
Feedback Vertex Kayles
Finding a wining strategy in a two-player combinatorial

game

Geertièn de Vries

ICA-3588165
Utrecht University, The Netherlands

August 4, 2016

Abstract

In this thesis Feedback Vertex Kayles is discused. Feedback Vertex
Kayles is a two-player combinatorial game on graphs in which players remove
nodes positioned on cycles. We also use the name Feedback Vertex Kayles
to denote the problem of exploring whether there is a winning strategy for
the first player and most often what this strategy is. This problem is an
interesting and complex problem expected to be PSPACE-complete. Apart
from discussing the complexity of the problem as a whole, in this thesis we
will look into Feedback Vertex Kayles on specific graph classes. We discuss a
number of graph classes for which we can determine in polynomial or faster
time whether there is a winning strategy. To help the reader better under-
stand the specific results and proofs and to give a deeper understanding of
Feedback Vertex Kayles, this thesis first gives a broad range of important
definitions and basic insights for Feedback Vertex Kayles.

1



1 Introduction

Combinatorial games are an interesting field of study. They are interesting not so
much for (direct) relations to practical problems, although those do exist, but more
because of the mathematical complexity of most of these games. That they are a
good field for studies is reinforced by the large amount of literature written about
combinatorial games. [Fraenkel, 1996] gives a vast bibliography on the subject
along with a more extensive argument on what makes combinatorial games so
interesting.

Many combinatorial games are found to be PSPACE-complete. One of the
first to prove the mathematical complexity of a number of combinatorial games
was Schaefer [Schaefer, 1976]; [Schaefer, 1978]. One of the interesting games he
introduced and proved to be PSPACE-complete in this paper is Node Kayles. In
more recent literature Node Kayles is mostly simply refered to as Kayles; in the
sequel we will do so as well. It should be noted however that Kayles is also the
name of a much older game on which Node Kayles is based. In this original game
there is a row of pins and two players in turn throw a ball at the pins. The
idealized version of this game has been studied by mathematicians. In this version
the assumption is that a player can always throw over one pin or two directly
adjacent pins. The player can never throw over less than one or more than two
pins and can never throw over two pins that are spaced further apart. In a general
game with one row of adjacent pins the first player will win the game, but more
can be set about the values of different positions as first thoroughly addressed by
[Guy and Smith, 1956]. We will look further into this game later, as it has a strong
connection to the game we analyze.

Although Kayles has been proven to be PSPACE-complete, research does not
stop there. There are several interesting directions for research. Most interest-
ing are fast (polynomial time) exact algorithms for special cases and a fast (but
exponential time) exact algorithm for general graphs.

Research results in both directions depend on the use of nimbers [Berlekamp
et al., 1982]. These nimbers are game values related to stacks in the game of Nim.
As explained clearly by [Bodlaender and Kratsch, 2002], Kayles is a game adhering
to some specifications that make it possible to assign a nimber to every position
in the game. Their use of nimbers for Kayles is based on Sprague-Grundy theory.
Nimbers and Sprague-Grundy theory are further discussed in Section 2.2. Good
books going further into the theory are written by [Conway, 1976] and [Berlekamp
et al., 1982].

It is possible to look at fast exact algorithms to solve Kayles in a general case.
However, these algorithms will remain exponential. A fast exact exponential time
algorithm using nimbers is described by [Bodlaender et al., 2015].

Some special cases can be solved in polynomial time. These cases have special

2



graph structures on which a certain algorithm different from the standard algo-
rithm can determine quicker whether there is a winning strategy or not. One good
example of a paper that does this for several graph structures is by [Bodlaender
and Kratsch, 2002].

Apart from research into Kayles itself, variations on Kayles are an interesting
research area. One variation that has been an open problem for a long time is Arc
Kayles. The problem was already proposed by [Schaefer, 1978]. In this game a
player chooses an edge and removes that edge and adjacent edges, as opposed to
nodes in Node Kayles. To this day the complexity of the problem whether the first
player has a winning strategy in this game has not been determined. Some research
has been done on the game though. A recent example is by [Huggan, 2015], who
gives a number of fast algorithms for special cases. She also conjectures that the
problem is in P. Another interesting variation is discussed by [Prins, 2015]. The
problem he discusses is Kayles with marking or removal on arbitrary distance, as
opposed to distance one. He proves this problem to be PSPACE-complete and
gives some exact polynomial time algorithms for special cases.

This thesis also studies a variation on Kayles. The variation gives a rather
different game that we call Feedback Vertex Kayles. In this game both players
alternately choose a vertex in the graph that is on at least one cycle and remove it
and any incident edges from the graph. A move can cause nodes to no longer be
on any cycle. Nodes that are not on any cycle cannot be chosen for a later move,
and thus for the sake of clarity can be removed as well. The game ends when no
more nodes (that are on at least one cycle) remain. The player that is to play at
that moment loses the game. In other words the player to make the last move wins
the game. The name and idea come from combining Kayles with the Feedback
Vertex Set problem. In the Feedback Vertex Set problem a minimum size set of
vertices has to be found such that when all these vertices are removed from the
graph, all cycles are removed from the graph. This problem has been proven to
be NP-complete. Note that a good strategy for playing Feedback Vertex Kayles
does not imply playing on a minimal Feedback Vertex Set.

2 Definitions

In this section some important definitions for the rest of the thesis are given.

2.1 Feedback Vertex Kayles

Let us first define Feedback Vertex Kayles more clearly. Feedback Vertex Kayles
is a two-player game played on a simple undirected graph. In turn each player
chooses a node in the graph that lays on at least one simple cycle in the graph

3



and removes it from the graph. Any node that is not on a cycle is not a node to
remove as a legal move. To make the situation in a game more clear, nodes that
are not on any cycle can safely be removed from the game as this does not remove
or add cycles to the game and as mentioned these nodes cannot be used for a move.
Removing these nodes does not change the game. When evaluating the game with
an automated algorithm, it is very important that the algorithm does not wrongly
consider nodes that are not on a cycle as possibilities for moves. Considering these
nodes as candidates for moves will change the game and possibly whether there
is a wining strategy for the first player. The game ends when there are no more
nodes in the graph that are on at least one cycle and thus there are no more legal
moves. The player that is to move when the game ends loses the game. In other
words the player that made the last move wins.

The game gives an interesting problem to solve: the question whether or not
there is a wining strategy for the first player to move on a certain graph. Note
that the game can only be won by one player and lost by the other, there are no
draws or other results. There is a wining strategy for the first player if for a certain
first move, for every later move that the second player can make in the resulting
situation there is a move the first player can make so that finally the last move is
made by the first player. In the sequel we will refer to this problem as Feedback
Vertex Kayles as well. It should be clear from context whether by Feedback Vertex
Kayles the game or the problem is meant at all times.

2.2 Sprague-Grundy theory

Important for the analyses of many combinatorial games is Sprague-Grundy the-
ory. This theory was invented individually by both [Sprague, 1935] and [Grundy,
1939] in the nineteen thirties. In this subsection we will shortly discuss the impor-
tant parts of the theory and how we can apply them to Feedback Vertex Kayles.
For a deeper but non-formal insight into Sprague-Grundy theory and some (fun)
applications of the theory the reader is referred to [Berlekamp et al., 1982]. For a
more formal deeper insight the reader is referred to [Conway, 1976].

In the theory integer values are assigned to positions in a game. These values
are based on positions in the game of Nim. They are therefore also often called
nimbers, as done by [Berlekamp et al., 1982]. In the sequal of this thesis we will
also call these integers nimbers. More formally a nimber is an integer i ∈ N0 =
0, 1, 2, .... When we have a specific position p in a game we denote the nimber for
that position nb(p).

Sprague Grundy theory is applicable to each combinatorial game that adheres
to the following specifications. It

• is a two player game.

4



• has a ”last player to move wins”-rule. In other words when there are no
more possible moves in a certain position the player to move loses.

• is a full-information game. Which means that both players always know
everything about the position an played moves. No information is hidden to
one or both players.

• is an impartial game. This means that in a certain position no matter which
player is to move the set of possible (legal) moves is exactly the same. This
for instance does not apply to chess, where players are only allowed to move
their own colour pieces.

• is deterministic. No randomization is involved in the workings of the game.

• is finite. The game is guaranteed to finish within a finite number of moves
and at each player’s turn the number of moves to choose from is finite.

Feedback Vertex Kayles adheres to all these specifications, so Sprague-Grundy
theory can be applied to it.

We will continue by giving the result of Sprague-Grundy theory important for
this thesis. When the term game is use it refers to a game that adheres to the
aforementioned specifications.

First let us define mex the mex-rule. For a finite set of nimbers S, the minimal
excluded nimber of S, mex(S), is defined as mex(S) = min{x ∈N|x /∈ S} with
mex(∅) = 0.

The mex-rule for general games states that the nimber for a position p is
mex(S) where S is the set containing all nimbers of positions reachable in one
legal move from position p. Note that if there are no more legal moves from a
certain position, S will be the empty set thus nb(p) = 0.

For Feedback Vertex Kayles we have that a move consists of removing one node
from the graph. As will be further explained in Section 3.1 nodes that are not on
a cycle can be removed from a graph. With all these nodes removed any node in
the graph can be removed as a legal move. With this we can give a more formal
definition of the mex-rule for Feedback Vertex Kayles. For this definition we define
for graph G = (V,E) and v ∈ V , G− v = (V \v, {v′w|v′ 6= v})

Definition 1. For Feedback Vertex Kayles the mex-rule gives that given a graph
G = (V,E) with every node v ∈ V on at least one cycle. If G is the empty graph
nb(G) = 0 and otherwise nb(G) = mex{nb((V \v, {v′w|v′ 6= v}))}.

Now that we have a rule to determine the nimber for a position, we get to what
it means if a position has a certain nimber.

5



Theorem 1. [Berlekamp et al., 1982] [Conway, 1976]. From a certain position
there is a wining strategy for the first player to move if and only if the nimber for
this position is greater than 0.

Now let us define the nim-sum, denoted by ⊕; this is the binary sum without
carry. It can be explained as the bitwise XOR on the nimbers represented as binary
numbers. A certain position in the binary representation of the sum is 0 if both
binary representations of the two nimbers have the same value for that postion,
both 0 or both 1. Otherwise the position in the sum has value 1. More formal we
have the following definition.

Definition 2. The nim-sum of two nimbers i1 and i2 is
i1 ⊕ i2 =

∑
{2j|i1/2jis even ⇐⇒ i2/2jis odd}.

For example 9⊕ 5 = 12. When we use the binary representation this is easier
to see: 1001⊕ 0101 = 1100.

With this definition we get to another interesting result of the theory: how
games can be combined. If we have two game G1 and G2, we can get nimbers for
the combination of these two games. The combination of two games G1 and G2 is
a game in which on a turn a player can choose to make a move in either one of
the two games. When in both games no more moves can be made the combined
game comes to an end and the last player to have moved wins. We denote the
combination of the two games G1 + G2. We denote a position in Gi by pi and a
position in the combined game G1 + G2 by (p1, p2). We denote the nimber of a
specific position p by nb(p).

Theorem 2. [Berlekamp et al., 1982] [Conway, 1976]. Let G1 and G2 be two
player full-information impartial deterministic finite games with a ”last player to
move wins”-rule. Let p1 be a position in G1 and p2 be a position in G2. Now
nb((p1, p2)) = nb(p1)⊕ nb(p2).

This theorem holds for any two games G1 and G2, so also for two instances of
the same game. We can use this specifically for Feedback Vertex Kayles. When
in Feedback Vertex Kayles a graph consists of two (or more) disjoint connected
components, we can see these components as separate instances of the game. This
can be done because the disjoint connected components have absolutely no effect
on each other in the game. With this we can reformulate Theorem 2 to a form that
is useful when analyzing Feedback Vertex Kayles. We get the following lemma.

Lemma 1. Let G = G1∪G2 be a graph where G1 and G2 are two disjoint connected
components of the graph. Now nb(G) = nb(G1)⊕ nb(G2.

