
Utrecht University
Master Thesis Computing Science

Generic programming with
ornaments and dependent types

Yorick Sijsling

Supervisors
dr. Wouter Swierstra

prof. dr. Johan Jeuring

June 29, 2016

Abstract

Modern dependently typed functional programming languages like Agda allow very
specific restrictions to be built into datatypes by using indices and dependent types.
Properly restricted types can help programmers to write correct-by-construction soft-
ware. However, code duplication will occur because the language does not recognise
that similarly-structured datatypes with slightly different program-specific restrictions
can be related. Some functions will be copy-pasted for lists, vectors, sorted lists and
bounded lists.

Ornaments specify the exact relation between of different datatypes and may be a
path towards a solution. It is a first step in structuring the design space of datatypes
in dependently typed languages. Literature has shown how ornaments can produce
conversion functions between types, and how they can help to recover code reuse by
transporting functions across ornaments.

This thesis presents an Agda library for experimentation with ornaments. We have
implemented a generic programming framework where datatypes are represented as
descriptions. A description can be generated from a real datatype and patched with
an ornament to create new description, which in turn can be converted back to a new
datatype.

Our descriptions are carefully designed to always be convertible to actual datatypes,
resulting in an unconventional design. They pass along a context internally to support
dependent types and they can be used with multiple parameters and multiple indices.

Contents

1 Introduction 3

2 Usage 7

3 Generics and ornaments 11
3.1 Descriptions . 12
3.2 Maps and folds . 15
3.3 Ornaments . 16
3.4 Ornamental algebras . 18
3.5 Discussion . 19

3.5.1 Σ-descriptions . 20
3.5.2 Finding the right ornaments 23

4 Ornaments on dependently typed descriptions 25
4.1 Contexts and environments . 26
4.2 Descriptions . 27
4.3 Ornaments . 29

5 Ornaments on families of datatypes 33
5.1 Descriptions . 33
5.2 Ornaments . 38
5.3 Algebraic ornaments . 42
5.4 Discussion . 44

5.4.1 Separating parameters from contexts 46

6 Generic programming with descriptions 49
6.1 Descriptions and ornaments . 50
6.2 Quoting datatypes . 51
6.3 Deriving an embedding-projection pair 53
6.4 Generic functions . 54
6.5 Unquoting descriptions . 56
6.6 Higher-level ornaments . 57

6.6.1 Structure-preserving ornaments 58
6.6.2 Ornament composition . 58
6.6.3 More ornaments . 59
6.6.4 Reornaments . 60

6.7 Discussion . 62
6.7.1 Embedding-projection instances 62

1

7 Discussion 65
7.1 Explicit parameter use . 65
7.2 Induction-recursion and strict positivity 68

8 Conclusion 70
8.1 Future work . 71

2

Chapter 1

Introduction

One of the strong points of functional programming languages like Haskell and Agda is
that they allow very precise types. The type List A not only tells us that it is a list, but also
that every element in the list is of type A. This is already a lot more static information
than untyped or dynamically typed programming languages, and allows programmers
to adopt an ’if it type checks it works’ mentality. But how precise should we make our
types? Consider the take function, which takes a number of elements from the front of
a list:

data List (A ∶ Set) ∶ Set where
[] ∶ List A
∷ ∶ A → List A → List A

take ∶ ∀ {A} → (n ∶ Nat) → List A → List A
take zero = []
take (suc n) [] = ?1
take (suc n) (x ∷ xs) = x ∷ take n xs

What needs to be done when the list is too short? One option is to return a default
value, like the empty list [], but such behavior may hide bugs which would be discov-
ered otherwise. Another solution is to change the return type to Maybe (List A), so the
nothing value can be returned. This makes the call site responsible for error handling.
An entirely different approach is to avoid the situation by restricting the types appro-
priately. Agda supports inductive families [10], so a length index could be added to the
List type—resulting in the following Vec datatype:

data Vec (A ∶ Set) ∶ Nat → Set where
[] ∶ Vec A zero
∷ ∶ ∀ {n} → A → Vec A n → Vec A (suc n)

Anew take function for Vec can be defined, which only accepts lists of at least length
n. Under these circumstances the problematic clause simply disappears:

takeᵥ ∶ ∀ {A m} → (n ∶ Nat) → Vec A (n + m) → Vec A n
takeᵥ zero = []
takeᵥ (suc n) (x ∷ xs) = x ∷ takeᵥ n xs

By adding the proper indices, properties of the data can be encoded within a data-
type. One could build trees that are always sorted, trees bounded by a minimum and

3

maximum value, red-black trees or trees that are always balanced. Building datatypes
such that they precisely match the required properties of the data is an essential aspect of
writing correct-by-construction programs in functional programming languages. This
specialization of datatypes can however be an obstacle to code reuse. For example; one
may have defined a function to find the first value with the property P in a list of natural
numbers:

find ∶ List Nat → (P ∶ Nat → Bool) → Maybe Nat
find [] P = nothing
find (x ∷ xs) P = if (P x) then (just x) else (find xs P)

Although we have explained Vecs as being a List with a length index, it is defined
as an entirely separate thing. Agda has no idea that these two are related. To search in
a Vec of naturals, we have to define an entirely new function:

findv ∶ ∀ {n} → Vec Nat n → (P ∶ Nat → Bool) → Maybe Nat
findv [] P = nothing
findv (x ∷ xs) P = if (P x) then (just x) else (findv xs P)

The same problem will occur again and again if one uses other list-like types. We
can define bounded lists that are parameterised by a maximum value, or sorted lists that
are indexed by the lowest value in the list (so at each _∷_ a proof can be included that
the element is at least as low as the lowest value in the tail). The implementation of find
for both of these can be copy-pasted:

findb ∶ ∀ {mx} → BoundedNatList mx → (P ∶ Nat → Bool) → Maybe Nat
findb [] P = nothing
findb (x ∷ xs) P = if (P x) then (just x) else (findb xs P)
finds ∶ ∀ { l} → SortedNatList l → (P ∶ Nat → Bool) → Maybe Nat
finds [] P = nothing
finds (x ∷ xs) P = if (P x) then (just x) else (finds xs P)

Maybe it would be useful if Agda knew about the relations between all these dif-
ferent variants of datatypes. Conor McBride [19] has presented ornaments as a way to
express relations between datatypes. Loosely speaking, one type can be said to be an
ornament of another if it contains more information in some way, for example by the
refinement with indices or the addition of data. They can be used to express that Vec is
an ornament of List, or that List can be defined as an ornament on Nat by attaching an
element of type A to each suc constructor. Before we can start working with ornaments
we need a way to model datatypes within Agda itself.

Datatype-generic programming talks about types by using descriptions. These de-
scriptions of types can take the form of a description datatype. This is combined with a
decoding function which assigns a type to every inhabitant of the description datatype
[1]. The descriptions and decoding function together form a universe[17] of descrip-
tions. To give an example; the following Desc datatype can describe the unit type, pairs
and products:

data Desc ∶ Set where
‘1 ∶ Desc
⊕ ∶ Desc → Desc → Desc
⊗ ∶ Desc → Desc → Desc

4

These descriptions can be used to describe, for instance, booleans as ‘1 ⊕ ‘1. De-
scriptions are decoded to types using the ⟦_⟧desc function:

⟦_⟧desc ∶ Desc → Set
⟦ ‘1 ⟧desc = ⊤
⟦ A⊕ B ⟧desc = Either ⟦ A ⟧desc ⟦ B ⟧desc
⟦ A ⊗ B ⟧desc = ⟦ A ⟧desc × ⟦ B ⟧desc

When the decoding of a description D produces a type which is isomorphic to a
type X, we can say that D describes X. Indeed we see that ⟦ ‘1 ⊕ ‘1 ⟧desc normalises
to Either ⊤ ⊤, a type which is isomorphic to the type for booleans. Generic program-
ming frameworks like Haskell’s generic deriving mechanism [15] automatically derive
an embedding-projection pair [21] that converts between elements of the decoded de-
scription and elements of the real datatype. An embedding-projection pair for booleans
can be defined as follows:

bool-to ∶ Bool → ⟦ ‘1⊕ ‘1 ⟧desc
bool-to false = left tt
bool-to true = right tt
bool-from ∶ ⟦ ‘1⊕ ‘1 ⟧desc → Bool
bool-from (left tt) = false
bool-from (right tt) = true

By choosing more advanced descriptions, more of Agda’s datatypes can be de-
scribed. One may add support for inductive datatypes (such as natural numbers and
lists), for datatype parameters, or for indices. Descriptions can be used as a foundation
to define ornaments. An ornament is written as a patch for an existing description, and
can be applied to get a new description. In this way, the ornament expresses the relation
between the original description and the ornamented description.

When ornaments are used to compute new descriptions, it would also be conve-
nient if new datatypes could be generated from computed descriptions. Most generic
programming frameworks do not require this feature, because they never make modi-
fications to descriptions. The availability of this feature puts some unique constraints
on the definition of descriptions, because every description must be convertible to a
real datatype. We have to be careful that the sums and products in our descriptions can
never occur in the wrong places—For instance, a description (‘1 ⊕ ‘1) ⊗ (‘1 ⊕ ‘1)
describes a pair of booleans, but is not a sum-of-products and can therefore not be writ-
ten as just one datatype. At least two datatypes (the product type and Bool for example)
have to be used to get a type that is isomorphic to ⟦ (‘1⊕ ‘1) ⊗ (‘1⊕ ‘1) ⟧desc.

Agda provides a reflection mechanism which can be leveraged to build the generic
deriving and declaring framework. With reflection, existing datatype declarations can
be inspected and descriptions can be generated for them. The functions constituting
the embedding-projection pair can be generated as well. The current version of Agda
(2.5.1) does not yet allow the declaration of new datatypes, but we can do this semi-
automatically by generating the types for the individual constructors.

In this thesis we combine reflection, generics and ornaments to build a library with
which we can perform operations on user defined Agda datatypes. This thesis makes
the following contributions:

1. A universe of descriptions is built to encode datatypes. The descriptions sup-
port dependent types (chapter 4) by passing along a context within the construc-
tors. Multiple parameters and multiple indices can be encoded (chapter 5) and

5

the names of arguments can be stored (chapter 6). The descriptions are structured
such that they are guaranteed to be convertable to Agda datatypes, so modifica-
tions to descriptions can be made freely without having to worry whether the
resulting description makes sense or not.

2. Ornaments are defined for each version of these descriptions (section 3.3, 4.3, 5.2
and 6.1). The ornaments allow insertion and deletion of arguments, refinement
of parameters and refinement of indices. Many ornament-related concepts are
translated to our universe, including ornamental algebras, algebraic ornaments
(section 5.3) and reornaments (section 6.6.4). Some high-level operations are
definedwhich can be used tomodify descriptions without having deep knowledge
of our implementation (section 6.6).

3. We implement a framework which uses reflection to derive descriptions and their
embedding-projection pairs for real datatypes (chapter 6). Some operations like
fold and depth are defined generically, to work on every datatype for which a
description has been derived (section 6.4). Ornaments can be applied to descrip-
tions, and these descriptions can be used to semi-automatically declare the cor-
responding datatype (section 6.5).

With these contributions we hope to provide a framework which can be used for
experimentation with ornaments, as well as a practical example of how ornaments can
be integrated into a language. Along the way a library for the reflection of datatypes
has been built which, to our knowledge, does not yet exist for Agda.

All the code in this thesis is developed in Agda 2.5.1 and all is based on Ulf Norell’s
Agda Prelude (the prelude is better for general purpose and meta programming, while
the standard library is more focussed on proving things). If we assume that the reader
knows about basic definitions like _x_, Either or Σ, the prelude probably defines it. Every
chapter will be treated as a module that is internally consistent without overlapping
names. Some definitions will be shared between chapters and some will be redefined
implicitly, but if they are explicitly defined theywill not cause conflict with other explicit
definitions within the chapter. All the source code is available at http://sijsling.
com/.

6

http://sijsling.com/
http://sijsling.com/

Chapter 2

Usage

In this section we provide a short overview of how the generic programming and orna-
mentation library works. It is meant to show how the different components fit together,
so not all implementation details will be presented here. We focus on how an end-user
with minimal knowledge about ornaments or generics would use our library. The in-
terested reader is asked to suspend their curiosity—the rest of this thesis explains how
the library is implemented.

To start with, we apply the deriveHasDesc function to the Nat datatype. This per-
forms all kinds of meta-programming magic to introduce two new definitions in the
current scope: quotedNat and NatHasDesc.

data Nat ∶ Set where
zero ∶ Nat
suc ∶ Nat → Nat

unquoteDecl quotedNat NatHasDesc =
deriveHasDesc quotedNat NatHasDesc (quote Nat)

From our newly obtained quotedNat we can retrieve a description which is the
representation of a datatype declaration within the system. The description is of type
Desc ε ε ; the arguments ε and ε indicate that this datatype has no parameters and no
indices. For now we will not be looking at the description itself.

natDesc ∶ Desc ε ε
natDesc = QuotedDesc.desc quotedNat

The deriveHasDesc function has also defined NatHasDesc for us. This is a record
instance which contains an embedding-projection pair. The embedding-projection pair
translates between values of the types Nat and μ natDesc tt tt, where μ natDesc tt tt is
the Setwhich contains the elements as described by natDesc. The record is found auto-
matically with instance search, so once deriveHasDesc has been called the embedding-
projection can be used by simply writing to or from:

natTo ∶ Nat → μ natDesc tt tt
natTo = to
natFrom ∶ μ natDesc tt tt → Nat
natFrom = from

7

Datatypes can have parameters. A simple example of a datatype with parame-
ters is List. We can use the same deriveHasDesc function to define quotedList and
ListHasDesc automatically. When we retrieve the description of the datatype we see
that it is of type Desc ε (ε ▷′ Set) . The (ε ▷′ Set) here tells us that there is one
parameter of type Set.

data List (A ∶ Set) ∶ Set where
nil ∶ List A
cons ∶ (x ∶ A) → (xs ∶ List A) → List A

unquoteDecl quotedList ListHasDesc =
deriveHasDesc quotedList ListHasDesc (quote List)

listDesc ∶ Desc ε (ε ▷′ Set)
listDesc = QuotedDesc.desc quotedList

Both List and μ listDesc are polymorphic in the type of their elements, so the to and
from functions are now polymorphic as well:

listTo ∶ ∀ {A} → List A → μ listDesc (tt , A) tt
listTo = to
listFrom ∶ ∀ {A} → μ listDesc (tt , A) tt → List A
listFrom = from

With a HasDesc instance we can perform generic operations. For example the func-
tion gdepth of type ∀ {A} → ⦃ R ∶ HasDesc A ⦄ → A → Nat) which calculates the
depth of any value that has a generic representation. For the Nat type this is just the
identity, but for List this is exactly the length of a list:

nat-id ∶ Nat → Nat
nat-id = gdepth
length ∶ ∀ {A} → List A → Nat
length = gdepth

The length of a list can also be calculated using a fold and an algebra. Actually, that
is precisely what gdepth does internally. It uses an algebra depthAlg listDesc and folds
it over the list. One may define an alternative length function as follows:

length′ ∶ ∀ {A} → List A → Nat
length′ = gfold (depthAlg listDesc)

Adepth algebra can be calculated for any description—this allows gdepth to be fully
generic (i.e. it works for all descriptions). One may also define algebras for a specific
type, for instance a countBoolsAlgwhich counts the number of trues in a List Bool. The
generic gfold function can be used to fold this algebra.

countBools ∶ List Bool → Nat
countBools = gfold countBoolsAlg

We have taken a look at naturals and lists. These datatypes are similar in their
recursive structure and we want to exploit that. We can create an ornament which can be
used as a patch on the description of naturals to get the description of lists. Descriptions
do not include names of the datatype and constructors, but they do include names of
arguments so we have to do two things to obtain lists from naturals:

8

• The recursive argument of suc must be renamed to ”xs”. We can use the expres-
sion renameArguments 1 (just ”xs” ∷ []) to build such an ornament.

• A parameter of type Set must be added, which must be used as an argument in
the suc/cons constructor. The ornament to do that is addParameterArg 1 ”x”.

These two ornaments have to be applied in sequence, so they are composed using
the ≫⁺ operator. The resulting ornament can be applied to produce a new description
using ornToDesc, and we see that ornToDesc nat→list results in a description which is
exactly the same as listDesc:

nat→list ∶ Orn natDesc
nat→list = renameArguments 1 (just ”xs” ∷ [])

≫⁺ addParameterArg 1 ”x”

test-nat→list ∶ ornToDesc nat→list ≡ listDesc
test-nat→list = refl

Datatype indices can be used to refine datatypes. Such a refinement can ensure that
values can only be built if they adhere to a certain invariant. For instance, a length
index can be added to lists to ensure that only lists of the specified length are allowed.
One class of ornaments that inserts indices is that of algebraic ornaments. These use
an algebra on the original datatype to calculate the values of the indices. By folding the
algebra depthAlg listDesc we were able to calculate the length of a list, but we can also
use it with algOrn to build an ornament which inserts a length index:

list→vec ∶ Orn listDesc
list→vec = algOrn (depthAlg listDesc)

As expected, this ornament results in a description with an index of type Nat. The
list of indices is now (ε ▷′ Nat), and the list of parameters is still (ε ▷′ Set).

vecDesc ∶ Desc (ε ▷′ Nat) (ε ▷′ Set)
vecDesc = ornToDesc list→vec

We have built a new description using ornamentation, but it does not yet have a cor-
responding Agda datatype. Our descriptions are defined in such a way that they can al-
ways be converted back to a real datatype definition. The reflection mechanism in Agda
does not yet support the definition of datatypes, but we can calculate the types of every
constructor and of the datatype itself. All we have to do is write the skeleton of the data-
type definition, but not the types themselves. Using deriveHasDescExisting we can de-
rive VecHasDesc which connects the datatype Vec to the existing description vecDesc,
so the to and from functions go between Vec A n and μ vecDesc (tt , A) (tt , n).

data Vec (A ∶ Set) ∶ unquoteDat vecDesc where
nil ∶ unquoteCon vecDesc 0 Vec
cons ∶ unquoteCon vecDesc 1 Vec

unquoteDecl quotedVec VecHasDesc =
deriveHasDescExisting quotedVec VecHasDesc (quote Vec) vecDesc

9

An essential property of ornaments is that each element of the ornamented type can
be transformed back to an element of the original type. The generic operation gforget
does that for a given ornament. We can use it to define the function which transforms a
Vec to the corresponding List:

vecToList ∶ ∀ {A n} → Vec A n → List A
vecToList = gforget list→vec

We have seen how this implementation can be used to perform generic operations
and to build and use ornaments on a high level with a fairly limited amount of knowl-
edge. We did not once have to look at the actual descriptions and ornaments which are
used internally. In the rest of this thesis we will be taking a better look on how these
descriptions and ornaments have to be defined and howmeta-programming can be used
to connect the descriptions to actual datatypes.

10

Chapter 3

Generics and ornaments

Datatype-generic programming in functional languages is all about figuring out how to
build complicated types from a small set of components. For finite types—those types
which have a finite number of inhabitants, i.e. they do not allow recursion—this is
quite easy. By using just the basic components ⊤, _×_ and Either for unit, products and
coproducts, we can already build some simple types like Bool and Maybe. The Maybe
type has a type parameter which needs to be instantiated to get an inhabited type.

boolLike ∶ Set
boolLike = Either ⊤ ⊤
maybeLike ∶ (A ∶ Set) → Set
maybeLike A = Either A ⊤

Of course, finite types are very limited. Not just in the number of elements contained
in these types, but in their utility too. To implement a wider range of types we need
recursion. Naively, we might try to define lists as listLike A = Either ⊤ (listLike A),
but the evaluation of a term like that does not terminate. The common approach to
work around this problem is by associating a pattern functor with every datatype [14,
22]. Instead of building a recursive expression of type Set, we build a functor of type
Set → Set. For example, we can build these pattern functors for naturals and lists:

natPF ∶ Set → Set
natPF X = Either ⊤ X
listPF ∶ (A ∶ Set) → Set → Set
listPF A X = Either ⊤ (A × X)

Each occurence of X signifies that it is a recursive position. The definitions natPF
and listPF provide the structure—or pattern—for the types we want, and the values of
the Xes are of later concern. By taking the fixpoint of the pattern functor we let the
argument X refer to the type itself, effectively representing induction. The fixpoint is
closed in the μ′ datatype1.

data μ′ (F ∶ Set → Set) ∶ Set where
⟨_⟩ ∶ F (μ′ F) → μ′ F

1The observant reader may notice that the μ′ datatype does not pass the strict-positivity check. This
problem is solved with a new definition of μ′ in the next section.

11

Now whenever a μ′ somePF is expected, we can provide a somePF (μ′ somePF)
wrapped in ⟨_⟩. The recursive positions within that somePF (μ′ somePF) are expected
to contain a μ′ somePF again, closing the loop neatly.

listPF-example ∶ μ′ (listPF String)
listPF-example = ⟨ right (”one” , ⟨ right (”two” , ⟨ left tt ⟩) ⟩) ⟩

We have seen how simple algebraic datatypes can be built using a few basic compo-
nents, namely the unit type, products, coproducts and fixpoints. To reason about these
types we have to formalise the fact that only these components, and no others, can be
used to form our types. In section 3.1 we reify these components to build a universe
of descriptions. In general, the concept of a universe in Martin Löf’s type theory [17]
involves two things: firstly there are codes which describe types; secondly there is a
decoding function to translate codes into the type they represent. In this work, the de-
scriptions form the codes of the universe and the decoding function ⟦_⟧ gives a pattern
functor for a description. In a sense, the decoding function provides a pattern functor
semantics for descriptions. By taking the fixpoint of the resulting pattern functor we
obtain a Set which can be used as a type.

With descriptions and their interpretations in place, ornaments for these descriptions
are defined in section 3.3. Every ornament is built for a specific description, and can
represent the copying, insertion and removal of parts of the description. If something
is to be called an ornament, it must be possible to produce a forget function for every
ornament. The forget function goes from elements of the ornamented type to elements
of the original type. In section 3.4 an ornamental algebra is defined which gives rise
to the forget function.

3.1 Descriptions
As promised, we will build a universe of descriptions. For the descriptions in this
chapter, we will be using the following codes:

• The _⊕_ operator represents a choice. For our purposes this always means
a choice between different constructors. A list of constructors is separated by
⊕ ’es and terminated with the empty type ‘0.

• The _⊗_ operator is used for products. A chain of _⊗_’s terminated with the
unit type ι can be formed to represent the arguments of a constructor.

• For recursive arguments a special operator rec-⊗_ can be used in the same places
where _⊗_ is allowed.

These codes are formalised using the ConDesc and DatDesc datatypes, defined in
listing 3.1. ConDesc contains the constructors ι, _⊗_ and rec-⊗_ ; these are sufficient
to describe the types of constructors. DatDesc is basically a Vec of ConDescs; it is
indexed by the number of constructors and uses ‘0 and _⊕_ to chain the ConDescs
together. The reasons for this split between ConDescs and DatDescs are discussed at
the end of this chapter.

With this set of components we can build some simple datatypes. To get some
feeling for this, we look at the descriptions for unit, naturals, non-dependent pairs and
lists. Note that _⊗_ and rec-⊗_ take precedence over _⊕_ , so products are applied
before sums.

