
𝑅𝑅760 + 𝑅𝑅550

    X  

NDVI_k 
𝑅𝑅750 − 𝑅𝑅710
𝑅𝑅750 + 𝑅𝑅710

    X X 

NDVI 
𝜆𝜆2 − 𝜆𝜆1
𝜆𝜆2 + 𝜆𝜆1

  X    
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Other Indices       

REP_a 700 + 45 ∗
𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑅𝑅700
𝑅𝑅740 − 𝑅𝑅700

             𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑅𝑅670 + 𝑅𝑅780

2
 X  X X  

MCARI_a [(𝑅𝑅750 − 𝑅𝑅705) − 0.2(𝑅𝑅750 − 𝑅𝑅550)](
𝑅𝑅750
𝑅𝑅705

)   X   

MCARI_b [(𝑅𝑅750 − 𝑅𝑅710) − 0.2(𝑅𝑅750 − 𝑅𝑅550)](
𝑅𝑅750
𝑅𝑅710

)     X 

TCARI/OSAVI 
3[(𝑅𝑅750 − 𝑅𝑅705) − 0.2(𝑅𝑅750 − 𝑅𝑅550)(𝑅𝑅750 𝑅𝑅705)]⁄

(1 + 0.16)(𝑅𝑅750 − 𝑅𝑅705)/(𝑅𝑅750 + 𝑅𝑅705 + 0.16)
   X X X 

MCARI/OSAVI 
[(𝑅𝑅750 − 𝑅𝑅705) − 0.2(𝑅𝑅750 − 𝑅𝑅550)](𝑅𝑅750 𝑅𝑅705⁄ )

(1 + 0.16)(𝑅𝑅750 − 705)/(𝑅𝑅750 + 𝑅𝑅705 + 0.16)
   X X  

MTCI 
𝑅𝑅754 − 𝑅𝑅709
𝑅𝑅709 − 𝑅𝑅681

   X X X 

TGI 
−0.5[190(𝑅𝑅670 − 𝑅𝑅550) − 120(𝑅𝑅670 − 𝑅𝑅480)] 

   X   

MCARI/MTVI2 
�𝑅𝑅700 − 𝑅𝑅670 − 0.2(𝑅𝑅700 − 𝑅𝑅550)� ∗ (𝑅𝑅700 𝑅𝑅670)⁄

1.5(1.2(𝑅𝑅800 − 𝑅𝑅550) − 2.5(𝑅𝑅670 − 𝑅𝑅550)) �((2𝑅𝑅800 + 1)
2 
− (6 ∗ 𝑅𝑅 − 5 ∗ �(𝑅𝑅670)) − 0.5⁄

    X  

 

Table 4.2: The references from which the indices were originally retrieved and/or their inventor. 

Index name Source(s) 
Simple Ratios  

SR_a Yu et al. (2012) 

SR_b 
Kooistra et al. (2014); Clevers & Kooistra (2012); Gitelson (2012), Peng et al. (2011), Wu et al. (2009), 

Gitselson (2003a), Gitelson (2003b) 

SR_c 
Kooistra et al. (2014); Clevers & Kooistra (2012); Gitelson (2012), Peng et al. (2011), Gitelson (2003a), 

Gitelson (2003b) 
SR_d Zhao et al. (2014) 
SR_e Mutanga & Skidmore (2004) 
MSR Wu et al. (2008) 

 

NDVIs  
NDVI_a/b/c/d/e Hansen & Schjoerring (2003) 

NDVI _f Thenkabail et al. (2000) 
NDVI_g Wu et al. (2008) 
NDVI_h Yu et al. (2012) 

NDVI_i (NDRE) Kooistra et al. (2014), Hunt et al. (2013), Barnes et al. (2000) 
NDVI_j Zhao et al. (2014) 
NDVI_k Wu et al. (2009) 

 
Other Indices  

REP Cho et al. (2007), Clevers & Kooistra (2012) 
MCARI_a Wu et al. (2008) 
MCARI_b Wu et al. (2009) 

TCARI/OSAVI Kooistra et al. (2014), Clevers & Kooistra (2012), Tian et al. (2011), Chen et al. (2010), Wu et al. (2008) 
MCARI/OSAVI Clevers & Kooistra (2012), Wu et al. (2008) 

MTCI Clevers & Kooistra (2012), Tian et al. (2011), Wu et al. (2009), Zhang et al. (2008) 
TGI Hunt Jr. et al. (2013) 

MCARI/MTVI2 Tian et al. (2011), Chen et al. (2010) 
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5. Data acquisition in the study area 

5.1 Study area 
The study area for this research is located at the agricultural grounds surrounding the facilities of 

Wageningen UR and corresponds to the study area of the overarching field experiment mentioned in 
paragraph 1.2 (figure 5.1). The area comprises of 120 squared (3x3 meter) agricultural plots, positioned in a 
gridded format. Spacing between the plots is 1.5 meter in the NE-SW direction and 2 meter in the SE-NW 
direction. During the 2014 growing season (March-August) half of the plots were cultivated with oats, the 
remainder with endive. Both cultivars were purposely decided on due to the presence of various related  
species in Dutch grasslands on which parallel experiments are carried out in a greenhouse environment. 
Once each crop type was harvested, groups of twenty plots (10/10 for oats/endive) received seven different 
treatments between autumn and spring. In this period, plots were vegetated with either one of four different 
cover crops (Lolium perenne (Lp), Vicia sativa (Vs), Rapharus sativa (Rs) and Trifolium repens (Tr)), a 
combination of Lp + Tr in one subplot and Rs + Vs in the other, or left fallowed (Fa). Lolium perenne and 
oats belong to the same plant family whereas such overlap between cultivars and intermediate treatment is 
not existent for endive, hereby allowing assessment of whether such biological (dis)similarities exert influence 
on growth patterns of crops. From here onwards, the smaller subplots having received combined treatment 
of cover crops are treated as individual plots, resulting in a total of 140 plots (i.e. experimental units) within 
the study area. During the subsequent growing season (2015), cultivation was again equally divided for oats 
and endive species. Half of the plots were cultivated with the same crop as was the case in the previous 
growing season; the other half was swapped with the alternative vegetation. Only the plots cultivated with 
oats (n = 70) will be studied in this research. Samples for a wide variety of plant specific traits were taken 
from oat crops, whereas the samples acquired from endive crops cover only few plant characteristics. The 
more extensive sampling of oat crops therefore allows for incorporation and analysis of a larger number of 
traits. 

Figure 5.1: Zooming in onto the study area from the Netherlands (A), the grounds north of the WUR (B) and the 
gridded pattern of the field experiment (C) 
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5.2 Field data collection 
Plant samples were acquired during the second growing season to allow quantification of several 

biophysical and biochemical parameters from within each plot, including fresh biomass (FBM) nitrogen 
content (N), carbon content (C), leaf chlorophyll content (Chl), and plant height. The monoculture plots (i.e. 
plots cultivated with a single cover crop only) were divided into a left subplot (a) and a right subplot (b), 
similar to split plots accommodating different polycultures cultivation in each subplot. For the latter plot type 
biomass samples were acquired from both subplots for each polyculture, whereas for monoculture plots 
either of two sides (left or right) was randomly selected and subsequently used for the retrieval of samples, 
other than height and SPAD readings. For biomass sampling (02-07-2015), a selection of plants in the 
northern segment of each (both or randomly selected) subplot was clipped using a 25x25 centimeter 
quadrant frame and weighted afterwards to retrieve fresh biomass (g m-2). It was then dried at 70°C for 48 
hours and weighted immediately afterwards to record dry biomass (g m-2). Dry samples were then weighted 
in tin cups and grounded to pass through a screen, after which N concentration and C concentration (% g-1 
dry weight) were read out after combustion and thermal conductivity processing in an automated NA1500 
CN elemental analyzer (Carlo Erba – Thermo Fisher Scientific). Aerial metrics of N and C content (mg m-2) 
were subsequently calculated based on the measured concentration of each and dry biomass (g m-2), 
respectively. One day prior to the UAV campaign (30-06-2015), plant height was measured in centimeters 
by means of a ruler on four locations (a-North, a-South, b-North, b-South) in monoculture plots, or two 
locations in polyculture subplots (a/b-North, a/b-South). At each location a single plant of representative 
height, considering its surroundings, was selected and measured. The SPAD readings were collected on the 
same day as the UAV campaign (01-07-2015) using a SPAD-50 meter. Measurements were taken from the 
top three leaves of one individual plant in each quadrant for monoculture plots, or two plants in each half of 
the polyculture subplots. The readings are converted to leaf chlorophyll concentration (mg per g leaf fresh 
weight) and  content (g m-2 projected leaf area) using the regression functions derived by Uddling et al. 
(2007) for wheat crops. A visual overview of the field data collection of specific plant traits is presented in 
figure 5.2. Given the relatively small size of individual plots it is assumed that both the treatment and traits 
are homogenous herein, and the samples are thus considered representative for the entire plot. 

 
Figure 5.2: Visual 
representation of 
individual plots and 
the approximated  
location at which 
samples for distinct 
traits were 
acquired. The exact 
location in reality 
might differ from 
this approximation. 
The stripped line in 
the middle of each 
plot indicates the 
dividing line 
between subplots a 
(left) and b (right). 
The dotted lines 
represent the 30cm 
margins from either 
the middle of the 
plot or the plot’s 
edges adhered to 
during the field 
experiment. 
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5.3 The HYMSY platform 

Aerial images were acquired by means of an octocopter UAV carrying the Hyperspectral Mapping 
System (HYMSY), the latter which was developed by Wageningen UR itself. The frame comprises of mostly 
off the shelf parts. Once the HYMSY sensor is mounted onto the frame, the total weight of the platform in 
ready-to-fly configuration amounts to approximately 2.0kg. The HYMSY mapping system itself comprises of 
a custom push broom spectrometer (450-915nm range, 9nm spectral resolution, ~20 lines/s, 328 pixels/line), a 
16MPix RGB consumer camera, a GPS-INS and several components dedicated to synchronization and data 
storage (figure 5.3a). The slowest possible smooth flight of the platform is in the range of 2 m/s, allowing 
capturing of imagery at a higher resolution than fixed wing UAVs with similar fps (frames-per-second) sensor 
specifications (Rasmussen et al., 2013). A unique post-flight processing chain was developed to radio 
metrically and geometrically process the data captured in flight (paragraph 5.4.2). In a significant number of 
test flights over varied terrain in the past, the HYMSY platform demonstrated to be capable of generating 
RGB orthomosaics at 1-5cm resolution, DSMs at 5-10cm resolution and HDCs with a resolution in the range 
of 10-50cm. (Suomalainen et al., 2014, p 11026).  

5.4 UAV data collection 

5.4.1 UAV Data Collection 
A UAV campaign was conducted during the 2015 growing season on the 1st of July, shortly prior to 

harvesting to harvesting of the crops and only a few days apart from when the field measurements were 
taken. Shortly prior to take-off and directly after landing, the sensors were field calibrated for incident 
irradiance by means of a 25% Spectralon reference panel. Through processing of the imagery acquired 
during paralleled flight lines with ~80% overlap, the data as depicted in table 5.1 (and figure 5.3b/c/d and 
appendix A) was generated. Even though the initial spectral resolution of the hyperspectral camera (9nm) fits 
the recommendation to adhere to a bandwidth between 5-10nm (Thenkabail et al., 2012b), significant noise 
remained observable in the raw data. Consequently, it was decided to utilize a secondary level data product 
instead, being a hyperspectral data cube with a 30nm FWHM. The DSM was generated using 
photogrammetric algorithms during the post-flight processing chain, as will be discussed in more detail in 
the upcoming paragraph. For the full specifications and technical workings of the HYMSY platform, the 
reader is directed to (Suomalainen et al., 2014). 

Figure 5.3: a) Schematic figure of the HYMSY frame and its main components b) RGB orthomosaic of part of the study 
area at 29mm spatial resolution c) the DSM at 29mm resolution, and d) the hyperspectral dataset at 13,4cm spatial 
resolution, visualized at 750 nm. 
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Table 5.1: Data produced of the study area by means of the HYMSY UAV-platform, including the data’s associated 
specifications 

Sensor Data output Spatial 
Resolution 

Spectral 
Range 

Spectral 
resolution 

16MPix consumer 
camera 

RGB Orthomosaic 1.5cm – 30cm 450 – 690nm B/G/R 
Digital Surface Model  2.9cm – 30cm n.a. n.a. 

Hyperspectral 
camera 

Hyperspectral Data Cube  13.4cm – 30cm 450 – 915nm >9nm 

5.4.2. The HYMSY’s post-flight processing chain 
 As has been mentioned, a dedicated post-flight processing chain was specifically developed for the 
HYMSY platform and its associated data throughput, comprising of a radiometric and geometric 
components, respectively. A detailed elaboration of the chain can be found in Suomalainen et al. (2014), a 
brief overview is provided below.  

5.4.2.1 Radiometric calibration 
The primary step comprised of transforming the ‘true’ upwelling spectral radiance as observed by 

the hyperspectral sensor in digital numbers (DN) to units of radiance (L), which is executed on a pixel by 
pixel basis using dark current and flat field calibrations. Subsequently, the wavelengths were standardized 
through resampling to enable observing of (dis)similarities in spectral data derived from different locations in 
the study area. A resampling interval of 5nm was chosen and processed using the accordant Gaussian filter 
on each linear column captured by the pushbroom scanner, resulting in columns of 328 pixels in length and 
111 wide. At last, the radiance units (L) were translated into reflectance factors (R) through a conversion 
function that is calculated based on the measured radiance of the reference panel at each wavelength 
during flight, the average of pre- and post-flight measured radiance of the reference panel, and exposure 
times of the sensor (Suomalainen et al., 2014). The radiometric processing of the HDC is completed prior to 
geometric calibration of the data, as only the radiometrically correct hyperspectral data will serve as input for 
the succeeding process. 

5.4.2.2 Geometric calibration 
It has been stated previously in paragraph 2.4 that remote sensing imagery is prone to a variety of 

different errors or distortions with respect to geometry. This notion is equally, if not specifically, valid for 
imagery acquired by UAVs (Hardin & Jensen, 2015; Turner et al., 2012). The geometric component of the 
processing chain aims to deal with these errors accordingly, in addition to producing an auxiliary data 
product, namely the DSM. 

During geometric processing, first positional and attitudinal metrics for each image were calculated 
based on the GPS-INS data, timestamps of image acquisitions, and boresight calibration parameters of the 
platform, respectively. Subsequently, a photogrammetric Structure-from-Motion (SFM) algorithm was 
applied to locate tie points between individual images (using PhotoScan Pro, v1.0.0, Agisoft). The latter are 
then fed into a block bundle algorithm together with the image orientations to produce a RGB orthomosaic, 
comprising of a three dimensional DSM overlaid with a mosaic of all aerial images, and optimized camera 
orientations (Suomalainen et al., 2014). In contrast to conventional photogrammetry, SFM is able to work 
with unstructured images, deviating resolutions and/or platform positions, in an image- rather than pixel-
based manner, and therefore more suitable for UAV based imagery acquisition (Carrivick et al., 2013; 
Colomina & Molina, 2014). In the final step the adjusted camera orientations are carried through to the 
orientations of the hyperspectral sensor using the known boresight calibration specifications which are 
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hereafter utilized to georectify the hyperspectral data and project the HDC over the DSM (using PARGE, 
3.2beta, ReSe) (Suomalainen et al., 2014). 

Regardless of the various calibration steps 
within the overarching processing chain, the initial 
output still exhibited notable geometric distortions 
in different directions to different degrees as is 
visualized in figure 5.4 for the RGB mosaic. These 
distortions are inherently related to the notion that 
the orientation data relied on a relatively low-cost 
and inaccurate single band GPS-INS instrument and 
the fact that Ground Control Points (GCPs) were not 
included in the photogrammetric process. Therefore, the four corners of the study area and their 
coordinates (measured in RTK-GPS) were incorporated as Ground Control Points (GCPs) during a repetition 
of the processing chain. The improvements, due to enhancement of the camera orientations’ precision and 
the data’s global accuracy, are also visualized in figure 5.4. 

The reprocessing of the data significantly enhanced its geometry, particularly with respect to the 
RGB orthomosaic from which the DSM was then derived. The improvements were less notable in the 
outputted HDC. This, however, was to be expected considering the challenges associated with pushbroom 
line array scanners, especially when mounted onto a platform that is situated close to the ground and 
relatively susceptible to in-flight attitude deviations due to environmental conditions. Inclusion of a larger 
number of GCPs covering multiple columns captured by the scanner would likely enhance the HDC’s 
geometry, but considering the absence of such GCPs the current output represents the best result currently 
achievable by the processing chain. A final georectification procedure was therefore applied to the 
hyperspectral output in an attempt to further enhance its geometric correctness; this will be discussed in 
paragraph 6.2.1. 

  

Figure 5.4: Segment of the study area as captured by the 
HYMSY’s 16MPix consumer camera after geometric 
processing without (left) and including GCPs (right)  
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6. Methodological framework 
It was mentioned in the introductory chapter that the research passes through three general 

overarching stages, namely a theory oriented exploration stage, data preprocessing, and data analysis 
followed by assessment of the results. Each of these stages, however, comprises of multiple smaller or larger 
consecutive phases. Distinct phases are directly or indirectly aimed at finding answers to the research 
objectives. In the following paragraphs, the framework of different stages and phases is presented in detail. 
The important dependencies between phases, i.e. how one relates to another, are also mentioned. Besides, 
the principles and techniques adhered to are presented. At various moments vital decisions had to be made, 
these are elaborated on and justified thereafter. This chapter illuminates the research strategy that outlines 
how intermediate data products were derived and how the research was undertaken. The workflow depicted 
in figure 6.1 represents this research’ analysis design; a simplified and summarized visual representation of 
the methodological framework and the associated stages adhered to in this study. It should be mentioned 
that the scheme suggests a very linear and straight forward process, but iterations and feedback loops are 
inherently present. 

 

 

 

 

Figure 6.1: Analysis scheme depicting the research’ three overarching stages and subsequent phases therein. Note 
that the Literature Review is an ongoing process that follows through all three stages.  
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6.1 Exploration (I) 

6.1.1. Literature review 
The research commenced with an extensive literature review. This phase is especially significant 

considering my personal relative lack of knowledge and experience within related fields such as 
(hyperspectral) remote sensing, UAVs, precision agriculture and plant phenology (chapters 2-5). Therefore, 
the initial exploration was primarily geared towards enhancing the understanding of relevant developments, 
theories, operations, concepts, constructs and jargon. This phase was additionally used to examine (partially) 
similar and relevant studies, in order to develop a general idea of the state-of-the-art of the field, 
methodological deliberations and research requirements. A significant portion of the findings distilled from 
this phase have already been covered in the theoretical contextual chapters preceding this. Additional 
findings, however, will continue to be presented throughout this report from here onwards. Similarly, the 
literature review is largely situated in the early phases of the research, although it remained in effect 
throughout the remainder of the process. 

6.1.2. Determination of traits 
Subsequently, the research focused on determination of relevant plant traits to be further 

investigated. In the past, a large variety of different biophysical and/or biochemical crop attributes have 
been studied, to various extends and for different purposes. Given the time and data constraints inherent to 
this research, this phase is primarily oriented at deciding upon relevant traits to be incorporated, and 
justification thereof. These decisions are ultimately based on a combination of literature reviewing, expertise 
of experts and availability of data, respectively. 
 

In addition to enhancing understanding of relevant topics, the literature review was initially focused 
on determination of relevant biophysical and biochemical plant traits from an agronomical and remote 
sensing perspective, respectively. It has been indicated that although some of these distinct characteristics 
are considered relevant and studied within both fields, some are only recurring within one or the other. Here 
it is investigated why specific traits are typified as being relevant, i.e. which agricultural parameters (e.g. yield 
prognosis, crop health status) and practices (e.g. application of fertilizers) they are considered appropriate 
indicators for. Besides, the literature review was utilized to explore which crops and associated plant traits 
were retrieved in previous research, by what remote sensing methods, and requiring exactly which input 
data (chapter 4 and appendix C). Eventually, a list of potential trait variables was presented that served as 
input for subsequent selection procedures. The experts in this instance are represented by the thesis 
supervisor dr. ir. L. Kooistra and associate professor dr. ir. G. de Deyn from the WUR department of Soil 
Quality. The latter is primarily associated with the overarching field experiment mentioned before. Based on 
their expert opinion, the possibility and added value of incorporating distinct traits was evaluated to further 
narrow the initial selection. 
 

Furthermore, availability in-situ measurements played an essential role as it ultimately determined 
which traits could (not) be incorporated into this research (paragraph 5.2). Assessment of the relationship 
between spectral reflectance data and distinct traits, as well as the evaluation of the acquired UAV data in 
regard to accuracy, inevitably requires ground measurements for calibration and validation. If ground-truth 
data of a specific parameter were unavailable, processing and evaluation of the aerial data for that trait is 
rendered impossible, and therefore abandoned. The provided UAV imagery represents an additional aspect 
of data availability for similar reasons (paragraph 7.4). It has been indicated in the preceding literature review 
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that there exists a multitude of varying data analysis methods one may utilize to identify, map and quantify 
traits of vegetation. Each methodology relies on distinct and different data input requirements with respect 
to sensor characteristics. Some require the incorporation of spectral data at specific spectral ranges that 
cannot be provided by the HYMSY platform being used here. Similarly, some methods rely on entirely 
different sensors, such as thermal, laser and/or microwave scanners. For obvious reasons, traits demanding 
such unavailable data as input were excluded early on in the process. 

6.2 Data Preprocessing (II) 
Prior to the phase in which the actual data analysis commenced, a data pre-processing phase was 

intercalated for various reasons. This is a vital prerequisite due to the notion that some of the provided data, 
once the post-flight processing chain had been completed (paragraph 5.4.2), was not yet fit for use.  In the 
following paragraphs, the need and procedures for different forms of preprocessing are further elaborated 
on. 

6.2.1 Georectification 

6.2.1.1 Geometric errors in HYMSY acquired imagery 
A selection of causes for geometric errors in the imagery used for this thesis was already (partially) 

accounted for by geometric correction procedures preceding this research, aided by the post-flight 
processing chain mentioned in paragraph 5.4.2. Regardless of these operations, artifacts of geometric 
distortions are still discernible in the HDC that was acquired. Some individual plots are randomly warped to 
different degrees and in different directions, resulting in different shapes and associated surface areas. The 
phase presented here aims to minimize the strength of these distortions through further georectification of 
the HDC. First, a brief overview of the principles of georectification principles is discussed, after which they 
are subsequently applied to the data. 

6.2.1.2 Georectification methodologies 
In order to deal with geometric errors and to georectify raw data accordingly, a variety of different 

models have been devised to transform data through use of mathematical functions (Toutin, 2004). In 
essence, these models depict the (mathematical) relationship between the image coordinate system and the 
target geographic coordinate system, respectively (Xie et al., 2008). Generally speaking, these models rely on 
image matching in which features in the acquired data are matched with the same feature as depicted in a 
rectified reference map, orthophoto or a DEM (Xiang & Tian, 2011). Traditional georeferencing by means of 
an externally acquired (i.e. global or regional) DEM, however, will induce too large errors due to the 
significant difference in resolutions of such a DEM and the UAV data, respectively (Suomalainen et al., 2014). 
The most common transformations are performed by means of polynomial methods, due to their relatively 
simple applicability and presence in a variety of different software packages (Rocchini & Rita, 2005). 
Polynomial functions come in different ‘orders’ and can accommodate either two or three dimensions. The 
latter incorporates z-terms to cover the third dimension of the terrain (Toutin, 2004). For relatively flat areas, 
however, such rigorous and computationally more intensive models do not necessarily yield better results 
(Rocchini & Rita, 2005). Therefore, given the hardly elevated study area, 3D polynomials are excluded here. 
The higher the function’s order of 2D polynomials the more complex the distortion that can be corrected. 
First order (affine) transformations allow shifting, scaling and rotating of an image, whereas the second order 
can also handle torsion and convexity (Toutin, 2004). Even though third and higher order polynomials 
enable correction of even more complex distortions, they are also prone to introducing significant additional 
errors in in the process, and are therefore rarely applied (Rocchini & Rita, 2005). In all cases, however, 2D 
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polynomials should only be applied to images with limited distortions, a condition that is more easily met 
when images were acquired in nadir, when systematic errors have already been corrected for and/or when 
the image covers (relatively) flat terrain (Toutin, 2004). The final step in all of the geometric processing 
models comprises of image rectification, in which 1) the new cell coordinates in the original image and 2) the 
new values of pixels are computed by means of a geometric and radiometric operation, respectively. The 
latter operation, known as resampling, is an interpolation function based on values from the original image 
(Toutin, 2004). 

6.2.1.3 Applying georectification to the HYMSY acquired hyperspectral imagery 
A georeferenced map or orthophoto of the study area was nonexistent. Besides, the exact location in 

space of individual plots has not been measured and ground control points (GCPs) were not established. As 
a result, direct georectification through image matching was rendered impossible and therefore followed a 
different approach. The method primarily relies on the known geometric dimensions of the field experiment 
(spacing and plot size) and the coordinates of the field’s outer corners. The known geometry enabled the 
generation of a digital figurative representation of the study area, including relative spatial dimensions of 
individual plots and plot spacing, similar to the actual field situation.  

First, the original HDC flight line data was imported into ESRI’s Arcmap. To enhance the hyperspectral 
imagery and allow discrimination of individual plots and shadows, the HDC was visualized in RGB through 
utilization of the appropriate bands (460nm, 570nm, 670nm) and application of gamma stretching.  
Georectification inevitably lowers the resolution of the warped imagery. To accomplish the highest resolution 
for output datasets, the raw hyperspectral imagery with the highest original spatial resolution (13.4cm) was 
included. The reference map was then also imported, subsequently providing its corners with the in-situ 
measured coordinates. Hereafter, the reference was re-projected to bring its projected coordinate system in 
alignment with the spatial reference of the hyperspectral data. Then, GCPs were manually assigned to each 
of the four corners making up each plot and then linked to appropriate location in the reference accordingly 
(figure 6.2). As the imagery is solely utilized for analysis of oat plots, only these plots were incorporated into 
the process. The method for image rectification was based on quantitative (RMSE scores) and visual results 
provided for each type of transformation. A lower RMSE and output imagery that better aligned with the 
reference plots was considered best. A second order polynomial transformation yielded the lowest RMSE for 
both flight lines (0.25m and 0.29, respectively) and most adequate visual output, and was therefore selected. 
For resampling, or computing of new values of pixels, the nearest neighborhood algorithm was applied. This 

algorithm first locates the cell’s center in the warped 
image in the original non-rectified data. Next, a nearest 
neighborhood is applied to retrieve the value of the 
nearest cell in the original data and assign this value to 
the output raster cell. The algorithm is specifically 
designed for resampling of discrete thematic or 
categorical data, such as radiometric values in remotely 
sensed imagery (Esri, 2015). Both HDC flight lines were 
resampled to a cell size of 14.0cm. 
 

Figure 6.2: Snapshot of the georectification process in Esri Arcmap. 
The GCPs in the reference map (transparent top layer) are in red, 
the common GCP is depicted and located in the original HDC image 
in green. The latter are eventually rectified to the location of the 
first. 
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6.2.2 Generating Regions of Interest (ROIs) 
Region Of Interest (ROI) vectors were generated for all left and right subplots for all oat plots. Each 

individual vector in polyculture plots, or two for monoculture plots, represents a single plot that allows for 
retrieval of zonal statistics of spectra and height data. These ROIs were established for the Crop Surface 
Model (paragraph 6.2.3) and HDC separately. Regardless of the incorporation of boresight calibrations in the 
geometric post-flight processing chain, the orthomosaic (from which the CSM was derived) and the HDC are 
still not perfectly aligned. Therefore, eventual retrieval of features from these datasets using identically 
shaped and located ROIs is considered questionable. In order to limit the influence of likely edge effects (e.g. 
shadowing), a 30cm margin between the vector’s edges and the actual plot’s edges was incorporated. An 
identical buffer is included with the respect to the plot’s center line for monoculture accommodating two 
types of polyculture vegetation. During acquisition of the field data a similar trimming was adhered to, i.e. no 
samples were taken from within 30cm of the plot’s edges. By applying an equally sized margin to the ROIs 
the zonal statistics are extracted from an area assumed relatively similar to the area in which field data was 
collected. Circumventing edge effects in this manner is common practice, as is demonstrated by (Bareth et 
al., 2014). The ROIs, or more specifically the zonal statistics retrieved from these shapes, are eventually used 
to calibrate different models and validate their accuracy at later stages.  

Subsequently, the ROIs were randomly divided in a calibration and a validation set of equal size 
(50%/50%). In the overarching field experiment it is assumed that the variation of different plot treatments 
influences traits of current vegetation. Therefore, it was made sure that, prior to randomization, each set 
comprised of an equal number of plots having received a distinct treatment to minimize this potential effect.  
The first (calibration) set was used for developing functions that depict the mathematical relationship 
between spectral data (i.e. vegetation indices) and each trait studied (chapter 8). The validation set was 
hereafter used to validate the relationships, i.e. to assess the prediction ability and accuracy of each model, 
by comparing the actual field measurements with the values estimated by calibrated models (Li et al., 2014). 
The calibration and validation process is discussed in more detail in paragraphs 6.3.2 and 6.3.3, respectively. 