Because of Lemma 1 we know we can evaluate disjoint part of a graph separately
and combine them using the nim-sum. For the general algorithm based on the mex-
rule combined with Theorem 1 and described further in section 8 this can be really
useful.

6



Figure 1: Example of a bridge (green)

2.3 Bridge

A bridge in a graph is an edge such that if the edge is removed the number of
connected components in the graph increases by one. In other words a bridge
is the only connection between two parts of the graph that would otherwise be
separate connected components. An example can be seen in Figure 1. The green
vertex in this graph is a bridge. When the edge is removed the nodes on the left
and the nodes on the right form two separate connected components.

2.4 Chain

A chain is an interesting graph structure for Feedback Vertex Kayles. It is a chain
of simple cycles connected through one common node for each pair of cycles. To
make this definition more formal we have the following constructive definition.

Definition 3. A graph is a chain if and only if it can be formed by the following
rules:

1. Every graph consisting of exactly one simple cycle with all nodes on it is a
chain.

2. If G1 = {V1, E1} and G2 = {V2, E2} are disjoint chains. ∀x1, x2 :
G3 = {(V1\x1) ∪ (V2\x2) ∪ {x3},
{exy ∈ E1|x 6= x1} ∪ {exy ∈ E2|x 6= x2} ∪ {ex3y|x1y ∈ E1} ∪ {ex3y|x2y ∈ E2}}
is a chain if and only if no cycle in G3 has more than two nodes on more
than one cycle and no node in g3 has a degree greater than 4.

7



Figure 2: Examples of chains. From left to right: C1, C2, and C3.

Figure 3: Examples of a complete graph with n = 6.

The length of a chain is defined as the number of cycles in a chain. We denote
a chain of length x as Cx.

Figure 2 gives three examples of chains. These examples are the most simple
examples of chains possible with each cycle containing exactly three nodes. As
will be discussed in Section 3 these cycles are equivalent to cycles with more nodes
only on one cycle. The most important lemma to support this claim is Lemma 2.

2.5 Complete graph

Definition 4. A complete graph is a graph in which each vertex is connected to
each other vertex by one edge.

Figure 3 gives an example of a complete graph with 6 nodes (n = 6).

8



Figure 4: Example of a complete tripartite graph: K2,4,5

2.6 Complete k-partite graph

A complete k-partite graph is a graph consisting of k independent sets where every
node is connected to every other node that is not within the same independent
set. The simplest and most commonly known k-partite graph is the bipartite graph
consisting of two independent sets. The graph structure is interesting for Feedback
Vertex Kayles and therefore we want an easy way to denote a k-partite graph.

A complete k-partite graph will in the sequal be denoted as Ka1,a2,...,ak .Here a1
to ak are integers representing the number of nodes in each of the k independent
sets. For example K2,2,3,4,7 denotes a 5-partite graph with its sets containing 7, 4,
3, 2, and 2 nodes and K5,8 denotes a bipartite graph with its sets containing 5 and
8 nodes. Figure 4 shows a visual example of a tripartite graph, specifically K2,4,5.
The three independent sets are marked by different colour nodes. It can be seen
that each node in connected to every node from the two other sets but not to any
node from its own set.

Note that there is no specific ordering in the individual independent sets, so we
could write the integers for the sets in each order we want still denoting the same
graph. For simplicity we will use the following notation rule: a1 ≤ a2 ≤ ... ≤ ak;
this gives clarity and makes the notation easier to work with.

9



3 Basic insights

In this section some (almost) trivial but nevertheless important insights for Feed-
back Vertex Kayles are given and explained. These insights are useful both for a
good understanding of the rest of the thesis as to improve (simple) algorithms for
the problem.

3.1 Non-cycle nodes

Almost to trivial to mention is the fact that nodes that are on no cycle in the graph
can be removed at any time without effecting the game. The nodes cannot be
played, so they add nothing. When implementing any algorithm to find a winning
strategy this should not be forgotten however. If an algorithm would consider
non-cycle nodes as playable nodes this can influence the computed nimber for a
specific graph.

3.2 Bridges

An important notion is that any bridge in a graph can be removed. As a bridge
is an edge that is the only connecting edge between two otherwise separated con-
nected components, it can never be on a cycle. Therefore when a bridge is removed
this will never change the number of cycles in the graph, and thus it will not influ-
ence the game. As removing a bridge results in a graph with an extra connected
component combined with Sprague Grundy theory removing bridges can poten-
tially reduce computation time and space severely. The two resulting connected
components can be evaluated separately and the nim-sum of the resulting two
nimbers is the nimber for the entire graph.

For the removal of bridges to really be an addition to the algorithm, bridges
have to be found with a fast algorithm. Assuming Feedback Vertex Kayles is
PSPACE-complete, a polynomial time algorithm is sufficient. For removing bridges
there is a fast polynomial algorithm found by [Tarjan, 1974]. For each connected
component in the graph this algorithm first constructs a spanning tree for the
component. Then it converts the spanning tree into a directed rooted tree. After
this it computes some needed values for each node. Then by comparing these
values for directly connected nodes, it can be determined which edges are bridges.
All steps for the algorithm take O(n + m) time, where n is the number of nodes
and m is the number of edges. As for in every simple graph m = O(n2), the full
algorithm takes O(n2) time.

10



3.3 Simple paths of degree-2 nodes

A simple path on its own by definition of course only contains nodes with degree
2. With a simple path of degree-2 nodes we denote a path in a graph that contains
only nodes that in the full graph have degree 2. Figure 5 shows an example of a
graph with a path of degree-2 nodes. The green nodes in this figure are on the
path of degree-2 nodes in the graph.

Lemma 2. The set of nodes on a simple path of degree-2 nodes can be reduced to
one node connected to the two nodes that were connected to the nodes on either
endpoint of the path.

Proof. If none of the nodes on the path is on a cycle all nodes can be removed
from the graph without changing the nimber, so the lemma obviously holds. As
all nodes on the path have degree 2 this path is the only simple path through the
nodes. Because of this every simple cycle that goes through one of the nodes must
also go through all of the other nodes on the path. In other words all nodes on the
path are on exactly the same set of cycles. This means that regardless of which
of the nodes on the path is removed, exactly the same cycles are broken. This
also means that when one of the nodes on the path is removed the other nodes
are no longer on any cycle. With all this we can conclude that reducing the set of
nodes on the path to one node connected to the same nodes as the two outermost
nodes on the path does not change the nimber of the graph and can thus always
be done.

Figure 6 shows the reduced version of the graph in Figure 5 in accordance with
Lemma 2. The set of green nodes in Figure 5 is reduced to one green node in
Figure 6. Both graphs are equivalent and have nimber 4.

When the representation of a graph contains for each node its degree, paths of
nodes with degree 2 can be found rather easily. An algorithm can simply go over
all nodes until a node with degree 2 is found. When such a node is found in both
directions the next neighbour is marked found and if such a neighbour also has
degree 2 the next neigbour is checked recursively. The recursion continues until
finally a node with another degree is found and the recursion folds back. During
the recursion the List of nodes on the path is recorded. After the recursion the
loop over all nodes continues, but nodes that are already marked as found in an
earlier recursion are not evaluated again. When the loop over all nodes is complete
every path of nodes can be replaced by one node connected to the nodes that the
outermost two nodes of the original path were connected to. As there cannot be
more nodes on paths than there are nodes in total, this algorithm simply take O(n)
time with n being the number of nodes in the graph. There is one exception to the
algorithm that should be handled. If and only if, under the assumption that the

11



Figure 5: Example of graph with path of degree-2 nodes. The green nodes are on
the path.

Figure 6: Reduced version of graph in Figure 5. The green node replaces the set
of green nodes in the original graph.

12



graph is connected, all nodes are on one string the recursion will, after all other
nodes, find the starting node for the recursion. In this case the string cannot be
reduced to one node, but instead we know that the graph is only one simple cycle
and thus the nimber for the graph is 1. This also means that no further evaluation
is needed. Obviously in this case the algorithm still takes O(n) time.

3.4 Isomorphic graphs

Isomorphic graphs are two distinct graphs for which each node in one graph can be
mapped to a node in the other graph and vice versa in such a way that all mapped
nodes are connected to exactly all the nodes on which the nodes are mapped that
they were connected to in the other graph. Two isomorphic graphs have exactly
the same nimber. When isomorphic graphs can be recognized in combination
with memoisation this can reduce the number of possible positions to evaluate. It
should be noted however that for general graphs recognizing isomorphic graphs is
a hard problem.

3.5 Isomorphic nodes

Apart from full isomorphic graphs we define isomorphic nodes. We define these as
two or more nodes which when removed from the graph result in graphs that are
isomorphic to each other. The resulting graphs can be exactly the same graph, but
also other isomorphisms. For these nodes we have that only one of the nodes has
to be evaluated as removing the other nodes will simply move to a graph with the
same nimber. In small graphs such nodes can often be spotted relatively easy by a
human observer, especially when the graph is symmetric. In practice however for
an algorithm these nodes can only be recognized by recognizing that the resulting
graphs are isomorphic which just reduces the problem to recognizing isomorphic
graphs.

3.6 Upper bound on nimbers

Although nimbers are simply integers in N and thus can be infinitely large, there
are bounds on the nimber for a given graph. The first thing to note is that a nimber
can never be larger than n where n is the number of nodes in the graph. As defined
in Section 2.2 for a graph G we have nb(G) = mex{nb((V \v, {v′w|v′ 6= v}))}. As
the set of nimbers defined in this definition contains the nimbers for all graphs
with one unique node removed from G, there cannot be more distinct nimbers in
the set than there are distinct nodes in G. For a nimber to be n we need that
mex(S) = n, so S must contain all nimbers 0 through n − 1 which are exactly
n distinct nimbers. This also means that a higher nimber greater than n would

13



require more than n distinct nimber in S which is impossible for a graph with n
nodes. We can conclude from this that for any graph the nimber cannot be larger
than n.

We can easily further lower this bound by 2. As we need at least three distinct
nodes to form a cycle, graphs with n = 1 and n = 2 can never have a cycle
and thus always have nimber 0. Only starting at n = 3 we can have a graph
(the simple cycle containing all three nodes) with nimber 1. We also cannot have
higher nimbers than 1. This is because from the simple cycle with three nodes
only moves to graphs with two nodes and thus nimber 0 are possible. Of course
there are also graphs with three nodes and no cycles which again have nimber 0.
From graphs with four nodes only moves to graphs with 3 nodes can be made.
As the nimber for graphs with three nodes are smaller or equal to 1, nimbers for
graphs with n = 4 are smaller or equal to 2. We can continue this argumentation
for every higher value of n. From this we can conclude that the nimber for a graph
with n nodes is always smaller or equal to n− 2.

Until now we have only discussed general graphs and kept the possibility of all
the moves leading to graphs with different nimbers. Often this shall not be the
case and only few graphs will actually have a nimber equal to n − 2. For many
graphs we can however directly state that the nimber will be significantly smaller
than n − 2. Here we get back to isomorphic nodes as discussed in Section 3.5.
As each group of isomorphic nodes result in an isomorphic graph (or even exactly
the same graph) when moved upon, each group only adds one distinct nimber to
the set of nimbers. Therefore the possible number of distinct nimbers of graphs
reachable in one move is decreased by the number of isomorphic nodes minus the
number of groups of isomorphic nodes. Let us denote the number of isomorphic
nodes is a graph as nin and the number of groups of isomorphic nodes as gin. We
can set the upper bound on nimbers for all graphs to n−(nin−gin). Note that all
three nodes in the graph with only a simple cycle of three nodes are isomorphic.
Therefore the −2 in the last bound is contained in −(nin−gin) in the new bound.

