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Summary 
 
The objective of this research is to examine the possibilities of modelling air pollution concentrations 
in cities outside Europe at a high spatial resolution (five to ten meters). This is ideally done with 
datasets that are available globally, which would ultimately allow comparison of different cities. This 
is done by using a PM2.5 land use regression equation which was developed in the ESCAPE (European 
Study of Cohorts for Air Pollution Effects) project for the city of London. Also personal exposure to air 
pollution is examined in this study. The main question of this research is: ‘To what extent is it 
possible to model air pollution concentrations in cities outside Europe using the London ESCAPE LUR 
model, how valid is the model and to what extent can the personal exposure of the population to air 
pollution be modelled?’ The main question is divided in three sub-questions which deal with the 
input data of the models, the validation and sensitivity analysis of the models and the personal 
exposure of the population. 
 
This paragraph deals with the methodology of this research. Land use regression models were used 
to model the relationship between the response variable air pollution and two or more explanatory 
variables. These explanatory variables in the ESCAPE project were for instance land use, traffic 
density and topography. The regression equation used in this study consists of two variables: 
‘INTMAJORINVDIST’ (‘i’) and ‘ROADLENGTH_500’ (‘l’). The former is the product of the number of 
cars on the nearest major road and the inverse of distance to this nearest major road. The latter is 
the total amount of roads within a buffer of 500 meters. The road network data used for this 
regression equation is OpenStreetMap (OSM, 2015). The number of cars on the roads are estimated 
by assuming that all registered cars within a city are driving while they are counted. This assumption 
was needed because traffic intensity data was not available. Two parts of the cities Bangkok and 
Mexico City were modelled in this research project. Validation and sensitivity analysis were carried 
out to examine model errors. To examine the exposure of the population, the population numbers of 
the neighbourhoods were distributed across the modelled areas with a global population density 
layer grid used as a weighting layer. Then then the personal exposure could be measured. 
 
This paragraph discusses the results of the first question, which is formulated as follows: ‘which input 
data can be used to compare different cities outside Europe using the model?’ The results have 
shown that it is possible to model PM2.5 values with the London regression equation. However, a 
traffic intensity dataset was not available. This is why assumptions needed to be made about the 
number of cars on a road. The PM2.5 values of the Bangkok area varied from 7.2 to 37066 microgram 
per cubic meter. For Benito Juárez (Mexico City) this ranged from 13.8 to 183727. The high values for 
both cities were all located on and near the major roads. This is why another output was generated 
without these major road locations and a buffer of 10 meter around these major roads. With this 
output the values range from 7.2 to 38.7 for Bangkok and from 13.8 to 46.3 for Benito Juárez.  
 
The results of the second sub-question are discussed in this paragraph. The question was formulated 
as follows: ‘to what extent do model errors occur when the model is applied in a study area outside 
Europe and what causes these errors?’ The input data validation was done by comparing two model 
outputs with different input data. One model output modelled the air pollution with data used in the 
ESCAPE project and one model output modelled air pollution with data used in this research project. 
A direct comparison between the input data was not possible, because the data used in the ESCAPE 
project was not available as open data. By comparing the two model outputs the effects of using 
different input data can be analyzed. The input data validation showed a weak positive correlation 
between the model outputs for Rotterdam of this study and the model output of the ESCAPE project. 
There was an underestimation of the PM2.5 values, but the model errors were not large. This was 
concluded based on the small difference between the Root Mean Squared Error and the Mean 
Absolute Error. The validation of the models for Bangkok and Mexico City showed that the average 
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model outputs were higher than the remote sensing data. This validation also showed that the 
London regression equation predicted the average PM2.5 values better for Bangkok than for Mexico 
City. The differences in model output between Bangkok and Mexico City can probably be explained 
by the distribution of the major roads. The major roads of Benito Juárez are more evenly distributed 
than the roads in Bangkok. The consequence is that for each grid cell in Benito Juárez a major road is, 
on average, closer than for each grid cell in Bangkok. This could lead to higher PM2.5 values predicted 
by the model. The sensitivity analysis showed that the ‘l’ variable had more influence on the model 
output than the ‘i’ variable.  
 
This paragraph discusses the results of the third sub-question, which was formulated as follows: ‘to 
what extent is it possible to model the personal exposure of the population to air pollution?’ The 
exposure results showed that the population in Mexico City was exposed to higher PM2.5 values than 
the population of Bangkok. The distribution of the population raised the average personal PM2.5 for 
both populations, because the population was concentrated at locations with higher PM2.5 values, 
like roads. A comparison of multiple locations at 50 meters from a major road and locations at 200 
meters from a major road showed that the differences between these locations vary from 1.6 to 4.4 
microgram per cubic metre.  
 
This paragraph deals with the conclusions of this research. With the available global datasets it is 
possible to model air pollution concentrations to a certain extent. The road network dataset can be 
used without much data pre-processing. The traffic intensity dataset is the most problematic one and 
should be obtained locally or be created using assumptions. The model errors are partly explained by 
the input data. The validation of the input data showed an underestimation of the PM2.5 values in 
Rotterdam. The absolute errors showed that there were not many large errors in the predictions. 
This implies that there is a constant underestimation of PM2.5 values in Rotterdam. The model errors 
are also caused by the model itself. The differences between Bangkok and Mexico City showed that 
local calibration would be a suitable solution to take city-specific characteristics into account. This 
will lead to smaller prediction errors. The sensitivity analysis showed that especially the ‘l’ variable 
has a substantial influence on the model output, which means that it is important to use an accurate 
and unambiguously mapped road network dataset. The results of the third sub-question have shown 
that the personal exposure of the population in Bangkok and Mexico City can be estimated with the 
regression equation. For any location in the research area the PM2.5 can be estimated. However, the 
air pollution map and the distribution of the population caused some uncertainties.   
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1. Introduction 
 
Air pollution has been a problem for a long time and several news sources reported on this issue 
lately, especially on the air pollution in large cities throughout the world. Examples of cities that were 
mentioned are Beijing and New Delhi, but also European cities, like Madrid and Milan. This shows 
that air pollution is a worldwide problem in large cities. However, it is not easy to make estimations 
of air pollution concentrations within cities in a quick way. This is one of the reasons that this 
research project was carried out. This section provides information on the context of this research 
project and subsequently more details are given about this study. 
 
This study was done in the context of the ESCAPE project. The European Study of Cohorts for Air 
Pollution Effects (ESCAPE) was carried out to better understand the health effects of long-term air 
pollution exposure. The study in the European context was needed because the impact of air 
pollution on health in Europe was mainly based on research carried out in North America (Beelen et 
al., 2013). It is important to carry out research like this, because air pollution related to traffic can 
have a negative influence on health of citizens. These health effects are caused by long-term 
exposure to certain air pollution concentrations (Beelen et al., 2013). Several epidemiological studies 
have shown that it is important to account for spatial and temporal variation in air pollution 
concentrations within cities (Brauer et al., 2003; Jerrett et al., 2005). Land use regression models are 
able to take this within-city variability of air pollution concentrations into account (Marshall, Nethery, 
& Brauer, 2008). Land use regression models use multiple linear regression to model the relationship 
between the response variable air pollution (dependent variable) and two or more explanatory 
variables (independent variables). These explanatory variables are for instance land use, traffic 
density and topography (Beelen et al., 2013). By using these predictor variables, air pollution can be 
estimated for locations without air pollution measurement instruments (Johnson, Isakov, Touma, 
Mukerjee, & Özkaynak, 2010). The next step is to calculate the personal exposure of persons to these 
air pollution concentrations, for instance at their home location (Beelen et al., 2013; Ryan & 
LeMasters, 2007). LUR models are specifically suitable for calculating personal exposure because of 
the detailed spatial resolution they provide, which is needed to take the variability of air pollution 
concentrations within cities into account (Marshall, Nethery, & Brauer, 2008). Other strong points of 
land use regression models are their empirical basis, which means they can be adapted to local areas 
without adding extra monitoring data and the relatively low costs (Jerrett et al., 2005). Most of the 
LUR models were applied in Europe and North America (Hoek et al., 2008), including those 
developed in the ESCAPE project. This is also one of the reasons that the applicability of LUR models 
will be tested outside Europe and North America. 
 
As stated, the models of the ESCAPE project were only developed and used in Europe. It would 
however also be interesting to apply the models to cities outside Europe because the adverse health 
effects of exposure to air pollution do of course not only apply to cities within Europe. Besides, it is 
also valuable to have a land use regression model which can be applied to several cities by using the 
same data source which is available for all the cities. This makes it easier to compare cities regarding 
air pollution and personal exposure with each other and gives an overall idea of the air pollution 
concentrations in cities throughout the world in a quick way. Because land use regression models 
were mainly applied within European and North American cities, it is the objective of this research to 
examine the possibilities and to evaluate what would currently be possible in modelling air pollution 
concentrations in cities outside Europe. This was done by using one of the LUR models of the ESCAPE 
project. Also the exposure of the population to air pollution was examined in this study. All these 
issues described in this introduction led to the following main objective:  
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‘Gain insight in the possibilities to model air pollution concentrations in cities outside Europe using 
the London ESCAPE LUR model, by applying ubiquitous datasets, to validate the model and to 
calculate and compare the personal exposure of the population in these cities.’ 
 
This main objective is divided in the following sub-objectives: 

1. Identify and evaluate relevant and ubiquitous datasets which can be used as input for the 
model. 

2. Identify the deviations that occur when the model is applied to different cities. 
3. Calculate and compare the personal exposure of the population. 

 
Related to these objectives the research questions were formulated. The main research question is: 
 
‘To what extent is it possible to model air pollution concentrations in cities outside Europe using the 
London ESCAPE LUR model, how valid is the model and to what extent can the personal exposure of 
the population to air pollution be modelled?’ 
 
This main question is divided in the following sub-questions: 

1. Which input data can be used to compare different cities outside Europe using the model? 
2. To what extent do model errors occur when the model is applied in a study area outside 

Europe and what causes these errors?  
3. To what extent is it possible to model the personal exposure of the population to air 

pollution? 
 
The second chapter describes the theoretical framework of this study. This chapter is the basis for 
the following chapter which elaborates on the methodology to research the objectives and to answer 
the research questions. The fourth chapter presents the results of this study. Chapter five discusses 
the results and the final chapter deals with the conclusions based on this research. 

  



10 
 

2. Theoretical framework 
 
This chapter deals with the theoretical underpinning of this research. The chapter first provides 
background information on the ESCAPE project. The next section elaborates on different methods to 
model air pollution to highlight the specific characteristics of land use regression models in 
comparison with others. The subsequent sections discuss LUR models. Issues that are covered are: 
the advantages and limitations of LUR models and transferability of LUR models. Section 2.6 
discusses the validation of land use regression models. The subsequent section deals with the 
exposure of the population to air pollution. The chapter results in a synthesis with the expectations 
for this research based on the literature.  
 

2.1 Background information on the ESCAPE project 
The European Study of Cohorts for Air Pollution Effects (ESCAPE) project was carried out to describe 
health effects of long-term air pollution exposure. The study in the European context was needed 
because studies on the health effects of air pollution exposure were mainly carried out in North 
America (Beelen et al., 2013). Several air pollution concentrations were studied in the ESCAPE 
project. Eeftens et al. ( 2012) describe the research on the effects of particulate matter (PM) on 
health. The particulates that were studied are: PM2.5, PM2.5 absorbance, PM10 and PMCOARSE. Besides 
particulate matter, also the effect of nitrogen oxides on health were studied. The nitrogen oxides 
that were taken into account in the project are NOX and NO2 (Beelen et al., 2013). The health data of 
individuals involved in the ESCAPE project was derived from existing cohort studies. The exposure of 
individuals to air pollution concentrations was measured at their home addresses. The home address 
of an individual in a cohort explains a lot of the differences in exposure between individuals (Cyrys et 
al., 2012).  
 
In 36 areas in Europe the air pollution concentrations were measured, although not all the types of 
air pollution were measured in all areas. In 20 study areas particulate matter and nitrogen oxides 
(NO2 and NOX) were measured and in 16 areas only NOX was measured (Beelen et al., 2013). The 
areas consisted most of the time of a large city and its surroundings. However, also larges areas were 
taken into account, for instance in the Netherlands and Belgium where the entire country was 
modelled (Beelen et al., 2013; Cyrys et al., 2012). There was a large variation between the different 
study areas, because the population of the study areas varied between 100000 inhabitants to 
millions of inhabitants for large cities like London or Paris (Cyrys et al., 2012). The outputs of the 
model which are in microgram per cubic meter (µg/m3) represent the annual mean of air pollution 
concentrations at a certain location (Eeftens et al., 2012). 
 
The data that is used in the ESCAPE project is described by Beelen et al. (2013). The data is divided in 
two parts: central GIS data and local GIS data. The central GIS data consists of 4 datasets: a 1:10000 
digital road network from Eurostreets, land use data from the CORINE land cover dataset, population 
density data at a 100m grid and height data from SRTM 90m. The local datasets consist of a local 
digital road network in combination with data about traffic intensity, local land use data with more 
specific local land use types, population density data (which is not modelled, in contrast to the 
central GIS dataset on population density), altitude data (which was only used when local data was 
better than the central dataset) and local data which is specific for a certain study area. Examples of 
these specific data are: ‘information about wood smoke, distance to sea/lake and distance to major 
air pollution sources’ (Beelen et al., 2013, p. 13). The focus in the ESCAPE project was specifically on 
air pollution related to traffic (Eeftens et al., 2012). The association between air pollution caused by 
traffic and health issues is dealt with in the next section.  
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2.1.1 Relevance for epidemiologic studies 
One of the main reasons the ESCAPE project was carried out are the concerns regarding the health 
effects of air pollution. The air pollution that is meant here deals mainly with air pollution caused by 
motorized road traffic (Eeftens et al., 2012). These health effects are shortly described in this section 
to get an idea of the possible effects of long-term exposure to certain air pollution concentrations.  
 
In a review on articles that deal with the effects of particulate matter (PM) on health it is stated that 
there are associations between PM and deaths related to heart and lungs (Pope & Dockery, 2006). 
Especially the long-term exposure to PM seems to have a major impact on mortality. The long-term 
exposure is linked with issues such as cardiovascular illness and arteriosclerosis. Short-term exposure 
to air pollution is linked with issues like hospitalization for heart problems, pneumonia and strokes 
(Pope & Dockery, 2006). It is estimated that variations in PM10 concentrations cause at least 2100 
deaths per year in the Netherlands. This is 1.5% of the total number of deaths per year in the 
Netherlands and is almost twice the number of deaths due to traffic incidents (Brunekreef & Holgate, 
2002). In the same article it is estimated that 40000 deaths are caused by air pollution in Switzerland, 
Austria and France. About half of these deaths are caused by air pollution from road traffic. Another 
illness which is associated with traffic related air pollution (TRAP) is asthma (Brauer et al., 2003). 
TRAP is an important factor for health effects, therefore it is studied in the ESCAPE project. This is 
evident from the fact that several model indicators are (in)directly related to traffic, like traffic 
intensity data and distance to nearest road (Beelen et al., 2013). 
 