6.2.3 Generating Crop Surface Model (CSM) 
 Although a DSM representing the surface height of the entire study area was derived, it does 
not contain data on the height of vegetation itself. Therefore, a new dataset was created to provide a rough 
estimation of the height of vegetation within each individual plot. This first required the generation of a 
Digital Terrain Model (DTM), representing the bare ground surface of the study area. This was accomplished 
by interpolating height values (derived from the DSM) of 90% of 13733 point locations, spaced 10cm apart, 
situated between the plots. It is assumed that the surface (bare soil) height of plots prior to cultivation does 
not (significantly) differ from the surrounding grounds, and a DTM covering of the entire study area can thus 
be approached by interpolation of nearby non-plot locations. Given the relatively stable elevation in the 
study area, the dense distribution of points and the goal to arrive at a smooth continuous terrain model, the 
spline method was applied for interpolation (Childs, 2004). A barrier polygon reaching slightly beyond the 
most outside plots was included to limit processing time. To assess the performance of the interpolation, the 
remaining 10% of 13733 points were used to calculate residuals in height between the original DSM and 
‘predicted’ DTM (RMSE = -0.093 vertical mm). By subtracting the resultant DTM from the existing DSM, the 
latter representing the study area including vegetation cover, the height of plants within different plots was 
retrieved (figure 6.3 & Appendix B), as demonstrated by Tilly et al. (2014) for barley crops. From here 
onwards, the output dataset will be referred to as a CSM (Crop Surface Model). 
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6.2.4 Retrieval of plot statistics 
Figure 6.4 is a graphical representation of this segment of the data preprocessing and subsequent 

data analysis phases, and is considered a comprehensive addition. First, the ground measurements taken at 
selected locations in each plot with respect to distinct plant and soil traits were processed. For each plot, the 
values of individual measurements were stored, in addition to the associated standard deviation 𝜎𝜎 and 
coefficient of variation ε when multiple measurements were retrieved from a single plot. For traits where the 
latter was the case (i.e. leaf Chl content and plant height), the readings were averaged to arrive at a mean 
quantitative value 𝑦𝑦� of trait 𝑥𝑥, representing each plot (figure 6.4A). For all traits, the (averaged) measured 
values were stored in a single spreadsheet. 

In order to efficiently extract the (hyper)spectral data, a Python script was written to collect the 
reflectance values of all pixels that fall within an ROI dedicated to one plot (appendix N). The automated 
extraction was repeated for all wavelengths present in the HDC. Subsequently, the reflectance values of 
pixels were averaged for each separate band and ROI, resulting in a single spectral mean reflectance value 
(𝑅𝑅�) representing that plot at each wavelength. Similarly, the height values stored in the CSM were extracted 
and then averaged using ROI vectors, resulting in an indication of the plot’s average vegetation height 
(figure 6.4A). The resultant mean spectra are automatically stored in a spreadsheet.  

During the subsequent data analysis calibration stage, the relationship between the mean of 
measured reflectance at individual bands, indices calculated from these values, and trait measurements, is 
assessed for each plot. At this point it is worth mentioning that utilizing reduced subplot size ROIs to allow 
retrieval of smaller scale statistics for calibration and validation, based on the exact location of individual 
samples, is ultimately preferred. In such an ideal situation the UAV imagery acquired at very high resolution 
could be more precisely related to point/zonal measurements of traits on the ground. Because the exact 
locations of ground-truth measurements are not known, and because remaining geometric distortions 
disallow accurate estimation of these locations, however, calibration and validation based on even more 
detailed ROIs is considered highly questionable and arbitrary. Therefore, the research relies on averaged 
zonal statistics for (spectral) UAV data. Working with plot averaged metrics is a practice that is frequently 
observed in related or comparable studies (Bareth et al. (2014), Kooistra et al. (2014), Yu et al. (2008). 

6.3 Data Analysis (III) 
Once the original data was preprocessed and considered fit for use the analysis commenced. This 

stage passes through a substantial number of consecutive phases majorly aimed at establishing of 
relationships between spectral data acquired by the UAV and field trait data by calibration, and assessment 
thereof through validation. At this point, the literature review has identified a variety of different reflectance 
oriented approaches (i.e. indices and other models) that have proven to be effective for estimation of the 

Figure 6.3: The relationships between the DSM, DTM and CSM. suggested here. 
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selected biophysical and biochemical plant traits. These approaches vary in regard to data input 
requirements and the degree to which they have been able to successfully estimate distinct parameters 
(chapter 4 & appendix C). The field and aerial UAV data that was collected and examined before in chapter 
5 has been stored in spreadsheets and serves as input for this stage. The diversity of (statistical) analyses 
presented below will be processed using both R and Microsoft Excel. The latter is most strictly employed due 
to its provision of extensive capabilities in regard to statistical analysis of sizable datasets (Maindonald & 
Braun, 2010). The use of Excel is primarily geared towards the eventual production of supportive figures, and 
retrieval of more basic statistics to a lesser degree.   

6.3.1 Univariate band-trait correlation 
This phase is focused on illuminating the relationship between spectra of individual bands present in 

the HDC and in-situ measurements of traits. Correlation coefficients (r) between individual band and distinct 
plant characteristic are generated by cross-correlation of average plot spectra and (mean) plot trait 
measurements. This is repeated for each individual band. The output comprises of graphs indicating 
univariate correlation coefficients at each narrow band, for each trait (Nguyen & Lee, 2006; Hansen & 
Schjoerring, 2003; Thenkabail et al., 2000). The graphs provide a visual means for enhancing understanding 
of how strongly and in which direction the variation of spectral values in distinct bands and trait metrics are 
(not) related (Zhao et al., 2014). Univariate bandwidths that are highly correlated are considered suitable 
indicators for the specific trait, and vice versa. Subsequently, such bands are expected to yield the best 
results during the gradual development of simple or more advanced (multiple) regression models for 
estimating biophysical and/or biochemical vegetation parameters in later stages (Bajwa & Kulkarni, 2012). In 
addition to the regressing of individual spectral bands with individual traits, this step will additionally evaluate 
the ability of the DSM to model actual plant heights within actual plots. For this purpose, the mean of in situ 
plant height measurements for each plot are regressed with the mean plant height as modelled by the CSM.  

6.3.2 Calibrating UAV Data & Field Trait Data relationships 

6.3.2.1 Univariate index-trait correlation 
A selection of the available indices, as mentioned in chapter, will be applied to the processed 

spectral data present in the calibration set. Due to the utilization of different sensors in studies from which 
the methods were derived, some of the indices rely on distinct band centers that are different from those of 
the HYMSY platform. In order to approximate these models, the inputs will be replaced by HYMSY bands 
whose center is situated most nearby in the electromagnetic range. Each index is applied to each individual 
plot’s mean spectral value at the designated wavelengths, resulting in a numerical index value representing 
that plot. Subsequently, the relationship between indices and the selected traits is assessed through 
regression between the observed index and trait values for each plot (figure 6.4B). The output comprises of 
a mathematical function (i.e. a model) that best describes the relationship using coefficients that minimize 
the sum of squares of residuals (Maindonald & Braun, 2010) (figure 6.4C). In addition, the coefficient of 
determination (R2) associated with the function is provided, which displays the proportion of the total sum of 
squares about the mean that is explained by the model itself (Maindonald & Braun, 2010, p. 186). It provides 
a comprehensive indication of how adequately dependent variables (traits) can be explained by the model, 
while subsequently allowing comparison of models for and between different traits. (Kooistra et al., 2014; 
Blackburn, 1998). Only when the graphical output exhibits a clear non-linear relationship (e.g. exponential), 
alternative curve-fitting will be applied to assess whether this yields higher R2 values.  
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6.3.2.2 Regression through contour plots 
Considering that the interaction of plants and their constituents with incoming radiation is highly 

diversified for different crop species, their physical structure and developmental stage, among other factors, 
the existing indices tested here might effectively produce sub-optimal results (Freeman et al., 2007; Osborne 
et al., 2002). Consequently, it is argued worthwhile to explore the possibility of alternative band 
combinations within an index with respect to their ability to identify specific traits (more adequately). 
Therefore, for general indices based on only two bands (SRs, NDVIs & SDs), matrix contour plots indicating 
the coefficient of determination (R2) for each possible combination of bands from 450nm to 915nnm with 
the trait studied will be generated. These plots will be generated by a self-written optimization algorithm 
script in R. From this optimized two-band indices that most strongly relate to the distinct traits (i.e. hotspots), 
and the associated function, can then be easily extracted (Nguyen & Lee, 2006; Thenkabail et al., 2000) 
(figure 6.4C).  

6.3.2.3 Univariate PLS regression 
Finally, univariate Partial Least Square Regression (PLSR) will be employed to all spectral bands in 

the HDC to produce a linear model (function) between the mean spectral values and (mean) trait values of 
each plot, incorporating an x number of narrow bands. Similar to the methodologies mentioned above, the 
adequacy of the resultant regression model with each trait is indicated by its value for the coefficient of 
determination R2. PLSR finds an x number of latent variables which together maximize the amount of 
variation explained in the spectral data considered relevant for estimation of a single specific biophysical or 
biochemical trait (Alchanatis & Cohen, 2012; Bajwa & Kulkarni, 2012). PLSR, besides, reduces data 
dimensionality and model over-fitting by avoiding collinearity between (adjacent) bands, while also directly 
incorporating information of the response variable (trait) into the process (Mulla, 2013; Cho et al., 2007; 
Mevik & Wehrens, 2007). For this reason PLS regression has been frequently mentioned as a promising 
technique for analysis of extensive and highly dimensional hyperspectral data (Yu et al., 2014; Feilhauer et al., 
2010). Even though alternative information extraction methods exist (e.g. Discriminant Analysis, PCA), PLSR is 
stated to perform better in vegetation monitoring applications and is therefore frequently applied in 
agricultural science (Bajwa & Kulkarni, 2012; Liu et al., 2007), as demonstrated by Yu et al. (2014), Cho et al. 
(2007) Nguyen & Lee (2006), Hansen & Schjoerring (2003) and Smith et al. (2002).  

More specifically, and similar to utilization of PLS in most applications, a random PLS model based 
on leave-one-out-cross-validation will be built. Two types of PLS models will be calibrated for each trait, one 
incorporating only hyperspectral spectra, and a second in which the estimated plant in the CSM is added as 
an auxiliary variable. Using this approach, each observation is separately dropped from the set during the 
model building process, which is repeated for all samples in the calibration set. The (training) observations 
that remain are used to calibrate the PLS regression model which is subsequently used to predict the value 
of the left-out variable (e.g. the testing set) (Abdi, 2010). The PLS model quality, i.e. its precision and 
accuracy, will be evaluated internally according to the (cross-validated) R2, RMSEP (Root Mean Square Error 
in Prediction) expressed in original units and REP (Relative Error of Prediction) expressed as a percentage, 
resulting from this cross validation (Appendix M). A higher value for the first, and lower values for the latter 
two, indicate a better model performance (Nguyen & Lee, 2006). During cross-validation, the number of 
latent variables to be included in the building of the model is increased by one after each repetition (Li et al., 
2008).  
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In general, PLS model precision increases as the number of latent variables is increased (Yu et al., 
2014). Due to the risk of model overfitting, however, this does not necessarily equal an increase in the 
prediction quality of random PLS models when a larger number of variables (or factor loadings) is included. 
Instead, the quality lowers momentarily once a certain number of variables has been included, i.e. the 
information useful to fit the observations from the learning set is no longer useful to fit new observations 
(Abdi, 2010, p. 101). In order to optimize the number of independent variables to be included in PLS model, 
i.e. to maximize performance while circumventing model overfitting, the PRESS statistic is employed (Nguyen 
& Lee, 2006). PRESS (Predicted Residual Error Sum of Squares) or Residual Y-variance is a measure 
commonly applied for the purpose of assessing whether inclusion of an additional latent variable significantly 
adds to the model (Yu et al., 2014; Esbensen et al., 2002). More specifically, loading additional variables is 
stopped once the minimum PRESS has been reached, and the PLS model producing the lowest PRESS value 
is considered the preferred and best performing model for each trait (Nguyen & Lee, 2006) (figure 6.4C). 
The resultant optimal PLS models will subsequently be used to predict the traits in the validation set, their 
quality will be assessed using the same indicators presented here (paragraph 6.3.3). 

6.3.3 Validating UAV Data & Field Trait Data relationships 
To assess the performance of different approaches, the validation phase is geared towards 

analyzing the ability of indices to predict distinct traits. For this purpose, only the data from the independent 
validation set is employed to validate the relationships found between indices and traits during calibration. 
First, a selection of the best performing (existing/optimized & PLS) indices/models, and their associated 
mathematical relationship, found in the preceding calibration phase are applied to each individual plot’s 
mean reflectance value at the according wavelengths (figure 6.4D). The outcome is a quantified (average) 
trait estimate, for each individual trait, function and plot (figure 6.4E). Next, the trait prediction for each plot 
is cross-validated with the (mean of the) observed trait values, as measured previously in the field. The 
model’s performances are then assessed through comparison of the resultant values for R2 (coefficient of 
determination), RMSE (Root Mean Square Error) and the normalized CVRMSE (CV in %) for each trait (figure 
6.4F). Lower values for the latter two and a higher R2 indicate enhanced predictive capabilities and model 
adequacy, respectively (Li et al., 2014; Reddy, 2011; Nguyen & Lee, 2006). Assessing the performance of 
different models through validation, once the models are calibrated, is a common approach applied in 
multiple related studies (see for example: Li et al. 2014; Tian et al., 2011; Heiskanen, 2006; Nguyen & Lee 
2006; Haboudane et al., 2004; Smith et al. 2002; Gong et al., 1995). 
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Figure 6.4: Graphical representation of part of the preprocessing operations and the subsequent calibration and 
validation phase.  
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7. Analyses & Results: Exploratory Data Analysis (EDA) 
An initial inspection of the data was conducted prior to the subsequent analysis in order to enhance 

the understanding of the underlying data acquired either in the field and from the air. Below, a brief 
summary of relevant data and its main characteristics is presented in both a textual and graphical manner 
for calibration and validation data separately. As will be discussed shortly in paragraph 7.3, exploration of the 
data exposed various unexpected anomalies that were likely resulting from (sincere) within-plot physical 
heterogeneity. It was eventually decided to leave these individual plots out of the analysis, hence the 
explanation and figures presented hereafter are solely related to the dataset(s) after removal of these plots 
where both calibration and validation set comprise of 28 individual plots.. 

7.1 Average spectra 
Average spectra were calculated for all plots combined at each wavelength (figure 7.1). For both the 

calibration and validation set, the figures adhere to the traditional spectral signature of vegetation. In the 
visible segment of the spectrum the diffusion among plots with different inter-seasonal treatments is 
relatively limited. The signature indicates a minor and varied decrease in (chlorophyll induced) absorption in 
the green (500-620 nm) compared to blue (450-500 nm) and red (620-700 nm) wavelengths. Considering 
only the visible part of the spectrum, the highest and lowest reflectance values are recorded at 555nm and 
675nm, respectively. This is in agreement with these wavelengths frequently being identified as the 
chlorophyll absorption minimum and maximum, respectively (Vincini et al., 2007; Haboudane et al., 2004; 
Broge & Leblanc, 2000). The reflectance notably increases beyond the chlorophyll post-maxima (±700nm) 
throughout the red-edge and particularly at near-infrared wavelengths (>750 nm). At this point, the 
signatures for different treatment types gradually deviate along a vertical shift, i.e. the relative shapes remain 
largely identical. In the near-infrared, the reflectance of plots cultivated with Lolium perenne (Lp), Trifolium 
repens (Tr) or a combination of the two cover crop types consistently display lower reflectance’s, and so are 
those plots left fallow. In contrast, plots cultivated with Rapharus sativa (Rs), Vicia sativa (Vs) or a combination 
of the two structurally indicate higher reflectance values. Variations in reflectance among individual plots 
adhere to a similar structure, indicated by marginal deviations in the blue and red resulting from increased 
chlorophyll absorption, and more diverging values throughout the green and near-infrared (not shown, see 
appendix D). 
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Figure 7.1: Average reflectance spectrum of the different experimental plots and their associated treatments for the 
calibration (n=28, left) and validation (n=28, right) set (Fa = fallowed, Lp = Lolium perenne, Rs = Rapharus sativa, Tr = 
Trifolium repens, Vs = Vicia sativa). 54 
 



  

7.2 Summary statistics of crop traits 
The experimental design of the study area and varied intra- and inter seasonal treatments of 

individual plots produced some variation within some of the different crop traits studied (table 7.1). The 
statistics for both input datasets are largely in accordance with one another, the maximum difference 
between mean values is 3% (C content). Some differences for minimum and maximum values are 
discernible, particularly for fresh biomass, C content and N content where the extreme low and/or high 
values in the validation set exceed the calibration set. Concentration and content of leaf chlorophyll and 
nitrogen content display the largest dispersion considering their associated coefficients of variation (CV). 
Besides, the dispersion for each trait is equal or larger within the validation set, except for both leaf 
chlorophyll measures and N concentration. In contrast, concentration of C hardly exhibits any variation, in 
accordance with the notion that carbon concentration in vegetation is a relative constant (Magnussen and 
Reed, 2004). A breakdown of these trait statistics for different treatments in validation plots is presented in 
paragraph 9.4. 

Table 7.1: Summary statistics for all field trait measurements 

Crop Trait Unit Calibration set (n=28) Validation set (n=28) 

  Mean SD CV Min Max Mean SD CV Min Max 

Height cm 91.26 10.04 0.11 72.50 112.50 89.67 9.92 0.11 72.50 108.88 

Fresh BM kg m-2 3.54 0.86 0.24 2.19 5.41 3.47 1.04 0.30 1.67 5.77 

Dry BM kg m-2 1.18 0.24 0.21 0.81 1.64 1.15 0.29 0.26 0.60 1.73 

N concentration % 0.76 0.16 0.22 0.54 1.16 0.77 0.16 0.21 0.53 1.15 

N content g m-2 8.98 2.91 0.32 5.14 17.85 9.00 3.27 0.36 3.87 15.23 

C concentration % 45.26 0.36 0.01 44.20 45.80 45.22 0.44 0.01 43.90 45.80 

C content g m-2 535.8 111.7 0.21 365.4 749.9 519.5 134.6 0.26 264.1 785.8 

LC concentration mg kg- 5.08 2.08 0.41 2.37 9.75 4.82 1.70 0.35 2.57 8.91 

LC content g m-2 
PLA 

0.76 0.28 0.37 0.38 1.38 0.72 0.23 0.32 0.41 1.27 

All traits are positively correlated with one another (figure 7.1). For the calibration set, the strongest 
correlations were found between leaf chlorophyll concentration and content, and between fresh and dry 
biomass, in addition to C content being a near-function of dry biomass (r ≈ 1.0). The correlations between 
height and nitrogen content, fresh biomass and nitrogen content, nitrogen concentration and content and 
between nitrogen concentration and chlorophyll concentration/content are lower but still substantial (r ≈ 
0.8). Correlation coefficients for other combinations are lower and range between r ≈ 0.15 (for dry biomass 
and chlorophyll concentration/content) and r ≈ 0.7 (appendix E). Generation of correlation coefficients for 
the validation set yielded largely similar results with respect to distinct combinations of traits exhibiting 
relatively weak or strong relationships (not shown in main text, but presented in appendix E). The most 
notable deviations relate to lower correlation coefficients between nitrogen concentration and chlorophyll 
concentration/content (r ≈ 0.6), relatively stronger relationships between various combinations of height and 
both types of biomass, and the very limited of interdependency between carbon content and leaf 
chlorophyll concentration/content. 
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Please note that for N, C and leaf Chl, both concent and concentration values are provided in the above 
figures. Only the aerial metrics expressed by content, however, are incorporated in the description and 
calibration and validation procedures following hereafter. According to Chen et al. (2010), vegetation 
monitoring oriented research primarily focused on N content rather than N concentration. It was therefore 
decided to incorporate the former, as it is argued to allow for easier retrieval of existing indices and 
evaluation of the findings with respect to previous studies. C concentration was found to be rather invariable 
and to exhibit very limited variation. It was thus decided to incorporate only C content instead. Dry biomass 
was excluded from subsequent analysis for the same reason, considering that C content hardly deviates from 
dry biomass due to the derivation of the former from the latter through C concentration. Inclusion of both 
resultantly invokes redundancy, hence a single variable was selected. Finally, leaf Chl content and 
concentration were found to be relatively indifferent and produce largely overlapping correlations due to 
their deduction from the same SPAD readings. Consequently, only leaf Chl content was selected. 

7.3 Correlation between crop trait and canopy reflectance over wavebands 
Figure 7.3 below visualize univariate correlations coefficients (r) between separate plant traits and 

individual narrow bands. Prior to the removal of some plots, as was mentioned previously, univariate 
correlations for some of the traits exhibited vastly unanticipated values throughout the spectrum in 
comparison to findings in existing studies. Besides, the figures for the calibration and validation set were 
highly contrasting with respect to multiple traits. At this point further exploration of the data commenced, 
aimed at illuminating which plots’ reflectance values and/or in-situ trait measurements most notably affected 
the assumingly flawed coefficients. It was reasoned that the anomalies were mostly likely ascribable to 
within-plot physical heterogeneity, i.e. smaller or larger sections of plots exhibiting poor or absent vegetation 
growth, and the different and inadequate spatial resolution at which input data was acquired. In order to 
minimize the influence of this complex notion on the output, it was decided to remove all plots from the 
dataset that exhibited clearly observable physical heterogeneity based on a visual inspection of the RGB 
orthomosaic. A more extensive elaboration on this matter including supportive figures can be found in 
Appendix F. 

Figure 7.2: Scatterplots 
for all possible 
combinations of traits in 
the calibration set 
(n=28) 
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  The coefficients of correlation (r) between measured canopy reflectance and individual traits diverge 
notably over different wavelengths, varying from mostly negative correlations in the visible range to positive 
correlations throughout the near-infrared. All of the traits indicate relatively comparable patterns with 
respect to wavelengths at which they exhibit positive or negative correlations, differences between traits 
most strictly relate to the strength of such correlations. Until approximately 500nm, r is minimal and pivots 
around the center line representing no correlation (r ≈ -0.1 <> 0.1). From here onwards, the coefficient turns 
increasingly negative until the maximum negative r values are reached at approximately 640nm and at 
695nm in the chlorophyll absorption post maxima, in agreement with Zhao et al. (2014, Nguyen & Lee 
(2006), Thenkabail et al. (2000). At approximately 675nm, the correlation’s strength weakens due to a loss of 
sensitivity resulting from maximum chlorophyll absorption. Between 695nm and near-infrared wavelengths, r 
rather abruptly becomes positive, intersecting with the center line between 710-720nm for different traits, 
followed by a flattening at approximately 750nm (with r ≈ 0.6 <> 0.8 for most traits). The relatively higher 
(negative) correlation coefficients surrounding 695nm in the red and (positive) coefficients in the near-
infrared from 750-915nm suggest these narrow bands’ relative importance with respect to prediction of 
distinct crop traits (Bajwa & Kulkarni, 2012).  

Particularly striking, however, is the diffusion in the near-infrared among values of r for plant height 
(max. r ≈ 0.75), fresh biomass (max. r ≈ 0.45) and C content (max. r ≈ 0.25) within the calibration set. The 
latter trait is an approximate function of dry biomass due to near-constant values for C concentration and 
the derivation of C content through dry biomass. It is commonly understood that plant height is positively 
and rather strongly correlated to plant biomass (Tilly et al., 2014; Fernandez et al., 2009; Niklas & Enquist, 
2001). Therefore, relatively similar correlation coefficients at individual wavelengths were anticipated for 
these variables, as is the case for the validation set. These diverging patterns, however, follow from relatively 
poor univariate correlations among these variables for the calibration set, especially when compared to the 
results for the validation set (figure 7.2 and 7.4 & Appendix E).  

Furthermore, the results are largely in accordance with the findings of, for example, Zhao et al. 
(2015), Fava et al. (2009), Nguyen & Lee (2006), Hansen & Schjoerring (2003) and Thenkabail et al. (2000) 
regarding some of the traits included here for different vegetation types. The strength of correlations 
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Figures 7.3 : Wavelength dependence of the correlation coefficient (r) based on a linear regression between average 
plot canopy reflectance and each crop trait studied for the calibration (left, n=28) and validation (right, n=28) set. 
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throughout the visible spectrum, however, is notably and consistently lower than was observed in these 
studies. Besides, minor anomalies in correlation coefficients, observed by Nguyen & Lee (2006) and Hansen 
& Schjoerring (2003) in the green near the chlorophyll peak at ±550nm and ±525nm, however, are not 
discernible in the figures above. It is argued that this may be ascribable to the lower spectral resolution 
provided by the sensor and resultant ‘smoothed’ dataset incorporated here (FWHM = 30nm) compared to 
the higher spectral resolution of the spectroradiometer’s used by these studies (FWHM = 1.0 <> 1.55nm). 
On the other hand, such anomalies were also not observed by Zhao et al. (2015) for N content in oats, 
regardless of utilizing a similarly high spectral resolution spectrometer. 

7.4 Correlation between crop trait and Crop Surface Model 
Subsequently, in-situ measurements for all traits were individually correlated with the average crop 

height according to the crop surface model (CSM) (figure 7.4). Not surprisingly, the CSM most closely 
resembles the field measurements of height, resulting in correlation coefficients of 0.85 and 0.91 for 
calibration and validation data, respectively. Relative variations in CSM height are also significantly related to 
discrepancies observed between in situ measured height when broken down by different treatments for all 
(56) plots (figure 7.5). For both data sets, however, the CSM structurally underestimates the measured 
height, by 20cm on average. This may result from a certain degree of bias being present in the CSM. The 
remainder of traits exhibited a lower amount of correlation, judging from the coefficients ranging from 0.45 
to 0.8. The values of r for validation plots are consistently higher than for calibration plots, although 
deviations between the datasets is marginal for height and N content (< -7.0%). The largest exceptions are 
observed for C content (-36%) and fresh biomass (-16.5%), in accordance with the deviations in univariate 
correlations observed for both traits in the previous paragraphs. In general, the observed interdependency 
confirm the associated relationships between vegetation height and variables such as growth rate, biomass 
and plant fertility/health, among others, expressed by Till et al. (2014) and Cornelissen et al. (2003). 

 

Figure 7.4: Correlation coefficients (r) based on a linear regression between average CSM plot height and each crop trait 
studied for the calibration (n=28) and validation set (n=28). 

 

Figure 7.5: Mean and standard deviations of measured (left) and CSM (right) height values per treatment type for all 
plots (n=56). The statistics relate to statistical interferencing of the means of the two height estimates. (Fa = fallowed, Lp 
= Lolium perenne, Tr = Trifolium repens, Vs = Vicia sativa) 
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Figure 7.6 below display the univariate correlation coefficients between average CSM plot height 
and separate traits by different treatments for the calibration and validation set, respectively. Please note that 
the Rapharus sativa monoculture (Rs) and Rapharus sativa/Vicia sativa treatment (Rs+Vs) are excluded from 
both figures. After removal of some plots (paragraph 7.3 and appendix F), both treatments comprised of too 
few observations (1 <> 2) in either the calibration or validation set, or both, to allow for correlation analysis. 
The figures suggest notable deviations for different treatments within, and between, both datasets. Besides, 
the consistently positive correlations with traits displayed in figure 7.4 are not mirrored by similarly structural 
positive correlations for separate treatments. The strongest alignment is observed for the Vs treatment, 
indicating positive correlations for all traits other than leaf Chl content in both data sets. In contrast, the 
fallow treatment is highly varied, indicated by opposite (i.e. negative) correlations for height and leaf Chl 
content and, albeit to a far lesser degree, fresh biomass and C content. For Lp, the positive correlations for 
fresh biomass, N content and C content are largely overlapping between both datasets, although 
correlations for height and leaf Chl content are negative for the validation dataset, hereby conflicting with 
the positive correlations for calibration plots. Likewise, Lp+Tr only displays overlap for height and leaf Chl 
content, whereas correlations for the other traits are consistently either positive or negative for the 
calibration and validation set, respectively. Finally, Tr exhibits comparatively strong correlations with all traits 
in the validation set. In the calibration set this is only matched by height, leaf Chl content and N content to a 
lesser extent, whereas contrasting (negative) correlations are recorded for fresh biomass and C content. 

It is troublesome to precisely elucidate what lies at the foundation of these discrepancies. It should 
be mentioned, however, that the treatments rely on a limited number of observations (4 <> 5) in both 
validation and calibration datasets, separately. Consequently, a single observation exerts relatively much 
leverage and influence on the direction and strength of resultant correlations. Besides, the CSM height 
metrics are extracted from a considerably larger section (i.e. the whole) of the plot compared to the trait 
samples (i.e. 1-4 sampling locations). Resultantly, considering the possibility of these samples not adequately 
representing the remainder of the plot and/or their expected (biochemical/biophysical) relation to plant 
height, unanticipated or contradicting correlations in the opposite direction may be invoked. The latter 
notion on the varied densities on which ground and aerial measurements are based is a recurring topic in 
this report and is discussed in more detail in paragraph 10.3 

-1.0

-0.5

0.0

0.5

1.0

Height Fresh
biomass

N
content

C
content

Leaf Chl
content

Fa

Lp

Lp+Tr

Tr

Vs-1.0

-0.5

0.0

0.5

1.0

Height Fresh
biomass

N
content

C
content

Leaf Chl
content

Co
rr

el
at

io
n 

co
ef

fic
ie

nt
 (r

) 

Figure 7.6: Correlation coefficients (r) based on a linear regression between average CSM plot height and each crop trait 
studied, broken down by treatment, for the calibration (left) and validation (right) set. (Fa = fallowed, Lp = Lolium 
perenne, Tr = Trifolium repens, Vs = Vicia sativa) 
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8. Analysis & Results: Calibration of the relationships between vegetation 
indices and crop traits 

The following paragraphs discuss the regression analysis of crop traits and vegetation indices or PLS 
models, as well as the calibration of mathematical relationship functions based on these outcomes. First, the 
results of correlating previously found indices with individual traits are given. Subsequently, contour plots 
relating to all possible two-band combinations in SR, NDVI and SD indices are presented, allowing 
identification of potentially new spectral indices. Thirdly, the calibration of various PLS models is presented. 
For the best performing existing/optimized indices and PLS models, supportive figures of the regression are 
depicted in appendix G and I, respectively. 