As also mentioned in Section 3.5 in general it is not easy to find isomorphic
nodes as this requires to check that the graphs they lead to are isomorphic. How-
ever for some graphs we know certain nodes are ismorphic. The easiest example
are complete graphs; here all nodes are ismorphic. As will be proven in Section
4.4 nimbers for fully connected graphs are smaller or equal to 1. This also fol-
lows from our bound n− (nin− gin) which filled in for complete graphs becomes
n − (n − 1) = 1. A second important case is further discussed in this thesis are
complete k-partite graphs. As will also be discussed in section 4.5 all nodes in one
independent set are isomophic. The upper bound on nimbers for k-partite graphs
is thus n − (n − k) = k. Finally we have twins, which are discussed further in
Section 6. All twins are isomorphic nodes and thus the upper bound of nimbers

14



for graphs with twins is n− (ntwin− gtwin). Here ntwin is the number of twins
in the graph and gtwin is the number of distinct groups of twins in the graph.

4 Nimbers for specific graph structures

4.1 Introduction to using nimbers

Just like with regular Kayles, nimbers can be assigned to a position in Feedback
Vertex Kayles. In Kayles and Nimbers [Bodlaender and Kratsch, 2002] a nice list
of six characteristics a game needs to have to be analyzed with Sprague-Grundy
Theory. Which means that each to each position in the game a nimber can be
assigned corresponding to a position in the game of Nim. Feedback Vertex Kayles
has all six characteristics and thus we can also use Sprague-Grundy theory on it.
In the same way as with Kayles we can use the nimbers to create an algorithm to
determine whether a certain position has a winning strategy for the first player.
It can be used to look at algorithms for the general case and for algorithms for
certain graph classes.

It is interesting to look at some different simple graph structures and the nim-
bers they have. This could lead to insights into more complex graph structures
and possibly faster algorithms for those structures.

In the rest of this section we will give certain specific graph structures and the
nimbers we can assign to them. Note that in all these examples we do not consider
nodes in a graph that are not on any cycle, as such nodes are not interesting for
the game and can thus be removed without changing the nimber.

4.2 Nimbers for chains of cycles

Chains are defined in Section 2 in Definition 3. In this subsection we examine the
nimbers of chains in Feedback Vertex Kayles.

When examining the game on chains it quickly becomes clear that in a chain
there is always a winning strategy for the first player and thus any chain will have
a positive nimber. We will give a more formal prove for this claim. Recall that
the length of a chain is defined as the number of cycles in the chain. Also recall
that we denote a chain of length x by Cx.

Lemma 3. Any chain of cycles Cx has a winning strategy for the first player.

Proof. For C1 any node can be removed to remove the only cycle in the graph and
thus win the game. For C2 any the node connecting the two cycles can be played.
This also leaves no cycles in the graph. For Cx with x ≥ 3 and x mod 2 = 1 a
node on the middle cycle and no other cycle can be played. This splits the chain

15



into two equal length chains. From here on the first player can simply mirror any
move played on the second player on one of these chains, on the other chain. This
can be done until the second player removes the last cycles from one chain in which
case the first player can then remove the last cycles on the other chain. In this
way the first player wins the game. For Cx with x ≥ 3 and x mod 2 = 0 the node
connecting the two middle cycles can be played. This will split the chain into two
chains of equal length. Again the first player can mirror the second players moves
until the game is won.

Although we know every chain has a positive nimber, this does not mean that
every chain has the same nimber, or even that there is a simple regular pattern in
the nimbers of chains of certain length. There is a regular pattern in the nimbers
though. Although there is no literature on the Feedback Vertex Kayles game, the
specific case with a chain of cycles is similar to another game on which there is
more literature. As mentioned before Node Kayles was based on the old game of
Kayles that is described in the introduction. When looking closely at Feedback
Vertex Kayles on chains of cycles, we can see it behaves in exactly the same way as
the original game of Kayles. Removing a node that is only on one cycle effectively
removes that one cycle. If it is a cycle that is not on one of the ends of the chain,
it splits the chain into two chains. This is equivalent to bowling one pin in Kayles.
There also the row of pins is split into two rows if the bowled pin was not at one
of the ends of the row. Removing a node that is on exactly two cycles effectively
removes those two cycles and again possibly splits the chain into two chains. This
is equivalent to bowling two adjacent pins, which can also split the row. Both with
chains in Feedback Vertex Kayles and rows in Kayles it is impossible to remove
two cycles or pins from separate chains or rows. The games thus behave exactly
the same. Both Feedback Vertex Kayles on chains of cycles and original Kayles
therefore have the same sequence of nimbers corresponding to lengths of chains
and rows respectively. [Guy and Smith, 1956] have given the periodicity of these
nimbers along with other results on mathematical games. They also use a more
general proof they have constructed to prove the periodicity for Kayles.

4.3 Nimbers for sunflower graphs

There are different definitions of sunflower graphs in literature. Let us first give
the definition of sunflower graphs as used in this thesis.

Definition 5. A graph is a sunflower graph of size k, with k ≥ 3 if it has 2k nodes
and has the following structure. It has one cycle of k nodes which we call the inner
ring. We number the nodes in the inner ring 1, 2, ..., k, then for 1 ≤ i ≤ k − 1 we
have a node k + i connected with an edge to node i and i + 1. Even though nodes

16



Figure 7: Examples of sunflower graphs. top left: S3, top right: S4, bottom: S5

k+1 to 2k are not directly connected to one another, we call the set of these nodes
the outer ring. There are no other edges in the graph.

We denote a sunflower graph by Sk.

In Figure 7 three examples of sunflowers are given S3, S4 and S5.
Note that although not directly clear from the given definition, a sunflower

graph is equal to a chain, as described in the previous section, of which the first
and the last cycle are also connected by merging one of their independent nodes.
Just like with chains we can note that the nodes that are only on one cycle are
equivalent to a whole sequence of connected nodes that fill up a larger cycle, as all
these nodes would be equivalent. Again for the sake of simplicity we only discus
the minimal case.

Although the graph structure seems an interesting case for Feedback Vertex

17



Kayles at first glance, when studying it better we find that a graph with this
structure always has the nimber 0 and thus always is a losing position for the first
player. We can proof this looking at the two cases of a sunflower graph with a
middle wheel with either an even or an odd number of nodes. Note that a graph
has a nimber 0 if and only if there is no winning strategy for the first player, which
in turn means that for any move the first player makes in the resulting graph there
is a winning strategy for the second player.

Before we give the proof let us define a lane in a sunflower graph, as this will
make the proof easier to read. In practice a lane is an uninterrupted chain in a
graph.

Definition 6. A lane is a set of 2k − 1 nodes in a graph such that for 1 ≤ i ≤ k,
node i is connected by an edge to node i + 1 and for k + 1 ≤ j ≤ 2k − 1 node j is
connected to node j − k and node j − k + 1 and there are no other edges between
nodes in the set. By this definition a lane with 2k − 1 nodes has k − 1 cycles in
its induced subgraph. To keep close to the definitions for the sunflower graph we
call nodes 1 to k inner ring nodes and nodes k + 1 to 2k− 1 outer ring nodes. We
call nodes 1 and k side inner nodes and we call nodes k + 1 and 2k − 1 side outer
nodes. These nodes are only on the cycles on the far sides of our lanes. We call
all other nodes body nodes on top of their inner and outer nomination.

Note that if we remove one node from the outer ring of a sunflower graph of
size k, it contains one big lane of size 2k−1. Furthermore note that in a sunflower
graph with one or more outer ring nodes removed, the only thing keeping lanes
from being chains, is the inner ring that forms an extra cycle.

Theorem 3. Any sunflower graph has nimber 0.

Proof. For this prove recall that the size of a sunflower graph is half the number
of its nodes.

We will prove this theorem by proving two separate cases separately. First we
will prove any sunflower graph of odd size has nimber 0. Then we will prove every
sunflower graph of even size has nimber 0. Each is proven by showing that any
move made by the first player has a response that ultimately leads to the second
player winning.

For a sunflower graph of odd size there are two cases to distinguish for the
first move of the first player. He either chooses a node from the inner ring or a
node from the outer ring. Without loss of generality we can say for a sunflower
graph of size k, he either chooses node 1 or node k + 1. If the player chooses
node 1 the resulting structure is a chain (larger than size 0). As we have shown a
chain always has a positive nimber, and thus the resulting position has a winning
strategy for the second player. If he chooses node k+ 1, the rest of the nodes form

18



a lane of size 2k − 1, which has k − 1 cycles. As k is odd, we know that k − 1
is even. Furthermore we know by the definition of a lane, that any body inner
ring node is on exactly two cycles belonging to the lane, thus by removing such
a node two cycles are removed from that lane. Besides that removing any inner
ring node breaks the inner ring cycle and thus makes all maximal size lanes in the
graph become separate chains. As the lane in the graph resulting after the first
move has an even number of cycles, we know that there are two cycles that have
evenly many cycles to either side of the pair of them. Removing the body inner
ring node connecting this pair of cycles thus results in a graph with two equally
long (0 long if k was 3) chains, which is a losing position. We can conclude that
no matter what move the first player makes on his first turn, the second player
has a winning counter. Thus for any sunflower graph of odd size the nimber is 0.

For a sunflower graph of even size we define the same two cases for the first
player’s first move: for size k he either chooses node 1 or node k+1. Again choosing
node 1 on the first move result in a chain, which is a winning position for the second
player. This time however the choice for node k+1 gives a harder position to solve;
as the resulting lane has an odd number of cycles now, we cannot remove an inner
node to create two chains of equal length. Instead the second player plays the
node opposite to the node the first player played. More precisely he plays node
k + 1 + k/2. The resulting graph contains exactly two lanes of maximal length,
which are equally long. We pair these two lanes and call each the partner lane of
the other. Now we have three cases for different moves of the first player. We will
describe the cases, the response of the second player and the resulting graph.

1. The first player chooses a body outer ring node of any lane l. This splits
lane l into two separate lanes s and p. The second player now chooses the
corresponding note in the partner lane of l, which we call l′, that splits l′

into two lanes s′ and p′ such that s and s′ are of equal length and p and p′

are of equal length. Now l and l′ are gone, but we pair up s and s′ and p
and p′ as two new pairs of lanes. In the resulting graph we still only have
pairs of lanes of equal length and the same three cases apply again.

2. The first player chooses a side outer ring node of any lane l. This removes
one cycle from the side of lane l, any other pairs of lanes are unchanged.
Here the second player chooses an side inner ring node of the partner lane of
l, l′. As it is a side inner ring node, it is only on one cycle in this lane. As
lanes are separate it is also on no cycle in any other lane than l′. Thus by
removing the node one cycle is removed from l′. Moreover because it is an
inner node, the inner cycle is broken and thus all lanes become chains. As
in every pair of lanes the lanes had equal length, these pairs become pairs of
chains of equal length. As from both l and l′ one cycle is removed, the two
resulting chains are also of equal length (possibly length 0). With all pairs

19



of chains of equal length the resulting graph, in which the first player is to
move, is a losing position.

3. The first player chooses any inner ring node of any lane l. The move breaks
the inner cycle and thus turns all lanes into chains. All pairs of lanes except
for l and its partner lane l′ become pairs of chains of equal size. Furthermore
the move either creates one chain c with one less cycle than lane l, or splits
lane l and creates two separate chains s and p. The second player plays
the node on l′, which is now a chain, that corresponds to the node player 1
played on l such that either this creates a chain c′ with equal length to c or
this creates two chains s′ and p′ with the length of s equal to the length of s′

and the length of p equal to the length of p′. Thus creating a position with
only pairs of chains of equal length, which is a losing position.

Note that these three cases describe all possibilities. The keen observer will
see that there is no case where the first player chooses a node that is not on any
lane. This however is because as long a the first player only plays according to
Case 1 there are no nodes that are not on any lane. As any body inner ring node
is connected to two outer ring nodes, one move on a body outer ring node cannot
make it not lay on a lane anymore. A side inner ring node is only connected to
one outer ring node, so removing that node makes it no longer lay on any lane,
but that outer ring node must by definition be a side outer ring node, which when
played falls under Case 2. Finally the only way for an outer ring node to no longer
be on any lane is for any inner ring node to be removed. Playing such a node falls
under Case 3. Both Case 2 and 3 lead to a position in which the second player
directly plays a move to get into a clearly lost position for the first player and
thus does not continue to cases for the first player. So these three cases cover all
possibilities.