The World Health Organization (WHO) has set up guidelines about air quality in 2006 (World Health 
Organization, 2006). The goal of these guidelines is to reduce the impact of air pollution on health. 
Policy-makers can use these guidelines as targets in order to manage the air quality. Besides the 
guidelines the report also presents interim targets. These interim targets are especially meant for 
areas with high air pollution concentrations. By using these interim targets a shift can be made from 
high concentrations with severe health impacts, to lower air pollution concentrations. However, the 
report states that the guidelines should always be the main objective. The guidelines for PM2.5 are 10 
µg/m3 (microgram per cubic meter) per annual mean, which is the long-term guideline and 25 µg/m3 
per 24-hour mean, which is the short-term guideline. The guidelines for PM10 are 20 µg/m3 per 
annual mean and 50 µg/m3 per 24-hour mean. The annual mean of 10 microgram per cubic meter 
was chosen because health effects are likely to occur when the annual PM2.5 concentrations are 
between 11 and 15 µg/m3. Table 1 shows the interim targets and guidelines for PM2.5 and PM10.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. WHO air quality guidelines. Especially the third and fourth column are relevant, 
because PM2.5 values are modelled in this research. These columns indicate respectively the 
PM2.5 threshold values and the risks of exposure to these levels of air pollution.  
Source: WHO (2006) 
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2.2 General air pollution concentration measurement methods 
Before going into detail on land use regression methods, this section deals with several other 
methods which can be used to model air pollution concentrations. Hystad et al. (2011) mention 
several methods which can be used to model air pollution in larger areas, like ‘interpolation of fixed-
site government monitoring data, dispersion modelling, satellite remote sensing, land use regression 
(LUR), and proximity and deterministic methods’ (Hystad et al., 2011, p. 1123). The most important 
methods, in the context of this study, are discussed below to determine their characteristics and 
their strong and weak points. Each sub section ends with a short argument why the specific approach 
is not suitable for this study. 
 

2.2.1 Proximity models 
According to Jerrett et al. (2005) the most basic approach to model spatial and temporal variation in 
air pollution within a city are proximity models. These models are based on the assumption that a 
person’s health is influenced by the proximity to an emission source, like roadways and industrial 
areas (Hystad et al., 2011; Jerrett et al., 2005). Proximity models are for instance used to assess the 
effect of traffic-related air pollution on the respiratory tract of children (Jerrett et al., 2005).  
 
Two advantages of proximity metrics are ‘their clear policy relevance’ and pollution measurements 
are not necessarily required (Allen, Amram, Wheeler, & Brauer, 2011, p. 369). One of the major 
drawbacks of proximity models are the simple assumptions that are used. One example is given by 
Jerrett et al. (2005) which is about a respiratory health survey which is based on the proximity to 
major roadways. Respondents which live within a certain buffer around the roadway were assigned a 
‘1’ and people living outside this buffer were assigned a ‘0’. This is however a very simplistic method 
because it assumes an isotropic dispersion (Ryan & LeMasters, 2007) (i.e. people within the buffer all 
have the same quantity of exposure) and it assumes that people outside this buffer are not exposed 
to certain values of air pollution concentrations (Jerrett et al., 2005). Especially seen in the context of 
the ESCAPE project this is not a suitable approach to measure the personal exposure of the 
population, because the air pollution needs to be known for any address.   
 

2.2.2 Geostatistical interpolation methods 
Another method to model air pollution concentrations is geostatistical interpolation (Beelen et al., 
2013). Interpolation techniques to estimate air pollution concentrations are often used in 
combination with monitoring data (Marshall et al., 2008). Interpolation in this context means that 
the monitoring data is used to predict the values at unknown points (i.e. points where monitoring 
data is not available for). The values of these unknown points are based on the surrounding 
monitoring data points.  
 
A problematic characteristic of interpolation methods is that a ‘smoothly varying concentration field’ 
is created. This means that hot spots of air pollution, such as roadways, are badly covered with these 
models. This is especially problematic in urban areas, where spatial variability is often caused by 
these kind of hot spots (Hoek et al., 2008). This is also linked to what is mentioned by Brauer et al. 
(2003). They state that interpolation is a suitable method to model regional pollution patterns, but it 
fails to capture the variations of air pollution concentrations on a smaller scale. This is often caused 
by the density of a monitoring network and how traffic sources are spatially distributed. The problem 
described in this paragraph makes it very hard to accurately calculate the personal exposure which is 
of importance in the ESCAPE project. Because this method badly covers the hot spots, which 
especially occur in urban areas, it is hardly possible to make an accurate estimation of the personal 
exposure of the population. This certainly applies to people living near roads. 
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2.2.3 Dispersion models 
Dispersion models use different kinds of data to model air pollution concentrations, to be specific: 
topography, emission and meteorological data. The spatial distribution is modelled by using 
assumptions about deterministic processes which deal with the data mentioned before (Jerrett et al., 
2005). A few advantages of this approach are mentioned by Jerrett et al. (2005). Dispersion models 
can capture spatial and temporal differences in air pollution concentrations, without having a dense 
monitoring network. The models can also be used at different geographical scales and they can easily 
be adjusted to be used in different study areas.  
 
Even though a dense monitoring network is not needed, dispersion models are very data intensive 
and using these models requires months of training (Ross et al., 2006). Jerret et al. (2005) mention a 
number of other disadvantages of dispersion models: they require expensive input data, the 
assumptions about dispersion patterns are not realistic, data of different time periods can cause 
estimate errors and extensive cross validation is needed. In contrast to the models mentioned above, 
this model could be suitable to calculate personal exposure of a population. However, the reason 
that expensive input data is needed and that the models require months of training, makes this 
approach less suitable for this research. 
 

2.2.4 Hybrid models 
Hybrid models are a combination of two or more air pollution models. Jerrett et al. (2005) give the 
example of personal monitoring combined with regional monitoring. Personal monitoring is done by 
people who wear measuring equipment on their clothes. This kind of measurements can then be 
compared or combined with measurements from outdoor stations at fixed locations. Besides 
combining personal and regional monitoring, hybrid methods also consist of combining two or more 
air pollution concentration models (Beckerman et al., 2013), for instance two models that are 
mentioned in the paragraphs above. 
 
In the same review article Jerrett et al. (2005) state that personal monitoring is a more accurate 
method to measure exposure of individuals to air pollution concentrations. The reason is that people 
spend most of their time indoors, while fixed monitoring stations are often located outside. The 
combination of regional monitoring and personal monitoring would be a suitable approach within 
the ESCAPE project, because this methodology also takes indoor air pollution into account. However, 
for this research project one of the objectives is to model air pollution in a quick way, preferably with 
datasets with a global coverage. Seen in the context of this objective it makes this methodology less 
suitable for this study. 
 

2.2.5 Remote sensing 
Remote sensing is a relatively new method to estimate air pollution concentrations. Satellites can be 
used to predict air pollution concentrations over large areas. However, they are not suitable for 
applications on a smaller scale, like cities, because of spatial resolution limits (Hystad et al., 2011). 
Remote sensing data can also be used as an input for land use regression models. In a research on 
estimating the variability of PM2.5 in the United States remote sensing data on PM2.5 concentrations 
was used as input for a land use regression model. By comparing two LUR models, one with and one 
without this remote sensing data, it seemed that remote sensing estimates are strong predictors of 
PM2.5 variance (Beckerman et al., 2013; Jerrett et al., 2007). Similar findings are presented by Liu, 
Paciorek and Koutrakis (2009). They found that the regression model with remote sensing data 
predicted the PM2.5 values better than the model without this data. They concluded this by 
comparing the models with PM2.5 data from ground monitoring sites.  
 
One of the advantages of remote sensing is the possibility to measure air pollution concentrations in 
areas where ground monitoring stations are not available. This can for example be done in 
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developing countries where no money is available for ground monitoring of air pollution. Especially in 
developing countries where it is most needed, for instance in countries with large populations and 
high air pollution levels remote sensing can be a suitable method to measure air pollution 
concentrations (Donkelaar et al., 2010). Another advantage of using this technique in assessing air 
pollution concentrations is the availability of these data (Jerrett et al., 2005). Some methods, like 
ground monitoring sites, have issues with obtaining enough values which are representative for a 
larger area. Remote sensing methods are not affected by this issue, because these methods can 
capture air pollution over large areas (Donkelaar et al., 2010). 
 
According to Jerrett et al. (2005) there are two drawbacks of estimating air pollution concentrations 
with remote sensing. The first disadvantage they mention is that it is hard to classify the type of air 
pollution that is derived from remote sensing. The other shortcoming is that an accepted means to 
assess estimate errors does not exist (Jerrett et al., 2005). In particular the spatial resolution 
limitations of the remote sensing methodology makes it less suitable for this study. The spatial 
resolution of remote sensing data would be too low to estimate the personal exposure of the 
population in an accurate way. However, remote sensing data is used in this study for validation of 
the model, because data from ground monitoring stations was not available. 

 
2.3 Land use regression models  
Land use regression models use multiple linear regression to model the relationship between the 
response variable air pollution (dependent variable) and one or more explanatory variables 
(independent variables). These explanatory variables are for instance land use, traffic density and 
topography (Beelen et al., 2013). The predictor values are used to explain air pollution 
concentrations at locations without air pollution samplers (Johnson, Isakov, Touma, Mukerjee, & 
Özkaynak, 2010). The air pollution levels can then be predicted for locations like homes (Ryan & 
LeMasters, 2007), which can be used for epidemiological studies which use home addresses of 
participants in birth cohorts to estimate air pollution exposure (Beelen et al., 2013). Often the 
predictor variables, which are mentioned above, explain the spatial variation in pollution 
concentration fairly well (Beckerman et al., 2013).  
 
Not only the land use types at the monitoring sites are taken into account, but also land use types 
that are within a buffer around these sites (Jerrett et al., 2005). The buffers are included in every LUR 
model, but the size of the buffers vary per study and per variable (Ryan & LeMasters, 2007). The 
response variable, air pollution, is often measured at multiple monitoring locations (Beelen et al., 
2013) to identify the regression. Marshall et al. (2008) provide a clear stepwise description of how 
LUR models are used. The description is as follows: the first step is to measure air pollution 
concentrations at many locations in the study area. Then land use measures within a buffer of each 
monitoring site are needed (e.g. traffic intensity on nearest road within a 1-km buffer). Subsequently 
a regression equation on air pollution concentrations needs to be developed, based on the land use 
in the proximity of monitoring sites. The last step is to apply the regression equation to a raster grid 
in the study area to estimate air pollution for any location in the area. 
 
The capability of a LUR model to predict air pollution can be improved when more sampling sites are 
added (step 1 as described by Marshall et al. (2008)) (Wang et al., 2014). However, by other authors 
this argument is partly rejected. They state that the variability of sampling locations is more 
important than the number of sampling locations. This means that a land use regression model can 
be more suitable when a larger variety of land use characteristics are captured by the sampling 
network (Ryan & LeMasters, 2007).  
 
Land use regression models have often been used for epidemiological studies (Beelen et al., 2013; 
Cyrys et al., 2012; Eeftens et al., 2012; Gilbert, Goldberg, Beckerman, Brook, & Jerrett, 2005; Slama et 
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al., 2007). Land use regression models offer the possibility to retrieve air pollution values from any 
point in the study area, based on several samples. This can provide valuable information on the 
effects of traffic of current and future roads on health of citizens (Gilbert et al., 2005). One of the 
main advantages of LUR models for epidemiologic studies is the opportunity to take within-city 
variability of air pollution concentrations into account  which can be especially advantageous for 
traffic-related air pollution (TRAP) (Poplawski et al., 2009).  
 

2.3.1 Advantages of LUR models 
In comparison with dispersion models (see section 2.2.3 for a description) land use regression models 
are more favourable because they are less data intensive. Besides, LUR models seem to predict well 
(Ross et al., 2006). Another advantage of LUR models that is mentioned by Ross et al. (2006) is that 
they integrate more factors than proximity methods. This argument is further explained by Ryan and 
LeMasters (2007) who state that within a buffer the exposure can be differentiated by using extra 
land-use variables. This cannot be done with a proximity method, because then only one value for a 
whole buffer is accounted for, which is also mentioned in section 2.2.1. 
 
In their evaluation of a land use regression model to predict concentrations of NO2 Ross et al. (2006, 
p. 113) found that it is a robust method and ‘was relatively simple in terms of data inputs required 
and analysis’. Transferability of land use regression models is also an advantage, because different 
studies can be compared and it will save money that would otherwise be spend on monitoring in 
multiple areas instead of only one area (Hoek et al., 2008). This is further explained in section 2.4. In 
terms of cost-effectiveness LUR models are also performing well, especially seen in the light of 
budgets for large epidemiological studies (Hoek et al., 2008). Some advantages in comparison to 
other air pollution modelling methods are that LUR models require less data than dispersion models, 
but on the other hand the models can be more accurate than proximity methods, because more 
factors are included that affect exposure (Ross et al., 2006).   

 
2.3.2 Limitations of LUR models 
Although transferability was mentioned as an advantage in the previous section, it can only be done 
to a certain extent. According to Hoek et al. (2008) the transferability of LUR models depends on the 
similarity between two areas in terms of land use. In another article it is even stated that these 
models are not even transferable most of the time (Johnson et al., 2010). This will be further 
discussed in section 2.4. 
 
Another drawback of these models is that it is hard to make a distinction between the influence of 
the different air pollutants. The reason for this is that some important air pollutants, like NO2 and 
PM2.5, are often highly correlated. The inability of LUR models to represent large variations in air 
pollution concentrations over a short distance near, for instance, major roads is the second 
disadvantage discussed by Hoek et al. (2008). Another limitation that has to be taken into account, 
especially for epidemiological studies, is the amount of outdoor air that infiltrates the homes of 
people. This is an important issue, because people spend a lot of their time at home, while the 
models are based on the air pollution outside. This means that other factors, like daily patterns of 
people, are also important to determine their exposure to air pollution concentrations. The last 
limitation of land use regression models discussed by Hoek et al. (2008) is the problem of 
confounding which can appear when the models are used in epidemiological studies. Hoek et al. 
(2008) explain this by an example where population density is included in a LUR model. This can be 
problematic because population density can also be correlated with low socio-economic status, 
which can also have an influence on the disease that is studied. However, the problem of 
confounding could also occur in other methods. 
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Another limitation of land use regression models is that the output results are influenced by the 
quality of the input data. For example traffic density data is often collected before the sampling 
period. It would however be more ideal when this data is collected during the sampling period. 
Besides, the desired data is not always available (Ryan & LeMasters, 2007). 
 
With land use regression models it is hardly possible to say which emission source is responsible for 
certain air pollution concentrations. This makes it hard to define the right policy to prevent air 
pollution (Johnson et al., 2010). The authors of this article also state that most of the time LUR 
models only address one pollutant at a time. Besides, large numbers of monitoring sites are needed 
as well as accurate data. 