8.1 Correlation between crop trait and Vegetation Indices 
Linear regression of all existing and previously mentioned vegetation indices (chapter 4) revealed 

highly varying results with respect to (the strength of) their relationship to all crop traits studied (table 8.1). 
For each trait, the three best performing indices are highlighted in bold. The highest coefficients of 
determination (R2) were found for some of the more complex indices, i.e. REP and MTCI in particular. 
Existing two-band NDVI indices, especially NDVI_d, NDV_e and NDVI_f, consistently outperformed those 
based on a simple ratio formulation. 

Table 8.1 Coefficients of determination (R2) based on a linear regression between vegetation indices and each crop trait 
studied for the calibration. The three models producing the highest coefficients for each trait are displayed in bold. 

 Height Fresh biomass N content C content Leaf Chl content 
SR_a 0.050 0.032 0.078 0.019 0.117 
SR_b 0.472 0.178 0.450 0.060 0.488 
SR_c 0.147 0.067 0.175 0.028 0.231 
SR_d 0.120 0.057 0.149 0.024 0.207 
SR_e 0.337 0.132 0.326 0.049 0.412 
MSR 0.335 0.130 0.332 0.048 0.398 

 
NDVI_a 0.278 0.078 0.169 0.018 0.142 
NDVI_b 0.354 0.105 0.215 0.023 0.220 
NDVI_c 0.338 0.134 0.334 0.050 0.410 
NDVI_d 0.566 0.197 0.505 0.063 0.546 
NDVI_e 0.492 0.184 0.454 0.062 0.525 
NDVI_f 0.533 0.191 0.477 0.064 0.514 
NDVI_g 0.327 0.128 0.321 0.048 0.400 
NDVI_h 0.039 0.024 0.063 0.013 0.119 
NDVI_i 0.449 0.170 0.420 0.059 0.493 
NDVI_j 0.125 0.061 0.153 0.027 0.227 
NDVI_k 0.380 0.145 0.364 0.053 0.440 

 
REP 0.698 0.245 0.580 0.074 0.573 

MCARI_a 0.429 0.158 0.414 0.052 0.475 
MCARI_b 0.477 0.174 0.454 0.057 0.510 

TCARI/OSAVI 0.195 0.073 0.207 0.027 0.263 
MCARI/OSAVI 0.195 0.073 0.207 0.027 0.263 

MTCI 0.679 0.245 0.599 0.079 0.583 
TGI 0.248 0.090 0.194 0.034 0.222 

MCARI/MTVI2 0.655 0.183 0.459 0.047 0.463 
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From assessing the R2 values on a trait by trait basis it follows that C content consistently exhibits the 
lowest coefficients of determination, followed by fresh biomass. This is in agreement with anticipations 
considering both traits were least strongly correlated with individual wavelengths, particularly in the near-
infrared (figure 7.3). Likewise, higher univariate correlation coefficients with distinct wavelengths for height, N 
content and leaf Chl content are reflected by higher R2 values for these traits with respect to the variety of 
indices presented here. 

The tested indices were extracted from earlier studies, in which they were found to be relatively 
strongly correlated with one or more of the traits included in this research. The results presented here 
indicate that in some instances these indices do indeed produce relatively high R2 values when regressed 
with distinct traits (e.g. SR_b, NDVI_f, REP for fresh biomass, MTCI, REP, NDVI_d, MCARI/MTVI2, NDVI_e, 
SR_b for N content, MTCI, REP, for C content, MTCI, REP, SR_b, MCARI, NDVI_i for leaf Chl content) (figure 
8.1 & 8.2). Nonetheless, as can be discerned from table 8.1 above, a variety of new index/trait combinations 
exhibit similar or even higher coefficients of determination (e.g. MTCI, NDVI_d, NDVI_e for fresh biomass, 
NDVI_f, MCARI for N content, NDVI_d, NDVI_e, NDVI_f for C content and leaf Chl content). Finally, 
exploration of the tabular overview suggests that a selection of indices yielding relatively high R2 values when 
correlated with a distinct trait are also rather strongly correlated to multiple or all other traits (e.g. SR_b, 
SR_e, NDVI_d, NDVI_e, NDVI_f, NDVI_i, NDVI_k, REP, MCARI, MTCI, MCARI/MTVI2). These notions logically 
follow from the earlier mentioned observation that univariate trait-wavelength correlation patterns (figure 
7.3) are relatively similar in shape and diverge most strongly regarding the strength of such correlations. 
Consequently, indices performing relatively well in explaining the variation of a single trait potentially yield 
similarly high R2 values for other traits due to their reliance on distinct wavelengths multiple other crop traits 
were also strongly correlated with.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: Relation between in-situ measured leaf Chl 
content and index REP. (Fa = fallowed, Lp = Lolium 
perenne, Rs = Rapharus sativa, Tr = Trifolium repens, Vs 
= Vicia sativa, PLA = Projected Leaf Area) 

Figure 8.1: Relation between in-situ measured N content 
and index MTCI. (Fa = fallowed, Lp = Lolium perenne, Rs 
= Rapharus sativa, Tr = Trifolium repens, Vs = Vicia 
sativa). 
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Furthermore, it is revealed that the best performing SR (λ1/ 
λ2) and NDV indices ((λ2- λ1)/( λ2+ λ1)), i.e. those producing 
comparatively high coefficients of determination for one or multiple 
traits, are based on a recurring combination of bands at distinct 
wavelengths (table 8.2). The indices borrow either from the near-
infrared (>750nm) and the far red (±710nm), from the red-edge 
(710nm <> 750nm) and the far red, or solely from the red-edge. The 
highlighting of these wavelengths logically follows from the 
importance of these spectral regions with respect to changing 
interactions with incoming radiation and the resultant rapid alterations 
in reflectance of vegetation. Consequently, it is observed that the 
indices mentioned here are consistently based on a wavelength that is 
(strongly) positively correlated to one or multiple traits on the one 
hand, and a second that is either (strongly) negatively or not 
correlated in figure 7.3 on the other. The REP and MTCI indices 
employ relatively similar wavelengths in the far red, the red-edge and 
onset of the near-infrared.  Additionally, both indices exploit a distinct 
region in the visible part of the spectrum where absorption of 
chlorophyll reaches its peak (i.e. ±675nm), shortly prior to the sharp increase in reflectance and sensitivity 
from the red-edge onwards (Gitelson, 2012; Dash & Curran, 2007; Mutanga & Skidmore, 2007; Lichtenthaler 
et al., 1996). In contrast, existing indices performing relatively weak are found to be primarily based on 
(green (i.e. ±550nm) and blue) wavelengths for which differences in measured reflectance and sensitivities 
are minimal and which are subsequently largely poorly correlated. This disallows such indices to effectively 
exploit vast differences in reflectance and sensitivities, due to the relative absence of the latter. Revision of 
the studies that some of these indices were retrieved from confirmed their foundation on univariate 
wavelength correlations that are minimally, but highly relevantly, different from the figures (i.e. notably 
stronger, particularly in the visible spectrum) found for the oat plots. This renders such indices plausibly 
valuable for these studies, but rather sub-optimal for the case study, crop type, development stage, 
hardware and/or resultant dataset, among other relevant parameters, adhered to here. The indices 
compensating for soil background noise (i.e. TCARI/OSAVI & MCARI/OSAVI) were not found to display 
better results than their non-compensating counterparts. It is argued that this may follow from the advanced 
vegetative stage of the crops and the resultant dense canopy cover, rendering the possible appearance and 
influence of soil background largely absent (Thenkabail et al., 2000). 

8.2 Contour plots: hotspot identification and optimal index selection 
Next, contour plots or correlation matrices were generated for all 8.836 two-band combinations 

within the 450-915nm range. Figure 8.3 and 8.4 below, in addition to those presented in appendix H, 
represent the resultant graphs displaying R2 values for all possible formulations of a simple ratio (SR) form 
λ1/λ2, normalized difference vegetation index (NDV) form (λ2-λ1)/(λ2+λ1) and simple difference (SD) form 
λ1-λ2, and their relationship with all traits. This is a relevant process considering that the performance of 
individual wavelengths and indices with respect to modelling variation in crop parameters varies with 
different types of vegetation, crop development stage, sampling dates, among other variables (Freeman et 
al., 2007; Osborne et al., 2002). Consequently, indices derived from existing studies as presented in chapter 4 
and appendix C are not guaranteed to provide optimal performance with respect to this specific case study. 

Index λ1 λ2 

 

Λ3 Λ4 

SR_b 780 710   

SR_e 705 755   

MSR 750 705   

   

NDVI_d 735 750   

NDVI_e 715 770   

NDVI_f 720 820   

NDVI_i 710 780   

NDVI_k 710 750   

MTCI 755 710 680  

REP 780 700 670 740 

Table 8.2: Best performing indices and 
their wavelength dependency 
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The range of R2 values indicates that, for all traits, alternative band combinations exist that are better 
able to explain the variation of in-situ trait measurements than the existing two-band indices included in this 
study. When also considering the best performing more complex indices (i.e. MTCI and REP in particular), 
improvements were only observed for C content and leaf Chl content and SR/NDVI/SD indices, and only for 
SD indices for fresh biomass and N content. The importance of the red-edge and near-infrared are 
confirmed for each index and trait other than C content. The relatively consistent overlap of hotspots for 
different indices follows from similarly strong interdependencies between field measurements thereof 
(paragraph 7.2), comparable correlations over wavebands (figure 7.3), and indirect biochemical relationships 
between height, leaf Chl content, N content and, to a lesser degree, fresh biomass. Subsequently, 
considering intra and inter trait comparisons, differences in the graphs are mostly related to the maximum 
coefficients of determination, and the spread of values throughout the graph to a lesser degree. Following 
from the lower univariate wavelength correlations observed for fresh biomass and C content, all of the 
indices tested here display reduced maximum coefficients of determination compared to the other traits. The 
hotspots for new SR, NDVI and, to a lesser extent, SD indices are majorly focused on the same region in the 
electromagnetic spectrum on which the best performing existing indices were based, i.e. the far red(-edge) 
(>720nm) and the onset of the near-infrared. This notion is in accordance with the findings of Aasen et al. 
(2014), Yu et al. (2012), Müller et al. (2008) and Hansen & Schjoerring (2003) who performed a similar 
optimization algorithm plots for some of the traits included here, for different crop species. In contrast to 
additional findings in these studies, however, indices fully oriented at the visible spectrum or, alternatively, 
indices exploiting the red-edge/near-infrared and visible (i.e. the green at ±550nm) wavelengths, are found 
to be less strongly related to variations to in situ measurements of all traits than was anticipated. The latter 
type of index in particular is found to yield low coefficients of determination for SR and NDVI indices, and SD 
indices to a lesser degree. 

In agreement with the findings of Yu et al. (2012), instances of SRs where λ1 > λ2 (below diagonal), 
or where λ1 < λ2 (above diagonal), generate different values for R2. SRs where λ1 > λ2, however, generally 
exhibit larger ‘hotspots’ with slightly higher coefficients of determination. Likewise, such variation for both 
cases (λ1 > λ2 or λ1 < λ2) in correlation strength is not discernible for NDVIs or SDs where each side of the 
diagonal mirrors the other. The discrepancy for SRs, however, is much lower than was observed by Yu et al. 
(2012). The hotspots identified for SRs below fully align with those found for all possible combinations for 
NDVIs and traits, although values for R2 vary marginally (± 0.01) (table 8.3). Hotspots and coefficients of 
determination for SD indices are more, albeit still rather limitedly, varied.  

8.2.1 New indices for height 
The hotspot for height pivots around band combinations from 725nm onwards until longer near-

infrared wavelengths, although the relationship weakens for combinations incorporating longer wavelengths. 
The highest R2 values (=0.70) are obtained for an SR/NDVI index where λ1 is in the near-infrared at 795nm 
(± Δ20nm) and λ2 at the end of the red-edge at 755nm (± Δ10nm) (figure 8.3), or a largely similar SD index 
where λ1 is at 785nm (+ Δ30nm) and λ2 at 760nm (- Δ10nm)  (R2 = 0.69). These wavelengths at (the onset 
of) the near-infrared were also identified to exhibit good correlations with crop height by Wolfgang et al. 
(2010), Thenkabail (2001) and Senay et al. (2000). As expressed by Wang et al. (2011), a direct physical 
relationship between height of a canopy on the one hand and the reflective behavior of that canopy on the 
other is nonexistent. Alternative structural parameters of vegetation such as LAI, fractional canopy and the 
associated structure and biomass, however, are related to both height and reflectance. Generally speaking, 
as the growing season progresses and plant height increases, so do LAI, biomass and fractional cover. 
Consequently, Raper et al. (2013) found strong correlations between measured values of a red/near-infrared 
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NDVI index and LAI, and relatedly height, of crops throughout the growing season. The red band 
dependency, which was also found to be a good predictor of plant height/LAI  in various crops by 
Thenkabail et al. (2000), however, is negligible according to any of the generated contour plots. It is argued 
that this may be related to the developmental stage of the oat crops studied and the resultant fractional 
vegetation cover nearing the 100% marker. Traditional red/near-infrared indices for estimation of 
biophysical crop characteristics ultimately exploit the red region with respect to its sensitivity to dynamic and 
gradually increasing covering of background soils as crops develop, although this sensitivity is rapidly lost 
once the canopy is increasingly densified and fractional cover reaches its maximum (Carlson & Ripley, 1997). 
The reliance on the near-infrared relates to the notion that reflectance continues to increase as additional 
leaves are disclosed that further enhance scattering at these wavelengths. As a canopy becomes more dense 
and the influence of background soils is lessened, the vastly different rates at which interaction with 
incoming radiation is altered and reflected at these wavelengths invokes an imbalance, rendering the index 
largely insensitive (Mutanga & Skidmore, 2004). It is consequently argued that, considering the advanced 
growth stage of oat crops, indices become more reliant on longer (red-edge) wavelengths, similar to what 
was found for densified canopies and estimating of biomass thereof (Mutanga & Skidmore, 2004) 
(paragraph 8.2.2). 

 Besides, the rate at which the preceding rapid increase of reflectance gradually flattens in this 
particular spectral region is strongly and positively related to chlorophyll content and yields higher 
reflectance for healthy vegetation containing higher levels of chlorophyll, in accordance with Lamb et al. 
(2002). Considering the associated biochemical relationship between the enhancement of vegetation 
health/fertility, photosynthetic capacity, growth rate, plant height, and chlorophyll content (Cornelissen et al., 
2003; Gopal et al., 2002), this may explain the higher correlations for these band combinations as chlorophyll 
related wavelengths serve as a proxy for plant height. This associated relation was also discernible from the 
comparatively strong positive univariate correlations between both field and CSM height and measured leaf 
Chl content. The inclusion of a band at 
approximately 720nm, stated to be frequently 
employed within crop growth studies by 
Gitelson (2012), produces comparatively less 
performance, indicated by lower coefficients of 
determination at the edges of the hotspot. 
Besides, the assumingly effective pairing of 
near-infrared (±845nm) and red (±682nm) for 
estimation of biophysical crop attributes such as 
plant height (Thenkabail et al., 2012a), is not 
discernible in any of the contour plots for 
height. 
Figure 8.3: Contour plot showing the coefficient of 
determination (R2) between in-situ measured crop 
height and narrow band SR indices for 94 bands spread 
across λ1 (450nm to 915nm) and λ2 (450nm to 915nm). 
The different hotspots, indicating regions with relatively 
high R2 values, are depicted in pink and subsequently 
used to retrieve the best combinations of bands from. 

64 
 



  

8.2.2 New indices for fresh biomass and C content 
The hotspot for fresh biomass near perfectly overlaps with the hotspot found for plant height, 

although exploiting of longer near-infrared wavelengths invokes a lowering of the coefficient of 
determination more rapidly than is the case for the latter trait. This concise overlap is in agreement with the 
demonstrated strong relationship between both plant height and biomass in various earlier studies (i.e. Tilly 
et al., 2014; Fernandez et al., 2009; Niklas & Enquist, 2001). Relatedly, the optimum SR/NDVI indices locate 
λ1 in the near-infrared at 790nm (± Δ10nm) and λ2 at the onset thereof at 755nm (± Δ5nm) (R2 ≈ 0.24). 
One of the two hotspots found for fresh biomass based on an SD index yields a slightly higher R2 (≈ 0.26) 
and borrows from approximately the same spectral region with λ1 at 780nm (+ Δ10nm) and λ2 at 760nm (+ 
Δ5nm). Each index exploits distinct wavelengths close to those that were previously found to be good 
estimators of leaf mass (Cho et al., 2007). Likewise, the near-infrared is ultimately related to biomass and 
canopy structure, i.e. an increase in near-infrared reflectance suggests enhanced production mass or 
increased densification of the vegetative canopy as scattering in this region is increased (Christenson et al., 
2013; Clevers & Kooistra, 2012). It is observed that the optimal band combinations for explaining the 
variation in measured biomass are relatively adjacent, in agreement with the findings of Cho et al. (2007) 
and Hansen & Schjoerring (2003). Relatedly, Mutanga & Skidmore (2004) demonstrated that relatively 
adjacent bands positioned on the steep linear red-edge shift and/or short near-infrared wavelengths are a 
more accurate estimator of biomass related traits in dense vegetation (e.g. (full-grown) oats) than more 
traditional SRs or NDVIs based on the red and near-infrared as was mentioned in paragraph 8.1.1. A 
combination of very adjacent bands in approximately the same spectral region (746-757nm) was also 
identified to exhibit a relatively strong correlation with biomass in rice across different growth stages using 
contour plots by Aasen et al. (2014), although none of the growth stages coincides with the mature stage of 
oats studied here. The comparatively low coefficients of determination may be, in addition to the 
comparatively lower univariate correlations over wavelengths (figure 7.3), related to the notion that the 
correlation between biomass and indices generally saturates at higher levels of biomass (> 100mg/m2) for 
different plant species (Goswami et al., 2015; Hunt et al., 2005). Crops reach full canopy closure during the 
mid-vegetative phase, after which biomass and plant height continue to accumulate while not 
(proportionally) effecting the spectral appearance of its canopy (Thenkabail et al., 2000). The vegetation in all 
plots structurally exceeds this value (significantly), hereby potentially explaining the reduced capability of 
spectral indices to discriminate and quantify different levels of biomass adequately.  

A very small second hotspot for SD indices, producing a further enhancement of the coefficient of 
determination (≈ 0.27), is observed for fresh biomass at longer near-infrared wavelengths with λ1 positioned 
at 875nm (± Δ5nm) and λ2 at 915nm (± Δ5nm). The optimum SR/NDVI (R2 ≈ 0.12) and SD (R2 ≈ 0.13) 
indices for C content exploit a largely similar spectral region at these longer wavelengths, utilizing 885nm 
(λ1, ± Δ5nm) and 875nm (λ2, ± Δ5nm), and 875nm (λ1) and 915nm (λ2, ± Δ5nm), respectively. Considering 
the near-perfect alignment (conceptually and statistically) between fresh biomass and C content (through 
dry biomass and carbon concentration), the considerable overlap in relevant wavelengths may be explained, 
although the red-edge/near-infrared hotspot observed for fresh biomass is only very marginally discernible 
for C content. All three indices are reliant on distinct regions in the near-infrared shoulder that are 
commonly referred to as the near-infrared prepeak (±885nm) and near-infrared peak (±915nm), 
respectively (Gnyp et al., 2014). Both are stated to be frequently employed to estimate biophysyical 
parameters such as fresh and dry biomass, although the notion that these wavelengths are often paired with 
a red band at 682nm for these purposes cannot be distilled from the contour plots (Thenkabail et al., 
2012a/b; Thenkabail et al., 2004).  
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More than is the case for any of the other traits studied, a variety of SR/NDVI indices exploiting 
solely the visible segment of the electromagnetic spectrum is identified for biomass, although the R2 values 
(≈ 0.19) remain significantly lower than for red-edge/near-infrared oriented indices. It is argued that this 
region may be particularly relevant with respect to the mature and final growth stage of the oat crops, in 
which plant senescing and ripening within (some) plots has commenced (Thorsted et al., 2002). For various 
crop types, including oats, biomass rapidly accumulates throughout the growing season, while stagnating 
during later stages when maximum biomass is reached (Malhi et al., 2006). Instead, biomass is being 
increasingly displaced at later growth stages prior to harvest (Dixon, 2007). During senescence, stocks of 
biomass (and N) are gradually re-allocated to seeds or grains, in addition to photosynthetic capacity of 
leaves decreasing due to this relocation, hereby causing leaves and the vegetation’s canopy appearance to 
color yellowish/brownish (figure 10.2). Likewise, as plant decay starts to set in, the opposite of canopy 
closure (i.e. diminishing) is observed, hereby likely invoking the influence of additional factors such as soils in 
the background and within-plot shadowing effects (Murphy & Murray, 2003; Thenkabail, 2000). 
Consequently, the differences in reflectance between yellowish senescing (biomass maxima) and greener 
(biomass pre-maxima) vegetation are particularly pronounced at these visible wavelengths, in agreement 
with Huete & Jackson (1987). 

8.2.3 New indices for N content 
Although the hotspots found for N content are again largely overlapping with those mentioned 

previously for other traits, a minor shift to shorter wavelengths is observable, starting from approximately 
705nm at the shortest red-edge wavelengths. The best results, however, are still obtained from band 
combinations exploiting longer wavelengths. Likewise, similar to the height, the hotspot found is more 
elongated than for fresh biomass and carries through to longer near-infrared wavelengths. The highest R2 
values for SR/NDVI indices are found for λ1 at 790nm (± Δ15nm) and λ2 at 745nm (± Δ10nm) (R2 ≈ 0.58). 
The optimum wavelengths for SD indices exploit approximately the same red-edge/near-infrared region, but 
are more closely spaced with λ1 at 780nm (± Δ10nm) and λ2 at 765nm (± Δ5nm) besides producing a 
slightly higher coefficient of determination (R2 ≈ 0.61).   

Each index type exploits a distinct red-edge and near-infrared wavelength that was also found to be 
strongly correlated to N in oat cultivars, i.e. 741nm and 760nm, respectively (Zhao et al., 2014). The 745nm 
wavelength dependency besides approximates the red-edge band at 740nm that was found by Thenkabail 
et al. (2012a) to be highly sensitive to accumulation of nitrogen in corn leafs. Identification of these 
wavelengths is also in relative agreement with some of the best two-band indices for predicting N content in 
wheat according to Hansen & Schjoerring (2003), i.e. relying on wavelengths situated at the red-edge and 
onset of the near-infrared. These specific wavelengths (>760nm) were also accredited with the largest factor 
loadings in the first latent variable during the construction of a PLS model aimed at estimating N content in 
rice cultivars by Nguyen & Lee (2006). The inclusion of a red-edge band in particular relates to the 
biochemical interdependency between chlorophylls and nitrogen. The red-edge was identified as a (direct) 
function of absorption by chlorophylls by Zhao et al. (2014) and subsequently exhibits considerable 
sensitivity to accumulation of nitrogen according to Thenkabail et al. (2012a). The optimum SD index more 
strictly utilizes the spectral region in which the rapid reflectance increase over red-edge wavelengths 
gradually stabilizes at the onset of the near-infrared. The rate at which this flattening occurs is highly varied 
and ends at higher maximum reflectance values for increased levels of chlorophyll (Lamb et al., 2002), 
arguably induced by similarly higher N content values considering the vast biochemical relationship between 
the two variables (Inoue et al., 2012). 
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It was found by Freeman et al. (2007), among others, that an (NDV) index employing the red and 
near-infrared segment of the spectrum was ultimately able to discriminate between different levels of N 
content in corn crops, again resulting from the demonstrated influence of N on chlorophyll content, and the 
resultant sensitivity to differences in variation of chlorophyll content and N stress at red wavelengths. This 
reasoning was not confirmed by the contour plots for SR/NDVI (R2 ≈ 0.2 <> 0.3) indices in particular or for 
SD indices to a lesser degree (R2 ≈ 0.45), indicated by notably lower R2 values for this wavelength compared 
to the red-edge/near-infrared. Similarly, the notion that, at later growth stages, N content can be more 
effectively estimated using blue wavelengths in particular (Alchanatis & Cohen, 2012) was not confirmed for 
oats. It is, however, reasoned that this relative undervaluation of visible wavelengths may be related to the 
developmental stage of the oat crops under study, as will be discussed in more detail in paragraph 10.4. 

8.2.4 New indices for leaf chlorophyll (Chl) content 
In accordance with the previously mentioned strong biochemical interdependency between 

chlorophylls and nitrogen in vegetation (Zhao et al., 2014; Homolová et al., 2013; Clevers & Kooistra, 2012; 
Smith et al., 2002 Weiss et al., 2001), the hotspots observed for leaf Chl content are overlapping with those 
of N content to a large degree. Similarly, in contrast to contour plots for other traits, the hotspot area 
exhibits a minor shift to shorter (red-edge) wavelengths. In contrast to N content, however, the hotspots for 
SR/NDVI indices do not venture as far into the near-infrared and are primarily reliant on adjacent shorter 
wave narrow bands situated in the red-edge/near-infrared, or solely in the red-edge to a lesser degree. The 
best performance is provided by SR/NDVI/SD indices where λ1 is located at 760nm (± Δ10nm) and λ2 at 
740nm (± Δ10nm). The best SD index yields a marginally better R2 (≈ 0.61) than its SR or NDVI counterparts 
(≈ 0.59). Even more than was the case for N content, a relatively large area is observable in the contour plot 
for SD indices that relates to band combinations utilizing shorter near-infrared wavelengths (760nm 
<>800nm) on the one hand, and visible (particularly green and red) on the other, that are found to exhibit 
sub-optimal coefficients of determination (≈ <0.54).  

The optimum index exploits a distinct 
wavelength at the onset of the near-infrared 
(760nm) where chlorophylls in leafs hardly exhibit 
absorption features while simultaneously exerting 
a relatively strong correlation between variations in 
chlorophyll and reflectance compared to other 
near-infrared wavelengths (Blackburn, 1998). In 
contrast, the 740nm band is positioned at the 
steep linear-shift of the red-edge and exploits the 
spectral region in between vast absorption of 
chlorophylls in the red and scattering in the near-
infrared. Reliance of indices on this distinct spectral 
region avoids saturation effects while preserving 
sensitivity to varied levels of chlorophyll contents 
(Gitelson, 2012). A comparable index borrowing 
entirely from adjacent red-edge bands was also 
identified as the best estimator of chlorophyll 
content in wheat cultivars by Hansen & Schjoerring 
(2003), although combinations of shorter red-edge 
wavelengths yielded marginally stronger 

Figure 8.4: Contour plot showing the coefficient of 
determination (R2) between in-situ measured leaf Chl 
content and narrow band SD indices for 94 bands spread 
across λ1 (450nm to 915nm) and λ2 (450nm to 915nm).  

67 
 



  

relationships than those based on longer wavelengths. The latter notion, however, may be related to the 
advanced developmental stage of the oat crops studied. Various studies have demonstrated that the lapse 
of the red-edge and the associated inflection point thereof shift to longer wavelengths as LAI (i.e. indirectly 
related to growth stage and plant height), chlorophyll content, availability of nitrogen, among other factors, 
are increased (Clevers & Kooistra, 2012; Yang & Li, 2012; Mutanga & Skidmore, 2007; Mutanga & Skidmore, 
2004). Consequently, it is argued that optimum band combinations may similarly move to slightly longer 
wavelengths. 

Although SD indices exploiting shorter near-infrared wavelengths (750nm <> 800nm) and visible 
bands yield lower R2 values than their red-edge/near-infrared counterparts it is argued that the observed 
pattern may not go unnoticed. Various earlier studies have suggested the use of the visible spectrum for 
estimating chlorophyll in vegetation, due to the inherent interchange of different levels of chlorophyll 
pigment induced absorption features throughout this region. The blue and red region represent the 
chlorophyll absorption maxima at which there exists a relative sensitivity to change in chlorophylls (Alchantis 
& Cohen, 2012; Thenkabail et al., 2012a; Thenkabail et al., 2012b). Contrastingly, the green region at 
approximately 555nm is known as the chlorophyll or green peak. Here, reflectance of vegetation in the 
visible notably increases in comparison to blue and red wavelengths, but especially for lower chlorophyll 
levels (Gitelson, 2012; Thenkabail et al., 2004; Gitelson et al., 2003b; Yoder & Pettigrew-Crosby, 1995). In 
addition to the red-edge region, reliance on this spectral region is therefore stated to mitigate saturation 
issues while maintaining relative sensitivity to chlorophyll levels. Consequently, Gitelson (2012) noted that the 
green and red-edge spectral regions are the only ones sensitive to highly varied levels of chlorophyll levels. 
Reliance on the former region, however, does only marginally show from the different contour plots. The 
differences between coefficients of determination of indices employing either a green or red band are 
negligible, as are the differences between green and blue band oriented indices, albeit to a lesser degree. 
Besides, the anticipated and frequently demonstrated relevance of the chlorophyll peak at 555nm for 
estimating chlorophyll does not stand out compared to adjacent green or other visible wavelengths. As will 
be discussed in more detail in paragraph 10.4, however, this may again be related to the developmental 
stage of the oats crops studied and the associated implications thereof to (reduced) photosynthetic capacity 
of plants and the dynamic interplay between different (influential) other pigments.  