Before concluding the proof that sunflower graphs of even size always have
nimber 0, we need to prove that playing according to the three given cases always
leads to Case 2 or 3 within a finite number of moves. This is easily done if we look
at the characteristics of lanes and the behavior of Case 1. For any lane with with
a body outer ring node, there must be two side cycles on the lane and at least one
body cycle. So any lane with only one or two cycles has only side outer ring nodes.
Playing according to Case 1 makes lanes l and l′ split into two lanes as one of the
cycles is removed by playing on the lane and each of the lanes resulting from the
split has at least length 1 (otherwise no body node but a side node was selected).
The maximum length of any of the resulting lanes is 2 smaller than the length
of l. Since the original lanes are of finite length, there is only a finite amount of
times lanes can be split in this way, until all lanes in the graph have a length of
maximally 2. At this point any outer ring node is a side outer ring node and thus
the only possible moves for player 1 fall under Case 2 or 3.

20



Figure 8: Example illustrating the proof for Theorem 3; graph S8. The nodes are
numbered according to the definition of sunflower graphs. According to the second
option for the first move, player 1 moves on the red node (9). Player 2 responds
according to the strategy by playing the green node (13).

This leads to the conclusion that any sunflower graph of even size has nimber
0. Combining our results we can conclude that any sunflower graph has nimber 0.

As the part of the proof for sunflower graphs of even size is rather complex,
in Figures 8 through 12 graphs are depicted for the most important steps in the
strategy. As the reaction to a move on the inner lane is most intuitive these cases
are not depicted. In Figure 8 the starting position for S8 is depicted. In Figure 9
we see the situation after two moves (one for each player) and the the moves and
reactions for Case 1 and 2. In Figure Figure 10 we see the situation after a move
according to Case 1 in Figure 9, with the move and reaction for Case 2 depicted.
In this situation a move according to Case 1 is no longer possible. In Figure 11
we see the situation after a move according to Case 2 in Figure 9, which is clearly
a losing position for player 1. In Figure 12 we see the situation after the moves
from Figure 10, which is also clearly a losing position for player 1.

21



Figure 9: Situation after first two moves. The red node depicts the first player’s
move for Case 1 and the green node depicts the reaction. The blue node depicts
the first player’s move for Case 2 and the yellow node depicts the reaction.

Figure 10: Situation after four moves in Case 1. The red node depicts the first
player’s move and the green node depicts the reaction.

22



Figure 11: Situation after four moves in Case 2. This graph consisting of two
instances of C2 is clearly a losing position for the first player.

Figure 12: Situation after six moves, first Case 1, then Case 2. This graph con-
sisting of two instances of C1 is clearly a losing position for the first player.

23



4.4 Nimbers for complete graphs

Complete graphs are defined in Section 2 in Definition 4. In a complete graph
larger than two nodes every node is on a cycle; as all nodes are connected to all
nodes there is always a simple path from one node through at least two other
nodes back the the first node. When removing one node from a complete graph,
the resulting graph also is a complete graph. Therefore on a complete graph all
but two nodes have to be played before the game is over. The number of moves
needed however does not relate to the difference in nimbers that can be assigned
to complete graphs. These graphs increasing in size alternately have the nimbers
0 and 1.

Lemma 4. Complete graphs of odd size have nimber 1.

Lemma 5. Complete graphs of even size have nimber 0.

Proof. We will proof both lemmas in one inductive proof with induction to n.

Induction hypothesis: All complete graphs of odd size up to size n− 2, with n
mod 2 = 1, have nimber 1 and all complete graphs of even size up to size
n− 1 have nimber 0.

Base cases: On a complete graph of three nodes playing either one node results
in a graph with no more cycles (nimber 0), so the nimber for this graph is 1.

On a complete graph of four nodes playing either one node results in a
complete graph with three nodes, which we have just shown to have nimber
1. So this graph has nimber 0.

Induction step: Playing any node on the complete graph of size n results in a
complete graph of size n−1. As n is odd, n−1 is even and thus the resulting
graph has nimber 0. So the complete graph of size n has nimber 1. Playing
any node on the complete graph of size n + 1 results in a complete graph of
size n, which we have just shown to have nimber 1. So the complete graph
of size n + 1 has nimber 0.

4.5 Nimbers for complete k-partite graphs

In Section 2, complete k-partite graphs are defined. It is already mentioned there
that they are interesting for Feedback Vertex Kayles and this subsection will dis-
cuss them. Although not as simple as with normal complete graphs, on fully

24



connencted k-partite graphs Feedback Vertex Kayles can be computed easier than
on general graphs. This however is under the assumption that the general problem
is indeed PSPACE-complete. The following subsections will discuss different parts
of the problem with k-partite graphs. In Section 4.5.1, some basic but important
insights about the important specifications of k-partite graphs will be given. These
insights are an important basis for the rest of the methods and proofs used in the
rest of the subsections. This will be followed by Section 4.5.2 on k-partite graphs
in general. For which a general algorithm is given and analyzed. Then in Section
4.5.3 and 4.5.4 the special cases of bipartite and tripartite graphs are discussed and
even faster solutions are given for these cases. In Section 4.5.5 it will be discussed
how the solutions for bipartite and tripartite graphs can be used to improve the
general algorithm. Finally in Section 4.5.6 some closing remarks will be given on
complete k-partite graphs.

4.5.1 Basic insights

Before we start to go deeper into the different values for k and algorithms to
compute nimbers for the resulting graphs, it is important to understand the specific
properties of these graphs concerning Feedback Vertex Kayles. As is also discussed
further in Section 6, nodes that are connected to exactly the same nodes are
equivalent. So only one of these nodes has to be evaluated each step. If we take a
look at k-partite graphs we can see that all nodes within one independent set are
twins and thus equivalent. Furthermore there is no important distinction between
the different independent sets; a graph with four nodes in the first set, two nodes in
the second set, and three nodes in the third is equivalent to one with three nodes in
the first set, four nodes in the second set and two nodes in the third. Knowing this
we can represent the graph as a set of k integers. The possible moves on a graph
then correspond with lowering one of these k integers by one. When an integer is
reduced to zero by this means, the last node of the corresponding independent set
is removed and the resulting graph is a (k − 1)-partite graph.

As long as there are at least three sets containing nodes remaining in the graph
there is always a cycle in the graph. The smallest case possible with three sets,
K1,1,1, is a simple cycle with all three nodes on it. As adding more nodes to any
graph and especially these graphs does never remove any cycle, it is obvious that
any larger case also contains at least one cycle.

When there are only two sets containing nodes in a complete k-partite graph,
which is thus a bipartite graph, when both sets have at least two nodes there is
always a cycle in the graph. The smallest case K2,2 is one simple cycle containing
all four nodes. Again as adding more nodes does not remove cycles any case with
more nodes per set also contains at least one cycle.

Even though K2,2 already has a cycle, when we have two sets and one of them

25



contains only one node, there will never be a cycle in the graph.

Lemma 6. For all i the nimber of K1,i equals 0.

Proof. Every node in the set with i nodes can be reached from any other node by
a path through the single node in the other set, but there are no other connections
in the graph to complete a cycle. As there are no cycles in the graph there is no
legal move for the first player and thus it is a losing position and has nimber 0.

4.5.2 Nimbers for complete k-partite graphs

The insights in the previous subsection give us all the handles we need to construct
an algorithm solving any case of a complete k-partite graph with a faster algorithm
than for general graphs. In this algorithm we still go through every possibility,
but the notions from the last subsection really limit the number of possibilities.

Before starting the main algorithm the graph should be converted to a set of
integers representing for every independent set in the graph the number of nodes
in it. Note that this integer set really is a set as the order of the integers does
not matter. We will use a hashtable with sets as keys and nimbers (integers) as
values, to keep track of the already computed sets of integers. It is important that
the objects representing the sets are either compared in such a way that sets with
the same integers but in a different order are really recognized to be the same, or
upon creation as an object are made to be exactly the same. Of course we can
simply sort the integers in O(k log k) time, which is not significant for the bound
on the complete algorithm.

In Algorithm 1 the algorithm to compute the nimber for a general complete k-
partite graph is given in pseudocode. The main function is ComputeNimber. As its
input it expects a k-partite graph. The not specified function makeSet constructs
an integer set from a given k-partite graph corresponding to it. The function also
determines the values of k and maxSize. Here k is the number of independent sets
and maxSize is the number of nodes in the largest set. A hashtable with integer
sets as keys and integers as values is created. All combination of 1 and the integers
1 through maxSize are added to the hashtable with nimber 0 corresponding with
Lemma 6. These combination are the endpoints for the recursion.

With everything ready the RecurseNimber function is called which will re-
cursively find the nimber for the graph. If the specific set the function gets as
argument has already been evaluated the nimber will be in the hashtable and is
returned immediately. If not the nimber is computed recursively. The mex-rule
is used with all nimbers for situations reached within one move from the current
graph (Set). For every integer in the set a possible move is to subtract 1 from
the integer and keep all other integers the same. If an integer would become 0
in this way this would mean the corresponding independent set would be fully

26



Algorithm 1 Compute Nimber k-parite

1: function ComputeNimber(graph Start)
2: int k, maxSize;
3: Set startSet = makeSet(start, out k, out maxSize);
4: Hashtable nimbers = new Hashtable<Set, int>;
5: fillHash(k, maxSize, nimbers);
6: return RecurseNimber(k, maxSize, startSet);
7: end function
8:

9: function RecurseNimber(int k, int maxSize, Set startSet)
10: int result;
11: if (result = nimbers.getValue(startSet)) == null then
12: List<Int> options = new List;
13: for all int part in startSet do
14: if part == 1 then
15: newSet = startSet.remove(part);
16: else
17: newSet = startSet.replace(part, part -1);
18: end if
19: options.Add(RecurseNimber(k, maxSize, newSet);
20: end for
21: result = MEX(options);
22: nimbers.Add(startSet, result);
23: end if
24: return result
25: end function
26:

27: function fillHash(int k, int maxSize, Hashtable nimbers)
28: for int i = 1; i ≤ maxSize; i++; do
29: nimbers.Add(Set(1,i), 0);
30: end for
31: end function

27



Table 1: Nimbers for complete bipartite graphs with p + q nodes

p q nimber rules

1 x 0
2 x = 2y 1 x ≥ 2
2 x = 2y − 1 2 x > 2
x x 0 x > 2
3 x = 2y 2 x > 3
3 x = 2y − 1 0 x > 3

x = 2y z = 2w 0 x > 3, z > x
x = 2y z = 2w − 1 1 x > 3, z > x

x = 2y − 1 z = 2w 1 x > 3, z > x
x = 2y − 1 z = 2w − 1 0 x > 3, z > x

removed from the graph. In that case no more moves are possible on that specific
independent set, so the integer is removed from the integer set instead of being
decremented. In an implementation it would of course also be possible to work
with zeros and not considering these integers for a move anymore. When the nim-
ber for a specific integer Set is found it is added to the hashtable so it will not be
evaluated again.

Using this algorithm every unique combination of integers where every integer
is smaller or equal to the integers in the first set is evaluated exactly once. With
this an easy but not very restricted upper bound is O((n/k)k). From this we
already have that the algorithm is polynomial in the number of nodes n. Note
that the algorithm is exponential in the number of independent sets k. However,
when k is significantly large in comparison to n, n/k will be small and thus the
complexity will still be limited.

4.5.3 Nimbers for complete bipartite graphs

Looking at the nimbers for complete bipartite graphs we can see that we do not
need the algorithm from the last subsection to compute the nimber for a spe-
cific graph in this group. Instead there is a regularity of which we only have to
implement the rules to be able to compute the nimber of any bipartite graph.

Table 1 displays all the rules to describe the regularity of nimbers for complete
bipartite graphs. Note that x, y, z and w are all integers.

This table cannot only be derived from observation but can also be constructed
through a series of inductive proofs. To maintain an accessible proof for the whole
set of rules, we will separate the prove into separate lemmas with their own proof.
These lemmas are finally combined to prove the entire theorem.