 
2.4 LUR model transferability 
According to Jerrett et al. (2005) it is to a certain extent possible to use land use regression models in 
different cities. However, this can become problematic when moving to cities or study areas with 
deviating topography and land use. In their article it is shown that in a certain study a model was 
used in an area with a very different landscape structure. This resulted in a model which showed very 
few spatial variation and also lacked correlation with measured pollution data. This means that 
transferring LUR models is possible, however, only when there is a similar geographic structure with 
comparable land use and transportation characteristics. Besides, often it requires a lot of samples to 
measure air pollution concentrations (Jerrett et al., 2005). Additionally another article states that for 
each pollutant and urban area the right variables have to be chosen. This is explained by an example 
which uses two cities with different topography. The result is that elevation is included for one city, 
but is left out for the other city. Also distance to the ocean was included for one city, but was of 
course not relevant for the non-coastal city (Ryan & LeMasters, 2007).  
 
In a study which focused specifically on LUR model transferability it was concluded that locally 
calibrated models performed better than transferred models (Allen et al., 2011). This is mainly due to 
the empirical basis of land use regression models, which means that it is tailor-made for a specific 
area (Jerrett et al., 2005). Thus, in epidemiological studies it is better to develop models for a specific 
area of interest, because this will lead to more accurate results. However, it was also found that 
transferred LUR models performed better than proximity metrics (which are discussed before, in 
section 2.2.1). This means that applying a LUR model in another city can be a good compromise 
between price and quality (Allen et al., 2011). 
 
Transferring land use regression models between different countries can be problematic due to 
several causes. Air pollution concentrations could be worse modelled with transferred models 
because of ‘hidden inconsistencies in the data’ or because of fundamental differences in the 
determining factors of air pollution concentrations (Vienneau et al., 2010, p. 9). Therefore, these 
authors state that transferring LUR models to other countries or areas needs to be done with care. In 
fact Vienneau et al. (2010) mention two causes for errors which can occur when land use regression 
models are transferred: the data and the model. On the one hand a LUR model can fail in predicting 
air pollution concentrations because the input data contains errors or the quality is not high enough. 
On the other hand errors can occur because the model is not suitable for the area, i.e. the model 
does not have the right independent variables to predict air pollution concentrations. 
 
Transferring a LUR model between different areas can be successful, although input data needs to be 
from the same source. Another condition that can help in achieving successful model transfers is by 
modelling two areas with similar spatial structure (Poplawski et al., 2009). However, it is also possible 
to achieve a successful transfer when the input data is not from the same source, as shown by 
Poplawski et al. (2009). It should nevertheless be noted that calibration was used when these models 
were transferred. This means that data needs to be available from field monitoring. According to 
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Briggs et al. (2000) it is not needed to have a lot of field monitoring sites for calibration. It is more 
important that the samplers are located at the right positions, i.e. that they ‘reflect the range of 
actual values in the study area’ (Briggs et al., 2000, p. 161). Achieving a successful model transfer can 
be improved by focusing less on achieving the highest R2. This means that the predictability of the 
model will be worse, but the model has more transfer potential. In addition to this transferability of a 
model can also be improved by using centralized and uniform data (Hoek et al., 2008) 
 
One citation which summarizes the section above very well comes from Jerrett et al. (2007, p. 209), 
they state that: ‘the more the model is refined to specific conditions in one locale, the less 
transferable and operational it becomes’. It can be concluded that transferring land use regression 
models is possible, however only to a certain extent and it should be done with care. Local 
characteristics of specific cities have to be taken into account and better results can be achieved 
when cities are chosen with similar characteristics. Also the input data has a large influence on the 
success of a transfer: input data from one, centralized source will probably lead to more success than 
using different local data sources. 

 
2.5 Data availability 
This section deals briefly with the availability of data as input for the land use regression models of 
the ESCAPE project. The focus is mainly on the central datasets as described in section 2.1: a digital 
road network, land use data, population density and height data.  
 

2.5.1 Height data 
The height data that is used in the ESCAPE project is the SRTM90 dataset, which stands for Shuttle 
Radar Topography Mission (Wang et al., 2014) with a 90 meter resolution at the equator. The data 
that is collected by the SRTM is available globally (Eeftens et al., 2012). Since September 2014 for 
some areas the SRTM 1 Arc-Second (30 meter resolution) data have been released (USGS, 2015a). 
Depending on the availability of the data for the area of interest it can be used in this research to 
have more detailed height data.  
 

2.5.2 Land cover data 
For the ESCAPE project CORINE (COoRdination of INformation on the Environment) (Eeftens et al., 
2012) land cover data is used. As CORINE only contains European land cover (Wang et al., 2014) this 
dataset is not suitable for this research. Below a number of alternative datasets are discussed with a 
global land cover.  
 

- GlobCover is an initiative of the European Space Agency (ESA) to obtain a global land cover 
map. The spatial resolution of GlobCover is 300 meters and is collected by using the MERIS 
(MEdium Resolution Imaging Spectrometer). The classification is done according to the UN 
Land Cover Classification (Arino et al., 2007). 

- The Chinese alternative for a global land cover map is Globeland30. Globeland30 has a 30 
meter resolution and has 10 land cover classes: cultivated land, forest, grassland, shrub-land, 
wetland, water bodies, tundra, artificial surfaces, bare land, permanent snow and ice (Ran & 
Li, 2015, p. 1678). 

 

2.5.3 Road network 
Search engines with scientific articles did not show much results about a global road dataset. It is 
however also possible to extract road data from OpenStreetMap. OpenStreetMap makes it possible 
for everyone to edit and add geographic information (C. Liu, Xiong, Hu, & Shan, 2015). Other 
research has shown that OpenStreetMap data is pretty accurate: already in 2008 the OpenStreetMap 
had circa 80% overlap with the Ordnance Survey dataset of England (Haklay, 2010). 
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2.5.4 Population density 
One of the global population density maps is the Gridded Population of the World (GPW). This map is 
based on administrative units and distributes the population uniformly over administrative areas 
(Pozzi, Small, & Yetman, 2002). This uniform distribution is a disadvantage because it does not take 
into account that some parts of an administrative area will be more densely populated than other 
parts. This can be especially problematic when the data is needed for land use regression models 
because in some cases these models require population density data on a city scale. 
 
Another global population density map is the Global Rural-Urban Mapping Project (GRUMP). This 
map has a 927m resolution and is created by the Center for International Earth Science Information 
Network (CIESIN), just like the GPW which was mentioned above (Schneider, Friedl, & Potere, 2010). 
This dataset has the same basis as the GPW, although it distinguishes between urban and rural areas. 
The urban areas are identified by capturing night-time light of cities with satellites (SEDAC, 2000).  
 
An alternative global dataset with a higher spatial resolution than the two datasets mentioned above 
is the World Population Estimate (ESRI, 2015b). This dataset has a spatial resolution of approximately 
250 meters. The map is created by using satellite imagery to detect places where people do not live, 
like places with water and permanent snow. A lot of texture often indicates places where a lot of 
buildings and road are located, which is an indication that people live there. This is combined with 
additional information, like road intersections and areas with extreme climates. Places with a lot of 
road intersections indicate that people are likely to live there. It is less likely that a lot of people live 
in areas with extreme climates. Combined with census data each grid cell is populated with a certain 
number of people, based on the data mentioned in this paragraph (ESRI, 2015c). 
 

2.6 Validation 
To decide whether a LUR model performs well, validation techniques need to be carried out to prove 
this. A broad range of articles mentioned in this chapter describe the validation technique that was 
used in the research, including the articles about the LUR models of the ESCAPE project (Beelen et 
al., 2013; Cyrys et al., 2012; Eeftens et al., 2012; Wang et al., 2014). The validation method used by 
Beelen et al. (2013) is the leave-one-out-cross-validation, which means that a model is run with one 
monitoring site left out of the model run. The predicted values for this monitoring site are then 
compared with the measured concentration at this monitoring site. This is repeated for all 
monitoring sites which results in a measure which indicates the performance of the model (Hoek et 
al., 2008). An example of a measure of model performance is the Root Mean Squared Error (RMSE). 
The RMSE calculates the squared difference between the observed and the predicted value. All these 
values are then summed up and divided by the total number of observations. The last step is to 
calculate the square root of the last calculated value (Brauer et al., 2003). Another type of validation 
which uses one dataset is to split this dataset in one part to develop the model and one part to 
validate the model (Briggs et al., 1997, as cited in Hoek et al., 2008).  
 
A different validation method is mentioned by Henderson, Beckerman, Jerrett, & Brauer (2007). In 
their article about applying a land use regression model in Vancouver they validate their model by 
using pollution data from other monitoring stations which were not used to develop the model. With 
leave-one-out-cross-validation the model error was estimated. Hoek et al. (2008, p. 7572) call this 
approach a ‘comparison with databases that have not been used in model development’. Besides 
other monitoring stations, which were not used to develop the model, also measurements from 
personal monitoring can be used to validate a model. Personal monitoring means that people wear 
air samplers on their clothes which measure the air pollution concentrations at locations where 
these people are (Jerrett et al., 2005). Also remote sensing data (which is dealt with in section 2.2.5) 
could be used to validate land use regression models because it can predict air pollution 
concentrations over large areas, as stated in that same section. However, on smaller scales, like 
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cities, it is not possible to make detailed predictions because the spatial resolution is limited (Hystad 
et al., 2011). This means that validation can only be roughly done with remote sensing data. 
 

2.7 Exposure 
As stated in the section about the ESCAPE project the personal exposure was measured by using 
home addresses of people in a cohort. These cohorts with health data were already available from 
previous cohort studies (Cyrys et al., 2012; Eeftens et al., 2012). However, these cohorts are often 
not publicly available. Therefore this section shortly describes some datasets which can be used to 
estimate the personal exposure of the population. 
 
Population density maps, like GPW and GRUMP (Pozzi et al., 2002; SEDAC, 2000) mentioned in 
section 2.5.4, could be used to estimate the exposure of the population. These datasets contain a 
global grid with the estimated population per grid. With a random distribution of the population 
within these grids the population can be spread over the surface and be combined with air pollution 
data. However, this gives just an overall and rough picture of the population distribution in a certain 
area. 
 
Another methodology to get a more accurate distribution of population is to combine census data 
with satellite pictures of settlements (Linard, Gilbert, Snow, Noor, & Tatem, 2012). But then there is 
still the problem that the population needs to be distributed within these settlements. Population 
census data can however more accurately be distributed by combing these data with building 
footprints, building volume and the number of building floors. Lwin and Murayama (2009) wrote in 
their article that this methodology provides good results which can be used in micro-spatial analysis. 
Examples of micro-spatial analysis they give are disaster management, consumer market analysis and 
public health programs. Based on this article this seems to be a suitable approach to estimate home 
locations of the population which can subsequently be used to calculate personal exposure. Besides 
the suitability of this methodology for an accurate population distribution, Lwin and Murayama 
(2009) write that some problems still need to be solved. Examples of problems are the estimation of 
how much percent of a building has a residential function and the building status, because buildings 
can be under construction or abandoned. Another likely problem, which is not mentioned in their 
article, is the availability of the data. It is conceivable that a lot of countries lack the data about the 
locations of all buildings with additional attributes, like the number of floors and the types of those 
buildings (e.g. residential or commercial).  
 

2.8 Synthesis 
This synthesis deals with several expectations for this research based on the literature study above. 
With the research objectives and questions in mind, the literature above is used to formulate some 
expected outcomes for this study. 
 
Transferability of a model can be improved by using centralized and uniform data from one source 
(Hoek et al., 2008; Poplawski et al., 2009). Because in this study cities will be compared which are 
located on different continents, transferring of the LUR model will be harder. However, the 
prediction capacity of the models can be improved by calibration (Poplawski et al., 2009). This is 
however dependent on the availability of existing air pollution data. Another issue when using data is 
that it is preferably collected in the same year (Ryan & LeMasters, 2007). It is expected that in this 
study data will be from different years. Although this will worsen the model results, using this data 
can provide insight in the transferability of the ESCAPE LUR model, which has more priority in this 
research than achieving the highest R2. 
 
Besides the data, it is also expected that the difference in land use and topography of the concerned 
cities will play a role in the transferability of the LUR model in this study (Jerrett et al., 2005). The 
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differences which can occur due to land use and topography between the London model and the two 
cities that are using this study can lead to deviations which will be researched in this study. This 
underpinning from literature gives useful insights in what can be taken into account beforehand. 
What is mentioned above comes down to the two error sources mentioned by Vienneau et al. 
(2010). These two error sources are a model which is not suitable for a specific area and the input 
data contains errors or the quality of this data is not high enough. 
 
The last two objectives of this research about population exposure and model validation rely heavily 
on the availability of the data. When (validation) data is not available at all it will be hard, if not 
impossible to examine these questions. However, when data is available the quality of this data will 
play an important role in achieving accurate results (Ryan & LeMasters, 2007). It is for instance 
possible to make accurate estimations of exposure to air pollution when home addresses of 
inhabitants are available. However, the coarser the data is, the less accurate exposure results can be 
achieved. 
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3. Methodology 
 
This section is about the methodology that is used in this study. The research has mainly a 
quantitative approach because land use regression models are quantitative ways to model air 
pollution concentrations (Hoek et al., 2008). The first section deals with the input data and the 
regression equations of the land use regression models. The next section describes which steps need 
to be taken to achieve the objectives. The third section deals with the software used in this study. 
The last part of this methodology chapter deals with the selection of the cities which are modelled 
during this research project. 
 

3.1 Data and the regression equations 
In the ESCAPE model several datasets are included to model air pollution concentrations. Beelen et 
al. (2013) mention the required datasets. The authors make a distinction between datasets that were 
available for all the study areas and datasets that were only used when they were available for the 
specific area. The four central GIS datasets, which were available for all areas are:  

- digital road network data 
- land use data 
- population density data 
- altitude data 

The local GIS data consists of the following five datasets:  
- local road network in combination with data about traffic intensity 
- local land use data with more specific local land use types 
- population density data (which is not modelled, in contrast to the central GIS dataset on 

population density) 
- altitude data (only when local data was better than the central dataset)  
- local data which is specific for a certain study area. Examples of these specific data are: 

‘information about wood smoke, distance to sea/lake and distance to major air pollution 
sources’ (Beelen et al., 2013, p. 13). 

These local datasets were used in the ESCAPE project if European data was not available for a specific 
region, the local data was more up-to-date or more precise than the central datasets (Eeftens et al., 
2012). In this study the road network dataset can be regarded as a central dataset, because 
OpenStreetMap is used, which is discussed in section 4.1.3. The traffic intensity data is regarded as a 
local dataset, which is discussed in section 4.1.5. It depends on the regression equation which 
dataset is required. For this study there are two important data inputs for the models: the digital 
road network and the traffic intensity data. The traffic intensity data consists of all the vehicles which 
pass by per 24 hours on a road (Eeftens et al., 2012). Because traffic intensity datasets were not 
available for the cities modelled in this study, an assumption was made to estimate the traffic 
intensity. This assumption can be found in section 4.1.5. Appendix 2 (section 8.2) provides more 
information on how the traffic intensity data is exactly calculated. 
 