Table 8.3: Tabular overview of optimized indices for different traits and their wavelength dependency 

Index λ1 (nm) λ2 (nm) Height FBM N content C content Leaf Chl content 
SR's 

       
SR_i 795 755 X 

    
SR_ii 790 755 

 
X 

   
SR_iii 790 745 

  
X 

  
SR_iv 885 875 

   
X 

 
SR_v 760 740 

    
X 

        NDVI's 
       

NDVI_i 795 755 X 
    

NDVI_ii 790 755 
 

X 
   

NDVI_iii 790 745 
  

X 
  

NDVI_iv 885 875 
   

X 
 

NDVI_v 760 740 
    

x 
        SD's 

       
SD_i 785 760 X 

    
SD_ii 875 915 

 
X 

   
SD_iii 780 760 

 
X 

   
SD_iv 780 765 

  
X 

  
SD_v 875 915 

   
X 

 
SD_vi 760 740 

    
X 
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8.3 PLS 
Two PLS models were built for each of the five traits studied, solely utilizing data from the 

calibration set. Models of the first type are entirely based on the average reflectance measurements for each 
plot (explanatory (x) variables) and the in-situ measurements of traits (dependent (y) variables). For the 
second PLS model the plot height values as were estimated by the crop surface model (CSM) were added as 
an additional explanatory variable in the model building process. 

The optimal number of latent variables to be included in each model was determined by 
assessment of multiple statistical parameters of the (leave-one-out) cross validation process, being the 
highest values for cross-validated R2, and lowest values for RMSEP, REP and PRESS statistics. A more 
extensive tabular overview resulting from PLS calibration for models with different numbers of latent 
variables is given in appendix I. The preferred number of variables ranged from 11 to 1 for PLS models of 
the first type to predict N content, and fresh biomass and C content, respectively (table 8.3). The optimal PLS 
model for leaf Chl content employs 5 latent variables; the model for height includes 3. Once CSM height was 
included as an auxiliary variable, the number of latent variables in order to predict height increased to 5, 
while thereafter the PLS model for N content relied on only 2 variables (table 8.4). The number of included 
latent variables for fresh biomass, C content and leaf Chl content remained unchanged. The precision of the 
models varies significantly, judging from the cross-validated R2 estimate ranging from -0.09 to 0.65 and from 
0.06 to 0.81 for both PLS model types, respectively. As was anticipated, the precision is comparatively good 
for height, leaf Chl content and N content, and less so for C content and fresh biomass. The model’s 
accuracies are equally diverging, indicated by the relative error of prediction (REP) ranging from ±6% for 
height to approximately 20-24% for the other traits in both PLS models. Inclusion of the (CSM) estimated 
within plot height enhanced PLS model performance for height, fresh biomass and C content. For N content 
and leaf Chl content, however, no (significant) improvements were observed. 

Subsequently, the PLS fitted values were regressed with the actual response variable values to 
retrieve the coefficient of determination for the resultant fit. These were consequently compared to the R2 
values of the best existing or new index presented in paragraphs 8.1 and 8.2. The reflectance oriented PLS 
model increased the R2 for height, leaf Chl content and N content by 0.05, 0.18 and 0.32, respectively. Not 
surprisingly, when the CSM was added as an additional explanatory variable, the performance of the PLS 
model increased in particular for height fresh biomass and C content, further increasing the R2 by 0.13, 0.18 
and 0.12, respectively. In contrast to the performance of PLS models of the first type, the second PLS model 
outperforms the best selected existing and/or new indices for both fresh biomass and C content. 

Table 8.4: Statistical parameters of the PLS calibration (only reflectance values included as explanatory variables) 

Crop trait NLV 
Cross-validation statistics 

R2 (FV) 
R2 (CV) RMSEP REP(%) PRESS 

Height 3 0.65 5.909 6.47% 982.5438 0.75 
Fresh biomass 1 0.06 0.8352 23.57% 19.58553 0.20 
N content 11 0.49 2.054 22.88% 120.7543 0.93 
C content 1 -0.09 116.9 21.82% 383674.2 0.06 
Leaf Chl content 5 0.63 0.1681 22.43% 0.79723 0.79 

(NLV = Number of Latent Variables (components), R2 = coefficient of determination, CV = Cross-Validation, RMSEP = 
Root Mean Square Error of Prediction, REP = Relative Error of Prediction, PRESS = Predicted Residual Sum of Squares, 
FV = Fitted Values) 
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Table 8.5: Statistical parameters of the PLS calibration (reflectance and CSM values included as explanatory variables) 

Crop trait NLV 
Cross-validation statistics 

R2 (FV) 
R2 (CV) RMSEP REP(%) PRESS 

Height 5 0.81 4.377 4.80% 540.3332 0.88 
Fresh biomass 1 0.29 0.7268 20.51% 14.82958 0.39 
N content 2 0.47 2.127 23.69% 127.1302 0.58 
C content 1 0.06 108.5 20.25% 330691.2 0.18 
Leaf Chl content 5 0.62 0.1709 22.81% 0.829131 0.76 

 

The factor loadings indicate how the (1…n) latent variables in different PLS trait models have been 
established. Consequently, the loading weight graphs provide a comprehensive means for distilling the 
explanatory variables (i.e. wavebands) that are most important for each individual component (Appendix I). 
Higher loading values attribute comparatively high influence in contrast to lower values. It is observed for all 
traits that the first latent variable, in PLS models borrowing entirely from reflectance values, ascribes 
significant loadings weights to near-infrared wavebands, and to red-edge positioned bands to a lesser 
degree (similar to univariate correlations in figure 7.3). The second component generates the highest 
loading weights in the onset of the red-edge at ±710nm for leaf Chl content, and near the green peak at 
±560nm for N content and height. For height it was found that the wavebands accredited with the largest 
PLS loading weights in the second latent variable are near-perfectly aligning with the wavebands included in 
the best performing four band OMNBR model to estimate plant height in corn crops by Thenkabail (2000).  

Once CSM height is included in the model building process it is assigned the maximum loading 
weight in the first latent variable for all traits. Hereafter, the second latent variable for height, N content and 
leaf Chl content is again majorly borrowing from red-edge and near-infrared wavelengths. Likewise, loading 
weights of the third latent variable for leaf Chl content and height approximate the second latent variable of 
the first PLS model type, with loading value peaks at identical wavelengths. For C content and fresh biomass 
PLS models of the second type comprise only of one latent variable. Therefore the resultant model is merely 
a linear function of CSM height rather than of reflectance, following from larger univariate correlations 
observed between the CSM and both traits than over separate wavelengths. 
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9. Analysis & Results: Validation of the relationships between vegetation 
indices and crop traits 

Finally, the relationships between different indices and crop traits found in the preceding calibration 
phase are validated. In order to reduce processing time, only the three best performing existing indices, one 
or optimized index (i.e. ‘hotspots’) identified by the contour plots for each index formulation, and PLS 
models of both types were included in the validation for each trait. Resultantly, the total number of uniquely 
included indices is 31, although plural use of various indices for different traits brings the total number of 
validations to 41. Except for one outcome, all of the relationships to be discussed below are highly significant 
at the 0.01 or higher probability level(s), in agreement with the level of significance deemed required for 
supporting adjusting of farming practices according to Maindonald & Braun (2010). 

9.1 Validation of the best selected indices and PLS models 
Generally speaking, the best selected existing indices exhibit a performance that is relatively 

comparable to the best selected new indices or PLS models, indicated by limitedly deviating RMSE’s, CV’s, 
and coefficients of determination (R2) (table 9.1 & appendix J). For height and leaf Chl content the best 
existing index (MTCI and REP, respectively) outperforms both PLS models and all of the new indices, whereas 
the latter two type of models provide enhanced performance with respect to predicting of the remaining 
traits. The dispersion of predictions varies significantly, i.e. the coefficient of variation ranges from the lowest 
values observed for height (± 5.0% <> 7.0%) to as high as ±23.0% for N content, fresh biomass and C 
content. The prediction capability of existing indices with respect to leaf Chl content is slightly better, 
considering the associated CV’s ranging between 15.0% and 21.0%. The ability of the calibrated relationships 
to explain the variance of observed values for the response variables is equally varied. The highest R2 values 
were noted for height and leaf Chl content (± 0.79), followed by N content (± 0.63) and fresh biomass (± 
0.49). The explained variance for C content (R2 ≈ 0.35) was the lowest. 

Considering the best performing existing indices, utilization of new optimized indices covering all 
possible combinations in various two-band indices resulted in lowering of the RMSE/CV and increments in R2 
values for all traits other than height and leaf Chl content. Furthermore, improvements are only observed for 
the optimized SD indices, i.e. performance of new SR/NDVI indices largely overlaps with the predicting 
capabilities of selected existing indices other than the best one. The RMSE of predictions for C content is 
lowered the most by at least 9.3%, the strongest enhancement was observed for SD[875-915nm] (R

2 + 0.05). No 
improvements are recorded for the optimized SR/NDVI[885-875nm] indices. With respect to fresh biomass, 
the selected SD[875-915nm] index invokes a lowering of the RMSE of 6.7% (R2 + 0.07) or more compared to 
validated existing indices. The enhancement provided by SD[780-760nm] is marginal (RMSE – 1.6%, R2 +0.07), 
and absent for SR/NDVI[790-755] indices. Regarding N content, the newly devised SD[780-765nm] index brings 
about a lowering of the RMSE by at least 4.9% (R2 + 0.05) compared to the best existing index. Again, no 
notable improvements are observed for the SR/NDVI[790-745nm] indices. The latter notion may be related to 
the findings of Freeman et al. (2007), who demonstrated better performance of NDVI with respect to N 
content at early growth stages, but reduced correlations at later stages. As was mentioned, none of the new 
indices displays a mentionable increase in predictive accuracy for height or leaf Chl content, indicated by 
similar or worse values for RMSE, (CV)RMSE and R2 statistics to different degrees (figure 9.1). 

At last, the results of the best performing previously mentioned indices are compared to the results 
of validation of the calibrated PLS models. The outcomes suggest that PLS regression only improves the 
predictive accuracy for fresh biomass, albeit marginally (RMSE -2.7%, R2 ± 0.0) and only regarding the 
second PLS model type. The PLS model of the second type for fresh biomass, however, comprises of a 
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single latent variable allocating maximum weight to the CSM data, and therefore equals a linear regression 
of CSM height measurements rather than an actual multi-dimensional PLS model. It was found that for leaf 
Chl content, and to a lesser degree N content, partial least square regression yielded no significant 
improvement compared to (some of) the existing and/or new indices discussed in the previous paragraphs. 
This is in agreement with the findings of Hansen & Schjoerring, 2003). Predictions of height and C content 
based on PLS modelling are also outperformed by (some of) those relying on existing and/or optimized 
indices. For all these traits, PLS modelling is only found to exhibit minor improvements when comparing the 
results with either existing or newly optimized indices other than the best one(s).  

Except for height, the coefficients of determination (R2) for PLS models of the second type are 
consistently similar or higher than observed for the second type of PLS model including CSM data. 
Consequently, the PLS’ models predictive accuracies speak in favor of the second model type, indicated by 
lower (CV)RMSEs for all traits other than height. These latter notions are in conflict with earlier findings 
during PLS model calibration, as well as those presented in figure 7.4, both of which demonstrated a 
relatively strong correlation between in situ measured height and CSM modelled height. 

Table 9.1: Overview of validation statistics for the best selected existing/optimized indices and both PLS models. All 
results are significant at the 0.0001 probability level, unless the asterisks indicate otherwise (*** < 0.001, ** < 0.01, * < 
0.1). For each trait, the model with the highest predictive accuracy is displayed in green contours. 

              
Traits            
Index Height Fresh biomass N content C content Leaf Chl content 
Existing 
indices RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 

NDVI_d       0.82 23.55% 0.437*** 2.26 25.11% 0.53       0.15 21.18% 0.61 
NDVI_f                   120.9 23.27% 0.301**       
REP 4.70 5.24% 0.78 0.794 22.89% 0.494 2.04 22.61% 0.63 119.7 23.04% 0.354*** 0.11 14.50% 0.794 
MTCI 4.59 5.12% 0.79 0.797 22.96% 0.472 2.12 23.58% 0.585 119.2 22.95% 0.339** 0.13 17.73% 0.71 
MCARI/MTVI2 6.984 7.79% 0.565                         
    

New indices RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 

SR_i 5.19 5.79% 0.74                         
SR_ii       0.83 23.91% 0.455                   
SR_iii             2.06 22.83% 0.628             
SR_iv                   121.3 23.34% 0.301**       
SR_v                         0.12 17.16% 0.728 
    
NDVI_i 5.16 5.75% 0.75                         
NDVI_ii       0.828 23.80% 0.458                   
NDVI_iii             2.05 22.78% 0.629             
NDVI_iv                   121.3 23.35% 0.248       
NDVI_v                         0.13 17.36% 0.725 
    
SD_i 4.81 5.37% 0.77                         
SD_ii       0.741 21.37% 0.56                   

SD_iii       0.78 22.52% 0.56                   
SD_iv             1.94 21.60% 0.68             
SD_v                   108.1 20.81% 0.521       
SD_vi                         0.16 21.72% 0.61 
    

PLS models RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 

PLS 1 4.84 5.39% 0.78 0.77 22.31% 0.50 3.81 42.34% 0.242* 116.1 22.34% 0.413*** 0.17 23.82% 0.57 
PLS 2 5.30 5.91% 0.74 0.72 20.78% 0.56 2.05 22.82% 0.62 109.2 21.03% 0.434*** 0.16 21.63% 0.64 
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9.2 Into the models’ prediction accuracy & sources of error 
Considering that RMSE penalizes large prediction errors more than small prediction errors, it is 

worth identifying which observations (e.g. plots) exert relatively much influence on the outcome. It was 
observed that, in general, observations exhibiting relatively large prediction errors (positive or negative) do 
so consistently (appendix K) for the majority or all other indices validated, regardless of them relying on 
(significantly) different wavelengths. Similarly, medium or low prediction residuals observed for individual 
observations using distinct indices exhibit relatively comparable degrees of errors for other indices. The 
relative influence of even the largest residuals is particularly low for height, which is subsequently reflected in 
comparatively low overall (CV)RMSE values. Except for leaf Chl content, a largely overlapping vector of 
unique plots is recurrently observed to contribute relatively much to the (CV)RMSE, although the relative 
degree of influence varies for different traits. This observation logically follows from the strong univariate 
correlations between the measured values for these traits (r ≈ 0.8 <> 1.0, paragraph 7.2) and the biophysical 
interdependency between height, and biomass (≈ C content) (Tilly et al., 2014; Fernandez et al., 2009; 
Machado et al., 2002; Niklas & Enquist, 2001). More specifically, plots 40a, 40b, 104 and 116a were 
structurally allocated comparatively high positive residuals (i.e. over estimation of the response variable). In 
contrast, plots 41, 78, 91b and 117 were identified to exert the opposite effect relatively strongly (i.e. 
negative residuals/underestimation). The importance of these plots is reflected in significant lowering of the 
(CV)RMSE of predictions for the best performing indices when all eight plots are omitted; to 3.03% (-2.09%) 
for height, 14.43% (-6.35%) for fresh biomass, 15.49% (-6.11%) and to 13.68% (-7.13%) for C content. When 
extending the number of plots with either comparatively high or low residuals an even larger number of 
plots are consistently found to exert relatively similar influential behavior for prediction of these traits. 

9.2.1 Within plot heterogeneity and sampling density 
Acknowledging the recurrent identification of these plots as influential, for a variable number of 

indices and wavebands as well as different traits, it is suggested that the deviations may not be solely 
ascribed to (inconsistencies in) the spectral data. Consequently, a variety of different deliberations believed 
to be potentially causing such prediction errors are considered here. Listing the plots with the largest 
prediction errors and their type of treatment in between the previous and current growing season provided 
no indisputable results, indicated by each treatment type being represented approximately equally 
frequently. Instead, it is reasoned that the first and foremost explanation of inadequate predictions is related 
to within plot variability with respect to the distribution of biophysical and biochemical parameters on the 
one hand, and the density and location of in-situ samples on the other. For fresh biomass, C content and, N 
content to a lesser degree, a relatively consistent pattern was observed when predicted values of these traits 
were overlaid with the field measurements for crop height (figure 9.1). The latter measurements were taken 
on four locations, one in each plot’s sub quadrant (NW, SW, NE, SE). In contrast, the sampling for fresh 
biomass, C content and N content relied on a single location in one of the two northern sub quadrants in 
monoculture plots (NW or NE), or both northern quadrants in polyculture plots (NW for side a, NE for side 
b) (figure 5.2). It was found that for the negative residuals regarding prediction of any of the three traits, the 
sampling location was frequently located in the plot’s quadrant in which the (second) highest height was 
recorded. In contrast, for instances in which the largest positive residuals were noted the opposite is 
observed, i.e. samples were located in quadrants in which comparatively low height measurements were 
taken. Relatedly, the highest measured values for biomass were found in plots for which the samples were 
retrieved from comparatively elevated vegetation, and vice versa. Considering that plant height is positively 
correlated to traits such as biomass it is reasonably assumed that observed within plot variability of 
measured height partially equals similar within plot heterogeneity of biomass, of which the latter is not 
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reflected adequately in the calibration/validation data due to limited sampling of biomass (Tilly et al., 2014; 
Fernandez et al., 2009; Machado et al., 2002 Niklas & Enquist, 2001). Resultantly, it is argued here that 
residuals may be partially ascribed to measurements of biomass not adequately representing the remainder 
of the plot; i.e. plots in which low proportions of biomass were recorded are (severely) overestimated if 
comparatively higher height values, assumed to reflect increased biomass and cause different spectral 
behavior, were retrieved from the remainder of the plot and vice versa. 

This notion has been visualized below in figure 9.1. One should take note that the discussion 
presented above is not applicable to all of the 28 validation plots, i.e. for eight plots the opposite is 
observed. For an additional three plots no difference in height was recorded, but residuals were noted for 
these plots nonetheless. Furthermore, the severity of residuals is only (dis)proportionally related to the 
degree of observed height differences, i.e. relatively large differences in in situ measured height does not 
necessarily equal large prediction residuals, or and vice versa. Consequently, the potential cause discussed 
here may only explain some of the prediction (in)accuracies, but not all. 

Remarkably, a different selection of plots with comparatively large prediction residuals is identified 
for leaf Chl content, although some overlap with the previously mentioned traits is discernible. It is, however, 
reasoned that the higher sampling density of SPAD measurements has plausibly resulted in calibration of 
more representative and adequate models, while reducing the possibility of potential within plot variability to 
intrude and (significantly) affect the predictions. Relatedly, for leaf Chl content, the largest residuals (positive 
or negative) were located in monoculture plots. Polyculture plots exhibited comparatively limited prediction 
errors. This notion is important considering the relatively higher density of SPAD measurements in 
polyculture plots (four measurements per 4.5m2) compared to monoculture plots (four measurements per 
4.5m2). Consequently, these findings may be used to justify increasing of the sampling density for traits, to 
allow calibration and validation of more adequate models. For leaf Chl content, two plots in particular 
display relatively large residuals for the majority of indices and PLS models, namely 15 (underestimation) and 
55 (overestimation) (appendix K). No explanation, however, was found for these observations. 

9.2.2 Model adequacy and extreme values 
Although some exceptions are discernible, a weak pattern in which the largest negative residuals 

(underestimation) are observed for plots with relatively high (observed) leaf Chl content values and vice 
versa, is discernible for the best performing index (R2 ≈ 0.15). Although the plots for which this was identified 
differs, a similar and stronger pattern was also observed for height (R2 ≈ 0.23), fresh biomass (R2 ≈ 0.72), N 
content (R2 ≈ 0.59) and C content (R2 ≈ 0.92); i.e. overestimation of predicted values is generally more 
persistent and stronger for plots for plots in which a relatively lower measurement of the dependent variable 
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(trait) was recorded, and vice versa (appendix K). Given the relatively limited size of both the calibration and 
validation dataset, and the related limited range of potential y values, it is not unlikely that prediction errors 
become larger towards both ends of the range of in-situ measured trait values, due to a lower density of 
observations within a similar range of values during calibration. In addition, the range of y values covered by 
either the calibration and validation separately does not entirely overlap, with minimum and/or maximum 
values being (notably) lower or higher for some of the traits in the validation set (figure 7.1). Consequently, it 
is observed that the pattern of inadequate estimation of ‘extreme’ values is stronger for traits of which the 
range of values in the validation set is relatively larger than in calibration data. It is, however, complicated to 
assess the actual validity and influence of this deliberation, again due to the notions of sampling density and 
potential within plot variability. With respect to traits based on a single sample location (fresh biomass, N 
content, C content) in particular, extreme values recorded at one location may not necessarily equal the 
presence of similarly extreme values elsewhere throughout the plot. 

9.2.3 Radiometric inconsistencies 
Next, upon closer inspection of the raw HDC a region of abruptly changing reflectance values was 

identified in the south east of the study area (appendix A).  Even though this region is majorly represented 
by endive plots not included in this study, severe levels of spectral anomalies are also observed to coincide 
with plots 104, 116 and, to a lesser extent, plots 117 and 79. A similar but spatially less extensive area of 
distortion was identified in the far south western corner, intersecting with plot 12. A number of series of 
black pixels (NoData), albeit limited in size, are also discernible in a demarcated section of the HDC acquired 
during the second flight line. A single of these clumps of errored pixels is found to overlap with the ROI of an 
oat plot, namely plot 69a. It is remarkable that the radiometric diversions are most frequent and severe in a 
relatively localized area towards the end of the second flight line. It cannot be indisputably precluded what is 
causing these radiometric inconsistencies, although abrupt and temporal in-flight distortions are considered 
a plausible explanation acknowledging the relative overall susceptibility of low-weight UAV platforms and the 
hyperspectral sensor’s push broom technology being prone to the striping effect (Hardin & Jensen, 2015; 
Gómez-Chova et al., 2008). It was identified that each of these (partially) radiometrically distorted plots 
exerts comparatively large residuals with respect to the prediction of all traits, except for leaf Chl content, to 
different extents. Considering the consistency of this pattern it is argued that, in addition to the deliberations 
mentioned above, radiometric inconsistencies may be reasonably believed to negatively influence the 
predictions to some degree as well. Alternatively, such anomalies may be related to the opening angle of the 
sensor rendering different reflectance values (i.e. vignetting) and associated estimates for plots captured 
under nadir or oblique viewing angles (Retzlaff et al., 2014; Lelong et al., 2008). 

9.3 Evaluating within-plot variability of predictions 
The above mentioned notion of possible within-plot variability in the distribution of biophysical or 

biochemical crop traits was further explored using prediction maps. Based on the lowest RMSE, the best 
performing (existing or optimized) index, and the associated mathematical relationship, were utilized to 
generate a prediction map for each trait separately (figure 10.2 and appendix L). Subsequently, the variability 
or within-plot heterogeneity of predictions was assessed through evaluation of the coefficient of variation 
(CV) of predicted values within the ROIs only. It is observed that the largest intra-plot variability of 
predictions is ascribed to leaf fresh biomass (CVmean = 0.35). In contrast, predictions of height are prone to 
the least amount of variation (CVmean = 0.03), followed by leaf Chl content (CVmean = 0.16), N content (CVmean 
= 0.18) and C content (CVmean = 0.20).  
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Some individual plots presented with large residuals for the prediction of observed response 
variables (appendix K) do indeed overlap with plots exhibiting relatively substantial variability in within plot 
predictions. Nonetheless, no indisputable correlations between the two variables could be established for 
any of the traits, indicated by poor or even contradicting relationships between the two variables for some 
other plots. Considering the possible presence of actual within plot heterogeneity of trait parameters, 
however, such vast variability does not necessarily translate into prediction errors of similar strength if the 
sample(s) are located at ‘average’ locations with respect to (significant) anomalies elsewhere within the plot. 
With respect to the variation in plot specific in-situ SPAD measurements, a positive relationship was 
observed with the within-plot variability of leaf Chl content predictions (r ≈ 0.35), i.e. larger variations in plot 
specific SPAD measurements were conducted in plots with relatively larger variations in predictions in the 
prediction maps, and vice versa. Although the correlation is relatively weak, it may at least partially lay the 
foundations for the assumption that within plot variability in predictions may be caused by the actual 
distribution of biophysical and/or biochemical plant properties not being homogenous within plots after all. 

Even though an incontestable association between within plot variation of predictions and plot 
specific prediction residuals, potentially confirming the implications of within plot heterogeneity for 
(inadequate) model predictions, could not be established, other valuable comments may be distilled from 
the prediction maps. Upon visual inspection of the prediction maps it is identified that variabilities follow 
non-uniform patterns, displaying notable heterogeneity between western and eastern sides of plots and/or 
deviations along the norther/western direction. For leaf Chl content, height and N content, variability 
between western and eastern plot sides is particularly strong for polyculture plots and, as is to be 
anticipated, less for monoculture cultivars. The observed variability follows a relatively gradual pattern over 
individual plots, showing only limitedly changing values between adjacent pixels. Except for C and leaf Chl 
content, all inter-trait correlations of variability in predictions are positive, i.e. larger deviations in predictions 
for one trait are reflected in relatively large predictive variability for other traits, although their strength is 
vastly deviating. The strongest correlations are, not surprisingly, observed between fresh biomass and C 
content (r ≈ 0.8), followed by N content and fresh biomass/C content (r ≈ 0.6), and height/fresh biomass (r 
≈ 0.4) and height/C content (r ≈ 0.25). Again, the pattern for leaf Chl content is slightly different, indicated 
by relatively low correlations with C content, fresh biomass, height and N content (r ≈ -0.03 <> 0.14). These 
figures largely follow the variations in strength of univariate correlations between field measurements of trait 
mentioned in paragraph 7.2 and appendix E. Subsequently, considering variation in single plots only, the 
highest variations are again found for fresh biomass (CVmax = 0.49), followed by leaf Chl content (CVmax = 
0.43), N content (CVmax = 0.37), C content (CVmax = 0.28) and height (CVmax = 0.07).  

Particularly interesting is the relationship between the average within-plot variability of predictions in 
prediction maps, the total (CV)RMSE of resultant predictions and the relative differences in sampling density 
for different traits. Leaf Chl content is observed to exhibit a comparable degree of variability (CVmean = 0.16) 
in the prediction maps compared to both N (CVmean = 0.18) and C content (CVmean = 0.20). The maximum 
observed variability is even higher for leaf Chl content (CVmax = 0.43) than for N (CVmax = 0.37) and C content 
(CVmax = 0.28). The best performing index for each trait, however, displayed a notably higher predictive 
accuracy for leaf Chl content ((CV)RMSEmin = 14.5%) compared to C/N content ((CV)RMSEmin = 20.0% <> 
21.0%), despite of the similar degrees of variability in predictions. Besides, the lowest degree of within plot 
prediction variabilities are found for height (CVmean = 0.03) and leaf Chl content, happening to be traits for 
which field samples were conducted at a higher density. Both deliberations are believed to further 
substantiate the reasonability of assuming that within plot heterogeneity of biophysical and biochemical crop 
traits is persistent within (some) plots. This variability may be more adequately modeled and predicted for 
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traits relying on a multitude of different measurement locations (i.e. leaf Chl content and height) compared 
to those based on only a single sampling location (i.e. fresh biomass, N content and C content). 

Despite of these deliberations, it remains both challenging and questionable to assume or quantify 
persistent and varying levels of heterogeneity in the distribution of biophysical and biochemical crop traits 
within individual plots. Considering the rather limitedly convincing and sometimes contradicting findings one 
cannot evidently ascertain what the various degrees of observed variation in the prediction maps or 
residuals of prediction models are caused by. On the one hand they may possibly result from anomalies in 
the spectral data incorrectly matching/representing the distribution of biophysical or biochemical properties, 
the latter being ultimately homogeneous after all. In contrast, the option that the distribution of these 
properties is indeed variable to different degrees, while being only partially respected and reflected by the 
various in-situ sampling densities (resulting in calibration and validation of inadequate and sub-optimal 
relations), remains another possible explanation at the other end of the spectrum. Both are likely and 
reasonable explanations for which some degree of supporting evidence was provided in this report, such as 
the notion of various levels of radiometric errors examined in paragraph 9.2.3, as well as the persistence of 
vast and demonstrated highly influential physical within plot heterogeneity mentioned in paragraph 7.3 and 
appendix F. Additional research is required to assess the likelihood, validity and magnitude of these causes 
with respect to their associated implications for the calibration of spectral models and the predictive abilities 
thereof.  

9.4 Discrimination of traits by different treatments 
At last, the ability to distinguish differences in traits with respect to the different treatments plots 

have undergone will be presented below. This is in line with the agronomic hypothesis and associated 
ambition of the overarching field experiment where in this study has been conducted. The former states that 
historical vegetation and intermediate treatments of cultivars, and the legacies thereof, affect the 
development and associated traits of vegetation planted hereafter. Consequently, the question remains to 
which extent quantitative differences observed for different plots and their historical treatment through field 
sampling may be distilled from remotely sensed data acquired by an UAV. Figure 9.2 displays the mean and 
standard deviation values of observed and predicted traits, according to the best performing model for each 
trait, for unique treatments in the validation set. 