28



Lemma 7. K2,2 has nimber 1.

Proof. As both sets contain exactly two nodes, all possible moves on the graph
are equivalent. The resulting graph from a move is K1,2. By Lemma 6 we know
this resulting graph to have nimber 0. Using the mex-rule we conclude that the
original graph has nimber 1.

Lemma 8. K2,3 has nimber 2.

Proof. The two possible distinct moves in this case are removing a node from the
set with two nodes and removing a node from the set with three nodes. The first
possible move results in K1,3 which by Lemma 6 has nimber 0. The second possible
move results in K2,2 which by Lemma 7 has nimber 1.

Using the mex-rule we conclude that the original graph has nimber 2.

Lemma 9. K2,q has nimber 1 if q is even and q ≥ 2, and has nimber 2 if q is odd
and q > 2.

Proof. We give an inductive proof for this lemma with induction to q.
Induction hypothesis:
For every q′ < q the nimber for the graph is 1 if q′ is even and q′ ≥ 2, and is 2 if
q′ is odd and q′ > 2.

Base Cases:
Our base cases are given by Lemmas 7 and 8, which correspond to the cases q = 2
and q = 3.

Induction step:
From K2,q, we can move to K1,q, or to K2,q−1. Regardless of whether q is even or
odd, the nimber for the first possibility is 0, following Lemma 6. For the second
situation if q is even, q − 1 is odd, so the nimber for the resulting graph is 2, and
if q is odd q − 1 is even, so the nimber for the resulting graph is 1. Using the
mex-rule we get that if q is even the nimber is 1 and if q is odd the nimber is
2.

Lemma 10. Let x ≥ 3. The nimber of Kx,x is 0.

Proof. If both sets contain exactly three nodes every possible move will result in
the graph K2,3, which following Lemma 8 has nimber 2. Using the mex-rule we
get that the original graph has nimber 0. If x > 3 a simple strategy for the second
player is to simply play a node on the other set than the set of which the first
player has removed a node, resulting in a graph with two sets containing exactly
x−1 nodes, until the graph with two sets containing three nodes is reached. As we
have just shown that this last position has nimber 0 this means that every higher
value for x also gives a graph with nimber 0.

29



Lemma 11. K3,4 has nimber 2.

Proof. The two possible distinct moves in this case are removing a node from the
set with three nodes and removing a node from the set with four nodes. The first
possible move results in K2,4 which by Lemma 9 has nimber 1. The second possible
move results in K3,3 which by Lemma 10 has nimber 0.

Using the mex-rule we conclude that the original graph has nimber 2.

Lemma 12. K3,q has nimber 2 if q is even and q > 3, and has nimber 0 if q is
odd and q ≥ 3.

Proof. We give an inductive proof for this lemma with induction to q.
Induction hypothesis:
For every q′ < q the nimber for the graph is 2 if q′ is even and q′ > 3, and is 0 if
q′ is odd and q′ ≥ 3.

Base Cases:
Our base cases are given by Lemmas 10 and 11, which correspond to the cases
q = 3 and q = 4.

Induction step:
From K3,q we can move to K2,q or to K3,q−1. In the first situation by Lemma 9
we have that the nimber of the resulting graph is 1 if q is even and 2 if q is odd.
For the second situation if q is even, q − 1 is odd, so the nimber for the resulting
graph is 0, and if q is odd q− 1 is even, so the nimber for the resulting graph is 2.

Using the mex-rule we get that if q is even the nimber is 2 and if q is odd the
nimber is 0.

Lemma 13. K4,5 has nimber 1.

Proof. The two possible distinct moves in this case are removing a node from the
set with four nodes and removing a node from the set with five nodes. The first
possible move results in K3,5, which by Lemma 12 has nimber 0. The second
possible move results in K4,4, which by Lemma 10 has nimber 0.

Using the mex-rule we conclude that the original graph has nimber 1.

Lemma 14. K4,q has nimber 0 if q is even and q ≥ 4, and has nimber 1 if q is
odd and q > 4.

Proof. We will give an inductive proof for this lemma with induction to q.
Induction hypothesis:
For every q′ < q the nimber for the graph is 0 if q′ is even and q′ ≥ 4, and is 1 if

30



q′ is odd and q′ > 4.

Base Cases:
Our base cases are given by Lemmas 10 and 13, which correspond to the cases
q = 4 and q = 5.

Induction step:
From K4,q we can move to K3,q or to K4,q−1. In the first situation by Lemma 12
we have that the nimber of the resulting graph is 2 if q is even and 0 if q is odd.
For the second situation if q is even, q − 1 is odd, so the nimber for the resulting
graph is 1, and if q is odd q− 1 is even, so the nimber for the resulting graph is 0.

Using the mex-rule we get that if q is even the nimber is 0 and if q is odd the
nimber is 1.

Lemma 15. Let 4 ≤ p ≤ q. Kp,q has nimber 0 if p mod 2 = q mod 2 and nimber
1 otherwise.

Proof. We give an inductive proof for this lemma with induction to p + q.
Induction hypothesis:
Let p + q = x and p′ + q′ = x′. For every 8 ≤ x′ < x, Kp′,q′ has nimber 0 if p′

mod 2 = q′ mod 2 and nimber 1 otherwise.

Base Case:
As base case we have K4,4, by Lemma 10 this graph has nimber 0 which corre-
sponds to this lemma.

Induction step:
We have two cases, p = 4 and p > 4.

Case 1. p = 4: From Lemma 14 we have that if q is even and thus p mod 2 = q
mod 2 the nimber for the graph is 0 and that is q is odd and thus p mod 2 6= q
mod 2 the nimber is 1.

Case 2. p > 4: As p ≤ q we have that q > 4. From Kp,q we can go to Kp−1,q
or Kp,q−1, where both p − 1 ≥ 4 and q − 1 ≥ 4. If p mod 2 = q mod 2 then
p − 1 mod 2 6= q mod 2 and p mod 2 6= q − 1 mod 2 thus both Kp−1,q and
Kp,q−1 have nimber 1. If p mod 2 6= q mod 2 then p− 1 mod 2 = q mod 2 and
p mod 2 = q − 1 mod 2 thus both Kp−1,q and Kp,q−1 have nimber 0.

Using the mex-rule we get that if p mod 2 = q mod 2 the nimber is 0 and
otherwise the nimber is 1.

31



Theorem 4. Given a graph Kp,q, the nimber for the graph is given by table 1.

Proof. To start with for a graph to be truly denoted as a bipartite graph (Kp,q),
the number of nodes in both sets should be larger than 0. Therefore cases with
less than 1 node in a set are not in the table (although they obviously have nimber
0).

Without loss of generality we can assume that q ≥ p as the sets are equivalent
and do not need a specific ordering, so we can choose to assign the values of the
number of nodes in the sets to p and q in such a way that q ≥ p without changing
the problem. With this we have that all combinations of numbers of nodes in both
sets are incorporated in the table.

The table’s first row follows from Lemma 6.
The table’s second and third row follow from Lemma 9.
The table’s fourth row follows from Lemma 10.
The table’s fifth and sixth row follow from Lemma 12.
Finally the last four rows of the table follow from Lemma 15.

4.5.4 Nimbers for complete tripartite graphs

Following from the proved rules for bipartite graphs, an interesting question that
arises is whether a similar set of rules can be proven for tripartite graphs. This
turns out to be the case, although it requires double the amount of rules to get all
cases and also needs the rules for bipartite graphs as basis.

Lemma 16. K1,1,1 has nimber 1.

Proof. Any possible move result in K1,1 which by Lemma 6 has nimber 0. Using
the mex-rule we get that K1,1,1 has nimber 1.

Lemma 17. K1,1,2 has nimber 2

Proof. There are two possible moves, either to K1,1 or to K1,1,1. The first case by
Lemma 6 has nimber 0. The second case by Lemma 16 has nimber 1.

Using the mex-rule we get that K1,1,2 has nimber 2.

Lemma 18. Let r ≥ 1, K1,1,r has nimber 1 if r is odd and 2 otherwise.

Proof. We will give an inductive proof for this lemma with induction to r.
Induction hypothesis:
For every r′ < r, K1,1,r′ has nimber 1 if r′ is odd and nimber 2 otherwise.

Base Cases:
The base cases are provided by Lemmas 16 and 17, which correspond to r = 1 and

32



Table 2: Nimbers for complete tripartite graphs with p + q + r nodes.

p q r nimber rules

1 1 x = 2y 2 x ≥ 1
1 1 x = 2y − 1 1 x ≥ 1
1 2 x = 2y − 1 3 x > 2
1 3 x = 2y 3 x > 3
x x y = 2w 1 y ≥ x & x > 1
x x y = 2w − 1 0 y ≥ x & x > 1
x x + 1 y = 2w 0 y ≥ x + 1
x x + 1 y = 2w − 1 2 y ≥ x + 1 & x > 1
x x + 2 y = 2w 2 y ≥ x + 2 & x > 1
x x + 2 y = 2w − 1 1 y ≥ x + 2
x x + z y = 2w 0 y ≥ x + z & z = 2z′ & z > 2
x x + z y = 2w 1 y ≥ x + z & z = 2z′ − 1 & z > 2
x x + z y = 2w − 1 1 y ≥ x + z & z = 2z′ & z > 2
x x + z y = 2w − 1 0 y ≥ x + z & z = 2z′ − 1 & z > 2

r = 2.

Induction step:
For any r the two possible moves are to K1,r and K1,1,r−1. For the first case we
know by Lemma 6 that regardless of the value of r the nimber is 0. For the second
case if r is even r − 1 is odd and so K1,1,r−1 has nimber 1 and if r is odd, r − 1 is
even so K1,1,r−1 has nimber 2.

Using the mex-rule we get that if r is odd K1,1,r has nimber 1 and if r is even
K1,1,r has nimber 2.

Lemma 19. K1,2,2 has nimber 0

Proof. There are two possible moves, either to K2,2 or to K1,1,2. The first case by
Lemma 7 has nimber 1. The second case by Lemma 17 has nimber 2.

Using the mex-rule we get that K1,2,2 has nimber 0.

Lemma 20. K1,2,3 has nimber 3

Proof. There are three possible moves. The moves result in K2,3, K1,2,2 or K1,1,3.
The first case by Lemma 8 has nimber 2. The second case by Lemma 19 has
nimber 0. The third case by Lemma 18 has nimber 1.

Using the mex-rule we get that K1,2,3 has nimber 3.

33



Lemma 21. Let r ≥ 2, K1,2,r has nimber 0 if r is even and nimber 3 otherwise.

Proof. We will give an inductive proof for this lemma with induction to r.
Induction hypothesis:
For every r′ < r, K1,2,r′ has nimber 0 if r′ is even and nimber 3 otherwise.

Base Cases:
The base cases are provided by Lemmas 19 and 20, which correspond to r = 2 and
r = 3.

Induction step:
There are three possible graphs to go to from K1,2,r, namely K2,r, K1,1,r and
K1,2,r−1.

Option 1. K2,r: By Lemma 9 we have that if r is even the nimber is 1 and if r
is odd the nimber is 2.

Option 2. K1,1,r: By Lemma 18 we have that if r is even the nimber is 2 and if
r is odd the nimber is 1.

Option 3. K1,2,r−1: If r is even, r− 1 is odd, so the nimber is 3 and if r is odd,
r − 1 is even, so the nimber is 0.

Using the mex-rule we get that if r is even K1,2,r has nimber 0 and if r is odd
K1,2,r has nimber 3.

Lemma 22. K1,3,3 has nimber 1

Proof. There are two possible moves, either to K3,3 or to K1,2,3. The first case by
Lemma 10 has nimber 0. The second case by Lemma 20 has nimber 3.

Using the mex-rule we get that K1,3,3 has nimber 1.

Lemma 23. K1,3,4 has nimber 3

Proof. There are three possible moves. The moves result in K3,4, K1,3,3 or K1,2,4.
The first case by Lemma 11 has nimber 2. The second case by Lemma 22 has
nimber 1. The third case by Lemma 21 has nimber 0.