The London model which is applied to Bangkok and Mexico City requires the digital road network 
dataset and the traffic intensity data on those roads. The equation (1) to estimate PM2.5 as it was 
developed for the London area is (Eeftens et al., 2012):  
 
PM2.5 = a + bi + cl (1) 
 
The values of the parameters can be found in table 2. The ‘i' in the first equation stands for 
‘INTMAJORINVDIST’ and the ‘l’ stands for ‘ROADLENGTH_500’.  
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Parameter Value 

a 7.19 

b 1.38*10-3 

c 2.65*10-4 
Table 2. The parameters of the London PM2.5 equation with the corresponding values. 

 
The ‘i’ variable is the product of the traffic intensity on the nearest major road and the inverse of 
distance to the nearest major road. The ‘l’ is the road length of all roads in a buffer of 500 meters. 
 
The Dutch model, which was used to validate the input datasets also required the road network 
dataset and the traffic intensity data, in addition to the regional estimate variable. The Dutch 
regression equation (2) to estimate PM2.5 is (Eeftens et al., 2012): 
 
PM2.5 = a + br + cm + dt (2) 
 
The values of the parameters can be found in table 3. The ‘r’ in the second equation stands for 
‘REGIONALESTIMATE’, the ‘m’ stands for ‘MAJORROADLENGTH_50’ and the ‘t’ stands for 
‘TRAFMAJORLOAD_1000’.  
 

Parameter Value 

a 9.46 

b 0.42 

c 0.01 

d 2.28 * 10-9 
Table 3. The parameters of the Dutch PM2.5 equation with the corresponding values. 

  
The ‘r' variable is a background variable which measures the PM2.5 values at locations which are not 
in the proximity of emission sources, like roads and harbours. This variable was used to explain the 
variation in air pollution which could not be explained by the other variables because of the limited 
buffer size of 5000 meters (Eeftens et al., 2012). The data for this background variable was collected 
at luchtmeetnet.nl which contains a collection of different monitoring sites, for instance from the 
Ministry of Infrastructure and the Environment and the National Institute for Public Health and the 
Environment (Luchtmeetnet, 2016).  
 
The ‘m’ variable consists of the total length of all major roads within a 50 meter buffer. The ‘t’ 
variable is the sum of the traffic load (traffic intensity on a major road * the length of the major road) 
of major roads in a buffer of 1000 meters. Appendix 2 (section 8.2) provides more information on 
how the variables of the London and Dutch equation were calculated. 
 
The road network dataset, which is discussed in section 4.1.3 was downloaded from Geofabrik.de 
(Geofabrik, 2015). With this website it is possible to download the required road data in a shapefile 
format. The fourth chapter also discusses the traffic intensity data which was used in this research 
project. 
 

3.2 Methodology per objective 
Below a stepwise explanation per sub-objective is given of the steps that are required to achieve the 
main objective.  
 

3.2.1 Input data for the regression equations 
The main objectives is divided in three sub-objectives. The first sub-objective is: ‘Identify and 
evaluate relevant and ubiquitous datasets which can be used as input for the model.’ 
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Figure 1 shows the steps that were followed to examine this first sub-objective. The first step is doing 
a literature study to identify relevant input data for the land use regression model. After the data 
identification the data had to be searched for. When suitable data was found it was discussed and 
described to know what input data should be used in the model. This is important because the input 
data influences the model results. Also data pre-processing (when necessary) was done for the first 
sub-objective. 
 

  

3.2.2 Validation & sensitivity analysis 
The second sub-objective of this research is: ‘Identify the deviations that occur when the model is 
applied to different cities.’ After the model was run the deviations of the model needed to be 
identified. In the theoretical framework chapter it is already mentioned that two errors can occur 
when transferring LUR models: the model is not correct or unsuitable data was used. The model 
validation is done by comparing the model outcomes with data from remote sensing, which is also 
described in the theoretical framework (section 2.6). This section in the theoretical framework also 
describes the possibility to validate a model with data from monitoring sites which are not used for 
the development of the model. It was however not possible to find any PM2.5 monitoring site in the 
areas which were modelled. The remote sensing data used in this research have a spatial resolution 
of approximately 10 kilometres at the equator and represent the average PM2.5 values in the period 
between 2001 and 2010 (SEDAC, 2012). For the comparison with the remote sensing data two model 
outputs are used: one ‘standard’ (i.e. unchanged) output and one output which does not include 
major road locations and buffers of 10 meter around major roads. The reason is that these locations 
contain very high PM2.5 values (up to 37000 µg/m3 for Bangkok and 184000 µg/m3 in Mexico City). 
These high values would have a lot of influence on the average PM2.5 values of the models. By 
comparing both outputs of the models the influence of the major roads and their surroundings can 
be assessed. However, for the sensitivity analysis and the exposure modelling the model output is 
used without the major roads and the 10 meter buffers around these major roads. The reasons is 
that these model output values are more similar to the remote sensing data values than the 
‘standard’ output values.  
 
The input data validation was done by using data from the same source as the datasets used in this 
research and apply this data to locations in the Netherlands. This was done for locations which were 
already modelled in the ESCAPE project in order to compare those two outcomes. The reason to 
compare those two outcomes is that in the ESCAPE project European and local datasets were used. 
In this study global data is used and the traffic intensity data is based on assumptions (which is 
described in section 4.1.5). This means that less specific and worse data is used in this study. To 
identify the differences between input datasets, there are two options: to compare the input 
datasets and to compare the outputs of the models with the different input data. In this study only 
the outputs of the models with different input data are compared. The reason is that the road 
network data used in the ESCAPE project is not available as open data.  
 
A part of Rotterdam was used to validate the models with the different input data. The source of the 
datasets that was used in Bangkok and Mexico City was also used in combination with the ESCAPE 
model for the Netherlands. For example, the road network data for Rotterdam is derived from 
OpenStreetMap, just like the road network data for Bangkok and Mexico City. In the ESCAPE project 
the Eurostreets dataset was used for the road network data (Eeftens et al., 2012). By comparing 
these model outputs the effect of the different input datasets can be measured. 
 

Figure 1. Stepwise description of sub-objective 1. 



24 
 

The second sub-objective also contains a section with a sensitivity analysis. The section describes 
which variable has most influence on the model output. This can help in determining the importance 
of the quality of the input data. When a variable has a lot of influence on the model output, it is 
important to have high quality input data. This is less important when the variable has little influence 
on the model output. It means that the sensitivity analysis is not meant to identify deviations, but to 
identify which variables have the most influence to cause the deviations. Figure 2 shows the steps 
which need to be taken to achieve the second sub-objective.   
 

  
Figure 2. Stepwise description of sub-objective 2. 

For the Dutch regression equation one of the inputs consists of a background variable. These 
background variables take the pollution into account that is caused by sources which are not within a 
distance of the maximum buffer distance used in the regression equations (5000 meters). In the 
Dutch model of the ESCAPE project this was modelled by interpolating the data of 10 regional 
background sites (Eeftens et al., 2012, supplementary information).  
 
This study also used background variables which were downloaded from the website of luchtmeet.nl 
(Luchtmeetnet, 2016). In comparison to the background data used in the ESCAPE project this 
research project also used city background variables to interpolate the regional background variable. 
The reason is that it was not possible to cover the research area of Rotterdam with just the 
background variables in the Netherlands. The model was run with two background variables, one 
with all the (city) background measuring sites included and one with two of these measuring sites left 
out. The reason for this choice is that these two background measuring sites are located in and very 
near the research area which could cause too much influence on the model results. For better 
readability the model with all (city) background measuring sites is called ‘model A1’ and the model 
with two measuring sites left out is called ‘model A2’. Additional information on the regional 
background variable can be found in section 3.1.  
 
The input data validation was done by comparing the PM2.5 values at 1226 points. These 1226 points 
were the result of the official ESCAPE model and represent address points. The model output data 
was provided by Utrecht University. To research the correlation between the official ESCAPE model 
and the models created in this research Pearson’s was used. Also the absolute model errors were 
analyzed by applying the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE). 
These statistics were normalized in order to compare the RMSE and the MAE of the two model 
outputs.  
 

3.2.3 Exposure modelling 
The last sub-objective of this research is: ‘Calculate and compare the personal exposure of the 
population.’ Personal in this research means the exposure at the home address of a person. The first 
step of this third objective was to do a literature study to figure out which data is needed to model 
personal exposure and how such an assessment needs to be done. The next step was to find the 
required population data and pre-process it when needed. The last step was to combine the 
population data with the results of the land-use regression model to calculate the exposure of the 
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population to air pollution. The steps are also shown in figure 3. As expected the health data and 
cohorts were not publicly available, like in the ESCAPE project. This is the reason that a less accurate 
exposure assessment was done. To get an overall idea of the exposure of the population the amount 
of people per neighbourhood were randomly distributed over the neighbourhood. A global world 
population layer with a spatial resolution of approximately 250 meters, the World Population 
Estimate (WPE) (ESRI, 2015b), was used as a weight layer to get a more accurate distribution. This 
means that for each neighbourhood the amount of people were distributed based on the weighting 
of a WPE grid cell within that neighbourhood. For example, a neighbourhood with 1000 people 
overlaps with 4 WPE grid cells with a weighting of 0.3, 0.4, 0.1 and 0.2. The first grid cell within that 
neighbourhood gets assigned 300 people, the second grid cell 400 people, the third grid cell 100 
people and the fourth grid cell 200 people. Subsequently the people were randomly assigned a 
location within each grid cell. The reason that not just the WPE is used to distribute the population is 
the large differences between the total amount of people in a neighbourhood according to the WPE 
and the census data. However, by using the WPE as a weight layer a more accurate distribution could 
be made. The 2010 census data of Mexico City can be found at the website of the National Institute 
of Statistics and Geography (INEGI, 2010). The total population of Mexico City (Federal District) in 
2010 was 8851080. The Benito Juárez borough had 385439 inhabitants in 2010. The 2010 census 
data of Bangkok can be found at the website of Citypopulation.de (Citypopulation, 2010). This 
website derived the census data from the National Statistical Office of Thailand. The total population 
of Bangkok in 2010 was 8305218. The six districts of Bangkok used in this research had 489893 
inhabitants in 2010.  
 

 
Figure 3. Stepwise description of sub-objective 3. 

For each randomly distributed person in the modelled areas his or her PM2.5 exposure value was 
derived by taking the PM2.5 model output at the location of the person. The model outputs used for 
the exposure modelling are the outputs with the NoData values for the major roads and the buffers 
of 10 meters around these roads, which is also explained in section 3.2.2. People that were randomly 
distributed on these locations were appointed the same value as the nearest person which was 
outside the major road area. After the people were assigned a value, based on their location, the 
population was classified. The classification table of the WHO, presented in section 2.1.1 of the 
theoretical framework was used to determine in which class each person would fall. Because this 
classification table only provides targets and not ranges, the ranges of the classes are based on the 
report of the WHO (World Health Organization, 2006). The lowest class ranges from 1 to 10 µg/m3, 
the second class ranges from 10.1 to 15, the third class ranges from 15.1 to 25 and the highest class 
ranges from 25.1 to 35. The first class (the Air Quality Guideline class) is provided as an example of 
how the WHO came up with this classification. Most of the health effects start to occur when the 
annual mean of µg/m3 is between 11 and 15. That is why the WHO chose the guideline of 10 µg/m3 
(World Health Organization, 2006). For this research it means that people assigned to this class have 
little chance to get health effects due to air pollution based on their home location. An average 
exposure value for the whole population was calculated in order to compare this value with the 
average air pollution value of the models. This made it possible to analyse the effect of the 
population distribution on the personal exposure.  Also the differences between someone located at 
50 meters from a major road and someone at 200 meters from a major road were analyzed. This 
made it possible to estimate the influence of the population distribution on the personal exposure of 
the population.  
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3.3 Software 
The data pre-processing is mainly done with ArcGIS 10.2 and PCRaster ‘a collection of software 
targeted at the development and deployment of spatio-temporal environmental models’ (PCRaster, 
2015). The PCRaster software is also used to calculate the final land use regression models. The 
python scripts used in the PCRaster software with additional explanation can be found in appendix 3 
(section 8.3). Appendices 1 (section 8.1) and 2 (section 8.2) describe how the road network was 
reclassified and how the variables were pre-processed and calculated. PCRaster was also used to do 
the buffer operations for the regression equations. The ‘windowtotal’ operator uses a square 
window to sum all the values within the defined distance. In the case of the ‘l’ variable this distance 
is 50 cells of 10 meters. Appendix 2.1 (section 8.2.1) provides the python script of the ‘windowtotal’ 
operation. SPSS was used to do the correlation calculations (IBM, 2016).  
 

3.4 City selection 
In London both particulate matter and nitrogen were modelled (Beelen et al., 2013; Eeftens et al., 
2012). The PM2.5 regression equation was used to model the air pollution concentrations in the two 
cities outside Europe. Below the selection of these cities is dealt with. The city of London was chosen 
as the land use regression model which is used in this study. One of the reasons is that London is one 
of the larger cities modelled in the ESCAPE project. By using this model it can be applied to other 
large cities throughout the world. The idea behind it is that data availability will probably be better in 
larger cities in the somewhat more developed countries. Besides, the PM2.5 equation for London 
contains two variables which are directly related to roads and traffic. This means that it is probably a 
suitable model to estimate air pollution in cities with a lot of air pollution problems and a dense road 
network. 
 
The cities that were used in this study are Mexico City (Mexico) and Bangkok (Thailand). These cities 
are selected by using the Wikipedia ‘List of cities proper by population’ (Wikipedia, 2015). Even 
though Wikipedia is not known as a very reliable source, it gave a good indication of the population 
densities in these cities. The population density of the city of London was used as a guidance to find 
cities with similar population densities. Although it was tried to have similar population densities for 
the cities in this study, there are some differences in population density. The main reason was that 
data availability seemed to be worse for cities with a more similar population density. Data 
availability was checked by doing a quick scan on the web. Bangkok and Mexico City seem to be both 
cities with a dense road network, a lot of motorized road traffic and serious air pollution problems. A 
small part of both cities, Mexico City and Bangkok, was analyzed with the model. For Mexico City the 
borough Benito Juárez was chosen which has a total surface of 28.5 km2. In Bangkok an area was 
selected with a similar surface size. Six districts were selected with a total surface size of 31.4 km2. 
The reason that not the entire cities were modelled is the amount of calculation time that would 
take. An overview of the cities and the modelled districts can be found in figure 4 and 5. In the rest of 
this thesis Benito Juárez and Mexico City are used interchangeably. The six districts of Bangkok are 
referred to as Bangkok or the Bangkok area. 
 