12

data ConDesc ∶ Set₁ where
ι ∶ ConDesc
⊗ ∶ (S ∶ Set) → (xs ∶ ConDesc) → ConDesc
rec-⊗_ ∶ (xs ∶ ConDesc) → ConDesc

data DatDesc ∶ Nat → Set₁ where
‘0 ∶ DatDesc 0
⊕ ∶ ∀ {#c} (x ∶ ConDesc) (xs ∶ DatDesc #c) → DatDesc (suc #c)

Listing 3.1: Sum-of-products descriptions

⟦_⟧conDesc ∶ ConDesc → Set → Set
⟦ ι ⟧conDesc X = ⊤
⟦ S ⊗ D ⟧conDesc X = S × ⟦ D ⟧conDesc X
⟦ rec-⊗ D ⟧conDesc X = X × ⟦ D ⟧conDesc X
lookupCtor ∶ ∀ {#c} (D ∶ DatDesc #c) → Fin #c → ConDesc
lookupCtor ‘0 ()
lookupCtor (x⊕) zero = x
lookupCtor (⊕ xs) (suc k) = lookupCtor xs k
⟦_⟧datDesc ∶ ∀ {#c} → DatDesc #c → Set → Set
⟦_⟧datDesc {#c} D X = Σ (Fin #c) λ k → ⟦ lookupCtor D k ⟧conDesc X
-- The notation ⟦_⟧ is overloaded to mean ⟦_⟧datDesc
data μ {#c ∶ Nat} (F ∶ DatDesc #c) ∶ Set where

⟨_⟩ ∶ ⟦ F ⟧ (μ F) → μ F

Listing 3.2: Sum-of-products semantics

unitDesc ∶ DatDesc 1
unitDesc = ι⊕ ‘0
natDesc ∶ DatDesc 2
natDesc = ι⊕ rec-⊗ ι⊕ ‘0
pairDesc ∶ (A B ∶ Set) → DatDesc 1
pairDesc A B = A ⊗ B ⊗ ι⊕ ‘0
listDesc ∶ (A ∶ Set) → DatDesc 2
listDesc A = ι⊕ A ⊗ rec-⊗ ι⊕ ‘0

It’s noteworthy that even though we can parameterise these descriptions, the de-
scriptions themselves are not really aware of it. It is merely a shallow embedding of
parametricity. The extended descriptions in chapter 5 include the parameters within
the descriptions, creating a deep embedding of parametric polymorphism.

Listing 3.2 shows how descriptions are decoded to pattern functors. The decoding
of ConDesc is fairly straightforward, producing λ X → S × X × ⊤ for S ⊗ rec-⊗ ι. The
decoding of DatDesc is somewhat more involved. While the conventional approach
would be to convert all _⊕_ constructors to Either and the ‘0 constructor to ⊥, we
instead choose to produce a Σ-type: Σ (Fin #c) λ k → ⟦ lookupCtor D k ⟧conDesc X.
This type means that the first argument is used to indicate the choice of constructor
and the second argument must then be an element of that particular constructor. This
prevents long chains of lefts and rights due to nested Eithers. We will write ⟦_⟧ to mean
⟦_⟧conDesc or ⟦_⟧datDesc when that is not ambiguous in the context..

13

The fixpoint μ (Listing 3.2) is similar to the fixpoint in the introduction of this chap-
ter, but specialised to the decoding of DatDesc. This specialisation is necessary to
convince Agda that the datatype μ is strictly positive. This works as long as there are
only strictly-positive occurences of X in ⟦_⟧datDesc and ⟦_⟧conDesc. Since μ already in-
cludes the call to ⟦_⟧datDesc, we can get the Set corresponding to a description by simply
prepending the description with μ. For instance, μ natDesc is a Set which corresponds
to the natural numbers.

The following code gives an example of how a μ natDesc can be constructed. In
nat-example1, the hole has to be of type ⟦ natDesc ⟧ (μ natDesc). When we expand
that type we get a Σ-type where the first argument must be a Fin 2, allowing us to pick
one of the two constructors.

nat-example1 ∶ μ natDesc
nat-example1 = ⟨ ?0 ⟩
-- ?0 ∶ ⟦ natDesc ⟧ (μ natDesc)
-- ?0 ∶ Σ (Fin 2) (λ k → ⟦ lookupCtor natDesc k ⟧ (μ natDesc))

In nat-example2 we pick the second constructor (the numbering starts at 0), the de-
scription of this constructor is rec-⊗ ι, so we are left to fill in a ⟦ rec-⊗ ι ⟧ (μ natDesc),
a type which is equal to μ natDesc × ⊤. The definition nat-example3 shows how this
process could be completed by filling in ⟨ 0 , tt ⟩ in the recursive spot, resulting in an
expression which should be read as suc zero, i.e. the number 1.

nat-example2 ∶ μ natDesc
nat-example2 = ⟨ 1 , ?1 ⟩
-- ?1 ∶ ⟦ lookupCtor natDesc 1 ⟧ (μ natDesc)
-- ?1 ∶ ⟦ rec-⊗ ι ⟧ (μ natDesc)
-- ?1 ∶ μ natDesc × ⊤
nat-example3 ∶ μ natDesc
nat-example3 = ⟨ 1 , ⟨ 0 , tt ⟩ , tt ⟩

Whenever we want to give a value belonging to μ someDescription, we start by
writing ⟨_⟩ and picking the number of the constructor we want to use. This corresponds
with the fact that for some datatype DT, a value of type DT can be created by using one
of the constructors of that datatype. The following functions for naturals and lists show
how every constructor-call is represented by a particular term ⟨ i , ? ⟩:

‘zero ∶ μ natDesc
‘zero = ⟨ 0 , tt ⟩
‘suc ∶ μ natDesc → μ natDesc
‘suc n = ⟨ 1 , n , tt ⟩
‘[] ∶ ∀ {A} → μ (listDesc A)
‘[] = ⟨ 0 , tt ⟩
‘∷ ∶ ∀ {A} → A → μ (listDesc A) → μ (listDesc A)
‘∷ x xs = ⟨ 1 , x , xs , tt ⟩

With these functions, we can write values almost like we would with normal data-
types. They illustrate the similarity between the descriptions and real datatypes:

nat-example ∶ ‘suc ‘zero ≡ ⟨ 1 , ⟨ 0 , tt ⟩ , tt ⟩
nat-example = refl
list-example ∶ 7 ‘∷ 8 ‘∷ ‘[] ≡ ⟨ 1 , 7 , ⟨ 1 , 8 , ⟨ 0 , tt ⟩ , tt ⟩ , tt ⟩
list-example = refl

14

conDescmap ∶ ∀ {X Y} (f ∶ X → Y) (D ∶ ConDesc) →
(v ∶ ⟦ D ⟧ X) → ⟦ D ⟧ Y

conDescmap f ι tt = tt
conDescmap f (S ⊗ xs) (s , v) = s , conDescmap f xs v
conDescmap f (rec-⊗ xs) (s , v) = f s , conDescmap f xs v
datDescmap ∶ ∀ {#c X Y} (f ∶ X → Y) (D ∶ DatDesc #c) →

(v ∶ ⟦ D ⟧ X) → ⟦ D ⟧ Y
datDescmap f xs (k , v) = k , conDescmap f (lookupCtor xs k) v

Listing 3.3: Map over the pattern functors

If we want to be absolutely certain that our descriptions match up to the types they
represent, we could provide an isomorphism between them. In the case of lists for
some given type A, an isomorphism between List A and μ (listDesc A) would entail four
functions. The functions to and from convert between the representation using generics
and the Agda datatype. Within the context of generic programming the from and to
functions are commonly referred to as the embedding-projection pair. The functions
to-from and from-to provide proofs that to and from are mutual inverses.

to ∶ List A → μ (listDesc A)
from ∶ μ (listDesc A) → List A
to-from ∶ ∀ x → from (to x) ≡ x
from-to ∶ ∀ x → to (from x) ≡ x

More often than not, we will skip the proofs and just give the embedding-projection
pair or the constructor-functions. This already rules out many mistakes and suffices to
convince ourselves that a description is probably right.

3.2 Maps and folds
In the previous section, we claimed that the decoding of a description results in a so-
called pattern functor. Clearly, ⟦_⟧datDesc returns something of type Set → Set, but we
have not yet shown that it is really a functor. To prove this, we define the functorial
map for the decoding of any description in listing 3.3. For a function f ∶ X → Y and a
description D, we can always compute a function ⟦ D ⟧ X → ⟦ D ⟧ Y.

A typical operation which can be performed generically is folding, defined in list-
ing 3.4. Given a description D and an algebra of type Alg D X, the fold function can
calculate a result of type X for any value of type μ D. As seen in listing 3.4, we define
Alg D X to be ⟦ D ⟧ X → X. The intuition here is that the user has to provide the fold
function with a method to calculate a result for every possible value, given that a result
has already been calculated for the recursive positions. The fold function first maps the
fold over the recursive positions and then the algebra can be applied.

Example 3.2.1. An example of a simple algebra is one that counts the true values in
a list of booleans. To define the algebra we can pattern match on the argument of type
⟦ listDesc Nat ⟧ Nat. A case split is done on the first field in the Σ-type, such that each
case corresponds to a constructor of the list datatype. The first case, for the empty list,
always returns a 0. In the second case—suc zero , x , xs , tt—the variable x is of type
Bool because it is an element in the list. The variable xs is of type Nat because that is

15

Alg ∶ ∀ {#c} → DatDesc #c → Set → Set
Alg D X = ⟦ D ⟧ X → X
fold ∶ ∀ {#c} {D ∶ DatDesc #c} {X} (α ∶ Alg D X) → μ D → X
fold {D = D} α ⟨ xs ⟩ = α (datDescmap (fold α) D xs)

Listing 3.4: Generic fold

the result of the algebra. By applying fold to the algebra we obtain a function which
counts the number of trues in a list of booleans.

countTruesAlg ∶ Alg (listDesc Bool) Nat
countTruesAlg (zero , tt) = 0
countTruesAlg (suc zero , x , xs , tt) = if x then suc xs else xs
countTruesAlg (suc (suc ()) ,)
countTrues ∶ μ (listDesc Bool) → Nat
countTrues = fold countTruesAlg

△

3.3 Ornaments
Now that we have a good way to describe some basic datatypes within Agda, we can im-
plement ornaments for those descriptions. Ornaments for such simple datatypes without
indices are of limited use, but getting some practice with this basic form now should
make things easier when we extend the descriptions with more features. Our ornaments
are mostly based on those presented byMcBride [19] and later by Dagand andMcBride
[6]. Our choice of descriptions does require some novel modifications to the original
presentation of ornaments.

The characterising feature of ornaments is that elements of an ornamented type are
at least as informative as elements of the base type. More formally, a transformation
from one description to another is an ornament iff it comes with a forget function that
takes ornamented values back to their corresponding values of the base type. The next
section will show that all the ornaments we define indeed come with a forget function.

The ornaments and their interpretation are defined in listing 3.5. Ornaments for con-
structors and datatypes are defined separately; ConOrn works on ConDescs and DatOrn
works on DatDescs. Both are indexed by their respective descriptions, such that an or-
nament for a datatype description D has type DatOrn D. The ornaments contain several
groups of operations:

• The unit copy operation ι just keeps the ι constructor.

• Argument copy operations: –⊗_ and rec-⊗_ keep the argument, but an ornament
has to be given for the tail. The Set for –⊗_ does not have to be given; it is simply
copied.

• Argument insertion operations: _+⊗_ and rec-+⊗_ insert a new argument in a
constructor.

• The argument deletion operation give-K removes a non-recursive argument from
a constructor.

16

data ConOrn ∶ (D ∶ ConDesc) → Set₁ where
ι ∶ ConOrn ι
–⊗_ ∶ ∀ {S xs} → (xs⁺ ∶ ConOrn xs) → ConOrn (S ⊗ xs)
rec-⊗_ ∶ ∀ {xs} → (xs⁺ ∶ ConOrn xs) → ConOrn (rec-⊗ xs)
+⊗ ∶ ∀ {xs} (S ∶ Set) → (xs⁺ ∶ ConOrn xs) → ConOrn xs
rec-+⊗_ ∶ ∀ {xs} → (xs⁺ ∶ ConOrn xs) → ConOrn xs
give-K ∶ ∀ {S xs} (s ∶ S) → (xs⁺ ∶ ConOrn xs) → ConOrn (S ⊗ xs)

data DatOrn ∶ ∀ {#c} (D ∶ DatDesc #c) → Set₁ where
‘0 ∶ DatOrn ‘0
⊕ ∶ ∀ {#c x xs} →

(x⁺ ∶ ConOrn x) (xs⁺ ∶ DatOrn xs) → DatOrn {suc #c} (x⊕ xs)
conOrnToDesc ∶ ∀ {D} → ConOrn D → ConDesc
conOrnToDesc ι = ι
conOrnToDesc (–⊗_ {S = S} xs⁺) = S ⊗ conOrnToDesc xs⁺
conOrnToDesc (rec-⊗ xs⁺) = rec-⊗ conOrnToDesc xs⁺
conOrnToDesc (S +⊗ xs⁺) = S ⊗ conOrnToDesc xs⁺
conOrnToDesc (rec-+⊗ xs⁺) = rec-⊗ conOrnToDesc xs⁺
conOrnToDesc (give-K s xs⁺) = conOrnToDesc xs⁺
ornToDesc ∶ ∀ {#c} {D ∶ DatDesc #c} → DatOrn D → DatDesc #c
ornToDesc ‘0 = ‘0
ornToDesc (x⁺⊕ xs⁺) = conOrnToDesc x⁺⊕ ornToDesc xs⁺

Listing 3.5: Definition of ornaments

• Datatype copy operations ‘0 and _⊕_ . Constructors can not be inserted or re-
moved with the chosen ornaments, so the ‘0 and _⊕_ have to be copied. An
ornament has to be given for every constructor in the datatype. The choice to
disallow insertion and removal of constructors is discussed in section 3.5.

The functions conOrnToDesc and ornToDesc define the semantics of ConOrn and
DatOrn respectively. They convert an ornament into a description. If we talk about
applying an ornament, we actuallymean the application of conOrnToDesc or ornToDesc.
Furthermore, we will once again overload the ⟦_⟧ notation such that when it is used with
an ornament it means ⟦ ornToDesc o ⟧datDesc or ⟦ conOrnToDesc o ⟧conDesc.

We can now build some simple ornaments. We have previously defined natDesc as
ι ⊕ rec-⊗ ι ⊕ ‘0 and listDesc A as ι ⊕ A ⊗ rec-⊗ ι ⊕ ‘0. These are clearly quite
similar. We can build an ornament on natDesc which extends the second constructor
with an argument of type A, using the copy operations and _+⊗_ . Interpreting this
ornament with ornToDesc gives us exactly the description of lists of A:

nat→list ∶ ∀ {A} → DatOrn natDesc
nat→list {A} = ι⊕ A +⊗ rec-⊗ ι⊕ ‘0
test-nat→list ∶ ∀ {A} → ornToDesc nat→list ≡ listDesc A
test-nat→list = refl

17

conForgetNT ∶ ∀ {D} (o ∶ ConOrn D) →
∀ {X} → ⟦ conOrnToDesc o ⟧ X → ⟦ D ⟧ X

conForgetNT ι tt = tt
conForgetNT (–⊗ xs⁺) (s , v) = s , conForgetNT xs⁺ v
conForgetNT (rec-⊗ xs⁺) (s , v) = s , conForgetNT xs⁺ v
conForgetNT (_+⊗_ S xs⁺) (s , v) = conForgetNT xs⁺ v
conForgetNT (rec-+⊗_ xs⁺) (s , v) = conForgetNT xs⁺ v
conForgetNT (give-K s xs⁺) v = s , conForgetNT xs⁺ v
forgetNT ∶ ∀ {#c} {D ∶ DatDesc #c} (o ∶ DatOrn D) →

∀ {X} → ⟦ ornToDesc o ⟧ X → ⟦ D ⟧ X
forgetNT ‘0 (() ,)
forgetNT (x⁺⊕ xs⁺) (zero , v) = 0 , conForgetNT x⁺ v
forgetNT (x⁺⊕ xs⁺) (suc k , v) = (suc *** id) (forgetNT xs⁺ (k , v))
-- Alg (ornToDesc o) (μ D) is ⟦ ornToDesc o ⟧ (μ D) → μ D
forgetAlg ∶ ∀ {#c} {D ∶ DatDesc #c} (o ∶ DatOrn D) →

Alg (ornToDesc o) (μ D)
forgetAlg o = ⟨_⟩ ∘ forgetNT o
forget ∶ ∀ {#c} {D ∶ DatDesc #c} (o ∶ DatOrn D) →

μ (ornToDesc o) → μ D
forget o = fold (forgetAlg o)

Listing 3.6: Ornamental algebras

3.4 Ornamental algebras
Each ornament induces an ornamental algebra [19]. The ornamental algebra turns ele-
ments of the ornamented type back into elements of the original type, such that folding
the ornamental algebra for an ornament (o ∶ DatOrn D) results in a function from
μ (ornToDesc o) to μ D. The ornamental algebra is built using a natural transformation
between the pattern functors ⟦ o ⟧ and ⟦ D ⟧, that is a function which goes from ⟦ o ⟧ X
to ⟦ D ⟧ X for all values of X.

forgetNT ∶ ∀ {#c} {D ∶ DatDesc #c} (o ∶ DatOrn D) →
∀ {X} → ⟦ o ⟧ X → ⟦ D ⟧ X

forget ∶ ∀ {#c} {D ∶ DatDesc #c} (o ∶ DatOrn D) →
μ (ornToDesc o) → μ D

The forget function is implemented using forgetNT. In other words; when we can
transform one pattern functor into another pattern functor, we can make that same trans-
formation between the fixed points of those pattern functors. The full definition is given
in listing 3.6. Note that we use the function _***_, which is defined as the bimap on pairs
such that (f *** g) (x , y) is (f x , g y). The actual ornamental algebra forgetAlg arises
as an intermediary step between forgetNT and forget.

Example 3.4.1. Let us take a look at the ornamental algebra for the nat→list ornament.
The forget function for this ornament should take a list to a natural. More precisely,
applying forget to nat→list for a given parameter A results in a function which takes a
μ (listDesc A) to a μ natDesc. Each nil is taken to a zero and cons is taken to a suc—
the extra elements of type Awhich were introduced by the ornament are forgotten. This

18

happens to result in exactly the length of the list, so we might define a length function
as forget nat→list.

‘length ∶ ∀ {A} → μ (listDesc A) → μ natDesc
‘length = forget nat→list
test-length ∶ ‘length (”one” ‘∷ ”two” ‘∷ ‘[]) ≡ ‘suc (‘suc ‘zero)
test-length = refl

△

Example 3.4.2. The give-K ornament is useful if one wishes to specialise a datatype,
instantiating some argument to a particular value. For instance, is we know that all
the elements in a list of naturals are always 7, we might as well remove that element
altogether. If we choose to remove it, we must still remember that the value was 7 for
every element. Coincidentally, this ornament results in the same description as that for
natural numbers.

list→listof7s ∶ DatOrn (listDesc Nat)
list→listof7s = ι⊕ give-K 7 (rec-⊗ ι) ⊕ ‘0
test-list→listof7s ∶ ornToDesc list→listof7s ≡ natDesc
test-list→listof7s = refl

It seems odd that we can have ornaments which go from naturals to lists, and or-
naments from lists to naturals as well. The point here is that within the context of the
list→listof7s ornament that natural has a very particular meaning, namely the length of
the list. This becomes obvious when we forget the ornament. By passing the number
two, we get a list of length two where the values for the elements are provided by the
ornament itself.

forget-listof7s ∶ forget list→listof7s (‘suc (‘suc ‘zero)) ≡ (7 ‘∷ 7 ‘∷ ‘[])
forget-listof7s = refl

So in fact, we are replicating 7s here. We can generalise the ornament a bit to get a
function which repeats a given element a given number of times:

‘replicate ∶ ∀ {A} → A → μ natDesc → μ (listDesc A)
‘replicate x = forget (ι⊕ give-K x (rec-⊗ ι) ⊕ ‘0)

Interestingly, the ‘length function which was obtained by the ornamental algebra
of nat→list is the inverse of this ‘replicate function which we got with the ornamental
algebra of list→listof7s. This is not a coincidence. The nat→list ornament (ι ⊕ A +⊗
rec-⊗ ι ⊕ ‘0) inserts exactly the argument which was removed by the list→listof7s
ornament (ι ⊕ give-K 7 (rec-⊗ ι) ⊕ ‘0), while keeping the rest of the description the
same. Say that o₂ is an inverse ornament of o₁ iff forget o₂ is the inverse of forget o₁,
then we could say that nat→list is the inverse ornament of list→listof7s. △

3.5 Discussion
In this chapter we have presented a universe of descriptions for simple datatypes. At
the root they are ordinary sum-of-products descriptions which support recursion using
fixpoints. Although we did represent types with datatype parameters, the parameter

19

data Code ∶ Set where
ι ∶ Code
rec ∶ Code
⊕ ∶ (F G ∶ Code) → Code
⊗ ∶ (F G ∶ Code) → Code

Listing 3.7: Codes for a universe of regular types

abstractions were always done externally and the descriptions are not aware of any dif-
ferences between datatype parameters and other arguments.

The Regular [21] library is a datatype-generic programming library for Haskell
which has a similar scope, where parameters and indices are not supported. An Agda
formalisation of the Regular library is presented byMagalhães and Löh [16]. The codes
for the universe they use are shown in listing 3.7. There are codes for units, recursive
positions, sums and products. The decoding function ⟦_⟧ and the fixpoint datatype μ
are similar to those in this chapter.

The types that can be represented with the descriptions in this chapter are limited
to the regular types, those which can be defined using the units, sums, products and the
fixpoints μ [21]. Regular types do not allow nested datatypes [3] or mutual recursion.
A regular type does not necessarily correspond to one single datatype though. For
instance, to write the regular type μ X. ι ⊕ (ι ⊕ ι) ⊗ X in Agda one would need at
least two types: List and Bool (it is a list of booleans).

With regards to the ultimate goal of using our descriptions to accurately represent
and even define Agda datatypes, we need to impose some restrictions on our descrip-
tions which libraries like Regular do not need. We have to make sure that every de-
scription corresponds to exactly one Agda datatype. An Agda datatype is always a sum
of products, where each term of the top-level sum corresponds to a constructor and the
factors of those terms correspond to constructor arguments. The split between ConDesc
and DatDesc enforces this structure.

Our descriptions also differ from those in listing 3.7 in that ours have a list-like
structure where ι and _‘0_ function as nil and _⊗_ , rec-⊗_ and _⊕_ as cons. This has
two benefits: It ensures that every description has one canonical representation and it
is easier to work with, both in construction and consumption.

3.5.1 Σ-descriptions
The descriptions we have seen all have sums and products using _⊕_ and _⊗_ . In
dependently typed languages we have Σ-types, which can be used to encode both sums
and products [4]. Some of the work on ornaments which we will be referring to uses
descriptions with Σ’s, so we will take a look at them. To start with, we define a universe
of descriptions and their decoding in listing 3.8.

The σ description is used to describe Σ-types, the rest should be familiar (it is the
same as our descriptions). The following description of the Either type illustrates quite
well how a σ can mean different things. The Either type has two constructors; the choice
between them is made by asking for a Fin 2 in the outer σ, the pattern-matching lambda
then picks the description of a constructor based on the Fin 2 value. The top-level σ
thus works as a sum of two constructors. The inner σ’s function like _⊗_ ; in the first
constructor an A is asked for, in addition to the rest of the description for that constructor
where the value (a ∶ A) may be used.