Using the mex-rule we get that K1,3,4 has nimber 3.

Lemma 24. Let r ≥ 3, K1,3,r has nimber 3 if r is even and nimber 1 otherwise.

Proof. We will give an inductive proof for this lemma with induction to r.
Induction hypothesis:
For every r′ < r, K1,2,r′ has nimber 3 if r′ is even and nimber 1 otherwise.

34



Base Cases:
The base cases are provided by Lemmas 22 and 23, which correspond to r = 3 and
r = 4.

Induction step:
There are three possible graphs to go to from K1,3,r, namely K3,r, K1,2,r and
K1,3,r−1.

Option 1. K3,r: By Lemma 12 we have that if r is even the nimber is 2 and if
r is odd the nimber is 0.

Option 2. K1,2,r: By Lemma 21 we have that if r is even the nimber is 0 and if
r is odd the nimber is 3.

Option 3. K1,3,r−1: If r is even, r− 1 is odd, so the nimber is 1 and if r is odd,
r − 1 is even, so the nimber is 3.

Using the mex-rule we get that if r is even K1,3,r has nimber 3 and if r is odd
K1,3,r has nimber 1.

Lemma 25. K2,2,2 has nimber 1

Proof. The only graph to move to is K1,2,2 which by Lemma 19 has nimber 0.
Using the mex-rule we get that K2,2,2 has nimber 1.

Lemma 26. K2,2,3 has nimber 0

Proof. There are two possible moves. To K1,2,3 or to K2,2,2. The first option by
Lemma 20 has nimber 3, the second option by Lemma 25 has nimber 1.

Using the mex-rule we get that K2,2,3 has nimber 0.

Lemma 27. Let r ≥ 2, K2,2,r has nimber 1 if r is even and nimber 0 otherwise.

Proof. We will give an inductive proof for this lemma with induction to r.
Induction hypothesis:
For every r′ < r, K2,2,r′ has nimber 1 if r′ is even and nimber 0 otherwise.

Base Cases:
The base cases are provided by Lemmas 25 and 26, which correspond to r = 2 and
r = 3.

Induction step:
There are two possible graphs to go to from K2,2,r, namely K1,2,r and K2,2,r−1.

35



Option 1. K1,2,r: By Lemma 21 we have that if r is even the nimber is 0 and if
r is odd the nimber is 3.

Option 2. K2,2,r−1: If r is even, r− 1 is odd, so the nimber is 0 and if r is odd,
r − 1 is even, so the nimber is 1.

Using the mex-rule we get that if r is even K2,2,r has nimber 1 and if r is odd
K2,2,r has nimber 0.

Lemma 28. Let p ≤ q ≤ r and p + q + r ≥ 8 and p + q ≥ 5 and z > 2. For
Kp,q,r we have the following nimbers. If p = q the nimber is 1 if r is even and 0 if
r is odd. If q = p + 1 the nimber is 0 if r is even and 2 if r is odd. If q = p + 2
the nimber is 2 if r is even and 1 if r is odd. If q = p + z the nimber is 0 if r
mod 2 = z mod 2 and 1 otherwise.

Proof. We give an inductive proof for this lemma with induction to p + q + r.
Induction hypothesis:
Let p + q + r = x and p′ + q′ + r′ = x′. For every 8 ≤ x′ < x, with p′ + q′ ≥ 5
and z′ > 2, Kp′,q′ has the following nimber. If p′ = q′ the nimber is 1 if r′ is even
and 0 if r′ is odd. If q′ = p′ + 1 the nimber is 0 if r′ is even and 2 if r′ is odd. If
q′ = p′+ 2 the nimber is 2 if r′ is even and 1 if r′ is odd. If q′ = p′+ z′ the nimber
is 0 if r′ mod 2 = z′ mod 2 and 1 otherwise.

Base Cases:
As base cases we have K1,4,4 and K2,3,3. Let us prove that these cases adhere to the
lemma. From K1,4,4 we can move to K4,4 or K1,3,4. The first possibility by Lemma
10 has nimber 0. The second possibility by Lemma 23 has nimber 3. Applying
the mex-rule we get that K1,4,4 has nimber 1. From K2,3,3 we can move to K1,3,3

or K2,2,3. The first possibility by Lemma 22 has nimber 1. The second possibility
by Lemma 26 has nimber 0. Applying the mex-rule we get that K2,3,3 has nimber 2.

Induction step:
We have multiple cases which we will handle separately.

Case 1. p = q and r is even: From here the possible graphs to move to are
Kp−1,q,r and Kp,q,r−1, note that the second option is only distinct from the first
option if r > q. For the first possibility we have that q′ = p′ + 1 and r′ is even,
so the nimber is 0. For the second possibility we have p′ = q′ and r′ is odd which
gives nimber 0. For both sub-cases r > q and r = q by applying the mex-rule we
get that the nimber for this main case is 1.

36



Case 2. p = q and r is odd: From here the possible graphs to move to are
Kp−1,q,r and Kp,q,r−1, note that the second option is only distinct from the first
option if r > q. For the first possibility we have that q′ = p′ + 1 and r′ is odd, so
the nimber is 2. For the second possibility we have p′ = q′ and r′ is even which
gives nimber 1. For both sub-cases r > q and r = q by applying the mex-rule we
get that the nimber for this main case is 0.

Case 3. p+ 1 = q and r is even: From here the possible graphs to move to are
Kp−1,q,r, Kp,q−1,r and Kp,q,r−1, note that the third option is only distinct from the
second option if r > q. For the first possibility we have two sub-cases: p = 2 and
p > 2. In the first sub-case the graph reached is K1,3,r with r is even, by Lemma
24 the nimber is 3. For the second sub-case we have that q′ = p′+ 2 and r′ is even,
so the nimber is 2. For the second possibility we have two sub-cases: p = 2 and
p > 2. In the first sub-case the graph reached is K2,2,r with r is even, by Lemma
27 the nimber is 1. For the second sub-case we have that q′ = p′ and r′ is even, so
the nimber is 1. Note that both possible sub-cases give nimber 1, so for the nimber
of the original graph in this main case it does not matter which sub-case is true.
For the third possibility we have that q′ = p′ + 1 and r′ is odd, so the nimber is
2. None of the sub-cases give a possible move to a graph with nimber 0, therefore
no matter what combination of sub-cases is true, by applying the mex-rule we get
that the nimber for the main case is 0.

Case 4. p+ 1 = q and r is odd: From here the possible graphs to move to are
Kp−1,q,r, Kp,q−1,r and Kp,q,r−1, note that the third option is only distinct from the
second option if r > q.For the first possibility we have two sub-cases: p = 2 and
p > 2. In the first sub-case the graph reached is K1,3,r with r is odd, by Lemma
24 the nimber is 1. For the second sub-case we have that q′ = p′+ 2 and r′ is odd,
so the nimber is 1. Note that both possible sub-cases give nimber 1, so for the
nimber of the original graph in this main case it does not matter which sub-case
is true. For the second possibility we have two sub-cases: p = 2 and p > 2. In the
first sub-case the graph reached is K2,2,r with r is odd, by Lemma 27 the nimber is
0. For the second sub-case we have that q′ = p′ and r′ is odd, so the nimber is 0.
Note that both possible sub-cases give nimber 1, so for the nimber of the original
graph in this main case it does not matter which sub-case is true. For the third
possibility we have that q′ = p′ + 1 and r′ is even, so the nimber is 0. For both
sub-cases r > q and r = q by applying the mex-rule we get that the nimber for
this main case is 2.

Case 5. p + 2 = q and r is even: From here the possible graphs to move to
are Kp−1,q,r, Kp,q−1,r and Kp,q,r−1, note that the third option is only distinct from

37



the second option if r > q. For the first possibility we have that q′ = p′ + 3 and r′

is even, so 3 mod 2 6= r′mod2 so the nimber is 1. For the second option we have
that q′ = p′+ 1 and r′ is even, so the nimber is 0. For the third possibility we have
that q′ = p′ + 2 and r′ is odd, so the nimber is 1. For both sub-cases r > q and
r = q by applying the mex-rule we get that the nimber for this main case is 2.

Case 6. p+ 2 = q and r is odd: From here the possible graphs to move to are
Kp−1,q,r, Kp,q−1,r and Kp,q,r−1, note that the third option is only distinct from the
second option if r > q. For the first possibility we have that q′ = p′ + 3 and r′

is odd, so 3 mod 2 = r′mod2 so the nimber is 0. For the second option we have
that q′ = p′+ 1 and r′ is odd, so the nimber is 2. For the third possibility we have
that q′ = p′ + 2 and r′ is even, so the nimber is 2. For both sub-cases r > q and
r = q by applying the mex-rule we get that the nimber for this main case is 1.

Case 7. p + z = q and r mod 2 = z mod 2: From here the possible graphs
to move to are Kp−1,q,r, Kp,q−1,r and Kp,q,r−1, note that the third option is only
distinct from the second option if r > q. For the first possibility we have two
sub-cases either p = 1 or p > 1. In the first sub-case the graph reached is actually
Kq,r, we have that q ≥ 4 and q mod 2 6= r mod 2 as q = z + 1, so by Lemma
15 the nimber is 1. Note that both sub-cases give nimber 1 for the second option
so which sub-case is true does not effect the nimber of the original graph. In the
second sub-case we have that q′ = p′+ z′ and z′ mod 2 6= r′mod2 so the nimber is
1. For the second option we have two sub-cases, either z = 3 or z > 3. If z = 3 we
have z′ = 2, so q′ = p′ + 2, and r′ is odd so the nimber is 1. If z > 3 we have that
q′ = p′ + z′ and z′ mod 2 6= r′mod2, so the nimber is 1. Note that both sub-cases
give nimber 1 for the second option so which sub-case is true does not effect the
nimber of the original graph. For the third possibility we have that q′ = p′ + z′

with z′ = z, so z′ mod 2 6= r′mod2, so the nimber is 1. For both sub-cases r > q
and r = q by applying the mex-rule we get that the nimber for this main case is 0.

Case 8. p + z = q and r mod 2 6= z mod 2: From here the possible graphs
to move to are Kp−1,q,r, Kp,q−1,r and Kp,q,r−1, note that the third option is only
distinct from the second option if r > q. For the first possibility we have two
sub-cases either p = 1 or p > 1. In the first sub-case the graph reached is actually
Kq,r, we have that q ≥ 4 and q mod 2 = r mod 2 as q = z + 1, so by Lemma
15 the nimber is 0. Note that both sub-cases give nimber 0 for the second option
so which sub-case is true does not effect the nimber of the original graph. In the
second sub-case we have that q′ = p′+ z′ and z′ mod 2 = r′mod2 so the nimber is
0. For the second option we have two sub-cases, either z = 3 or z > 3. If z = 3 we
have z′ = 2, so q′ = p′+ 2, and r′ is even so the nimber is 2. If z > 3 we have that

38



q′ = p′ + z′ and z′ mod 2 = r′mod2, so the nimber is 0. For the third possibility
we have that q′ = p′ + z′ with z′ = z, so z′ mod 2 = r′mod2, so the nimber is 0.
As the first and third possible move give the same nimber, both sub-cases r > q
and r = q are the same when applying the mex-rule. As there are no possible
moves to a graph with nimber 1 both and the first possible move results in a graph
with nimber 0, for the appliance of the mex-rule it does not matter whether the
graph resulting from the second possible move has either nimber 0 or 2. So for all
possible sub-cases, by applying the mex-rule we get that the nimber for this main
case is 1.

Theorem 5. Given a graph Kp,q,r, the nimber for the graph is given by table 1.

Proof. To start with for a graph to be truly denoted as a tripartite graph (Kp,q,r)
the number of nodes in all three sets should be larger than 0. All values for p, q
and r (in the table) are greater than 0 and values equal to 0 do not have to be in
the graph.