As stated in section 3.2.2 the source of the road network dataset (OSM) used for Bangkok and 
Mexico City was also used for the Dutch model. Also the traffic intensity data was estimated in the 
same way for both models. This was done in order to validate the input data. By using cities which 
were already modelled in the ESCAPE project the outcomes of the models could be compared. One 
of the cities that was assessed in the ESCAPE project is Rotterdam. Thus, in this study the road 
network required to model air pollution in Rotterdam was also OpenStreetMap and an assumption 
was made about the traffic intensity data. The output of this model was compared to the original 
output of the ESCAPE project. The area of Rotterdam has a similar surface area (31.6 km2) as the 
areas of Bangkok and Benito Juárez. The area consists of 4 neighbourhoods: Rotterdam-Centrum, 
Noord, Kralingen-Crooswijk and Feijenoord. Figure 6 shows an overview of the area.  
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Figure 4 Overview of Bangkok and the location of the six districts. 
The inset map shows the location of Bangkok within the region. 
Sources: ESRI, HERE, Delorme, MapmyIndia, © OpenStreetMap 
contributors, GIS user community. These sources are derived from 
the ESRI service layer and are not included in the bibliography.  
Own source: ESRI (2015a). 

Figure 5 Overview of Mexico City and the Benito Juárez borough. 
The inset map shows the location of Mexico City within the country. 
Sources: ESRI, HERE, Delorme, MapmyIndia, © OpenStreetMap 
contributors, GIS user community. These sources are derived from 
the ESRI service layer and are not included in the bibliography.  
Own source: ESOC (2010). 

Figure 6 Overview of Rotterdam and the four modelled 
neighbourhoods. The inset map shows the location of Rotterdam 
within the Netherlands. 
 
Sources: ESRI, HERE, Delorme, MapmyIndia, © OpenStreetMap 
contributors, GIS user community. These sources are derived from 
the ESRI service layer and are not included in the bibliography.  
Own source: CBS (2015). 
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4. Results 
 
This chapter contains the results of this study. The chapter presents the results separately for each 
sub-objective.  
 

4.1 Input data for the models 
This section presents the results of the first sub-question and the related sub-objective. The first sub-
question was formulated as follows: ‘Which input data can be used to compare different cities 
outside Europe using the model?’ The objective of this question is to identify and evaluate relevant 
data which can be used as input for the model. The reason that this question is studied is the 
availability and quality of global datasets, which are probably less organized, of a lower quality than 
European datasets, and have presumably a lower spatial resolution. The identification part of this 
sub-objective was done by searching the data on the internet and by searching in scientific literature. 
The evaluation part of this sub-objective was done by comparing the characteristics of the datasets 
with the datasets used in the ESCAPE project. Examples of characteristics are the classification of the 
data, the resolution of the dataset and the data collection method. Subsequently the potential 
consequences of using these datasets in the model is dealt with. 
 
The datasets that are discussed in this section are not all needed as input data for the London 
ESCAPE model or the Dutch ESCAPE model. These models only require the road network dataset and 
traffic intensity data. However, these datasets are also discussed in this section to get a good 
overview of all the datasets with a global coverage. This gives an idea of the possibilities to model air 
pollution concentrations in cities throughout the world and shows the potential issues that could 
occur when the datasets are used. As stated in the theoretical framework the central GIS data used 
in the ESCAPE project consist of 4 datasets: a road network dataset, land use data from the CORINE 
land cover dataset, population density modelled at a 100m grid and height data from the Shuttle 
Radar Topography Mission at a 90m resolution (Beelen et al., 2013). Of the local GIS data only the 
traffic intensity data is discussed because this dataset is required in the equations of the London and 
Dutch LUR model. For each dataset an example is shown with the contours of the modelled area of 
Rotterdam. When possible, the input data of the ESCAPE project is also shown in order to compare 
the datasets. 
 

4.1.1 Elevation dataset 
The height dataset used in the ESCAPE project is SRTM3 (3 arc-seconds), which stands for Shuttle 
Radar Topography Mission with a resolution of 90 meters at the equator (Beelen et al., 2013). 
However, in 2014 the SRTM1 (1 arc-second) data was made publicly available (NASA, 2014). This 
dataset has a spatial resolution of about 30 meters at the equator. A comparison of the two versions 
is shown in figure 7 and 8. 
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 When a specific LUR model requires land surface elevation data, it is possible to use the SRTM1 
version of the elevation dataset. However, the regression equations of the ESCAPE project are based 
on the SRTM version with a spatial resolution of 90 meters. This could influence the output of the 
LUR models. Because the elevation data is not required for the Dutch and the London regression 
equation these data inputs are not validated. Before using the height data with a spatial resolution of 
30 meters a validation should be done to discover the differences between model outputs using a 30 
or 90 meter dataset. If the results do not show significant differences, the 30 meter version can be 
used to obtain a model output with a higher spatial resolution. 

 

4.1.2 Land cover dataset 
The land cover dataset used in the ESCAPE project is the CORINE land cover dataset, which is shown 
in figure 9. This is a dataset which provides the land cover of countries in Europe (Beelen et al., 
2013). Because only the European countries are covered with this dataset another dataset had to be 
found which has a global coverage. One of the advantages of the CORINE land cover dataset in 
comparison with global land cover datasets is the broad class of artificial surfaces. This class contains 
for instance continuous urban fabric (at least 80% of the total surface is covered by artificial objects), 
discontinuous urban fabric (30 to 80% of the total surface is covered by artificial objects), port areas, 
airports and green urban areas (EIONET, 2012). Most global land cover datasets are much less 
comprehensive. Two examples are the GlobeLand30 and GlobCover V2 datasets. These datasets have 
both just one class representing urban areas (Ran & Li, 2015; Schneider et al., 2010): respectively 
‘artificial surfaces’ and ‘artificial surfaces and associated areas’.   
 
This is however a major shortcoming of these datasets in the context of the land use regression 
models. The reason is that the regression models sometimes need this distinction to predict air 
pollution concentrations. Some LUR models require for instance the amount of square meters of high 
density residential land within a buffer of 1000 meters (Eeftens et al., 2012). The fact that this 
distinction is missing, means that the regression equations which require this distinction cannot be 
used with global datasets. When a certain LUR model requires the variable artificial surface it is 

Figure 7. The SRTM 3 dataset with a spatial resolution of 90 
meters. The extent of the area is the study area of Rotterdam 
used in this research project. 
Source of the data: USGS (2015b). 

Figure 8. The SRTM 1 dataset with a spatial resolution of 30 
meters. The extent of the area is the study area of Rotterdam 
used in this research project. 
Source of the data: USGS (2015a). 
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preferred that the GlobeLand30 dataset is used because of the higher spatial resolution of 30 meters 
compared to the 300 meter spatial resolution of the GlobCover V2 dataset (Arino et al., 2007; Ran &  
Li, 2015). An example of the GlobeLand30 dataset is shown in figure 10.  

 

4.1.3 Road network dataset 
For the road network dataset is chosen for OpenStreetMap (OSM). The main reason is that OSM has 
a global coverage. One alternative was found (gRoads), but the focus in this dataset was mainly on 
roads between settlements and not on streets (SEDAC, 2010). An example of the dataset can be 
found in figure 11. It was not possible to find an example of the dataset (Eurostreets) used in the 
ESCAPE project, because that dataset does not seem to be open data. The input road network 
datasets for Bangkok and Mexico City can be found in figure 12 and 13. The classification of these 
roads is based on the classification of Beelen et al. (2013. The reclassification scheme can be found in 
appendix 1 (section 8.1).   
 
 
 
 
 
 
 

Figure 9. The Corine land cover dataset which was used in the 
ESCAPE project. The map has a spatial resolution of 100 meters. 
The extent of the area is the study area of Rotterdam used in 
this research project.  
Source of the data: EEA (2010). 

Figure 10. The Globeland30 dataset which can be used as a 
global alternative for the Corine land cover map. The map has a 
spatial resolution of 30 meters. The extent of the area is the 
study area of Rotterdam used in this research project. 
Source of the data: GlobeLand30 (2010). 

Figure 11. The OpenStreetMap dataset. 
The extent of the area is the study area 
of Rotterdam used in this research 
project. 
Source of the data: Geofabrik (2015).  
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 Although there can be some negative consequences of volunteered geographic information (VGI) 
this was the most preferable option, because of the global coverage of OSM. Some of the 
disadvantages of VGI can be quality inconsistency or the difference between places that are covered 
very well and places that are nearly not covered in OSM. One example given by Haklay (2010) is that 
the coverage is worse in deprived and rural areas. However, in England the OpenStreetMap dataset 
had already a 80% overlap with the dataset of the Ordnance Survey in 2008 (Haklay, 2010). Another 
article mentions that data provided by amateurs can also be credible (C. Liu et al., 2015).  
 
Despite of the lower quality of OpenStreetMap it was used in this research. For a quick comparison 
of different cities this dataset can be convenient. When more accurate results should be achieved it 
is recommended to use a dataset which has a higher quality and a more consistent coverage. This 
can for instance be a dataset which is collected and maintained on a national level. Figure 14 shows 
one of the consequences using the OSM dataset. It can be clearly seen that the two diagonal roads in 
the centre of the background layer are not classified as a major road in the OSM dataset. This 
indicates that the roads are not uniformly classified. 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 12. The OSM input data for the Bangkok area. The major 
roads are used for the ‘i’ variable and both road classes (major 
roads and roads) are used for the ‘l’ variable. 
 
Source of the data: Geofabrik (2015) and OSM (2015). 

 

Figure 13. The OSM input data for the Benito Juárez. The major 
roads are used for the ‘i’ variable and both road classes (major 
roads and roads) are used for the ‘l’ variable. 
 
Source of the data: Geofabrik (2015) and OSM (2015).  
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4.1.4 Population density dataset 
Two datasets which are discussed in the theoretical framework are GRUMP and GPW, which stand 
respectively for Global Rural-Urban Mapping Project and Gridded Population of the World. The 
spatial resolution of the GPW is approximately 5 kilometres at the equator and the spatial resolution 
of the GRUMP is 927 meter (Schneider et al., 2010). This resolution is too coarse for applications, like 
LUR models, when calculating the personal exposure is kept in mind. Another global population 
dataset that is available is the World Population Estimate (WPE) (ESRI, 2015b). Figure 15 shows the 
dataset used in the ESCAPE project and figure 16 shows the WPE dataset for Benito Juárez. The WPE 
dataset is used as a weight layer to distribute the population in Bangkok and Mexico City, which was 
discussed in section 3.2.3. 

Figure 14. Comparison of the OSM road network dataset with 
the background layer, which is the topography service layer of 
ESRI. 
 
Sources: ESRI, HERE, DeLorme, Intermap, increment P Corp., 
GEBCO, USGS, FAO, NPS, NRCAN. These sources are derived from 
the ESRI service layer and are not included in the bibliography.  

Figure 16. The World Population Estimate dataset. The spatial 
resolution is approximately 250 meters. The data is classified 
with a quantile classification, which means that each class 
contains an equal number of grid cells. 
 
Source: ESRI (2015b).  

Figure 15. The population density layer used in the ESCAPE project. 
The spatial resolution is 100 meters. The data of this example consists 
of 4 classes.  
 
Source: EEA (2009). Additional information on this dataset can be 
found in the article of Gallego (2010). 
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The disadvantage of the WPE is that the resolution is still quite high (250 meters) this means that 
land use regression models which require population density as input produce an output with a 
spatial resolution of 250 meters. Another disadvantage is that there are quite some cells which 
contain the NoData value. This could however be solved by filling these cells with values based on 
the neighbouring cells with a neighbourhood operation. However, taken together, the WPE seems to 
be the best option to include in the land use regression models when population density data is 
required. The main reason for this is the spatial resolution which is much higher than the other 
datasets. Chapter five discusses how a higher spatial resolution can be achieved by combining 
population data with additional data, like building footprints, number of buildings floors and building 
volume.  
 

4.1.5 Traffic intensity dataset 
The only local dataset that is discussed here is the traffic intensity dataset. Local datasets were used 
in the ESCAPE project when the data was not available on European level, or were more suitable 
than the European datasets (Eeftens et al., 2012). In the case of this study a dataset with a global 
coverage of traffic intensity is not available. In fact these datasets were not even publicly available 
for Bangkok and Mexico City. The consequence is that assumptions needed to be made about the 
traffic intensity on the roads in cities which are modelled. Another consequence is that a uniform and 
quick comparison between cities is harder to make because a global and consistent dataset is not 
available. 
 
In order to be able to compare Bangkok and Mexico City with the London LUR model a dummy 
dataset was created. This dummy dataset consists of all the vehicles that are registered in these cities 
and these vehicles are distributed over all the roads in Mexico City and Bangkok. Thus, the 
assumption is that all the vehicles are driving when the number of vehicles on the roads are 
‘counted’. This is a very basic and unrealistic assumption, but there was hardly any information 
available on traffic intensity for both cities. Besides, the vehicles which are registered outside the city 
are not taken into account. This can be compensated by assuming that all the registered vehicles 
within the city are driving during the ‘measurement period’. Although these assumptions are very 
straightforward, they were needed in order to estimate the traffic intensity data. The next step was 
to assign a total number of cars per 24 hour period to each road segment. All major roads and roads 
consist of many road segments which together form the road network dataset. The road and major 
road classes are based on the classification of Beelen et al. (2013). The reclassification of the 
OpenStreetMap roads can be found in appendix 1 (section 8.1). All the major roads in a city got 75 
percent of the total number of vehicles registered in the city and the roads got 25 percent of this 
number. Thus, in a city with 1000 registered vehicles, 750 vehicles are assigned to the major road 
class and 250 vehicles are assigned to the road class. Subsequently each road segment gets a 
proportion of the class (road or major road) it belongs to, depending on their length. For example, a 
major road segment has a length of 100 meters. The total length of all major road segments is 5000 
meters. This means that the length of this road segment is two percent of the total length of all 
major road segments. The consequence is that this road segment gets two percent of the vehicles 
which are assigned to the major road class. In this case this is 15 vehicles (0.02 * 750). The data on 
the number of vehicles in Bangkok in 2010 was derived from UN-Habitat (2013). The data on the 
number of vehicles in Mexico City in 2001 was derived from FIMEVIC (2001). More current data was 
not available, or could not be found due to language issues. Appendix 2 (section 8.2) provides more 
information on how the traffic intensity data was used in the regression equations. 

 

4.2 Outputs of the models 
This section provides the outputs of the models. Figure 17 and 18 show the output results of the 
models for Bangkok and Mexico City at a 10 meter resolution. The classes are classified with a 
quantile classification, which means that all classes contain an equal number of grid cells. 
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Figures 19 and 20 show the PM2.5 concentrations for the entire area without the values for the roads 
and a buffer of 10 meter around these roads (this is explained the methodology chapter in the first 
paragraph of section 3.2.2). It is interesting to see that some of the major roads seem to have higher 
air pollution values around it than other major roads. The cause is that some major roads are 
mapped with double lines and some of them are mapped with single lines. This has especially 
influence on the ‘l’ variable which measures the total length of roads within a buffer of 500 meters.  

  
 

Figure 19. The PM2.5 values in the Bangkok area. Yellow indicates 
the lowest values and red indicates the highest values. The major 
roads are drawn in blue. 