20

data DescΣ ∶ Set₁ where
ι ∶ DescΣ
σ ∶ (S ∶ Set) → (xs ∶ S → DescΣ) → DescΣ
rec-×_ ∶ (xs ∶ DescΣ) → DescΣ

⟦_⟧DescΣ ∶ DescΣ → Set → Set
⟦ ι ⟧DescΣ X = ⊤
⟦ σ S xs ⟧DescΣ X = Σ S λ s → ⟦ xs s ⟧DescΣ X
⟦ rec-× xs ⟧DescΣ X = X × ⟦ xs ⟧DescΣ X
data μΣ (D ∶ DescΣ) ∶ Set where

⟨_⟩ ∶ ⟦ D ⟧DescΣ (μΣ D) → μΣ D

Listing 3.8: Universe of Σ-descriptions

D ∶ ConDesc/DatDesc DΣ ∶ DescΣ ⟦ D ⟧ and ⟦ DΣ ⟧
ι ι ⊤
S ⊗ xs σ S λ → xs S × ⟦ xs ⟧ X
rec-⊗ xs rec-× xs X × ⟦ xs ⟧ X
x0 ⊕ x1 ⊕ ⋯⊕ xn-1 ⊕ ‘0 σ (Fin n) λ k → xk Σ (Fin n) λ k → ⟦ xk ⟧ X

Table 3.1: Descriptions and their DescΣ counterparts

eitherDescΣ ∶ (A B ∶ Set) → DescΣ
eitherDescΣ A B = σ (Fin 2) λ

{zero → σ A λ a → ι
; (suc zero) → σ B λ b → ι
; (suc (suc ()))}

eitherDescΣ-left ∶ ∀ {A B} → A → μΣ (eitherDescΣ A B)
eitherDescΣ-left x = ⟨ 0 , x , tt ⟩
eitherDescΣ-right ∶ ∀ {A B} → B → μΣ (eitherDescΣ A B)
eitherDescΣ-right x = ⟨ 1 , x , tt ⟩

The types which are encoded by our universe are a subset of those which can be
encoded by Σ-descriptions. Table 3.1 shows how a ConDesc or DatDesc can be trans-
lated into a DescΣ with an equivalent semantics. Note how DatDesc needs multiple
constructors to encode a sum where DescΣ uses just one σ. That is why we need the
lookupCtor function to define the decoding and DescΣ does not.

In listing 3.9 we define ornaments for copying of ι, σ and rec-×_ and for insertion
and deletion of σ’s. They are similar to those defined by Dagand and McBride [6]. The
insert-σ and delete-σ ornaments match our _+⊗_ and give-K ornaments.

As a quick example, we can now define descriptions of naturals and the ornamenta-
tion from naturals to lists. The ornament inserts a new σ in the description, and results
in a description which can describe lists.

21

data OrnΣ ∶ (D ∶ DescΣ) → Set₁ where
ι ∶ OrnΣ ι
σ ∶ (S ∶ Set) → ∀ {xs} (xs⁺ ∶ (s ∶ S) → OrnΣ (xs s)) → OrnΣ (σ S xs)
rec-×_ ∶ ∀ {xs} (xs⁺ ∶ OrnΣ xs) → OrnΣ (rec-× xs)
insert-σ ∶ (S ∶ Set) → ∀ {xs} → (xs⁺ ∶ S → OrnΣ xs) → OrnΣ xs
delete-σ ∶ ∀ {S xs} → (s ∶ S) → (xs⁺ ∶ OrnΣ (xs s)) → OrnΣ (σ S xs)

ornToDescΣ ∶ ∀ {D} → OrnΣ D → DescΣ
ornToDescΣ ι = ι
ornToDescΣ (σ S xs⁺) = σ S (λ s → ornToDescΣ (xs⁺ s))
ornToDescΣ (rec-× xs⁺) = rec-× (ornToDescΣ xs⁺)
ornToDescΣ (insert-σ S xs⁺) = σ S (λ s → ornToDescΣ (xs⁺ s))
ornToDescΣ (delete-σ s xs⁺) = ornToDescΣ xs⁺

Listing 3.9: Ornaments on Σ-descriptions

natDescΣ ∶ DescΣ
natDescΣ = σ (Fin 2) λ

{zero → ι
; (suc zero) → rec-× ι
; (suc (suc ()))}

nat→listΣ ∶ (A ∶ Set) → OrnΣ natDescΣ
nat→listΣ A = σ (Fin 2) λ

{zero → ι
; (suc zero) → insert-σ A λ a → rec-× ι
; (suc (suc ()))}

Σ-descriptions are a way to describe sums of products using a very small number of
components. All the types which can be encoded in our universe or in the regular types
universe of listing 3.7 can be encoded with Σ-descriptions too. Additionally, because
the tail description xs of a σ is a function of type S → DescΣ the full computational
power of functions can be used. This results in the ability to encode rather exotic types.
For instance a type which takes a number n and then n boolean values:

boolsDescΣ ∶ DescΣ
boolsDescΣ = σ Nat rest

where rest ∶ Nat → DescΣ
rest zero = ι
rest (suc n) = σ Bool λ → rest n

boolsDescΣ-example ∶ μΣ boolsDescΣ
boolsDescΣ-example = ⟨ 3 , true , false , true , tt ⟩

We can not use Σ-descriptions for our purposes, because they allow many types
which do not correspond to Agda datatypes. However, their simpler semantics does
provide a good vantage point to consider the more theoretical aspects of ornaments.
While working with complicated descriptions like ours, it is often enlightening to take
a step back and consider what things would look like with Σ-descriptions.

22

Original PF Ornamented PF
o ∶ Con/DatOrn D oΣ ∶ OrnΣ DΣ ⟦ D ⟧ and ⟦ DΣ ⟧ ⟦ o ⟧ and ⟦ oΣ ⟧
ι ι ⊤ ⊤
–⊗ xs⁺ σ S λ → xs⁺ S × ⟦ xs ⟧ X S × ⟦ xs⁺ ⟧ X
S +⊗ xs⁺ insert-σ S λ → xs⁺ ⟦ xs ⟧ X S × ⟦ xs⁺ ⟧ X
give-K s xs⁺ delete-σ s xs⁺ S × ⟦ xs ⟧ X ⟦ xs⁺ ⟧ X
rec-⊗ xs⁺ rec-× xs⁺ X × ⟦ xs ⟧ X X × ⟦ xs⁺ ⟧ X
rec-+⊗ xs⁺ - ⟦ xs ⟧ X X × ⟦ xs⁺ ⟧ X
(give-rec?) - X × ⟦ xs⁺ ⟧ X ⟦ xs⁺ ⟧ X
x0⁺⊕ x1⁺⊕ ⋯⊕ ‘0 σ (Fin n) λ k → xk⁺ Σ (Fin n) λ k Σ (Fin n) λ k

→ ⟦ xk ⟧ X → ⟦ xk⁺ ⟧ X

Table 3.2: Ornaments and their OrnΣ counterparts

3.5.2 Finding the right ornaments
The ornaments in this chapter where presented without much justification, but there are
in fact some choices to make here. By defining the forget function we have shown that
these ornaments can really be called ornaments. But we can not show that all interesting
ornaments are included.

The ornaments we use, defined in listing 3.5, are mostly adapted from the ornaments
for Σ-descriptions in listing 3.9. Table 3.2 shows how they relate to each other. The
exact meaning of each row is as follows: Given a description D and a Σ-description DΣ
which both decode to Original PF, the application of o to D and oΣ to DΣ both result
in descriptions which decode to Ornamented PF. We already knew that our descrip-
tions and their corresponding Σ-descriptions had the same underlying pattern functors
(Table 3.1), and now it turns out that the ornaments on our descriptions and the corre-
sponding ornaments on Σ-descriptions perform the same operation on the underlying
pattern functors as well. The overloaded notation ⟦_⟧ is used to mean ⟦ ornToDesc o ⟧
and ⟦ ornToDescΣ o ⟧ as well.

With the exception of rec-+⊗_ , every ornament of ours has aOrnΣ counterpart. The
rec-+⊗_ ornament is included because an ornamental algebra can be defined for it, and
it does not cause any problems anywhere. One would then also expect an ornament
which deletes recursive arguments—similar to give-K, the ornament would require a
default value to be able reconstruct the right value in the ornamental algebra. The type
of this value is however not known within the ornament declaration so we can not define
it as far as we are aware.

-- Constructor for ConOrn
give-rec ∶ ∀ {xs} → ? → (xs⁺ ∶ ConOrn xs) → ConOrn (rec-⊗ xs)

There are still some ornaments missing which we did have for Σ-descriptions. Be-
cause a chain of constructors x0 ⊕ x1 ⊕ ⋯ ⊕ ‘0 is similar to σ (Fin n) λ k → xk, we
would expect the ornaments insert-σ and delete-σ for constructors to have a counterpart
in our ornaments. The main reason why we do not have those is because an equivalent
ornament would have to insert or delete the whole constructor chain. The deletion of
the chain would mean one ends up with a single constructor and the insertion would
require a single constructor to start with. Our ornaments have to go from DatDesc to
DatDesc, so these operations are both not valid.

Dagand and McBride [6] do use insert-σ to insert a constructor choice quite often
though, while still keeping descriptions which make sense. The trick is to always let an

23

insert-σ be followed by delete-σ’s. For instance, we can define the swapnatΣ ornament
which swaps the constructors of natDescΣ. The insert-σ (Fin 2) says there are going
to be two constructors and for each constructor we have to provide an ornament on the
original natDescΣ. In the first constructor, delete-σ 1means that we choose the second
constructor of natDescΣ; the rec-× ι does nothing but copying.

swapnatΣ ∶ OrnΣ natDescΣ
swapnatΣ = insert-σ (Fin 2) λ

{zero → delete-σ 1 (rec-× ι)
; (suc zero) → delete-σ 0 ι
; (suc (suc ()))}

An insert-σ (Fin n) on the top-level is fine if the first thing we do for each constructor
is to pick one of the constructors of the original type using delete-σ. We can implement
a recons ornament for DatDesc which emulates this behavior. It requires the same
information as the insert-σ with delete-σ’s requires. The first thing we need is #c⁺; the
number of constructors we want the ornamented type to have (while #c is the number
of constructors of the original type). For each of the new constructors, i.e. for each
possible value of a Fin #c⁺, two things have to be provided: A value k of type Fin #c
to pick a constructor of the original type and an ornament on that constructor, together
these emulate a delete-σ k xs⁺. The recons constructor for DatOrn looks as follows:

recons ∶
∀ #c⁺ {#c} {D ∶ DatDesc #c} →
(f ∶ (k⁺ ∶ Fin #c⁺) → (Σ (Fin #c) λ k → ConOrn (lookupCtor D k))) →
DatOrn {#c} D

With it, the swapnat ornament can be defined for our universe of descriptions. By
comparing swapnatwith swapnatΣwe see that, as expected, the user still has to provide
all of the same information with the exception of the insert-σ and delete-σ’s. That is,

swapnat ∶ DatOrn natDesc
swapnat = recons 2 λ

{zero → 1 , rec-⊗ ι
; (suc zero) → 0 , ι
; (suc (suc ()))}

The recons ornament is feasible to implement and makes sense in practice, as indi-
cated by the use of the pattern of insert-σ and delete-σ’s by Dagand and McBride. We
do not implement them for our descriptions in the following chapters for entirely prag-
matic reasons. The implementation is hard to get right, even for this simple universe.
It also complicates other parts of the code because we can not assume that an ornament
keeps the same number of constructors.

24

Chapter 4

Ornaments on dependently
typed descriptions

The sum-of-products descriptions of chapter 3 can be extended to support dependent
types. In the _⊗_ constructor we used a Set to indicate which type that argument has.
To encode dependent types, we want to allow this type to depend on values and types
in the context. Let us first establish some terminology:

• The term context will be used to indicate what variables are available and which
types they have. Within the List datatype for example (as defined in chapter 2),
the context consists of at least the type parameter A of type Set. In the second
argument of the cons constructor, the variable x of type A is also in the context,
though it is not used. If cons had more arguments after that, (xs ∶ List A) would
be in the context as well. In this thesis, contexts are usually indicated by a Γ, with
Δ as an alternative. Contexts have the type Cx, and are defined in section 4.1.

• An environment is a specific instantiation of a context, containing inhabitants of
the types which were indicated by the context. Environments are written as γ of
type ⟦ Γ ⟧ or δ of type ⟦ Δ ⟧. The meaning of their types is explained in section 4.1
as well.

In a description, the types of arguments were specified with a Set. Arguments with
dependent types are encoded as a function from an environment (γ ∶ ⟦ Γ ⟧) to a Set
is used. To maintain the old behavior, an argument can simply ignore the environment.
With the definitions in the upcoming sections, the description of lists will be written as
follows:

listDesc ∶ (A ∶ Set) → DatDesc 2
listDesc A = ι⊕ (λ γ → A) ⊗ rec-⊗ ι⊕ ‘0

A typical use case for dependent types is in the usage of predicates. For instance,
if the IsLessThan7 predicate states that a given number is lower than 7, the type Lt7
contains a natural which is lower than seven:

IsLessThan7 ∶ Nat → Set
IsLessThan7 n = n < 7
data Lt7 ∶ Set where

lt7 ∶ (n ∶ Nat) → IsLessThan7 n → Lt7

25

The constructor of Lt7 uses the value of the first argument to determine the type of
the second argument. This can be encoded as a description, where top γ is used to refer
to the only value in the environment γ.

lt7Desc ∶ DatDesc 1
lt7Desc = (λ γ → Nat) ⊗ (λ γ → IsLessThan7 (top γ)) ⊗ ι⊕ ‘0

More often than not, we will be writing the arguments in point-free style if we can.
In the definition of lt7Desc, the functions const and _∘_ can be used to get rid of a lot
of parentheses.

lt7Desc′ ∶ DatDesc 1
lt7Desc′ = const Nat ⊗ IsLessThan7 ∘ top ⊗ ι⊕ ‘0

Of course, an environment can contain more than one value. The environment is
basically a stack of values (more precisely, a snoc-list), where pop and top can be used
to refer to a value in the context, in the style of DeBruijn indices [8]. So top γ means
variable 0, top (pop γ) means variable 1, top (pop (pop γ)) means variable 2 and so
forth.

In the following example we assume that a predicate IsShorter of type List A → Nat
→ Set exists which says that some list is shorter than some length. A datatype Shorter
can be defined which contains a list, a length, and a proof that the list is shorter than
that length:

IsShorter ∶ {A ∶ Set} → List A → Nat → Set
IsShorter = ⋯
data Shorter (A ∶ Set) ∶ Set where

shorter ∶ (xs ∶ List A) → (n ∶ Nat) → IsShorter xs n → Shorter A

The description shorterDesc describes the Shorter datatype. In the third argument
of the constructor, top (pop γ) is used to refer to the list and top γ refers to the natural.

shorterDesc ∶ ∀ {A} → DatDesc 1
shorterDesc {A} = const (List A) ⊗ const Nat ⊗

(λ γ → IsShorter (top (pop γ)) (top γ)) ⊗ ι⊕ ‘0

Note that the third argument of the constructor can not be written point-free with
just _∘_ and const. It is possible with an S-combinator, as McBride [18] demonstrates.
Applicative functors are a generalisation of SKI combinators [20], so one might even
choose to write that argument of shorterDesc in applicative style as IsShorter <$> top ∘
pop <∗> top. While that style works well for expressions like these, it quickly breaks
down for more complicated ones.

In the next section, we will start by showing how environments are exactly im-
plemented. Descriptions will be revised to support the propagation of environments
in section 4.2. When descriptions support dependent types, ornaments must do so as
well—they will be revised in section 4.3.

4.1 Contexts and environments
An environment γmust contain a stack of values, but what is the type of γ? The type has
to mention the types of all the variables and each of those types should be able to use the

26

record _▶_ {a b} (A ∶ Set a) (B ∶ A → Set b) ∶ Set (a ⊔ b) where
constructor _,_
field

pop ∶ A
top ∶ B pop

Listing 4.1: Definition of _▶_

mutual
data Cx ∶ Set₁ where

▷ ∶ (Γ ∶ Cx) (S ∶ (γ ∶ ⟦ Γ ⟧Cx) → Set) → Cx
ε ∶ Cx

⟦_⟧Cx ∶ Cx → Set
⟦ Γ ▷ S ⟧Cx = ⟦ Γ ⟧Cx ▶ S
⟦ ε ⟧Cx = ⊤′

▷′ ∶ (Γ ∶ Cx) → Set → Cx
Γ ▷′ S = Γ ▷ const S

Listing 4.2: Cx definition and semantics

values of the previous variables. For the purpose of building types of environments we
define _▶_, which is a left-associative version of Σ where fst is renamed to pop and snd
to top (Listing 4.1). The unit type ⊤′ can be used as the empty environment, and types
are added to the right of it by using _▶_. In each type, an environment γ containing
values for all variables to the left of it can be used. For example, if we want to write
the type of an environment containing the variables (xs ∶ List A), (n ∶ Nat) and
(p ∶ IsShorter xs n), we could write it like this:

ShorterEnv ∶ {A ∶ Set} → Set
ShorterEnv {A} = ⊤′ ▶ const (List A) ▶ const Nat ▶

(λ γ → IsShorter (top (pop γ)) (top γ))

The basic types _▶_ and ⊤′ can contain an environment, but they can not be used
for pattern matching. There is no way to inspect a value of type Set to see if it is a _▶_
or ⊤′. For this purpose a universe of contexts Cx is built. The Cx decodes to _▶_’s and
⊤′’s. The definition is given in listing 4.2. This is quite a common approach to encode
contexts [7, 18]. While we are at it, we also define _▷′_ as a shortcut when a type does
not need to use the environment. With these definitions we can create a context which,
when decoded, is equal to the ShorterEnv type we defined before.

ShorterCx ∶ {A ∶ Set} → Cx
ShorterCx {A} = ε ▷′ List A ▷′ Nat ▷ (λ γ → IsShorter (top (pop γ)) (top γ))
test-ShorterCx ∶ ∀ {A} → ⟦ ShorterCx {A} ⟧ ≡ ShorterEnv {A}
test-ShorterCx = refl

4.2 Descriptions
For now we will be assuming that all DatDescs are closed, i.e. they do not refer to free
variables. The ConDescs which are directly contained within the DatDesc have to be

27

data ConDesc (Γ ∶ Cx) ∶ Set₁ where
ι ∶ ConDesc Γ
⊗ ∶ (S ∶ (γ ∶ ⟦ Γ ⟧) → Set) → (xs ∶ ConDesc (Γ ▷ S)) → ConDesc Γ
rec-⊗_ ∶ (xs ∶ ConDesc Γ) → ConDesc Γ

data DatDesc ∶ Nat → Set₁ where
‘0 ∶ DatDesc 0
⊕ ∶ ∀ {#c} (x ∶ ConDesc ε) (xs ∶ DatDesc #c) → DatDesc (suc #c)

Listing 4.3: Descriptions with contexts

⟦_⟧conDesc ∶ ∀ {Γ} → ConDesc Γ → ⟦ Γ ⟧ → Set → Set
⟦ ι ⟧conDesc γ X = ⊤
⟦ S ⊗ xs ⟧conDesc γ X = Σ (S γ) λ s → ⟦ xs ⟧conDesc (γ , s) X
⟦ rec-⊗ xs ⟧conDesc γ X = X × ⟦ xs ⟧conDesc γ X

Listing 4.4: Semantics of ConDesc with contexts

closed too, so a DatDesc is essentially a list of closed ConDescs. Not all ConDescs have
to be closed though, because within a constructor new types are added to the context.
The context is chained through from left to right and whenever a _⊗_ operator is en-
countered, the specified type is added to the context of the ConDesc which forms the
tail.

In listing 4.3 we see how this works. The DatDesc datatype specifies that each
constructor starts with an empty context ε. In the type of _⊗_ we see that a S of type
⟦ Γ ⟧ → Set must be given. The value of S specifies a type which can depend on the
current context Γ. The context Γ is extended with S, and this forms the context for the
ConDesc in the remainder of the ornament xs.

Ideally, we would also add recursive arguments to the context, but this is funda-
mentally impossible with our current implementation. This problem will be discussed
in section 7.2.

The semantics of ConDesc now requires an environment before a pattern functor can
be delivered. The new semantics is given in listing 4.4. For the _⊗_ constructor, the
environment is applied to S to obtain the definitive type of that argument. The semantics
of DatDesc is only changed slightly to pass the empty environment tt to ⟦_⟧conDesc.

Example 4.2.1. We can now describe all the types from the introduction of this chapter.
To gain some insight in how the contexts are propagated and extended we will also give
a step-by-step example of how dependent pairs (the Σ type) are described. We start by
specifying the type, which is parameterised by A and B, as the Σ type always is:

pairDesc ∶ (A ∶ Set) (B ∶ A → Set) → DatDesc 1

By using Agda’s refine command, the _⊕_ and ε are automatically filled in. In the
remaining hole, a closed ConDesc is expected.

pairDesc1 A B = ?0 ⊕ ‘0
-- ?0 ∶ ConDesc ε

When we add an argument of type A with _⊗_ , the context of the rest of the con-
structor is extended with the type A. Remember that ε ▷′ A is defined as ε ▷ const A.

28

pairDesc2 A B = const A ⊗ ?1 ⊕ ‘0
-- ?1 ∶ ConDesc (ε ▷′ A)

We refine the hole with the _⊗_ constructor and ι to finish the list of arguments.
Leaving us with the hole for the type of the second argument. The required type tells
us that the local context is ε ▷′ A. When the semantics is expanded we get the corre-
sponding type ⊤′ ▶ const A, which is the type of the environment which contains the
value of the first argument.

pairDesc3 A B = const A ⊗ ?2 ⊗ ι⊕ ‘0
-- ?2 ∶ ⟦ ε ▷′ A ⟧ → Set
-- ?2 ∶ ⊤′ ▶ const A → Set

Finally, we give B ∘ top as the implementation of the hole, resulting in a description
of dependent pairs.

pairDesc A B = const A ⊗ B ∘ top ⊗ ι⊕ ‘0

According to section 3.1, an isomorphism between Σ A B and μ (pairDesc A B)
should be given to be certain that this is the right description. Doing that is straightfor-
ward, so we will only show that the definition is not entirely wrong by giving one half
of the embedding-projection pair (one of the four functions in the isomorphism).

pair-to ∶ {A ∶ Set} {B ∶ A → Set} → Σ A B → μ (pairDesc A B)
pair-to (x , y) = ⟨ 0 , x , y , tt ⟩

△

In the previous chapter, conDescmap and datDescmap (Listing 3.3) were defined
as the functorial map on the semantics of descriptions. For a given description D and a
function from X to Y, they turned a ⟦ D ⟧ X into a ⟦ D ⟧ Y. With contexts built-in, the
semantics of ConDesc requires an environment and the type of conDescmap is updated
accordingly to accomodate all contexts and all environments. The type of datDescmap
does not change and the implementations of both functions still look the same.

datDescmap ∶ ∀ {#c X Y} (f ∶ X → Y) (D ∶ DatDesc #c) →
(v ∶ ⟦ D ⟧ X) → ⟦ D ⟧ Y

conDescmap ∶ ∀ {Γ X Y} (f ∶ X → Y) (D ∶ ConDesc Γ) →
∀ {γ} → (v ∶ ⟦ D ⟧ γ X) → ⟦ D ⟧ γ Y

The types and definitions of fold and Alg do not change at all, though they do make
use of the new conDescmap through datDescmap.

Alg ∶ ∀ {#c} → DatDesc #c → Set → Set
Alg D X = ⟦ D ⟧ X → X
fold ∶ ∀ {#c} {D ∶ DatDesc #c} {X} (α ∶ Alg D X) → μ D → X
fold {D = D} α ⟨ xs ⟩ = α (datDescmap (fold α) D xs)

4.3 Ornaments
Ornaments have to be revised to use the new contexts. Particularly, the argument in-
sertion ornament _+⊗_ should be able to use the environment to determine the type

29

it wants to insert. One also has to consider how the insertion or removal of arguments
changes the context of the remainder of the constructor. When a new argument is in-
serted, the rest of the ornament should be able to use it.