Without loss of generality we can assume that p ≤ q ≤ r as the sets are
equivalent and do not need a specific ordering, so we can choose to assign the
values of the number of nodes in the sets to p, q and r in such a way that p ≤ q ≤ r
without changing the problem. With this we have that all combinations of numbers
of nodes in both sets are incorporated in the table.

The table’s first and second row follow from Lemma 18.
The table’s third row follows from Lemma 21.
The table’s fourth row follows from Lemma 24.
The rest of the table’s rows follow from Lemmas 21, 24, 27 and mainly 28.

4.5.5 Using bipartite and tripartite tables in the algorithm for com-
plete k-partite graphs

Our original algorithm for complete k-partite graphs given in Section 4.5.2 adds
all integer sets for graphs K1,q for all q up to the maximal number of nodes in the
graph with nimber 0 to the hashtable at the start of the algorithm. As by Lemma
6 we know for every q, nb(K1,q) = 0, we can safely add all these combinations
to the hashtable. These combinations then form the endpoints for the recursion
in the algorithm. However with the use of the proven rules in the tables for
complete bipartite and tripartite graphs we can make a more enhanced base case
for the recursion. To begin with we of course can add an evaluation of the rules
for complete bipartite and tripartite graphs to prevent the algorithm from going
into recursion at all on these graphs; it can simply give the nimber in O(1) time.
More importantly we can use the rules to form new endpoints for the recursion.
Just like with the combinations of K1,q and nimber 0 we could simply add all
relevant combinations to the hashtable at the start of the algorithm. Alternatively

39



and less complex on execution, we could enhance the algorithm so that it goes into
evaluation of the rules instead of into recursion as soon as the nimber of a complete
bipartite or tripartite graph has to be evaluated. As we want the algorithm to be
able to immediately evaluate complete bipartite and tripartite graphs in O(1) time
when they are given as the input graph, the last option is also preferable. Naturally
adding all options for K1,q to the hashtable is no longer required when the rules
are used to evaluate all complete bipartite and tripartite graphs. Furthermore
note that the rules for complete bipartite graphs are never used when evaluating
complete k-partite graphs with k > 2 as the recursion will then stop at the rules
for tripartite graphs. However, we do want to add the rules for complete bipartite
graphs to the algorithm, so it can evaluate these graphs when given directly as
input.

4.5.6 Final thought on complete k-partite graphs

We have given a polynomial time algorithm for general complete k-partite graphs.
For complete bipartite and tripartite graphs we have proven rules to determine the
nimber of any such graph. These can therefore be computed in O(1) time. Also
we showed how to use the outcomes for complete bipartite and tripartite graphs
in the general algorithm. We only proved the rules for bipartite and tripartite
graphs, but this does not mean this cannot be done for greater values of k. As can
be seen the number of rules and especially the complexity of the proofs increased
significantly when going from bipartite to tripartite graphs. Therefore although it
can be assumed that it is possible to find and prove rules for k ≥ 4, although it will
probably quickly become impractical to do so. Implementing a really vast number
of rules for high values of k into the algorithm can also make the program quite
complex. However when implemented correctly there should be no more problems
with the vast amount of rules. If for any reason graphs with high values for k have
to be evaluated, it could be useful to invest time in finding (and proving) rules for
higher values of k.

5 Further use of nimbers

Knowing the nimbers for some specific graph structures is interesting, but not
directly useful for finding out whether a general graph has a winning strategy for
the first player or not. These more specific structures might however be useful as a
stepping stone to more general graph structures, for which we might also find fast
algorithms to determine the nimber of the graph. Finding such graph structures
or graph characteristics is an interesting new step in research on Feedback Vertex
Kayles. One interesting characteristic of graphs to start looking at is the density.

40



As we know that complete graphs have alternating nimber 0 and 1, this might
give us what we need to quickly determine the nimber for a densely connected
graph (nearly complete). Complete k-partite graphs are of course one example
of a specific graph structure closely related to complete graphs for which nimbers
can also be found with a fast exact algorithm. More such graph structures may
still exist. On the other hand our knowledge of chains and sunflower graphs might
help with finding more interesting result for sparsely connected graphs.

6 Twins and Feedback Vertex Kayles

Twins are two or more nodes in a graph that are connected to exactly the same
nodes not belonging to the set of twins. We distinguish two different kinds of
twins: true twins and false twins. True twins are apart from connected to the
same nodes outside the collection of true twins also all connected to one another.
Thus all true twins have almost exactly the same neighbour set, only differing in
that they are not in their own neighbour set. False twins are only connected to all
the same nodes not in the set of false twins. Thus all false twins have exactly the
same neighbour set. Twins have interesting properties in Feedback Vertex Kayles.
Some are equal for both kinds of twins and some differ. In this chapter we will
discuss uses of twins while computing nimbers in Feedback Vertex Kayles.

6.1 Equivalence of twins

As noted in Section 3.5 isomorphic nodes have the same nimber. However as also
noted that isomorphic nodes are only really interesting if we can find they are
isomorphic without having to check whether the induced subgraphs from moving
on such a node are isomorphic. One such case emerges when there are twins in a
graph. As the twins are connected to exactly the same nodes, playing one twin is
exactly equal to playing any other twin in the set. To be more precise, if we have
two twins a and b in a graph g and we have one subgraph g′ in which a is removed
and one subgraph g′′ in which b is removed the two graphs are isomorphic. We can
map g′′ on g′ by mapping all nodes in g′′ except for a on the same node in g′ and
mapping node a on node b in g′ (if they are not already removed as well in their
respective subgraphs). As a and b are connected to all the same nodes (except for
each other in the case of true twins) we know that any nodes other than a that are
removed from g by removing a, will also be removed from the graph by removing
b, so g′ and g′′ contain all the same nodes except for possibly b in g′ versus a in g′′.

Knowing this at the very least at any step in the algorithm only one twin in
each set has to be examined as a possible move, as the others will not add other
nimbers to the nimber set.

41



6.2 True twins and Feedback Vertex Kayles

True twins are interesting in Feedback Vertex Kayles. The first intuition that
they are interesting comes from the fact that a complete graph is a special case
of a graph with twins, in which all nodes are twins. For complete graphs we
have already proven that all even numbers of nodes have nimber 0 and all odd
have nimber 1. This gives us a suspicion that maybe the amount of true twins
in a graph is reducible per two twins, maintaining the same nimber. Moreover
for any cycle going through a twin, a similar cycle also goes through any other
twin. So as long as the number of twins remains at least two non-twins will never
change from being on a cycle to not being on a cycle when twins are removed.
So it would be interesting to look for a proof that true twins can be removed per
two twins (to a certain minimum) or counterexamples proving this cannot always
be done. However when looking into this neither a prove nor a structure for a
counterexample for any number of twins could be found. The results were still
rather interesting however. In the rest of this subsection we will look at a partial
prove and its shortcomings, a counterexample for certain number of twins and
some other results that we can conclude from this.

6.2.1 Incomplete proof for removability of true twins

Let us have a graph G with a set of k true twins and a graph H which is a copy
of graph G with 2 true twins added to the set of k true twins in the graph, so H
has a set of k + 2 twins. Now if we have a winning strategy for the first player
in H if and only if we have a winning strategy for the first player in G, we can
conclude that removing 2 twins from a graph can always be done without changing
the player with a winning strategy in the graph. There is no winning strategy for
the first player if and only if there is a winning strategy for the second player. So
our prove is also complete if we prove that player 1 has a winning strategy in H if
player 1 has a winning strategy in G and player 2 has a winning strategy in H if
player 2 has a winning strategy in G. If we have proven that player 1 has a winning
strategy in H if player 1 has a winning strategy in G, the proof that player 2 has a
winning strategy in H if player 2 has a winning strategy in G is almost trivial. If
player 2 has a winning strategy in G, there are two options for play in H. Player
1 can play on one of the k + 2 twins, in which case player 2 plays on another one
of the twins and a graph equal to G is reached. Alternatively player 1 can play
another node and create the graph H ′ after which we simply repeat the argument
for if player 1 having a winning strategy in H ′ if player 1 has a winning strategy
in G′, where G′ is the graph resulting from playing the same node as played in H
to get H ′ in G. So we only have to prove that player 1 has a winning strategy in
H if player 1 has a winning strategy in G.

42



Let us have a winning strategy for player 1 in G, now we use the following
strategy in H. We start by playing the same node in H as would be played on G
in the winning strategy for G. If in any of the following moves player 2 plays on one
of the twins, player 1 also plays on a twin and a situation in the winning strategy of
G is reached, so the rest of this strategy can be followed to win the game. If player
2 however refrains from playing any twins, we have two possible continuations of
the game. If play continues without any twin being played, eventually only twins
remain. As mentioned earlier a graph with only true twins is a complete graph
and form complete graphs we know that the nimber and thus the winner is equal
for any combination of k and k + 2 nodes, so we know that with this being a
winning situation in the play starting from G, this is also a winning situation in
the play starting from H. Alternatively somewhere in the winning strategy for G,
the only possible move for player 1 is to move on one of the twins. In this case our
strategy still follows the moves on G on H so we also move on a twin in H and
keep following the same strategy.

6.2.2 Problem with the proof and counter example

The proposed strategy works when at some point in both G and H only twins
remain, but by removing twins while there are still other nodes, it is possible to
get into a situation where there is a direct winning move on k which is a losing
move on k + 2. We give one example of a graph that with 4 twins has a winning
strategy for player 1 but with 6 twins has a winning strategy for player 2. In
Figure 13 the starting graphs for the example can be seen; on the left with 4 twins
and on the right with 6 twins. In figures 14 through 20 the steps in the winning
strategies and their effect on the graph are displayed. In each graph the node to be
played next is marked red. In Figure 14, 16 and 18, there is a winning strategy for
the player to move in the left graph. Here the node to play in a winning strategy
is chosen to play in the left graph. As in all these graphs there is no winning
strategy for the player to move in the graph on the right no matter which node
is played, the equivalent node is chosen to play in that graph. In Figure 15 and
17, the situation is the complete opposite. In these graphs the move is chosen in
the right graph and the equivalent move is played on the left graph. In Figure 19
and 20 play on the former left graph has already ended and only the play on the
former right graph is displayed.

Note that for all k > 6 with k mod 2 = 0 the nimber of the equivalent graph
with k twins also is 0, this corresponds with the completion of a restricted proof
in Section 6.2.4.

43



Figure 13: Examples of two graphs with 4 and 6 twins respectively but different
nimbers. Green nodes are twins.

Figure 14: Step 0. Left graph has nimber 6 and right graph nimber 0. The red
node is to be moved on next.

Figure 15: Step 1. Left graph has nimber 0 and right graph nimber 1. The red
node is to be moved on next.

44



Figure 16: Step 2. Left graph has nimber 4 and right graph nimber 0. The red
node is to be moved on next.

Figure 17: Step 3. Left graph has nimber 0 and right graph nimber 1. The red
node is to be moved on next.

Figure 18: Step 4. Left graph has nimber 2 and right graph nimber 0. The red
node is to be moved on next.

45



Figure 19: Step 5. This graph has nimber 1. Any non-twin node can be removed
in a winning strategy.

Figure 20: Step 6. Clearly whichever node is played a simple cycle of three nodes
with nimber 1 remains. So this graph has nimber 0.

6.2.3 Consequences of proof at higher amount of twins

So far using a custom-made computer program to compute the nimbers of graphs
with twins, only counterexamples were found for graphs with a low number of
twins. As no regular pattern is found in those examples and no prove that there
will be counterexamples for every number of twins, it is possible, although unlikely,
that at some number of twins the proof can be completed. When the proof would
be completed for a certain number of twins, we can very easily extend this proof
to prove that not only the winner for the graphs with k and k + 2 nodes are the
same, but also the nimbers. We can do this by adding a new connected component
to both graphs which has an equal nimber to the graph with k twins. In this way
the resulting graph with k twins has nimber 0 as the nim sum of two components
with the same nimber is 0. For these two new graphs our proof still holds so both
must have the same nimber. This is only possible if the two components in the
graph with k + 2 twins also have the same nimber, as this is the only way for the
nim sum to be 0. Which in turn means that the original graphs with k and k + 2
twins have the same nimber.