 It is suggested that the majority of traits can be reasonably discriminated with respect to the 
different treatments, albeit to varying degrees. The discrimination is most successful and significant for 
height and leaf Chl content. Relative and, to a lesser extent, absolute quantitative differences follow a near 
perfectly aligning pattern across the different treatments and show comparatively low errors (table 9.2). 
Except for discriminating between Rs and Rs+Vs, absolute and relative differentiating between treatments is 
also relatively successful for N content. Predicted values for the former regimes have interchanged notably 
compared to in situ measurements, hereby exerting vast leverage on lowering of the CVRMSE. Compared to 
the other treatments and due to the removal of some plots, however, Rs and Rs+Vs are significantly 
underrepresented. The discrimination for fresh biomass is less conclusive, indicated by a lower level of 
significance and larger errors, in agreement with the overall prediction error mentioned in paragraph 9.1. 
Although the treatments with the lowest measured biomass (Fa, Lp, Lp+Tr) are successfully distinguished 
from remaining cultivars for which higher quantities were observed, the measured dissimilarities within the 
latter group are less explicitly and partially contradictory modelled by predictions. It is argued that this 
follows from the demonstrated inability of models to predict more extreme (low/high) values of biomass 
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(paragraph 9.2.2), resulting in levelling and reduced variation in predicted values compared to observations. 
The discrimination for C content can hardly be considered successful, relatively nor absolutely. 

 

 

 

 

 
Figure 9.2: Mean and standard deviations of observed and predicted trait values per treatment type for validation plots 
(n=28). The statistics relate to statistical interference of the means of observed and predicted values. (Fa = fallowed, Lp 
= Lolium perenne, Rs = Rapharus sativa, Tr = Trifolium repens, Vs = Vicia sativa, CVRMSE = Coefficient of Variation of 
the Root Mean Square Error, R2 = Coefficient of Determination, Sign. lvl. = Significance level). 
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9.5 Putting the models prediction capability into perspective 
As could be distilled from the deliberations described in the preceding chapters and those 

presented in the succeeding reflective chapter, the interpretation of (CV)RMSE and R2 values found during 
validation is a far from straight-forward process. Below, the findings of the best performing indices are 
elaborated on with respect to those in a selection of alternative studies, relating to one or more traits 
incorporated into this research, as a means for comparison and perspective.  

Vegetative studies oriented at estimating heights of crops are relatively scarce, although a larger 
number of studies incorporate height as an (potential) explanatory variable for other traits (Freeman et al., 
2007; Lisiwska et al., 2006). Nonetheless, the findings for height displayed amongst the highest values for R2 

(R2
VI ≈ 0.79, R2

PLS ≈ 0.78) and lowest prediction inaccuracies (CV ≈ 5.12%) for all traits, far exceeding the 
coefficient of determination of estimating height of corn and wheat crops using narrow band NDVI (0.31 and 
0.34, resp.) and optimized four-band models (0.66 and 0.46, resp.) by Thenkabail et al. (2000) and Xavier et 
al. (2006), respectively. Besides, these findings were based solely on one-sided regression and excluded from 
independent validation. In contrast, the coefficients of determination were consistently lower for oats than 
those demonstrated by (Anderson et al., 2004) for estimating height of corn crops using visible, NIR and/or 
SWIR aerial and satellite data (R2 = >0.93). The relative prediction error demonstrated here for oats, 
however, was significantly lower (CV = >11%). Higher R2 values were also found for estimation of forest 
canopy height (0.9) and height of barley crops (0.8) using aerial (St-Onge & Achaichia, 2001) and tractor-
mounted (Tilly et al., 2014) laser scanning equipment, respectively. 

In comparison to height, significantly lower maximum coefficients of determination (R2
VI ≈ <0.56, 

R2
PLS ≈ 0.56) and larger prediction inaccuracies (CV ≈ 21.0%) were observed during validation of fresh 

biomass predictions. Linear regression of the best performing narrow band NDV indices with measured 
biomass in various growth stages of winter wheat (maturation stage was excluded) yielded notably higher R2 
values (≈ >0.75) according to Hansen & Schjoerring (2003). In agreement with the same study, PLS 
regression improved prediction accuracy although differences remained substantial. The same notion was 
observed by Cho et al. (2007) for grass/herbs, although validated prediction errors for both optimized NDV 
indices (34%) and PLS regressions (26%) were higher. Optimized four band models (R2 = 0.78) and narrow 
band NDV indices (R2 = 0.71) also explained more of the variation in biomass of corn crops in a study by 
Thenkabail (2000). Higher R2 values were also found by Heiskanen (2006) and Mutanga & Skidmore for 
estimating biomass of mountain birch forests (≈0.85) and dense grass canopies (≈0.8), respectively. The 
relative prediction error of validation found by the former study (CV = 41%), however, was notably lower for 
oats. The prediction accuracy for biomass estimation of oats was also higher than was observed for rice in 
both tillering and elongation phases (CV ≈ 33%), based on three or four band OMNBR models using (raw 
and first derivatives of) ground measured reflectance’s (Gnyp, 2014). Construction of a linear model 
incorporating only CSM measurements through PLS regression yielded the lowest prediction inaccuracies 
and highest coefficients of determination (table 9.1). This latter finding underlines those of Tilly et al. (2014) 
with respect to demonstrating the relevance of laser-scanned barley crop height for predicting fresh (R2 = 
0.8) and dry biomass (R2 = 0.77) thereof. 

Validation for estimating N content yielded relatively varied results, ranging from lowest R2 values 
and higher prediction errors for existing indices to enhanced performance for new optimized indices, the 
simple difference index in particular (R2

VI ≈ 0.68, CV ≈ 21.6%). For oats at jointing and heading stage, Zhao 
et al. (2014) found that a first derivative of reflectance based index and the red-edge position, in addition to 
some raw reflectance ratio indices, yielded the highest coefficients of determination (R2 ≈ 0.78 <> 0.94). 
Higher values for R2 with respect to the prediction of N content in grassland and potato fields were also 
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found by Clevers & Kooistra (2012) using a variety of indices, although the differences are less elaborate. 
Albeit (significantly) higher than the values found in this study, no validation of the relationships was 
conducted in either of the studies, thereby disallowing comparison of the actual predictive capabilities of 
resultant models. The R2 values for all tested indices and models were also outperformed by PLS regression 
for estimating N content in rice plants (0.84) by Nguyen & Lee (2006), although the predictions for oats were 
shown to exhibit a better accuracy (25.6%). The similar notion applies to efforts of Li et al. (2014) to estimate 
N content in maize crops using ground reflectance measurements, displaying even worse prediction 
accuracies during validation (>31%). For estimating N content in wheat crops, employing both optimized 
two-band indices and PLS modelling (R2 ≈ 0.7), largely aligning results were presented by Hansen & 
Schjoerring (2003). Similar to this study, prediction accuracies found (CV = 22%) are majorly overlapping and 
PLS regression did not yield (notable) improvements in the prediction of N content. 

As was to be anticipated due to lower univariate VIS-NIR correlations and limited range of values in 
the calibration dataset, validation of models for prediction of C content within oats were found to exhibit the 
lowest performance (R2

VI ≈ <0.52, R2
PLS ≈ 0.43, CV ≈ 21%). This (in)directly followed from sincere 

discrepancies observed between univariate correlations over wavebands in both the calibration and 
validation set. These results, however, are also not entirely inexplicable considering that sensors are still 
unable to directly measure carbon in plant biomass and estimations therefore remain reliant on (sub 
optimal) proxies as chlorophyll content, dry matter/biomass and production and assimilation rates of carbon 
(Brewer et al., 2011; Tucker et al., 1981). Tucker et al. (1981) found strong correlations (R2 > 0.8) between 
ground measured near-infrared and red spectra oriented SR and NDVI indices and accumulation of dry 
matter in winter wheat. This relationship, however, was only persistent during the stem elongation, booting 
and anthesis stage. In the final month prior to harvesting this correlation rapidly decreased, reaching 
comparable or even lower values for R2 (≈ 0.0 <> 0.6) than observed here for oats. Peng et al. (2011) and 
Wu et al. (2009) assessed the ability of the product of (chlorophyll oriented) spectral indices with data on 
incoming photosynthetically active radiation (PAR) to assess production of carbon by maize and wheat 
crops, respectively. Highly varying coefficients of determination were found for, ranging between 0.45 and 
0.75 for wheat crops to as high as 0.82-0.93 for maize. Validation on maize crops across multiple years, 
besides, exhibited a higher accuracy for prediction of carbon prediction (CV = 14-20%) than was observed 
for the prediction of carbon itself in oats (Peng et al., 2011). Alternative approaches exploited the association 
between fPAR, i.e. the fraction of Photosynthetically Active Radiation absorbed by a vegetation’s canopy, 
and carbon stocks in plants. Consequently, based on satellite spectral data, Namayanga (2002) 
demonstrated relatively poor performance of an NDVI/fPAR oriented index to explain the variation (R2 ≈ 
0.38) of in-situ measurements of carbon in various woody vegetation types. Hall et al. (1992) found stronger 
correlations between spectral measurements incorporated into a near-infrared/visible NDVI index and 
measured fPAR in a grassland field experiment, although multispectral sensor measurements by helicopter 
(R2 = -0.7) yielded exhibited performance than ground measurements R2 = 0.57).  

After height, prediction of leaf Chl content in the oat crops studied demonstrated the strongest 
correlation and highest prediction, particularly for the existing REP index accuracies (R2

VI ≈ <0.79, CV ≈ 
14.5%). In accordance with the findings of Hansen & Schjoerring (2003), PLS regression of including all 
individual spectra did not improve performance of predictions (R2

PLS ≈ 0.64, CV ≈ 22%). The results for the 
REP and MTCI indices, as well as some of the best performing new indices, largely align with those found for 
alternative optimized indices by Yu et al. (2012) with respect to predicting of chlorophyll in leafs of various 
species of barley crops (R2 ≈ 0.74). The same applies to Sims & Gamon (2002), who demonstrated 
comparable model performance to predict leaf chlorophyll content in various types of vegetation with 
different leaf structures, indicated by R2 values ranging from 0.61 to 0.83 for different red and near-infrared 
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based SR indices. None of these studies, however, included independent validation, rendering comparison of 
relative prediction (in)accuracies impossible. Both calibration and validation was conducted by Datt (1998) 
for estimation of chlorophyll content in eucalyptus leaves using a selection of NDVI and SR indices. During 
validation, the best performing model yielded a coefficient of determination of 0.83, hereby slightly 
outperforming the best model found for oats (SEP = 0.0068 mg/cm2, (CV)RMSE not provided). A number of 
existing indices were optimized for the estimation of leaf chlorophyll content with the PROSPECT model by 
Wu et al. (2008). Optimization resulted in notable improvement of these models, displaying R2 values 
ranging from 0.88 to 0.94 and from 0.67 to 0.76 when being validated on Hyperion spectral data for wheat 
and corn crops, respectively. An optimized and soil adjusted vegetation index (TCARI/OSAVI) calibrated 
through modelling and validated using airborne hyperspectral data on corn crops by Haboudane et al. 
(2002) yielded similar results, indicated by an R2 of 0.8. In a greenhouse experiment incorporating various 
crop species and ground spectroradiometer measurements, an optimized NDVI index generated even 
higher R2 value (≈ 0.87) compared to the findings presented here. The relative prediction error (CV ≈ 22%), 
however, was higher compared to what was found for chlorophyll in leafs of oat crops 
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10. Discussion and directions for future research 
Both UAV based remote sensing and, to a lesser extent, precision agriculture are two fields of 

expertise that are growingly but still limitedly practiced. Likewise, research into each is still not voluminous or 
self-evident, although it is gradually substantiating in recent years. Both fields are believed to exhibit 
substantial opportunities with respect to the future development of the other, for which the findings of this 
study represent just a mere example. In this chapter, the main findings of this research are reflected upon 
with respect to their strengths and limitations. Consequently, it is anticipated that repeated, continued and 
auxiliary research into (partially) overlapping and novel directions, respectively, are called for in the years to 
come. Below, following from the discussion itself or other commentary referred to throughout this report, a 
list of suggestions for these directions is presented. 

10.1 Accuracy and acceptability of plant trait predictions 
At the very beginning of this research it was questioned to which extent (hyperspectral) optical 

sensors on board of an UAV platform are able to retrieve quantified measures of various biophysical and 
biochemical crop attributes. After an extensive process of spectral data calibration and validation mixed 
results, indicating varied levels of prediction (in)accuracies, have been presented in the previous chapters. 
Prediction accuracies of the best performing models range from 5% for height to approximately 21% for 
fresh biomass, C content and N content, followed by leaf Chl content at 15% (figure 10.1). Subsequently, 
precision of predictions were similarly diverse, varying from highest R2 values for height and leaf Chl content 
(0.80) to lowest values recorded for C content (R2 = 0.52). Calibration of new indices using an optimization 
algorithm enhanced the prediction accuracy and precision for all traits other than height and leaf Chl 
content. Partial least square regression modelling further increased prediction accuracies only for fresh 
biomass. Comparison of these findings with outcomes presented in similarly oriented studies in paragraph 
9.4 displayed blended results, indicated by prediction capabilities being similar, better or worse 

The results for this specific study, however, should ultimately be considered and evaluated with 
respect to their applicability and value for the Wageningen field-experiment for which the study was initially 
executed. Consequently, a meeting was convened with the responsible person of the field-experiment itself 
to discuss and evaluate the outcomes presented here with respect to their (non-) applicability to the 
experiment itself. It is argued that there likely exist different degrees of variability in the distribution of various 
plant parameters within individual plots. Resultantly, it is not implausible that in-situ measurements for these 
traits exhibit comparable or even larger deviations with respect to their (non-) representability of the entirety 
of plots to different degrees. This renders destructive sampling as a similar or worse proxy, respectively. The 
plausibility of such plot heterogeneity is also discernible within the in-situ measurements for traits based on 
more than one sampling location (i.e. crop height and leaf Chl content). The within plot variation (CV) of field 
measurements for these two traits suggests that the assumption of complete within plot homogeneity does 
not entirely hold for all plots, to different degrees (height: CVmax = 6.04%, CVmean = 3.07% / leaf Chl content: 
CVmax = 20.0% CVmean = 9.0%). Consequently, trait prediction related deviations such as plot specific 
residuals of predictions and pixel-based within plot variability of predicted values (i.e. in prediction maps) 
may not be solely ascribed to inadequate and/or incorrect data acquisition by the UAV and its sensor, and 
potential limitations thereof. Instead, it is argued that they may at least partially result from actual 
heterogeneity in the distribution of such biophysical and biochemical crop attributes in the plots itself not 
being fully reflected in the field samples after all. Therefore, this notion is reasoned to be particularly valid for 
plant traits which were measured in the field at a single location only (i.e. fresh biomass, nitrogen (N) content 
and carbon (C) content) and for which potential and reasonably credible within plot variability is not 
adequately and comparatively less well accounted for (paragraph 10.3).  
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Additional quantitative and qualitative factors that one should also consider in this practical context 
are auxiliary benefits of UAV crop monitoring campaigns with respect to, for example, enabling of repeated 
crop inspection, reduced investments of time, labor and possibly finances, as well as avoidance of the need 
to require in situ samples in a destructive and environmentally harmful manner. It is subsequently argued 
that is worth considering that the potential, albeit not indisputably endorsed/ascertained, loss in accuracy 
invoked by crop monitoring by means of an UAV compared to field samples may be taken for granted 
considering the assumed advantages such campaigns offer to other practicalities of interest. The diversified 
and both quantitative and qualitative nature of these decisive factors, renders it both complicated and 
questionable to pronounce a definitive appraisal, although these ingoing efforts may be considered with 
respect to practicing monitoring studies such as the field-experiment covered here. 

Overall it is argued that the findings presented in this report are promising at least for the majority 
or all traits studied with respect to prediction of their quantities and discrimination thereof across different 
cultivar treatments. Following from the upcoming paragraphs, there are some influential factors, not all 
being directly ascribable to (in)capabilities provided by the UAV platform and its associated sensor(s) (e.g. 
sampling procedures), that have potentially impacted the results. Hence it is believed that future research 
and a more elaborate research setup, incorporating at least some of the suggestions following hereafter, 
may further improve the accuracy and precision of predicting various crop traits under study by means of 
remotely sensed reflectance. 

 

Figure 10.1: Relative predictions errors (CVRMSE’s) in percentages (%) of the best performing indices/PLS models with 
regard to predicting each trait. 

10.2 General applicability of findings 
As was to be reasonably anticipated, the research presented here found highly varied and sub-

optimal relationships between in-situ field measurements and reflectance data captured by the UAV 
platform. A multitude of reasons lay at the foundation of these findings, some of which may be directly 
ascribable to the capabilities and limitations of the platform and sensor(s) used, while some others are not. In 
this respect, factors such as platform and sensor characteristics/limitations, the viewing geometry, growth 
stage of crops, differentiation of plant architecture, within-plot trait heterogeneity thereof, sampling density, 
sampling date(s) sampling errors, among others, are worth mentioning. The data used in this study was only 
acquired at a single moment in time at a distinct crop development stage, for one location and crop species, 
using the same viewing angle. Given the current research setup, however, it is impossible to ascribe a certain 
influence or weight to (some of) these factors with respect to the extent to which they impact(ed) the 
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outcomes. In short, more extensive research is recommended to improve the precision and accuracy of the 
models prior to their practical application. 

For example, it is evident that specific wavelengths or indices for estimating traits such as biomass, 
N, yield and chlorophyll change with growth stage of crops, sampling dates and differentiation of plant 
structures (e.g. planophile vs. erectophile), among other factors (Freeman et al., 2007; Osborne et al., 2002). 
The notion related to the developmental stage of crops is discussed in more detail later on this chapter 
(paragraph 10.4). Therefore, the relationships found in this research are not necessarily suitable when 
applied at other moments during the season, or to other crop types. Additional research is both required 
and recommended to explore whether the relationships with individual spectra and spectral indices are valid 
for other phases of crop development as the composition and architecture of vegetation changes, although 
previous studies suggest this is not (necessarily) the case (e.g. Zhao et al., 2014; Freeman et al., 2007; Xavier 
et al., 2006; Haboudane et al., 2004; Scotford & Miller, 2004; Osborne et al., 2002; Yang & Miller, 1985). 
Ideally, future research should comprise of repeated intra seasonal field measurements and UAV campaigns, 
not only to evaluate the validity and robustness of the relationships found here, but rather to explore 
whether different relations at alternative growth stages exhibit other (better) prediction capabilities. Similarly, 
Retzlaff et al. (2014) assessed the ability of a UAV based multispectral system to quantify different plant traits, 
and the importance of the platform/sensor’s viewing angle in particular. It was demonstrated that a 45o 
oblique viewing direction significantly enhanced discrimination and quantification abilities (of soil modalities 
and leaf Chl content) using spectral data, due to the visibility of a larger fraction of canopy in angled 
imagery. Consequently, collection of the spectral data under different viewing angles could have been 
conducted to assess the importance of this variable in (in)accurately predicting distinct plant traits. Even 
though a brief examination (not shown) of the location of plots exhibiting relatively large prediction errors 
and their associated (angled) orientation towards the sensor yielded no indisputable patterns as such, more 
elaborate exploration is required to precisely weigh out and quantify such external influences. Factors 
relating to field sampling are also argued to be valid and of influence for this particular study, although this 
notion will be discussed separately in the following paragraph. 

Considering the practical applicability of findings to precision agriculture (PA) it is worth mentioning 
that the latter is generally stated to comprise of four overarching phases (paragraph 3.3.1). This research, 
however, solely covered the second phase, relating to mapping in-field variability, and parts of the first 
phase (data collection) during data pre-processing. Ideally, regarding the actual practical implications of this 
research’ findings to practitioners of precision agriculture, the latter two stages (decision-making and 
variably adjusting crop management) should also be considered prior to implementation. As is stated by 
Rango et al. (2009), operationalization and practicing of UAV based agricultural monitoring requires 
comprehensive and readily available data analysis and interpretation procedures to end users. Regardless of 
anticipated perks often ascribed to (UAV based) remote sensing for agricultural monitoring, farmers still 
frequently lack the appropriate knowledge and practical skills to effectively utilize such technologies and 
interpret the data it brings about (Seelan et al., 2003). Such issues relating to image interpretation, data 
extraction and integration of expert data, among others, are also stated to limit the effective implementation 
of remote sensing in precision agriculture according to Zhang & Kovacs (2012). It is believed that the output 
as presented in this report may be off a level and density too complicated to be effectively comprehended 
and subsequently put in practice by practitioners in the field. Rather than a variety of different prediction 
maps, translation of such findings, possibly combined with external (i.e. climatic or ground sensor) data, into 
(nutrient) prescription, task, or variable rate application maps may better align with the specific needs of 
practitioners. Relatedly, the time-span over which the research was conducted, and its results retrieved, is off 
a too coarse temporal resolution to allow adequate adjusting of intervening practices in a timely manner. 

84 
 



  

Consequently, it is argued to be similarly important to take into consideration how findings of studies as 
these can be effectively delivered to those in need, in a timely and user-friendly manner, hereby strictly 
aligning with the specific needs and (in)capabilities of its eventual (end) users. Even though these 
deliberations were clearly and purposefully not the focal point of this study, it is argued that auxiliary 
research into practical implementation of this technology is worthwhile to enhance its eventual success and 
durability thereof. 

At last, only univariate relations between wavebands, indices and PLS models were established in 
this study to evaluate their ability to predict different plant parameters. According to Mulla (2013), however, 
there is a growing demand for the generation of more all-embracing models that are able to predict 
quantifiable measures for different plant traits simultaneously at once. Subsequently, exploration of such 
multivariate models with multiple depending trait (y) variables is recommended from both a scientific and 
application perspective. Relatedly, the performance of such models should be effectively compared to 
univariate models presented in this and many other studies. 

10.3 In-situ sampling  
Monitoring of vegetation properties and calibration of models for such purposes is ultimately 

constrained by both the quality and quantity of ground truth data (Michaelsen et. al., 1994, p. 673). The field 
measurements of different traits were conducted on various spatial scales or densities that, for some traits, 
were further varied for monoculture and polyculture plots (figure 5.2). For example, biomass measurements 
(including measurements of N and C), were based on a single sample for both monoculture and polyculture 
plots. Besides, the samples were taken by means of a 25x25cm quadrant, that was put in a plot’s (left or 
right) sub quadrant representing ¼ of a monoculture plots area, and ½ of polyculture plots. In contrast, a 
single height measurement was taken from each plot’s sub quadrant, regardless of monoculture or 
polyculture plots. Average measured height for monoculture plots is thus based on four measurements, and 
only on two measurements for polyculture plots, although the surface area for each plot type is varied 
proportionally to this. Furthermore four SPAD readings (for leaf Chl content measures) were acquired from 
each plot, regardless of plot type. Consequently, the SPAD readings have a denser spatial resolution for 
polyculture plots (4 per 4.5m2) than for monoculture plots (4 per 9m2), due the same number of readings 
within a smaller area. Spectral reflectance is based on an average over the entire plot (minus the 30cm edge 
effect), or ½ plots for polyculture plots. Subsequently, the calibrated and validated models are based on the 
latter (mean reflectance), and (non-)averaged field samples for a distinct trait. This is where potential 
deviations may occur. Field measurements may in fact be representative for the specific scale at which they 
were conducted but, due to potentially and observable within plot heterogeneity, they may not necessarily 
be extrapolated to the remainder of the plot. 

Regardless of the actual adequacy of indices and their associated relationship to one or more traits 
as were calibrated, various degrees of within plot variability in measured reflectance is observed over 
separate wavebands. Consequently, this heterogeneity is also discernible in the various index and trait 
prediction maps, which are both based on the spectral data at unique wavelengths. On the one hand, these 
anomalies might be the results of certain technical limitations imposed by the distinct sensor/platform 
combination used here (i.e. signal-to-noise errors). Such anomalies might invoke variability of reflectance 
measurements within plots that may instead be homogenous with respect to the spatial distribution of 
various biophysical and/or biochemical vegetation traits, resulting in inadequate relationships during 
calibration. On the other hand, however, the distribution of traits within plots may not be homogeneous 
after all, hereby (partially) explaining the observed variability for reflectance values. In both situations, these 
notions invoke inadequate and incorrect calibration and validation of relationships between plot averaged 

85 
 



  

spectra and in-situ trait measurements relating to only one or a limited number of demarcated locations. 
The latter notion with respect to within plot heterogeneity cannot be indisputably confirmed to persist, other 
than the clearly visible physical variability observed for some plots prior to removal thereof (paragraph 7.3, 
appendix F). It has been regularly elaborated on within this report, however, that a certain degree of within 
plot differences and the associated implications for calibration and validation procedures can be reasonably 
assumed to be present.  

With respect to sampling procedures it is worth mentioning that the eventual UAV flight campaign 
was initially envisaged relatively ad-hoc, being more of a spontaneously pronounced opportunity rather than 
a well thought-out and extensively prepared operation in which both the experiment and UAV campaign 
were strictly aligned well in advance. Consequently, it is argued that studies such as these may notably 
benefit from a different, extensive and more homogenous density of in-situ sampling. Alternatively, one may 
consider making sample areas more easily recognizable from the aerial data through placement of markers 
to allow more precise alignment of the area from which spectra and field measurements are retrieved, as 
was already mentioned in paragraph 6.2.4. A more extensive sampling density, on the one hand, likely 
enhances the calibration and validation of relationships that are more representative of the area from which 
the spectral data is retrieved. On the other hand, a more homogenous sampling density enables a more 
adequate evaluation and sensible intra-comparison of the predictive accuracy for different plant traits.  

10.4 Implications of the developmental stage of crops 
The development stage of the oat crops at the time of field and data acquisition should be 

mentioned, for a variety of reasons. Both the field and UAV data acquisition campaigns were conducted 
relatively late in the crop’s growing season, only a few weeks prior to harvesting when the crops were at a 
mature stage. The near simultaneous acquisition of field and UAV data renders the research rather relevant 
considering the field experiment specifically, enabling evaluation of the extent to which the aerial data can 
be effectively employed to estimate attributes of crops that are otherwise retrieved destructively in the field 
itself. 

This notion, however, is increasingly important from both the perspective of UAV based crop 
monitoring for application in precision agriculture, as well as the implications for spectral analysis. Regarding 
the application for precision agriculture practices, the studying of relatively mature crops may be considered 
less appropriate or valuable than of crops in a preceding growth stage. This deliberation is especially valid 
considering the assumed advantage of UAV based crop monitoring for enhancing retrieval of (near-) real 
time parameters on the status of crops and the associated ability to adjust crop management practices in a 
timely manner (Anderson & Gaston, 2013; Mulla, 2013; Rango et al., 2009; Dobermann et al., 2004). The 
oats crops studied are in such a full-grown stage shortly prior to the actual harvesting thereof that 
application of additional nutrients to influence future development will be rather ineffective. To raise 
effectiveness of such intervening practices, the predictions of traits should ideally be based on spectral data 
acquired at a preceding critical stage to make adjustment of practices more worthwhile. Unless the 
calibrated models and their associated accuracy evaluated in this research are comparatively effective during 
other growth stages, which is questionable (Freeman et al., 2007; Osborne et al., 2002), analysis of the ability 
to predict crop traits during a critical foregoing development stage may be more relevant from the 
viewpoint of farming practices.  

With respect to the implications for spectral analysis, it should be mentioned that the biochemistry 
within crops is consistently changing throughout the growing season, up to and including the final stage. 
Nitrogen, for example, is known to be highly mobile and being constantly relocated between different plant 
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components based on absorption and desorption in soils and the atmosphere. The presence of N within 
wheat crops was found to be particularly high during the early vegetative phase, after which it was 
structurally reduced throughout succeeding phases. As vegetation reaches the maturity stage, nitrogen was 
demonstrated to be increasingly relocated from leaves to grains and from stems and soils to a lesser extent 
(Dixon, 2007; Peinetti et al., 2001; Harper et al., 1960). Resultantly, Zhao et al. (2014) and Freeman et al. 
(2007) found that N content in oats and corn, respectively, could be more accurately predicted at early 
growth stages than during later stages. Relatedly, deviations in N content may only be effectively utilized to 
discriminate crop status given that all crops in different plots are in the same growth stage. This follows from 
N content being the product of N concentration and dry biomass, both variables are prone to variations 
across different developmental phases. Assessing whether the oat crops in different plots are indeed aligning 
with respect to their vegetative growth process, however, is challenging as available N and soil conditions 
are potentially varied for each plot resulting from historical treatments of such plots (Chen et al., 2010). The 
results, however, suggest that a distinction of varied levels of N content across cultivars with different 
treatments can be established with a reasonable precision and accuracy (figure 9.2). The same notion of 
remobilization at later (mature) growth stages also applies to biomass which, during senescence, is 
increasingly transported to seeds of plants to be available during the next generation (Murphy & Murray, 
2003). As the seeds of crops are filled, turning brown when water is subdued, remote estimation of biomass 
is prone to larger inaccuracies than is the case for earlier developmental stages (Yang & Miller, 1985). 
Relatedly, chlorophylls in a vegetation’s canopy accumulate throughout the season, after which it is gradually 
reduced during reproductive and senescing phases (Ciganda et al., 2009). Therefore, canopy reflectance and 
the associated correlation with chlorophyll content were found to be highly varied both in strength and 
direction across different growing stages (Sun et al., 2010). Senescing leaves gradually reveal a 
yellowish/brownish appearance as chlorophyll content within these leaves decays and energy is increasingly 
relocated to grains, hereby exposing other plant pigments already priory present, such as carotenoids 
(Murphy & Murray, 2003) (figure 10.2). The latter were found to significantly influence, and therefore 
potentially distort, adequate discrimination and quantification of chlorophylls at specific wavelengths by 
Gitelson (2012). It is besides argued that the resultant loss of photosynthetic capacity as vegetation matures 
may partially explain the reduced importance of visible (particularly red) wavelengths in existing and new 
indices, as absorption at these wavelengths may become less pronounced than is the case for preceding 
growth stages (Gitelson, 2012; Murphy & Murray, 2003). Significant implications of the development stage 
were also demonstrated by Xavier et al. (2006) and Scotford & Miller (2004) for estimating plant height, 
indicated by significantly lower coefficients for univariate and multivariate correlations between spectra/VIs 
and height at the tillering and maturation phase of wheat. Instead, variations in height were found to be 
especially discernible during rapid crop development at booting and heading stage, whereas this was not 
the case during maturation when variations in height became less pronounced due to comparatively lower 
levels of green biomass.  