The changing of contexts is encoded by two parameters of the DatOrn datatype, a
starting context Γ and an output context Δ. These parameters tell us that the ornament
goes from a ConDesc Γ to a ConDesc Δ. To implement the ornamental algebra later
on, we also have to be able to calculate the original environment from an environment
of the ornamented type. That is, a function from (δ ∶ ⟦ Δ ⟧) to ⟦ Γ ⟧ is required
which we will call the environment transformer. We will be working with functions
between environments a lot, so an alias Cxf Γ Δ is defined to mean ⟦ Γ ⟧ → ⟦ Δ ⟧. The
environment transformer is a parameter of ConDesc as well. This gives us the following
types:

Cxf ∶ (Γ Δ ∶ Cx) → Set
Cxf Γ Δ = ⟦ Γ ⟧ → ⟦ Δ ⟧
DatOrn ∶ ∀ {#c} (D ∶ DatDesc #c) → Set₂
ConOrn ∶ ∀ {Γ Δ} (f ∶ Cxf Δ Γ) (D ∶ ConDesc Γ) → Set₂

The environment transformer seems to go backwards here, from an environment of
the ornamented type back to an environment of the original type. This is a result of the
fact that every element of the ornamented type has a unique corresponding element in
the original type.

We are not aware of any previous work which implemented ornaments on datatypes
with contexts like these. The treatment of them is however very similar to how indices
are treated usually in ornaments [19, 6], specifically in how the environment transformer
works and is used as a parameter on the ornament. In fact, the next chapter will show
how indices can be implemented using the same components in a very similar way.

The new definition of ornaments is given in full in listing 4.5. An ornament is
always told from the outside what its environment transformer c is. This is seen in the
⊕ constructor, where id is used as the environment transformer for ConOrn. The first
arguments to _+⊗_ and give-K can both depend on an environment, just like the first
argument of the _⊗_ description. Both of them use the new environment Δ.

Every ornament is responsible for providing the right transformer to its children.
Ornaments like rec-⊗_ do not change the context of the rest of its tail and do not intro-
duce additional changes to the environment, so c is simply passed along. The _+⊗_
ornament extends the context with S, meaning that the tail ornament has to go from
context Γ to Δ ▷ S. The tail ornament must be given an environment transformer of
type Cxf (Δ ▷ S) Γ, while we already have c of type Cxf Δ Γ. This transformer is given
by cxf-forget in listing 4.6. The other ornaments which update the context use similar
functions to produce environment transformers for their tails.

The rest of the definitions relating to ornaments do not differ much from the previous
chapter. The interpretation function of ornaments on constructors, conOrnToDesc, now
works for all contexts and environment transformers. It used to go from ConOrn D to
ConDesc, now the signature becomes:

conOrnToDesc ∶ ∀ {Γ Δ} {c ∶ Cxf Δ Γ} {D ∶ ConDesc Γ} →
ConOrn c D → ConDesc Δ

The implementation of conOrnToDesc is the same as before, except that the environ-
ment transformer is used in the –⊗_ ornament. When we try to produce a description

30

data ConOrn {Γ Δ} (c ∶ Cxf Δ Γ) ∶ (D ∶ ConDesc Γ) → Set₂ where
ι ∶ ConOrn c ι
–⊗_ ∶ ∀ {S xs} → (xs⁺ ∶ ConOrn (cxf-both c) xs) → ConOrn c (S ⊗ xs)
rec-⊗_ ∶ ∀ {xs} → (xs⁺ ∶ ConOrn c xs) → ConOrn c (rec-⊗ xs)
+⊗ ∶ ∀ {xs} → (S ∶ (δ ∶ ⟦ Δ ⟧) → Set) →

(xs⁺ ∶ ConOrn (cxf-forget c S) xs) → ConOrn c xs
rec-+⊗_ ∶ ∀ {xs} → (xs⁺ ∶ ConOrn c xs) → ConOrn c xs
give-K ∶ ∀ {S xs} → (s ∶ (γ ∶ ⟦ Δ ⟧) → S (c γ)) →

(xs⁺ ∶ ConOrn (cxf-inst c s) xs) → ConOrn c (S ⊗ xs)
data DatOrn ∶ ∀ {#c} (D ∶ DatDesc #c) → Set₂ where

‘0 ∶ DatOrn ‘0
⊕ ∶ ∀ {#c x xs} →

(x⁺ ∶ ConOrn id x) (xs⁺ ∶ DatOrn xs) → DatOrn {suc #c} (x⊕ xs)
Listing 4.5: Ornaments with contexts

Cxf ∶ (Γ Δ ∶ Cx) → Set
Cxf Γ Δ = ⟦ Γ ⟧ → ⟦ Δ ⟧
cxf-both ∶ ∀ {Γ Δ S} → (c ∶ Cxf Δ Γ) → Cxf (Δ ▷ (S ∘ c)) (Γ ▷ S)
cxf-both c δ = c (pop δ) , top δ
cxf-forget ∶ ∀ {Γ Δ} → (c ∶ Cxf Δ Γ) → (S ∶ ⟦ Δ ⟧ → Set) → Cxf (Δ ▷ S) Γ
cxf-forget c S δ = c (pop δ)
cxf-inst ∶ ∀ {Γ Δ S} → (c ∶ Cxf Δ Γ) → (s ∶ (γ ∶ ⟦ Δ ⟧) → S (c γ)) → Cxf Δ (Γ ▷ S)
cxf-inst c s δ = c δ , s δ

Listing 4.6: Environment transformers

with _⊗_ , we have to give a function ⟦ Δ ⟧ → Set representing a type within the orna-
mented context Δ. The ornament stored the type within the original context: S of type
⟦ Γ ⟧ → Set. The environment transformer (c ∶ Cxf Δ Γ) helps us to transform types
within the context Γ to types with the context Δ:

conOrnToDesc {c = c} (–⊗_ {S = S} xs⁺) = S ∘ c ⊗ conOrnToDesc xs⁺

We have seen in section 3.4 how the ornamental algebra for an ornament o on a
description D was built using a natural transformation from the pattern functor of o to
the pattern functor ofD. With contexts, an environment has to be provided before we get
a pattern functor for a description of a constructor, so the natural transformation must go
from the pattern functor ⟦ conOrnToDesc o ⟧ δ to ⟦ D ⟧ γ for a suitable environment γ.
By assuming that we know the environment δ, we can calculate the right γ by applying
the environment transformer c to δ:

conForgetNT ∶ ∀ {Γ Δ} {c ∶ Cxf Δ Γ} {D ∶ ConDesc Γ} →
(o ∶ ConOrn c D) →
∀ {δ X} → ⟦ conOrnToDesc o ⟧ δ X → ⟦ D ⟧ (c δ) X

Example 4.3.1. As a somewhat contrived example, we will define an ornament on the
lt7Desc′ description from the introduction of this chapter. The definition is reiterated

31

here for convenience. The ornament inserts an argument of type IsOdd n which, obvi-
ously, says that n must be odd.

lt7Desc′ ∶ DatDesc 1
lt7Desc′ = const Nat ⊗ IsLessThan7 ∘ top ⊗ ι⊕ ‘0
postulate

IsOdd ∶ Nat → Set
lt7odd ∶ DatOrn lt7Desc′
lt7odd = –⊗ IsOdd ∘ top +⊗ –⊗ ι⊕ ‘0

Looking at the description of the ornamented type, we can see how the argument
of IsLessThan7 has been updated to use the second DeBruijn index instead of the first.
The call to cxf-forget in the type of the _+⊗_ constructor has caused the insertion of a
pop.

test-lt7odd ∶ ornToDesc lt7odd ≡
(const Nat ⊗ IsOdd ∘ top ⊗ IsLessThan7 ∘ top ∘ pop ⊗ ι⊕ ‘0)

test-lt7odd = refl

If we postulate proofs that 3 is lower than 7 and that 3 is odd, we can create an
element of lt7odd for the number 3. The forget function gives the expected result.

postulate
proof-that-3<7 ∶ (3 ofType Nat) < 7
proof-that-3-is-odd ∶ IsOdd 3

ex-lt7odd ∶ μ (ornToDesc lt7odd)
ex-lt7odd = ⟨ 0 , 3 , proof-that-3-is-odd , proof-that-3<7 , tt ⟩
forget-lt7odd ∶ forget lt7odd ex-lt7odd ≡ ⟨ 0 , 3 , proof-that-3<7 , tt ⟩
forget-lt7odd = refl

△

32

Chapter 5

Ornaments on families of
datatypes

Datatype parameters and indices will be added to our descriptions in this chapter. They
form the final components to be able to describe a large portion of Agda datatypes.
Ornaments will be revised once more to work with these descriptions. The addition of
indices allows the implementation of some of the theory surrounding ornaments.

Parameters are a natural extension of contexts within descriptions—the only differ-
ence is that a full type does not need to be closed. Where we previously always started
with an empty context ε for each constructor, now the whole datatype description can
have a context. Within the constructors, the parameters are available as variables in
the environment and they can be used with top and pop. Though the contexts are de-
clared during the definition of a description, the interpretation of a description to a Set
requires the user to pass an environment containing the parameters. This is similar to
how the parameters of an Agda datatype have to be declared during the declaration of
the datatype, and they have to be applied before we get a Set.

Indices are added to our descriptions as well. When indices are used, we are not just
describing a single type but an inductive family of types [10]. A recursive call within
a type can refer to any of the family members, so in every rec_⊗_ we must specify an
index to pick a type within the family. Additionally, every type (family member) must
tell us which index it has. This is done by requiring an index to be specified in the ι
constructor as well. The way we implement indices is a lot like McBride’s approach
[19], though we make use of our Cx datatype to allow multiple indices.

Parameters and indices will both be declared using a Cx as a parameter on the
DatDesc type. A type like Vec, which has one parameter of type Set and one index
of type Nat, is described with the type DatDesc (ε ▷′ Nat) (ε ▷′ Set) 2.

5.1 Descriptions
Descriptions of constructors where already parameterised by a (Γ ∶ Cx), now we also
add a parameter (I ∶ Cx). The declared indices I stay constant across all construc-
tors. The context Γ is initially equal to the parameters, but can be extended within the
constructors like in the previous chapter.

Listing 5.1 shows the new definitions for ConDesc and DatDesc. The interesting
changes are in the ι and rec_⊗_ constructors, which both have gained a new argument.

33

data ConDesc (I ∶ Cx) (Γ ∶ Cx) ∶ Set₁ where
ι ∶ (o ∶ (γ ∶ ⟦ Γ ⟧) → ⟦ I ⟧) → ConDesc I Γ
⊗ ∶ (S ∶ (γ ∶ ⟦ Γ ⟧) → Set) → (xs ∶ ConDesc I (Γ ▷ S)) → ConDesc I Γ
rec_⊗_ ∶ (i ∶ (γ ∶ ⟦ Γ ⟧) → ⟦ I ⟧) → (xs ∶ ConDesc I Γ) → ConDesc I Γ

data DatDesc (I ∶ Cx) (Γ ∶ Cx) ∶ (#c ∶ Nat) → Set₁ where
‘0 ∶ DatDesc I Γ 0
⊕ ∶ ∀ {#c} (x ∶ ConDesc I Γ) (xs ∶ DatDesc I Γ #c) →
DatDesc I Γ (suc #c)

Listing 5.1: Descriptions of families of datatypes

data DescTag ∶ Set₂ where
isCon ∶ DescTag
isDat ∶ (#c ∶ Nat) → DescTag

Desc ∶ (I ∶ Cx) → (Γ ∶ Cx) → DescTag → Set₁
Desc I Γ (isCon) = ConDesc I Γ
Desc I Γ (isDat #c) = DatDesc I Γ #c

Listing 5.2: Definition of DescTag and Desc

In the ι constructor, the user can use the local environment (γ ∶ ⟦ Γ ⟧) to specify an
index of type ⟦ I ⟧. The rec_⊗_ constructor also requires the specification of an index
of type ⟦ I ⟧, and here too the local environment can be used.

Before the semantics for ConDesc and DatDesc are defined, we will take a slight
detour. In previous chapters many functions for ConDesc and DatDesc were defined
separately. Now that ConDesc and DatDesc have some overlapping parameters, it will
become bothersome to have to write many of the same function signatures for both of
them. Writing the same thing twice is a bad programming habit, so this is circumvented
by defining a small universe in listing 5.2. Using DescTag and Desc, we can refer to
ConDesc I Γ as Desc I Γ isCon and to DatDesc I Γ #c as Desc I Γ (isDat #c). Functions
which have to be defined on both ConDesc and DatDesc can now be defined on Desc dt
for all dt. All functions that use DescTag can also be defined as one or more functions
that do not use it, but the homogeneous treatment of all descriptions will provide some
benefit later.

The semantics of descriptions is one of those functions which have the same type for
both ConDesc and DatDesc. The type is quantified over all dt, so it takes the following
form:

⟦_⟧desc ∶ ∀ { I Γ dt} → Desc I Γ dt → ?

The type which goes in the hole ? is a bit more involved than what we have pre-
viously seen. The semantics of DatDesc in the previous chapters gave an endofunctor
on Set. Dybjer [11] has shown how an inductive family (with indices) can be described
using an endofunctor on I′ → Set. We use ⟦ I ⟧ instead of I′, to encode the idea of having
a telescope of indices instead of just one. By interpreting the description as an endo-
functor on ⟦ I ⟧ → Set, the recursive positions are allowed to pick an index of type ⟦ I ⟧
in return for a Set. An environment for the current context has to be passed in as well,
but this is not part of the endofunctor. This results in the following type:

⟦_⟧desc ∶ ∀ { I Γ dt} → Desc I Γ dt → ⟦ Γ ⟧ → (⟦ I ⟧ → Set) → (⟦ I ⟧ → Set)

34

⟦_⟧desc ∶ ∀ { I Γ dt} → Desc I Γ dt → ⟦ Γ ⟧ → (⟦ I ⟧ → Set) → (⟦ I ⟧ → Set)
⟦_⟧desc {dt = isCon} (ι o′) γ X o = o′ γ ≡ o
⟦_⟧desc {dt = isCon} (S ⊗ xs) γ X o = Σ (S γ) λ s → ⟦ xs ⟧desc (γ , s) X o
⟦_⟧desc {dt = isCon} (rec i ⊗ xs) γ X o = X (i γ) × ⟦ xs ⟧desc γ X o
⟦_⟧desc {dt = isDat #c} D γ X o = Σ (Fin #c) λ k → ⟦ lookupCtor D k ⟧desc γ X o
data μ { I Γ #c} (D ∶ DatDesc I Γ #c) (γ ∶ ⟦ Γ ⟧) (o ∶ ⟦ I ⟧) ∶ Set where

⟨_⟩ ∶ ⟦ D ⟧ γ (μ D γ) o → μ F γ o

Listing 5.3: Semantics of datatype families

The full definition of ⟦_⟧desc is given in listing 5.3. In every clause, we get a local
environment γ just like we did in ⟦_⟧conDesc in section 4.2—this time including the pa-
rameters. The value X of type ⟦ I ⟧ → Set is used in the clause for rec i ⊗ xs to pick one
of the members of the inductive family. The o is what we are being told what the index
of the type should be. In ι o′, the description says that the index is o′ γ. Therefore, the
interpretation of ι o′ is an equality constraint o′ γ ≡ o. The use of the indices is similar
to McBride’s definitions [19], but here the indices are determined with help of the local
environment γ.

By partially applying the fixpoint datatype μwith a descriptionD and the parameters
γ, we get μ D γ of type ⟦ I ⟧ → Set. This is exactly the type we need to pass to
⟦_⟧desc within the definition of the ⟨_⟩ constructor. The parameters, i.e. the starting
environment, are passed along unchanged to all the recursive children.
Example 5.1.1. The List type has no indices and one parameter of type Set, so the
description is of type DatDesc ε (ε ▷′ Set) 2. The ι and rec_⊗_ constructors both
require the user to specify an index—this can only be tt as that is the only inhabitant of
⟦ ε ⟧. The description of List can now be defined as follows:

listDesc ∶ DatDesc ε (ε ▷′ Set) 2
listDesc = ι (const tt) ⊕

top ⊗ rec (const tt) ⊗ ι (const tt) ⊕
‘0

Comparing this to how listDesc was defined in section 3.1 and the introduction of
chapter 4, we see that the use of the parameter has been internalised. Where it used to
say A, we now see a top.

The fixpoint of descriptions is aware of parameters and indices, and it is required to
instantiate them before we obtain a Set. The type of μ listDesc is now ⟦ ε ▷′ Set ⟧ →
⟦ ε ⟧ → Set. Ignoring the fluff, one can see how this is similar to the type of List:
Set → Set. The function list-to shows how μ listD can be used:

list-to ∶ ∀ {A} → List A → μ listD (tt , A) tt
list-to [] = ⟨ 0 , refl ⟩
list-to (x ∷ xs) = ⟨ 1 , x , list-to xs , refl ⟩

With the descriptions of chapter 3 and chapter 4, the type of list-towould have been
∀ {A} → List A → μ (listDesc A). △
Example 5.1.2. One of the simplest inductive families we can make is those of finite
naturals. It has the normal zero and suc constructors of naturals, but it is indexed by a
Nat which limits how high the value can be. The set Fin n contains naturals which are
lower than n. It is usually defined as follows:

35

data Fin ∶ Nat → Set where
zero ∶ ∀ {n} → Fin (suc n)
suc ∶ ∀ {n} (i ∶ Fin n) → Fin (suc n)

The Fin type can be described by a DatDesc (ε ▷′ Nat) ε. Our descriptions do not
allow implicit arguments, so we make them explicit. We can easily write down part of
the description, leaving open the holes where all the indices have to be specified:

finDesc ∶ DatDesc (ε ▷′ Nat) ε 2
finDesc = const Nat ⊗ ι ?1
⊕ const Nat ⊗ rec ?2 ⊗ ι ?3
⊕ ‘0

All the open holes happen to have a local context where just one Nat exists, so they
all require a term of type ⟦ ε ▷′ Nat ⟧ → ⟦ ε ▷′ Nat ⟧. The ⟦ ε ▷′ Nat ⟧ that goes
in is the environment, while the returned ⟦ ε ▷′ Nat ⟧ contains the index of the type
being constructed (for the ι’s) or of the type that is required (for rec). This situation is
comparable to what we would get if we defined Fin using one parameter of type ⟦ ε ⟧
and one index of type ⟦ ε ▷′ Nat ⟧. In the following alternative definition of Fin, all the
holes have (A ∶ ⟦ ε ⟧) and (n ∶ Nat) in the context, and have to be of type ⟦ ε ▷′ Nat ⟧.

data FinTT (A ∶ ⟦ ε ⟧) ∶ ⟦ ε ▷′ Nat ⟧ → Set where
zero ∶ (n ∶ Nat) → FinTT A ?1
suc ∶ (n ∶ Nat) (i ∶ FinTT A ?2) → FinTT A ?3

The definition of FinTT could be completed by filling in (tt , suc n), (tt , n) and
(tt , suc n) in the holes. To complete the definition of finDesc, we merely need to
replace n with top γ and add the lambda-abstractions:

finDesc ∶ DatDesc (ε ▷′ Nat) ε 2
finDesc = const Nat ⊗ ι (λ γ → tt , suc (top γ))
⊕ const Nat ⊗ rec (λ γ → tt , top γ) ⊗ ι (λ γ → tt , suc (top γ))
⊕ ‘0

An element of type μ finDesc tt (tt , 10) is a natural which is lower than 10. Let
us build such an element which represents the value zero. This is done by immediately
picking the first constructor (⟨ 0 , ⋯ ⟩). Then we need to give a Nat, which is the
implicit n in the definition of Fin, and a proof that the created element has the right
index.

fin-zero′ ∶ μ finDesc tt (tt , 10)
fin-zero′ = ⟨ 0 , ?0 , ?1 ⟩
-- ?0 : Nat
-- ?1 : (tt , suc ?0) ≡ (tt , 10)

The obvious definitions for the holes ?0 and ?1 are 9 and refl, completing the
definition of fin-zero.

fin-zero ∶ μ finDesc tt (tt , 10)
fin-zero = ⟨ 0 , 9 , refl ⟩

△

36

→ⁱ ∶ { I ∶ Set} → (I → Set) → (I → Set) → Set
X →ⁱ Y = ∀ { i} → X i → Y i

Listing 5.4: Arrows in the I → Set category

descmap ∶ ∀ { I Γ dt X Y} (f ∶ X →ⁱ Y) (D ∶ Desc I Γ dt) →
∀ {γ} → ⟦ D ⟧ γ X →ⁱ ⟦ D ⟧ γ Y

descmap {dt = isCon} f (ι o) refl = refl
descmap {dt = isCon} f (S ⊗ xs) (s , v) = s , descmap f xs v
descmap {dt = isCon} f (rec i ⊗ xs) (s , v) = f s , descmap f xs v
descmap {dt = isDat } f xs (k , v) = k , descmap f (lookupCtor xs k) v

Listing 5.5: Map for pattern functors with indices

We claimed that ⟦_⟧desc gave us a functor on ⟦ I ⟧ → Set, so we should be able to
define a functorial map. Within functional programming, we often assume that functors
are from the Set category to the Set category, with functions as the arrows. When
working in the ⟦ I ⟧ → Set category, one has to reconsider what the arrows are. The
arrows are characterised as functions which respect indexing, they are defined as _→ⁱ_
in listing 5.41.

A map function for a functor F in the I → Set category should lift an arrow X →ⁱ Y to
an arrow F X →ⁱ F Y. By instantiating ⟦ D ⟧ γ to F we get the type for descmap, which
is fully defined in listing 5.5. The implementation is straightforward, but it is listed for
completeness.

The definitions of the Alg and fold in listing 5.6 are lifted to the ⟦ I ⟧ → Set cate-
gory in a similar way, by replacing some of the arrows _→_ with _→ⁱ_. An environment
⟦ Γ ⟧ has to be passed to Alg, because an algebra might only work for a specific en-
vironment. For example; an algebra to calculate the sum of a list would be of type
Alg listDesc (tt , Nat) (const Nat), where (tt , Nat) instantiates the parameter of type
Set to Nat. An algebra like the one to calculate the length will work for any parameter,
so it will have the type ∀ {A} → Alg listDesc (tt , A) (const Nat). The code below
demonstrates how these algebras can be defined:

sumAlg ∶ Alg listDesc (tt , Nat) (const Nat)
sumAlg (zero , refl) = 0
sumAlg (suc zero , x , xs , refl) = x + xs
sumAlg (suc (suc ()) ,)
lengthAlg ∶ ∀ {A} → Alg listDesc (tt , A) (const Nat)
lengthAlg (zero , refl) = 0
lengthAlg (suc zero , x , xs , refl) = suc xs
lengthAlg (suc (suc ()) ,)

Example 5.1.3. An algebra can be used to define the raise function for Fin. It takes
a natural m and lifts a Fin n into Fin (n + m) while the represented number stays the
same. It has the following type:

raise ∶ ∀ {n} → (m ∶ Nat) → Fin n → Fin (n + m)
1Actually, the _→ⁱ_ definition works for a more general category A → Set, of which ⟦ I ⟧ → Set is an

instance.