Note that for this extension we assume that the completed proof for equal
winners does not require the graph to be connected without bridges. If it only
needs the graphs to be connected we can simply connect the two parts with a

46



bridge, as that bridge can be removed again for evaluation. It is unlikely however
that the proof would need such a constraint.

6.2.4 Proof completion with restriction on number of non-twins.

Let us denote the number of nodes in the biggest group of twins in graph G as
nt(G) and the number of other nodes (non-twins) as nn(G). We can prove the
following lemma.

Lemma 29. Let Gk be a graph with nt(G) = k and Gk+2 be a graph with nt(G) =
k + 2. If nt(Gk) ≥ nn(Gk) there is a winning strategy for player 1 in Gk if and
only if there is a winning strategy for player 1 in Gk+2.

Proof. The first part of the prove is given in Section 6.2.1. The proof is finished
as follows.

If player 2 never moves on a true twin, eventually, as there are at least as
many true twin nodes as non-twin nodes and at most one in two nodes removed
is a true twin, all non-twin nodes will be removed from the graph and only true
twins remain. As established before a group of true twins without other nodes is
a complete graph. Let k′ be the remaining number of true twins in Gk after the
strategy being applied to it. By Lemmas 4 and 5 we have that the nimbers for k′

and k are the same, so both resulting graphs have the same winner.

6.2.5 Conclusion on twins

Although twins are interesting and their potential for Feedback Vertex Kayles
seems high, it appears not possible to give a kernel on the number of twins. Al-
though no strict rules for counterexamples have been found it is very likely that
for every n a counterexample can be found. When only one graph is examined we
can however decrease the number of twins by 2 as long as it stays higher than the
number of other nodes without changing the winner.

7 Complexity of the problem

Apart from nimbers and fast algorithms for specific cases, an interesting open
problem, is the complexity of Feedback Vertex Kayles. It is expected that this
problem is PSPACE-complete; however a proof is still to be found. There are
several facts that strengthen the suspicion that this problem is PSPACE-complete.
To start with the game is closely related to the Feedback Vertex Set problem, in
which a minimal set of vertices has to be found which when removed from the graph
leaves a graph with no cycles. This problem is NP complete, it seems unlikely that

47



Feedback Vertex Kayles would be an easier problem than Feedback Vertex Set, as
the minimal Feedback Vertex Set would probably be one of the considered play
sequences in Feedback Vertex Kayles. Furthermore Feedback Vertex Kayles seems
to be similar to other PSPACE-complete games like Kayles, it even seems harder
than Kayles, as a move generally removes less structure from the graph than with
Kayles. This last remark however also makes it harder to find a similar proof for
the complexity of Feedback Vertex Kayles as for the complexity of Kayles. The
latter proof adds a lot of nodes and edges, which ensure that if an ”illegal” move
is made, the game is lost because a lot of nodes get removed at once. In Feedback
Vertex Kayles however adding more nodes and/or edges does not increase the
number of removed nodes for a chosen node and thus only creates a more complex
structure.

Conjecture 1. Feedback Vertex Kayles is PSPACE-complete.

We must note that if our conjecture turns out to be false and Feedback Vertex
Kayles is proven to be in P, polynomial time algorithms for specific cases become
a lot less interesting.

8 A fast exact algorithm for general graphs

Assuming Feedback Vertex Kayles is indeed PSPACE-complete, we know that an
algorithm for Feedback Vertex Kayles on general graphs can never be faster than
exponential. However it is interesting to find an algorithm with an upper bound
time complexity that is as low as possible. A first idea might be to use nimbers
and compute an upper bound just like done for Kayles in [Bodlaender et al., 2015].
The upper bound given by this paper relies on the fact that not all combinations
of moves are possible, as removing one node from the graph also removes all its
neighbours. For Feedback Vertex Kayles we of course have that removing a node
effectively also removes all nodes that were only on a cycle that is removed by
removing the first node. However there is no guaranty as to which nodes are
removed. Moreover in a complete graph, even though we have proven this to be
an easily solvable case, all but two nodes have to be chosen before the game ends,
as each node remains on at least one cycle. This makes it impossible to simply use
the simple algorithm given for Kayles, for Feedback Vertex Kayles and compute
a similar upper bound. However this does not necessarily mean that the upper
bound cannot get lower than 2n. The example we give for a case in which all
nodes have to be played is a complete graph. Although in such a graph the game
continues until all but two of the nodes are played, we have proven that nimbers
for complete graphs alternate between 0 and 1 for even and odd numbers of nodes
respectively and thus computing the nimber (or winner) for such a graph takes

48



only O(1) time. Furthermore if, when evaluating any other graph, the resulting
subgraph after any number of moves is a complete graph, the nimber of that
subgraph can be computed in O(1) time. So this can limit the number of possible
subgraphs and may lead towards a better upper bound for the algorithm. For a
good upper bound we should combine different simpler structures for which we
have found the nimber easy to compute.

9 Future Work

Although some interesting result are described in this thesis there is still much
more that could be researched. Also some results might be further evaluated to
find more useful implications.

To start with of course the complexity of Feedback Vertex Kayles is an inter-
esting field for future work. Although we conjectured that Feedback Vertex Kayles
is PSPACE-complete, no attempts at a prove have been successful. Proving the
complexity of Feedback Vertex Kayles thus stays an open problem. Solving this
problem is also important to validate (or possibly invalidate) the significance of
results on specific graph structures.

In this thesis a number of specific graph structures and specific node types in
graphs and their relation to Feedback Vertex Kayles are discussed. There could
however be (far) more graph structures or other specifications that are interesting
for Feedback Vertex Kayles. Some suggestions are already given like looking at
densely or sparsely connected graphs. Also graph structures with a low bound on
the maximal nimber as discussed in Section 3.6 might be interesting. For graph
structures with a low maximal nimber it is also plausible that the structure allows
for simpler evaluation than evaluating all subgraphs.

The general algorithm that is discussed in section 8 could possibly be improved
upon. Using the insights from this thesis and possible future insights it might be
possible to insert polynomial time sub-routines into the algorithm that result in
a better expected time bound. It might even be possible for some combination
of structures to prove that any graph will end in such a structure at a significant
point somewhere during the recursive evaluation. If for all these graph structures
a fast algorithm is known this can reduce the bound for the general algorithm.

Finally the upper bound (and possibly the lower bound) for the general algo-
rithm might be improved. An analysis as done for Kayles by [Bodlaender et al.,
2015] would be interesting. As discussed in Section 8 a similar analysis does not
benefit Feedback Vertex Kayles. A different analysis, possibly using insight on
specific graph structures might however exist. Finding and performing such an
analysis is an interesting option for future work.

49



10 Conclusion

Feedback Vertex Kayles is an interesting game and the problem to find a winning
strategy in the game is even more interesting. There are good reasons to assume
it is PSPACE-complete, but so far no proof has been provided.

In the general algorithm using nimbers, it is determined recursively whether
for a graph there is a wining strategy for the first player or not. Although all
possible move sequences can be important for the solution to this problem the
algorithm does not have to evaluate all O(n!) possibilities. Using memoisation the
computation time can be reduced to O(2n).

The workings of the game allow for Feedback Vertex Kayles to be more easily
evaluated on specific graph structures. In this thesis we have explored chains,
sunflower graphs, complete graphs and complete k-partite graphs as specific graph
structures. When the graph is known to adhere to one of these structures for
all but complete k-partite graphs Feedback Vertex Kayles can be evaluated in
constant time. For the evaluation of general complete k-partite graphs we have
given a polynomial time algorithm. For k = 2 and k = 3 we have given tables so
that these cases can also be evaluated in constant time when the number of nodes
per independent set is known. It is interesting that these structures can be solved
with fast algorithms especially when Feedback Vertex Kayles is indeed proved to
be PSPACE-complete. The structures may also be used to enhance an algorithm
exploring whether there is a winning strategy for general graphs.

Another interesting phenomena for Feedback Vertex Kayles are twins. These
nodes seemed extremely promising for Feedback Vertex Kayles. Although we have
shown that they cannot always be removed per two nodes without changing the
nimber, they are still interesting in the problem. As all twins are isomorphic
nodes and we have argued that for all isomorphic nodes only one node has to be
evaluated, they at least provide a way to decrease the amount of evaluation an
algorithm has to do.

In conclusion Feedback Vertex Kayles is an interesting and complex problem.
It is hard for the general graphs but has enough interesting characteristics to be
solved with faster algorithms in specific cases.

References

E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathe-
matical Plays. Academic Press, London, 1982. ISBN 0-12-091150-7.

Hans L. Bodlaender and Dieter Kratsch. Kayles and nimbers. Journal of Algo-
rithms, 43:106–119, 2002. doi: 10.1006/jagm.2002.1215.

50



Hans L. Bodlaender, Dieter Kratsch, and Sjoerd T. Timmer. Exact algorithms for
Kayles. Theoretical Computer Science, 562:165–176, 2015. doi: 10.1016/j.tcs.
2014.09.042. URL www.elsevier.com/locate/tcs.

John H. Conway. On Numbers and Games. IMA, 1976.

Aviezri S. Fraenkel. Combinatorial games: selected bibliography with a succinct
gourmet introduction. 1996.

Patrick M. Grundy. Mathematics and games. Eureka, 2(5):6–8, 1939.

Richard K. Guy and Cedric A. B. Smith. Mathematical Proceedings of the
Cambridge Philosophical Society The G-values of various games. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 52(52):514–526, 1956.
doi: 10.1017/. URL http://journals.cambridge.org/PSPhttp://journals.

cambridge.org/abstract{_}S0305004100031509.

Melissa Huggan. Impartial Intersection Restriction Games. Master’s thesis, Car-
leton University, 2015. Canada.

Simon Prins. Finding a winning strategy in variations of Kayles. Master’s thesis,
Utrecht University, 2015. The Netherlands.

Thomas J. Schaefer. Complexity of Decision Problems based on Finite Two-Person
Perfect-Information Games. In Eighth annual ACM Symposium on Theory of
Computing, pages 41–49, New York, 1976. doi: 10.1145/800113.803629.

Thomas J. Schaefer. On the Complexity of Some Two-Person Perfect-Information
Games. Journal of Computer and System Sciences, 16:185–225, 1978.

Richard Sprague. Uber mathematische kampfspiele. Tôhoku Math. J, 41(438-444):
6, 1935.

R. Endre Tarjan. A note on finding the bridges of a graph. Information Processing
Letters, 1974. ISSN 00200190. doi: 10.1016/0020-0190(74)90003-9.

51

www.elsevier.com/locate/tcs
http://journals.cambridge.org/PSP http://journals.cambridge.org/abstract{_}S0305004100031509
http://journals.cambridge.org/PSP http://journals.cambridge.org/abstract{_}S0305004100031509

	Introduction
	Definitions
	Feedback Vertex Kayles
	Sprague-Grundy theory
	Bridge
	Chain
	Complete graph
	Complete k-partite graph

	Basic insights
	Non-cycle nodes
	Bridges
	Simple paths of degree-2 nodes
	Isomorphic graphs
	Isomorphic nodes
	Upper bound on nimbers

	Nimbers for specific graph structures
	Introduction to using nimbers
	Nimbers for chains of cycles
	Nimbers for sunflower graphs
	Nimbers for complete graphs
	Nimbers for complete k-partite graphs
	Basic insights
	Nimbers for complete k-partite graphs
	Nimbers for complete bipartite graphs
	Nimbers for complete tripartite graphs
	Using bipartite and tripartite tables in the algorithm for complete k-partite graphs
	Final thought on complete k-partite graphs


	Further use of nimbers
	Twins and Feedback Vertex Kayles
	Equivalence of twins
	True twins and Feedback Vertex Kayles
	Incomplete proof for removability of true twins
	Problem with the proof and counter example
	Consequences of proof at higher amount of twins
	Proof completion with restriction on number of non-twins.
	Conclusion on twins


	Complexity of the problem
	A fast exact algorithm for general graphs
	Future Work
	Conclusion