Sources: ESRI, HERE, DeLorme, Intermap, increment P Corp., 
GEBCO, USGS, FAO, NPS, NRCAN. These sources are derived from 
the ESRI service layer and are not included in the bibliography. 
Own sources: Geofabrik (2015), OSM (2015).  

Figure 20. The PM2.5 values in the Benito 
Juárez. Yellow indicates the lowest values 
and red indicates the highest values. The 
major roads are drawn in blue. 

Sources: see figure 19. 

Figure 17. The PM2.5 values in the Bangkok area, including the major 
road concentrations. Six classes are used which are defined by a 
quantile classification. 
 
Sources: ESRI, HERE, DeLorme, Intermap, increment P Corp., GEBCO, 
USGS, FAO, NPS, NRCAN. These sources are derived from the ESRI 
service layer and are not included in the bibliography.  

Figure 18. The PM2.5 values in Benito Juárez, including the major 
road concentrations. Six classes are used which are defined by a 
quantile classification. 
 
Sources: ESRI, HERE, DeLorme, Intermap, increment P Corp., 
GEBCO, USGS, FAO, NPS, NRCAN. These sources are derived from 
the ESRI service layer and are not included in the bibliography. 
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Table 4 shows how much grid cells each air pollution class contains, based on the maps without the 
values for major roads and the buffer of 10 meters around these roads. The classification is based on 
the classification of the WHO, mentioned in the theoretical framework. Most grid cells of the 
Bangkok area have values between 10.1 and 25. Almost all the grid cells of Benito Juárez have a value 
above 15.1. The range of PM2.5 values of the Bangkok area varies from 7.2 to 38.7. The PM2.5 values of 
Benito Juárez range from 13.8 to 46.3. Further interpretation of the differences between the two 
cities can be found in section 4.3.2. 
 

 PM2.5 (µg/m3) Grid cells - 
Bangkok area 

% Grid cells - 
Benito Juárez 

% 

7-10 21973 8 0 0 

10.1-15 104441 36 3397 1 

15.1-25 158200 55 221168 84 

25.1-35 5184 2 38989 15 

> 35 45 0 196 0 

Total 289843 100 263750 100 

Table 4.  Number of grid cells per air pollution class. The first column shows the 
air pollution classes based on the classification of the WHO. The second and 
third column show the number and percentage of grid cells per air pollution 
class for Bangkok. The fourth and fifth column idem for Benito Juárez. 

 
Figure 21 and 22 show the outputs of the Dutch PM2.5 model applied to Rotterdam. Model A1 
represents the model output with all the (city) background monitoring sites. Model A2 represents 
the model output with two (city) background monitoring sites left out of the analysis. 

 

Figure 21. PM2.5 values in Rotterdam of the A1 model. The A1 model 
is the model with all (city) background measuring sites.  
 
Sources: ESRI, HERE, DeLorme, Intermap, increment P Corp., GEBCO, 
USGS, FAO, NPS, NRCAN. These sources are derived from the ESRI 
service layer and are not included in the bibliography. 

Figure 22. PM2.5 values in Rotterdam of the A2 model. The A2 model 
is the model with a selection of (city) background measuring sites. 
 
Sources: ESRI, HERE, DeLorme, Intermap, increment P Corp., GEBCO, 
USGS, FAO, NPS, NRCAN. These sources are derived from the ESRI 
service layer and are not included in the bibliography. 
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4.3 Validation and sensitivity analysis of the models 
This sub-chapter deals with the following sub-question: ‘To what extent do model errors occur when 
the model is applied in a study area outside Europe and what causes these errors?’ The related sub-
objective consists of three parts: validation of the input data, validation of the model output and a 
sensitivity analysis. The first part validates the input data. The ESCAPE PM2.5 model output was used 
to do this part of the validation in order to compare the output with the model outputs of this 
research project. The second validation part compares the model results with remote sensing data. 
The sensitivity analysis was done by raising the variables with 20% to measure the influence on the 
average model output.  
 

4.3.1 Validation of the input data 
This section describes the validation of the input data. The validation was done by using the ESCAPE 
PM2.5 regression equation for Rotterdam. OpenStreetMap, the source of the road network data 
which was used for Bangkok and Mexico City, was also used as the source for the road network data 
for Rotterdam. Also the traffic intensity data for Rotterdam was created in the same way as for 
Bangkok and Mexico City. The source of the data that was used to model the PM2.5 values in Bangkok 
and Mexico City was also used to model the PM2.5 values in Rotterdam with the Dutch ESCAPE model. 
Subsequently these model outputs were compared with the original model output which was 
created in the ESCAPE project. The road network input data for Rotterdam can be found in section 
4.1.3 (figure 11). As mentioned in the methodology chapter it was not possible to compare the input 
datasets, because the dataset used in the ESCAPE project was not available as open data. The 
consequence is that this section does only discuss the outputs of the models. As was described in the 
methodology chapter two models were used to compare with the official ESCAPE output for 
Rotterdam: one model which uses all (urban) background monitoring sites and one model which uses 
a selection of (urban) background monitoring sites. To improve readability the former model is called 
‘model A1’ and the latter is called ‘model A2’.   
 
 
The model outputs were compared at 1226 (spatial) points. The comparison of these points was 
done with a correlation measure (Pearson’s r). The correlation measure of model A1 is 0.3. The 
correlation measure model A2 is 0.4. These numbers indicate that there is a weak positive 
correlation between the models with ‘unofficial data’ and the model which uses the ‘original’ ESCAPE 
datasets. The scatter plots below (figures 23 and 24) show that there is an underestimation of the 
PM2.5 values in Rotterdam in comparison with the official ESCAPE output. 

Figure 23. Scatter plot of the outputs of model A1 compared to the 
ESCAPE model output. The values indicate the micrgrams per cubic 
meter. If all values would be on the line, the models would match 
exactly.  

 

Figure 24. Scatter plot of the outputs of 
model A2 compared to the ESCAPE model 
output. The values indicate the micrgrams 
per cubic meter. If all values would be on 
the line, the models would match exactly. 
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The absolute errors of the models can be measured with the Root Mean Squared Error (RMSE) and 
the Mean Absolute Error (MAE). These statistics were normalized in order to compare them. Table 5 
shows that model A2 has slightly lower values for the RMSE, the MAE and the normalized statistics. 
This means that model A2 is slightly more accurate than the other model, i.e. there is less difference 
between the predicted and the observed values.  
 

 Model A1 Model A2 

Pearson’s r 0.3 0.4 

RMSE 2.4 2.1 

NRMSE 16.4 13.7 

MAE 2.3 1.9 

NMAE 15.5 12.6 
Table 5. Statistical measures of the input data validation. 

 
Because the errors were squared, a higher weight is given to large errors in the RMSE. The result is 
that in any case the RMSE is equal to or larger than the MAE. However, when great differences occur, 
the individual errors have a greater variance. Because the RMSE and MAE are nearly equal for both 
models, the errors of the models are not large. The statistical measures mentioned above indicate 
that model A2 is more suitable to predict PM2.5 values than the other model, because there is a 
stronger positive relationship between the two variables and there is a better model fit with more 
accurate predictions. 
 

4.3.2 Validation of the model 
Besides the validation of the input data, the model outputs of Bangkok and Mexico City were 
compared with ‘external’ data in order to validate the model. This means that this data was not used 
to develop the model. The external data for this validation consisted of remote sensing data. Table 6 
shows three values for each city: the average PM2.5 value of the model output, the average PM2.5 

value of the model output without the roads, including a buffer of 10 meters, and the PM2.5 values of 
the remote sensing data. The values in the last column represent the values of the remote sensing 
data grid cell with the most overlap with the model output. The reason that this table also shows the 
values of the model without the major roads, including a 10 meter buffer, is that the values on and 
near roads were rather high. Besides, the model outputs are intended to use for the exposure 
modelling. This means that it is less relevant to know what the values are on the major roads, 
because people do not live there. 
 
Table 6 shows that the six districts in Bangkok have an average PM2.5 value of 19.48 when the roads 
are included in the analysis. When the roads with the 10 meter buffer are excluded, the average 
model output is 16.30. This is pretty much the same as the amount of microgram per cubic meter 
from the remote sensing imagery, which is 15.90. One very small part of the neighbourhoods of 
Bangkok overlaps with a remote sensing grid cell with a value of 13.70, but this overlap is negligible. 
The Benito Juárez borough in Mexico City has an average PM2.5 value of 25.36, which is 8.56 
microgram per cubic meter more than the remote sensing data. When the roads with the 10 meter 
buffer are excluded from the analysis this difference is a little bit smaller (5.16 µg/m3). A small part of 
the borough overlaps with a remote sensing grid cell with a value of 16.20 which makes the 
difference between the model outputs and the remote sensing data a little bit larger.  
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 Average of model output 
(µg/m3) – annual average  

Average of model output, 
without roads (µg/m3) – 
annual average 

Remote sensing (µg/m3)* 
– average of 2001-2010 

Bangkok 19.48 16.30 15.90 

Mexico City 25.36 21.96 16.80  
* This is the grid cell value with the most overlap with the model output. Source of the data: SEDAC (2012) 
Table 6. Comparison of the model output with remote sensing data. The second column shows the average 
model output of the ‘standard’ model. The third column shows the model output without the major road PM2.5 

values and the 10 meter buffer values. The last column shows the PM2.5 values of the remote sensing data.  
 
Compared to the remote sensing data the London model seems to be able to predict PM2.5 

concentrations fairly well for Bangkok, but larger differences occur when the model is applied to 
Benito Juárez (Mexico City). The main reason for the differences between Bangkok and Mexico City is 
probably related to the major roads. Within the six districts of Bangkok there is a total of 93 
kilometres of major roads. In Mexico City there is a total amount of 124 kilometres of major roads. 
Besides, the major roads in Mexico City are more evenly distributed across the surface than the 
major roads in Bangkok. Because one of the variables of the London model is based on the distance 
to the major road, this has an influence on the output map. When the roads are more evenly 
distributed across the surface, the distance to the nearest major road is smaller for every grid cell in 
the research area. This leads to higher output values, because the farther away a major road is, the 
lower the PM2.5 value for a grid cell. Thus, the differences in the average model outputs between 
Bangkok and Mexico City seem mainly to be caused by the spatial distribution of the major roads. 
Besides, the equation is not developed for these specific cities and is most likely based on another 
distribution of major roads. 
 
Another cause is that Benito Juárez contains a lot more kilometres of roads in comparison to the six 
districts of Bangkok. In Benito Juárez there is a total amount of 640 kilometres of roads and in the six 
districts of Bangkok there is a total amount of 428 kilometres of roads. This also has influence on the 
output of the models because the variable ‘l’ calculates the amount of kilometres of roads within a 
buffer of 500 metres for every grid cell. In addition, the district of Mexico City is somewhat smaller 
than Bangkok, which means that Benito Juárez contains even more kilometres of roads per square 
kilometre. Another reason that Bangkok has lower PM2.5 values is the river that flows through the 
modelled area. This means that there are less roads and less air pollution. 

 
4.3.3 Sensitivity analysis 
This section describes the sensitivity analysis. This section is meant to identify which of the variables 
of the London equation has most influence on the output of the model. The two variables of this 
model (‘i’ and ‘l’) were raised with 20% to examine how much percent the output of the model 
would change. Table 7 provides the results of the sensitivity analysis. The second column shows the 
average model output of the London model. These are the results without the major roads and the 
10 meter buffers around these roads. The third column shows the average model output with the ‘i’ 
variable raised with 20%. For both areas there was just a minor difference of 0.6 and 0.5 percent 
which is shown in the fourth column. The fifth column shows the output of the model with the ‘l’ 
variable raised with 20 percent. Changing this variable with 20 percent has more influences than 
changing the ‘i’, because the sixth column shows an increase of 11.2 and 13.5 percent in the average 
model output. The consequences of the differences between the two variables are discussed in 
chapter 5. 
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Also a sensitivity analysis was done for multiple locations in both cities. This is done in addition to the 
sensitivity analysis mentioned above, because that analysis only took average model outputs into 
account. Table 8 shows the results of this sensitivity analysis. This table shows that eight locations 
were analyzed. For each city two locations were analyzed at 50 meters of a major road and two 
locations at 200 meters of a major road. These locations were randomly picked and are 
perpendicular to the major roads. The 200 meter locations lie in one line with the 50 meter locations. 
The numbers in the first column show which pairs belong together. The differences in PM2.5 between 
the model output without the major roads and the ten meter buffer (third column) and the model 
output with variable ‘i’ raised with 20% can be found in the fifth column. These differences are very 
small, as the largest difference is just 1%. The differences between the model output and the model 
output with variable ‘l’ raised with 20% are larger. These differences range from 4.7 to 11.5%. The 
differences between the influence of the two variables correspond with the differences of the 
variables presented in table 7. 

 
 

City Average model 
output 

Average model 
output with 
variable ‘i’ + 20% 

Difference Difference 
(%) 

Average model 
output with 
variable ‘l’ +20 % 

Difference Difference 
(%) 

Bangkok 
areas 

16.3 16.4 0.1 0.6 18.1 1.8 11.2 

Benito 
Juárez 

22.0 22.1 0.11 0.5 24.9 2.9 13.5 

Table 7. Sensitivity analysis of the variables. The second column shows the average model output of the model without the major 
road values and the 10 meter buffer values. The third and fourth column show the difference between the model outputs with 
variable ‘i’ raised with 20% and the model outputs of the second column. The fifth and sixth column show the difference between the 
model outputs with variable ‘l’ raised with 20% and the model outputs of the second column. 

City Location Model 
output 

Variable 'i' 
raised with 
20% 

Difference 
(%) 

Variable 'l' 
raised with 
20% 

Difference 
(%) 

Bangkok 50m 
(1) 

100°32'28.864"E  
13°43'41.352"N 

13.8 13.8 0.0 15.0 8.7 

Bangkok 200m 
(1) 

100°32'30.982"E  
13°43'45.716"N 

9.4 9.4 0.0 9.84 4.7 

Bangkok 50m 
(2) 

100°30'48.318"E  
13°43'6.319"N 

13.9 13.9 0.0 15.1 8.6 

Bangkok 200m 
(2) 

100°30'46.676"E  
13°43'1.733"N 

12.3 12.3 0.0 13.3 8.1 

Benito Juárez 
50m (3)  

99°8'48.643"W  
19°23'33.206"N 

19.1 19.3 1.0 21.3 11.5 

Benito Juárez 
200 m (3) 

99°8'53.486"W  
19°23'33.549"N 

17.4 17.4 0.0 19.4 11.5 

Benito Juárez 
50m (4) 

99°8'42.602"W  
19°23'54.976"N 

22.5 22.7 0.9 25.3 12.4 

Benito Juárez 
200m (4) 

99°8'37.802"W  
19°23'54.617"N 

20.1 20.1 0.0 22.6 12.4 

Table 8. Sensitivity analysis of the variables at eight locations. The first two columns show the locations. The third 
column shows the model output on this location. The fourth and the fifth column show the difference at the locations 
between the normal output and variable ‘i’ raised with 20%. Column six and seven show the difference at the randomly 
picked locations between the normal output and variable ‘l’ raised with 20%.  
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4.4 Exposure modelling 
This section presents the results of the third sub-objective of this research which deals with the 
exposure of the population. The sub-question related to this sub-objective is: ‘To what extent is it 
possible to model the personal exposure of the population to air pollution?’ Figures 25 and 26 show 
the maps with the personal exposure of the population. The classes are classified with a quantile 
classification, which means that each class contains an equal number of people. For a better visibility 
just one percent of the population is shown in this map.  