37

Alg ∶ ∀ { I Γ dt} → Desc I Γ dt → ⟦ Γ ⟧ → (⟦ I ⟧ → Set) → Set
Alg { I} D γ X = ⟦ D ⟧ γ X →ⁱ X
fold ∶ ∀ { I Γ #c} {D ∶ DatDesc I Γ #c} {γ X} (α ∶ Alg D γ X) → μ D γ →ⁱ X
fold {D = D} α ⟨ xs ⟩ = α (descmap (fold α) D xs)

Listing 5.6: Generic fold

An algebra on finDesc which calculates this value should have μ finDesc tt (tt ,
n + m) as its return type, where n is the index of the Fin that was given. This can be
represented with a ⟦ I ⟧ → Set function, as is required by Alg. To refer to n we take the
top of the indices, giving us the following type for raiseAlg:

raiseAlg ∶ (m ∶ Nat) → Alg finDesc tt (λ i → μ finDesc tt (tt , top i + m))

The rest of the definition is a straightforward case split on the constructors. In the
pattern for zero we build a new zero, and in the pattern for suc we build a new suc. In
both cases the index changes from n to n + m.

raiseAlg ∶ (m ∶ Nat) → Alg finDesc tt (λ i → μ finDesc tt (tt , top i + m))
raiseAlg m (zero , n , refl) = ⟨ 0 , n + m , refl ⟩
raiseAlg m (suc zero , n , k , refl) = ⟨ 1 , n + m , k , refl ⟩
raiseAlg m (suc (suc ()) ,)

By folding raiseAlg m we get a function that takes a representation of a Fin n to
a representation of a Fin (n + m). The top i in the type of the algebra is correctly
translated to the index n of the Fin n that goes in.

‘raise ∶ ∀ {n} → (m ∶ Nat) → μ finDesc tt (tt , n) → μ finDesc tt (tt , n + m)
‘raise m = fold {D = finDesc} (raiseAlg m)

If we want to, the ‘raise function can be adapted to work on real Fins by using the
embedding-projection pair defined below. The raise function simply chains the fin-to,
‘raise and fin-from together.

fin-to ∶ ∀ {n} → Fin n → μ finDesc tt (tt , n)
fin-to zero = ⟨ 0 , , refl ⟩
fin-to (suc k) = ⟨ 1 , , fin-to k , refl ⟩
fin-from ∶ ∀ {n} → μ finDesc tt (tt , n) → Fin n
fin-from ⟨ zero , , refl ⟩ = zero
fin-from ⟨ suc zero , , k , refl ⟩ = suc (fin-from k)
fin-from ⟨ suc (suc ()) , ⟩
raise ∶ ∀ {n} → (m ∶ Nat) → Fin n → Fin (n + m)
raise m = fin-from ∘ ‘raise m ∘ fin-to

△

5.2 Ornaments
The definition of ornaments on descriptions with parameters and indices is mostly based
on the constructor ornaments of section 4.3 (Listing 4.5). The same context transform-
ers (Listing 4.6) are used, but this time on both the indices and the context/parameters.
Many of the parts relating to indices are based on McBride’s ornaments [19].

38

module {a b} {A ∶ Set a} {B ∶ Set b} where
-- f ⁻¹ y contains an x such that f x ≡ y
data _⁻¹_ (f ∶ A → B) ∶ (y ∶ B) → Set (a ⊔ b) where

inv ∶ (x ∶ A) → f ⁻¹ (f x)
uninv ∶ {f ∶ A → B} {y ∶ B} → f ⁻¹ y → A
uninv (inv x) = x
inv-eq ∶ {f ∶ A → B} {y ∶ B} → (invx ∶ f ⁻¹ y) → f (uninv invx) ≡ y
inv-eq (inv x) = refl

Listing 5.7: Inverse image of functions

Using our DescTag codes, a single datatype for ornaments can be defined which
contains ornaments for both ConDesc and DatDesc. Like ConOrn of section 4.3, it
contains the starting context Γ, the result context Δ and an environment transformer
(u ∶ Cxf Δ Γ) as parameters. The indices are added in a similar way using a starting
index I, result index J and a transformer between indices (u ∶ Cxf J I). The Orn datatype
gets the following signature:

data Orn { I} J (u ∶ Cxf J I) {Γ} Δ (c ∶ Cxf Δ Γ) ∶
∀ {dt} (D ∶ Desc I Γ dt) → Set₁

Remember that the type Cxf J I of the index transformer u expands to ⟦ J ⟧ → ⟦ I ⟧. It
is meant to allow the mapping from indices of elements in the ornamented type, back
to indices of the original type. The existence of such a function ensures that the index
J is more informative than I, and that the extra information can be forgotten. The index
transformer u does not ensure that an ornamented index maps back to the same original
index. So when a ι i is ornamented to a ι j, where (i ∶ ⟦ I ⟧) and (j ∶ ⟦ J ⟧), the j could
be mapped back to a (i′ ∶ ⟦ I ⟧) which is different than the original i. For the correct
behavior of ornaments, we need to know that u j gives the original i—j must lie in the
inverse image of i for the function u.

Like McBride [19], we use a datatype to define the inverse image of a function
(Listing 5.7). The only constructor of f ⁻¹ y says that the index ymust be f x, so a value
of type f ⁻¹ y always contains an x such that f x ≡ y. The function uninv extracts the x
from inv, to avoid having to pattern match in other places. The inv-eq function delivers
the f x ≡ y equality, which will proof useful later.

Note also that a small module is used with for the parameters a, b, A and B. These
arguments are shared between all three functions. Because the module is nameless
(it is named), the module is transparent to function calls—Meaning that outside the
module, these functions can be called as if they had been defined outside of the module,
with the module parameters as function arguments.

In listing 5.8 the new ornaments are defined. All the constructors now fit in a single
Orn datatype, and the contexts are now propagated in the ‘0 and _⊕_ ornaments as
well. The rec_+⊗_ ornament gains a simple extension: an index j of type ⟦ J ⟧ can be
chosen by making use of the ornamented environment δ.

In the ι and rec_⊗_ copy ornaments, a new index must be given which—for the
function u—lies in the inverse image of the original index. The ornamented environ-
ment δmay be used to determine this index. The original index i can only be determined
using the original environment, which is reconstructed by applying the environment
transformer c to the ornamented environment δ.

39

data Orn { I} J (u ∶ Cxf J I)
{Γ} Δ (c ∶ Cxf Δ Γ) ∶ ∀ {dt} (D ∶ Desc I Γ dt) → Set₁ where
ι ∶ ∀ { i} → (j ∶ (δ ∶ ⟦ Δ ⟧) → u ⁻¹ (i (c δ))) → Orn u c (ι i)
–⊗_ ∶ ∀ {S xs} → (xs⁺ ∶ Orn u (cxf-both c) xs) → Orn u c (S ⊗ xs)
rec_⊗_ ∶ ∀ { i xs} → (j ∶ (δ ∶ ⟦ Δ ⟧) → u ⁻¹ (i (c δ))) →

(xs⁺ ∶ Orn u c xs) → Orn u c (rec i ⊗ xs)
+⊗ ∶ ∀ {xs ∶ ConDesc I Γ} → (S ∶ (δ ∶ ⟦ Δ ⟧) → Set) →

(xs⁺ ∶ Orn u (cxf-forget c S) xs) → Orn u c xs
rec_+⊗_ ∶ ∀ {xs ∶ ConDesc I Γ} → (j ∶ (δ ∶ ⟦ Δ ⟧) → ⟦ J ⟧) →

(xs⁺ ∶ Orn u c xs) → Orn u c xs
give-K ∶ ∀ {S xs} → (s ∶ (δ ∶ ⟦ Δ ⟧) → S (c δ)) →

(xs⁺ ∶ Orn u (cxf-inst c s) xs) → Orn u c (S ⊗ xs)
‘0 ∶ Orn u c ‘0
⊕ ∶ ∀ {#c x} {xs ∶ DatDesc I Γ #c} →

(x⁺ ∶ Orn u c x) (xs⁺ ∶ Orn u c xs) → Orn u c (x⊕ xs)
Listing 5.8: Ornaments for families of datatypes

module { I J u} where
ornToDesc ∶ ∀ {Γ Δ c dt} {D ∶ Desc I Γ dt} →

(o ∶ Orn J u Δ c D) → Desc J Δ dt
ornToDesc (ι j) = ι (uninv ∘ j)
ornToDesc {c = c} (–⊗_ {S = S} xs⁺) = S ∘ c ⊗ ornToDesc xs⁺
ornToDesc (rec j ⊗ xs⁺) = rec (uninv ∘ j) ⊗ ornToDesc xs⁺
ornToDesc (_+⊗_ S xs⁺) = S ⊗ ornToDesc xs⁺
ornToDesc (rec_+⊗_ j xs⁺) = rec j ⊗ ornToDesc xs⁺
ornToDesc (give-K s xs⁺) = ornToDesc xs⁺
ornToDesc ‘0 = ‘0
ornToDesc (x⁺⊕ xs⁺) = ornToDesc x⁺⊕ ornToDesc xs⁺

Listing 5.9: Interpretation of ornaments

The semantics of ornaments is listed in listing 5.9. A small nameless module is used
to put the quantification over I, J and u outside of the ornToDesc function. Module pa-
rameters in Agda remain constant between calls within the module, so this emphasises
that the indices are the same within every part of a description.

The combination of ConDesc and DatDesc into a single Desc type works very well
here: A single function is required to define the semantics of ornaments on both con-
structors and datatypes and there is no mention of DescTags within the clauses. The
term uninv ∘ j occurs twice, in the clauses for ι j and for rec j ⊗ xs⁺. The func-
tion j gives the new index, of type u ⁻¹ i (c δ), when it is applied to an ornamented
environment. The index is then extracted from using uninv.
Example 5.2.1. Let us get some practice with the new ornaments by refining lists to
Vecs. Recall the definition of the Vec type:

data Vec (A ∶ Set) ∶ Nat → Set where
[] ∶ Vec A 0
∷ ∶ ∀ {n} → (x ∶ A) → (xs ∶ Vec A n) → Vec A (suc n)

The Vec type has one index of type Nat and one parameter of type Set. By using

40

listDesc as the starting point, the type of the ornament to be defined has the following
structure:

list→vec ∶ Orn (ε ▷′ Nat) ?0 (ε ▷′ Set) ?1 listDesc

The hole ?0 is the index transformer and must have be of type ⟦ ε ▷′ Nat ⟧ → ⟦ ε ⟧.
The result type has only one inhabitant, so the implementation is easily given as λ j → tt.
The parameter transformer ?1 must have type ⟦ ε ▷′ Set ⟧ → ⟦ ε ▷′ Set ⟧. We do
not want the parameters to change—if A is the parameter for the list, A should be the
parameter for the Vec—so we use the identity function id. Structurally, the ornament
should only insert one argument; the n in the _∷_ constructor with which the index is
determined. Skipping the indices, the ornament looks as follows.

list→vec ∶ Orn (ε ▷′ Nat) (λ j → tt) (ε ▷′ Set) id listDesc
list→vec = ι ?0
⊕ const Nat +⊗ –⊗ rec ?1 ⊗ ι ?2
⊕ ‘0

-- ?0 ∶ (δ ∶ ⊤′ ▶ const Set) → (λ j → tt) ⁻¹ tt
-- ?1 ∶ (δ ∶ ⊤′ ▶ const Set ▶ const Nat ▶ top ∘ pop) → (λ j → tt) ⁻¹ tt
-- ?2 ∶ (δ ∶ ⊤′ ▶ const Set ▶ const Nat ▶ top ∘ pop) → (λ j → tt) ⁻¹ tt

The first hole to be filled in asks for a (λ j → tt) ⁻¹ tt, this means we can fill in inv x
where x must be of type ⟦ ε ▷′ Nat ⟧ (the type of the new indices) and (λ j → tt) x must
be equal to tt. The second requirement is met trivially, so any value with the right type
will do. In this case the length index should be zero, so tt , 0 is filled in.

For the holes ?1 and ?2 the situations are similar, any index of type ⟦ ε ▷′ Nat ⟧
can be chosen. Note that both holes can use the ornamented environment, including the
new argument of type Nat, to determine the index. The holes ?1 and ?2 are filled in
to use n and suc n respectively as the length index.

list→vec ∶ Orn (ε ▷′ Nat) (λ → tt) (ε ▷′ Set) id listDesc
list→vec = ι (λ δ → inv (tt , 0))
⊕ const Nat +⊗ –⊗ rec (λ δ → inv (tt , top (pop δ)))
⊗ ι (λ δ → inv (tt , suc (top (pop δ))))
⊕ ‘0

As a quick verification that this ornament results in a type which does the same
thing as Vec, part of the embedding-projection pair is given:

vecDesc ∶ DatDesc (ε ▷′ Nat) (ε ▷′ Set) 2
vecDesc = ornToDesc list→vec
vec-to ∶ ∀ {A n} → Vec A n → μ vecDesc (tt , A) (tt , n)
vec-to [] = ⟨ 0 , refl ⟩
vec-to (x ∷ xs) = ⟨ 1 , , x , vec-to xs , refl ⟩

△

The ornamental algebra is an extension of the ornamental algebras we have seen
before. The full listing is given in listing 5.10. The index types I and J and the index
transformer u are module parameters to emphasise that they remain the same between
forget, forgetAlg and forgetNT.

41

module { I J u} where
forgetNT ∶ ∀ {Γ Δ c dt} {D ∶ Desc I Γ dt} (o ∶ Orn J u Δ c D) →

∀ {δ X j} → ⟦ ornToDesc o ⟧ δ (X ∘ u) j → ⟦ D ⟧ (c δ) X (u j)
forgetNT (ι j) {δ} refl rewrite inv-eq (j δ) = refl
forgetNT (–⊗ xs⁺) (s , v) = s , forgetNT xs⁺ v
forgetNT (rec j ⊗ xs⁺) {δ} {X} (s , v) rewrite inv-eq (j δ) = s , forgetNT xs⁺ v
forgetNT (_+⊗_ S xs⁺) (s , v) = forgetNT xs⁺ v
forgetNT (rec_+⊗_ j xs⁺) (s , v) = forgetNT xs⁺ v
forgetNT (give-K s xs⁺) {δ} v = s δ , forgetNT xs⁺ v
forgetNT ‘0 (() ,)
forgetNT (x⁺⊕ xs⁺) (zero , v) = zero , forgetNT x⁺ v
forgetNT (x⁺⊕ xs⁺) (suc k , v) = (suc *** id) (forgetNT xs⁺ (k , v))
forgetAlg ∶ ∀ {Γ Δ c #c} {D ∶ DatDesc I Γ #c} (o ∶ Orn J u Δ c D) →

∀ {δ} → Alg (ornToDesc o) δ (μ D (c δ) ∘ u)
forgetAlg o = ⟨_⟩ ∘ forgetNT o
forget ∶ ∀ {Γ Δ c #c} {D ∶ DatDesc I Γ #c} (o ∶ Orn J u Δ c D) →

∀ {δ j} → μ (ornToDesc o) δ j → μ D (c δ) (u j)
forget o = fold (forgetAlg o)

Listing 5.10: Ornamental algebras

The type of forgetNT is similar to that of conForgetNT in section 4.3, in that they
go from the functor ⟦ ornToDesc o ⟧ δ to the functor ⟦ D ⟧ (c δ). The ornamented
environment is passed as an argument to forgetNT, and the environment for the original
type is obtained by applying the environment transformer c. Both functors require a
new argument containing an index (to get to a Set), these are handled similarly to the
environments. The index j of the ornamented type is transformed to the index for the
original type by applying u. An X of type ⟦ I ⟧ → Set can be combined with u (of type
⟦ J ⟧ → ⟦ I ⟧ to get the other arguments for the functors. The resulting types are similar
to those of McBride [19], with the addition of environments.

The cases of forgetNT for ι j and rec j ⊗ xs⁺ both require the proof inv-eq (j δ).
In both clauses j δ is of type u ⁻¹ i (c δ), so it contains a value in the inverse-image
of i (c δ). The proof inv-eq (j δ) says that u (uninv (j δ)) ≡ i (c δ), confirming
that applying u on the ornamented index (j δ) results in the original index (i (c δ)).
Alternatively, we might state: The index j under the environment δ lies in the inverse-
image for u of i under the environment c δ. Rewriting with the proof unifies enough
variables that the proof obligation for the ι j case becomes i (c δ) ≡ i (c δ), allowing us
to write refl as the term. The type of s in the rec j ⊗ xs⁺ case is rewritten to X (i (c δ)),
which is exactly what is needed on the right side.

5.3 Algebraic ornaments
Now that indices are supported, algebraic ornaments can be defined. When an algebra
is given for a description D, it induces an algebraic ornament on D which adds the
results of the algebra as an index. The type of algOrn below shows how an algebra
which results in a value of type R gives an ornament which goes from a Desc I Γ dt to
a Desc (I ▷ R) Γ dt.

42

algOrn ∶ ∀ {Γ dt} (D ∶ Desc I Γ dt) →
({γ ∶ ⟦ Γ ⟧} → Alg D γ R) → Orn (I ▷ R) pop Γ id D

Interestingly, algebraic ornaments only work when the algebra is polymorphic in the
datatype parameters. So lengthAlg for lists could be used, but sumAlg could not. During
the definition of an ornament we do not know which environment will be used, so it
should work for any environment. To produce an index of type R for any environment,
the algebra must work for any environment. One quickly gets stuck when trying to
define algOrn for a fixed environment.

What exactly should an algebraic ornament do? Consider the Vec datatype. We
would like to get a descriptions of Vec by using the algebraic ornament of the length
algebra for lists. We reiterate the definitions of Vec and lengthAlg below. By comparing
them, one may note that the result indices 0 and suc n of the [] and _∷_ constructors
match with the right sides of the first and second clause of lengthAlg. In an algebra,
every recursive argument is matched with the result of the algebra on that argument; this
can be used to write the right hand side. In the resulting datatype (Vec) the result for
the recursive argument xs is kept in a new argument n. We will call n the index-holding
argument for xs.

data Vec (A ∶ Set) ∶ Nat → Set where
[] ∶ Vec A 0
∷ ∶ ∀ {n} → (x ∶ A) → (xs ∶ Vec A n) → Vec A (suc n)

lengthAlg ∶ {A ∶ Set} → Alg listDesc (tt , A) (const Nat)
lengthAlg (zero , refl) = 0
lengthAlg (suc zero , x , n , refl) = suc n
lengthAlg (suc (suc ()) ,)

We will generalise the observations on vectors to get the formula for building alge-
braic ornaments: For every recursive argument, the result of the algebra will be held
in a new index-holding argument that is inserted right before it. The index-holding
arguments are passed to the algebra to compute the result indices.

Algebraic ornaments are implemented in listing 5.11. The implementation itself is
in algOrn′, which has a slightly different type than algOrn. Because new arguments are
being inserted, the recursive calls may have a modified context. The algOrn′ function
supports context changes by having two additional arguments Δ and c. The type of
algOrn is a bit more convenient to use in practice—It helps with some type inference.

The algebra is used up piece by piece while recursing over the description. Though
the algebra α only requires one argument, this argument is a product type in most cases
(for all descriptions but ι), so curry can be used to instantiate part of the product. The
case for S ⊗ xs shows it clearly: An α of type Alg (S ⊗ xs) , which normalises to
Σ (S) → R , is curried to get a function S → Alg xs . The top γ is of the
correct type S , so with curry α (top γ) we get an algebra which works for the tail of
the description xs.

The case for rec i ⊗ xs shows how the index-holding argument R ∘ i ∘ c is inserted.
Here c transforms the ornamented environment of type ⟦ Δ ⟧ into an environment of
type ⟦ Γ ⟧, i tells us the index that was used for the recursive argument under that
environment, and R gives the type of the result under that index. The recursive argument
is copied, but with a new index consisting of two parts: i (c (pop δ)) and top δ. The
first part is effectively the old index, but calculated by using the pop δ environment
(the ornamented environment excluding the newly inserted argument). The second part
top δ is the value of the newly inserted argument.

43

module { I R} where
algOrn′ ∶ ∀ {Γ Δ dt} {c ∶ Cxf Δ Γ} (D ∶ Desc I Γ dt) →

(∀ {δ ∶ ⟦ Δ ⟧} → Alg D (c δ) R) → Orn (I ▷ R) pop Δ c D
algOrn′ {dt = isCon} {c = c} (ι o) α = ι (λ δ → inv (o (c δ) , α refl))
algOrn′ {dt = isCon} (S ⊗ xs) α = –⊗ (algOrn′ xs (λ {γ} → curry α (top γ)))
algOrn′ {dt = isCon} {c = c} (rec i ⊗ xs) α = R ∘ i ∘ c +⊗

rec (λ δ → inv (i (c (pop δ)) , top δ)) ⊗
algOrn′ xs (λ {δ} → curry α (top δ))

algOrn′ {dt = isDat } ‘0 α = ‘0
algOrn′ {dt = isDat } (x⊕ xs) α = algOrn′ x (curry α 0)
⊕ algOrn′ xs (α ∘ (suc *** id))

algOrn ∶ ∀ {Γ dt} (D ∶ Desc I Γ dt) →
({γ ∶ ⟦ Γ ⟧} → Alg D γ R) → Orn (I ▷ R) pop Γ id D

algOrn = algOrn′

Listing 5.11: Algebraic ornaments

Example 5.3.1. The Vec type can be described with algOrn. The length algebra can be
used to do this. The signature of list→vec′ is the same as that for the previously defined
list→vec. A new index of type const Nat is introduced, because that is the result type
of lengthAlg.

list→vec₁ ∶ Orn (ε ▷ const Nat) pop (ε ▷′ Set) id listDesc
list→vec₁ = algOrn listDesc lengthAlg

The ornament results in a description of Vec. Do note that the order of the arguments
of the _∷_ constructor is slightly different, because the new argument n is being inserted
right before the recursive argument.

vecDesc₁ ∶ DatDesc (ε ▷′ Nat) (ε ▷′ Set) 2
vecDesc₁ = ι (const (tt , 0))
⊕ top
⊗ const Nat
⊗ rec (λ γ → tt , top γ)
⊗ ι (λ γ → tt , suc (top γ))
⊕ ‘0

test-list→vec₁ ∶ ornToDesc list→vec₁ ≡ vecDesc₁
test-list→vec₁ = refl

△

5.4 Discussion
This chapter has shown how descriptions the descriptions with contexts can be extended
to support both parameters and indices. Parameters are a fairly simple addition, but
indices required some rethinking of what the types of our functors had to be (the change
from Set to ⟦ I ⟧ → Set). Existing literature on ornaments adapts well to this universe,
and most importantly we were able to implement the ornamental algebra. Additionally,
algebraic ornaments were implemented.

44

Some interesting functionality from McBride’s [19] work relating to algebraic or-
naments has not yet been implemented due to a lack of time. One is the remember
function, which is the inverse of forget for algebraic ornaments. For example, if one
has a list and its length algebra, it may be used to convert lists to Vecs. The type will
be stated here, but it has not been implemented. McBride uses a general induction
principle to define remember, which has not (yet) been implemented either.

remember ∶ ∀ { I R Γ #c} (D ∶ DatDesc I Γ #c) →
(α ∶ ∀ {γ} → Alg D γ R) →
∀ {γ i} → (x ∶ μ D γ i) → μ (ornToDesc (algOrn D α)) γ (i , (fold α x))

The recomputation lemma states: When an algebraic ornament is forgotten, folding
the same algebra over the result recomputes the index of the original value. It is stated
as follows:

recomputation ∶ ∀ { I R Γ #c} (D ∶ DatDesc I Γ #c) →
(α ∶ {γ ∶ ⟦ Γ ⟧} → Alg D γ R) →
∀ {γ j} → (x ∶ μ (ornToDesc (algOrn D α)) γ j) →
fold α (forget (algOrn D α) x) ≡ top j

Example 5.4.1. The remember and recomputation functions have not been imple-
mented for this thesis. If one were to define them, some interesting results could be
obtained. Consider the length algebra for lists. It is used to define the length′ function
and the Vec type:

length′ ∶ ∀ {A} → μ listDesc (tt , A) tt → Nat
length′ = fold lengthAlg
vecDesc′ ∶ DatDesc (ε ▷′ Nat) (ε ▷′ Set) 2
vecDesc′ = ornToDesc (algOrn listDesc lengthAlg)

Like any ornament, the length algebraic ornament can be forgotten to convert any
Vec back to a list:

vec-to-list ∶ ∀ {A n} → μ vecDesc′ (tt , A) (tt , n) →
μ listDesc (tt , A) tt

vec-to-list = forget (algOrn listDesc lengthAlg)

The remember function would allow the list-to-vec function to be defined in terms
of lengthAlg. The length index is computed with fold lengthAlg, which we have defined
as length′.

list-to-vec ∶ ∀ {A} → (x ∶ μ listDesc (tt , A) tt) →
μ vecDesc′ (tt , A) (tt , length′ x)

list-to-vec = remember listDesc lengthAlg

One would expect that when a Vec A n in converted to a list, the length of that list
would be n. The recomputation lemma would help to prove this fact:

length-recomputation ∶ ∀ {A n} → (x ∶ μ vecDesc′ (tt , A) (tt , n)) →
length′ (vec-to-list x) ≡ n

length-recomputation x = recomputation listDesc lengthAlg x

△

45

5.4.1 Separating parameters from contexts
One of the limitations of the current implementation of indices and parameters is that
indices can not use the parameters. For instance in the description of the following
datatype Silly, one gets stuck when trying to give the type of the index. The hole ?0
must be of type Nat, while only γ of type ⊤′ is available.

data Silly (n ∶ Nat) ∶ Fin n → Set where
silly ∶ (k ∶ Fin n) → (b ∶ Bool) → Foo n k

sillyDesc ∶ DatDesc (ε ▷ (λ γ → Fin ?0)) (ε ▷′ Nat) 1
sillyDesc = ⋯

It is not easy to make the indices depend on the parameters within the current im-
plementation, because parameters are not a separate thing within the descriptions. The
datatype parameters are merely the initial context, which is being expanded in the con-
structors.