The senescence process in mature stages of vegetation, however, is an ultimately complex organ-
wide process that is further influenced by additional factors such as hormones, environmental factors, and 
nutrients, among others, which are not all properly understood or recorded for the dataset (Murphy & 
Murray, 2003; Gan & Amasino, 1997). Besides, based on a visual inspection of the RGB orthomosaic, 
hyperspectral data and ground photography it is suggested that some plots are in a different stage of 
senescing than others, if at all (figure 10.2). All such deliberations further complicate the process of 
adequately calibrating relationships between measured reflectance and in-situ measurements of traits. This 
deliberation may also (partially) justify the relative underperformance that was observed for some of the 
existing indices during calibration in general, and the relatively small hotspots for two-band indices identified 
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by the optimization algorithm. Considering that the majority of these existing indices were once found and 
eventually calibrated based on spectral data acquired during a preceding crop development stage, their 
limited applicability to the growth stage of the oat crops included in this study is not entirely inexplicable. It 
also challenges the sensible comparison of coefficients of determination and prediction (in)accuracies with 
those found in such studies, as certain traits may be effectively better estimated during a given growth stage 
than during another. 

 

 

 

 

Figure 10.2: The prediction map for leaf Chl content based on the best performing index (REP). For a selection of plots, 
with varying levels of measured and predicted leaf Chl content, the associated Digital Hemispherical Photographs are 
provided. Both the UAV data and photographs were acquired on the same day. For each photograph, both the plot 
number and side (a = west, b = east) are given. The values in parentheses relate to the mean in situ measured leaf Chl 
content and (REP) predicted leaf Chl content, respectively. Differences in leaf coloring and their linking to comparatively 
lower (yellow/brownish) or higher (greener) chlorophyll contents, as well as plot architecture (e.g. density), likely 
suggesting different crop development (i.e. senescing) stages, are clearly discernible. 

88 
 



  

10.5 Ascribing (in)capabilities to the UAV platform and sensing system(s) 
For this research, reflectance measurements were only retrieved by means of an UAV. In an ideal 

research oriented situation the reflectance of the plots was not only measured in this way, but also by a 
spectrometer in the field to record ground ‘truth’ measurements to serve as a reference. Both measurements 
can subsequently be correlated with distinct traits. More importantly, however, this would have effectively 
allowed comparing of spectra measured by both sensor platforms, or more specifically to evaluate to which 
extent remotely sensed UAV data acquired by the HYMSY setup (does not) compare to the higher resolution 
data acquired by a more stable sensing platform (Suomalainen et al., 2014). A similar set up is common 
practice in various other studies in which the applicability of UAV based remote sensing for monitoring 
vegetation is assessed (e.g. Bareth et al., 2014; Tattaris et al., 2014). As has been mentioned it is very well 
possible that limited performance of one or multiple indices is not necessarily or entirely caused by 
unsuitability of the UAV platform/sensor combination, but rather the result of inadequate or insufficient 
ground sampling practices. If ground spectral data was also available it would have been possible to more 
accurately identify and explain such anomalies. 

Relatedly, the vegetation indices incorporated into this study were largely retrieved from existing 
research. Even though the focus was purposefully on spectral analysis of other cereal crops, the majority of 
indices evaluated were in fact assessed for crops other than oats. As is the case for the effect of measuring at 
different growth stages of vegetation, differences in plant species and their associated structures are also 
likely to influence the performance of one or multiple indices with respect to estimating distinct traits. 
Consequently, poor performance of distinct existing indices may not be necessarily ascribable to inabilities of 
the UAV platform or its sensor, but rather to the notion that the index itself is not as effective for estimating 
a trait in these oat plats as it is for estimating the same trait in another cereal crop in another development 
stage. The importance of this notion was confirmed by the exploration of alternative indices using an 
optimization algorithm to extract other combinations of bands. During index calibration, it was observed for 
the majority of traits that exploration of auxiliary band combinations and/or PLS modelling is well worth the 
effort, indicated by (further) improvements in the resultant model adequacy. 

Finally, potential limitations invoked by the PLS modelling procedure are elaborated on with respect 
to parsimony and plausible overfitting. As was mentioned previously in paragraph 6.3.2.3, the PRESS statistic 
was employed during calibration in order to select the ideal parsimonious (i.e. simplest, incorporating the 
least latent variables) PLS models with the optimum number of latent variables. Selecting a PLS model based 
on the (lowest) resultant PRESS model is a methodology that is frequently utilized to minimize risks of model 
overfitting (Yu et al., 2014; Nguyen & Lee, 2006; Esbensen et al., 2002). According to some authors, 
however, reliance on the PRESS statistic is not entirely free from errors and may still provoke a certain, albeit 
marginal, degree of overfitting. Consequently, Haaland & Thomas (1988) propose an alternative approach 
through which a model with fewer latent variables (i.e. a more parsimonious model) is selected, given that its 
associated PRESS statistic value is not significantly higher than the lowest PRESS statistic. Relatedly,  Sawatky 
et al. (2015) state that relying on the van der Voet’s statistic yields more adequate and parsimonious models. 
This criterium selects the model with the fewest latent variables for which the residuals are insignificantly 
larger than the residuals of the model with the lowest PRESS value.  Compared to reliance on individual 
PRESS statistics, Abdi (2010) suggests a more elaborate approach in which the ratio between the PRESS 
statistic of a PLS model with a x number of variables and a model with x-1 variables are compared with 
some arbitrary value to evaluate when the preferred number of latent variables has been reached. Following 
from the tabular overviews of PLS model calibration presented in appendix I it is observed that, for some 
traits, alternative PLS models incorporating fewer latent variables were found to exhibit PRESS values only 
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marginally lower than the lowest possible PRESS statistic. More specifically, this relates to N content for PLS 
models of the first type and plant height for the second type of PLS model incorporating CSM height. 
Alternatively, these more parsimonious substitute models could have been calibrated, validated and 
evaluated with respect to changing performances instead. 

10.6 Sensors, resolution and geometry 
The manual generation of ROIs, especially for the HDC, is likely to have invoked certain 

inconsistencies. Due to the HDC’s resolution and geometric errors resulting from its pushbroom scanner 
mechanics, identifying the correct demarcation of vegetation/plots was a complicated process. Regardless of 
extensive georectification during pre-processing, various degrees of geometric errors remained persistent in 
the dataset. The presence of significant and highly varying amounts of shadows further complicated the 
process of ROI generation. This is exemplified by the diverse geometry of ROIs and their surface areas (mean 
= 1.62m2, std = 0.26m2, min = 1.1m2 , max = 2.5m2). From an application point of view, such time 
consuming georectification endeavors are ideally gotten rid of to reduce the total processing time and allow 
adjustments of intervening (farming) practices more adequately shortly after the remote measurements. 
Besides, consistent absolute geometric accuracies are considered highly important when applied in multi-
temporal (repeated) flight campaigns over the same study area, to allow re-utilization of the same ROI 
dataset over and over again. From the view point of spectral analysis in this study this notion is relevant 
considering the varied and inevitably sub-optimal alignment of ROIs with the actual area of plots considered 
for in-situ field measurements, potentially distorting adequate calibration of the relationship between 
measurements and average spectra over wavebands. Multiple solutions to (potentially) mitigate these 
necessities exist. Hyperspectral scanning equipment such as the one used in this research are prone to some 
limitations with respect to mapping a given area geometrically adequate, particularly when the platform they 
are mounted on or the object under study are abruptly and/or rapidly moving as is the case for UAV 
systems (Hardin & Jensen, 2015; Jung et al., 2013a; Schowengerdt,, 2012; Bajwa et al., 2004). Given this 
research as a point of departure, it is therefore suggested to evaluate the performance of hyperspectral 
frame cameras and/or miniaturized gyro stabilized gimbal mechanics that are now gradually finding their 
way to the UAV market (Whitehead & Hugenholtz, 2014; Jung et al., 2013b). Instead (or additionally), the 
inclusion of a larger number of ground control points (GCPs) across the study area may be considered to 
allow for a more adequate georectification of the resultant dataset. For the latter option, however, the 
additional workload associated with in-field placement of these markers is to be taken into account, 
particularly with respect to the anticipated time savings accrued by reduced georectification in post-flight 
processing. 

The spectral capabilities of the sensor are similarly worth mentioning. Initially, the raw HDC data was 
used for this research. This raw data comprised of a HDC with a very low FWHM of only 9nm. This low 
FWHM is important, because it fits the recommendation to adhere to a bandwidth between 5-10nm. 
Narrower bandwidths most likely provoke signal noise issues, whereas broader widths tend to obstruct 
identification of distinct biophysical and biochemical properties studied (Thenkabail et al., 2012b). At some 
point, however it was decided to utilize a secondary level data product instead (due persistence noise errors 
present in the raw HDC), being an alternative HDC with a FWHM of 30nm. This fortunately did resolve most 
of the noise issues, however, it potentially reduced the ability to detect small spectral anomalies, which could 
be effectively utilized to identify distinct traits. Nguyen & Lee (2006) and Hansen & Schjoerring (2003), for 
example identified small scale anomalies in univariate correlations of traits over individual wavebands 
throughout the visible spectrum utilizing a much higher spectral resolution (± 1nm) spectroradiometer. 
Subsequently, some of the eventually calibrated VIs and PLS models relied on these discrepancies to various 
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degrees. Due to the absence of such deviations in the HDC, plausibly resulting from smoothing of spectra 
due to the larger FWHM, optimal indices relied less heavily on these spectral regions, if at all. Consequently, 
it is considered worthwhile to explore what is underlying the vast spectral noise in the original dataset in 
order to reduce its severity, while expectantly enhancing the possibility to exploit the spectra more accurately 
with respect to the prediction of relevant plant traits. 

10.7 Extent, composition and reliability of calibration and validation data sets 
The calibration of relationships between reflectance data and crop traits was conducted using a 

relatively limited dataset, comprising of only 28 individual observations. The same notion applies to the 
validation phase and the associated data set. This respectful size was purposely decided on to arrive at two 
sets of an acceptable size that are, albeit marginally, still large enough to consider as independent and fit for 
use in statistical analysis. It may be reasonably expected that the use of a larger (calibration) dataset would 
have resulted in more accurate and/or robust relationships with enhanced predictive capabilities. Similarly, to 
evaluate both the resultant robustness and applicability of these relationships, a larger validation is ideally 
recommended (Li et al., 2014). The significance and potential implications of adhering to relatively small 
datasets was most clearly illustrated prior to the removal of plots dealing with observable physical 
heterogeneity (appendix F). During the exploration of what could possibly be causing the anomalies and 
unanticipated univariate correlation between traits and wavebands, it was observed that even a single plot 
was able to exert highly significant and influential power on the correlations. Even minor errors in individual 
plots, possibly related to field measurements and/or spectral inconsistencies, among other causes, may thus 
be able to notably distort relations and affect the results given these datasets of a limited size 

The discrepancies observed between the calibration and validation set with respect to univariate 
correlations over wavebands should be mentioned here again. Although both traits followed a relatively 
comparable (horizontal) pattern of correlations over individual wavebands, the correlation coefficient values 
diverged notably (vertically) in between both data sets. Consequently, it is believed that the (random) 
definition of one set as a calibration set, and the other as a validation set, has had its implications on 
calibration and validation procedures for these two traits in particular. Given the largely comparable 
horizontal pattern of univariate correlations over different wavebands in both data sets, reallocating the 
calibration set to validation and vice versa would not necessarily have resulted in the identification of 
(notably) different bands (combinations) through plotting of correlation matrices or PLS regression. In 
contrast, it is however plausible that such a turnaround will result in different coefficients of determination 
during calibration, as well as values for R2, RMSE and (CV)RMSE differing from those currently found during 
validation.  

An alternative form of statistical analysis that is possibly able to reduce or mitigate the intrusion of such 
external effects is bootstrapping. Bootstrapping requires letting go of the current depiction of an 
independent calibration set that is subsequently validated externally by means of an entirely new (validation) 
dataset. Instead, in bootstrapping, the full data set is used for both training (calibration), testing (validation) 
and retrieval of prediction (in)accuracy statistics internally (Gude et al., 2009). A random sample is acquired 
from the entire dataset for calibration and to calculate the desired statistic(s) of interest (Mutanga & 
Skidmore, 2007). This step is then repeated for a defined number of replications, each exploiting different 
combinations of observations, to arrive at a vector of n statistics (i.e. errors) which can then be averaged to 
arrive at a measure of precision and robustness of relationships found (Boves Harrington, 2006). Relatedly, 
Souza et al. (2010) stated that bootstrapping may be a more preferable technique in situations when the 
number of observations is relatively limited. Considering the objecting univariate correlations of fresh 
biomass and C content in particular, the primal benefit of employing bootstrapping relates to the notion that 

91 
 



  

statistical interferences exploit the distribution of a proxy sample acquired from the data itself rather than a 
sample retrieved from a population that is not yet properly understood (Mutanga & Skidmore, 2004). 
Additionally, such internal validation may be advantageous to alternative (i.e. external) validation procedures 
as it allows the defining of limits for the values that may be expected (Steyerberg & Harrell, n.a.). The latter 
may be of particular importance considering that, for some traits, the measured values in the validation set 
exceed the range measured for calibration data in either or both directions. 

10.8 Prediction of plant traits from reflectance and plant height 
Various existing studies have explored and demonstrated the enhanced predictive accuracy of 

indices and/or (in situ) field measurements of vegetation height for different plant traits (e.g. Tilly et al., 2014; 
Swatantran et al., 2011; Anderson et al., 2008; Freeman et al., 2007). It was demonstrated in this study that, 
alternatively, one is able to extract relatively accurate and representative plant height measurements through 
the extraction of a CSM from affordable optical (RGB) sensors. Consequently, future research may illuminate 
if and to what extent combining of CSM height and spectral (index) data, both of which were shown to be 
collectable simultaneously from an UAV platform, improves the accuracy and precision of trait predictions. 
Due to time constraints, exploration of the added value of CSM measures was only considered for PLS 
model calibration and yielded mixed results. It is not unlikely, however, that CSM data can effectively 
improve the performance of indices with respect to the prediction of one or more traits. 
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11. Concluding remarks 
The results presented in the preceding chapters illuminated that a variety of biophysical and 

biophysical traits present in oat crops can be predicted in a quantifiable manner with different levels of 
precision and accuracy (figure 9.1). Besides, the outcomes suggest that, for some traits, predictions may be 
effectively further discriminated for different cultivars and their associated treatments (figure 9.2). Exploitation 
of new indices enhanced the prediction ability for both N and C content, as well as fresh biomass. For the 
latter trait prediction accuracy was further increased through PLS regression, no improvements were 
recorded for the remainder of traits through such modelling.  It was also observed that crop height data, 
retrieved by a traditional RGB camera mounted on board of the UAV simultaneously with the hyperspectral 
sensor, is a similarly good predictor of fresh biomass, and C content to a lesser degree, than individual 
wavelengths and/or indices. Only considering the best performing models, crop height was indicated with 
the highest prediction accuracy (CVRMSE = 5.12%), followed by leaf Chl content (CVRMSE = 14.5%) 
Prediction of fresh biomass (CVRMSE = 20.78%), C content (CVRMSE = 20.81%), and N content (CVRMSE = 
21.6%) displayed larger but comparable discrepancies in prediction. Band combinations borrowing from the 
red-edge and (lower) near-infrared wavelengths were consistently identified to yield the best prediction 
accuracies for the different crop traits under study other than C content. In most instances the bands 
incorporated into distinct indices exhibiting the best performance were closely spaced in the electromagnetic 
spectrum, hereby effectively exploiting the strictly skewed shift in reflectance between visible (red) and short 
near-infrared wavelengths, or the flattening thereof. For C content and, alternatively for fresh biomass, an 
(sub-)optimal relationship was found for indices borrowing from longer near-infrared wavelengths close to 
the near-infrared peak at approximately 915nm. 

Except for crop height and leaf Chl content to a lesser degree, both accredited with the highest 
prediction accuracies, the remainder of traits did not show significantly deviating (CV)RMSEs. The anomalies 
observed for univariate correlations of fresh biomass and C content in the calibration and validation set do 
at least suggest that prediction of these traits may be more problematic. Due to the current research setup it 
remains troublesome, however, to indisputably assess or quantify to which extent a distinct crop attribute 
can be more accurately predicted than another by UAV based remote sensing. It is reasoned that this notion 
is most strongly influenced by significantly different densities at which in-situ measurements were retrieved, 
varying both among different traits and between monoculture and polyculture plots, and were subsequently 
used to calibrate and eventually validate prediction models. It is plausible that a more homogenous, 
thought-out and prepared field sampling campaign, explicitly considering the analysis of remotely sensed 
data by a UAV platform a priori, yields different, potentially more stable and less strongly varying results 
within and between traits. In addition to sampling procedures, supplementary variables that have possibly 
influenced the results of this study in either direction have been suggested in the previous chapter. It 
requires additional research to assess the importance of each with respect to their potential influencing of 
the predictive ability of different models for various traits tested here.  

Nonetheless, it is believed that this research displayed promising results to various extents with 
respect to the possible application of UAV based remote sensing in monitoring of crops for various 
purposes, indicated by prediction accuracies largely comparable or better with regard to existing studies for 
height, N content and leaf Chl content. Findings for both fresh biomass and C content were consistently 
lower and outperformed by a multitude of existing studies. Some remarks on the causes thereof, in addition 
to several suggestions to potentially mitigate these causes, have been put forward throughout in this report. 
Additional research, however, is essential to assess the validity and robustness of these findings for 
application on alternative crop types, and in preceding growth stages. Besides, it is both required and 
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recommended to further explore and optimize the precision of the technology used, preferably 
incorporating one or multiple recommendations presented in the previous chapter, prior to exercising UAV 
based monitoring practices on a large scale. This deliberation remains particularly relevant considering the 
current momentum of the development of Unmanned Aerial Vehicles, the miniaturization of compatible 
sensor systems and the growing number of industries articulating to be willing to explore the added value of 
this technology for diversified applications.  
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Appendix A: Large scale representations of input RGB Orthomosaic, HDC & DSM 
  

RGB Orthomosaic (1.5cm resolution) 
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Hyperspectral Data Cube (14cm resolution) visualized as follows: Red = 660nm, Green = 550nm, Blue = 480nm 
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Digital Surface Model (2.9cm resolution) 
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Appendix B: Visual representation of deriving the CSM from the raw DSM 

  

Input (DSM), intermediate output (DTM) and final output of the process to arrive at a Crop Surface Model (CSM). 

Resultant Crop Surface Modle (2.9cm resolution) 
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Appendix C: Textual elaboration on the existing indices used in this study 
What follows below is a textual explanation with respect to the existing indices that were used in this 

study during calibration and subsequent validation. For each separate trait, previous studies that have 
employed one or more indices for these traits’s derivation are elaborated on briefly. A tabular summary of 
the indices, their formulation and extraction from existing literature has been presented previously in chapter 
4, in tables 4.1 and 4.2 specifically. 

Biophysical plant traits 

Fresh biomass (FBM) 
Approaches to estimate above ground biomass of vegetation using spectral reflectance of plants 

were developed from the 1970s onwards, and have yielded various additional methodologies ever since 
(Waller et al., 1981). Existing research has highlighted the relationship between various VI’s and green 
biomass, respectively (Pinter et al., 2003). In previous research, various formulations of the normalized 
difference vegetation index (NDVI) have been successfully correlated with biomass measures of different 
types of vegetation. More specifically, Thenkabail et al. (2000) demonstrated that a NDVI model 
incorporating a narrow red-edge band (λ1 at 720nm) and a narrow NIR band (λ2 at 820nm) provided the 
highest linear correlations with biomass in corn crops. Hunt et al. (2005) found that the NGRD index was 
linearly correlated to biomass of corn, alfalfa and soybeans at low biomass levels, although the correlation 
weakened for increased levels. The latter saturation effect was also observed by Goswami et al. (2015) for 
the relationship between NDVI and biomass in different vascular plants. In order to circumvent the saturation 
at high canopy cover, Mutanga & Skidmore (2004) developed a closely spaced red-edge/near-infrared 
narrow band NDVI and demonstrated its enhanced performance for higher canopy cover for grass. A simple 
ratio index incorporating narrow bands at 706nm and 755nm, however, yielded even higher coefficient of 
determination (R2). Hansen & Schjoerring (2003) plotted a two-dimensional contour map depicting all 
hyperspectral two-band combinations (range 438-884nm) in a NDVI and the resultant coefficient of 
determination R2 when linearly regressed with in-situ measurements of green biomass in wheat crops. 
Results revealed that the NDVI most strongly correlated to GBM was generated using λ1 in the green at 
521nm and λ2 in the red-edge at 689nm. Applying PLSR further enhanced the prediction of GBM and resulted 
in lowering of the RMSE by 22%.  

Furthermore, according to Cho et al (2007), wet biomass estimation based on the linearly 
interpolated red-edge position index (REP) is advantageous compared to NDVI based estimates, due to its 
enhanced resistance to influential soil and atmospheric conditions. Finally, Gnyp et al. (2014) performed a 
study in which estimation of rice biomass by means of OMNBR (Optimized Multiple Narrow Band 
Reflectivity) analysis based on raw reflectance (RR) was compared with the same model based on first 
derivative of reflectance’s (FDR). The model with 1-4 variables was applied to rice in different growth stages 
and indicated that as the number of variables included increased, so did the model’s sensitivity to GBM. 
More importantly, however, it was revealed that the model’s accuracy was further increased when FDR rather 
than RR values were included when only two variables were used. Red-edge and short infrared wavelengths 
in particular recurred most frequently in these optimized models, although some exploited red or longer 
infrared wavelengths to some degree as well (Gnyp et al., 2014). Besides, Swatantran et al. (2011) and 
Anderson et al. (2008) demonstrated that combining hyperspectral reflectance data with plant height metrics 
effectively enhanced their model’s ability to measure vegetation traits, such as above ground green biomass. 
Biomass, however, was found to frequently produce spectral response behavior relatively similar to LAI 
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(Heiskanen, 2006), i.e. univariate correlation of discrete narrow bands yield partially comparable results for 
both traits (Alchanatis & Cohen, 2012, and may therefore be more complicated to discriminate. 

Alternatively, Casadesús & Villegas (2012), demonstrated that imagery captured by relatively simple 
and low cost digital consumer cameras may be effectively utilized to estimate biomass of plants. By counting 
the percentage of pixels in pictures within a certain segment of the hue histogram, between 60 and 120 or 
80 and 120, the indices Green Area (GA) and Greener Area (GGA) were calculated, respectively. In essence, 
they relate to what percentage of soil is covered by green(er) canopy. It was found that in some cases these 
indices were correlated to biomass variables, such as grain yield, although saturation was witnessed for 
higher levels of LAI. 

Plant height 
In order to map height of vegetation (plant or canopy), Light Detection And Ranging (LiDAR), and 

SAR (Synthetic Aperture RADAR) to a lesser extent, have proved to provide the most accurate assessment in 
various studies (Homolová et al., 2013). Such altimetry equipment, however, is absent on the HYMSY 
platform utilized for this research and LiDAR will thus not be included in this elaboration. Thenkabail et al. 
(2000) assessed the heights of different crops using different hyperspectral models (OMNBR & narrow band 
NDVI’s). Two band OMNBR models structurally outperformed single band OMNBR models, while four band 
OMNBR yielded even better results, but the relationships varied considerably. These findings are in 
accordance with Xavier et al. (2006). As little as 66% of the height variability of corn crops was explained by 
the latter model, whereas this value reached as high as 92% for soybeans. Besides, each of the models 
incorporated different (green, red, red-edge and/or near-infrared) hyperspectral bands to acquire the best 
result, some of which are not covered by the HYMSY platform. Similarly, the best narrow band NDVI’s 
(bandwidths not provided) invariably outperformed those based on broad bands, but the R2 for cotton 
(0.52), potato (0.77), soybean (0.78) and corn crops (0.31) differed notably (Thenkabail et al., 2000). Besides, 
due to the indirect relationship between plant height and LAI, Scotford & Miller (2004) observed that NDVI 
measurements for measuring plant height are only effective during early growth stages of plants, i.e. the 
index tends to saturate at later stages when plant height increases whereas NDVI does not necessarily or 
disproportionally.  

Alternatively, in addition to laser, microwave and spectral oriented approaches, (digital) stereo 
photogrammetry provides an auxiliary means for retrieval of vegetation height (Bradbury et al., 2005). In 
essence, this relates to reconstruction of a three-dimensional scene from images by relatively orienting each 
to one or multiple others by identification of similar points of interest in different photographs (Drauschke et 
al., 2014). Aerial photographs and the camera orientations associated with each capture are imported into a 
photogrammetric software package. Next, the data is processed by a photogrammetric algorithm (e.g. 
Structure from Motion) to estimate unknown camera positions, eventually resulting in a surface model of the 
study area (DSM) through block bundle adjustments (Suomalainen et al., 2014; Bendig et al., 2013). 
Subsequently, when measurements prior to cultivation are available or the bare earth is visible in the 
photographs, a DEM representing the bare earth surface may be created, and then differenced with the 
DSM to arrive at a CSM (Crop Surface Model) depicting plant height (Tilly et al., 2014; Bendig et al., 2013). 
Stereo photogrammetry, however, is prone to errors in vast and dense (forested) environments where bare 
soil is hardly visible, rendering the retrieval of a ground plane reference practically impossible (St-Onge & 
Achaichia, 2001). 
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Biochemical plant traits  

Chlorophyll (Chl) content 
According to Qi et al. (2012), plant pigments such as chlorophyll, can only be effectively detected 

with hyperspectral optics. The spectral sensitivity to varying levels of chlorophyll content is relatively high in 
the green and red-edge region of the spectrum, whereas relative insensitivity in the blue and red region 
rapidly provokes saturation (Wu et al., 2008; Gitselson et al., 2003b). Likewise, traditional NDVI was found to 
be only sensitive to low levels of chlorophyll content (<1.5g/m2) in maize crops. Saturation beyond 
moderate levels (>2.0m/m2) notably lowered the sensitivity (Peng et al., 2011). As a result, chlorophyll 
content oriented models most frequently incorporate spectra in the green and/or red-edge region, hereby 
effectively circumventing saturation issues (Gitelson, 2012). Wu et al. (2008) evaluated relatively traditional 
indices and their slightly adjusted counterparts for leaf chlorophyll estimation in wheat crops, such as 
NDVI[705-750], MSR[705-750], MCARI[705-750], TCARI/OSAVI[705-750] and MCARI/OSAVI[705-750]. The original 
TCARI/OSAVI index was developed by Haboudane et al. (2002) for leaf chlorophyll estimation in corn crops 
and expresses the ratio between two individual indices that are sensitive to chlorophyll and minimize soil 
background noise, respectively. Previous results indicated that the ratio index performed better than TCARI 
itself for a larger variation of LAI values, while maintaining the desired sensitivity to chlorophyll content (Qi et 
al., 2012). In all instances, the traditional indices demonstrated relative non-linearity and saturation at higher 
chlorophyll levels, whereas the proposed replacements notably improved the linearity of their relationship to 
chlorophyll content (Wu et al., 2008).  

Yu et al. (2012) generated new simple ratio’s (SRs) and NDVI indices using correlation matrix 
analysis. It was demonstrated that, across a variety of barley crops, SRs based on a pairing of bands from the 
red-edge at 734nm (λ1) and red region at 629nm (λ2) outperformed existing SRs for estimating leaf 
chlorophyll in a variety of different varieties combined. Subsequently, a NDVI incorporating 667nm (λ1) in the 
red and 740nm (λ2) from the red-edge outperformed NDVI indices established in previous studies. The newly 
computed SRs, however, yielded the best results when comparing all four new/existing SRs and NDVIs (Yu et 
al., 2012). It should be mentioned, however, that the adherence to these wavelengths yielded the best results 
when measurements for multiple barley crop varieties were combined and correlated simultaneously. For 
estimating chlorophyll in separate varieties, the best performing NDVIs frequently incorporated wavelengths 
in the VIS, especially in the ultraviolet and blue not accommodated for by the HYMSY setup. In contrast, a 
NDVI relying on 717nm for λ1 and 732nm for λ2, both in the red-edge, was found to be most strongly related 
to chlorophyll content  in wheat crops according to Hansen & Schjoerring (2003). 