 
Table 9 shows the exposure of the population to PM2.5. The results show that just a small part of the 
population of the 6 modelled districts in Bangkok is exposed to PM2.5 values below the threshold 
value of the Air Quality Guideline (10 µg/m3). In Benito Juárez, the borough in Mexico City the whole 
population is exposed to PM2.5 values above 10 microgram per cubic meter. The table shows that for 
Bangkok and Mexico City the largest part of the population (resp. 65% and 76%) is exposed to PM2.5 
values between 15.1 and 25. This is partly due to the size of this range in comparison with the range 
of interim target 3. For Bangkok just a small part of the population belongs to the interim target 1 
class (4.5%). People in this class have a 15% higher long-term mortality risk in comparison with the 
lowest class (Air Quality Guideline) according to the WHO report (World Health Organization, 2006). 
In the district of Benito Juárez a considerable number of people are exposed to values above 25 
µg/m3. It is remarkable that almost the whole population of Benito Juárez is exposed to values above 
15 microgram per cubic meter. The explanations for the large differences between the two cities can 
be found in section 4.3.2. Besides the distribution of the roads, another explanation could be the 
distribution of the population, which is discussed below. Both modelled areas have 3 more people in 
the statistics than the population figures mentioned in section 3.2.3. This is probably a small error in 
the ‘create random points’ tool in ArcGIS.  
 
 
 
 
 
 

Figure 25. The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. For 
a better visibility just 1% of the population is shown on this map.  

 
Figure 17 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 18 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 19 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 20 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 21 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 22 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 23 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 
Figure 24 The personal exposure of the population in Bangkok. 
There a five classes which are based on a quantile classification. 

 

Figure 26. The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. For 
a better visibility just 1% of the population is shown on this map. 

 
Figure 2 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 3 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 4 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 5 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 6 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 7 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 8 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 

 
Figure 9 The personal exposure of the population in Benito Juárez. 
There a five classes which are based on a quantile classification. 
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  PM2.5 
(µg/m3) 

Bangkok districts 
(number of people) 

% Benito Juárez 
(number of people) 

% 

Interim target 1 > 25 21896 4.5 90386 23.4 

Interim target 2 15.1-25 320043 65.3 293506 76.1 

Interim target 3 10.1-15 132031 27.0 1550 0.4 

Air quality guideline 0-10 15926 3.3 0 0.0 

Total 489896 100 385442 100 
* This class ranges from 25.1 to 35 in the WHO report, but the model outputs contain values higher 
than 35. 
Table 9. The exposure of the population to PM2.5. The first and second column provide the air pollution 
classes as defined by the WHO (2006). The other columns provide information on the number of people 
exposed to certain values of air pollution. 

 
The differences between the average model output and the average personal exposure can be found 
in table 10. For both cities the average personal exposure is higher than the average model output. 
This indicates that the population is more concentrated at locations with higher air pollution values. 
One of the explanations for this is the distribution method of the population. This distribution is done 
with the World Population Estimate (WPE). The WPE uses several factors to determine where people 
are located, like mentioned in the theoretical framework. Two of these factors are the location of 
roads and road intersections. According to the methodology of the WPE the presence of roads and 
road intersections indicates a higher population density. For this study it means that more people 
were assigned to locations in the proximity of roads. These are the locations with higher air pollution 
values and this is an explanation for the difference between the average model output and the 
average personal exposure. 
 

 Average model 
output 

Average personal 
exposure 

Bangkok districts 16.3 17.4 

Benito Juárez 22.0 22.6 
Table 10. The differences between the average model output 
and the average personal exposure of the population. The 
average model output is the version without values on major 
roads and a buffer of 10 meters around these major roads. 

  
Also the differences between exposure values at 50 metres and 200 metres from a major road were 
calculated. This was done to find out the influence of a location on the exposure of the population. 
The locations which were analyzed are the same as the locations used for the sensitivity analysis. 
Table 11 shows that the absolute differences between the locations at 50 metres of a major road and 
200 meters of a major road range from 1.6 to 4.4 µg/m3. The table also shows that the relative 
differences range from 8.9 to 31.9 percent. Three comparisons between the 50 and 200 meter points 
show a decrease of around ten percent and one comparison shows a considerable larger decrease of 
more than 30%.  
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City Location of measurement Model output 
(µg/m3) 

Difference Difference 
(%) 

Bangkok 50m (1) 100°32'28.864"E  13°43'41.352"N 13.8 4.4 31.9 % 

Bangkok 200m (1) 100°32'30.982"E  13°43'45.716"N 9.4 

Bangkok 50m (2) 100°30'48.318"E  13°43'6.319"N 13.9 1.6 11.5 % 

Bangkok 200m (2) 100°30'46.676"E  13°43'1.733"N 12.3 

Benito Juárez 50m (3)  99°8'48.643"W  19°23'33.206"N 19.1 1.7 8.9 % 

Benito Juárez 200 m (3) 99°8'53.486"W  19°23'33.549"N 17.4 

Benito Juárez 50m (4) 99°8'42.602"W  19°23'54.976"N 22.5 2.4 10.7 % 

Benito Juárez 200m (4) 99°8'37.802"W  19°23'54.617"N 20.1 

Table 11. Model outputs measured at 50 and 200 meters of a major road. The first two columns show the location of the points 
where the output values were measured. The numbers indicate which pairs belong together. The third column shows the PM2.5 

values. The last two columns show the difference between the 50 and 200 meter locations.  
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5. Discussion, limitations and recommendations  
 
This chapter discusses the results of this research. This is done to give an answer to the research 
questions provided in chapter 1. The main activity of this research was to apply the London LUR 
model in Bangkok and Mexico City in order to research the possibilities of applying land use 
regression models in cities which they were not developed for. Sub-activities were discussing the 
availability of the data, validating the model and data, sensitivity analysis and modelling the exposure 
of the population. This chapter starts with discussing and interpreting the results in order to find an 
answer to the research questions. The results are also compared with previous findings from the 
literature. The last two sections of this chapter deal with the limitations of this research and 
recommendations for future research. 
 

5.1 Discussion of the results 
This section discusses the sub-questions in order to find an answer to the main question. The answer 
to the main question can be found in the next chapter. The main question of this research is: ‘To 
what extent is it possible to model air pollution concentrations in cities outside Europe using the 
London ESCAPE LUR model, how valid is the model and to what extent can the personal exposure of 
the population to air pollution be modelled?’ 
 

5.1.1 Input data 
The first sub-question that is dealt with is: ‘Which input data can be used to compare different cities 
outside Europe using the model?’ The results of sub-question 1, based on a search on the internet 
and in scientific literature, show that using global datasets can sometimes be problematic. Especially 
the land cover dataset and population density dataset have a number of disadvantages in 
comparison with the datasets used in the ESCAPE project. This means that additional work is needed 
in order to use them with the land use regression models. The most problematic issue of the land 
cover dataset is that this dataset does not make a distinction between high and low density 
residential land use. This distinction is however sometimes required in the land use regression 
models. A solution could be to make this distinction with additional data, like satellite imagery of city 
lights. The main disadvantage of the World Population Estimate, the global population density layer, 
is that the spatial resolution is lower (250m) compared to the dataset used in the ESCAPE project 
(100m). A solution to obtain a more accurate dataset is provided in section 5.1.3. The elevation 
dataset (SRTM) has a global coverage and was also used in the ESCAPE project, which means that this 
dataset can be used without any problems. The spatial resolution which is available now is even 
higher than the spatial resolution of the dataset used in the ESCAPE project. OpenStreetMap can be 
used as the road network dataset, but the quality can differ per area. Also the classification of the 
roads is not always uniform, which can partly be explained by the fact that anyone can edit and add 
information to OSM (C. Liu et al., 2015). Obtaining a traffic intensity dataset can be very problematic. 
It is not available with a global coverage and even on a national or regional scale a dataset was not 
available for Bangkok and Mexico City. This means that additional work needs to be done, like 
making assumptions on the traffic intensity or monitoring the traffic.  
 

5.1.2 Model errors 
The second sub-question is: ‘To what extent do model errors occur when the model is applied in a 
study area outside Europe and what causes these errors?’ The validation of the input data showed a 
weak positive correlation between the official ESCAPE data and the data used in this research 
project. In comparison with the ESCAPE results, the data used in this project underestimates the 
PM2.5 values in Rotterdam. The differences between the RMSE and the MAE indicate that there were 
not many large errors in the predictions. This indicates that the data used in this research constantly 
underestimates the air pollution in Rotterdam.  
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Besides the validation of the input data also the model was validated against independent 
observations of air pollution. This is a validation of the average model output. Validation at a higher 
spatial resolution was not possible, due to a lack of data from ground monitoring sites. Validation of 
the average model output means that the within-city variability of air pollution values could not be 
validated. The validation of the model showed that the London model predicted the PM2.5 values 
better for the Bangkok area than Benito Juárez. This could be caused by the differences in 
geographical structure of the cities, especially the total length of roads and the distribution of the 
roads across the surface. It is possible that the modelled areas of Bangkok have a similar spatial 
structure as London, which is one of the conditions for a successful model transfer (Poplawski et al., 
2009). Also Jerrett et al. (2005) mention that a similar geographic structure is important to achieve a 
successful model transfer. Although it is hard to say whether the Bangkok area has a similar 
geographic structure as London, it is clear that the geographic structure of Bangkok and Benito 
Juárez has a considerable impact on the output results of the model. On the other hand, the spatial 
resolution of the remote sensing data is limited (approximately 10 kilometres at the equator), which 
was also stated in the theoretical framework (Hystad et al., 2011). This means that validation with 
remote sensing data gives a rather rough estimation of the PM2.5 values in an area. The difference 
between the Bangkok area and Benito Juárez supports the argument that local calibration can 
improve the predictive capability of land use regression models (Allen et al., 2011). By using local 
calibration characteristics of cities can be taken into account which can improve the predictive 
capability of the models. However, when local calibration is not done, the ‘city-specificity’ of a land 
use regression model should always be kept in mind. The reason is that for any LUR model there is a 
consideration between specific variables which may or may not be taken into account and the 
transferability of a model (Jerrett et al., 2007). It is likely that the London model is created specifically 
for London, without having transferability of this model in mind, because that was not one of the 
objectives of the ESCAPE project. The consequence is that applying this model to other cities will lead 
to worse predictions of the air pollution. 
 
The validation of the model and the validation of the input data show that both of the errors 
mentioned by Vienneau et al. (2010) occurred to a certain extent when the model of London was 
transferred to Bangkok and Mexico City. The validation of the model shows that, especially for Benito 
Juárez, other factors also influence the air pollution which are not taken into account in the London 
regression equation. The validation of the input data shows that the input data is to such an extent 
different that it leads to an underestimation of the air pollution in Rotterdam.  
 
The sensitivity analysis showed that the traffic intensity variable (‘i’) has less influence on the model 
output than the variable which measures the total road length within a buffer of 500 meters. This 
means that errors in the traffic intensity dataset have less influence on the model output than errors 
in the road network dataset. However, this finding applies to the regression equation of London and 
can be different for other regression equations of the ESCAPE project. The fact that the traffic 
intensity variable has less influence on the model output than the roads variable is in this research 
project advantageous for the predictive capacity in Bangkok and Mexico City. The reason is that the 
quality of the input data also influences the model output (Ryan & LeMasters, 2007). Because the 
traffic intensity data is based on rather basic assumptions, it is positive that this variable does not 
have much influence on the output of the model. The fact that the ‘l’ variable has quite some 
influence on the model output means that it is important to use correct road network datasets. This 
will lead to a more accurate estimation of the air pollution. 
 

5.1.3 Exposure modelling 
The third sub-question is: ‘To what extent is it possible to model the personal exposure of the 
population to air pollution?’ The results of the third sub-question have shown that PM2.5 values for 
any location in the modelled areas can be estimated, however the within-city variability could not be 
validated, which was discussed in the previous section. The model outputs of Bangkok and Mexico 
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City were combined with the randomly distributed population in order to estimate the exposure for 
each person. The population was classified according to the classification of the WHO (2006). This 
means that it is possible to estimate the exposure of the population to air pollution, however there 
were some uncertainties in the distribution of the population. The random distribution did not take 
household size into account and also the population was not excluded from locations, like rivers or 
parks. This means that there is quite a difference between the actual distribution of the population 
and the distribution used in this research project.  
 
The degree of uncertainty is hard to estimate, but the actual distribution of the population is 
probably more concentrated, due to people living in apartments and because the inhabitants do not 
live on locations, like roads and rivers. The results have shown that the location of the population 
certainly matters in determining the personal exposure. The difference between a location at 50 
meters of a major road and a location at 200 meters of a major road can cause differences in air 
pollution values up to 4.4 µg/m3. This means that an inaccurate distribution of the population causes 
differences in the (average) personal exposure of the population. To get a more accurate distribution 
of the population the population numbers should be combined with building footprints, building 
volume and number of building floors. The methodology of Lwin and Murayama (2009) would be a 
suitable approach to distribute the population in a more accurate way. But, the ESCAPE project 
combined health data of individuals with air pollution concentrations measured at their home 
addresses (Cyrys et al., 2012; Eeftens et al., 2012). This should theoretically be possible with the data 
and results of this research project, because the models can be expanded to entire cities.  
 
Besides the uncertainty of the population distribution there are also uncertainties related to the air 
pollution map. This uncertainty could be caused by the fact that the PM2.5 model was originally 
developed for London. City-specific factors of Bangkok and Mexico City which explain PM2.5 variations 
can be lacking in this model. Local calibration is a suitable methodology to solve this issue (Allen et 
al., 2011). Moreover, the uncertainty could not be examined because ground monitoring stations 
data was not available for these areas. Besides, the sensitivity analysis has shown that the model is 
especially sensitive for differences in the ‘l’ variable, which is the total road length of all roads within 
500 meters. An increase of 20% of this variable led to an increase of the model outputs (both for the 
average model output and the selected spatial locations in both cities) of more than 10%, which is up 
to 3 µg/m3. With this information it is still hard to say what the degree of uncertainty is, but it shows 
that it is important to have a complete and up-to-date dataset. The results have in any case shown 
that both, the distribution of the population and the air pollution maps, can cause wrong estimates 
of the personal exposure of the population. This can be up to 4.4 microgram per cubic meter for a 
difference in location of 150 meters and 3 microgram per cubic meter when the ‘l’ variable is raised 
with 20%. 
 