Consider the type for the argument of the current ι constructor: (γ ∶ ⟦ Γ ⟧) → ⟦ I ⟧.
A value of this type gives an index of type ⟦ I ⟧ under a given environment. The envi-
ronment γ contains both the values for the datatype parameters and for other variables
in the constructor. If indices could depend on the parameters, the result type (currently
⟦ I ⟧) should depend on the parameter part of γ. Other local variables must not be used
to determine the index type, because the types of the indices in datatypes are declared
in the signature (before the where) where only the parameters can be used. Right now,
there is no way to just take the parameter part of an environment.

The fundamental problem here is that parameter types are in the same Cx as the
internal contexts that contain earlier arguments in the current constructor. Internal con-
texts can not be used everywhere where the parameter types can be used, but obtaining
subsets of environments is not a trivial problem. The choice to have internal contexts
build upon the Cx from the parameters seemed reasonable at the time because it allows
the local parts of the contexts (i.e. arguments) to use the parameters. For many purposes
it works well, but this approach is not suited when indices must depend on parameters.

There is a promising solution to this problem. Descriptions can have a separate Cx
just for the parameters, let us call it (P ∶ Cx), and the indices and internal contexts take
the form of functions form ⟦ P ⟧ to Cx. One might say: indices and internal contexts
are both contexts under the parameter environment, meaning that the parameters can
be used to determine these contexts.

Descriptions using such a separate parameter context are defined in listing 5.12. The
P and I are module parameters because they stay constant within the whole description,
consistent with how the declared parameters and indices of real datatypes are the same
throughout the datatype definition. For all practical purposes P and I work as if they
were datatype parameters for both ConDesc and DatDesc. Places where an internal
environment could be used (the functions which had (γ ∶ ⟦ Γ ⟧) as input) can now use
both the parameter values (p ∶ ⟦ P ⟧) and the environment (γ ∶ ⟦ Γ p ⟧). When an
index has to be specified, the type to be given is ⟦ I p ⟧, so the type of the indices can
depend on the parameter values.

The DatDesc type does not pass a context around, but it starts every ConDesc off
with an empty context (const ε). Note how similar this is to the descriptions of chapter 4
(Listing 4.3). Once again, constructor descriptions have their own environments which
datatype descriptions do not need and a full constructor is always closed, in the sense
that Γ is const ε.

46

module (P ∶ Cx) (I ∶ (p ∶ ⟦ P ⟧) → Cx) where
data ConDesc (Γ ∶ (p ∶ ⟦ P ⟧) → Cx) ∶ Set where

ι ∶ (o ∶ (p ∶ ⟦ P ⟧) (γ ∶ ⟦ Γ p ⟧) → ⟦ I p ⟧) → ConDesc Γ
⊗ ∶ (S ∶ (p ∶ ⟦ P ⟧) (γ ∶ ⟦ Γ p ⟧) → Set) →

(xs ∶ ConDesc (λ p → Γ p ▷ S p)) → ConDesc Γ
rec_⊗_ ∶ (i ∶ (p ∶ ⟦ P ⟧) (γ ∶ ⟦ Γ p ⟧) → ⟦ I p ⟧) →

(xs ∶ ConDesc Γ) → ConDesc Γ
data DatDesc ∶ (#c ∶ Nat) → Set where

‘0 ∶ DatDesc 0
⊕ ∶ ∀ {#c} (x ∶ ConDesc (const ε)) →

(xs ∶ DatDesc #c) → DatDesc (suc #c)
Listing 5.12: Descriptions with separate parameters

⟦_⟧conDesc ∶ ∀ {P I Γ} → ConDesc P I Γ →
(p ∶ ⟦ P ⟧) → (γ ∶ ⟦ Γ p ⟧) → (X ∶ ⟦ I p ⟧ → Set) → ((o ∶ ⟦ I p ⟧) → Set)

⟦ ι o ⟧conDesc p γ X o′ = o p γ ≡ o′
⟦ S ⊗ xs ⟧conDesc p γ X o = Σ (S p γ) λ s → ⟦ xs ⟧conDesc p (γ , s) X o
⟦ rec i ⊗ xs ⟧conDesc p γ X o = X (i p γ) × ⟦ xs ⟧conDesc p γ X o
⟦_⟧datDesc ∶ ∀ {P I #c} → DatDesc P I #c →

(p ∶ ⟦ P ⟧) → (X ∶ ⟦ I p ⟧ → Set) → ((o ∶ ⟦ I p ⟧) → Set)
⟦_⟧datDesc D p X o = Σ (Fin) λ k → ⟦ lookupCtor D k ⟧conDesc p tt X o
data μ {P I #c} (D ∶ DatDesc P I #c) (p ∶ ⟦ P ⟧) (o ∶ ⟦ I p ⟧) ∶ Set where

⟨_⟩ ∶ ⟦ D ⟧ p (μ D p) o → μ D p o

Listing 5.13: Semantics of descriptions with separate parameters

The semantics in listing 5.13 show how descriptions with separate parameters are
interpreted. It is a straightforward derivation from the semantics in listing 5.3 and list-
ing 4.4. While the interpretation of ConDesc requires parameter values (p ∶ ⟦ P ⟧) and
a local environment (γ ∶ ⟦ Γ p ⟧), the interpretation of DatDesc does not need a local
environment. Notice how both result in an endofunctor on ⟦ I p ⟧ → Set, of which μ is
the fixpoint.

The Silly datatype of the beginning of this section can now be described. The index
type uses top p to refer to the parameter of type Nat. Argument types and indices can
be specified using both the parameter values p and the local environment γ.

SillyDesc ∶ DatDesc (ε ▷′ Nat) (λ p → ε ▷′ Fin (top p)) 1
SillyDesc = (λ p γ → Fin (top p)) ⊗ (λ p γ → Bool)
⊗ ι (λ p γ → tt , top (pop γ)) ⊕ ‘0

silly-test ∶ μ SillyDesc (tt , 10) (tt , 3)
silly-test = ⟨ 0 , 3 , true , refl ⟩

Another interesting, less silly, datatype which can be described is the equality type.
The index of our equality datatype MyEq uses the value A from the parameters to deter-
mine its type. The description EqDesc is quite simple, and the embedding-projection
pair is given to show that it is correct.

47

data MyEq {A ∶ Set} (x ∶ A) ∶ A → Set where
refl ∶ MyEq x x

EqDesc ∶ DatDesc (ε ▷′ Set ▷ top) (λ p → ε ▷′ top (pop p)) 1
EqDesc = ι (λ p γ → tt , top p) ⊕ ‘0
to-eq ∶ ∀ {A x y} → MyEq x y → μ EqDesc ((tt , A) , x) (tt , y)
to-eq refl = ⟨ 0 , refl ⟩
from-eq ∶ ∀ {A x y} → μ EqDesc ((tt , A) , x) (tt , y) → MyEq x y
from-eq ⟨ zero , refl ⟩ = refl
from-eq ⟨ suc () , ⟩

This way of encoding parameters separately from contexts seems to be a better ap-
proximation of Agda datatypes than the descriptions of listing 5.1. This particular en-
coding was found in the late stages of writing this thesis, so no further efforts have been
made regarding the implementation of ornaments and related functionality. For future
research, this encoding might be promising. It would be interesting to see if everything
works out.

48

Chapter 6

Generic programming with
descriptions

The previous chapter defined descriptions and ornaments with all the core features we
wish to have. In this chapter, the last minor changes are made to descriptions to make
them store names of arguments. The surrounding functionality as introduced in chap-
ter 2 is presented to get a true generic programming library which allows the derivation
of descriptions and embedding-projection pairs from user-defined datatypes.

One of the major goals of this thesis is to allow quoting of datatypes. We use the
term quoting in general for the conversion of code to data. More concretely, actual
definitions and terms in your Agda program may be quoted to representations. In the
case of the quoting of datatypes, it primarily means that a description is being calculated
for a user-defined datatype.

Once a datatype has been quoted, you may want to derive an embedding-projection
pair to translate between the original type and the representation. The term ’derive’ is
used in the way that it is in Haskell, where certain record instances like Show, Read and
Generic can be automatically derived from datatypes by the deriving keyword. We will
be using the deriveHasDesc function to perform a similar process:

deriveHasDesc ∶ (‘quotedDesc ‘hasDesc ‘dt ∶ Name) → TC ⊤

The result of deriveHasDesc is ameta-program, contained in the TCmonad. The TC
monad is built into Agda, and meta-programs within TC can be run by using keywords
like unquoteDecl. The meta-program can access types in the context, define new func-
tions, perform unification of types, normalise types, and more. Essentially, it is a way
to directly control the type-checker. A meta-program is run during the type-checking at
the exact point where it was called, and type-checking will only continue once the result
has been computed. Type errors can occur during the execution, for instance because
one tries to unify two types which can not be unified, or because an error is thrown
manually.

The deriveHasDesc function requires three values of the Name type. The Name
type is also built-in, and is a reference to a definition in the program. Every Name
is directly connected to a function, datatype, record or other kind of definition. Agda
makes sure that this is always the case1. We will be using two ways to create Names:

1Within a TC computation, new Names can be created which are not necessarily bound to a definition.
There is, however, no way for these Names to escape the TC monad.

49

• With the quote keyword, a Name is given for an existing definition. So the ex-
pression quote Vec results in a Namewhich refers to the Vec datatype. The same
notation with the quote keyword is used to show names as well.

• A statement like unquoteDecl x1 x_2 ⋯ xₙ = m. The expression m must be of
type TC ⊤, and must declare functions with the names x1 ⋯ xₙ. Within m, these
names are of type Name. After the unquoteDecl statement n new definitions have
been created.

Our deriveHasDesc function is used in combination with the unquoteDecl key-
word, such that ‘quotedDesc and ‘hasDesc are functions which must be declared by
deriveHasDesc. The ‘dt argument is the name of the datatype which must be quoted.
This is most easily explained with an example—Assume that the Vec datatype has been
defined as follows:

data Vec (A ∶ Set) ∶ Nat → Set where
nil ∶ Vec A 0
cons ∶ ∀ n → (x ∶ A) → (xs ∶ Vec A n) → Vec A (suc n)

Remark 6.1. The n argument of cons is visible, not hidden as it usually is. Hidden
arguments are currently not supported by the library. This is why the constructor is
named cons instead of _∷_. With 3 visible arguments, the infix notation would not give
the intended result.

We use deriveHasDesc on the Vec datatype and run the meta-program by using
unquoteDecl. This process defines two functions for us: quotedVec and VecHasDesc.
If the name does not match a datatype, or if the datatype can not be described by our
descriptions, a type error is thrown.

-- Quote the Vec datatype
unquoteDecl quotedVec VecHasDesc =

deriveHasDesc quotedVec VecHasDesc (quote Vec)
-- Two new functions have been defined:
-- quotedVec ∶ QuotedDesc
-- VecHasDesc ∶ {A ∶ Set} {n ∶ Nat} → HasDesc (Vec A n)

The quotedVec function is of type QuotedDesc. It contains, among other things,
the generated description and will be defined in section 6.2. The VecHasDesc function
returns a HasDesc (Vec A n) for any A and n. The HasDesc record contains the derived
embedding-projection pair and is further explained in section 6.3.

The execution of deriveHasDesc on a datatype Dtwill often be called the quoting of
Dt. So when we talk about ’after Vec has been quoted’, we mean after deriveHasDesc
has been executed by unquoteDecl like in the code above. By convention, we will
always use names like quotedDt andDtHasVec for the results of the quoting of a specific
datatype Dt.

6.1 Descriptions and ornaments
When quoting datatypes, the library can see what the names of arguments are within the
constructors. A fairly small change to descriptions allows each argument to contain such

50

data ConDesc (I ∶ Cx) (Γ ∶ Cx) ∶ Set₁ where
ι ∶ (o ∶ (γ ∶ ⟦ Γ ⟧) → ⟦ I ⟧) → ConDesc I Γ
/⊗_ ∶ (nm ∶ String) → (S ∶ (γ ∶ ⟦ Γ ⟧) → Set) →

(xs ∶ ConDesc I (Γ ▷ S)) → ConDesc I Γ
/rec⊗_ ∶ (nm ∶ String) → (i ∶ (γ ∶ ⟦ Γ ⟧) → ⟦ I ⟧) →

(xs ∶ ConDesc I Γ) → ConDesc I Γ
data DatDesc (I ∶ Cx) (Γ ∶ Cx) ∶ (#c ∶ Nat) → Set₁ where

‘0 ∶ DatDesc I Γ 0
⊕ ∶ ∀ {#c} → (x ∶ ConDesc I Γ) →

(xs ∶ DatDesc I Γ #c) → DatDesc I Γ (suc #c)
Listing 6.1: Descriptions with names

a name, of type String. This is the only change relative to the descriptions of chapter 5.
The full definition of descriptions is given in listing 6.1. The argument names have
been added in front of _⊗_ and rec_⊗_ , separated by a forward slash. The rest of
the definition and semantics are exactly like in section 5.1. The Vec type can now be
described in the following way:

vecDesc ∶ DatDesc (ε ▷′ Nat) (ε ▷′ Set) 2
vecDesc = ι (const (tt , 0))
⊕ ”n” / const Nat ⊗

”x” / top ∘ pop ⊗
”xs” /rec (λ γ → tt , top (pop γ)) ⊗
ι (λ γ → tt , suc (top (pop γ)))

⊕ ‘0

Ornaments are changed accordingly. The copying operators _/–⊗_ and _/rec_⊗_
require a name, which will overwrite the old name of the argument. The insertion op-
erators _/_+⊗_ and _/rec_+⊗_ need a name as well for the argument being inserted.
The names are the only change compared to the ornaments in section 5.2. The new
definition of ornaments is in listing 6.2.

The ornToDesc function has been slightly updated to make sure that the description
gets the names as specified in the ornament. Some other functions, like forget sim-
ply ignore the names. All the changes required to support the new descriptions and
ornaments with names are trivial, and they will not be listed here.

6.2 Quoting datatypes
The quoting of a datatype gives a DatDesc I Γ #c for some I, Γ and #c which are not
known in advance. Additionally, the name of the datatype and a list of names of the
constructors can be read during the quoting operation, so we would like to store them
as well. The QuotedDesc record (Listing 6.3) can contain all the information which
we can extract from a datatype definition including the indices, parameters, constructor
count, names and description.

The Name type has been used to store the names of constructors and of the data-
type. As explained in the introduction of this chapter, this means that ‘datatypeName
is connected to a real datatype, and each of the ‘constructorNames is tied to a real

51

data Orn { I} J (u ∶ Cxf J I)
{Γ} Δ (c ∶ Cxf Δ Γ) ∶ ∀ {dt} (D ∶ Desc I Γ dt) → Set₁ where
ι ∶ ∀ { i} → (j ∶ (δ ∶ ⟦ Δ ⟧) → u ⁻¹ (i (c δ))) → Orn u c (ι i)
/–⊗ ∶ ∀ {nm S xs} (nm′ ∶ String) →

(xs⁺ ∶ Orn u (cxf-both c) xs) → Orn u c (nm / S ⊗ xs)
/rec⊗_ ∶ ∀ {nm i xs} (nm′ ∶ String) → (j ∶ (δ ∶ ⟦ Δ ⟧) → u ⁻¹ (i (c δ))) →

(xs⁺ ∶ Orn u c xs) → Orn u c (nm /rec i ⊗ xs)
/+⊗_ ∶ {xs ∶ ConDesc I Γ} (nm ∶ String) (S ∶ (δ ∶ ⟦ Δ ⟧) → Set)

(xs⁺ ∶ Orn u (cxf-forget c S) xs) → Orn u c xs
/rec+⊗_ ∶ {xs ∶ ConDesc I Γ} (nm ∶ String) (j ∶ (δ ∶ ⟦ Δ ⟧) → ⟦ J ⟧)

(xs⁺ ∶ Orn u c xs) → Orn u c xs
give-K ∶ ∀ {S xs nm} → (s ∶ (δ ∶ ⟦ Δ ⟧) → S (c δ)) →

(xs⁺ ∶ Orn u (cxf-inst c s) xs) → Orn u c (nm / S ⊗ xs)
‘0 ∶ Orn u c ‘0
⊕ ∶ ∀ {#c x} {xs ∶ DatDesc I Γ #c}

(x⁺ ∶ Orn u c x) (xs⁺ ∶ Orn u c xs) → Orn u c (x⊕ xs)
Listing 6.2: Ornaments with names

record QuotedDesc ∶ Set₂ where
constructor mk
field

{ I} ∶ Cx
{Γ} ∶ Cx
{#c} ∶ Nat
‘datatypeName ∶ Name
‘constructorNames ∶ Vec Name #c
desc ∶ DatDesc I Γ #c

Listing 6.3: Quoted descriptions

constructor2.
One may note that datatype/constructor names and argument names are handled

very differently. Argument names are not bound to definitions—they are always merely
a String. It is still easy to write a new description by hand. If the programmer does
not have a name for an argument they can always resort to writing ” _”. If constructor
names were included in DatDesc, which is definitely possible, one would not be able
to write new descriptions without needing to grab a Name from somewhere. A newly
written description is not bound to a real datatype, so it does not make sense to have to
connect the constructors to definitions. A quotedDesc is bound to a real datatype by
the Names of the datatype and constructors.

The quoting of a datatype (by the use of deriveHasDesc) will result in aQuotedDesc
being defined. As an example we quote the Vec datatype, just like in the introduction
of this chapter. We can verify that (quotedVec ∶ QuotedDesc) is correct with a simple
equality, andwe note that the datatype name and the constructor namesmatchwith those
of Vec and that the description contained in the QuotedDesc is exactly the vecDesc of

2Strictly speaking, these names could be connected to any definition. So ‘datatypeName could just as
well be the name of a function.

52

record HasDesc (A ∶ Set) ∶ Set₂ where
constructor mk
field

{ I Γ} ∶ Cx
{#c} ∶ Nat
desc ∶ DatDesc I Γ #c
{γ} ∶ ⟦ Γ ⟧
{ i} ∶ ⟦ I ⟧
to′ ∶ A → μ desc γ i
from′ ∶ μ desc γ i → A

Listing 6.4: HasDesc definition

the previous section. The following code will work whenever the Vec datatype has been
defined and our library module has been opened.

unquoteDecl quotedVec VecHasDesc =
deriveHasDesc quotedVec VecHasDesc (quote Vec)

quotedVec-check ∶ quotedVec ≡
mk (quote Vec) (quote Vec.nil ∷ quote Vec.cons ∷ []) vecDesc

quotedVec-check = refl

Alternatively, the desc field of the QuotedDesc record can be extracted by the func-
tion QuotedDesc.desc:

vecDesc-check ∶ QuotedDesc.desc quotedVec ≡ vecDesc
vecDesc-check = refl

6.3 Deriving an embedding-projection pair
No generic programming framework is complete without having some way to derive
an embedding-projection pair for a given datatype. Looking at the type of for instance
the vec-to function below, we see that it is parameterised over the parameters (A) and
indices (n) of the datatype. In a sense, what we called an embedding-projection pair
is actually a family of embedding-projection pairs (similar to how Vec is a family of
types), with a family member for each combination of parameters and indices.

vec-to ∶ ∀ {A n} → Vec A n → μ vecDesc (tt , A) (tt , n)
vec-from ∶ ∀ {A n} → μ vecDesc (tt , A) (tt , n) → Vec A n

The HasDesc record, as defined in listing 6.4, can contain one member of the fam-
ily of embedding-projection pairs. It has a type parameter A and the contained pair
converts values between A and μ desc γ i. The fields desc, γ and i together represent
a fully applied type, so the type A must be fully applied as well. One could have a
HasDesc (Vec Nat 10) or a HasDesc (Fin 7), but HasDesc Vec is not a correct type.

To fully cover the use cases of the family of embedding-projections defined by
vec-to and vec-from, one would have to define a family of HasDesc records. The sig-
nature of the family of HasDescs for Vec is straightforward, simply parameterise by the
A and n:

53

instance
VecHasDesc ∶ ∀ {A n} → HasDesc (Vec A n)

This is exactly the signature of the definition that is generated by the quoting of Vec.
The instance keyword allows the VecHasDesc definition to be used for instance search-
ing. We are effectively treating HasDesc as a Haskell typeclass [9], and VecHasDesc
provides a HasDesc instance for Vec A n. If a function requires an instance argument
⦃ r ∶ HasDesc B ⦄, Agda will consider VecHasDesc when trying to build a record of
type HasDesc B. Of course, VecHasDesc will only be able to return a result of the right
type if B is Vec A n for some A and n.

Outside of the record, HasDesc.to′ and HasDesc.from′ are of type {A ∶ Set} (r ∶
HasDesc A) → ⋯ . They require a HasDesc record to be passed explicitly. We expect
HasDesc records to be defined as instances, so we would be better off by using instance
search for these functions. The functions to and from are the versions of to′ and from′
which use instance search to find the right HasDesc record3:

to ∶ {A ∶ Set} ⦃r ∶ HasDesc A⦄ →
A → μ (HasDesc.desc r) (HasDesc.γ r) (HasDesc.i r)

to ⦃r⦄ = HasDesc.to′ r
from ∶ {A ∶ Set} ⦃r ∶ HasDesc A⦄ →

μ (HasDesc.desc r) (HasDesc.γ r) (HasDesc.i r) → A
from ⦃r⦄ = HasDesc.from′ r

Any time after Vec has been quoted, one may use to or from for Vecs and the right
HasDesc will be found automatically. The definition of vec-to and vec-from thus be-
comes trivial:

vec-to ∶ ∀ {A n} → Vec A n → μ vecDesc (tt , A) (tt , n)
vec-to = to
vec-from ∶ ∀ {A n} → μ vecDesc (tt , A) (tt , n) → Vec A n
vec-from = from

6.4 Generic functions
Now that embedding-projection pairs are readily available in their HasDesc instances,
generic programming with actual datatypes becomes possible. A typical example is the
fold function. Remember the signature of fold in listing 5.6:

fold ∶ ∀ { I Γ #c} {D ∶ DatDesc I Γ #c} {γ X}
(α ∶ Alg D γ X) → μ D γ →ⁱ X

One may expand the _→ⁱ_ and reorder some variables to get the following equivalent
signature:

fold ∶ ∀ { I Γ #c γ i} {desc ∶ DatDesc I Γ #c} → ∀ {X} →
(α ∶ Alg desc γ X) → μ D γ i → X i

The μ D γ i which goes in is the generic representation of some type. If we want to
define a gfold which works for real types, the μ D γ i must be replaced by some A. The

3The same effect could be achieved by open HasDesc ⦃...⦄ with the proper qualifiers.