Subsequently, Gitelson (2012) observed that the reflectance behavior of different pigments, each 
displaying different reflective capacities in different spectra, in plants is interrelated. For example, reflectance 
in the green region depends both on anthocyanins, carotenoids and chlorophylls, while reflectance in the 
red-edge varied notably depending on the ratio between the latter two pigments and the practically absent 
absorption of carotenoids in this region. Acquiring information on a single pigment from spectra is therefore 
ultimately challenged, and hence a distinct three-band model for each specific pigment was developed. It 
was calculated that for anthocyanin-free leaves, CIgreen and CIred-edge are optimal indices, whereas only the 
latter applies to anthocyanin-containing leaves. In subsequent model performance analysis, it was 
demonstrated that the two models outperformed other models (e.g. SR[800-680], NDVI[800-680], EVI2, NDVIred-
edge and ECI[860-708-550] when considering their sensitivity to a variety of different levels of chlorophyll content 
for different crop types, including maize (Gitelson, 2012).  
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Kooistra et al. (2014) assessed the performance of various VIs in regard to estimating of chlorophyll 
content in potato crops, by comparing the R2 values of resultant linear estimators. It was found that the 
majority of indices studied, CIred-edge, CIgreen, NDRE and TCARI/OSAVI are differently but ultimately strongly 
related to chlorophyll content, in that particular order. CIred-edge and CIgreen were developed by Gitelson 
(2003b) and were demonstrated to be stronger related to chlorophyll content than existing indices. The 
relationship between NDRE and chlorophyll content was also evaluated by Hunt Jr. et al. (2013) for maize 
crops and was found to be strongly correlated. In addition to some of the indices measured here, Clevers & 
Kooistra (2012) evaluated the suitability of MCARI/OSAVI, REP, MTCI and previously mentioned variations of 
the MCARI/OSAVI, TCARI/OSAVI and CIred-edge indices for predicting chlorophyll content. It was found that 
the adjusted indices outperformed traditional ones, all yielded R2 values exceeded 0.90. This notion was in 
accordance with the findings of Wu et al. (2008). REP was only strong correlated with chlorophyll content 
when regressed in a non-linear fashion, a linear relationship was only found valid over a limit range due to 
saturation effects (Clevers & Kooistra, 2012).  

An alternative model relying solely on reflectance in the VIS spectrum was developed by Hunt Jr. et 
al. (2013), i.e. Triangular Greenness Index or TGI. It estimates chlorophyll content based on the area of a 
triangle, in which each corner stone represents a wavelength in the blue (480nm), green (550nm) and red 
(670nm), respectively. These wavelengths follow from the chlorophyll absorption maxima and the chlorophyll 
peak in the green, respectively. For analysis of chlorophyll content in maize crops, TGI showed a higher 
correlation than indices using a band in the NIR spectrum, and performed approximately similar when 
compared to indices using a wavelength in the red-edge region. Besides, it was indicated that TGI is a 
relatively robust index that was not affected by higher LAI values. A final benefit of TGI relates to the notion 
that the index is relatively independent of the sensor’s spectral resolution and can be computed using 
spectral data acquired by low-cost broad band sensors such as digital cameras (Hunt Jr. et al., 2013). 

Nitrogen (N) content 
Considering the importance of N in agronomy, it is not surprising that a multitude of studies have 

been conducted to estimate nitrogen in crops through remote sensing practices in the past. The majority of 
research, however, focused on estimation of N content (on an aerial basis) rather than N concentration 
(Chen et al., 2010). Likewise, an extensive library of different indices has been established over time, some of 
which are overlapping with chlorophyll oriented indices due to the inherent relationship between the two 
traits (Homolová et al., 2013). 

Zhao et al. (2014) assessed the ability to quantify N content in oat leaves at various growing stages 
in a laboratory setting using various SRs and (derivative) indices in the VIS-NIR segment of the spectrum. 
Considering univariate correlation between N content and narrow bands, the strongest (negative) 
correlations were found for the majority of the visible spectrum, but especially in the 525-650nm range, and 
at 705nm in the far red. The region around 696nm and 705nm are defined as the chlorophyll absorption post 
maxima and a function of chlorophyll concentration by Zhao et al. (2014), respectively. Due to the inherent 
interdependency between N and chlorophyll, alterations in the latter provide sensitivity for measuring the 
other in this spectral region specifically (Wu et al., 2008). From approximately this region onwards the 
correlation turns positive and gradually increases in strength throughout the NIR. This contrasting difference 
in reflectance-N dependency in the VIS and NIR was also identified by Nguyen & Lee (2006) for N in rice. 
The reflectance behavior, however, differed slightly for different growth stages and levels of water stress. 
Subsequently, SR[760-550] and NDVI[760-550] showed relatively strong relationships with leaf N compared to other 
indices tested. This is not surprising considering these indices’ adherence to specific wavelengths that were 
highly (univariate) related to N (Zhao et al., 2014). The importance of these specific wavelengths for 
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estimating N was also demonstrated by Clevers & Kooistra (2012). Linearly regressing N content 
measurements in two potato fields with narrow band hyperspectral data resulted in the identification of REP, 
CIgreen[780-550], CIred-edge[780-710] and MTCI indices as most suitable for accurately measuring N. All rely on 
pairing of bands at largely similar wavelengths in the near-infrared (high positive correlation) with others in 
the visible (reduced negative correlation).  

Hansen & Schjoerring (2003) linearly correlated all narrow band NDVI combinations in the 438nm-
883nm range with N content for wheat crops. Mostly similar to the findings of Zhao et al. (2014) and Nguyen 
& Lee (2006) mentioned above, the strongest negative univariate correlations were found in the VIS (438-
690nm) spectrum. Likewise, high positive correlations were identified in the 750-883nm range beyond the red-
edge in the near-infrared. Relatedly, the best NDVI indices, according to Hansen & Schjoerring (2003), for 
measuring N included narrow bands in the red-edge range at 734nm (λ1) and 750nm (λ2), or alternatively at 
770nm in the NIR (λ2) and at 717nm in the red-edge for λ1. When an exponential fit was applied to the 
optimal linear NDVIs, an small increase in performance was displayed. In a final assessment, a PLS model 
was loaded with all individual narrow bands, subsequently allowing comparison with the best NDVI indices. 
Estimation of N concentration saw the most significant improvement of R2 and RMSE compared to the best 
linear and exponential NDVI model. Compared to the original best NDVI models for measuring N content, 
however, the improved performance of the resultant PLS model was negligible (Hansen & Schjoerring, 
2003).  

More recently, Tian et al. (2011) evaluated all possible two band combinations for simple ratios (SR), 
normalized difference (vegetation) indices (NDVIs) and simple difference indices (SD) and their relation to N 
in rice leafs. Besides, some existing three-band indices were evaluated. As far the assessment of the latter is 
concerned, MTCI performed best, similar to the findings of Clevers & Kooistra (2012). Finally, Chen et al. 
(2010) analyzed the relationship between a variety of indices frequently used for estimating nitrogen or 
chlorophyll concentrations and/or content in corn and wheat. It was found that especially the combined 
index MCARI/MTVI2 performed well for both crop types, whereas TCARI/OSAVI was only strongly correlated 
to N status of corn. 

Carbon (C) content 
Given the inherent and relatively constant linkage between biomass and carbon content of a given 

vegetation’s canopy (Magnussen & Reed, 2004), some  of the indices do at least partially overlap with those 
presented with regard to estimation of biomass itself. This observation also follows from the notion that 
sensors are currently unable to directly measure or estimate the amount of carbon stored as above ground 
plant biomass, and thus relies on using assumingly related proxies (Brewer et al., 2011; Tucker et al. 1981).  

Peng et al. (2011) evaluated the ability to estimate the Gross Primary Production (GPP) of maize 
crops (gCarbon/m-2/time-1) using the broadband counterparts of indices that are frequently used to estimate 
chlorophyll status of vegetation, including CIgreen, CIred-edge, SR[NIR-rededge], EVI2 and NDVI. It was reasoned and 
demonstrated that chlorophyll is ultimately related to nitrogen status and photosynthetic capacity, and 
therefore to the capacity (i.e. GPP) of crops to convert photosynthetic active radiation (PAR) into dry carbon 
biomass. It was found that the product of a distinct index and in situ measured PAR produced a stronger 
relationship with GPP then the indices separately, although indices alone were also evidently related to GPP 
by themselves. Multiplication of each index with real-time PAR measurements was done to correct for high 
frequency deviations of incoming PAR, and thus allowing for more accurate estimation of GPP through time. 
A similar methodology was applied by Wu et al. (2009) for estimating GPP in wheat crops, using NDVI[750-710], 
MCARI[705-750] and MTCI, as well as the earlier mentioned CIred-edge. Again, GPP and the product of each index 
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with measured PAR yielded clear relationships with different strengths. It was additionally demonstrated that, 
compared to other vegetation features, chlorophyll content is the main driver of GPP and the structure of 
plants is only of limited influence. 

A second proxy worth mentioning is the assimilation/fixation of carbon, or fPAR, i.e. the fraction of 
Photosynthetically Active Radiation (PAR. 400-700nm) absorbed by the vegetation canopy. Assuming that 
various additional parameters are held constant, it has been demonstrated by various studies that dry matter 
(e.g. C content) is inherently related to fPAR (Namayanga, 2002). Consequently, assessment of fPAR provides 
a means to monitor inter-seasonal net vegetation productivity dynamics and temporal and spatial 
development of carbon stocks (Roujean & Breon, 1994). Since the 1980s, diversified evidence has been 
collected that there exists a notable relationship between fPAR and spectra in the visible (Red) and NIR 
(Hilker et al., 2008). Hall et al. (1992) indicated that NDVI is near linearly related to the latter variable for 
grasslands. It was, however, also found that the shape of the relationship was additionally affected by 
reflectance of the canopy substrate (e.g. soil and litter). These findings are in accordance with a study of 
Sellers (1985) using RTM. Relatedly, NDVI was also found to be near linearly related to fPAR in relatively 
dense vegetation by Roujean & Breon (1994) based on RT simulations. NDVI performed notably weaker for 
less dense vegetation with reduced levels of LAI, especially when imagery is acquired in nadir view and the 
influence of background soil reflectance is increased. Therefore, an alternative (broad band) index that 
attempts to limit influence of soil reflectance (SAVI) was put forward and presented to yield a stronger linear 
relationship with only limited dispersion. Besides, Glenn et al. (2008) propose the use of the Enhanced 
Vegetation Index (EVI) for estimating fPAR, due to reduced saturation behavior as demonstrated in various 
studies. 
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Appendix D: Reflectance plots 
 

Average individual plot reflectance for the calibration set (n=28) 

 

Average individual plot reflectance for the validation set (n=28) 
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Average reflectance for all plots in either the calibration or validation set combined 
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Appendix E: Correlation coefficients among separate traits 
Correlation coefficients (r) among individual trait (measurements) for the calibration set (n=28). (BM = biomass, N = 
nitrogen, C = carbon, LC = leaf chlorophyll, conC = concentration, conT = content) 

 Height Fresh BM Dry BM N conC N conT C conC C conT LC conC LC conT 

Height - 0.60 0.41 0.73 0.79 0.44 0.42 0.59 0.60 

Fresh BM 0.60 - 0.95 0.33 0.85 0.38 0.95 0.36 0.37 

Dry BM 0.41 0.95 - 0.10 0.71 0.23 1.00 0.17 0.17 

N conC 0.73 0.33 0.10 - 0.76 0.48 0.12 0.78 0.78 

N conT 0.79 0.85 0.71 0.76 - 0.46 0.72 0.60 0.61 

C conC 0.44 0.38 0.23 0.48 0.46 - 0.27 0.61 0.62 

C conT 0.42 0.95 1.00 0.12 0.72 0.27 - 0.19 0.19 

LC conC 0.59 0.36 0.17 0.78 0.60 0.61 0.19 1.00 1.00 

LC conT 0.60 0.37 0.17 0.78 0.61 0.62 0.19 1.00 1.00 

 

Correlation coefficients (r) among individual trait (measurements) for the calibration set (n=28). (BM = biomass, N = 
nitrogen, C = carbon, LC = leaf chlorophyll, conC = concentration, conT = content) 

  Height Fresh BM Dry BM N conC N conT C conC C conT LC conC LC conT 

Height 1.00 0.77 0.68 0.53 0.77 0.29 0.68 0.71 0.72 

Fresh BM 0.77 1.00 0.98 0.40 0.90 0.25 0.98 0.58 0.58 

Dry BM 0.68 0.98 1.00 0.29 0.84 0.24 1.00 0.48 0.48 

N conC 0.53 0.40 0.29 1.00 0.75 0.03 0.29 0.59 0.59 

N conT 0.77 0.90 0.84 0.75 1.00 0.21 0.85 0.64 0.65 

C conC 0.29 0.25 0.24 0.03 0.21 1.00 0.28 0.10 0.10 

C conT 0.68 0.98 1.00 0.29 0.85 0.28 1.00 0.48 0.48 

LC conC 0.71 0.58 0.48 0.59 0.64 0.10 0.48 1.00 1.00 

LC conT 0.72 0.58 0.48 0.59 0.65 0.10 0.48 1.00 1.00 
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Scatterplots for all possible combinations of traits in the valibration set (n=28) 
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Side note: Please take note that the discussion presented in this appendix is based on a dataset that was 
provided at an earlier date, at the onset of this thesis research. Shortly prior to completion of the 
research, it was declared that the dataset was incorrect. Without going into to much detail; the sensor 
utilized to aquire the UAV data was found to be malfunctioning, causing the prism to redirect measured 
levels of radiance onto different sensors than it should. Consequently, the average reflectance curve 
indicated a partially structural deviation of measured reflectance to longer wavelengths, i.e. the 
chlorophyll peak emerged at approximately 580nm (instead of ±550nm), the maximum red absorption 
at 710nm (instead of ±680nm) and the end of the red-edge/onset of the near-infrared at about 
±780nm (insead of 750nm). It was decided to completely redo the analysis’s in the main text, as well as 
the far majority of associated figures in the appendix. Given temporal constraints, however, it was also 
decided to leave this particular appendix (F) as it is. Due to the relatively (albeit not solely) structural 
pattern of the anomalies between the (in)correct datasets, it is argued that the points of interests 
discussed here are still valid and applicable, although they are assumed to be displaced to other 
wavelengths. 

Regardless of whether these identified anomalies remain in near-perfect alignment between both 
datasets, it is argued that the resultant removal of some plots remains justified and therefore 
unchanged. As will be mentioned briefly afterwards, some plots clearly indicate physical heterogeinity, 
hereby conflicting with the assumption of within plot homogeinity on which sampling procedures were 

              

Appendix F: Textual elaboration on the removal of plots 

The figures below, visualizing univariate correlation coefficients (r) between separate plant traits and 
individual narrow bands prior to removal of various plots, indicate notable differences between the 
calibration and validation dataset. More importantly, however, the shapes of the figures partially deviate 
(notably) from findings in previous research. The anomalies are most persistent within the calibration set and 
to a lesser extend in the validation set. Below, the findings of a thorough assessment on what lies at the 
foundation of such anomalies are presented through textual and figurative means. The exploration was 
conducted in a structured and systematic manner. First, the figures were compared with similar correlation 
figures as presented in multiple previous studies, apparent deviations at distinct wavelengths and/or generic 
spectral regions were then identified. Secondly, scatterplots and diagnostic correlation plots were generated 
using R to comprehensively identify individual plots exerting relatively substantial influence on the correlation 
coefficient found, i.e. to what extend it would change if the observation were omitted. This is indicated by an 
observation’s Cook’s distance value, which increases when large residuals are shown and/or when an 
observation’s associated value is at an extreme end of the range of all values (Maindonald & Braun, 2010). 
Finally, the findings were related to visual inspections of the RGB orthomosaic and HDC in an attempt to find 
a plausible explanation for the anomalies. 
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Wavelength dependence of the correlation coefficient (r) based on a linear regression between average plot canopy 
reflectance and each crop trait studied for the calibration (left, n=35) and validation (right, n=34) set prior to the removal 
of plots indicating within-plot structural heterogeneity. 

The concentration of carbon is relatively constant for all plots, in accordance with the notion that 
this trait is only limitedly varied for different plant species and locations. Consequently, the correlation 
coefficients associated with this distinct trait are minimal at all wavelengths and practically identical for both 
calibration and validation plots. 

Calibration set 

Height, fresh biomass (fbm) and dry biomass (dbm) 
As was stated in paragraph 7.3 previously, it is commonly understood that height is relatively 

strongly (positively) correlated to plant biomass (Tilly et al., 2014; Fernandez et al., 2009; Niklas & Enquist, 
2001). Likewise, it may be reasonably expected that such traits indicate relatively similar correlations over 
wavebands (as is the case for the validation set). However, considerable diffusion in r values is discernible 
from the figures above, particularly in the near-infrared. 
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When fresh and dry biomass were both individually correlated with five equally spaced bands in the 
NIR (820-940nm), 114b consistently showed up as an influential observation with a cook’s value averaging 
around 0.5 and nearing 1.0 at some wavelengths. Other plots were also identified to exert some influence 
(e.g. 77 and 100), but far less than was the case for 114b. Plot 114b was also a recurring band when 
measured height was individually correlated with fresh and dry biomass. In addition, plots 51, 77 and 100 
were indicated as relatively influential. According to the field measurement data, plot 51 has the lowest 
(averaged) plant height. Contrastingly, however, its values for fresh and dry biomass are extremes at the 
high end of the range. Plots 114b, 100 and 77 represent plots with clearly the lowest values for fresh and dry 
biomass in the entire calibration set. However, the measured height in these plots is (above) average in 
comparison to all of the other calibration plots. Upon visual inspection of these plots it was identified that the 
(approximated) quadrant areas from which biomass samples were acquired are located on (or close to) 
poorly vegetated grounds, which potentially explains the low values for both forms of biomass. Height 
measurements, however, were conducted on four equally spaced locations in each plot, i.e. one in every 
plot’s sub quadrant. Visual inspection indicates that these locations mostly represent seemingly successful 
vegetation, except for the one quadrant from which biomass was sampled and measured, hence the 
relatively higher measured mean height. This is also confirmed by the individual height values at each 
quadrant location prior to averaging, where only the measurement taken close to the biomass sample 
location stands out in the downwards direction. This explains the separated validity of both height and 
biomass measurements with respect to the sampling location, as well as the observed contradictions existing 
between both traits resulting from the different spatial scales at which each was measured and the within 
plot heterogeneity. 

 

 

 

 

 

 

 

Diagnostic plot for correlation of fresh biomass (left) and dry biomass (right) with measured reflectance at 910nm. 

Diagnostic plot for correlation of fresh biomass (left) and dry biomass (right) with measured height 
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N concentration 
The correlation coefficients for the concentration of N are plausible throughout the near-infrared, 

but the range of values between either low or positive correlations in the visible is not. The observed peak of 
positive correlation in the red at 690nm in particular, however, is not in accordance with findings in existing 
studies. A relatively strong negative correlation is to be expected in the red due to the negative relationship 
between concentration of N and reflectance in the red, i.e. increased N enhances production of chlorophylls, 
which subsequently absorb more at these wavelengths (Mulla, 2013; Daughtry et al., 2000). Generation of 
diagnostic plots of the correlation between the trait and spectra at 690nm revealed that plot 83b in 
particular exhibits significant leverage, in addition to above average residuals, far exceeding the leverage of 
any other plot in the calibration set. The latter results from the notion that the plot’s reflectance at this 
wavelength is rather high and strongly deviating from any of the other plots. The value of N concentration 
associated with the plot, however, is comparatively and illogically high. In addition, plot 77 invokes notable 
influence on the value of r in the red, particularly due to the comparatively high values for both measured N 
concentration and the plot’s reflectance at the 690 nm wavelength. The increased N concentrations may be 
explained by the notion that the samples were acquired on a location with limited vegetation. Decreased 
vegetation cover and increased spacing lowers competition between remaining individual plants and 
enhances their ability to absorb larger quantities of 
nutrients such as nitrogen (Schenk et al. 1999), and 
hence the seemingly striking observations for high N 
concentrations as well as relatively high red 
reflectance due to reduced vegetation cover. Plot 
114b is also indicated to exhibit vast residuals with 
respect to the correlation and displays some sparse 
vegetation nearby the assumed sampling location, 
which relates to it being the plot assigned with the 
highest N concentration value. The majority of the 
remaining plot’s area, however, is represented by vast 
vegetation cover which enhances limited reflectance 
in the red and therefore partially compensates for the 
high N concentration. 

N content 
The peculiarities observed with respect to the correlation coefficients of N content are partially 

comparable those mentioned above for N concentration, which logically follows from the notion that the 
first is a function of the latter and dry biomass. Correlations in the blue are marginally positive and largely 
absent in the red, however, a stronger negative relationship is to be expected in both regions for reasons 
mentioned before. Generation of diagnostic plots of the correlation between the trait and spectra in the blue 
(480nm) and red (690nm) revealed that plots 6 and 83b, respectively, most strongly influence the 
unanticipated coefficients found in both spectral regions. One of the highest values for dry biomass was 
measured in plots 6, resulting in the highest N content value after multiplication with N concentration which 
only slightly exceeds the average. The latter notion relates to why plot 6 was not highlighted in diagnostic 
plots for N concentration, but why it was for N content once dry biomass measures were included. In 
contrast, the reflectance in the blue and red for plots 6 and 83b in particular consistently rank among the 
highest and resultantly invokes significant leverage on the resultant correlation coefficients in this region. In 
accordance with the findings for traits mentioned earlier, both plots display partial or significant areas of 

Diagnostic plot for correlation of N concentration with 
measured reflectance at 690nm. 
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limited vegetation cover and persistent penetration of the background soil, which may explain the deviating 
reflectance at these wavelengths. 

 

Validation set 

N concentration 
The observed correlation coefficients for concentration of N are significantly deviating from findings 

in prior research, and also notably different in comparison to the calibration set. The positive correlation 
throughout the visible spectrum, the further increase in the red at 690nm, and the entire absence of 
correlations in the near-infrared are particularly striking in this respect. Diagnostic plots revealed plot 101 in 
particular invokes significant influence on the low correlation in the near-infrared, judging from its high 
Cook’s value consistently exceeding 1.0 or resolving around 0.5 for different near-infrared wavelengths. Plots 
91a, 69b and 85 all exert similar influences in the near-infrared, to a lesser degree. Diagnostic plots for the 
correlation of N concentration with blue wavelengths (480nm) and in the red (690nm) identified the same 
plots as highly influential.  For all four plots, visual inspection indicates that samples from which N 
concentrations were calculated were retrieved from relatively poorly vegetated areas. This observation is 
confirmed by the notion that the dry biomass weighted in each sample is at the very low end of the 
spectrum. Besides, a large share of the remainder of plot 101 in particular, as well as of 91a, 69b and 85, is 
also scarcely covered with crops. Both notions combined potentially explain why the highest N 
concentrations were measured in these distinct plots. Relatedly, the lowered green cover substantially pulls 
the correlation coefficient in the downward direction throughout the near-infrared. 

The unanticipated increased positive value of r in the red (690nm) is furthermore, and for a major 
part, also ascribable to plots 69b, 85, 101 and 91a, in that particular order. Measured N concentration in 
plots 101 and 91a represent the highest values of the validation’s set range, while these plots measured 
reflectance in the red (and elsewhere in the visible) structurally exceeds the average reflectance of all plots. 
Subsequently, the averaged measured visible reflectance in plots 69b and 85 by far exceeds any of the other 
plot’s reflectance, while measured N concentration is also at the far high end of the range. Measured N 
concentration and reflectance thus contradict findings in previous studies, although this logically follows from 
the different spatial scales at which each parameter was measured and the observed within plot 
heterogeneity. Besides, the uniquely high values for N concentration invoke significant leverage on the 
correlation coefficient in the visible that resultantly pushes the coefficient upwards. 

Diagnostic plot for correlation of N content with measured reflectance at 480nm (left) and 690nm (right). 
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Leaf Chl concentration/content 
The correlation coefficients found for leaf Chl concentration and content are not necessarily 

remarkable with respect to findings in existing studies, i.e. the observed r values are (negative and) close to 
zero in the blue and green, increasingly lower in the red and positive beyond the red-edge in the near-
infrared (Hansen & Schjoerring, 2003). More importantly, however, the coefficients of correlation in the near-
infrared are relatively low (r ≈ 0.35) and structurally lower compared to the calibration set (r ≈ 0.6). Upon 
inspection of the data, plot 101 was again identified to exert significant influence in the near-infrared, 
judging from its Cook’s value structurally exceeding 1.0. Plot 101 represents the plot with the highest value 
for leaf Chl concentration and, relatedly, leaf Chl content. This follows logically from the notion mentioned 
previously, namely that the highest N concentration was also measured within the same plot, and the 
indirect effect of increased N concentration on chlorophyll production (Homolová et al., 2013; Clevers & 
Kooistra, 2012). Due to very limited green cover and vast persistence of background soil within the plot, 
however, the increased chlorophyll concentration and content is not accompanied with increased near-
infrared reflectance as is to be anticipated. These plausible but contradicting observations lie at the 
foundation of reduced correlations in the near-infrared, which are further exaggerated by the relatively large 
leverage due to the comparatively high values for both measures of leaf Chl. 

 

 

 

 

 

 

 

 

Diagnostic plot for correlation of N concentration with measured reflectance at 480nm (left) and 690nm (right). 

Diagnostic plot for correlation of leaf Chl concentration (left) and leaf Chl content (right) with measured reflectance at 
820nm. 
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Summarizing 
In short, the thorough assessment presented briefly above illuminated the likely but persistent 

influence of within plot heterogeneity relating to the plot’s structure on the univariate correlation’s results. 
More important, however, is this notion’s relation to the scale difference of measurements for those metrics 
included in the univariate regression. More specifically, plot averaged reflectance and field trait 
measurements at 1, 2 or 4 locations in each plot, depending on the trait. The latter in particular is based on 
the assumption of relative within-plot homogeneity, and therefore on the notion that a small sample set 
sufficiently represents the whole of the plot. The sample locations, with respect to within-plot structural 
indifferences, produced trait measurement values that are indeed potentially valid by themselves, i.e. being 
representative for the areas in the close vicinity of the distinct sampling location. When regressed with plot 
averaged reflectance, however, non-sensible correlation coefficients were produced as a result from the 
assumption of homogeneity not being met sufficiently. This reasoning is further supported by the fact that 
anomalies were most numerous and influential for traits relying on a single sampling location (biomass, C & 
N). The severity of unanticipated correlations was less for traits relying on 2 (height in polyculture plots) or 4 
samples (height in monoculture plots and leaf Chl), which by averaging are likely better able to correct for 
potential within-plot differences. Consequently, it was decided to remove all plots displaying small or 
extensive structural heterogeneity in one or multiple locations within the plot, for both the calibration (6, 28, 
64, 77, 83b, 100 and 114b) and validation (69b, 70, 85, 91a, 101 and 116b) set, based on a visual inspection 
of the RGB orthomosaic and HDC (see also figure below). 

The process of identifying individual plots with a certain degree of physical heterogeneity quickly 
revealed distinct pattern. Except for one, all of the identified plots received a treatment comprising of 
Rapharus sativa in a monoculture setting, or a polyculture setup in which the latter planting were combined 
with Vicia sativa. The latter was also observed by the researchers, monitoring the field experiment from the 
ground, soon after the first oat plants emerged. It is currently hypothesized that the heterogeneous and 
poor growth of oat plants in these plots may be directly related to the Rapharus sativa treatment, and the 
accumulation of pathogens and, to a lesser degree, nematodes that is believed to take off particularly well 
under this type of cover. It is subsequently argued that, during the deceasing of the Rapharus sativa 
treatment, unknown quantities of chemical phytotoxic substances have been released into the underlying 
soils. Hereafter the latter may have been able to affect the seedlings, either locally or zonally, and effectively 
slow down or entirely stall the subsequent development of oat plants. 

During the course of the field experiment various soil samples have been collected and processed. 
The findings of this sampling at least partially underline the possibility of the hypothesis presented above, 

The plots 
that have 
been 
removed and 
excluded 
from analysis 
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although they are too inconclusive to provide irrefutable confirmation thereof. It has been found, for 
example, that nematodes have indeed accumulated relatively successfully under the Rapharus sativa 
treatment, although the increase is too limited to explain the whole. Likewise, the phytotoxic substances that 
were assumingly released during the dying of Rapharus sativa crops are glucosinolates that are believed to 
slay pathogens and nematodes to a certain degree, hereby potentially promoting the growth of oats plants 
rather than slowing it down. It is, however, not excluded that the nematodes found in the soil samples are 
factually less susceptible to such glucosinolates than is to be anticipated. Similarly important is the notion 
that the soil samples were acquired at the beginning of December prior to the introduction of the Rapharus 
sativa treatment. It is believed that the releasing of glucosinolates is highly varied across the different 
development stages of Rapharus sativa and, resultantly, the soil samples may not provide a valid 
representation of the soil conditions when the oats were sowed a few months later. Consequently, 
considering these influential deliberations, the cause(s) underlying the observed physical within plot 
heterogeneity can neither be confirmed nor precluded. Additional research is ultimately required to further 
assess the validity of the hypothesis. Regardless of the actual validity of the deliberations presented above, 
however, it is argued that the removal of this selection of plots can be justified for due to notion that the 
observed within plot physical heterogeneity is in conflict with the assumed plot homogeneity on which 
sampling procedures were initially grounded (paragraph 5.2). 
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Appendix G: Scatter plots indices –vs- traits (Calibration) 
The below figures depict the scatter plots resulting from regression of index values and in situ 

measured trait values during calibration, on the horizontal and vertical axis, respectively. For each trait, the 
first three scatter plots relate to the best selected existing indices that were identified during calibration (table 
8.1). Subsequently, these are followed by the three (four for fresh biomass) best performing new optimized 
indices as given in table 8.3. The scatter plots resulting from the regression of PLS models and measured 
traits values are presented separately in appendix I. 
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Fresh biomass (FBM) 
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Nitrogen content (N) 
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Carbon content (C) 
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Leaf Chl content (PLA = Projected Leaf Area) 
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Appendix H: Contour plots (Calibration) 
The below figures depict the contour plots resulting from regression of all possible band 

combinations in two-band SR/NDVI/SD indices with distinct traits. The presented colors render the 
coefficient of determination resulting from this regression for each possible index arrangement, of which the 
quantitative value may be distilled from the gradient legend on the right side of each plot.  