5.2 Research limitations 
One major limitation of this research is some of the data which was not available. This applies in 
particular to the traffic intensity data and the assumption made about this data is very basic. Besides, 
the data used to estimate the number of vehicles within the cities was based on data from different 
years.  
 
Another limitation is that the models are not dynamic, because they only provide an annual average 
of the PM2.5 values in a city. This means that influences of the weather, the time of the year and the 
time of the day are not taken into account. However, this limitation does not make the models 
useless for the objective of estimating air pollution values at home addresses of individuals. But it 
makes the models less suitable for objectives which require air pollution values at a certain time of 
the year or day.  
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The validation of the model is also a limitation in this research. The lack of monitoring sites within 
both areas (Bangkok and Benito Juárez) made it impossible to validate the model on specific 
locations, for example in the proximity of certain roads. Therefore a validation with remote sensing 
data was done which was only possible with the averages of the model outputs.  
 
A limitation of the exposure modelling is the distribution of the population. The distribution of the 
population was not very accurate because a random distribution was used. Also the population was 
not excluded from unsuitable residential locations, like roads and rivers. This leads to a more 
scattered distribution than the actual population distribution. Another weak factor of this 
methodology is that households were not taken into account. The consequence is that some 
personal exposure values are not correct, for instance for people which were assigned a location on a 
major road. Section 5.1.3 provides more information on how the distribution methodology could be 
improved by taking building footprints into account. This methodology can be used for further 
research to get a more accurate population distribution. 
 

5.3 Recommendations 
Based on the limitations of this research, mentioned in the previous section, this section will provide 
recommendations for further research. The first recommendation is that in further research 
improved methodologies should be used to estimate traffic intensity data. Another option is to use 
existing data on traffic intensity. This would make the air pollution estimations more accurate. 
However, the amount of time that needs to be spend on using other methodologies to estimate 
traffic intensity should be weighted against the influence of the traffic intensity on the output of the 
regression equation.  
 
Another recommendation is to use a more extensive validation approach in further research. One of 
the options could be to apply a land use regression model in an area or city with several air pollution 
ground monitoring sites. This makes it possible to validate the LUR model more accurately than done 
in this research. With an improved validation methodology it is possible to identify differences 
between cities on street level. This gives valuable information on how to improve the transferability 
of land use regression models. 
 
One recommendation, which is not based on a limitation mentioned in the research limitations 
section, is to apply the models to entire cities. The areas modelled in this research project are rather 
small in comparison with the entirety of Bangkok and Mexico City. Because the London regression 
equation is developed for an entire city, it would be more suitable to apply the model to another 
entire city, instead of a small part of it.  
 
For future research it would also be useful to research what is needed to calibrate the models to 
local conditions. It would be interesting to know how much time and effort this would cost and what 
the results are of calibrating the models. This information could be used to weigh up locally 
calibrated models against models without local calibration. 
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6. Conclusion 
 
This study was done to explore the possibilities of applying land use regression models to cities 
outside Europe to estimate air pollution concentrations and examine the exposure of the population. 
The reason to study this is that using one LUR model with ubiquitous datasets for several cities 
makes it easy to compare cities with each other and gives the possibility to estimate air pollution in a 
quick way. This should make it possible to estimate air pollution concentrations with few costs and 
without having to install air pollution samplers, which can be time consuming when cities abroad 
have to be modelled. This study examined the following question, based on the issues described in 
this paragraph: ‘To what extent is it possible to model air pollution concentrations in cities outside 
Europe using the London ESCAPE LUR model, how valid is the model and to what extent can the 
personal exposure of the population to air pollution be modelled?’ 
 
The main question is divided in three sub-questions. The first sub-question deals with the input data 
and is formulated as follows: which input data can be used to compare different cities outside 
Europe using the model? The second sub-question deals with the model errors which are explored by 
validation of the model, validation of the input data and a sensitivity analysis. The second sub-
question is formulated as follows: to what extent do model errors occur when the model is applied in 
a study area outside Europe and what causes these errors? The last sub-question is meant to 
research to which extent the personal exposure of the population can be modelled. The last sub-
question is: to what extent is it possible to model the personal exposure of the population to air 
pollution? 
 
The findings of the first sub-question show that it is dependent on the input requirements of the 
regression equation whether the equation can be calculated. Regression equations which require 
elevation data and road data can be calculated without much extra pre-processing, with respectively 
the Shuttle Rader Topography Mission dataset and the OpenStreetMap dataset. On the other hand, 
regression equations which require population density data and land cover data require additional 
activities to make them suitable for the LUR models. The World Population Estimate can be used for 
the global population density data, but a more accurate dataset should be created. This can for 
instance be done by combining this data with building footprints, building volumes and number of 
floors per building. The GlobeLand30 dataset can be used for the global land cover data. However, 
this dataset does not make a distinction between high and low residential land use, which requires 
additional work to obtain this data. The traffic intensity dataset is the most problematic dataset to 
obtain. This dataset was not available on a global or national level. If this dataset is not available on a 
local level either, assumptions need to be made about the number of cars on the roads. 
 
The findings of the second sub-question show that model errors can partly be explained by the use of 
the input data. The validation of the input data showed a weak positive correlation between the 
ESCAPE output and the outputs of this research project. However, the model outputs of this research 
project underestimated the PM2.5 values in Rotterdam. The absolute errors showed that there were 
not many large errors in the predictions. This implies that there is a constant underestimation of 
PM2.5 values in Rotterdam.  
 
The model errors are also caused by the model itself and not just by the input data. The validation of 
the models showed that there is a reasonably good match between the remote sensing data grid 
cells and the average model outputs. However, the differences between Bangkok and Mexico City 
also show that local calibration would be a suitable solution to take into account city-specific 
characteristics, like the distribution of the roads. This will lead to smaller prediction errors. 
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The sensitivity analysis showed that in the London regression equation especially the total road 
kilometres within a buffer of 500 meters has a substantial influence on the model output. The traffic 
intensity has just little influence on the model output. This means that it is particularly important to 
have a road network dataset which is accurately and unambiguously mapped in order to get a 
representation which is as realistic as possible. On the other hand, it is less important to have 
accurate traffic intensity data. Especially by using a correct road network dataset it is possible to 
obtain smaller prediction errors. 
 
The results of the third sub-question have shown that the personal exposure of the population in 
Bangkok and Mexico City can be estimated with the regression equation. However, the weighting 
layer used for the random distribution still has a rather low spatial resolution (250 meters). On the 
contrary, the results show that it is possible to estimate the PM2.5 value for any location in a research 
area. This makes it possible to estimate the air pollution at home addresses of individuals. This data 
could be used in epidemiological research. 
 
The research has shown that it is possible to model air pollution concentrations in cities outside 
Europe with a spatial resolution of 10 metres. The validity of the models seems to depend a lot on 
the distribution of roads in a city. The distribution of the population used in this research can be 
suitable for a quick comparison between cities, but could be improved by taking more factors into 
account, like the locations of residential buildings. The main conclusion is that a model can be 
created in a rather quick way, with acceptable results, without the need of measuring air pollution 
with ground monitoring stations.  
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8. Appendices 
 

8.1 Appendix 1: reclassification of the road network data 
The table below shows the reclassification of the roads, based on the reclassification scheme of 
Beelen et al. (2013).  
 

Road type Reclassification  

0 Motorways Major road 

1 Main road – major importance Major road 

2 Other major roads Major road 

3 Secondary road Major road / road* 

4 Local connecting roads Major road / road* 

5 Local roads of high importance Road 

6 Local roads Road 

7 Local roads of minor importance Road 

8 Others Road 
* Depends on local knowledge and depends on local knowledge and decision making 
Table 12. Reclassification scheme of the roads, based on the article of Beelen et al. (2013). 

 
Table 13 shows the reclassification used in this research, based on the reclassification of Beelen et al. 
(2013). 
 

OpenStreetMap (Bangkok & Mexico City) Reclassification 

Abandoned Delete 

Bridleway Delete 

Bus_guideway Road 

Bus_stop Delete 

Construction Road 

Corridor Delete 

Cycleway Delete 

Elevator Delete 

Escape Delete  

Footway Delete 

Ford Road 

Junction Road 

Living_street Road 

Motorway Major road 

Motorway_link Major road 

Path Delete 

Pedestrian Delete 

Planned Delete 

Platform Delete 

Primary Major road 

Primary_link Major road 

Proposed Delete 

Raceway Delete 

Residential Road 

Rest_area Delete  

Road Road 

Rural Road 



55 
 

Secondary Road 

Secondary_link Road 

Service Road 

Services Delete 

Steps Delete 

Tertiary Road 

Tertiary_link Road 

Track Road 

Trunk Major road 

Trunk_link Major road 

Unclassified Road 

Unsurfaced Road 

Yes Delete 
Table 13. Reclassification of the OpenStreetMap dataset. The first column shows the OpenStreetMap road 
names. The second column shows how the roads are classified. 3 options were available: the roads could be 
deleted (for example when it was a bicycle path), or they were classified as road or major road. 

 

8.2 Appendix 2: pre-processing & calculation of the variables 
This appendix shows how the variables were calculated. For each variable a short description will be 
provided. 
 

8.2.1 Variables of the London PM2.5 regression equation 
The regression equation of London consists of two variables: ‘i’ and ‘l’. This equation is applied to 
Bangkok and Mexico City. 
 
The ‘i’ variable is a combination of the traffic intensity on the nearest major road and inverse of 
distance to the nearest major road. The first step was to reclassify the roads of both cities, this is 
based on the reclassification scheme in appendix 8.1. Then the total number of vehicles in both cities 
were spread out over the road network: the major roads got 75% and the roads 25%. The length of 
each road segment within each class (major road or road) determined how much vehicles each road 
segment would get, which is the traffic intensity of the road segment. Then the distance to nearest 
major road was calculated for each grid cell centre point in the areas (Bangkok & Mexico City) was 
calculated. Subsequently for each grid cell centre point the following calculation was done: 
(Distance to nearest major road-1 * traffic intensity on this major road) 
 
The ‘l’ variable calculates the total length of all roads within a buffer of 500 meters. The first step was 
to create a fishnet (shapefile raster) with a spatial resolution of 10 meters. The next step was to 
intersect this fishnet with the road network. Then the geometry of each intersected road segment 
was calculated. Then the total length of all roads within a fishnet cell was calculated by summarizing 
the length of the roads per fishnet cell ID. Subsequently this was converted to a map-file in order to 
do the 500 meter buffer calculations in PCRaster (PCRaster, 2015). An example of how the total road 
length within a 500 meter buffer was calculated with PCRaster is: 
 

from pcraster import * 
 
setglobaloption("unitcell") 
Expr = readmap("Fishnet500_10.map") 
Ben_500mBuf_10m = windowtotal( Expr, 50) 
report(Ben_500mBuf_10m, "Ben_500mBuf_10m.map") 
aguila("Clone.map", Ben_500mBuf_10m, Expr) 
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The ‘windowtotal’ operator uses a square window to sum all the values within the defined distance 
(in this case 50 cells of 10 meters). The last step was to clip both variables (‘i’ & ‘l’) to the right extent 
and to calculate the regression equations. The PCRaster scripts can be found in appendix 1. 
 

8.2.2 Variables of the Rotterdam PM2.5 regression equation 
The regression equation of Rotterdam consists of three variables: ‘r’, ‘m’ and ‘t’.  
 
The ‘r’ variable is the variable with the PM2.5 regional background values. The first step was to collect 
the data of the (city) background monitoring sites from Luchtmeetnet.nl. The next step was to 
calculate the average PM2.5 value for 2015 for all monitoring sites. With Inverse Distance Weighting 
an interpolation was made of all the monitoring sites. Two regional estimate maps were created: one 
with all the (city) background monitoring sites and one with two of these monitoring sites left out. 
The reason is that these two monitoring sites were in and very near the modelled area in Rotterdam. 
This could have too much influence on the variable and the regression equation.  
 
The ‘m’ variable consists of the total length of all major roads within a 50 meter buffer. This variable 
was calculated in the same way as the ‘l’ variable of the London regression equation, but then for 
major roads and another buffer size.  
 
The ‘t’ variable is the total traffic load of major roads in a buffer of 1000 meters. The first step is to 
create a fishnet (shapefile raster) of 10 meters. Then an intersection needs to be done with the major 
roads. The next step is to calculate the new length (geometry) of the intersected major roads. Then 
the traffic load of these intersected major roads can be calculated by multiplying the number of 
vehicles on the road with the length of the major road segment. Subsequently the total traffic load of 
major roads per fishnet cell can be calculated by summarizing the traffic load of the major roads per 
fishnet cell ID. Subsequently this was converted to a map-file in order to do the 1000 meter 
calculations in PCRaster with the window total command (which is similar to the command used for 
the ‘l’ variable). 
 
The last step was to clip the variables to the right extent and to calculate the regression equations. 
The PCRaster scripts can be found in appendix 1. 
 

8.3 Appendix 3: PM2.5 python scripts 
The code below shows the regression equation used to model the PM2.5 for Benito Juárez. 
 

from pcraster import *  
 
# reading inputs 
INTMAJORINVDIST = readmap("intmajorrast.map") 
ROADLENGTH_500 = readmap("benclip_500m.map") 
 
# PM2.5 London regression equation 
res = 7.19 + 1.38 * 10E-03 * INTMAJORINVDIST + 2.65 * 10E-04 * ROADLENGTH_500 
 
report(res, "Final_pm_25_Ben.map") 

 
The code below shows the regression equation used to model the PM2.5 for the six districts in 
Bangkok. 
 

from pcraster import *  
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# reading inputs 
INTMAJORINVDIST = readmap("Bk_trafload.map") 
ROADLENGTH_500 = readmap("Bk_500mBufOutput.map") 
 
# PM2.5 London regression equation 
res = 7.19 + 1.38 * 10E-03 * INTMAJORINVDIST + 2.65 * 10E-04 * ROADLENGTH_500 
 
report(res, "Final_pm_25_Bk.map") 

 
The code below shows the regression equation used to model the PM2.5 for Rotterdam. 
 

from pcraster import *  
 
# reading inputs 
REGIONALESTIMATE = readmap("IDWCL.map") 
MAJORROADLENGTH_50 = readmap("Maj50BufCL.map") 
TRAFMAJORLOAD_1000 = readmap("TrafMaj1000CL.map") 
 
# PM2.5 regression equation for the Netherlands 
res = 9.46 + 0.42 * REGIONALESTIMATE + 0.01 * MAJORROADLENGTH_50 +2.28 * 10E-09 * 
TRAFMAJORLOAD_1000 
 
report(res, "Final_pm_25_Rd_MyOutput.map") 

 
The code below shows an example of how all the major roads within a 50 meter buffer were 
calculated. 
 

from pcraster import * 
 
setglobaloption("unitcell") 
Expr = readmap("fishnetraster.map") 
Rdam_Major50mBuf = windowtotal( Expr, 5) 
report(Rdam_Major50mBuf, "Rdam_Major50mBuf.map") 

 
 
 
 
 
 
 
 