54

A is required to be representable with a description, so a HasDesc A is expected. This
HasDesc contains all the values for I, Γ, #c, desc, γ and i—all these variables can be
removed from the signature. We end up with the following signature for gfold, where
the notation varR is used to take the field var from the record R4.

gfold ∶ ∀ {A} ⦃ R ∶ HasDesc A ⦄ → ∀ {X} →
Alg (descR) (γR) X → A → X (iR)

gfold α = fold α ∘ to

Now gfold can be used to calculate, for instance, the sum of a Vec. If we assume that
some algebra vecSumAlg exists, it can simply be gfolded over a Vec and the HasDesc
record is found automatically.

vecSumAlg ∶ Alg vecDesc (tt , Nat) (λ i → Nat)
vecSumAlg = ⋯
vec-example ∶ Vec Nat 4
vec-example = cons 3 (cons 1 (cons 5 (cons 6 nil)))
vec-example-sum ∶ gfold vecSumAlg vec-example ≡ 15
vec-example-sum = refl

Other functions on descriptions can be transformed to generic functions as well,
including some which work with ornaments. The gforget function is a version of forget
which works on datatypes which have been quoted. Let us quote the List datatype and
create a list→vec ornament:

unquoteDecl quotedList ListHasDesc =
deriveHasDesc quotedList ListHasDesc (quote List)

listDesc ∶ DatDesc ε (ε ▷′ Set) 2
listDesc = QuotedDesc.desc quotedList
list→vec ∶ Orn (ε ▷′ Nat) (λ i → tt) (ε ▷′ Set) id listDesc
list→vec = ι (λ δ → inv (tt , 0))
⊕ ”n” / const Nat +⊗

”x” /-⊗
”xs” /rec (λ δ → inv (tt , top (pop δ))) ⊗
ι (λ δ → inv (tt , suc (top (pop δ))))

⊕ ‘0

The forget function for the list→vec ornament goes from μ vecDesc (tt , A) (tt , n)
to μ listDesc (tt , A) tt. With the right definition of gforget, forget can be used to
transform a Vec A n into a List A. The following works:

vec-example-forget ∶
gforget list→vec vec-example ≡ 3 ∷ 1 ∷ 5 ∷ 6 ∷ []

vec-example-forget = refl

The signature gforget is rather unwieldy and uncovers some problems with the cur-
rent structure of the records. This problem and how a solution would improve the type
of gforget is discussed in section 6.7.

4In Agda, varR can be written as var R if the HasDesc module has been opened. Without opening the
module one must write HasDesc.var R.

55

6.5 Unquoting descriptions
The functionality defined in section 6.2, section 6.3 and section 6.4 is similar to what
generic deriving [15] does for Haskell. A description is calculated for a given datatype
and an embedding-projection pair is generated. Generic functions like gfold and gdepth
can be implemented. Our descriptions are carefully engineered to always be convertible
to a real datatype, which is what we will do in this section.

The process of generating a datatype based on a descriptionwill be called unquoting.
Agda (version 2.5.1) does not yet support the declaration of datatypes from the reflection
mechanism, so it can not be fully automated. We can write the skeleton of a datatype,
and unquote the types of the constructors and of the datatype, as Pierre-Evariste Dagand
pointed out to me. So if one has a finDesc of type DatDesc (ε ▷′ Nat) ε 2 which
describes the Fin type, the user would at least have to write the following:

data Fin ∶ ⋯ where
zero ∶ ⋯
suc ∶ ⋯

Two macros are responsible for generating the types for the ...’s: unquoteDat and
unquoteCon:

macro
unquoteDat ∶ { I Γ #c} (D ∶ DatDesc I Γ #c) → Tactic
unquoteCon ∶ { I Γ #c} (D ∶ DatDesc I Γ #c) →

(k ∶ Fin #c) → (‘self ∶ Term) → Tactic

Macros result in a Tactic which is executed at the spot where the macro is called.
The tactic must place a value in that same spot. This means that unquoteDat finDesc is
not of type Tactic, but it is the result of that tactic—in the case of unquoteDat finDesc
the result is Set of type Set₁. With these macros the following definition of Fin can be
built:

data Fin ∶ unquoteDat finDesc where
zero ∶ unquoteCon finDesc 0 Fin
suc ∶ unquoteCon finDesc 1 Fin

Now we have the Fin datatype and a description finDesc, but no HasDesc record
connecting the two. There is no QuotedDesc record for this datatype either. The
usual quoting operation deriveHasDesc can create these records, but it calculates a de-
scription as well. We want to make use of the description that is already available,
and for this purpose deriveHasDescExisting has been implemented. It is similar to
deriveHasDesc, but takes an additional description and will ensure that it matches with
the generated description. If it does not, an error will occur. Figure 6.1 shows how
deriveHasDescExisting fits in. After the following call to deriveHasDescExisting, the
quotedFin and FinHasDesc functions will be defined:

unquoteDecl quotedFin FinHasDesc =
deriveHasDescExisting quotedFin FinHasDesc
(quote Fin) finDesc

We have now used a description to first unquote a datatype semi-automatically. Af-
ter that, we derived the QuotedDesc and HasDesc records. Ideally, one would merge

56

QuotedDesc

description of A

datatype A

QuotedDesc

description of B

new
datatype B

HasDesc B

ornamentation

unquoting deriveHasDescExistingderiveHasDesc

HasDesc A

Figure 6.1: The process of quoting and unquoting

these operations into a single call (it would make fig. 6.1 a lot prettier), but that is not
possible in the current version of Agda (2.5.1). Even if the unquoting of datatypes were
possible, one would still need to give the names for all the constructors. If tactics would
support the definition of datatypes, but the existing unquoteDeclwould have to be used,
it might look as follows:

-- Speculative:
unquoteDecl quotedFin FinHasDesc Fin zero suc =

unquoteDatatype quotedFin FinHasDesc
finDesc Fin (zero ∷ suc ∷ [])

6.6 Higher-level ornaments
Writing ornaments with the Orn datatypes is verbose and requires a decent understand-
ing of how descriptions work. The ornaments do not do a particularly good job of com-
municating ideas like ’add a parameter’ or ’rename these constructors’. For instance, it
is not obvious at first sight that the following ornament only renames ’x’ to ’y’ and ’xs’
to ’ys’:

list-rename₁ ∶ Orn ε id (ε ▷′ Set) id listDesc
list-rename₁ = ι (λ δ → inv tt)
⊕ ”y” /-⊗

”ys” /rec (λ δ → inv tt) ⊗
ι (λ δ → inv tt)

⊕ ‘0

The Orn datatype provides a good low-level language which guarantees that the
ornament induces a forget function. For actual programming, higher-level abstractions
may be easier to work with. These abstractions take the form of functions that generate
ornaments, and we have already seen algebraic ornaments as an example. In this section
we give some more examples of operations like that. We try to bring ornaments closer
to how programmers think about the relations between datatypes.

57

6.6.1 Structure-preserving ornaments
To start with, we will talk about ornaments which preserve the structure of the descrip-
tion. That is, it keeps all the ι’s, _⊗_ ’s and rec_⊗_ ’s in the same place. The most
obvious example of such an ornament is the identity ornament, which does nothing. A
more general version allows changes to parameters and indices. We define it as reCx:

reCx ∶ ∀ { I J u Γ Δ c dt} {D ∶ Desc I Γ dt} →
(f ∶ ∀ i → u ⁻¹ i) → Orn J u Δ c D

reCx {c = c} { isCon} { ι o} f = ι (f ∘ o ∘ c)
reCx {c = } { isCon} {nm / S ⊗ xs} f = nm /-⊗ reCx f
reCx {c = c} { isCon} {nm /rec i ⊗ xs} f = nm /rec f ∘ i ∘ c ⊗ reCx f
reCx {c = } { isDat } { ‘0} f = ‘0
reCx {c = } { isDat } {x⊕ xs} f = reCx f⊕ reCx f

For every ornament, a copy ornament is created which updates the indices and con-
text. In the case for ι, an index has to be given using an ornamented environment. We
get an unornamented environment with c, see what the old index is under that environ-
ment with o and use f to convert an old index into a new index. Intuitively, the function
f should be seen as a function of type ⟦ I ⟧ → ⟦ J ⟧, with the extra requirement that u is
the inverse of this function.

The reCx function can be specialised in three ways: by only allowing updates to
indices, by only allowing updates to the context/parameters or by not allowing either.
This gives the functions reindex, reparam and idOrn:

reindex ∶ ∀ { I J u Γ dt} {D ∶ Desc I Γ dt} →
(f ∶ ∀ i → u ⁻¹ i) → Orn J u Γ id D

reindex = reCx
reparam ∶ ∀ { I Γ Δ c dt} {D ∶ Desc I Γ dt} → Orn I id Δ c D
reparam = reCx inv
idOrn ∶ ∀ { I Γ dt} {D ∶ Desc I Γ dt} → Orn I id Γ id D
idOrn = reCx inv

6.6.2 Ornament composition
Ornament composition is defined as _≫⁺_ . The function _≫⁺_ takes two ornaments
and results in a new ornament which combines the two:

module { I J J′} {u ∶ Cxf J I} {v ∶ Cxf J′ J} where
≫⁺ ∶ ∀ {Γ Δ Δ′ c d dt} {D ∶ Desc I Γ dt} →

(o ∶ Orn J u Δ c D) → Orn J′ v Δ′ d (ornToDesc o) →
Orn J′ (u ∘ v) Δ′ (c ∘ d) D

For the definition of _≫⁺_ , a case split is done on both ornaments. The first orna-
ment o determines what the input for the second ornament is, which limits the number
of cases to a workable amount. For instance, if o is a ι copy ornament, the input for the
second ornament must be a ι so only another ι copy ornament or an insertion ornament
can occur:

≫⁺ (ι j) (ι k) = ι (λ → inv-∘ (j) (k))
≫⁺ (ι j) (nm / T +⊗ ys⁺) = nm / T +⊗ (_≫⁺_ (ι j) ys⁺)
≫⁺ (ι j) (nm /rec k +⊗ ys⁺) = nm /rec k +⊗ (_≫⁺_ (ι j) ys⁺)

58

The full definition of composition is quite long and very straightforward, so it is not
listed here. To prove that composition of ornaments is correctly defined,≫⁺-coherence
says that ornToDesc of the composed ornament is the same as ornToDesc of the second
ornament, which in turn is an ornament on ornToDesc of the first ornament. The de-
scriptions contain higher order terms (terms depending on environments) which are not
intensionally equal. We can however prove that they are pointwise equal, for each envi-
ronment they give the same result. A small module is used wherein the extensionality
axiom ((∀ x → f x ≡ g x) → f ≡ g) is available, effectively making the normal equality
≡ extensional (within the module).

module (ext ∶ ∀ {a b} → Extensionality a b) where
≫⁺-coherence ∶ ∀ {Γ Δ Δ′ c d dt} {D ∶ Desc I Γ dt} →

(o ∶ Orn J u Δ c D) → (p ∶ Orn J′ v Δ′ d (ornToDesc o)) →
(ornToDesc (o ≫⁺ p)) ≡ ornToDesc p

6.6.3 More ornaments
Programmers may only want to ornament one of the constructors of a datatype. This
idea is expressed by updateConstructor. The programmer can specify which of the con-
structors to update with a Fin #c, and must only give an ornament for that constructor.
The identity ornament is used for the rest of the constructors.

updateConstructor ∶ ∀ { I Γ #c} {D ∶ DatDesc I Γ #c} →
(k ∶ Fin #c) → Orn I id Γ id (lookupCtor D k) →
Orn I id Γ id D

updateConstructor {D = ‘0} () o
updateConstructor {D = x⊕ xs} zero o = o⊕ idOrn
updateConstructor {D = x⊕ xs} (suc k) o =

idOrn⊕ updateConstructor k o

The ornament from Nat to List adds a type parameter, and then inserts an argument
of that type in the suc constructor. The addParameterArg ornament does exactly that.
The new parameter is specified by the (Γ ▷′ Set) in the type, and reparam is used to
modify the whole description to work with the new context, without really using the
newly added type. After that, by using composition, updateConstructor inserts one
new argument in the kth constructor. Because the argument is added at the start of the
constructor, the parameter can be referred to with top. It is currently hard to insert the
argument somewhere else in the constructor, but it would probably be easy when the
separation of parameters discussed in section 5.4.1 is implemented.

addParameterArg ∶ ∀ { I Γ #c} {D ∶ DatDesc I Γ #c} →
Fin #c → String → Orn I id (Γ ▷′ Set) pop D

addParameterArg k str = reparam
≫⁺ updateConstructor k (str / top +⊗ reparam)

Another common operation when ornamenting datatypes is the renaming of argu-
ments. While the names do not influence the functioning of a datatype, they will be
visible when a datatype is unquoted. The renaming of arguments in a specific con-
structor is done by the renameArguments function. The user picks a constructor with
(k ∶ Fin #c) and gives a list ofMaybe String’s, one for each argument in the constructor.

59

If a Nothing is given for an argument, the old name is kept. The conRenameArguments
function is a variant which works directly on a constructor.

renameArguments ∶ ∀ { I Γ #c} {D ∶ DatDesc I Γ #c} →
(k ∶ Fin #c) →
Vec (Maybe String) (countArguments (lookupCtor D k)) →
Orn I id Γ id D

conRenameArguments ∶ ∀ { I Γ} {D ∶ ConDesc I Γ} →
Vec (Maybe String) (countArguments D) →
Orn I id Γ id D

These are some examples of functions that create ornaments. Small components
like idOrn, reparam, reindex, reCx, renameArguments and updateConstructor can be
combined easily. Chapter 2 already showed an example of what nat→list could look
like:

nat→list′ ∶ Orn natDesc
nat→list′ = renameArguments 1 (just ”xs” ∷ [])

≫⁺ addParameterArg 1 ”x”

This definitely does a better job at communicating the meaning of the changes than
the low-level ornament:

nat→list ∶ Orn ε id (ε ▷′ Set) (λ → tt) natDesc
nat→list = ι (λ δ → inv tt)
⊕ ”x” / top +⊗

”xs” /rec (λ δ → inv tt) ⊗
ι (λ δ → inv tt)

⊕ ‘0

These are two extremes, where the former is very high-level and the later is very
low-level. There is nothing wrong with something in between:

nat→list″ ∶ Orn ε id (ε ▷′ Set) (λ → tt) natDesc
nat→list″ = reparam
⊕ ”x” / top +⊗
(reparam ≫⁺ conRenameArguments (just ”xs” ∷ []))
⊕ ‘0

6.6.4 Reornaments
The ornamental algebra of an ornament is an algebra that forgets the extra information
introduced by the ornament. So the nat→list ornament induced a length algebra. Al-
gebraic ornaments (section 5.3) used an algebra to create an ornament that added the
results of the algebra as an index. For instance, the length algebra for lists could be used
to obtain vectors. The first creates an algebra from an ornament, while the second cre-
ates an ornament from an algebra. These can be combined to create reornaments[19].

The reornament function implements reornamentation using composition and the
algebraic ornament of the ornamental algebra. An index is added which can contain
elements of the original description (μ D tt (u j)). No parameters are allowed for the
original description, so the environment can be instantiated with tt.

60

reornament ∶ ∀ { I J u Δ} {c ∶ Cxf Δ ε} {#c} {D ∶ DatDesc I ε #c} →
(o ∶ Orn J u Δ c D) → Orn (J ▷ μ D tt ∘ u) (u ∘ pop) Δ c D

reornament o = o ≫⁺ (algOrn (λ {δ} → forgetAlg o {δ}))

Example 6.6.1. We will construct the reornament of nat→list. Let us assume that we
have the following definitions for the description of natural numbers, the constructors
for that description, and the ornament from natural numbers to lists:

natDesc ∶ DatDesc ε ε 2
natDesc-zero ∶ μ natDesc tt tt
natDesc-suc ∶ μ natDesc tt tt → μ natDesc tt tt
nat→list ∶ Orn ε id (ε ▷′ Set) (λ δ → tt) natDesc

By applying reornament to nat→list, one obtains a ornament from natural numbers
to Vec. Contrary to list→vec from section 6.4, which added a Nat as an index, this one
uses a μ natDesc tt tt. These are isomorphic, so it should not be a problem.

nat→vecᵣ ∶ Orn (ε ▷′ μ natDesc tt tt) (λ j → tt) (ε ▷′ Set) (λ δ → tt) natDesc
nat→vecᵣ = reornament nat→list

The resulting description is very similar to the one created by algOrn lengthAlg.
The only differences are that Nat has been replaced with μ natDesc tt tt, 0 with
natDesc-zero and suc with natDesc-suc.

vecDescᵣ ∶ DatDesc (ε ▷′ μ natDesc tt tt) (ε ▷′ Set) 2
vecDescᵣ = ι (const (tt , natDesc-zero))
⊕ ”x” / top
⊗ ”_” / const (μ natDesc tt tt)
⊗ ”xs” /rec (λ γ → tt , top γ)
⊗ ι (λ γ → tt , natDesc-suc (top γ))
⊕ ‘0

test-nat→vec ∶ ornToDesc nat→vecᵣ ≡ vecDescᵣ
test-nat→vec = refl

△

With the current descriptions, reornaments on descriptions with parameters can not
be supported in general. While writing a type for a reornament’ operation which does
support it, we get stuck when trying to give the environment for the index. The hole
?0 is of type ⟦ Γ ⟧, an environment for the original description. Such an environment
could be built using the ornamented environment of type ⟦ Δ ⟧ and the environment
transformer c, but there is no ⟦ Δ ⟧ available in the place of the hole.

reornament′ ∶ ∀ { I J u Δ Γ} {c ∶ Cxf Δ Γ} {#c} {D ∶ DatDesc I Γ #c} →
(o ∶ Orn J u Δ c D) → Orn (J ▷ μ D ?0 ∘ u) (u ∘ pop) Δ c D

The problem lies in the fact that descriptions do not allow indices to be dependent
on parameters, as was discussed in section 5.4.1. Right now, reornament can not work
around it, but this may be possible if the solution proposed in that section was imple-
mented.

61

6.7 Discussion
This chapter presented the final iteration of descriptions, which is suited to describe
a fairly large class of datatypes. We showed how datatypes can be quoted to these
descriptions, and how descriptions can be unquoted to datatypes. Some generic func-
tions were defined, which work on actual datatypes once their embedding-projection
pairs are derived (which is automatically done when quoting a datatype). Finally, some
higher-level ornaments were defined.

With all these components together, we hope to have made the barrier to start work-
ing with descriptions and ornaments low enough. A user does not necessarily need to
know much about the theory to quote a datatype, make some basic modifications, and
unquote it to a new datatype. At the very least, it is easy to figure out what the descrip-
tion for a certain datatype should be by simply quoting it. These abstractions are still
leaky—if one does not write everything just right, they will get errors which can not be
understood without a deeper understanding of these descriptions and ornaments.

6.7.1 Embedding-projection instances
The HasDesc record is indexed by the represented type A, this allows for easy instance
searching by type. When one has a value of type A this works well, for instance in the use
of to. In the following example, the HasDesc (Vec Nat 4) instance is found which con-
tains the description, γ and i. The type of ?0 is inferred as μ vecDesc (tt , Nat) (tt , 4).

vec-example-rep ∶ ?0 -- μ vecDesc (tt , Nat) (tt , 4)
vec-example-rep = to vec-example

The other way around is not so easy. If one only knows γ, i and the descrip-
tion itself, Agda can not search for a HasDesc instance. This means that the type of
from vec-example-rep, the hole in the following example, can not be inferred. If the
result type is given by the user, or known in some other way, that can be used to find
the HasDesc. So the following does type check:

vec-example′ ∶ Vec Nat 4
vec-example′ = from vec-example-rep

While to and from seem to behave the same, this is only the case when all the
types are known. The difference is that to uses its input to find the record, and from
requires the result type before a record can be found. One of the consequences is that
the signature of gforget becomes very complicated:

gforget ∶ ∀ {A} ⦃ AR ∶ HasDesc A ⦄ {B} ⦃ BR ∶ HasDesc B ⦄ →
∀ {u c} (o ∶ Orn (IBR) u (ΓBR) c (descAR)) →
⦃ ieq ∶ iAR ≡ u (iBR) ⦄
⦃ γeq ∶ γAR ≡ c (γBR) ⦄
⦃ #ceq ∶ #cAR ≡ #cBR ⦄
⦃ deq ∶ transport (DatDesc (IBR) (ΓBR)) #ceq (ornToDesc o)

≡ descBR ⦄ →
B → A

The ornament goes from A to B, so the forget function goes from B to A. The
HasDesc B instance can be searched for, which is necessary to transform the B into

62

record EmbeddingProjection (A ∶ Set) { I Γ #c}
(desc ∶ DatDesc I Γ #c) (γ ∶ ⟦ Γ ⟧) (i ∶ ⟦ I ⟧) ∶ Set₂ where
constructor mk
field

to′ ∶ A → μ desc γ i
from′ ∶ μ desc γ i → A

record Embeddable (A ∶ Set) ∶ Set₂ where
constructor mk
field

{ I Γ} ∶ Cx
{#c} ∶ Nat
desc ∶ DatDesc I Γ #c
γ ∶ ⟦ Γ ⟧
i ∶ ⟦ I ⟧
ep ∶ EmbeddingProjection A desc γ i

record Projectable { I Γ #c}
(desc ∶ DatDesc I Γ #c) (γ ∶ ⟦ Γ ⟧) (i ∶ ⟦ I ⟧) ∶ Set₂ where
constructor mk
field

A ∶ Set
ep ∶ EmbeddingProjection A desc γ i

to ∶ ∀ {A} ⦃ R ∶ Embeddable A ⦄ → A → μ (descR) (γR) (iR)
to ⦃ mk desc γ i ep ⦄ = to′ ep
from ∶ ∀ { I Γ #c desc γ i} ⦃ R ∶ Projectable { I} {Γ} {#c} desc γ i ⦄ →

μ desc γ i → AR
from ⦃ mk A ep ⦄ = from′ ep

Listing 6.5: Alternative embedding-projection records

a μ (descBR) (γBR) (iBR). By ornamenting with o we get a μ (ornToDesc o) (c (γBR))
(u (iBR)). In the current implementation, the result type A is used to find a HasDesc A
instance, which gives us a way to transform a μ (descAR) (γAR) (iAR) into an A. The
types μ (ornToDesc o) (c (γBR)) (u (iBR)) and μ (descAR) (γAR) (iAR) do not line up,
which is why all the equalities are required.

A solution to this problem is to the HasDesc record into several records. Time
did not permit to implement this in the framework, but listing 6.5 shows how it might
work. The embedding-projection pair is in a separate record parameterised by A, desc,
γ and i. The Embeddable record takes over the role of HasDesc and is suitable for
instance search by type, while the Projectable record enables searching by description.
Using these records, the to and from functions can be implemented in a way where type
information always flows from the input to the output, so the result types of to and from
can be inferred.

63

The signature of the generic forget function becomes a lot simpler. The embedding-
projection pair of the result is obtained by searching a Projectable with the calculated
environment and indices, so there is no need to check afterwards that the types line
up. The ornToDesc o ≡ descBR equality is still required to make sure that the given
ornament matches with the input type B.

gforget′ ∶ ∀ {B} ⦃ BR ∶ Embeddable B ⦄ →
∀ {AI AΓ Adesc u c} (o ∶ Orn {AI} (IBR) u {AΓ} (ΓBR) c Adesc) →
⦃ deq ∶ ornToDesc o ≡ descBR ⦄ →
⦃ AR ∶ Projectable Adesc (c (γBR)) (u (iBR)) ⦄ →
B → AAR

64

Chapter 7

Discussion

The structure of our descriptions matches closely with the structure of actual datatype
declarations. We have chosen to split them up into constructor descriptions and data-
type descriptions, and to have a first-order structure to determine which arguments each
constructor has. Functions are only allowed within parts where arbitrary terms could
occur in real datatypes. Our descriptions have strict control over what can and what can
not be influenced by the context.