Simple Ratio Indices: (λ1/λ2) 
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Normalized Difference Vegetation Indices: (λ2-λ1/λ2+λ1) 
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Simple Difference Indices: (λ1-λ2) 
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Appendix I: PLS figures (Calibration) 

PLS calibration using spectral data only 
Below, the plots used in the PLS calibration process are presented. For each trait, the first plot 

visualizes the relation between the number of components (latent variables) included in the model and the 
RMSEP associated with the resultant model. Subsequently, the plot depicting the loading weights for 
individual explanatory (x) variables is given for 1…n components, the values in parentheses in the legend 
depict the relative amount of x variance explained by each component. The third graph indicates the 
regression coefficients assigned to each explanatory (x) variable for 1…n components included in the PLS 
model. 
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Tabular summaries 

Height 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 88.68 88.68 54.78 54.78 0.466 7.327 8.03% 1507.3 
2 9.56 98.24 4.32 59.1 0.5082 7.068 7.74% 1388.315 
3 1.35 99.59 15.83 74.93 0.6519 5.909 6.47% 982.544 
4 0.32 99.91 0.88 75.81 0.6417 5.997 6.57% 1011.361 
5 0.05 99.96 2.5 78.31 0.5959 6.358 6.97% 1140.695 
6 0.02 99.98 2 80.31 0.5397 6.78 7.43% 1299.262 
7 0.01 99.99 4.86 85.17 0.365 7.935 8.69% 1792.418 
8 0 99.99 3.52 88.69 0.3802 7.829 8.58% 1749.47 
9 0.01 100 4.32 93.01 0.444 7.388 8.10% 1569.585 
10 0 100 0.88 93.89 0.5581 6.597 7.23% 1247.364 

Fresh biomass (FBM) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 88.68 88.68 20.42 20.42 0.06358 0.8352 23.57% 19.5855 
2 9.84 98.52 1.14 21.56 -0.05225 0.8865 25.02% 22.00801 
3 1.06 99.58 5.01 26.57 -0.07607 0.8941 25.23% 22.50631 
4 0.27 99.85 3.6 30.17 -0.1676 0.9316 26.29% 24.41996 
5 0.12 99.97 5.83 36 -0.1548 0.9256 26.12% 24.15329 

Nitrogen content (N) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 88.7 88.7 50.07 50.07 0.4045 2.245 25.01% 141.5479 
2 9.12 97.82 2.54 52.61 0.4018 2.26 25.18% 142.1901 
3 1.78 99.6 8.1 60.71 0.4169 2.218 24.71% 138.6058 
4 0.1 99.7 4.51 65.22 0.3022 2.418 26.94% 165.8602 
5 0.27 99.97 1.03 66.25 0.3654 2.311 25.74% 150.8298 
6 0.01 99.98 5.21 71.46 -0.03091 2.934 32.68% 245.0351 
7 0 99.98 12.41 83.87 -0.2267 3.177 35.39% 291.5799 
8 0.01 99.99 2.5 86.37 0.02131 2.847 31.71% 232.6222 
9 0.01 100 3.28 89.65 0.2358 2.515 28.02% 181.6376 
10 0 100 2.11 91.76 0.4886 2.058 22.92% 121.5517 
11 0 100 0.77 92.53 0.492 2.054 22.88% 120.754 
12 0 100 1.43 93.96 0.482 2.076 23.13% 123.1315 
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Carbon content (C) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 88.698 88.698 6.357 6.357 -0.0964 116.9 21.82% 383674 
2 9.153 97.851 0.449 6.806 -0.25861 125.1 23.35% 440455 
3 1.699 99.55 1.814 8.62 -0.3653 130.3 24.32% 477791.4 
4 0.3 99.85 2.54 11.16 -0.5266 137.8 25.72% 534255.6 
5 0.12 99.97 4.85 16.01 -0.5793 140 26.13% 552669.2 

Leaf Chl content (CHL) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 88.7 88.7 52.17 52.17 0.4349 0.2104 28.08% 1.243245 
2 4.76 93.46 10.19 62.36 0.2322 0.2413 32.20% 1.689276 
3 6 99.46 7.02 69.38 0.557 0.1862 24.85% 0.974552 
4 0.45 99.91 3.28 72.66 0.578 0.1816 24.24% 0.928465 
5 0.06 99.97 6.77 79.43 0.6376 0.1681 22.43% 0.79723 
6 0.01 99.98 2.35 81.78 0.5776 0.181 24.16% 0.92934 
7 0.01 99.99 1.88 83.66 0.5746 0.1818 24.26% 0.935868 
8 0 99.99 0.91 84.57 0.545 0.1877 25.05% 1.001035 
9 0.01 100 1.87 86.44 0.3112 0.2298 30.67% 1.515389 
10 0 100 2.92 89.36 0.01263 0.2735 36.50% 2.172275 
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Scatterplots for PLS fitted values –vs– known response variable values 
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Carbon content (C) 
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PLS calibration using spectral and CSM height data 
Below, the same types of graphs are given as above, i.e. RMSEP, loading weights and regression 

coefficient plots. In contrast to the earlier figures, however, the ones below relate to the process of PLS 
model calibration in which the height stored in the CSM is included as an additional explanatory (x) variable. 
Unfortunately, labeling of the loading weights and regression coefficient plots did not allow reference to 
both wavelengths (in nm) and CSM height (in cm) on the horizontal axis. Hence, only references to the 
wavelengths as variables are included. The height explanatory variable, however, is included on the far left 
side of the horizontal axis, as is clearly discernible in the loading weights graphs allocating notable weight to 
this variable. 
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Tabular summaries 

Height 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 99.96 99.96 72.76 72.76 0.6834 5.642 6.18% 893.6233 
2 0.03 99.99 4.69 77.45 0.7095 5.402 5.92% 820.1065 
3 0.01 100 1.54 78.99 0.7138 5.365 5.88% 807.827 
4 0 100 8.65 87.64 0.8078 4.388 4.81% 542.624 
5 0 100 0.78 88.42 0.8086 4.377 4.80% 540.333 
6 0 100 1.55 89.97 0.7604 4.88 5.35% 676.4209 
7 0 100 0.59 90.56 0.7761 4.725 5.18% 631.9449 
8 0 100 1.25 91.81 0.7112 5.36 5.87% 815.2183 
9 0 100 2.36 94.17 0.6709 5.694 6.24% 929.0757 
10 0 100 2.22 96.39 0.7102 5.321 5.83% 818.1681 

Fresh biomass (FBM) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 99.96 99.96 38.67 38.67 0.291 0.7268 20.51% 14.8296 
2 0.03 99.99 0.27 38.94 0.1975 0.7726 21.80% 16.78518 
3 0.01 100 0.23 39.17 0.1663 0.7872 22.21% 17.43674 
4 0 100 1.98 41.15 -0.00791 0.8646 24.40% 21.0807 
5 0 100 2.41 43.56 -0.04713 0.883 24.92% 21.90112 

Nitrogen content (N) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 99.96 99.96 47.78 47.78 0.3824 2.286 25.46% 146.7963 
2 0.03 99.99 10.12 57.9 0.4651 2.127 23.69% 127.13 
3 0.01 100 0.64 58.54 0.4237 2.208 24.60% 136.9899 
4 0 100 3.75 62.29 0.3976 2.254 25.11% 143.1722 
5 0 100 3.79 66.08 0.2593 2.491 27.75% 176.0537 
6 0 100 1.1 67.18 0.3178 2.395 26.68% 162.144 
7 0 100 4 71.18 -0.03309 2.937 32.72% 245.5523 
8 0 100 8.76 79.94 -0.2196 3.185 35.48% 289.8842 
9 0 100 7.19 87.13 -0.2962 3.269 36.41% 308.0965 
10 0 100 3.68 90.81 0.1663 2.627 29.26% 198.1681 
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Carbon content (C) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 99.96 99.96 17.63 17.63 0.05505 108.5 20.25% 330691 
2 0.03 99.99 0.32 17.95 -0.0535 114.5 21.37% 368677.4 
3 0.01 100 0.45 18.4 -0.229 123.5 23.05% 430085.9 
4 0 100 1.86 20.26 -0.2947 126.8 23.67% 453091.9 
5 0 100 1.19 21.45 -0.4809 135.6 25.31% 518253 

Leaf Chl content (CHL) 
Number 
of PLS 
factors 

Percent variation accounted for Cross-validation 
Factors Responses 

Current Total Current Total R2 RMSEP REP(%) PRESS 
1 99.96 99.96 44.95 44.95 0.3713 0.222 29.63% 1.383216 
2 0.03 99.99 12.82 57.77 0.4443 0.2085 27.83% 1.222653 
3 0.01 100 3.64 61.41 0.2732 0.2388 31.87% 1.598954 
4 0 100 10.34 71.75 0.4603 0.2046 27.31% 1.187331 
5 0 100 4.71 76.46 0.6231 0.1709 22.81% 0.82913 
6 0 100 3.37 79.83 0.5939 0.1778 23.73% 0.893517 
7 0 100 2.72 82.55 0.5534 0.186 24.82% 0.982539 
8 0 100 0.92 83.47 0.5493 0.1872 24.98% 0.991646 
9 0 100 1.34 84.81 0.4715 0.2022 26.99% 1.162656 
10 0 100 1.15 85.96 0.1987 0.2483 33.14% 1.762842 
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Scatterplots for PLS fitted values –vs– known response variable values 
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Carbon content (C) 

 

Leaf Chl content (CHL) 
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Appendix J: Predicted –vs– Observed values (Validation) 
The below figures depict the scatter plots resulting from regression of trait values as predicted by 

vegetation indices and PLS models during validation, and in situ measured trait values, on the horizontal and 
vertical axis, respectively. The wording in parentheses on the horizontal axis relates the index or PLS model 
used to generate the predicted values in the corresponding scatter plot. The goodness-of-fit and the 
absolute and relative prediction accuracy are indicated by the R2, RMSE and CV(RMSE), respectively, for each 
figure. For each trait, the first three scatter plots relate to the best selected existing indices that were 
identified during calibration (table 8.1). Subsequently, these are followed by the three (four for fresh 
biomass) best performing new optimized indices as given in table 8.3. For each trait, the last two scatter 
plots connect to the predictions of the optimal PLS models, i.e. based on only spectral data or both spectral 
and CSM height data, respectively (paragraph 8.3 and appendix I). 

Height 

 

 

R² = 0,652 
60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (REP) 

RMSE = 4.696 CV = 5.24% 

R² = 0,6308 
60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (MTCI) 

RMSE = 4.592 CV = 5.12% 

174 
 



  

 

 

 

R² = 0.565 
60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (MCARI/MTVI2) 

RMSE = 6.984 CV = 7.79% 

R² = 0.744 

60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (SR_i) 

RMSE = 5.191 CV = 5.79% 

R² = 0.7472 

60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (NDVI_i) 

RMSE = 5.159 CV = 5.75% 

175 
 



  

 

 

 

 

 

R² = 0.7728 

60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (SD_i) 

RMSE = 4.811 CV = 5.37% 

R² = 0.7803 

60

70

80

90

100

110

120

60 70 80 90 100 110 120

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (PLS_spectra) 

RMSE = 4.837 CV = 5.39% 

R² = 0.7362 

60

70

80

90

100

110

120

60 65 70 75 80 85 90 95 100 105 110

O
bs

er
ve

d 
he

ig
ht

 (c
m

) 

Predicted height (PLS_spectra_&_CSM) 

RMSE = 5.297 CV = 5.91% 

176 
 



  

Fresh biomass (FBM) 
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Nitrogen content (N) 
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Carbon content (C) 
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Leaf Chl content (CHL) 
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Appendix K: Residuals of predictions –vs– Observed values 
The scatter plots below depict the relation between residuals of predictions (following from the best 

performing model) during validation on the one hand (y-axis) and the observed (i.e. in situ measured) trait 
values (x-axis) on the other (n=28). Based on these graphs, it is reasoned in paragraph 9.2.2 that models 
may be troubled regarding the prediction of extreme (low/high) values. It is argued that this notion is 
particularly valid for C content, fresh biomass and N content, indicated by the comparatively steeper 
(negative) regression lines and higher R2 values with respect to the goodness-of-fit thereof. Following the 
scatterplots, tabular overviews are provided that display the absolute quantitative prediction residuals of all 
validated models for individual plots with respect to observed values. 
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Height prediction residuals 
Table: Residuals of predictions of height during validation for all tested indices (units are in absolute numbers) 

PlotID REP MTCI MCARI/MTVI2 SR_i NDVI_i SD_i PLS1 PLS2 
8 6.391 3.733 5.584 3.379 3.482 5.588 3.643 -1.359 
12 2.733 1.096 4.266 -1.454 -1.368 -0.941 -0.719 -2.428 
15 7.524 5.691 9.398 5.013 5.077 2.783 5.783 4.816 
19 -1.082 -2.877 3.179 -3.173 -3.145 -3.895 -1.492 0.972 
20a 0.288 -1.276 -1.351 -0.233 -0.368 -2.667 -0.676 -3.052 
20b -0.382 -2.638 4.404 0.301 0.329 -0.538 0.610 2.583 
22 3.368 3.334 9.566 6.717 6.586 5.646 7.108 5.647 
30 2.179 0.184 8.855 0.552 0.640 -3.045 1.044 5.861 
40a 4.018 3.976 9.050 5.682 5.650 0.763 3.203 -1.033 
40b 9.859 10.862 9.817 12.283 12.252 9.111 11.679 14.751 
41 -6.287 -6.633 -5.361 -6.766 -6.673 -6.921 -7.131 -0.181 
46 -1.132 -0.772 0.028 0.811 0.826 -1.772 -2.591 -3.957 
47 -0.690 0.316 0.624 1.875 1.830 1.165 -0.597 -4.556 
48 -1.488 0.189 -3.951 -0.270 -0.169 -1.892 -2.790 -1.801 
55 0.852 3.157 -5.807 0.657 0.758 4.672 0.515 1.051 
62 -3.362 2.467 -10.589 -3.586 -3.590 0.821 0.407 -0.727 
66 -1.340 1.659 -6.805 -3.269 -3.190 -0.957 -3.781 -8.433 
69a 6.428 3.294 6.553 3.400 3.476 4.973 4.472 -4.964 
72 3.608 3.283 2.661 6.325 6.133 9.910 6.638 6.483 
78 -9.838 -10.942 -7.226 -12.789 -12.693 -9.276 -7.523 -4.136 
79 2.262 0.129 5.747 0.108 0.182 2.049 3.225 3.961 
89 -6.049 -6.332 0.250 -6.757 -6.787 -6.918 -4.964 -1.820 

91b 3.073 2.844 9.209 3.964 3.969 2.943 4.059 0.564 
93 2.145 3.257 14.294 4.249 3.992 5.601 8.225 13.003 
104 4.424 3.718 7.766 4.149 4.230 4.333 4.968 6.035 
107 -5.800 -5.647 -1.890 -2.806 -2.741 -6.370 -4.519 5.297 
116a 6.447 8.037 7.234 8.232 8.263 3.728 5.068 1.635 
117 -4.762 -2.652 -8.416 -3.940 -3.876 -2.704 -3.919 -1.074 
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Fresh biomass prediction residuals 
Table: Residuals of predictions of fresh biomass during validation for all tested indices (units are in absolute numbers) 

PlotID REP MTCI NDVI_d SR_iii SR_iv NDVI_iii NDVI_iv PLS1 PLS2 
8 -0.651 -0.773 -0.793 -0.731 -0.709 -0.160 -0.601 -0.707 -0.785 
12 -0.974 -1.045 -1.078 -1.117 -1.096 -0.271 -1.083 -1.214 -0.812 
15 -0.168 -0.244 -0.393 -0.248 -0.228 -0.594 -0.324 -0.621 -0.248 
19 -0.035 -0.118 -0.159 -0.090 -0.072 0.100 -0.115 -0.248 0.204 
20a 0.128 0.071 -0.113 0.142 0.153 -0.493 0.075 -0.364 -0.075 
20b 0.948 0.839 0.812 1.014 1.032 0.875 0.984 0.885 0.929 
22 0.092 0.092 0.051 0.295 0.304 -0.083 0.261 0.066 -0.131 
30 -0.051 -0.142 -0.244 -0.099 -0.079 -0.461 -0.254 -0.512 0.125 
40a 0.789 0.793 0.839 0.891 0.905 0.683 0.675 0.291 0.490 
40b 0.838 0.909 0.829 0.942 0.959 -0.305 0.802 0.642 0.866 
41 -1.939 -1.941 -1.971 -1.947 -1.926 -2.057 -1.957 -1.975 -1.405 
46 0.305 0.330 0.403 0.411 0.426 0.319 0.285 0.149 0.259 
47 0.197 0.253 0.334 0.326 0.338 0.338 0.277 0.306 -0.182 
48 -0.065 0.035 0.099 -0.030 -0.008 0.016 -0.123 -0.066 0.059 
55 -1.151 -1.018 -0.946 -1.181 -1.160 -0.742 -1.029 -0.595 -0.932 
62 -0.438 -0.117 -0.182 -0.495 -0.476 -0.604 -0.312 0.031 -0.308 
66 0.659 0.827 0.904 0.548 0.567 0.812 0.624 0.987 0.477 
69a 0.189 0.040 0.060 0.108 0.128 0.538 0.192 0.122 -0.429 
72 -0.296 -0.312 -0.312 -0.078 -0.071 0.386 0.108 0.099 -0.143 
78 -1.059 -1.099 -1.225 -1.185 -1.163 -0.601 -1.037 -0.895 -0.772 
79 0.873 0.775 0.727 0.801 0.821 0.977 0.884 0.976 0.864 
89 -0.014 -0.021 -0.040 -0.033 -0.020 0.149 -0.058 -0.040 0.191 

91b -0.512 -0.517 -0.499 -0.470 -0.455 -0.788 -0.534 -0.496 -1.048 
93 0.812 0.870 0.723 0.934 0.935 0.755 0.988 1.034 0.714 
104 1.164 1.139 1.140 1.161 1.181 1.062 1.155 1.241 1.144 
107 0.583 0.599 0.661 0.702 0.721 0.484 0.529 0.469 1.184 
116a 1.531 1.620 1.767 1.567 1.582 1.433 1.365 1.291 1.222 
117 -1.091 -0.965 -0.963 -1.063 -1.043 -0.857 -1.021 -0.893 -0.785 
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N content prediction residuals 
Table: Residuals of predictions of N content during validation for all tested indices (units are in absolute numbers) 

PlotID MTCI REP NDVI_d SR_iii NDVI_iii SD_iv PLS1 PLS2 
8 -3.39 -2.74 -3.48 -3.03 -2.99 -2.83 -2.51 -3.18 
12 1.36 1.75 1.19 1.27 1.31 0.79 4.02 1.30 
15 0.01 0.40 -0.74 0.01 0.02 -0.79 -3.47 -1.19 
19 -1.07 -0.58 -1.32 -0.95 -0.93 -1.35 -0.91 -0.84 
20a -0.03 0.23 -0.92 0.32 0.20 -0.40 -6.67 -1.69 
20b 1.37 2.00 1.17 1.95 1.96 1.98 3.30 1.68 
22 -0.45 -0.35 -0.77 0.15 0.08 0.23 -3.21 -1.07 
30 -1.63 -1.12 -2.20 -1.62 -1.58 -2.52 -1.64 -2.30 
40a 2.22 2.27 2.40 2.52 2.51 1.32 -4.76 -0.14 
40b 0.57 0.18 0.21 0.54 0.52 0.09 -5.89 -0.34 
41 -4.76 -4.74 -4.89 -4.78 -4.75 -4.88 -7.01 -3.72 
46 0.10 0.03 0.45 0.33 0.34 -0.17 -1.02 -0.70 
47 -0.68 -0.90 -0.31 -0.50 -0.52 -0.43 -1.95 -1.48 
48 0.21 -0.29 0.58 -0.09 -0.05 -0.38 1.17 -0.06 
55 -0.84 -1.52 -0.42 -1.39 -1.35 -0.48 4.80 0.75 
62 1.10 -0.62 0.86 -0.22 -0.27 0.55 5.94 1.27 
66 3.07 2.22 3.51 2.13 2.18 2.28 4.00 2.87 
69a -3.20 -2.39 -3.10 -2.72 -2.67 -2.72 -7.45 -3.92 
72 -2.60 -2.42 -2.71 -1.74 -1.82 -0.61 1.88 -0.97 
78 -3.14 -2.93 -3.78 -3.51 -3.48 -2.73 -1.26 -1.72 
79 2.79 3.35 2.53 2.88 2.92 3.32 3.37 3.65 
89 0.29 0.39 0.14 0.13 0.12 0.11 -1.23 0.64 

91b -3.47 -3.38 -3.42 -3.41 -3.41 -3.46 -5.42 -4.55 
93 0.69 0.49 -0.20 0.57 0.43 1.37 -0.99 0.85 
104 1.24 1.41 1.23 1.25 1.29 1.39 1.51 1.58 
107 1.21 1.19 1.51 1.41 1.43 1.02 2.02 1.98 
116a 3.75 3.34 4.51 3.57 3.59 2.55 2.34 1.79 
117 -1.70 -2.36 -1.63 -2.08 -2.07 -1.75 0.66 -1.04 
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C content prediction residuals 
Table: Residuals of predictions of C content during validation for all tested indices (units are in absolute numbers) 

PlotID MTCI REP NDVI_f SR_iv NDVI_iv SD_v PLS1 PLS2 
8 -116.7 -107.7 -120.8 -91.9 -91.7 -60.4 -112.3 -115.7 
12 -138.0 -132.4 -144.1 -67.3 -67.0 -68.4 -150.4 -116.5 
15 -33.3 -28.3 -46.9 -46.8 -46.6 -57.3 -61.2 -27.3 
19 -28.4 -21.2 -32.3 6.6 6.8 -12.8 -37.6 -3.7 
20a 13.4 16.4 -4.4 -45.4 -45.2 -24.5 -19.1 11.8 
20b 143.1 152.5 141.2 144.7 144.9 140.2 146.7 145.2 
22 46.9 49.2 44.9 51.4 51.7 20.4 45.7 17.0 
30 0.7 7.9 -6.3 -5.7 -5.5 -28.4 -26.1 23.2 
40a 137.5 139.0 141.9 195.3 195.5 120.6 102.0 104.3 
40b 138.0 132.3 134.5 62.2 62.5 39.7 118.1 142.6 
41 -229.2 -229.0 -230.8 -197.4 -197.2 -235.3 -232.1 -178.5 
46 51.6 51.3 60.0 118.4 118.6 45.1 39.1 40.2 
47 52.2 50.0 60.1 80.5 80.7 52.3 56.6 7.2 
48 0.7 -6.1 7.9 1.5 1.7 2.0 -6.6 5.5 
55 -178.0 -187.3 -170.7 -144.3 -144.1 -150.2 -147.7 -167.3 
62 -32.8 -57.0 -40.5 -163.2 -162.9 -61.9 -23.1 -36.5 
66 108.3 96.8 114.9 131.6 131.9 109.7 119.9 80.2 
69a 43.4 55.0 40.9 40.2 40.4 85.8 49.2 1.0 
72 -17.7 -14.1 -17.0 22.4 22.7 32.0 12.5 -14.2 
78 -145.0 -142.2 -159.6 -174.1 -173.9 -95.9 -131.0 -111.6 
79 113.8 121.8 107.7 107.4 107.6 130.2 128.1 120.1 
89 2.2 4.3 -1.2 39.0 39.2 11.8 1.1 15.5 

91b -105.9 -104.0 -105.7 -126.8 -126.5 -135.3 -104.0 -157.5 
93 163.0 161.3 149.4 144.5 144.8 141.3 175.3 138.5 
104 181.3 184.1 182.2 203.4 203.6 173.0 188.7 180.4 
107 90.2 90.4 97.3 53.1 53.5 75.8 81.3 137.3 
116a 252.8 247.7 264.0 229.6 229.9 232.4 229.6 214.4 
117 -146.0 -155.4 -144.7 -159.2 -159.0 -129.3 -141.3 -123.5 
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Leaf Chl content prediction residuals 
Table: Residuals of predictions of leaf Chl content during validation for all tested indices (units are in absolute numbers) 

PlotID MTCI REP NDVI_d SR_v NDVI_v SD_vi PLS1 PLS2 
8 -0.19 -0.15 -0.20 -0.14 -0.14 -0.12 0.01 0.02 
12 -0.17 -0.15 -0.19 -0.15 -0.15 -0.18 -0.02 -0.02 
15 -0.28 -0.26 -0.34 -0.28 -0.28 -0.35 -0.28 -0.25 
19 -0.01 0.02 -0.04 -0.01 -0.01 -0.05 -0.03 -0.02 
20a 0.00 0.01 -0.07 0.02 0.01 -0.06 -0.10 -0.02 
20b -0.19 -0.14 -0.22 -0.18 -0.18 -0.19 -0.15 -0.19 
22 -0.08 -0.09 -0.13 -0.09 -0.10 -0.10 -0.10 -0.09 
30 -0.14 -0.11 -0.20 -0.16 -0.16 -0.25 -0.15 -0.19 
40a 0.07 0.06 0.07 0.07 0.07 -0.04 -0.01 0.07 
40b 0.01 -0.04 -0.01 0.00 0.00 -0.06 -0.24 -0.19 
41 0.11 0.10 0.11 0.12 0.12 0.12 0.19 0.11 
46 0.05 0.02 0.07 0.05 0.05 -0.01 0.06 0.07 
47 0.06 0.02 0.08 0.05 0.05 0.05 0.04 0.06 
48 0.22 0.15 0.26 0.21 0.21 0.18 0.19 0.19 
55 0.26 0.18 0.31 0.25 0.26 0.37 0.50 0.40 
62 0.15 -0.02 0.15 0.11 0.10 0.24 0.22 0.20 
66 0.14 0.05 0.19 0.12 0.13 0.18 0.32 0.28 
69a 0.06 0.12 0.07 0.11 0.12 0.12 0.04 0.15 
72 -0.08 -0.08 -0.11 -0.05 -0.06 0.01 -0.03 -0.04 
78 0.16 0.16 0.11 0.13 0.13 0.22 0.19 0.17 
79 0.07 0.10 0.04 0.06 0.07 0.11 0.06 0.06 
89 -0.07 -0.08 -0.09 -0.10 -0.10 -0.10 -0.11 -0.13 

91b 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.06 
93 -0.04 -0.08 -0.15 -0.12 -0.14 -0.07 0.02 -0.10 
104 0.02 0.02 0.01 0.01 0.01 0.02 0.04 0.01 
107 -0.05 -0.07 -0.03 -0.07 -0.07 -0.11 -0.26 -0.27 
116a 0.08 0.02 0.15 0.07 0.08 -0.02 -0.08 0.00 
117 0.11 0.03 0.13 0.10 0.10 0.14 0.15 0.11 
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Appendix L: Prediction maps 
Below, using the best performing index during validation, prediction maps were generated for each 

trait separately to assess the within-plot variability of predictions. In order to enhance discrimination of 
heterogeneity by means of a visual inspection, the parts of the study not used in either calibration or 
validation procedures are not shown. Likewise, the gradient scale in the legend only relates to observed 
minimum and maximum predicted values within ROIs of the plots used.  

  

196 
 



  

  

197 
 



  

 
 

  

198 
 



  

 

199 
 



  

 

  

200 
 



  

Appendix M: List of formula’s used 

PRESS 
�𝑌𝑌 − 𝑌𝑌� [𝐿𝐿]�

2
 

Where 𝑌𝑌 is a vector storing the known values of the dependent variable. 𝑌𝑌�  represents a matrix in which the 
predicted values of the observations for the dependent variable are stored (Abdi, 2010). 

REP 

100
𝑦𝑦�

�
1
𝑛𝑛
��𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

�
0.5

 

Where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are observed and predicted values of crop trait, respectively. 𝑛𝑛 represents the number of 
plots in datasets (28 for both calibration and validation). At last, 𝑦𝑦� is the mean of the observed values of a 
crop trait (Nguyen & Lee, 2006 p. 352). 

RMSE 

�∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 

Where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are observed and predicted values of crop trait. 𝑛𝑛 represents the number of plots in 
datasets (28 for both calibration and validation). 

Coefficient of Variation CV (for relative (%) RMSE of validated indices/models) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦�

 

Where RMSE represents the Root Mean Square Error, as formulated above. 𝑦𝑦� is the mean of the observed 
values of a crop trait. 

Coefficient of Variation CV (for prediction maps) 
𝜎𝜎

|𝜇𝜇| 

Where 𝜎𝜎 represents the standard error of the population (all observed values within a plots ROI) and 𝜇𝜇 the 
mean value thereof.  
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Appendix N: Screen dumps of scripts utilized during this research 

Extraction of plot averaged spectra (ESRI ArcMap) 
The below script extracts the spectral data from individual plots based on the region of interest 

(ROI) defined for each. Subsequently, the average reflectance values of all pixels within the ROI are averaged 
over each separate waveband. The specific script below performs these tasks only for the first flight line, a 
separate script with slightly different inputs repeats is used for the second flight line for the same purpose. 
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Generation of correlation matrices/contour plots (R) 
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Building the PLS model (R)  

2 
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