Descriptions encode indexed functors that are of the form (I → Set) → (O → Set).
There are many ways to encode indexed functors, including ways that build on the Σ-
descriptions of section 3.5.1. Indexed containers[2] can also be used, but for our pur-
poses they have the same problems as Σ-descriptions: They can be used to define a lot
of exotic types that do not correspond to an Agda datatype. Indexed Σ-descriptions and,
even more so, indexed containers serve well as semanticalmodels of inductive families,
but they do not provide an accurate syntactical representation of Agda datatypes.

7.1 Explicit parameter use
In our descriptions, starting with those in chapter 4, ’types within a context’ were rep-
resented with a function of type ⟦ Γ ⟧ → Set. This allows any type to be represented and
the type may depend on a local environment. While this is a very powerful approach if
one only cares about representing types, it is not very helpful when the representation
needs to be inspected. For instance, one can not decide whether a given term uses a cer-
tain parameter. More precisely, the following definition of isTop can not be completed.
For an arbitrary S of type ⟦ ε ▷′ Set ⟧ → Set, we can neither prove that it is top or that
it is not top.

data Dec (P ∶ Set) ∶ Set where
yes ∶ P → Dec P
no ∶ ¬ P → Dec P

isTop ∶ (S ∶ ⟦ ε ▷′ Set ⟧ → Set) → Dec (∀ γ → S γ ≡ top γ)
isTop S = ?0

This quickly becomes a problem when writing generic functions. A common func-
tion in generic programming frameworks is flatten; it takes a value of a type with a type
parameter A, and converts it into a List A. Another is the parametric map function pmap

65

which maps a function (f ∶ A → B) over elements in a structure. With the descriptions
of chapter 5, these functions would have the following type:

flatten ∶ ∀ {#c} (D ∶ DatDesc ε (ε ▷′ Set) #c) →
∀ {A} → μ D (tt , A) tt → List A

pmap ∶ ∀ {#c} (D ∶ DatDesc ε (ε ▷′ Set) #c) →
∀ {A B} → (f ∶ A → B) → μ D (tt , A) tt → μ D (tt , B) tt

The implementation of both flatten and pmap is impossible with our descriptions,
because it can not be decided where parameters are being used. Other generic pro-
gramming frameworks often do not have this problem, because they have a separate
description for parameter use. For instance, a subset of the universe of PolyP (where a
single parameter is allowed) can be encoded in Agda as follows [14, 16]:

data PolyPDesc ∶ Set where
ι ∶ PolyPDesc
rec ∶ PolyPDesc
par ∶ PolyPDesc
⊕ ∶ (F G ∶ PolyPDesc) → PolyPDesc
⊗ ∶ (F G ∶ PolyPDesc) → PolyPDesc

The decoding for this universe is of type PolyPDesc → (P ∶ Set) → (X ∶ Set) → Set,
where the decoding of par results in the parameter type P. With simple patternmatching,
the usage of the parameter can be detected. This same idea can be made to work for
multiple parameters in a Cx. We use Γ ∋Set as proofs that a Set is specified in the
context, and ⟦_⟧∋Set to lookup the type (a value of type Set) in an environment γ. Note
that _∋Set and ⟦_⟧∋Set are specifically meant to lookup types in the environment. The
same can be done to lookup values in the environment, but other definitions are needed
[18].

data _∋Set ∶ (Γ ∶ Cx) → Set₁ where
top′ ∶ ∀ {Γ} → (Γ ▷′ Set) ∋Set
pop′ ∶ ∀ {Γ S} → Γ ∋Set → (Γ ▷ S) ∋Set

⟦_⟧∋Set ∶ ∀ {Γ} → Γ ∋Set → (γ ∶ ⟦ Γ ⟧) → Set
⟦ top′ ⟧∋Set (γ , t) = t
⟦ pop′ i ⟧∋Set (γ , s) = ⟦ i ⟧∋Set γ

With these definitions, the PolyP universe can be modified to support multiple pa-
rameters. Listing 7.1 defines the descriptions and semantics of the new universe. The
semantics are mostly business as usual—the parameters are decoded with ⟦_⟧∋Set.

A binary tree type, with data of type A in the leaves, is defined as Tree A. The new
universe can describe this type, where par top′ is used to refer to the parameter. Note
that constructors in this universe do not have to be terminated with a ι. We show that
the definition makes sense by defining the tree-to function, to convert real trees into
represented trees.

data Tree (A ∶ Set) ∶ Set where
leaf ∶ A → Tree A
node ∶ Tree A → Tree A → Tree A

66

data Desc (Γ ∶ Cx) ∶ Set₁ where
ι ∶ Desc Γ
rec ∶ Desc Γ
par ∶ (i ∶ Γ ∋Set) → Desc Γ
⊕ ∶ Desc Γ → Desc Γ → Desc Γ
⊗ ∶ Desc Γ → Desc Γ → Desc Γ

⟦_⟧desc ∶ ∀ {Γ} → Desc Γ → ⟦ Γ ⟧Cx → Set → Set
⟦ ι ⟧desc γ X = ⊤
⟦ rec ⟧desc γ X = X
⟦ par i ⟧desc γ X = ⟦ i ⟧∋Set γ
⟦ A⊕ B ⟧desc γ X = Either (⟦ A ⟧desc γ X) (⟦ B ⟧desc γ X)
⟦ A ⊗ B ⟧desc γ X = ⟦ A ⟧desc γ X × ⟦ B ⟧desc γ X
data μ {Γ} (D ∶ Desc Γ) (γ ∶ ⟦ Γ ⟧) ∶ Set where

⟨_⟩ ∶ ⟦ D ⟧desc γ (μ D γ) → μ D γ

Listing 7.1: Descriptions with parameter lookup

treeDesc ∶ Desc (ε ▷′ Set)
treeDesc = par top′⊕ rec ⊗ rec
tree-to ∶ ∀ {A} → Tree A → μ treeDesc (tt , A)
tree-to (leaf v) = ⟨ left v ⟩
tree-to (node xs ys) = ⟨ right (tree-to xs , tree-to ys) ⟩

So far so good, we can do what we already could in chapter 5. To show that we
have indeed made progress, we will define the flatten function, for which parameter use
needs to be recognised. Using straightforward definitions for Alg and fold, a flattenAlg
algebra can be defined which works for any description. Notice how we can simply
pattern match on par top′ to extract the value of type A.

flattenAlg ∶ ∀ {Γ} (D ∶ Desc (Γ ▷′ Set)) →
∀ {γ A} → Alg D (γ , A) (List A)

flattenAlg ι tt = []
flattenAlg rec x = x
flattenAlg (par top′) x = [x]
flattenAlg (par) x = []
flattenAlg (A⊕ B) (left x) = flattenAlg A x
flattenAlg (A⊕ B) (right x) = flattenAlg B x
flattenAlg (A ⊗ B) (x , y) = flattenAlg A x ++ flattenAlg B y

Finally, the flatten algebra can be folded over a tree to retrieve a list of all the ele-
ments:

tree-example ∶ Tree Nat
tree-example = node (leaf 7) (node (node (leaf 5) (leaf 3)) (leaf 1))
test-flatten ∶ fold (flattenAlg treeDesc) (tree-to tree-example)

≡ 7 ∷ 5 ∷ 3 ∷ 1 ∷ []
test-flatten = refl

In summary, it is possible to explicitly encode parameter references in descriptions
when the parameters are declared with a Cx. Of course, this would be nice to integrate
into our descriptions of 5 or 6. There are two things holding us back:

67

• With the simple universe in this section the use of the last parameter always looks
like par top′, so a simple pattern match suffices. In our descriptions, contexts do
not remain constant but depend on where in a constructor we are. The descrip-
tions of section 5.4.1, where the parameters are separated from internal contexts,
do not have this problem.

• The possibility of false negatives. If one introduces a new constructor for pa-
rameter argumenst while keeping the old _⊗_ constructor with the ⟦ Γ ⟧ → Set
argument, both can be used to encode the use of a parameter. One can then still
not say with certainty that an argument is not the simple use of a parameter.

When the ability to describe as many types as possible is less important, one could
get rid of the old ⟦ Γ ⟧ → Set arguments altogether. Instead, a language of types could
be used like McBride’s [18]. McBride defines a type-is-representable predicate _⋆_ in
the style of Crary et al [5]. The predicate ensures that types are only built using the
language as defined in the constructors of _⋆_. It is indexed by a ⟦ Γ ⟧ → Set function,
telling us what the expected behavior is. As an example, we define the type language
to have three types: natural numbers, sets, and types from the context.

data _⋆_ (Γ ∶ Cx) ∶ (⟦ Γ ⟧ → Set) → Set₁ where
‘Nat ∶ Γ ⋆ const Nat
‘Set ∶ Γ ⋆ const Set
‘TypeVar ∶ (i ∶ Γ ∋Set) → Γ ⋆ ⟦ i ⟧∋Set

Limited experimentation shows that the ⟦ Γ ⟧ → Set function in the _⊗_ constructor
of our descriptions can be replaced by Γ ⋆ S. So the constructor type is changed from
(S ∶ ⟦ Γ ⟧ → Set) → ⋯ to {S ∶ ⟦ Γ ⟧ → Set} → Γ ⋆ S → ⋯ . It remains to be seen
how ornaments will work out with such descriptions.

7.2 Induction-recursion and strict positivity
Our descriptions are able to describe a practical subset of the inductive types. Dybjer
and Setzer [12] describe ordinary inductive definitions of types with a finite number of
constructors:

conᵢ ∶ Φᵢ U → U

The Φᵢ are strictly positive functors. If dependent types are allowed, strictly positive
functors can be constructed by a number of rules (according to Dybjer and Setzer):

• nil: The constant functor Φ X = ⊤ is strictly positive.

• nonind: If A is a type and Ψₓ is a strictly positive functor depending on (a ∶ A),
then Φ X = Σ A λ a → Ψₐ X is strictly positive.

• ind: If Ψ is strictly positive, then Φ X = X × Ψ X is strictly positive.

The rules nil, nonind and ind correspond exactly to the semantics of ι, σ and rec-×_
of the Σ-descriptions in listing 3.8 on page 21, while the introduction rule conᵢ ∶
Φᵢ U → U corresponds to the constructor of the fixpoint datatype μΣ. We have shown
in table 3.1 (section 3.5.1) that our ConDesc/DatDesc universe of that chapter can de-
scribe a subset of those Σ-descriptions, so by the rules stated above this means that that
universe describes a subset of the ordinary inductive types.

68

In later chapters we have extended the universe in several ways, but the same logic
still holds. One can confirm that the semantics for families of datatypes in listing 5.3
can be generated with similar rules as above, though slightly modified to allow indices.
The ConDesc/DatDesc universes with indices describe inductive families.

Note that the ind rule does not allow later arguments to depend on the value of an
inductive argument. So within a datatype D, an arguments in a constructor can not
depend on earlier arguments of type D. Our ConDesc/DatDesc universes reflect this
fact by not including the S of a rec S × xs in the context for xs. We know that Agda
datatypes do not have such restrictions—They are not just inductive types.

Inductive-recursive types are a generalisation of inductive types, where a simulta-
neously defined recursive function of type D → ⋯ can be used within the definition
of the type D. A simple example is our Cx type in listing 4.2 on page 27, which is
mutually defined with ⟦_⟧Cx. Dybjer and Setzer [12] have given an axiomatisation of
inductive-recursive types that can be implemented in Agda easily.

Compared to inductive types, the pattern functors of inductive-recursive types can
use an extra argument T that represents a recursively defined function1. Now in the case
of an inductive argument a, later arguments can depend on T a (not on just a). For exam-
ple; when describing the type Cx the function Twould represent ⟦_⟧Cx. When (Γ ∶ Cx) is
an (inductive) argument, the rest of the arguments could depend on ⟦ Γ ⟧Cx. This is suf-
ficient to encode the _▷_ constructor, which is of type (Γ ∶ Cx) → (⟦ Γ ⟧Cx → Set) → Cx.

Separately from inductive-recursive types, ordinary inductive types can also be ex-
tended in another way–To generalised inductive types. Generalised inductive types are
the same as ordinary inductive types, but with the inclusion of an inductive premise in
the ind rule, giving the following rule:

• ind: If Ψ is strictly positive and A is a type, then Φ X = (A → X) × Ψ X is srictly
positive. If one instantiates A to ⊤, one obtains the ordinary inductive types (up
to isomorphism).

To summarise, there are three ways to expand on ordinary inductive types:

• By adding indices, so inductive families can be described. This was done for our
universe in chapter 5.

• By allowing inductive premises, to get generalised inductive types.

• By passing a recursive function to the pattern functors, to implement inductive-
recursive types.

The ConDesc/DatDesc universe has not been adapted to implement the latter two,
but this may well be possible. Dybjer and Setzer have presented indexed inductive-
recursive types[13], combining the combination of these three expansions. Indexed
inductive-recursive types are a good approximation of the datatypes that are imple-
mented by Agda. It would be interesting to see if our universes, ornaments, and generic
programming framework could be rebuilt with indexed inductive-recursive types as
their foundation.

1Actually, as Dybjer and Setzer note, the functors are not really functors anymore in the category theory
sense of the word.

69

Chapter 8

Conclusion

In this thesis we have presented a generic programming framework for Agda. Data-
types can be transformed into new datatypes by a process of quoting, ornamenting and
unquoting.

A universe of descriptions has been implemented that can describe inductive fami-
lies. Dependent types are supported, so types of arguments can depend on other argu-
ments. Universes like these usually allow a lot of types that could not be implemented
with a single Agda datatype. Our descriptions are uniquely capable of describing in-
ductive families and dependent types while still keeping to a subset of Agda datatypes.

Work on representing dependent types in type theory [18] is combined with work
on generic programming with dependent types [4], resulting in descriptions that pass
along contexts internally. This idea restricts the use of arguments to exactly those places
where they could be used in an Agda datatype. Section 3.5.1 and section 7.2 have shown
that these universes with contexts are still implementing inductive types (for those in
chapter 4) or inductive families (in chapter 5). Parameters and indices are represented
as contexts as well, to effectively allow multiple parameters and multiple indices that
can depend on earlier parameters or indices respectively.

Ornaments were adapted to our universe of descriptions as well. We already knew
that types where closed under ornamentation (because every ornament results in a de-
scription). Our descriptions describe a subset of Agda datatypes and each ornament
results in a description. This leads us to an interesting conclusion: With ornaments as
we have defined them, Agda datatypes are closed under ornamentation. Thismeans that
ornamentation of actual datatypes can be implemented in a way that will not produce
types that can not be represented as a datatype.

The low-level ornaments were shown te be well-suited for abstraction. We were
able to implement higher-level ornaments for concepts like ’renaming arguments’ and
’adding a parameter’. This shows that it is possible to provide an easier interface to
ornamentation that requires only a limited understanding of ornaments.

Datatypes can be quoted to descriptions, and descriptions can be unquoted to data-
types. This allows users to obtain descriptions without having to write them, and to use
descriptions without having to work without having to use representations of values
such as ⟨ 1 , x , xs , refl ⟩. Generic programming frameworks like Haskell’s generic
deriving have already shown the strength of approaches like these.

70

8.1 Future work
Some limitations of the current implementation were already explained throughout this
thesis. We provide some directions for future research based on these limitations. Some
of these directions involve fundamental changes to how the descriptions and their or-
naments work. Others are more practically oriented, to make the library easier to use.

The separation of parameters from local contexts, explained in section 5.4.1, is an
obvious candidate for implementation. We already know that the descriptions them-
selves can be implemented in this way. This would make it possible to implement
reornaments on descriptions with parameters (section 6.6.4) and the addParameterArg
function of section 6.6 could add the parameter argument in other places than at the
front of a constructor.

Ornaments on inductive-recursive types are not well researched yet. We do not
know whether ornaments, quoting and unquoting work for inductive-recursive types. If
one wishes to support all types that can be represented by Agda datatypes, this would
certainly need to be researched further.

Mutually recursive datatypes usually fall under the inductive families, because in-
ductive arguments can use indices to indicate which of the types is being referred to.
Our ConDesc/DatDesc descriptions do not support mutually recursive types, but there
does not seem to be a fundamental reason why this would not be possible. One could
add another layer of descriptions to describe bunches of DatDescs and use indexed Σ-
descriptions to inform the semantics and ornaments of them. If one description can
describe multiple datatypes, it may even be possible to split one datatype into multiple
datatypes by refining the index that picks the datatype from the bunch.

Our universe of descriptions does not allow many generic operations. In section 7.1
we show how parameter use can be made explicit, so functions like flatten or sum could
be implemented generically. The same idea of making the meaning of arguments more
explicit can be expanded upon, to the point of implementing a full language describing
dependent types (a la McBride [18]). Quoting and unquoting of arguments to/from such
a representation is a whole new issue.

The unquoting of datatypes is not entirely automatic yet (section 6.5). We did solve
all the problems regarding the unquoting of the types of the constructors and of the
datatype itself. It would be nice if Agda supported the unquoting of datatypes within
the TCmonad. As an alternative solution, one might implement functionality within the
development environment that helps with code generation. One can imagine how the
user could instruct the environment to write a datatype definition based on a description,
and that the user is then prompted to provide the name for each constructor.

Some simple superficial improvements could be made to the descriptions that are
being quoted. They can be modified to allow hidden arguments, such that a constructor
like cons for Vec does not need to have the length index as a visible argument. Contexts
could be made to support hidden arguments and names as well, then parameters and
indices can contain hidden arguments and the arguments are named properly when the
datatype is unquoted. Other more practically oriented modifications could be made
to the HasDesc record. The structure with Embeddable and Projectable records as
proposed in section 6.7.1 would probably be better suited for generic programming.

71

Acknowledgements

I would like to thankmy supervisorWouter Swierstra for gettingme interested in depen-
dent types, for his helpful comments and for many interesting discussions. His positive
attitude and personal mentoring never failed to cheer me up when i had a rough time.
His engagement during the whole process is truly appreciated. I also thank Johan Jeur-
ing for taking the time to read and assess this work.

Furthermore i want to thank the developers of Agda for the continued development
of a great dependently typed programming language, Andres Löh for making writing
easier with lhs2TeX, Pierre-Évariste Dagand for a good discussion about ornaments,
the software-technology reading club for lots of interesting sessions, and my university
buddies for lots of fun.

I am grateful to Maartje for her love and support, i could not have done this without
her. She is my motivation and inspiration to do the best i can.

72

Bibliography

[1] Thorsten Altenkirch, Conor McBride, and Peter Morris. Generic programming
with dependent types. In Proceedings of the 2006 International Conference on
Datatype-generic Programming, SSDGP’06, pages 209–257, Berlin, Heidelberg,
2007. Springer-Verlag.

[2] Thorsten Altenkirch and Peter Morris. Indexed containers. In Proceedings of the
2009 24th Annual IEEE Symposium on Logic In Computer Science, LICS ’09,
pages 277–285, Washington, DC, USA, 2009. IEEE Computer Society.

[3] Richard Bird and Lambert Meertens. Nested datatypes. In Johan Jeuring, editor,
Mathematics of Program Construction, volume 1422 of Lecture Notes in Com-
puter Science, pages 52–67. Springer Berlin Heidelberg, 1998.

[4] James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The
gentle art of levitation. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 3–14, New York, NY,
USA, 2010. ACM.

[5] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in
type-erasure semantics. In Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming, ICFP ’98, pages 301–312, New York,
NY, USA, 1998. ACM.

[6] Pierre-Évariste Dagand and Conor McBride. Transporting functions across orna-
ments. Journal of Functional Programming, 24:316–383, 2014.

[7] Nils Anders Danielsson. Types for Proofs and Programs: InternationalWorkshop,
TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers, chap-
ter A Formalisation of a Dependently Typed Language as an Inductive-Recursive
Family, pages 93–109. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[8] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae (Proceedings), 75(5):381 – 392, 1972.

[9] Dominique Devriese and Frank Piessens. On the bright side of type classes: In-
stance arguments in agda. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’11, pages 143–155, New
York, NY, USA, 2011. ACM.

[10] Peter Dybjer. Inductive sets and families in martin-löf’s type theory and their
set-theoretic semantics. In Logical Frameworks, pages 280–306. Cambridge Uni-
versity Press, 1991.

73

[11] Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–465,
1994.

[12] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive
definitions. In Proceedings of the 4th International Conference on Typed Lambda
Calculi and Applications, TLCA ’99, pages 129–146, London, UK, UK, 1999.
Springer-Verlag.

[13] Peter Dybjer and Anton Setzer. Indexed induction-recursion. In Proceedings of
the International Seminar on Proof Theory in Computer Science, PTCS ’01, pages
93–113, London, UK, UK, 2001. Springer-Verlag.

[14] Patrik Jansson and Johan Jeuring. Polyp—a polytypic programming lan-
guage extension. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’97, pages 470–482, New York,
NY, USA, 1997. ACM.

[15] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A generic
deriving mechanism for haskell. In Proceedings of the Third ACM Haskell Sym-
posium on Haskell, Haskell ’10, pages 37–48, New York, NY, USA, 2010. ACM.

[16] José Pedro Magalhães and Andres Löh. A formal comparison of approaches to
datatype-generic programming. In James Chapman and Paul Blain Levy, ed-
itors, Proceedings Fourth Workshop on Mathematically Structured Functional
Programming, Tallinn, Estonia, 25 March 2012, volume 76 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 50–67. Open Publishing Asso-
ciation, 2012.

[17] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Studies in proof
theory. Bibliopolis, Napoli, 1984.

[18] Conor McBride. Outrageous but meaningful coincidences: Dependent type-safe
syntax and evaluation. In Proceedings of the 6th ACM SIGPLAN Workshop on
Generic Programming, WGP ’10, pages 1–12, New York, NY, USA, 2010. ACM.

[19] Conor McBride. Ornamental algebras, algebraic ornaments. unpublished, dated
23 January 2011, 2011.

[20] Conor Mcbride and Ross Paterson. Applicative programming with effects. J.
Funct. Program., 18(1):1–13, January 2008.

[21] Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring, and
Bastiaan Heeren. A lightweight approach to datatype-generic rewriting. In Pro-
ceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP ’08,
pages 13–24, New York, NY, USA, 2008. ACM.

[22] Ulf Norell and Patrik Jansson. Polytypic programming in haskell. In Proceedings
of the 15th International Conference on Implementation of Functional Languages,
IFL’03, pages 168–184, Berlin, Heidelberg, 2004. Springer-Verlag.

74

	Introduction
	Usage
	Generics and ornaments
	Descriptions
	Maps and folds
	Ornaments
	Ornamental algebras
	Discussion
	Σ-descriptions
	Finding the right ornaments

	Ornaments on dependently typed descriptions
	Contexts and environments
	Descriptions
	Ornaments

	Ornaments on families of datatypes
	Descriptions
	Ornaments
	Algebraic ornaments
	Discussion
	Separating parameters from contexts

	Generic programming with descriptions
	Descriptions and ornaments
	Quoting datatypes
	Deriving an embedding-projection pair
	Generic functions
	Unquoting descriptions
	Higher-level ornaments
	Structure-preserving ornaments
	Ornament composition
	More ornaments
	Reornaments

	Discussion
	Embedding-projection instances

	Discussion
	Explicit parameter use
	Induction-recursion and strict positivity

	Conclusion
	Future work

